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Abstract: Let G = (V,E) be a simple, undirected graph of order n. Let
` be a bijection from V to the natural numbers, and for all i ∈ {1, 2, ..., n},
define the weight of the vertex xi as w(xi) =

∑
xixj∈E `(xj). If ` has the

property that `(xi) = i and the sequence of weights w(x1), w(x2), ..., w(xn)
is d-arithmetic for some d ≥ 1, then we say that G is a d-handicap graph.
The motivation for studying these graphs stems from tournament design.
A k-regular, d-handicap graph on n vertices corresponds to a tournament
on n teams, each ranked according to strength with the natural numbers,
in which each team plays exactly k opponents, and the strength of schedule
(the sum of opponent rankings) increases d-arithmetically with strength of
team. In this paper, we provide necessary and sufficient conditions for the
existence of regular d-handicap graphs for all orders n ≡ 0 (mod 2d+2).
In addition, we construct a regular d-handicap graph of lowest possible
regularity for all orders n ≡ 0 (mod 2d) with a small number of exceptions.

1 Motivation

Consider a tournament of n teams, each ranked with one of the first n
natural numbers (with no repeats) according to strength. Let w(i) be
the sum of the opponents of the team ranked i. We call w the strength of
schedule. If all possible games are played, we say the tournament is a round-
robin or complete tournament. In a round-robin tournament, the sequence
s = w(1), w(2), ..., w(n) is arithmetic with constant difference −1. This
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means the weakest team has the most difficult schedule, the second weakest
team has the second most difficult schedule, and so on. In particular, the
strongest team has the weakest schedule.

If one wishes to design a more competitive tournament, obviously only
incomplete tournaments (tournaments in which not all possible games are
played) must be considered. If the sequence s is constant, we call the
tournament an equalized incomplete tournament. If the sequence s is d-
arithmetic for some d ≥ 1, then we say the tournament is a d-handicap
tournament. In this kind of tournament, the weakest team has the weakest
schedule, the second team has the second weakest schedule, and so on. In
particular, the strongest team has the most difficult schedule.

We model the problem with a graph in the natural way; team x plays team
y in the tournament if and only if x is adjacent to y in the graph. Let
G = (V,E) be a simple, undirected graph of order n. Let ` be a bijection
from V to {1, 2, ..., n} and define the weight of the vertex xi as w(xi) =∑

xj∈N(xi)
`(xj), where N(x) = {v|xv ∈ E} is the open neighborhood of

the vertex x. If ` has the property that `(xi) = i and the sequence of
weights w(x1), w(x2), ..., w(xn) is d-arithmetic for some d ≥ 1, then we say
that ` is a d-handicap labeling. A graph G which admits such a labeling is
called a d-handicap graph. d-Handicap graphs are members of a family of
graphs called distance antimagic graphs.

Let H(n, k, d) denote a k-regular, d-handicap graph on n vertices. The
following necessary conditions for the existence of an H(n, k, d) were estab-
lished in the author’s Ph.D. thesis [1].

Theorem 1. [1] If an H (n, k, d) exists, then all of the following are true.

1. w(xi) = di+ (k−d)(n+1)
2 , for all i ∈ {1, 2, ..., n}.

2. If n is even, then k ≡ d (mod 2).

3. If n is odd, then k ≡ 0 (mod 2).

4. n ≥ 4d+ 4.

5. d+ 2 ≤ k ≤ n− d− 4.
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2 Known results

Much attention has been paid to 1-handicap graphs. The first of the fol-
lowing two theorems completely settles the spectrum for regular 1-handicap
graphs on an even number of vertices [5]. Theorem 3 provides the existence
of an H(n, k, 1) for every feasible odd number n and some k [4].

Theorem 2. [5] An H(n, k, 1) exists when n ≥ 8 and

i. n ≡ 0 (mod 4) if and only if 3 ≤ k ≤ n− 5 and k is odd

ii. n ≡ 2 (mod 4) if and only if 3 ≤ k ≤ n− 7 and k ≡ 3 (mod 4),

except when k = 3 and n ∈ {10, 12, 14, 18, 22, 26}.

Theorem 3. [4] Let n be an odd positive integer. Then an H(n, k, 1) exists
for at least one value of k if and only if n = 9 or n ≥ 13.

Froncek was the first to consider d-handicap graphs for d 6= 1. Theorem
4 completely settles the existence of regular 2-handicap graphs for n ≡ 0
(mod 16) and was proved independently in [1] and [2]. Theorem 5 partially
settles the existence for n ≡ 8 (mod 16) [3].

