
Review Article

CaloChallenge 2022: A Community Challenge for

Fast Calorimeter Simulation

“Calorimeter Simulation”, generated via midjourney, 2022

Claudius Krause1,2 (main editor),

Michele Faucci Giannelli3,4 (editor), Gregor Kasieczka5 (editor),

Benjamin Nachman6 (editor), Dalila Salamani7 (editor),

David Shih8 (editor), Anna Zaborowska7 (editor),

Oz Amram9, Kerstin Borras10,11, Matthew R. Buckley8,

Erik Buhmann5, Thorsten Buss5,10,

Renato Paulo Da Costa Cardoso7, Anthony L. Caterini12,

Nadezda Chernyavskaya7, Federico A.G. Corchia13,14,

Jesse C. Cresswell12, Sascha Diefenbacher6, Etienne Dreyer15,

Vijay Ekambaram16, Engin Eren10, Florian Ernst2,7,

Luigi Favaro2, Matteo Franchini13,14, Frank Gaede10,

Eilam Gross15, Shih-Chieh Hsu17, Kristina Jaruskova7,
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Abstract. We present the results of the “Fast Calorimeter Simulation Challenge

2022” — the CaloChallenge. We study state-of-the-art generative models on four

calorimeter shower datasets of increasing dimensionality, ranging from a few hundred

voxels to a few tens of thousand voxels. The 31 individual submissions span a wide

range of current popular generative architectures, including Variational AutoEncoders

(VAEs), Generative Adversarial Networks (GANs), Normalizing Flows, Diffusion

models, and models based on Conditional Flow Matching. We compare all submissions

in terms of quality of generated calorimeter showers, as well as shower generation time

and model size. To assess the quality we use a broad range of different metrics including

differences in 1-dimensional histograms of observables, KPD/FPD scores, AUCs of

binary classifiers, and the log-posterior of a multiclass classifier. The results of the

CaloChallenge provide the most complete and comprehensive survey of cutting-edge

approaches to calorimeter fast simulation to date. In addition, our work provides a

uniquely detailed perspective on the important problem of how to evaluate generative

models. As such, the results presented here should be applicable for other domains

that use generative AI and require fast and faithful generation of samples in a large

phase space.
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1. Introduction

At the Large Hadron Collider (LHC) and countless other particle or nuclear physics

facilities, we aim to study Nature at the most fundamental level, searching for answers

to questions such as the nature of dark matter and dark energy, the baryon-anti-baryon

asymmetry in the universe, and the mass and hierarchy of neutrinos, which are all not

explained in the Standard Model. Simulations based on first principles provide a crucial

bridge between theory and experiment and are at the core of the successful physics

program of these facilities. With the increasing amount of data that the LHC will

generate in the upcoming runs, the amount of simulated events required for accurate

and sensitive analyses will grow steadily, and with it the computational resources needed

to generate them. In figure 1, we see the projected CPU needs of the two general

purpose experiments, ATLAS [1] and CMS [2], with similar challenges standing in front

of other experiments, e.g. LHCb [3]. The largest fraction of the CPU consumption

goes into simulation and within that, into the simulation of the detector responses and

especially the calorimeters. These detectors are particularly challenging due to the

need to track many secondary particles produced in extensive showers that result from

particles stopping inside dense materials. State-of-the-art physics-based simulations use

Geant4 [4, 5, 6] and are a major computational bottleneck, forecast to overwhelm the

computing budget of existing and future experiments.

Without significant research and development of new simulation techniques and

algorithms, the data collection will significantly outpace the Monte Carlo production

capabilities of the experiments which in turn will limit the precision of many

measurements as they will be limited by the statistic of the Monte Carlo simulation.

Maintaining the current MC-to-data ratio is therefore a high priority for the LHC

experiments. A possible mitigation can be achieved by replacing the expensive

calorimeter simulations with faster alternatives. Such faster calorimeter simulation

techniques [7, 8, 9, 10, 11], which are usually called “fast simulation”, typically rely

on parameterised responses of the calorimeter, tailored to specific types of incoming

particles. By employing these parametrizations, effectively bypassing the intricate
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shower development process carried out by Geant4, the simulation of an event is

significantly sped up. However, these models usually lack the high fidelity that is

required by the precision measurements carried out by the LHC experiments.

A possible alternative solution is provided by the immense progress in computer

science, machine learning, and especially generative AI in the past two decades. Deep

generative models (DGMs) learn, implicitly or explicitly, the distribution of (simulated)

data from a given sample and then generate new data according to this distribution.

Continuous research with impressive progress over nearly a decade [12] has shown

that these models have the potential to become fast and faithful alternatives for

detector simulation, as was summarized in a recent review on DGMs for calorimeter

simulation [13]. For that reason, such models also started to be included in the fast

simulation packages of the experiments [9, 14] in recent years.

Motivated by the aim of spurring the further development and benchmarking of fast

and high-fidelity calorimeter shower generation using deep learning methods, the Fast

Calorimeter Simulation Challenge (“CaloChallenge”) was initiated in early 2022. It is

modelled after two previous, highly successful data challenges in HEP — the top tagging

community challenge [15] and the LHC Olympics 2020 anomaly detection challenge [16].

In the CaloChallenge, participants were tasked with training their favorite

generative model on the provided calorimeter shower datasets, learning to sample from

the conditional probability distribution p(x|E), where x are the voxel energy deposits

and E is the incident energy. The particle and nuclear physics communities have been

developing fast simulation methods for some time, and the goal of this challenge was to

accelerate and expand on these efforts, while offering common benchmarks with which

to assess the strengths and weaknesses of the new approaches, and a common evaluation

pipeline for fair comparison.

This is the community paper summarizing the outcome of the CaloChallenge.

Over 60 participants contributed to the development of 31 different DGMs (some close

variants or distillations of each other, 23 of them completely distinct) for fast calorimeter

simulation, making use of cutting-edge techniques in generative modeling with deep

learning, including GANs, VAEs, normalizing flows, diffusion models, and conditional

flow-matching models. Table 1 gives an overview of the presented models and links the

corresponding code repositories.

Many submissions were presented at ML4Jets 2022 in Rutgers [17], ML4Jets 2023

in Hamburg [18], and the CaloChallenge Workshop in Frascati [19]. They have been

published in separate research articles, either in peer-reviewed journals or in machine

learning conferences. A small subset of the submissions have been compared previously

in [20], independent of this study here and without submitted samples, but with

retrained models based of code repositories instead.

The document is structured as follows: in Section 2, we describe the calorimeter

datasets that we provided. Then, we introduce the individual approaches, grouped

by their main generative architecture: Generative Adversarial Networks (GANs) in

Section 3, Normalizing Flows (NFs) in Section 4, Diffusion Models in Section 5,
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Table 1: Models submitted to the CaloChallange.

Approach Model Code
Dataset

Section
1 – γ 1 – π 2 3

GAN

CaloShowerGAN [21] [22] ✓ ✓ 3.1

MDMA [23, 24] [25] ✓ ✓ 3.2

BoloGAN [26] ✓ ✓ 3.3

DeepTree [27, 28] [29] ✓ 3.4

NF

L2LFlows [30, 31] [32] ✓ ✓ 4.1

CaloFlow [33, 34] [35, 36] ✓ ✓ ✓ ✓ 4.2

CaloINN [37] [38] ✓ ✓ ✓ 4.3

SuperCalo [39] [40] ✓ 4.4

CaloPointFlow [41] [42] ✓ ✓ 4.5

Diffusion

CaloDiffusion [43] [44] ✓ ✓ ✓ ✓ 5.1

CaloClouds [45, 46] [47, 48] ✓ 5.2

CaloScore [49, 50] [51, 52] ✓ ✓ ✓ 5.3

CaloGraph [53] [54] ✓ ✓ 5.4

CaloDiT [55] [56] ✓ 5.5

VAE

Calo-VQ [57] [58] ✓ ✓ ✓ ✓ 6.1

CaloMan [59] [60] ✓ ✓ 6.2

DNNCaloSim [61, 62] [63] ✓ 6.3

Geant4-Transformer [64] [65] ✓ 6.4

CaloVAE+INN [37] [38] ✓ ✓ ✓ ✓ 6.5

CaloLatent [66] [67] ✓ 6.6

CFM
CaloDREAM [68] [69] ✓ ✓ 7.1

CaloForest [70] [71] ✓ ✓ 7.2

Variational Autoencoders (VAEs) in Section 6, and Conditional Flow Matching Models

(CFMs) in Section 7. Section 8 introduces the metrics which we employ to compare

the submissions. We then show our results, where we first focus on the scores of the

individual metrics in Section 9 and then look at the correlations and Pareto fronts in

Section 10. On the one hand, this sheds light on interesting trade-offs, on the other

hand, it tells us about the metrics themselves. We summarize and present an outlook

in Section 11. In the appendices, we collect additional reference plots as well as tables

with the detailed numbers that are presented in the figures of sections 9 and 10.
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2. Datasets

The challenge offers three datasets, ranging in difficulty from easy through medium to

hard. The difficulty is set by the dimensionality of the calorimeter showers, i.e. the

number layers and the number of voxels in each layer.

Each dataset has the same general format. The detector geometry consists of

concentric cylinders with particles propagating along the z-axis. The detector is

segmented along the z-axis into Nz discrete layers. Each layer has Nr bins along the

radial direction and Nα bins in the angle α. The number of layers and bins in r and α

is summarized in table 2. The coordinates ∆ϕ and ∆η correspond to the x and y axis

of the cylindrical coordinates. Figure 2 shows a 3-dimensional view of a geometry with

3 layers, with each layer having 3 bins in radial and 6 bins in angular direction. The

right image shows the front view of the geometry, as seen along the z axis.

Figure 2: Schematic view of the voxelization in all datasets. Along the direction of the

incoming particle (z), the volume is segmented in Nz layers. Each layer has Nr radial

and Nα angular bins.

Each CaloChallenge dataset comes as one or more .hdf5 files that were written with

python’s h5py module [72] using gzip compression. Within each file, there are two hdf5-

datasets: incident energies has the shape (num events, 1) and contains the energy

of the incoming particle in MeV, showers has the shape (num events, num voxels)

and stores the energy deposited in showers, where the energy depositions of each voxel

(in MeV) are flattened. The mapping of array index to voxel location is done at the

order (radial bins, angular bins, layer), so the first entries correspond to the radial bins

of the first angular slice in the first layer. Then, the radial bins of the next angular slice

of the first layer follow, and so on . . .

For every dataset in the CaloChallenge, there is one dataset file to be used for

training the generative models and a second one for the evaluation (both by the

individual collaborations and by us). For dataset 3, we split the training and evaluation
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Table 2: Voxelization of layers in each dataset. We show Nr×Nα and the total number

of voxels, Ni, per layer. For datasets 1: a “–” indicates that this layer is not in the

dataset, as the numbering is based on the ATLAS detector definitions [9].

Layer
0 1 2 3 . . . 12 13 14 . . . 44 total

Number

ds 1 – γ
8× 1 16× 10 19× 10 5× 1

–
5× 1

– – – – 368
= 8 = 160 = 190 = 5 = 5

ds 1 – π+ 8× 1 10× 10 10× 10 5× 1
–

15× 10 16× 10 10× 1
– – 533

= 8 = 100 = 100 = 5 = 150 = 160 = 10

ds 2 9× 16 = 144 6480

ds 3 18× 50 = 900 40 500

Table 3: Number of samples available per incident energy for each of the training and

evaluation datasets for dataset 1 – γ and dataset 1 – π+.

