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Estimation and Optimal Configurations for
Localization Using Cooperative UAVs

Keith B. Purvis, Member, IEEE, Karl J. Åström, Fellow, IEEE, and Mustafa Khammash, Fellow, IEEE

Abstract—The time-difference of arrival techniques are adapted
to locate networked enemy radars using a cooperative team of
unmanned aerial vehicles. The team is engaged in deceiving the
radars, which limits where they can fly and requires accurate
radar positions to be known. Two time-differences of radar pulse
arrivals at two vehicle pairs are used to localize one of the radars.
An explicit solution for the radar position in polar coordinates
is developed. The solution is first used for position estimation
given “noisy” measurements, which shows that the vehicle tra-
jectories significantly affect estimation accuracy. Analyzing the
explicit solution leads to The Angle Rule, which gives the optimal
vehicle configuration for the angle estimate. Analyzing the Fisher
Information Matrix leads to The Coordinate Rule, which gives
a different optimal configuration for the position estimate. A
linearized time-varying model is also formulated and an Extended
Kalman Filter applied. This estimation scheme is compared with
the earlier one, with the second showing overall improvement in
reducing the variance of the estimate.

Index Terms—Electronic warfare, Fisher Information Matrix,
Kalman filtering, localization, optimal configuration, position es-
timation, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

T HE Estimation Problem addressed here is connected to
the Cooperative Deception Problem in [1], [2]: using

unmanned aerial vehicles (UAVs) to cooperatively deceive
an enemy radar network by causing the network to track the
motion of a phantom or nonexistent air vehicle. UAVs meeting
the requirements to perform this task will be called Electronic
Combat Air Vehicles (ECAVs) from here on. A radar network is
defined as two or more radars that share track files to correlate
a target. Methods for generating a phantom target are restricted
to range-delay techniques applied through the radar main lobe.
Fig. 1 illustrates the problem. For a team of ECAVs—generally
one per radar—to succeed against the radar network, each
ECAV’s trajectory must satisfy several dynamic limitations [1];
also, the position of each radar must be accurately known.

Radar position estimation is addressed using time-differences
of arrival (TDOAs). To obtain a TDOA measurement, each of
two ECAVs uses a synchronized internal clock to record a time
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Fig. 1. Creation of a phantom radar track. Radar pulses are intercepted by a
stealthy ECAV and returned with a delay so that the radar sees a phantom target
beyond the ECAV. To generate a coherent phantom track for the radar network,
one ECAV per radar is needed to stay on the line of sight between the radar and
phantom target; the radar positions must also be known.

stamp on the arrival of a (unique) encoded radar pulse, and the
difference between the two times is taken. One TDOA places the
transmitting radar on a hyperbolic curve on the ground. Thus,
based on two or more TDOAs, the radar’s position can be esti-
mated by taking the correct intersection of the hyperbolas. The
estimate will not be exact due to electronic measurement noise
and clock synchronization error; see [3, chap. 11] for more de-
tails on GPS-based synchronization.

We proceed based on two fundamental ideas. First, the choice
of ECAV trajectories flown significantly affects the accuracy of
the radar position estimates. Hence, it is important to find trajec-
tories that will minimize the variance of the estimates. Second,
even the best ECAV trajectories may produce unacceptable vari-
ance; however, knowing the distribution of the measurement
error allows for effective filtering. Assuming a Gaussian dis-
tribution, an Extended Kalman Filter applied to a linearized
system can significantly reduce the variance of the estimates.
Again, minimizing this variance through filtering and selection
of optimal ECAV trajectories will improve the coherency of the
generated phantom track for the radar network.

Earlier work in [4] provides the beginning for this paper,
in which there are significant improvements and additions in-
cluding an explicit solution for the radar position and a study
of optimal vehicle configurations. A decentralized estimation
scheme has also been developed for this problem [5], where
vehicle constraints are communicated in terms of the phantom
track and used by each vehicle to estimate the other vehicle and
radar positions. However, [5] assumes that each vehicle knows

1063-6536/$25.00 © 2008 IEEE
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Fig. 2. ECAV and phantom track variables. The main variables are shown for
one radar and ECAV, where the ECAV is on the LOS from the radar to the
generated phantom target.

exactly where its radar is located, whereas we drop this assump-
tion as the starting point of our study.

Our goal is to determine an estimation system and op-
timal vehicle configurations that will localize an emitter with
minimum variance. First, we provide some background on
the cooperative deception problem. An uncertainty analysis
shows how inaccurate radar position estimates will lead to
mission failure. Second, we lay the framework for positioning
using TDOA measurements. By parametrizing the TDOA
equations/hyperbolas in polar coordinates, we derive a novel,
explicit solution for the radar position. This solution is used to
perform estimation by direct calculation and time averaging.
Third, we investigate optimal platform configurations that will
minimize the error in the estimates. By analyzing our explicit
solution, we get The Angle Rule, and this is compared with
The Coordinate Rule via the Fisher Information Matrix. Last,
we develop a linearized model for the estimation system and
implement an Extended Kalman Filter; simulations are shown
and compared with the earlier scheme.