Theorem 4. [1], [2] If n ≡ 0 (mod 16), then an H (n, k, 2) exists if and
only if k is even and 4 ≤ k ≤ n− 6.

Theorem 5. [3] If n ≡ 8 (mod 16) and n ≥ 56, then an H (n, k, 2) exists
if k is even and 6 ≤ k ≤ n− 50.

The author gave constructions for d-handicap graphs for all d in [1]. The
following two theorems give a partial summary of the results therein. Ob-
serve that the necessary conditions for k, the regularity of the d-handicap
graph, are only met when d = 1 (see Theorem 6) or d = 2 (see Theorem 7).

Theorem 6. [1] For every odd d, there exists an H (n, k, d) for every odd
k such that 2d+ 1 ≤ k ≤ n− (2d+ 3) provided

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 1 (mod 4) or

• n ≡ 0 (mod 4d+ 4), n ≥ (d+ 1)(d+ 5), and d ≡ 3 (mod 4) or

• n ≡ 2d+ 2 (mod 4d+ 4), n ≥ (d+ 1)(d+ 3), and d ≡ 3 (mod 4).
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Theorem 7. [1] Let d ≥ 2 and t, v ≥ d + 2 all be even integers and let
n = vt. If d ≡ 0 (mod 4) or v ≡ t ≡ 0 (mod 4), then there exists an
H (n, k, d) for all even k such that 2d ≤ k ≤ n− 2d− 2.

3 New results

In this section, we provide constructions for building d-handicap graphs
from (d − 1)-handicap graphs. We may refer to a vertex by its label to
simplify notation. For any subgraph H of the graph G, let wH(x) denote
the weight of vertex x induced by the subgraph H. For any graph G, let G
denote its complement.

Theorem 8. If an H(n, d+2, d) exists, then an H(2n, d+3, d+1) exists.

Proof. Let H be an H(n, d+2, d) with a d-handicap labeling f. Let G = 2H
be the union of two vertex-disjoint copies of H. Apply f to one of the copies
of H and f + n to the other copy of H. Define a 1-factor F = {i(i+ n)|i =
1, 2, ..., n}. We claim that the graph G∪F is an H(2n, d+3, d+1). Clearly
G ∪ F has the correct order and regularity, so it suffices to show that the
sequence of weights, s = w(1), w(2), ..., w(2n) is (d + 1)-arithmetic. For
i ∈ {1, 2, ..., n}, wG(i) = di+ n+ 1 and wG(i+ n) = di+ n+ 1 + (d+ 2)n
by Theorem 1. Also, wF (i) = i+ n and wF (i+ n) = i. Therefore,

w(i) = wG(i) + wF (i)
= (d+ 1)i+ 2n+ 1,

for all i ∈ {1, 2, ..., 2n}. Hence, the sequence s is (d+ 1)-arithmetic, which
proves the result.

Starting with the 1-handicap graphs from Theorem 2, repeated application
of Theorem 8 yields d-handicap graphs of even orders and lowest possible
regularity.

Theorem 9. Let m ≥ 4 and m /∈ {5, 6, 7, 9, 11, 13}. Then an H(2dm, d +
2, d) exists for every d ≥ 1.

Proof. The proof follows from Theorems 2 and 8.
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Theorem 9 proves the existence of new classes of 2-handicap graphs. In
particular, a 4-regular, 2-handicap graph on n vertices exists for all n ≡ 0
(mod 4) and n ≥ 68.

Corollary 10. An H(n, 4, 2) exists if

i. n ≡ 0 (mod 16) and n ≥ 16 or

ii. n ≡ 4 (mod 16) and n ≥ 68 or

iii. n ≡ 8 (mod 16) and n ≥ 40 or

iv. n ≡ 12 (mod 16) and n ≥ 60.

Suppose we wish to add teams to a d-handicap tournament without chang-
ing d and without changing the number of games each team plays. The
next theorem shows this can be accomplished by adding 2d+2 teams.

Theorem 11. If there exists an H(n, d+2, d) and d ≥ 2, then there exists
an H(n+ 2d+2, d+ 2, d).