Einc 256 MeV – 131 GeV 262 GeV 524 GeV 1.04 TeV 2.1 TeV 4.2 TeV total

ds 1 – γ 10 000 per energy 10 000 5000 3000 2000 1000 121 000

ds 1 – π+ 10 000 per energy 9800 5000 3000 2000 1000 120 800

data each into two separate files to have more manageable files sizes.
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2.1. Dataset 1 photons and pions

Dataset 1 can be downloaded from [73, 74]. It is based on the ATLAS open datasets [75]

and contains the simulation of single photons and single charged pions generated at

the surface of the ATLAS calorimeter system and pointing back to the center of the

detector. The interaction of the particles in the calorimeters was simulated with the

official ATLAS software, which is based on Geant4, using a special configuration in

which detailed hits were produced and noise from electronics and cross-talk was not

included; this allows modelling perfect showers that can be injected in the simulation

chain before these effects occur, making it more realistic. These samples were used to

train the GANs presented in the AtlFast3 paper [9] and the FastCaloGAN note [26].

Initially, only one dataset for the pion sample was available. Later, a second,

independent dataset was provided by ATLAS, so we updated the Zenodo and all

trainings and evaluations were done with two independent training and evaluation

datasets [74]. There are four datasets, two for photons and two for charged pions.

Each dataset contains the voxelized shower information obtained from single particles

in the η range (0.2–0.25); therefore the particles impact the detector with an angle. For

each particle, there are 15 incident energies from 256 MeV up to 4 TeV produced in

powers of two. 10 000 events are available in each sample except for those at higher

energies having lower statistics, see table 3. The number of radial and angular bins

varies from layer to layer and is also different for photons and pions, resulting in 368

voxels for photons (called “ds 1 – γ” throughout) and 533 for pions (called “ds 1 – π+”

throughout), see table 2.

In the results section, a 1 MeV threshold is applied to all voxels to eliminate the low

energy tail that affects some of the models but has no physics impact. This assessment is

based on how the energy deposited in the calorimeter is transformed and calibrated into

reconstructed objects (i.e. photons or jets) using clusters built from the calorimeters’

cells [76]. ATLAS calorimeters are segmented in cells to increase the granularity and

improve the spatial reconstruction of showers, and this segmentation is reproduced in

the simulation. The cells have rectangular shapes that are easier to construct, hence

they do not match the voxel cylindrical geometry described above. This required an

additional step in the AtlFast3 simulation in which the energy from the voxels was

reassigned to the actual calorimeter cells. In the offline reconstruction, ATLAS uses

topological clusters that are started (seeded) from cells having at least 4 times the

noise; they are subsequently grown to include neighbouring cells with energy twice the

noise level, and then they are finalised with any cell adjacent to the cluster that is

above the noise threshold. The lowest cell noise in the layers considered in the datasets

is about 10 MeV for layer 1 with other layers having up to 50 MeV. Therefore, a chosen

1 MeV threshold in the voxels’ energy is reasonable even when taking into account the

fact that multiple voxels could map to the same cell; this only occurs in the core of the

shower where most of the energy is deposited and therefore the threshold cut will not

take place, i.e. all masked voxels are peripheral voxels that actually map to multiple
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cells, further diluting the energy associated to each cell.

2.2. Datasets 2 and 3

Datasets 2 and 3 have been simulated with the Par04 [77] example of Geant4. The

geometry used in the Par04 example is an idealised calorimeter, with concentric cylinders

of alternating absorber and active materials. A draft of its layout is presented in figure 3.

Both datasets were simulated for the same detector which consists of 90 physical layers,

with each layer composed of 1.4 mm of tungsten (W) as an absorber and 0.3 mm of

silicon (Si) as active material. The inner radius of this calorimeter is 800 mm and its

depth is 153 mm.

e−

e−

Figure 3: The Par04 detector [77] consists of concentric cylinders of absorber (red)

and active material (blue). The energy deposited by incident particles is recorded in a

cylindrical readout (black).

Particle showers are generated by electrons that enter the detector perpendicularly

to the detector’s cylinders’ axis, as depicted in figure 3’s upper electron. Datasets with

differing incident angle, like the second electron in figure 3 pointing to the lower right,

were also published but go beyond the scope of this challenge [78].

The Par04 example of Geant4 writes out only energy deposited in the active

material, so it must be corrected for the deposits in the absorber. A simple scaling

factor has been derived from the simulation, f = 1/0.033, uniform for all energies and

cells of the detector. It means that on average 3.3% of particle’s energy is registered

in the detector. The Par04 simulation has an energy threshold below which cell energy

is not stored (to reduce the file size). It is chosen to a very low value of 0.5 keV,
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which translates to 15.15 keV after the energy scaling. We also apply this cutoff to all

submissions before the final evaluation.

The particle entrance position and direction determine the position (0,0,0) and

orientation (z-axis) of the cylindrical readout, like the one shown in figure 2. The

size of each readout voxel is ∆r × ∆φ × ∆z and unlike for dataset 1, both datasets

2 and 3 have the same number of voxels in each of the Nz layers. Also the number

of voxels along z-axis is the same in datasets 2 and 3, but they differ in terms of

segmentation in radius (r) and angle (α). The size along z-axis is equal to ∆z = 3.4 mm

which corresponds to two physical layers (W-Si-W-Si). Taking into account only the

absorber’s value of radiation length (X0(W) = 3.504 mm [79]) it makes the size along z-

axis approximately ∆z = 2 ·1.4 mm/3.504 mm = 0.8X0. In radius, the size of the voxels

is 4.65 mm for dataset 2 and 2.325 mm for dataset 3, which in approximation, taking

only the Moliére radius of absorber, is ∆r = 4.65 mm/9.327 mm = 0.5RM for dataset

2 and ∆r = 2.325 mm/9.327 mm = 0.25RM for dataset 3. The angular segmentation

consists of 16 voxels for dataset 2 (∆φ = 2π/16 ≈ 0.393 rad) and 50 voxels for dataset

3 (∆φ = 2π/50 ≈ 0.126 rad).

The total number of voxels for dataset 2 is Nz×Nr×Nα = 45× 9× 16 = 6480 and

for dataset 3 it is Nz ×Nr ×Nα = 45× 18× 50 = 40500, see table 2.

Files can be downloaded from [80] and [81] for dataset 2 and 3 respectively.

Dataset 2 consists of two files (one for training and one for evaluation) with 100 000

showers of electrons each with energies sampled from a log-uniform distribution ranging

from 1 GeV to 1 TeV. Dataset 3 contains showers of electrons sampled from the same

incident energy distribution. Due to the size, there are 4 files with 50 000 showers each.

Half of the available sample should be used in training, with the remaining half used as

a reference file in evaluation.

3. GAN-based Submissions

Generative Adversarial Networks (GANs) [82] are one of the earliest types of deep

generative models and reached fame by being able to produce photorealistic images [83].

A GAN consists of two networks, a generator and a critic‡. They are trained

adversarially in a game where the generator produces fake data that the discriminator

tries to distinguish them from real ones. On the upside, GANs are very flexible, as

their only hard requirement is finding two networks that map to the correct space.

Furthermore, GANs are typically very fast compared to other generative models and can

produce samples with high fidelity. On the downside, their training is unstable, and they

are difficult to optimize. For this reason, several improvements were proposed, e.g. the

Wasserstein GAN [84, 85]. CaloGAN [12, 86] was the first tool that demonstrated the

feasibility of using a deep generative model to perform a fast calorimeter simulation.

GANs are also the first model to be used in production, as FastcaloGAN [87, 26] was

‡ Also called discriminator, if the cross entropy loss is used.
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deployed as part of AtlFast3 [9] and used by the ATLAS experiment to produce several

billion events.

3.1. CaloShowerGAN

By Michele Faucci Giannelli and Rui Zhang, with figures and tables referring to these

approaches as CaloShowerGAN [21], CaloShower2GAN [21], CaloShower3GAN [21] and

code being available at [22].

Building on the success of FastCaloGAN, CaloShowerGAN [21] is designed to have a

similar interface so that the ATLAS collaboration could easily integrate it. However,

CaloShowerGAN significantly diverges from FastCaloGAN in the internal structure of

the tool and achieves a significant improvement in reproducing both photons and pions.

This is realised through a new pre-processing of the training data by further optimising

the model architecture and hyperparameters. For example, CaloShower3GAN employs

three GANs for the parametrisation of the photons in different energy ranges; this is

motivated by how the energy is deposited in the different layers of the calorimeter as a

function of the primary particle energy. The energy thresholds to define low, medium

and high energy ranges are 4 GeV and 262 GeV, whereas CaloShower2GAN merges the

medium and high energy ranges. Only one GAN is used for the pions in all three versions

as the nature of the hadronic interaction allows even low-energy pions to interact in the

deeper layers of the calorimeter.

Several normalisation steps are used to simplify the training of the GANs. The first

normalisation is based on the kinetic energy of the particles as done in FastCaloGAN

and other tools. This normalisation procedure allows standardising all values within

the input vector to a similar order of magnitude for all input momenta, eliminating the

significant difference between the momenta of the samples. In this way, the GAN can

focus on reproducing the shape of the showers rather than its absolute value.

CaloShowerGAN employs additional normalisation for layer-specific energy and total

energy. This information improves the training because the networks do not have

to extract it from the data as it is explicitly provided; thus the GANs can focus on

learning correlations and shapes improving the overall performance. Details on the

implementation of this normalisation can be found in CaloShowerGAN [21].

The condition label is also transformed to a normalised range of [0, 1] using the

following equation:

Ê =
log Ekin

Emin

log Emax

Emin

. (1)

Here Emin (Emax) is the minimum (maximum) kinetic energy of the incoming particle

in the training data.

The GAN architecture (see in figure 4) was significantly optimised for this challenge,

details on the optimisation process are described in CaloShowerGAN [21]. The optimal

hyperparameters used in the photon and pion GANs are shown in table 4.
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Figure 4: CaloShowerGAN neural network scheme.

The batch size used for training the GANs is 1024 and the training runs for a total

of 106 iterations. Due to the adversarial nature of GAN training, the final iteration does

not necessarily yield the best outcome, therefore the GANs are evaluated at intervals of

103 iterations. This is a compromise between the time required for evaluation and the

speed of learning of the GANs.

The evaluation is inspired by the methodology used in FastCaloGAN using the

total energy distribution for all energies as a figure of merit. The χ2 value for each

GAN model is computed between the binned distributions of the Geant4 sample and

generated sample by the model and then normalised by the number of degrees of freedom

used in each distribution (χ2/NDF). The model that gives the lowest χ2/NDF among

the saved iterations is considered the best and is used in the challenge.
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Table 4: Optimal hyperparameter values for the photon and pion in CaloShowerGAN.