II. DECEPTION PROBLEM BACKGROUNDS

The scenarios considered herein are all constant-elevation
since the phantom will typically fly at a constant altitude, and
any minor descents can be easily decoupled and handled by
the ECAVs. Assuming that an ECAV is stealthy and knows

, the maximum operational range, and the location of a
radar with pulse-to-pulse agility, the ECAV can intercept and
send delayed returns of the radar’s transmitted pulses so that
the radar sees a phantom target at a range beyond the ECAV but
closer than . To maintain deception, each ECAV behaves
much like a bead on a string that is rotating at some variable
rate; the ECAV may slide up or down freely but must rotate with
the line of sight (LOS) from the radar to the phantom track. In
other words, the ECAV has one constraint, , and one degree
of freedom over time. Fig. 2 shows the main variables and their
relations.

The phantom track is assumed given since there are already
many criteria besides accurate position estimation governing its
selection [6]. Without loss of generality, is also assumed pos-
itive. We use a constant-heading, constant-speed phantom track
only for simplicity, which is given by

Fig. 3. Phantom variation due to an unknown radar location. The vehicle pro-
jecting the phantom target knows its position but only has an uncertainty disk
for the radar defined by � centered at the assumed location. The worst case
deviation in phantom range and azimuth occurs when the radar is actually lo-
cated at the dot on the edge of the disk.

where (see Fig. 2 for most of the variables used).
The subscript 0 refers to when . To generate the phantom
track, each ECAV flies a bearing of from its radar and uses
range-delay techniques as previously described to put a phantom
target at the range , where indexes the ECAVs.

For this work, we put our ECAV model in the Cartesian frame:

(1)

(2)

where the control is the vehicle heading rate. The reason for
using Cartesian instead of polar coordinates is that with the posi-
tion of the radar unknown, the coordinates would have an
unknown origin. Based on the ECAV dynamics, is restricted
to be piecewise continuous. Since is positive,

is also required. To remain in sync with the phantom
track, the ECAV must constantly adjust its speed as given by (2).

A. Uncertainty Analysis

Since the main reason for estimating the radar positions is to
maintain a coherent phantom track for the radar network, it is
essential to examine just how much the phantom target is af-
fected by an assumed radar location that is inaccurate. This in-
accuracy contributes to a region of uncertainty around a nom-
inal phantom target where the target may actually be placed by
an unsuspecting ECAV. If the region is too large, then the net-
worked radars will be able to discriminate between their respec-
tively observed phantom targets and “see” through the decep-
tion. Given an uncertainty in the radar location of , Fig. 3
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Fig. 4. Estimation of the middle radar position without noise. Three vehicles/
sensors can localize a radar/emitter using two TDOA measurements. Without
noise, n ; n = 0, the estimate is exact.

shows the worst case situation that would produce maximum
deviation in both the range and bearing/azimuth of the phantom
target. Using the figure as a guide, we get the following equa-
tions:

(3)

(4)

With km and km, the critical radar resolu-
tions for m are m in range and

in azimuth. The critical resolution for az-
imuth is double that of (4) since one ECAV could be projecting

and another ; however, can only be
positive. If the radars were to have a resolution better/smaller
than the calculated resolutions, then the phantom track would
be dismissed as spurious. We observe that the critical range res-
olution is so small as to be inconsequential; indeed, the type
of aircraft desirable for the phantom to emulate would be on
the order of tens of meters. However, the critical azimuth res-
olution is significant; to get a better idea, convert to distance
at the range km, which gives 1 km for 1.91 . Thus,
knowing the radar location accurately in terms of angle is im-
portant, whereas range is not.

In summary, the phantom track deception can be successful
if the radar locations or angles are known. Otherwise, each
ECAV’s expected placement of the phantom target may be
significantly different from its actual placement, which will
result in an incoherent phantom track for the radar network.
Therefore, we proceed to find methods to accurately estimate
the radar positions.

III. RADAR POSITIONING USING TIME DIFFERENCES

We assume for now that the ECAVs know their exact po-
sitions. We also assume that the ECAVs have synchronized
clocks and can detect pulses from radar side lobes, which are
much weaker in power than those from the main lobe. The
side-lobe assumption is necessary for the ECAVs to obtain

Fig. 5. Hyperbolic bands resulting from measurement noise. White noise en-
tering the TDOA measurements, n ; n 6= 0, causes a spread of hyperbolic
bands, which do not exactly touch the unknown radar location. Thus, the vehi-
cles seeking to localize the radar will get an inexact estimate.