Proof. Let d ≥ 2 be given. The proof is by construction. Let G be any
H(n, d+2, d) with 2d+1 added to the label of each vertex. Let H = 2H ′ be
two vertex-disjoint copies of an H(2d+1, d+1, d−1) (such a graph exists by
Theorem 9). Leave the (d− 1)-handicap labeling of one of the copies of H ′
unchanged and add n + 2d+1 to the label of each vertex of the other copy
of H ′. Define a 1-factor F = {i(i + n + 2d+1)|i = 1, 2, ..., 2d+1} spanning
the two copies of H ′. We claim that G∪ (H ∪F ) is an H(n+2d+2, d+2, d).
We use Theorem 1 and the regularity of G and H to determine the weight
of each vertex in G ∪ (H ∪ F ). For i ∈ V (G), we have

w(i) = d(i− 2d+1) + n+ 1 + (d+ 2)2d+1

= di+ 2d+2 + n+ 1.

If i ∈ V (H ∪ F ), then

w(i) = (d− 1)i+ 2d+1 + 1 + n+ 2d+1 + i
= di+ 2d+2 + n+ 1,

for i = 1, 2, ..., 2d+1, and

w(i) = (d− 1)(i− n− 2d+1) + 2d+1 + 1
+(d+ 1)(n+ 2d+1) + i− (n+ 2d+1)

= di+ 2d+2 + n+ 1,

for i = n + 1 + 2d+1, n + 2 + 2d+1, ..., n + 2d+2. Hence, G ∪ (H ∪ F ) is an
H(n+ 2d+2, d+ 2, d).

112



Theorem 11 does not produce any new results over Theorem 9. However,
applying Theorem 11 to a d-handicap graph (with lowest possible regular-
ity) of an order not covered by Theorem 9 will produce new results. For
example, if an H(m, 4, 2) can be found for some m ≡ 2 (mod 16), then
Theorem 11 gives the existence of an H(n, 4, 2) for every n ≡ 2 (mod 16)
and n ≥ m, which would be a new class of 2-handicap graphs.

Now that we have established classes of d-handicap graphs of lowest feasible
regularity for every d ≥ 1, our next direction will be to increase the regu-
larity of these graphs. We will accomplish this by adding constant weight
2-factors to the graph. Before doing so, we recall a graph product and make
some observations regarding the 1-factorability of our graphs. A 1-factor
of a graph G is a vertex-disjoint union of edges which partition the edge
set of G. If the edge set of G can be partitioned into 1-factors, we say the
graph G is 1-factorable (or allows a 1-factorization).

For any two graphs G and H with vertex sets V (G) and V (H), respectively,
the lexicographic product G ◦ H has vertex set V (G) × V (H), and two
vertices (g, h) and (g′, h′) are adjacent in G ◦ H if and only if either g is
adjacent with g′ in G or g = g′ and h is adjacent with h′ in H.

Informally speaking, the graph G◦H may be constructed by replacing each
vertex of G with an isomorphic copy of H, and then placing a complete
bipartite graph between two copies of H for each corresponding edge in G.

Theorem 12. [6] Let G and H be regular graphs at least one of which is
1-factorable. Then the lexicographic product G ◦H is 1-factorable.

Observation 13. There exists a graph G ∼= H(2d+2, d+2, d) for all d ≥ 1
such that G allows a 1-factorization.

Proof. If d = 1, let G be the graph in Figure 1. One can easily check that
G ∼= H(8, 3, 1).

1 2

34

5 6

78

Figure 1: The graph G ∼= H(8, 3, 1).
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Let L = {1, 2, 3, 4} ⊆ V and U = {5, 6, 7, 8} ⊆ V. The edges in G of the
form xy where x, y ∈ L or x, y ∈ U clearly form a 1-factor. The remaining
edges in G form a regular bipartite graph with partite sets L and U. Since
it is well known that every regular bipartite graph allows a 1-factorization,
G allows a 1-factorization. Repeated application of the construction from
Theorem 8 now gives the result.

Observation 14. Let d ≥ 2 and G ∼= 2H ∪ F ∼= H(2d+2, d + 2, d) be a
(d + 2)-regular, d-handicap graph as constructed in Observation 13. Let I
be any 1-factor which spans the two disjoint copies of H. Then G ∪ I allows
a 1-factorization.

Proof. By Observation 13, each copy of H allows a 1-factorization. The
remaining edges in G ∪ I have one vertex in each copy of H, so these edges
form a bipartite graph. Hence, G ∪ I allows a 1-factorization.

We are ready to prove the main theorem.

Theorem 15. Let d ≥ 1 be given and let n ≡ 0 (mod 2d+2). Then an
H(n, k, d) exists if and only if d+ 2 ≤ k ≤ n− d− 4 and k ≡ d (mod 2).