Hyperparameter Photon Pion

Latent space size 100 200

Generator size (N1, N2, N3) 100, 200, 400 200, 400, 800

Discriminator size (N4, N5, N6) 368, 368, 368 800, 400, 200

Generator optimiser Adam Adam

Learning rate 1× 10−4 1× 10−4

β1 0.5 0.5

β2 0.999 0.999

Discriminator optimiser Adam Adam

Learning rate 1× 10−4 1× 10−4

β1 0.5 0.5

β2 0.999 0.999

Batch size 1024 1024

D/G ratio 8 5

λ 3 20

Activation (generator) Swish ReLU

Activation (discriminator) ReLU ReLU

Neuron weight initialisation (generator) Glorot Normal He Uniform

Neuron weight initialisation (discriminator) He Uniform He Uniform

Trainable parameters (generator, discriminator) 261k, 408k 871k, 829k

3.2. Matching Deep Mean-field Attentive (MDMA) GAN

By Benno Käch, Dirk Krücker, Isabell Melzer-Pellmann, Moritz Scham, and Simon

Schnake, with figures and tables referring to this approach as MDMA [23, 24] and code

being available at [25].

The MDMA [23, 24] was first applied to the JetNet-150 [88] datasets, yielding state-of-

the-art results not relying on kinematic inputs to the generative model. The model is

designed to work on a point cloud representation of its input. As such, the calorimeter

data is first preprocessed to convert the hits to a point cloud, where the coordinates of

each point are given by (E, z, α,R) of every hit in the detector. This representation is

especially efficient as the granularity of the detector grows and there are a large number

of empty cells, thus only dataset 2 and 3 were considered for this model. The generator

and critic consist of the same main building blocks, which use a cross-attention-based

information aggregation mechanism. As there is a large number of hits on average

(e.g. ∼ 1600) the quadratic computational scaling of self-attention is not feasible.

Therefore, a synthetic “mean-field” x̄ is introduced, initially set as the mean of all

points in a cloud, acting as an intermediary for information exchange between points.
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First, the mean-field is updated via cross-attention (i.e. the Query Q in the attention

aggregation is the embedded mean-field x̄, whereas the Key K and Value V are an

embedding of the hits in the detector). Then, the mean-field is further processed with a

fully-connected layer, additionally using the number of hits as an input and a gated linear

unit is applied to an embedding of the incoming energy and the mean-field. Finally,

the mean-field is concatenated to every hit and a point-wise layer is applied. Note that

this aggregation is permutation-equivariant since cross-attention itself is permutation-

equivariant and all the other aggregations are independent of the other points in the

cloud. The difference between the generator and the critic is only in the final layer. For

the critic a 2-layer MLP is applied to obtain a score for every shower, whereas for the

generator the output is mapped down to 4 dimensions, corresponding to the energy and

index of the cell. A schematic for the minimal building block is shown in figure 5. The

input for the generator is noise sampled from a normal distribution with dimensions

four times the number of hits per shower. During training, showers of similar length

are grouped together to form batches and padded to the same length. Padded points

have no influence on the output. The model is trained as a Wasserstein GAN [85] with

gradient penalty [89] to regularise. Additionally, weight normalized linear layers [90]

are employed in the critic. To enhance the convergence of the generator, an L2-loss

between the mean of the mean-field in the final layer of the critic for real and generated

jets is calculated and minimised (hence the name mean-field matching). To enforce the

conditioning with the incoming energy, the generator also minimises an L2-loss between

the detector responses for real and generated showers. Note that during training the

condition of real showers are given to the generator allowing the matching for the L2-

loss. The showers are post-processed by rotating the shower by a random angle. This

alleviates the suboptimal coordinate choice, which does not respect the periodicity in the

angular coordinate. Note that since point clouds are generated, not only the incoming

energy of the incoming particle is supplied as a condition, but also the number of hits

in the shower needs to be supplied. For this study they were taken from the validation

set - in practice one would need another model to sample the probability mass function

p(n|E).
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Figure 5: Main building block of the MDMA architecture. The calorimeter is represented

as a point cloud, where every point xi is a hit in the detector and x̄ is the artificial

mean-field. First, the points are mapped to a higher dimensional latent space, where

after normalisation cross-attention is calculated between the mean-field and the other

points. Then the conditional information for the shower (i.e. the incoming energy E

and the number of hits n) are introduced with a fully-connected (FC) layer and a gated

linear unit (GLU). Finally, the updated mean-field is concatenated to the other points

and a point-wise layer is used to update the points independently on each other. This

architecture yields permutation-equivariance and scales linearly with the number of hits

in the computational complexity.

3.3. BoloGAN

By Federico Andrea Guillaume Corchia and Lorenzo Rinaldi, with figures and tables

referring to this approach as BoloGAN [26] and no code being available.

BoloGAN [26] is a GAN-based calorimeter simulation tool derived and evolved from

FastCaloGAN, a fast simulation tool developed in the ATLAS Collaboration at

CERN [26, 9].

The tool uses the Wasserstein GAN [85] with a gradient penalty (WGAN-GP)

term [89] in the loss function of the discriminator, providing good performance and

training stability, and conditioning onto the kinetic energy of the particle (conditional

WGAN-GP). The conditional WGAN-GP is implemented in TensorFlow 2.0 [91] so

that training may be performed on either CPUs or GPUs. The generator and the
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discriminator both employ three hidden layers, the generator being preceded by a latent

space of 100 values and having the output layer with as size the number of voxels for the

specific particle type and pseudorapidity interval; the last layer of the discriminator has

one single output node. The general scheme is shown in figure 6. BoloGAN WGAN-GP

hyperparameters are set as shown in table 5, depending on particle type and on energy.

These hyperparameters and the general architecture are a tradeoff between modelling

performance and time required to train the GANs: the program is, in fact, intended

to have the possibility to train multiple GANs at the same time, useful for modelling

different particle types and pseudorapidity layers with accuracy. The GAN is trained

first on a single energy point, then the other energy points are progressively added to

training starting from the ones closest in energy to the initial sample. Conditioning is

applied, as mentioned, onto the kinetic energy of the particle and the energy in each

voxel is normalized by the true energy of the sample, so that all energy samples are

scaled to the same values and training can focus on the shape of the total energy (which

is the figure of merit, as shall be shown in the continuation). Truth energies used as

labels for conditioning are also normalized to the highest energy, in this way all values

are in the (0,1] range.

Dense Dense Dense Dense

DenseDenseDense

Generator 
Output

Data

Latent Space 
(100)

Conditioning

on Energy

Generator

Discriminator

Dense

(with single


output node)

Discriminator 
Output

Figure 6: BoloGAN neural network scheme.

We performed training for 1 million epochs with a TensorFlow checkpoint saved

every 1000 epochs. This granularity allows for monitoring improvement in training

without having to save too many checkpoints, which would hamper speed and disk

space. Because of the interplay between the generator and the discriminator, the final

epoch is not necessarily the best one, also considering that there may be an unfavorable

fluctuation in training. For this reason, a χ2 between the reference sample and the
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Parameter Pions Low En. Photons High En. Photons

Latent Space 100 100 100

Generator Nodes Output Shape 200, 400, 800, 533† 100, 200, 400, 368† 50, 100, 200, 368†

Discriminator Nodes Output Shape 800, 400, 200, 1 368†, 368†, 368†, 1 368†, 368†, 368†, 1

Activation Function ReLU ReLU Swish

Optimizer Adam Adam Adam

Learning Rate 10−4 10−4 10−4

Discriminator/Generator Training Ratio 5 8 8

Beta 0.5 0.5 0.5

Lambda 10 3 3

Batch Size 512 1024 1024

Used Batch Normalization Layer No Yes Yes

Table 5: BoloGAN WGAN-GP hyperparameters. Low (high) energy photons are those

up to (above) 4.096 GeV. Values marked with † are equal to the number of voxels in

the corresponding case.

one simulated by the GAN, evaluated over the sum of the energy in all voxels (which

corresponds to the total energy deposited into the calorimeter by the particle), is used

to choose the best GAN iteration. The iteration with the lowest χ2 is considered the

final choice to perform simulation activities. The total energy for each possible incident

energy value was chosen as it is easy to define while it is difficult to reproduce. For every

checkpoint, 10k events are generated per incident energy value and the χ2 between the

reference sample and the GAN-simulated one is calculated; the total χ2 for a checkpoint

is the sum of the χ2 for the individual incident energy values and the checkpoint with

the lowest total χ2 is finally chosen as the best GAN iteration.

The program is currently able to simulate calorimeter showers for photons,

electrons, pions and protons between 256 MeV and 4 TeV over the full detector

acceptance (protons currently only at −0.25 ≤ η ≤ 0.25). For the CaloChallenge,

the tool was tested over Dataset 1 for both photons and pions. For pions one single

GAN for all energy values has been trained, while for photons two GANs have been

trained, one for low energies (i.e. up to 4.096 GeV) and the other one for high energies

(above 4.096 GeV).

3.4. DeepTree

By Moritz A.W. Scham, Benno Käch, Simon Schnake, Dirk Krücker, and Kerstin

Borras, with figures and tables referring to this approach as DeepTree [27, 28] and

code being available at [29].

DeepTree [27, 28] is a point cloud (PC) based GAN model, that uses a tree-like structure

for upscaling PCs in the generator and for downscaling them in the critic. A calorimeter

shower can be converted to a PC by taking the coordinates and the energy of the hits as

points in an unordered set. Representing calorimeter showers as PCs instead of voxels
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separates the hits from the detector geometry. This offers multiple advantages: PCs are

well-suited for handling sparsity in calorimeter data and they are very efficient if only

a fraction of cells contain hits. Their adaptability to irregular calorimeter geometries

makes PCs a versatile choice for various detector configurations. Lastly, the generator

architecture developed for one calorimeter using PCs can be easily transferred to dif-

ferent calorimeter types. On the downside, this independence of the detector geometry

also means that the model needs to learn the geometry of the detector from the dataset.

In a postprocessing step, the generated points must be assigned to the individual cells

of the calorimeter. Since the PC-based model does not know the detector geometry,

several points may be generated and assigned to the same calorimeter cell. To obtain a

unique output for each cell, these points must be combined in some way. Designing a

PC-based model that yields a varying number of points (cardinality) by itself is some-

what challenging. Here, the cardinality is sampled from the dataset and provided to the

model. Because dataset 1 (3) yields a low (high) cardinality, this model targets dataset 2.

Generator The generator of this GAN constructs PCs by starting with a random vector

as the root of a tree and then attaching one level of leaves after the other. The output

of the generator is the last level of the tree.

Branching Layer Starting with the root node, a Branching Layer (figure 7) takes

the current leaves from the tree, maps each leaf to a given number of nodes ni and

attaches these nodes as new leaves to the tree. Then further Branching Layers are

applied until the desired number
∏

i ni of nodes is reached. For these projections,

multiple feed-forward neural networks (FFNs) are used. With each Layer, the number

of nodes increases (1 ∗ 2 ∗ 3 ∗ 4 ∗ 5 ∗ 5 ∗ 10 = 6000) and the number of features decreases

(64, 25, 15, 10, 8, 6, 4). The cardinality c is sampled from the dataset and only the first

c points produced by the generator are used.

Ancestor MPL In between the branching layers, a Message Passing Layer (MPL)

is applied to this tree-structured graph. The edges in the graph are constructed so that

each node receives messages from each of its ancestors as well as itself. As a message-

passing algorithm, GINConv [92, 93] is chosen. For GINConv, the messages are the

features of the source node (here: the ancestor). These messages are aggregated by

summing over all messages addressed to the target node. These aggregates are added

to the target node (scaled with a learnable weight) and passed through an FFN. The

nodes are then updated with the output of the FFNs plus, as a residual connection, the

nodes themselves.