TDOA measurements of radar pulses since each radar looks
directly at only one of the ECAVs. Side lobes are normally
actively suppressed to attenuate noise leaking in from nearby
sources or reflectors, so as to maximize the signal-to-noise ratio
for the signal from the main-lobe direction. However, side lobes
cannot be entirely eliminated, and it is much easier to receive
side lobe transmissions than it is to detect their (reflected) return
( versus ). To simplify analysis, just the position of
the middle radar—that corresponding to ECAV 2—is estimated
using two TDOA measurements1 from ECAV pairs 1–2 and
3–2. The measurements—converted to distance—are modeled
by

(5)

where is the speed of light, is the measured pulse arrival
time at the th ECAV, and and are the combined noise/
error from the arrival times. The other variables are shown in
Fig. 4, which illustrates the ideal case when two noise-free mea-
surements are used to determine the position of the
middle radar. Since and are distance differences, they
naturally give rise to hyperbolas, on which the emitting radar
must be located. With white noise added to ap-
proximate the collective effect of electronic measurement noise
and clock synchronization error2 in the ’s, hyperbolic bands
are created as shown in Fig. 5. Intuitively, the variance of the
position estimates will be smaller when the ECAVs are more
spread apart in angle.

Note that only and can be measured—absolute dis-
tances and pulse travel times are unknown. Obtaining a given
streams of pulse arrival times from two ECAVs requires com-
munication and some signal processing to match up the two
profiles by their corresponding encoded radar pulses. With only

1If more than two measurements are used, then the system of equations is
overdetermined, and methods such as nonlinear least squares as in [7] or Kalman
filtering may be used to find the best “average” position estimate.

2A first-order Gauss-Markov process would be more accurate for GPS syn-
chronization according to [3, Ch. 11], but a Gaussian random process is used
for simplicity.
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two TDOAs/hyperbolas, more than one intersection will result
in most cases. One of the two halves of each hyperbola can be
ruled out based on the signs of and (as done in Fig. 4),
which leaves two intersections in general. However, the correct
intersection nearest the true position of the middle radar can
be identified by discriminating the intersections as the ECAVs
move over time, or by assuming an approximate location for the
radar is previously known.

There are other methods for locating emitters besides using
TDOA measurements, which include angle of arrival (AOA), re-
ceived signal strength (RSS), and time of arrival (TOA) or travel
time (see [8] for more details). However, using AOA measure-
ments would be less accurate than TDOA, especially given an
inexpensive antenna likely for an ECAV. RSS assumes that the
transmitted power is known so that its attenuation over distance
can be computed and compared with the actual received signal,
but the transmitted power is unknown in our case, and a radar
can modulate its transmitted power in normal operation. TOA
introduces a clock bias parameter and cannot be used in our case
because the time at which a pulse leaves the radar is unknown,
hence travel time cannot be determined.

IV. EXPLICIT SOLUTION FOR THE RADAR POSITION

Calculating the exact intersection of two hyperbolas is diffi-
cult, and many efforts have been made to do so as outlined in [9].
Here, we give an alternative solution not found in [9], which is
particularly useful for our case due to the polar parametrization.
First, parametrize each hyperbola in polar coordinates
with the middle vehicle as the common origin

(6)

(7)

where and are the range and bearing, respectively, of
ECAV from ECAV 2. The reason we choose ECAV 2 as the
origin for the coordinates is that it is the vehicle assigned to
deceive the middle radar, and radar position estimates should be
relative to the ECAV using them. As designated, the functions

and do map each angle to a unique range even
though from a plot like Fig. 4, it might appear that using ECAV 2
as the origin gives two ranges for some values of . However,
one must realize that the point can also be represented by

. The emitting radar must be located on the half of
the hyperbola having positive values for .

To form a hyperbola requires that the eccentricity be
greater than one, where appears with in either (6) or (7).
This gives rise to an important condition for the measurements:

(8)

If the measurement has zero noise, then condition (8) will
always be met, modulo equality when both vehicles in the pair
have the same bearing from the radar (this gives a parabola). If
the noise is nonzero, then (8) may be violated as ,
which results in an ellipse instead of a hyperbola. Violation be-
comes more likely when is small or both vehicles have sim-
ilar bearings.

Equating (6) and (7) gives a trigonometric equation, which
has two solutions for and hence for position

(9)

(10)

With zero noise, it can be shown that provided that none
of the ECAVs share the same bearing from the middle radar. The
two solutions for come from taking the , and this angle
is always in the first quadrant for the scenarios we work with.
The corresponding range can be found by substituting into
(6) or (7) as shown by (10). For ECAV 2 to compute , it needs
the relative ranges and angles of the other ECAVs providing
measurements. If there is no noise in the measurements and

, then the position estimate is exact. With noise, the
estimate is only approximate.