Proof. The proof is by construction and induction on d. Let n = 2d+2c.
If d = 1 the claim is true by Theorem 2, so we can assume d ≥ 2. Let
H1
∼= H(2d+1, d + 1, d − 1) as constructed in Observation 13. Write H1 =

H ′ ∪H ′′ ∪ F ′, where H ′ ∼= H ′′ and F ′ is the 1-factor which spans H ′ and
H ′′. Define H = H1∪H2∪ ...∪H2c, a mutually disjoint union of isomorphic
copies of H1 with (j−1)2d+1 added to the label of each vertex of every Hj .
Define a 1-factor F = {i(i+ (2c− 2j + 1)2d+1)|i ∈ Hj} spanning each pair
(Hj , H2c+1−j) for j = 1, 2, ..., c.

We claim the graph H ∪F is an H(n, d+2, d). The order and regularity of
H ∪F match the parameters, so we need only show the sequence of weights
is d-arithmetic. If i ∈ Hj , then

w(i) = (d− 1)(i− (j − 1)2d+1) + 2d+1 + 1 + (j − 1)(d+ 1)2d+1

+{ i+ (2c− 2j + 1)2d+1, j ∈ {1, 2, ..., c}
i− (2j − 2c+ 1)2d+1, j ∈ {c+ 1, c+ 2, ..., 2c}

= di+ n+ 1,

which shows H ∪F is an H(n, d+2, d). Now that we have constructed the
graph of lowest regularity, we will increase the regularity of the graph by
adding constant weight 2-factors until the highest regularity is achieved.
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Let Jv be the empty graph on v vertices. Notice that for each j∈{1, 2, ..., c},
the graph Hj ∪H2c+1−j is a subgraph of the lexicographic product H1 ◦J2,
with the additional property that each pair of isolated vertices in each J2
sum to n+1. That is, H is a subgraph of c(H1 ◦ J2)∪F, (where c(H1 ◦ J2)
is the union of c vertex-disjoint copies of H1 ◦ J2) and each 1-factor of
c(H1 ∪ I), (where I is the 1-factor spanning H ′ and H ′′ corresponding to
F ) gives rise to a constant weight 2-factor F1 which can be added to H ∪F,
forming the graph H ∪F ∪F1

∼= H(n, d+4, d). Therefore, we have reduced
the problem to finding 1-factors of c(H1 ∪ I).

Each copy of (H1 ∪ I) allows a 1-factorization by Observation 14. If c = 1,
we are done. If c ≥ 2, then the remaining edges in c(H1 ∪ I) form the
lexicographic product Kc ◦ J2d+1 , so these edges allow a 1-factorization by
Theorem 12. Hence, c(H1 ∪ I) allows a 1-factorization, and we can write
c(H1 ∪ I) = F1 ∪ F2 ∪ ... ∪ Fc2d+1−d−3, where each Fi is a 1-factor. We
have proven the existence of an H(n, k, d) for every k = d + 2 + 2t for
t = 1, 2, ..., c2d+1 − d − 3, or equivalently, for every d + 2 ≤ k ≤ n − d − 4
and k ≡ d (mod 2). The fact that these are the only feasible values of k
follows from Theorem 1.

Example 16. An H(32, 6, 2).

The graph H ∪ F shown in Figure 2 is an H(32, 4, 2). The arched vertical
edges comprise the 1-factor, F. The connected component on the left con-
tains H1 and H4, while the connected component on the right contains H2

and H3. Figure 3 shows how a 1-factor of 2(H1 ∪ I) may be used to add 2
to the regularity of the tournament to obtain an H(32, 6, 2). Each dashed
edge in Figure 3b represents a constant weight K2,2 shown in Figure 3c to
be added to the tournament.

1 2

34

5 6

78

25 26

2728

29 30

3132

9 10

1112

13 14

1516

17 18

1920

21 22

2324

Figure 2: The graph H ∪ F ∼= H(32, 4, 2).
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(a) A 1-factor of 2(H1 ∪ I).

1|32 2|31

3|304|29

5|28 6|27

7|268|25

9|24 10|23

11|2212|21

13|20 14|19

15|1816|17

(b) The 1-factor added to 2(H1 ∪ I).

1 4

2932

2 3

3031

9 12

2124

10 11

2223
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2528

6 7

2627

13 16

1720

14 15

1819

(c) Games added to the tournament.

Figure 3: Adding two games to each team’s schedule.
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