In addition, the generator contains layers that condition the MPLs and the

branching layers with a vector representing the current state of the leaves in the tree. For

this, the leaves are passed separately through a first FFN, then summed up and passed

through a second FFN. The FFNs of the generator consist of 3 hidden layers of 100 nodes
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Figure 7: The Branching Layer of the DeepTree generator, as described in 3.4. In this

example, the nodes of the 2nd level of the tree are produced and attached as the new

leaves. With the nodes from level 1 (dark green / orange) as parents, the children in

level 2 (blue+green / red+yellow) are generated independently: The condition and a

vector representing the state of all points and are appended to the parent. The result

is mapped by a branching FFN to the size of the parent times the number of branches.

After splitting up the vectors into the new children, the parent is added to each of them.

With the new children added as leaves to the tree, all the levels of the tree are stacked

up and passed through a dimensionality reduction FFN.

without bias. The first two hidden layers are followed by a batch normalization [94] layer

and LeakyReLU activation with a negative slope of 0.1.

Critic The critic, show in figure 8, aims to reduce the size of the PC iteratively. This

is achieved by a pooling operation called Bipartite Pool. It constructs a bipartite graph

that densely connects the input PC to a fixed number of trainable nodes and applies an

MPL to this graph. As a MPL, Gatv2Conv [95] is used with 16 attention heads. Before

each pooling, the points are processed by an embedding layer consisting of an FFN and

a Central Node Update layer (CNU) with a residual connection. The CNU transforms

input points separately with an FFN, aggregates them with multiple methods (‘multi-

aggregation’), and maps the points back to their original dimension with another FFN.

This multi-aggregation is a concatenation of sum, maximum, cardinality, and width.

The width is computed as mean absolute deviation from the mean 1
n

∑
i |xi− x̄|. Three

“subcritics” are applied to different levels of pooling and the input PC. Each subcritic

uses two CNUs with a residual connection, followed by the multi-aggregation. The

aggregated vector is passed through an FFN to produce a single output. Contrary to

the generator, the FFNs of the critic use a dropout of 0.5 and spectral normalization,
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Figure 8: The DeepTree critic, as described in 3.4.

except for the FFN inside each embedding layer, which use batch normalization. All

three subcritic are trained simultaneously and their losses are added.

Preprocessing and Postprocessing The showers on the grid are converted to PCs by

taking the r, α and z indices, as well as the energy of each cell.s with an energy deposition.

Uniform noise (0,1) is then added to these indices to make the distribution continuous

(reversible by a floor operation). These values are then scaled to the interval [0, 1],

transformed with a logit function (inverse function: expit) and finally normalized (mean

→ 0 and standard deviation → 1). The energy of the hits is scaled with a Box-Cox

transformation with normal scaling (PowerTransformer in [96]). For evaluation and

generation, these transformations are inverted.

As conditional variables, the shower energy Egen, the average hit energy Ē, and the

cardinality c are provided to both generator and critic. Egen and Ē are first transformed

with a Box-Cox transformation with normal scaling. The cardinality c undergoes the

same transformations as the cell indices, but instead of normal scaling, a quantile

transformation (QuantileTransformer in [96]) is applied.

As the generator is not directly aware of the calorimeter cells, it may produce multiple

hits for a single calorimeter cell. This is especially true for events with a very high

cardinality. Simply summing the hits in each cell would lead to a low cardinality and

points containing very high energies. To mitigate this effect, an algorithm§ is employed,

that moves hits from “overcrowded” cells, to empty, neighboring cells (in r/α/z). Since

§ Available on PyPI: https://pypi.org/project/caloutils/

https://pypi.org/project/caloutils/
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hits of higher energy are more important, it tries to move the hits in the cells in order of

energy, skipping the highest energy hit. In case there are not enough empty neighboring

cells are available, the remaining hits are summed up. Due to this technique, the

maximum cardinality that the generator produces goes from ≈ 3.5k to ≈ 4.6k (dataset:

maximum ≈ 5.3k of 6k total cells).

As an additional postprocessing step, the generated PCs are shifted by a random value

in α, resulting in a uniform α distribution.

4. Normalizing Flow-based Submissions

A normalizing flow models a complex density by applying a sequence of transformations

to a simpler base distribution, thereby constructing a flexible distribution over

continuous random variables. The objective of the normalizing flow is to learn a bijective

transformation T between two spaces. Initially, a vector x is sampled from an intricate

and generally unknown probability density px(x). We define T as the transformation

x = T (u), where u ∼ pu(u) is a simple base distribution that is known and for which

one can calculate the likelihood and sample from effectively. Both T and pu(u) can have

parameters.

The transformation T must be invertible, and both T and T−1 must be

differentiable. Such transformations are categorized as diffeomorphisms. The density

px(x) is well-defined and can be constructed by change of variables

px(x) = pu(T
−1(x)) |det JT (u)| ,

where JT (u) is the Jacobian of T . Diffeomorphisms are notable for their composability,

which allows us to construct T from multiple smaller, invertible, and differentiable

transformations T = TK ◦ . . .◦T1, where each Tk maps zk−1 to zk. Assuming z0 = u and

zK = x, the transformations sequentially modify the distribution, illustrated in figure 9.

The normalizing flow offers two operational pathways: the inverse path, which

is utilized for density estimation and transformation optimization, and the forward

path, which functions as a generative model. In the inverse direction, samples from

the complex distribution px(x) are mapped to the base distribution pu(u), optimizing

x ∼ px(x)

x

zk ∼ pk(zk)

zk

u ∼ pu(u)

uzk−1 z1... ...
T1(u)

T−1
1 (z1)

Tk(zk−1)

T−1
k (zk)

Figure 9: Visualization of a Normalizing Flow.
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the process, typically by maximizing the likelihood (or minimizing the negative log-

likelihood). Conversely, the forward path initiates with sampling from the base

distribution pu(u) and maps these samples to the data space represented by px(x). The

designation of directions as inverse or forward is arbitrary. The flow is easily extended

to conditional distributions px(x|c) by including the conditional information c in each

transformation in T .

The requirement of an efficient computation of the log-likelihood is addressed

by specific design choices of the network architecture. Two common approaches are

autoregressive flows [97, 98] and coupling-based flows [99, 100, 101]. For further details

and a review of common architectures for building these normalizing flows, please refer

to the works by Kobyzev et al. [102] and Papamakarios et al [103], from which the

notation has been adapted.

4.1. L2LFlows

By Thorsten Buss, Sascha Diefenbacher, Frank Gaede, Gregor Kasieczka, Claudius

Krause, and David Shih, with figures and tables referring to these approaches as

L2LFlows-MAF [30, 31] and conv. L2LFlows [31] and code being available at [32].

Following [104, 30, 34], we split the task of learning the distribution of showers into

smaller pieces: A single Energy Distribution Flow and multiple Causal Flows. The

Energy Distribution Flow learns the distribution of layer energies (i.e., the total energies

deposited in a layer) conditioned on the incident energy. For each of the 45 layers in

the calorimeter, we train a so-called Causal Flow, learning the shower shape in that

particular layer conditioned on the incident energy, the layer energy in that particular

layer, and the output of the previous flows. Conditioning on the output of previous flows

is necessary to ensure consistency among the layers. Since we need the earlier flows’

Einc

energy flow

flow
 1

flow
 2

flow
 45

shower

Figure 10: Diagram illustrating the overall architecture of L2LFlows. Arrows directed

at flows illustrate the conditional input of the flow. Arrows coming from flows illustrate

what the flow generates.

output as conditional input for the later flows, during generation, we first draw samples

from the energy distribution flow and then sequentially draw samples from the causal
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Figure 11: Diagrams illustrating the structure of our convolutional flows. Left: The

overall structure of a single Causal Flow. Right: A U-Net as it is used in the coupling

blocks.

flows. In this sense, it is an auto-regressive model. Figure 10 illustrates the generation

process starting from the incident energy Einc and ending with a generated shower.

Energy Distribution Flow The task of the Energy Distribution Flow is to learn the

distribution of layer energies conditioned on the incident energy

p(E1, . . . , EN |Einc) (2)

where E1 to EN denote the layer energies. The architecture used is up to

hyperparameters the one published in [30]. It is a masked autoregressive flow (MAF)

consisting of 6 MADE blocks[105, 97] with rational quadratic splines (RQS)[106]. We

apply fixed permutations that are randomly initialized between these MADE blocks.

Similar to CaloFlow, we use log and logit transformation as preprocessing. Log

transformations help the network deal with inputs distributed over several orders of

magnitude. Logit transformations help the network to generate only samples in an

appropriate range. During inference time, the preprocessing is inverted.

Sometimes, the Energy Distribution Flow produces outliers with high energies. For

that reason, we reject all sampled layer energies with an energy ratio of Edep/Einc > 2.6.

Causal Flows Each Causal Flow learns the distribution of shower shape in one

particular calorimeter layer. This distribution can be denoted as

p(Ii|I1, . . . , Ii−1, E1, . . . , EN , Einc) (3)

where Ii ∈ Rn×n is the shower shape in layer i given by the deposited energy in each

calorimeter cell. We assume approximate locality and only give up to five previous

layers, the energy deposited in layer i, and the incident energy as conditional input to

the flows. This helps the flow to focus on the most informative features.

We deploy two different network architectures to solve this task. The first one

is an MAF like the Energy Distribution Flow. This architecture is similar to the one

published in [30]. The second is a flow based on coupling blocks with convolutional

U-Nets[107] as sub-networks.
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The MAF architecture consists of four MADE blocks alternated with randomly

initialized but fixed permutations. To better deal with high-dimensional conditional

inputs, a summary network is applied. It receives all the conditional inputs and

summarizes the information. Our summary network has 64 output knots.

In figure 11, the convolutional flow architecture is illustrated. On the right-hand

side, we see how a data sample x is transformed into a noise sample u. First, it is

transformed using a preprocessing function. Next, a squeezing operation[99] stacks

pixels lying in small patches into different channels. This is necessary since, in the

coupling blocks, we want to split the information along the channel dimension in order

to preserve the spatial structure.

The heart of this architecture consists of eight GLOW blocks[100]. They comprise

an activation norm, a spline coupling block[108, 106], and an invertible 1x1 convolution,

where the activation norm is a normalization operation, and the invertible 1x1

convolution replaces the random but fixed permutation in the MAF. The spline coupling

block can learn correlations between pixels and transform inputs in a nonlinear way.

We used U-nets to learn features on different scales. This is in contrast to

RealNVP[99] and GLOW[100], which used a so-called multi-scale architecture. The

U-nets are employed in the coupling blocks as sub-networks. We found this setup to

be more flexible and to result in higher fidelity than the multi-scale architecture from

RealNVP. The U-Net architecture is illustrated on the left-hand side of figure 11.

Since convolutional architectures scale much better with input dimension, the main

task of the embedding network is not to reduce the number of inputs but rather to bring

the input in a shape the flow can handle.