This solution is well-suited to our application and different
from the many solutions in [9] because the angle of the position
estimate can be directly calculated and analyzed without first
obtaining or , which are not really needed. Specif-
ically, for an ECAV generating a phantom track using range-
delay techniques, the distance from the ECAV to the radar
is not important, but rather the distance from the ECAV to the
phantom, . As long as the latter is known, which would
be true with the ECAV position and phantom track known, the
ECAV can intercept and appropriately delay radar pulses by the
delay time , where is the speed of light. Cou-
pled with an accurate angle estimate , this allows the ECAV
to place a phantom target where intended without knowing how
far away the radar is (see also Fig. 3 and accompanying discus-
sion). The range estimate is still useful in secondary ways and
for other problems, so it should not be disregarded entirely. It is
also used here to convert to for measuring the perfor-
mance of the estimation schemes.

A. Simulations of Estimation by Direct Calculation

We now apply the results from Section IV to estimate the
middle radar position over time in a scenario with a fixed
phantom track. The measurement noise is Gaussian with inten-
sity 0.0001 km /Hz for both measurements, which corresponds
to a -error of 30 m with a measurement taken every 0.1 s.
Instead of assuming that there is no temporal correlation of
the position, we capitalize on the stationarity of the radar
and take a running average of the estimates over time. This
strategy is effective as long as the distribution of the estimates
is approximately normal. In this and subsequent simulations,
the performance of the estimation scheme is measured by the
root mean square error (RMSE), which is defined for Cartesian
coordinates as

RMSE (11)

where and are the true coordinates of the middle radar,
and and are the corresponding estimates, all relative to
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Fig. 6. Estimation of the middle radar position using the explicit solution. The radar position is directly calculated and the estimates averaged over time; the
measurement noise has intensity 0.0001 km /Hz, and 1000 runs are made. The root mean square errors of the position and angle estimates are plotted as RMSE
and RMSE , respectively. The only difference between the two scenarios is how far the vehicles are from the radars, which affects their relative separation angles
and hence the errors.

some fixed reference frame. We also use the RMSE for the angle
estimate, which is

RMSE (12)

where is the angle of the middle radar, and is the corre-
sponding estimate, all relative to a polar frame with the middle
vehicle as the origin. The expectation is taken over 1000 runs
unless otherwise stated.

Fig. 6 shows two scenarios where position estimation is done
by direct calculation using (9)–(10) and time averaging. The
phantom track is straight with a constant speed of 100 m/s and
a length of approximately 26 km. The only difference between
the two scenarios is the ECAV trajectories, which are governed
by (1)–(2). Both the RMSE and the RMSE are plotted for
each scenario. For each run, the measurement noise sequences
are chosen randomly.

Observing Fig. 6(a), halfway through the time interval
the RMSE decreases to roughly 5 m and tends to level
off as time increases. In Fig. 6(b), the RMSE decreases
to roughly 100 m and then starts increasing sharply as time
increases. The key difference between the two scenarios, and
what causes the RMSE to increase with time in the second
scenario, is not how far the ECAVs are from the radars but
how spread apart in angle; we will substantiate this idea in
the next section. Fig. 6 also shows that in the transient, the
RMSE does not track the RMSE , although obviously

RMSE RMSE (the other
direction does not hold).

V. OPTIMAL VEHICLE CONFIGURATIONS

Fig. 6 suggests that the estimation error is lower when the
vehicles are sufficiently spread apart in angle, and we formally

pursue this idea. The explicit solution from Section IV is used to
determine vehicle configurations that minimize the sensitivity of
the estimate to measurement noise, and this gives The Angle
Rule. The Fisher Information Matrix also gives an additional
perspective, and by it we get The Coordinate Rule. Combined
together, these results provide an understanding for how the op-
timal configurations depend on the form of the estimate one is
concerned with.

A. Angle Rule (Using the Explicit Solution)

Before finding the sensitivity of to measurement noise,
some new variables are introduced: the relative distance

and the separation angle ,
where , and to
orient the geometry. Please see Fig. 7 in this section.

We now use (9) to calculate the sensitivities and
, where and are the noises that enter the mea-

surements (5). The partial derivative is first written as

(13)

where is a generic noise, and , and are given in (9)–(10).
Since we are interested in noise with zero mean, each term must
be evaluated at . It can be shown that

, and this allows us to simplify (13) to

(14)
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Fig. 7. Angle analysis variables. The relevant variables for working with the
hyperbolas are shown, which are used to determine the sensitivity of the angle
estimate to measurement noise.

The remaining terms are calculated for both and by using
(5), converting to the variables ( , and evaluating at
zero noise, which gives

Finally, these terms are inserted into (14) to get the sensitivities

(15)

(16)

Based on (15) and (16), we observe that the distances of the
outer vehicles, ECAVs 1 and 3, do not affect the (first-order)
sensitivity of the estimate to measurement noise. While does
affect the sensitivity of in both (15) and (16), one should view
this only as a conversion from distance (in the direction in this
case) to angle, i.e.,

Fig. 8. Level curves of the information function J (�� ; �� ). Given that �� +
�� � 2�; J has a unique maximum at �� = 90 ; �� = 90 (denoted by the
large dot), which is The Angle Rule.

for .
The two sensitivities (15) and (16) must somehow be com-

bined to obtain the overall worst case sensitivity of to mea-
surement noise. Comparing the numerators of both shows that

and influence in opposite directions. Since is
nonnegative, subtracting the two sensitivities will always yield a
magnitude greater than or equal to that gotten by adding. That is,
for any given angles and will be more sensitive when the
measurement noises and have opposite signs. Therefore,
we seek to minimize the magnitude of
or maximize its inverse squared, which we call

and present

(17)

In keeping with the domain, direction, and ordering for and
, the information function has a unique maximum at

(see Fig. 8). If both angles are assumed equal, then
(17) reduces to

which is a simple way to remember how the separation angles
affect the sensitivity of the angle estimate to measurement noise,
with larger values of reflecting lower sensitivity or better
information. Thus, tells us that to maximize the accuracy
of the angle estimate , the separation between ECAVs 1 and 2
and ECAVs 2 and 3 should be 90 ; we call this The Angle Rule.
While the distances of the ECAVs from the middle radar do not
affect the first-order sensitivity of , they do have higher-order
effects, but we do not pursue this topic here.

To compute an explicit intersection using (9), and (10), one
needs exactly two hyperbolas/TDOAs, which requires three ve-
hicles. However, pulse arrival times from three vehicles give rise
to three hyperbolas; two of these must be chosen, which in our
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case is equivalent to choosing the common origin for the polar
coordinates . We can use (17) to show that, for a given
configuration with separation angles , the middle
vehicle or ECAV 2 is the best to use as the common origin. We
begin with and , which were defined with ECAV 2 as the
origin (see Fig. 7), and redefine them so that ECAV 1 is the new
origin

Substituting and into (17) and using the angle sum and
difference identities, we get the following:

(18)

The function here is identical to the original except for the term
in (17), which becomes in (18). By the as-

sumption , we have , and
hence on this interval

which shows that the information gain will always be higher or
the sensitivity to noise lower when the “middle” vehicle—the
one with both separation angles less than 90 —is used as the
origin.

Given the constraints imposed by the phantom track on
the ECAVs, (17) may also be used as a cost function—point-
wise or integral—to determine ECAV trajectories that minimize
the estimation error due to measurement noise. In addition to the
vehicle configuration, also depends on the unknown radar
position , and there are several options to deal with this
dependency (we rewrite as to include these additional
variables)

In , the current estimate is used in at each step, which
makes the cost dynamic based on how the estimate is evolving.
In , an expectation is taken with respect to a (possibly time-
dependent) probability density function for . In , the
minimum is taken over all “possible” radar locations. The first
option is preferred in general because it adapts to changes in the
estimate. However, the second or third option may be helpful
at first if the initial estimate is poor. Using any of these costs,
we can find ECAV controls , and that yield optimal
trajectories through (1)–(2).

Additional dynamic constraints on the ECAVs and phantom
make it difficult to simply employ in a guidance law [1].
These constraints form the coupled cooperative problem treated
in [10], which provides an extensive framework for maintaining
feasibility that would allow inserting for choosing the

optimal ECAV heading at each step. There are also motion
coordination algorithms that could be adapted to steer the
ECAVs using The Angle Rule [11]. Note that if all three radars
were being localized, then three cost functions—one for each
radar—would need to be optimized together.

The function in (17) is an analogue of the Fisher Informa-
tion Matrix because it quantifies the sensitivity of the estimate
due to stochastic variability in the measurements, or the infor-
mation gain for a given sensor configuration ( in our case).
A larger value of indicates more information or a less sensi-
tive estimate. More will be said about this in the next section.

B. Coordinate Rule (What the Fisher Information Gives)

For a nonrandom parameter vector , the Cramér–Rao lower
bound (CRLB) states that the covariance matrix of an unbiased
estimator3 is bounded from below4 as

(19)

where the Fisher Information Matrix (FIM) is

with the true value (see [12] for theory). Assuming that
a vector of uncorrelated normally distributed measurements

—with mean and covariance —is being used for estima-
tion, the likelihood function of is

The FIM quantifies the total amount of information in the
measurements about . An efficient estimator, then, is one that
extracts all the information or achieves equality of (19). With
our measurement model (25) and some simple calculations, we
have

where is the radar position and at a
given (see (25) for the definitions of and ); note that
also depends on the vehicle configuration. Finally, since is
just the measurement matrix for a linearized version of the
system, the FIM can be written as

(20)

We want to stress that is the FIM given the measurements
at an instant of time; if all the measurements from to the
current time were used, then (20) would need to be integrated
over this interval.