Training We train the conv. L2LFlows on datasets 2 and 3 for 800 epochs. The

MAF version, L2LFlows-MAF, is only trained on dataset 3 for 1000 epochs. In both

cases, ADAM is used as an optimizer. An exponential decay learning rate scheduler

is used in the MAF case, while a one-cycle learning rate scheduler[109] is used in the

convolutional case. To ensure a stable training behavior, L2 regularization[110] and L2

gradient clipping are applied.

To mitigate the challenges arising from data sparsity, we fill zero voxels with log

Gaussian distributed values. Since this noise is below the energy threshold, it will be

cut away after generation. Furthermore, we add noise between zero and 1 keV to all

voxels. We rotate showers by random angles during training as data augmentation.

The log-likelihood is additive under joining distributions. Therefore, training each

flow individually is equivalent to training all flows jointly. This allows for straightforward

parallelization on different compute nodes.

We implement our models using PyTorch[111] and NFlows[112]. Using single

floating point precision is sufficient since we fixed numerical instabilities in NFlows.
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4.2. (inductive) CaloFlow

By Matthew R. Buckley, Claudius Krause, Ian Pang and David Shih, with figures and

tables referring to these approaches as CaloFlow teacher [33], CaloFlow

student [33], iCaloFlow teacher [34], and iCaloFlow student [34] and code being

available at [35, 36].

Following the excellent performance of CaloFlow [104, 113] on a simplified calorimeter

setup, we adapt CaloFlow to the more realistic setup in dataset 1. This corresponds to

CaloFlow teacher [33] and CaloFlow student [33] submissions.

In CaloFlow, we implement a two-flow method that learns the normalized voxel

level shower energies Îa conditioned on the corresponding incident energies of the

showers Einc denoted by p(Îa|Einc). Here a is the voxel index and the normalization

is performed for each layer such that the normalized voxel energies in each layer sums

to unity. In the original CaloFlow studies [104, 113], it was found that training a single

flow to obtain p(Îa|Einc) resulted in problems related to energy conservation. Hence,

CaloFlow makes use of a two-flow (flow-1 and flow-2) setup. Flow-1 is constructed

to learn the probability density of calorimeter layer energies∥ conditioned on incident

energy p1(Ei|Einc), while flow-2 is designed to learn the probability density of the voxel

level shower energies conditioned on incident energy and calorimeter layer energies

p2(Îa|Einc, Ei). When sampling from CaloFlow, the layer energies are first sampled

using flow-1 given an input shower incident energy Einc. Next, the layer energies Ei

from flow-1 and the incident energy Einc are used as conditional inputs for flow-2 which

outputs the shower distribution Îa of the event. Both flow-1 and flow-2 are chosen to be

Masked Autoregressive Flows (MAFs) [97]. In particular, their transformation functions

are compositions of rational quadratic splines (RQS). A class of neural networks known

as MADE blocks [105] are used to define the parameters κ⃗ of the RQS transformations.

Figure 12 shows a schematic of the CaloFlow approach. Separate flows were trained for

the photon and pion datasets.

Since MAFs are fast in performing density estimation but slow in generation, we

opt to train corresponding Inverse Autoregressive Flows (IAFs) [98] that are fast in

generation. We only trained an IAF for flow-2 as flow-1 has a lower dimensional output

and is relatively fast to sample from. Since training the IAF with the negative log-

likelihood of the data is prohibitively slow, the IAF is trained by fitting it to a pre-

trained MAF using the Probability Density Distillation (PDD) method [114] that was

also applied in [113]. This method is also known as teacher-student training where the

MAF (IAF) is referred to as the teacher (student). The objective of this training is

to enable the IAFs to learn fIAF = fMAF, or equivalently, to ensure that fMAF and

f−1
IAF serve as inverse functions of each other. This equivalence is crucial, as only the

fast passes through the flows can be used meaningfully for optimization. In practice,

the fitting is implemented based on two training loss terms that we refer to as z and

∥ The layer energy of a given calorimeter layer is the sum of all the voxel energies in that layer.
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Figure 12: Schematic of the flows used in the CaloFlow approach. Solid lines are

bidirectional — the direction into each flow denotes the density estimation step and the

direction out of the flow denotes the sample generation step. Dashed lines indicate the

conditional input to the respective flows.

x-losses. To compute the z-loss, we begin with a sample z which is then passed through

the student IAF to obtain a sample x′ in data space and the corresponding likelihood

s(x′). The data sample x′ is then mapped via the teacher MAF back to the latent space

which obtains the likelihood t(x′). Similarly, to compute the x-loss, one can start with

a data sample x which maps to latent space z′ via the teacher, and then map back to

data space via the student. In the original PDD study [114] study, the KL divergence of

s(x′) and t(x′) was initially used as the training loss. However, the authors noted that

it does not converge well. Hence, as in [113], we used a training loss function that is

based on a mean square error that compares relevant values¶ at each equivalent stage

of the teacher and student passes.

Applying CaloFlow to the higher dimensional voxelization in datasets 2 and 3 is

extremely memory intensive as the number of model parameters scale as O(d2) where

d is the data dimensions. Hence, we proposed a new method, that we dub inductive

CaloFlow or iCaloFlow, to overcome this obstacle. This method corresponds to the

iCaloFlow teacher [34] and iCaloFlow student [34] submissions.

Our iCaloFlow method uses three normalizing flows to learn and generate

calorimeter showers. Flow-1 learns the joint probability distribution of total energy

deposited in each layer Ei, conditioned on the incident energy of the event Einc:

p1(Ei|Einc). It is necessary to learn this probability distribution as Ei is a conditional

input for flow-2 and flow-3 in the generation step. Flow-2 learns the probability

¶ For γ student, these consist of coordinates before and after passing them through the flows and RQS

parameters from individual MADE blocks within the bijectors. For π+ student, we did not enforce

agreement with the teacher at the level of individual MADE blocks, but only at the endpoints of the

flows.
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Figure 13: Schematic of the three iCaloFlow flows. Solid lines are bidirectional — the

direction into each flow denotes the density estimation step and the direction out of the

flow denotes the sample generation step. Dashed lines indicate the conditional input to

the respective flows. Flow-3 is used iteratively on subsequent layers.

distribution of the unit-normalized voxel energies in the first layer of the calorimeter,

Î1a ≡ I1a/
∑

b I1b, conditioned on Einc and the energy deposited in the first layer,

E1: p2

(
Î1a|Einc, E1

)
. Here a is the voxel index. Finally, flow-3 learns the probability

distribution of unit-normalized voxel energies in every layer after the first, Îia ≡
Iia/

∑
b Iib for i ∈ [2, 45], where the ith layer is conditioned on the energy deposited

in the layers i and i − 1 (Ei and Ei−1), the incident energy Einc, the unit-normalized

voxel energies in the (i − 1)th layer Î(i−1)a, and the one-hot+ encoded layer number i:

p3

(
Îia|Einc, Ei, Ei−1, Î(i−1)a, i

)
. Figure 13 shows a schematic of the iCaloFlow approach.

Like in CaloFlow, we used MAFs with RQS transformations for flow-1, and MAF-IAF

pairs for flow-2 and flow-3.

The number of trainable parameters for the CaloFlow models are included in

Tables C5 and C12. For the teacher models, the total parameter count matches that of

sample generation, which is the sum of parameters in flow-1 and flow-2 (teacher). As

for the student models, the parameter count during sample generation is the sum of

parameters in flow-1 and flow-2 (student). Given the necessity of a pre-trained teacher

model for each student model, the total parameter count encompasses parameters from

flow-1, flow-2 (teacher), and flow-2 (student).

+ One-hot encoding is used for layer numbers instead of ordinal encoding using the layer number

directly, because other than the location in the detector, there is no information in the layer number,

i.e., layer 30 is not 15 times more important than layer 2.
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4.3. CaloINN

By Luigi Favaro, Florian Ernst, Claudius Krause, Tilman Plehn, and David Shih, with

figures and tables referring to this approach as CaloINN [37] and code being available

at [38].

In CaloINN [37] we train a normalizing flow for the generation of showers in dataset

1 and dataset 2. We use the INN variant FrEIA [115] with coupling layers, which

unlike autoregressive methods provides fast evaluation in the forward and backward

directions. This is achieved by transforming only a subset of the input features with

a reversible transformation. The parameters of the transformation are predicted by a

network conditioned on the remaining features and the incident energy The CaloINN

architecture allows for a generation step of O(1) ms per shower on a single GPU without

the necessity of a second distillation process.

The architecture takes voxels normalized by the layer energy as input. The

information of the energy per layer is encoded in extra energy dimensions, similarly

to CaloFlow teacher, as shown in (4). To explore the expressive power of a single

flow network, we simply append the energy ratio variables to the feature vector. We do

not explore a separate training for the energy and the voxel dimensions which would

simplify and improve the learning process of the energy dimensions.

u0 =

∑
iEi

Einc

and ui =
Ei∑
j≥iEj

, (4)

After creating the final feature vector, we apply uniform noise and and a regularized

log transformation with parameter α = 10−8. In each coupling block, the input vector

is split in two halves, xt and xc, of equal size. The block only transforms half of the

parameters selected randomly during initialization thus defining the transformation:

T (x;Einc) =

{
yt = f(xt;xc, Einc)

yc = xc
(5)

The transformation f applied to the features is a rational quadratic spline for dataset

1 and a cubic spline for dataset 2. The prediction of the spline parameters is obtained

with a sub-network consisting of a sequence of dense layers with 256 nodes for each

hidden layer. The number of hidden layers is four for dataset 1 and three for dataset 2.

After permuting the order of the features, we normalize the output to mean zero and

unit standard deviation with an ActNorm [100] layer. This allowed us to improve the

stability of the training and utilize a deeper model. In the large-scale architecture, we

stack twelve blocks for dataset 1 and fourteen blocks for dataset 2 to construct the full

flow.

4.4. SuperCalo

By Ian Pang, John Andrew Raine, and David Shih, with figures and tables referring to

this approach as SuperCalo [39] and code being available at [40].
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Our approach, which we dub as SuperCalo [39], presents a way to generate high-

dimensional calorimeter showers by super-resolving low-resolution calorimeter showers.

The showers used in the CaloChallenge datasets are represented as 3D images that

are binned into voxels in position space. We will refer to these voxels as fine voxels.

A coarse-grained representation of each shower can be obtained by grouping together

neighboring fine voxels to make coarse voxels. In approach, we split the task of learning

p(E⃗fine|Einc) into two parts. Here E⃗fine is the energy deposited in the fine voxels and

Einc is the incident energy of the particle. First, we learn to sample from p(E⃗coarse|Einc),

where E⃗coarse is the energy deposited in the coarse voxels. Next, we learn to super-

resolve the coarse voxels to obtain the fine voxels, which is equivalent to sampling from

p(E⃗fine|E⃗coarse).

However, trying to learn p(E⃗fine|E⃗coarse) with a single model would be no better in

terms of model size than the original problem of learning p(E⃗fine|Einc). As a result, we

rewrite the distribution according to the following ansatz:

p(E⃗fine|E⃗coarse) =
Ncoarse∏

i=1

p(e⃗fine,i|Ecoarse,i, . . .). (6)

In other words, each coarse voxel, with deposited energy Ecoarse,i, is upsampled to

its fine voxels, with deposited energies e⃗fine,i, using a universal super-resolution model

that may be conditioned on some coarse shower information. Here is the list of the

conditional inputs that we used in the super-resolution model:

• Incident energy of the incoming particle, Einc

• Deposited energy in coarse voxel i, Ecoarse,i

• Fine layer energies of layers spanned by coarse voxel i

• Deposited energy in neighboring coarse voxels in α, r and z directions∗

• One-hot encoded coarse layer number

• One-hot encoded coarse radial bin

Since it is not obvious which choice of coarse shower representation would result

in the highest fidelity high-resolution showers (fine voxels), we experimented with a few

choices and picked the one that gave the best results. In particular, we grouped the fine

voxels such that 1 coarse voxel = 1 r bin × 2 α bins × 5 z bins. This choice results in

a 648 dimensional coarse shower.

Similar to CaloFlow teacher [33] and CaloFlow student [33], we used a flow-1

+ flow-2 setup to learn the distribution of energy deposited in coarse voxels in each

shower conditioned on the incident energy of the particle p(E⃗coarse|Einc). Next, we train

our super-resolution flow to learn p(e⃗fine,i|Ecoarse,i, . . .). Then, generating showers with

∗ There is maximum of 6 neighboring coarse voxels for each coarse voxel. For coarse voxels with fewer

than 6 adjacent coarse voxels, the missing neighboring coarse voxel energies are padded with zeros.
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the full model chain involves sampling sequentially from flow-1, flow-2 and the super-

resolution flow. All the flows used in this work are Masked Autoregressive Flows (MAFs)

with Rational Quadratic Spline (RQS) transformations.

4.5. CaloPointFlow

By Simon Schnake, Benno Käch, Moritz Scham, Dirk Krücker, and Kerstin Borras,

with figures and tables referring to this approach as CaloPointFlow [41] and code

being available at [42].

The requirement for fast simulation of calorimeter showers has led to a growing

interest in using machine learning models for their efficient and high-fidelity generation.

Calorimeter showers are generally sparse, with a majority of calorimeter cells being

empty, necessitating a representation that is efficient and effective at capturing the

essential features of the data. Point clouds offer an apt solution for representing sparse

data structures due to their innate efficiency. Our modified model builds upon the

original PointFlow[116] model known for its exceptional ability to produce high-quality

point clouds. The CaloPointFlow model leverages PointFlow’s advantages while making

specific adjustments to specialize in generating calorimeter data.

The model consists of four sub-models, as shown in figure 14. The initial sub-

model, CondFlow, is responsible for generating the number of hits, referred to as nhits,

and the total energy, Esum, in the calorimeter cells by a normalizing flow. The second

stage comprises the permutation invariant encoder, which transforms the entire point

cloud X into a latent representation z. This transformation is based on the DeepSets

[117] architecture. Subsequently, the LatentFlow, the third sub-model, produces the

latent representation z, which is conditioned on the values of Esum and nhits. The final

component, the PointFlow, is a permutation equivariant normalizing flow that performs

pointwise transformations. PointFlow is conditioned on z, as well as Esum and nhits.

Notably, all three flows—CondFlow, LatentFlow, and PointFlow—are coupling flows[99]

utilizing rational quadratic splines[106].

Concerning the conditional variables learned through CondFlow, the number of

hits, nhits, is processed by adding uniform noise ranging from 0 to 1 and then dividing

by the square root of the input energy, Ein. The total energy of the shower, Esum, is

normalized by dividing it by Ein. We then log-transform and normalize the resulting

values.

Discrete distributions in continuous space resemble delta distributions and present

modeling challenges using a normalizing flow. To overcome this, dequantization

techniques transform discrete distributions into continuous ones. This usually

requires adding uniform noise to fill the space between 0 and 1, followed by

a logit transformation[118, 99]. We introduce a new dequantization strategy,

CDFDequantization, displayed infigure 15. This approach utilizes the quantile function

and the cumulative distribution function (CDF), which establish invertible mappings
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Figure 15: The CDFDequantization

between their distribution and the standard uniform distribution. This principle is

inherent in inverse sampling, where the uniform distribution is segmented into parts

corresponding to the probabilities of certain discrete values. Although the CDF mapping

is not directly invertible, a stochastic inverse can be developed by transforming each

discrete value d into CDF (d) + PMF (d) · u, where u is randomly drawn from U(0, 1).

This process effectively raises our discrete distribution to U(0, 1). To map the uniform

distribution to the entire real space, and convert U(0, 1) to a logistic distribution, a

logit transform is typically applied in standard dequantization. However, we choose to

employ the quantile function of the standard normal distribution to map our values onto

the normal distribution. This design ensures the marginal distributions of our model are

intrinsically normal, with correlations being the only remaining aspect to be modeled.

In the previous iteration of the CaloPointFlow model, a normalization flow utilizing

a coupling spline was applied on a point-by-point basis. This involved dividing point

features into two equal segments using a system of coupling blocks, with one segment

being transformed based on the other. The final result is a permutation invariant

system capable of managing varying numbers of points. However, a significant challenge

remained in this model: it lacked a mechanism to facilitate the exchange of information
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between points, making it prohibitive to model inter-point correlations.

In order to solve this problem, we have implemented a modification that makes

use of Deep Sets[117]. Following our coupling strategy, we opted to aggregate half of

the point features objectively. We maintain transformation permutation invariance by

initially mapping each point to a latent space that has high dimensionality. Afterward,

we perform a pooling operation such as max, sum, or mean to merge the information.

We then transformed the aggregated latent information and incorporated it as an

additional conditional variable. This process enables our point-wise normalizing flows

to transfer inter-point information and therefore enhances the model’s ability to capture

correlations.

A major concern in point cloud-based models for simulating calorimeters is the

presence of multiple hits per cell. This occurs when points, produced in continuous

space, are mapped onto the discrete space of calorimeter cells, which may result in

multiple points being assigned to a single cell. This inconsistency contradicts the real

data, where each cell can have only one energy value. To address this matter, the model

must accurately determine the direct distances between points as well as the occupancy

status of each cell, a task that is notably complex. The CaloPointFlow model, for

instance, could not carry out this function.

Our strategy for mitigating the issue leverages the rotational invariance

characteristic of the detector. The principle of rotational invariance implies that the

marginal energy distribution in the angular coordinate α should exhibit a uniform, or

flat distribution. To utilize this characteristic, we confine the generation of particle

showers to the (z, r) plane. Afterward, we randomly assign the angular position α. This

method effectively loosens the constraint of limiting the number of showers per cell.

In Dataset 2, this relaxation allows up to 16 showers per cell, and for Dataset 3, the

number rises to up to 50 showers per cell.

However, there may be instances where the number of hits surpasses the specified

limits. In these cases, the extra hits are randomly allocated to already occupied α

regions. Although this approach does not offer a complete resolution to the problem

of multiple hits, it has been demonstrated to considerably improve the experimental

outcomes in practical settings. The efficacy of the mentioned approach in augmenting

the quality of data highlights its potential as a significant temporary remedy, while

we attempt to devise more resilient techniques to tackle the intricacies linked with the

occurrence of multiple hits in particle detectors.

Here we provide a brief overview of the topic, while a comprehensive analysis is

available in the full CaloPointFlow paper [41].

5. Diffusion-based Submissions

Diffusion models are class of generative models based on applying a chosen perturbation

to the data and then training a model to invert that perturbation. The model is defined

in terms of a forward process, in which a gradual perturbation is applied to the data



DIFFUSION-BASED SUBMISSIONS 36

sample eventually reaching a known end-point distribution (such as Gaussian noise).

A model is then trained to learn the reverse process, which inverts the perturbation

to recover the original data sample. Once trained, new samples can be generated by

sampling from the end-point distribution and iteratively applying the reverse process

model. Diffusion models have been defined under two different formalisms, a score-based

formulation and a denoising formalism.

In score-based models, the forward process is defined by stochastic differential

equation (SDE):

dx = f(x, t)dt + g(t)dW (7)

Where f(x, t) and g(t) are user-specified diffusion and drift functions. W is a

Wiener process or Brownian motion, index by a time parameter tϵ[0, 1]. The reverse

process can then be solved by the following SDE:

dx = [f(x, t)− g(t)2∇xlogpt(x)]dt + g(t)dW (8)

where the∇xlogpt(x) is the ’score’ of the data, or the gradient of the log probability.

A denoising score-matching strategy is used to learn the score function [119] and then

used in (8) to generate samples.

In the denoising diffusion formalism, as formulated in the original DDPM paper

[120], the forward process is defined by the repeated addition of Gaussian noise to the

original data in t steps:

xt =
√

1− βtxt−1 + βtϵ, (9)

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βt), (10)

where N (x|µ, σ) is a Gaussian likelihood and βt is a user-chosen ’noise schedule’

that specifies how much noise is added at each step. For a sufficiently large T (the total

number of diffusion steps), the Gaussian noise will overwhelm the original data and xT
will follow a multivariate Gaussian distribution. The reverse process is also assumed to

follow a Gaussian likelihood:

p(xt−1|xt) = N (xt−1|µθ(xt, t, z), βtI), (11)

with an unknown mean µθ that is learned by a neural network during training.

Though appearing conceptually different, these two formalisms have been shown

to be mathematically equivalent [121] for a particular choice of the drift and

diffusion functions (the ’variance-preserving’ choice): the optimal model trained

under one formalism is optimal for the other as well. Though in practice,

because optimality is never reached, the two formalisms may offer different practical

advantages/disadvantages. The diffusion literature is rapidly evolving and newer models

generally alter these formalisms slightly, but the key conceptual ideas remain.
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5.1. CaloDiffusion with GLaM

By Oz Amram and Kevin Pedro, with figures and tables referring to this approach as

CaloDiffusion [43] and code being available at [44].

CaloDiffusion [43] is based on denoising diffusion models [120], in which the

perturbation applied to the image is an addition of Gaussian noise. We use the cosine

noise schedule proposed in Ref. [122] with 400 diffusion steps for all datasets. Shower

preprocessing is done similarly to other approaches, where the voxel energies are divided

by the incident particle energy and logit transformed.

The denoising model follows a U-net architecture [107], with 3 sets of ResNet [123]

blocks with linear attention [124]. The input is compressed by a factor of two in each

dimension after each of the first two ResNet blocks. The architecture is then mirrored,

with 3 ResNet blocks with 2 upsampling layers to return to the original data shape. Skip

connections are used to ensure no information bottleneck. Conditioning variables—the

diffusion noise level and the incident particle energy—are processed by a feed-forward

network and then added to the model in the middle of each ResNet block.

We make several optimizations focused on the cylindrical geometry of shower

datasets. This includes cylindrical convolutions that the respect the periodic nature

of the angular dimension and a novel method to condition the convolutions on the layer

and radial bin values.

To handle the irregular geometry of dataset 1, we introduce a new approach:

Geometry Latent Mapping (GLaM). GLaM learns an embedding from the dataset

1 geometry to a perfectly regular cylindrical geometry. Unlike an autoencoder, the

embedding space is larger than the input space, so that no information is lost. The

mapping is learned separately for each layer and initialized based on the geometric

overlap of the input cells with a perfect cylinder. The cylindrical data is then processed

using the cylindrical convolutions and then a reverse embedding is learned to restore

the original shape.