We seek a metric that will allow us to determine vehicle con-
figurations that make “large” and so minimize the CRLB,

3An estimator is unbiased if the estimation error has zero mean.
4Here, by A � A we mean A �A is positive semidefinite.
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Fig. 9. Level curves of the information function J (�� ; �� ). Given that �� +
�� � 2�; J has a unique maximum at �� = 120 ; �� = 120 (denoted by
the large dot), which is The Coordinate Rule.

which by (19) will guarantee better performance5 on average. A
suitable criterion is with , which is similar to the
“D-optimum design” found in [13] and minimizes the area of
the uncertainty ellipse for the coordinate estimates. Using (29)
for , which is based on Cartesian coordinates for the radar po-
sition, and inserting this into (20), the function can be written as

(21)

where we have again converted from absolute angles to the pos-
itive separation angles , which share as their zero
reference (see Fig. 7). Notice the similarity between (21) and
(17). In keeping with the domain, direction, and ordering for
and , the information function has a unique maximum at

(see Fig. 9). Thus, tells us that to maximize
the accuracy of the position estimate , the separation
between ECAVs 1 and 2 and ECAVs 2 and 3 should be 120 ;
we call this The Coordinate Rule.

Comparing the results in Figs. 8 and 9, one might think that
there is a conflict. However, reflects the information gain for
the angle of the estimate whereas is for the coordinates of
the estimate. In other words, the optimal separation angles based
on will maximize the accuracy of the angle estimate, and the
optimal separation angles based on will maximize the accu-
racy of the position estimate. Table I sums up these two impor-
tant conclusions, which are The Angle Rule and The Coordinate
Rule, respectively. The shaded areas in the table represent the
shape of the estimation errors being minimized.

Using the two vehicle configurations from Table I and an Ex-
tended Kalman Filter to update the measurement matrix with the
current estimate,6 we get simulations—shown in Fig. 10—that

5This guarantee only holds for a static estimation scenario or when the radar
is stationary; for dynamic scenarios, better performance is also anticipated as
shown by simulations in [11].

6See Sections VI and VII for the model and estimation theory used here.

TABLE I
OPTIMAL CONFIGURATIONS FOR ESTIMATION ACCURACY

Fig. 10. Estimation with both configurations in Table I. Static vehicle configu-
rations following The Angle Rule and The Coordinate Rule are both used with
an Extended Kalman Filter to estimate the position of the middle radar (4000
runs). As predicted, the 90 -configuration yields lower error for the angle esti-
mate (RMSE ), and the 120 -configuration yields lower error for the position
estimate (RMSE ).

agree with our theoretical results. The measurement noise has
intensity 0.0001 km /Hz, and 4000 runs are made. The errors for
both the coordinate and the angle estimates are plotted and mea-
sured using (11) and (12), respectively. The solid lines corre-
spond to using The Angle Rule and the dashed to using The Co-
ordinate Rule. Observing Fig. 10, the 120 -configuration does
better in terms of position accuracy, but the 90 -configuration
outperforms the 120 -configuration in angle accuracy, which is
as expected. While Fig. 10 shows a difference in angle accu-
racy of at most one millidegree, converting to distance at the
range of 15 km, which was used for the vehicle ranges in the
simulations, yields about one quarter of a meter. As time in-
creases, the estimates will converge to their true values as shown
in Section VIII; hence, the largest differences in performance of
different configurations are realized near .

The FIM can also be used as a partial check on our results for
and The Angle Rule. First, we make a change of coordinates

Authorized licensed use limited to: Lunds Universitetsbibliotek. Downloaded on November 4, 2008 at 08:21 from IEEE Xplore.  Restrictions apply.



PURVIS et al.: ESTIMATION AND OPTIMAL CONFIGURATIONS FOR LOCALIZATION USING COOPERATIVE UAVS 955

from to with the middle vehicle as the origin.
Using (25) with

we take and to get a new measurement matrix
based on polar coordinates, call it , which has the following
components (superscript indicates that the variable is based on
the nominal/true radar position):

(22)

Taking as our information function would just give
the same result as in (21). To focus on accuracy of the angle
coordinate and exclude consideration of , we must examine
the component of the FIM that involves only the sensitivity of

, which is . Putting from (22) into (20) and converting
again to the separation angles , we get the bottom right
component

(23)

where and for scaling and
orientation, respectively. In keeping with the domain, direction,
and ordering for and has maxima at

; and . Thus, the
FIM tells us where maximum information gain will be achieved,
which agrees with our results, but it does not give an optimal
configuration for actually constructing an estimate of , which
our results do provide through in (17). In fact, two of the three
configurations suggested by maximizing (23) would render the
middle radar unobservable since ECAVs 1 and 3 would be in the
same location.

VI. LINEARIZED ESTIMATION MODEL

To formally minimize the variance of the middle radar po-
sition estimates apart from choosing ECAV trajectories, a non-
linear model is formulated and then linearized about the nominal
state trajectory—that is, the best guess for the radar position. An
Extended Kalman Filter can then be applied to the linearized
model. We start with a simple model

(24)

(25)

where is the true position of the middle radar,
contains the TDOA measurements (5), is a Wiener process

with zero mean and incremental covariance , and
is the position of ECAV from (1) and (2). Linearizing around

gives

(26)

(27)

where and , and the Jacobians
and are evaluated at the nominal trajectory

to get and , respectively. The Jacobian used
to get is undefined because the radar is assumed stationary
with no control inputs for now. The system matrices are

(28)

(29)

where is the bearing of ECAV from the nominal radar
position. Observe that to obtain , ECAV 2 needs only to know
the bearings of ECAVs 1 and 3 from the nominal position of
the middle radar; this further confirms the result in Section V
that the distances of ECAVs 1 and 3 do not affect the first-order
sensitivity of the estimate to measurement noise.

Since has zero rank, the observability of depends
only on the rank of . Taking its determinant

(30)

we see that or has full rank provided none of
the three angles are equal. Thus, is observable when all
ECAVs have different bearings from the middle radar.

One might wonder why we are building a dynamical system
for filtering when the current problem is really just parameter
estimation, which is solvable using with a least squares ap-
proach. We are keeping a more general structure for two spe-
cific reasons: 1) to accommodate possible motion models for
the radar and 2) to provide a general structure allowing some of
the ECAV states to also be estimated.

VII. MINIMUM VARIANCE ESTIMATION THEORY

A. Kalman Filter

Given a general linear system model in the form of a sto-
chastic differential equation (see [12] and [14] for theory)

where and are independent Wiener processes with zero mean
and incremental covariances and , the observer and
its error are given by

(31)

(32)
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where is the observer gain, is the state estimate, and
is the error. Note that and

for our linearized system. To find the gain that minimizes the
variance of the estimates, define the state covariance matrix

. Using (32) and completion of squares, the
time evolution of can be written as

is then selected to make the first part of this equation zero,
which gives based on the solution to a Differential Riccati
equation for

(33)

(34)

Note that all the system matrices are in general time-depen-
dent. The time-varying Kalman Filter (31)–(34) can be shown
to converge under certain reasonable conditions [15]. Its draw-
back when operating on linearized systems is that the system
matrices depend on the nominal state trajectory, which is often
the initial estimate.

B. Extended Kalman Filter

Conversely, the Extended Kalman Filter (EKF) that we use
updates the linearized matrices with the current estimate when-
ever a new measurement is taken. That is, at the th time step we
use the current value of to make the updates (notation from
the previous section is being used here)

and then reset and run the Kalman Filter (31)–(34) for
. Although the EKF performs better on average, its global

convergence cannot be proven in general, and in adverse cases
it can actually diverge.7

C. How the FIM is Connected to the Kalman Filter

Since the Kalman Filter really incorporates all measurements
from to the present, we define a new Fisher Information
Matrix that depends on measurements over this entire interval
instead of just at an instant of time as defined in Section V-B.
Since the Kalman Filter is an efficient estimator for a linear
system, it achieves equality of (19) implying that

7Local convergence of the EKF has been proven for a time-invariant system;
similar results are expected for time-varying systems [16].

Differentiating with respect to time and using (34), get

which provides an alternative update for the Kalman Filter also
known as the Information Filter. With no dynamics, and
are zero, and substituting in (20) gives

(35)

which shows that the old FIM based on measurements
only at time is just the rate of the new FIM .

Reverting back to the old FIM (20) and again setting and
to zero, (32) and (34) can be rewritten as

(36)

(37)

Thus, we see from (37) that is the Hessian of
when there are no system dynamics; it determines how fast the
covariance of the estimates decreases with time. Moreover, (36)
shows that the estimation error decreases based on the gain .
Both components are crucial— quantifies how much infor-
mation is being extracted from the measurements at each instant
in time or how accurate the measurements are expected to be,
and describes the covariance of the estimates over time or how
much they should be trusted as opposed to the measurements.
This concept may be helpful as a guide for improving the first
estimation method in Section IV-A.

VIII. EKF APPLICATION TO THE LINEARIZED MODEL

We now apply the theory from Section VII to the model in
Section VI to estimate the middle radar position over time in a
scenario with a fixed phantom track. The reason we choose to
use an EKF instead of just a Kalman Filter is so that in
(29) can be updated based on the current estimate of the radar
position. The increase in performance becomes noticeable when
the initial estimate is poor.

A. Analysis of the Filtered System

In our case, we can prove that the variance of the estimates
converges to zero, even when using an EKF. First, rewrite (34)
using (28), , and

(38)

Because the ECAVs are generating a phantom track, their bear-
ings from the middle radar will be different at any given time, so

as discussed before using (30). With the invertibility
of established for all , set in (38) and get
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Fig. 11. Estimation of the middle radar position using an EKF. An EKF is applied to the linearized system; the measurement noise has intensity 0.0001 km /Hz,
and 1000 runs are made. The root mean square errors of the position and angle estimates are plotted as RMSE and RMSE , respectively. The only difference
between the two scenarios is how far the vehicles are from the radars, which affects their relative separation angles and hence the errors.

which shows that 0 is the unique equilibrium for . Second, it
can be shown starting with (38) that

are nonpositive by using the identity twice for
each equation, which means that and are mono-
tonically nonincreasing for any . Also, by definition and

are bounded below by zero. Therefore, and
exist and must equal 0.