5.2. CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation

By Erik Buhmann, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka,

Anatolii Korol, William Korcari, Katja Krüger, and Peter McKeown, with figures and

tables referring to this approach as CaloClouds [45, 46] and code being available

at [47, 48].

The CaloClouds model family was introduced in Ref. [45]. The improved version,

CaloClouds II [46] without consistency distillation [125], is here adapted to dataset

3. As a point cloud generative model, CaloClouds consists of two sub-models: A

normalizing flow model dubbed Shower Flow and a diffusion model named PointWise

Net. An overview of the training and sampling pipeline is shown in figure 16.
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Figure 16: CaloClouds training and sampling pipeline. The trainingof the Shower Flow

is not shown. Figures taken from Ref. [46].

As the names suggest, the Shower Flow generates several global calorimeter shower

observables, i.e. the layer-wise visible energy, the layer-wise number of hits, as well

as the center of gravity (center of energy) in x− and y−direction. The Shower

Flow is conditioned on the incident particles energy. We implemented it with ten

normalizing flow blocks, each containing seven coupling layers. Out of those, six are

affine transformations [99] and one a rational-quadratic spline [106]. The generated

observables are used for a post-diffusion calibration of said shower features and the

total number of hits is used for the conditioning of the diffusion model.

The PointWise Net diffusion model is conditioned on the incident energy as well as

the number of hits. The diffusion model is based on the implementation in Ref. [126]

and the network architecture is adapted from Ref. [127]. As the name suggests, it

generates each calorimeter hit i.i.d. (independent and identically distributed). From a

shower physics perspective, this i.i.d. assumption is inaccurate, however it yields descent

performance and allows a fast sampling necessary for large cardinality calorimeter

showers such as the ones studied in Ref. [45, 46] and in dataset 3. Layer structures

taking into account inter-point correlations could be considered for smaller point clouds

such as dataset 1 and are implemented, i.e. in CaloGraph.

Both the Shower Flow and the PointWise Net are trained separately and used

sequentially during sampling of each batch. For the generation with the PointWise

Net, we apply 13 diffusion steps with the Heun ODE solver, resulting in 25 function

evaluations per batch. To apply the CaloClouds model to dataset 3, we transformed

each shower into a point cloud with four features: hit energy and the Cartesian

coordinates in 3D space. We normalized the 3D coordinates to the range {x, y, z} ∈
[−1, 1]. This results in calorimeter shower point clouds with a cardinality of up to

20,000 hits. To compare the CaloClouds model to other models, we projected the

calorimeter point clouds back to the (voxelized) fixed grid. As this leads to a clustering

of a few generated point into a single voxel, we apply a calibration step between the

predicted number of hits N and the (larger) calibrated generated number of hits Ncal
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used for conditioning of PointWise Net.

In Refs. [45, 46], the CaloClouds models are used to generated point clouds with

each point clouds representing clustered Geant4 steps (simulated energy depositions)

with a resolution 36× higher than the actual resolution of the simulated electromagnetic

calorimeter. A subsequent projection of there ultra-high granular calorimeter point

clouds (up to 6,000 points per shower) into the regular high-granularity calorimeter

cells (up to 1,500 calorimeter hits) results in a clustering of points leading to a precise

estimation of the number of (regular cell) hits. As dataset 3 only contains regular cell

hits, we expect the CaloClouds model performance to improve when using a ultra-high

granularity point cloud dataset. Nonetheless, even with generating showers with regular

cell hits we observe a descent performance. Further speed-ups of the diffusion process

could be achieved by applying consistency distillation [125], which allows for single shot

generation without significant loss in fidelity.

5.3. Score-based Generative Models for Calorimeter Shower Simulation

By Vinicius Mikuni and Ben Nachman, with figures and tables referring to these

approaches as CaloScore [49, 50], CaloScore distilled [49, 50], and CaloScore

single-shot [49, 50] and code being available at [51, 52].

Continuous diffusion generative models, or score-based models aim to approximate the

score function of the data ∇ log(p(x)) for data described by the probability density p(x).

The advantage of this approach is that both stochastic and deterministic solvers can

be used for the generation of new observations, often leading to faster sampling times.

The first diffusion generative model applied to collider physics problems was introduced

in [49] and later updated to improve the generation quality and speed in [50]. In the

updated version, a neural network output vθ(xt, t) is used to calculate the loss function

by minimizing the quantity

L = Ext,t ∥vt − vθ(xt, t)∥2 . (12)

The velocity term vt ≡ αtϵ−σtx is calculated based on data xt that has been perturbed

by a time-dependent Gaussian perturbation q(xt|x) = N (xt, αtx, σ
2
t I). The velocity

parameterization is observed to lead to a lower variance loss, improving the quality of

the generated samples. The approximation to the score function sθ(xt, t) is identified

as:

sθ(xt, t) = xt −
αt
σt
vθ(xt, t). (13)

New samples are generated from the trained model by solving the following ordinary

differential equation:

dxt
dt

= f(x, t)− 1

2
g(t)2∇x log q(xt) , (14)
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with the DDIM solver [128] with update rule then specified by:

xs = αsxθ(xt, t) + σs
xt − αtxθ(xt, t)

σt
, (15)

for time s < t and position prediction xθ(xt, t) = αtxt − σtvθ(xt, t). While the solver

still require a large number of function evaluations (O(100)), we are able to reduce

this number trough a distillation procedure [129], resulting in faster generation times

requiring even a single step for the generation.

The neural network architecture used for the training is similar to the one used in

the initial CaloScore paper, based on the U-net architecture with additional attention

layers. More specifically, datasets 2 and 3 have the number of spatial components in

each dimension reduced by a factor 2 every other convolutional layer (resulting in a

factor 2× 2× 2 = 8 reduction) with fixed kernel size set to 3. This process is repeated 3

times, with lowest dimensional representation reduced by a factor 512 compared to the

initial number of voxels. The 3D convolution operations used for Datasets 2 and 3 use

32, 64, and 96 hidden nodes with swish [130] activation function. The attention layer is

only used at the lowest dimensional representation, with data patches determined by the

flattened array describing the data at the lowest dimensionality. The upsampling section

of the architecture is a mirrored version, with dimensions increased by a factor 8 every

other layer. Skip connections between the downsampling and upsampling sides of the

architecture are combined with a concatenation operation, completing the architecture.

Conditional information consisting of the time information, incident particle energy, and

deposited energy per layer (in case of the diffusion model trained to generate normalized

voxels), are included through an addition operation after every convolutional layer. A

trainable embedding of the conditional features is created by a fully connected layer

over the conditional inputs. The output size is fixed to match the expected output size

of the convolutional layers. For dataset 1, the strategy is similar. The number of voxels

to be simulated are reduced by a factor 2 every other layer, with this process repeated

4 times and overall reduction of factor 16 compared to the initial size. The number of

hidden nodes for the 1D convolutional layers is then chosen to be 16, 32, 64, and 96

for each fixed dimensionality. Since this dataset is smaller compared to datasets 2 and

3, attention layers are used in all lower dimensional representations of the initial data.

A second diffusion model is introduced to learn only the energy deposition per layer,

similar to the approach used in the original CaloFlow paper. The model used to train

the diffusion model is based on the ResNet [123] architecture, consisting of multiple

fully connected layers with additional skip connections. The number of ResNet layers

is set to 3 in all datasets, with 128 hidden nodes in dataset 1 and 1024 in datasets

2 and 3. Additional models are trained to reduce the sampling time of the baseline

CaloScore model. The model architecture of the distilled version is the same as the

baseline model, also using the initial baseline weights as the starting point to accelerate

the training procedure.
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5.4. CaloGraph

By Dmitrii Kobylianskii, Nathalie Soybelman, Etienne Dreyer, and Eilam Gross, with

figures and tables referring to this approach as CaloGraph [53] and code being

available at [54].

Figure 17: Event display from the pion dataset in graph form. The nodes represent the

centre of the calorimeter cells, and their size relates to the cell energy.

CaloGraph [53] stands out as a diffusion model based on graphs specifically designed

for low-granularity calorimeters with irregular geometries, such as those found in

ATLAS. Unlike image-based methods that necessitate unique mappings for non-regular

geometries and point cloud generation techniques that predict point positions requiring

specific grid summation, a graph representation requires no pre- or post-processing,

except for the initial one-time graph construction. Calorimeter cells are nodes in the

graph with fixed positions, and edges connect nearest neighbours within the given layer

and the layers below and above. An example from the pion dataset 1 is shown in Fig. 17.

However, managing a large number of edges will result in high memory needs, making

this approach mostly suited for low-granularity detectors. Therefore, we present results

only for dataset 1.

Our approach relies on a denoising diffusion model. We use a cosine noise schedule from

Ref. [122]. During the backward process, we use the PNDM method from Ref. [131] to

solve the diffusion ODE. The architecture of the neural network is presented in Fig. 18.

The input to the network is the noised target graph: constructed as described above,

the node features consist of the cell position (η, ϕ, layer) and the noised cell energy. It is

passed through the initial MLP and then combined with the conditional input consisting

of the embedded, uniformly sampled time step as well as the incoming particle energy.

The combined input is passed through another MLP, resulting in the updated graph.
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Figure 18: Architecture of CaloGraph

Subsequently, four rounds of message passing are applied before predicting the noise

through a final MLP. The network has a total of 0.8 million parameters.

5.5. Diffusion transformer

By Renato Paulo Da Costa Cardoso, Piyush Raikwar, Anna Zaborowska, Dalila

Salamani, Kristina Jaruskova, Sofia Vallecorsa, Kyongmin Yeo, Vijay Ekambaram,

Nam Nguyen, Jayant Kalagnanam, and Mudhakar Srivatsa, with figures and tables

referring to this approach as CaloDiT [55] and code being available at [56].

Currently, the state-of-the-art approach for image generation is diffusion, while the

state-of-the-art architecture for almost any data modality is transformer. We combine

both methodologies for a transformer-based diffusion model.

The use of transformer models for the image generation task is not new, with

approaches such as Vision transformers (ViT) [132], Swin transformers [133], etc. getting

good results for image classification tasks. When paired with the diffusion process, we

have impressive generative models like OpenAI Sora [134]. In our case, the model

architecture is based on Diffusion with transformers (DiT) [135]. As for the diffusion

process, we go with denoising diffusion probabilistic models (DDPM) [120], with the

modification of using a cosine scheduler as described in [122]. We present the results of

CaloDiT for datastet 2.

Preprocessing: We preprocess the input data to ease the diffusion process. The

preprocessing is done by scaling the shower energies in the range of -1 and 1, followed

by applying a logit function and normalization of those values. The energy condition is

also preprocessed to be in the 0 to 1 range.

Architecture: We define the architecture of the CaloDiT in figure 19. We use

a stack of 4 DiT blocks, which are ViT-like transformer blocks with a modified

conditioning unit to accommodate diffusion timesteps. In our case, we also concatenate
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Figure 19: Diagram of CaloDiT

energy condition along with timestep which is then passed to each DiT block. These

conditions along with a noisy shower are passed to the model to get a denoised shower

as an output. During inference, this process is repeated 400 times to generate a shower,

where 400 is the number of diffusion steps our model uses.