Steady-state will not be reached in practice since the decep-
tion process occurs in a short time. It is therefore desirable that
the variance of the position estimates decrease as rapidly as pos-
sible over this interval, which is governed by the FIM as already
discussed.

B. Simulations of Estimation by Filtering

Both scenarios here are identical to those in Fig. 6. Fig. 11
shows the results of position estimation by applying an EKF to
the linearized system (26)–(29). The state covariance is initial-
ized as , where m is
the standard deviation of the initial guess from the true radar po-
sition. For each run, the and components of the initial guess
are chosen randomly with a standard deviation of ,
and the measurement noise sequences are also chosen randomly.
As in the earlier simulations, the errors for both the coordinate
and the angle estimates are plotted using (11) and (12), respec-
tively.

C. Comparison With the First Method

We refer here to the first method, which is direct calculation
using (9)–(10) and then time averaging, and the second method,

which is the EKF applied to the linearized system (26)–(29).
Comparing Fig. 11 with Fig. 6, the performance of the second
method is overall an improvement. Fig. 11(a) shows that when
the ECAVs are close to the radars, the second method performs
similar to the first. As the ECAVs move further from the radars,
Fig. 11(b) shows that the second method has error lower than the
first by more than an order of magnitude, and it does not increase
with time. As shown earlier, the variance of the estimates from
the second method converges to zero, but only as time goes to
infinity. In summary, the EKF provides better performance than
direct calculation with time averaging, as currently designed. In
particular, the EKF provides lower error when the information
is poor.

In addition to the communication needed for the TDOAs, the
first method requires ECAV 2 to know the relative ranges and
angles of ECAVs 1 and 3. The second method requires ECAV 2
to know the positions of ECAVs 1 and 3 since in (25)
must be determined for the EKF, so nothing is gained in terms of
more or less information required. However, the second method
depends on the initial estimate whereas the first does not. The
first method uses two TDOAs to get a closed form solution; if
additional TDOAs are used, the corresponding solutions—one
for each set of two TDOAs—must somehow be combined. The
second method requires at least two TDOAs, but can easily fuse
additional measurements to improve accuracy. The first method
allows direct calculation of the angle estimate for the radar,
which is the only part of the position estimate for which high ac-
curacy is needed to minimize the variance of the phantom track.
The second method provides the estimate in coordinate compo-
nents, which are unnecessary, and so working with a direct limit
on the accuracy of the angle estimate would be more difficult.
However, the initialization for in the EKF could be chosen to
cause one of the coordinates to converge faster to its true value,
which could help improve the accuracy of the angle estimate.
The first method is simpler computationally, but both methods
are quite feasible with modern technology.
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IX. CONCLUSION

Position estimation using TDOA techniques was explored.
An explicit solution was developed for the middle radar posi-
tion in polar coordinates using two TDOA measurements. Using
this result, estimation by direct calculation and time averaging
gives reasonable results as shown by simulation. The simula-
tions also show that performance is drastically affected by the
trajectories the ECAVs fly. Starting with the explicit solution
for the radar position, the sensitivity of the estimate due to mea-
surement noise was calculated and analyzed. The main results
are that this sensitivity depends critically on the separation an-
gles between vehicles and does not depend up to first order on
their distances from the radar. The analysis culminates in The
Angle Rule: for three vehicles, one of which is the reference,
the optimal configuration for the angle estimate is 90 separa-
tion between the reference and the other vehicles. Calculating
the Fisher Information Matrix based on the radar position co-
ordinates leads to The Coordinate Rule: for three vehicles, the
optimal configuration for the position estimate is 120 separa-
tion.

A simple linearized model was developed using the TDOA
measurements as outputs. An EKF applied to this system yields
overall improvement as compared by simulation to the earlier
estimation scheme. Analysis of the filtered system shows that
the variance of its estimates converges to zero with time. Also,
there is a nice connection between the Kalman Filter and the
Fisher Information Matrix, which actually determines how fast
the covariance of the state estimate decreases.

The smart integration of more than two TDOA measurements
should increase the estimation accuracy for the first method and
should be investigated; with a closed-form solution no longer
known, other techniques might prove useful such as nonlinear
least squares. Performance of the first method may be further
improved by updating the estimate based on its covariance and
the information gain of the measurements. Also, other realistic
sources of error in generating the phantom track, such as wind
disturbances and inaccurate ECAV positions, could be included
in the system model.
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