As with any other transformer-based model, we need to represent the input as

some form of sequence. While ViT and DiT are used for 2D images, the shower dataset

is 3D. Thus, we split the 3D shower into multiple smaller 3D patches (patchify), 704

patches to be precise. These patches are linearly projected to a higher dimension of 144

and then passed to the model. We do the opposite for the output to combine smaller

3D patches into the 3D shower (unpatchify). Note that, we use a 2x2x2 convolution

layer for “patchification” to better extract the representations, but “unpatchification”

is a simple reshape operation. Within each DiT block, the conditions are first passed

through an MLP and then summed up with patch embeddings of size 144. After the

final DiT block, we have layer normalization and a linear projection to match the shower

dimensions, followed by unpatchification.

Since our sequence is 3D, we also adapt the sinusoidal positional embeddings [136]

from 2D to 3D to represent the patches in 3D space. This is done by allocating space for

an extra dimension in the positional embedding vector. These positional embeddings

are added to the patches after their linear projection before the first DiT block.
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6. VAE-based Submissions

Variational Autoencoders (VAEs) [137, 138] are a class of generative models which

combine deep learning with probabilistic methods. A VAE is composed of two stacked

neural networks acting as encoder and decoder. The encoder learns a mapping from

the input space to a latent space in which a meaningful representation of the data is

learned. The decoder learns the inverse mapping by reconstructing the original input

from the latent representation. The VAE is designed with a prior on the representation

space, hence once the model is trained to reconstruct the input, the decoder can be used

independently as a generator of new data by sampling from the prior.

The key idea behind VAEs lies in variational inference (VI). VI approximates

probability densities based on the optimization of the Kullback-Leibler (KL)

divergence [139]. VI uses a family of densities and finds the closest member of that family

to the target density using the KL divergence. The KL divergence is a fundamental

quantity in information theory to measure the difference between two probability

distributions. If a probability distribution q is used to approximate p then the KL

divergence measures the loss in information using the approximation.

6.1. Latent Generative Models for Calo Simulation with VQ-VAE

By Qibin Liu, Chase Shimmin, Xiulong Liu, Eli Shlizerman, Shu Li, and Shih-Chieh

Hsu, with figures and tables referring to these approaches as

Calo-VQ [57] and Calo-VQ(norm) [57] and code being available at [58].

Motivation Calorimeter with high granularity often features a large number of pixels,

reaching up to tens of thousands. Directly sampling of such high-dimensional and

highly sparse data is usually challenging and inefficient. To address this, a two-

stage method, as illustrated in figure 20, is proposed. This method is based on

a vector-quantized variational auto-encoder (VQVAE) [140] and a transformer-based

token generative model [136][141]. The following sections describe the implementation

of this model, including processing of calorimeter data, representation, architecture and

training procedure.

Pre-processing To handle the large dynamic range of calorimeter energy, the data is

normalized per detector layer (for photon and pion dataset1) or the entire detector (for

dataset2 and 3, expect the model implicitly marked with ”norm”) for each sample. It is

then transformed using a scaled and shifted logarithm. The pre-processing is described

in (16).

xi =
1

c
log

(
a + b

Ei

Esum

)
(16)
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Figure 20: Demonstration of the Calo-VQ architecture. The upper and lower parts show

the two stages of the model, respectively.

Here, i is the index of the voxel, Ei is the original value of each voxel, and Esum is

the sum of energies within the same layer or the entire calorimeter, depending on the

dataset. The hyperparameters a, b, and c are tuned according to the input range.

Architecture The first stage of the model aims to reduce the dimensionality of the

input. The encoder transforms the input into the representation in the latent space,

followed by the decoder, which reconstructs the input. To achieve high compression

ratio and effective usage of latent space, a vector quantization technique [140] is

implemented. This technique labels each latent vector with one index of a fixed set of

representative ”code vectors”. The code vectors are updated during training, minimizing

the quantization loss and commitment loss, as shown in the following,

LV Q = ||sg[q(z|x)]− ek||2 + ||q(z|x)− sg[ek]||2 (17)

Here sg[X] denotes the stop-gradient operator which will not take the gradient

of X into calculation. The first term denotes the quantization loss which moves

the codebook(ek) to better represent the latent space(z). The second term is called

commitment loss which limits the arbitrarily growth of embedding space and makes the

encoded vector commit to one of the codes.

The L2 distance between input and decoded output, following the vanilla VAE

architecture, is used as one loss term. Additionally, the discriminator loss[142] and

physics-aware losses are added to improve the quality of reconstruction, particularly for

the detailed feature.

The encoder and decoder consist of convolutional and dense layers. For photon

and pion dataset1, 1D convolution and fully connected layers are combined to better

process irregular geometry. For dataset2 and 3, since the transitional symmetry only

exists in the Z(depth) and A(angular) direction, 2D convolution is used, treating the
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3D data as a multi-channel 2D image defined on the (Z,A) coordinates. The cylindrical

convolution operation is shown in figure 21. It maintains the equivariant property of the

calorimeter data mapped in cylindrical coordinates. R (radical) direction is therefore

treated as the channel of this image-like representation.

Figure 21: Cylindrical convolution operator. The bottom plots show the equivariant

property is well kept.

Arbitrary up-/down-sampling on the angular direction with circular (periodical)

boundaries is achieved using the FFT-resampling method, as illustrated in figure 22.

The data along angular direction is firstly transformed with discrete FFT into frequency

space, then truncated to desired dimension and transformed back with inverse operation.

Figure 22: Illustration of FFT down-sampling.

The soft-max activation is used in the last layer to ensure the correct normalization

as mentioned in Formula 16. By definition the output of soft-max satisfies the required

normalization in log scale with proper shift and scaling.

The second stage model focuses on learning and sampling of the probabilistic

distribution, in a highly reduced and regularized latent space, characterized by a fixed-

length sequence of discrete codes (tokens). Transformer-based model minGPT[141] is

adapted to sample the latent codes with condition of incident energy. As discussed in

the previous section, the normalization factor(s) Esum which control the energy response
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of entire calorimeter or each calorimeter layer, is digitized to discrete codes and sampled

together with the latent codes of the first stage. 2 codes are used to digitized 1 floating

number with 20bit accuracy assuming 1024 choices for each code utilized.

The final sequence to learn for the second stage is

A1A2...︸ ︷︷ ︸
Esum codes

latent codes︷ ︸︸ ︷
B1B2B3B4... (18)

The parameters of second stage model are tuned towards less transformer heads,

layers and embedding while retain the same level of quality of generated data (such as

smaller error on Esum).

Training procedure and hyper-parameters The first stage model is trained adversarially,

updating the encoder/decoder and the discriminator alternately. Learning rate is

constant during the training and the model with best reconstruction loss on validation

dataset is selected after training of fixed number of epochs.

Then the quantized latent space, as discrete numbers(tokens), is used to train the

second stage model. The training objective is to minimize the cross-entropy between

the predicted token based on previous ones and the truth token. Constant learning rate

is used and the model with best validation loss is chosen.

The main hyper-parameters are summarized in Table 6
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ds1-photon ds1-pion ds2 ds3 ds3(norm)

Pre-processing:

a 1 1 1 1 1

b 8000 8000 3000 40000 40000

c 10 10 7 10 10

Stages-1:

Hidden layer 5 5 7 10 10

VQ dim 256 256 256 192 256

Condition dim 3 3 1 1 1

Codebook size 1024 1024 1024 1024 1024

R code 10 14 2 2 90

Shower code 32 32 68 182 624

#pars / M 3.8 4.1 3.1 2.1 2.2

#pars (gen) / M 1.9 2.0 1.0 0.8 0.9

Stages-2:

Layer 2 2 2 1 1

Head 2 2 2 1 1

Embed 64 64 64 16 128

#pars / K 231 231 235 38 551

Table 6: Setup of hyper-parameter and number of trainable parameters of pre-

processing, first stage model and second stage model of Calo-VQ. The numbers for

“hidden layers” are halved since symmetric encoder and decoder. Only the decoder

and quantization module in stage1 are used in generation mode and the number of

parameters are denoted with “(gen)” in the table.

6.2. CaloMan: Fast generation of calorimeter showers with density estimation on

learned manifolds

By Jesse C. Cresswell, Brendan Leigh Ross, Gabriel Loaiza-Ganem, Humberto

Reyes-Gonzalez, Marco Letizia, and Anthony L. Caterini, with figures and tables

referring to this approach as CaloMan [59] and code being available at [60].

As surveyed in the present work, many types of generative models have been used to

model calorimeter showers, and particular emphasis has been given to normalizing flows

(NFs) [104, 113]. Despite their expressivity, NFs suffer from the fact that they model

a density that has the same dimensionality as the input data. For high dimensional

data, this would mean dealing with very large NF models that compromise training and

prediction speed. For calorimeter showers, size and speed can quickly become major

problems as the dimensionality of raw shower representations surpasses 104. However,
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Figure 23: A low-dimensional density on a manifold (left), and a full-dimensional

density model undergoing manifold overfitting (right). Although the full-dimensional

model concentrates around the manifold, it distributes the density incorrectly along the

manifold. Figure reproduced from [59].

we expect that shower generation is governed by simple underlying physical processes,

and thus can be represented in a much lower dimensional space. In the context of

machine learning, this is an example of the manifold hypothesis, which states that high-

dimensional natural data actually lies on a low-dimensional embedded sub-manifold in

the ambient space [143, 144, 145].

Moreover, maximum-likelihood methods, including NFs, rely on the assumption

that the underlying distribution possesses a full-dimensional probability density p(x)

in the ambient space. This may not always be the case: if the data is confined to a

low-dimensional manifold, the data manifold is a subset of measure zero, over which no

continuous density can be integrated to obtain non-zero probabilities. In this situation,

training a likelihood-based model typically leads to densities that spike to infinity around

the manifold, but not in accordance with the data distribution. This phenomenon,

illustrated in Fig. 23, is known as manifold overfitting [146, 147].

To avoid manifold overfitting, while also delivering fast, light-weight models, we

propose CaloMan which follows the two-step procedure outlined by [146] to build

our calorimeter shower simulators. The first step of the approach is to learn a

lower dimensional manifold using a generalized autoencoder. This can be any ML

model capable of learning a latent space, and transforming it back to the ambient

space. Examples include autoencoders [148], variational autoencoders [137], Wasserstein

autoencoders [149], bidirectional GANs [150, 151], and adversarial variational Bayes

[152]. The second step is to perform density estimation on the learned manifold. Any

explicit likelihood estimator can be used. This includes NFs, energy based models [153],

auto-regressive models [118], score-based models [154], and diffusion models [120].

Intrinsic dimensionality of CaloChallenge datasets Most methods for learning low-

dimensional manifold structure require the dimensionality d to be provided as an input.

Hence, we applied methods for intrinsic dimension estimation [155], which also shed
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Figure 24: Benchmarking the ESS estimator. Left: As the dimension of random

Gaussian data is increased, the ESS estimate of intrinsic dimension linearly increases

(n = 5, 000). Standard deviations are smaller than the size of the dots. Right: ESS

provides consistent estimates regardless of the number of datapoints used. Notably,

accurate estimates can be obtained even when the number of datapoints is less than the

dimensionality. The error bars show standard deviations over 10 seeds.

light on the fundamental nature of the calorimeter shower data.

Here we use the Expected Simplex Skewness (ESS) estimator [156] which is based

on angular information between k-nearest neighbour points in a dataset. Most literature

on estimating the intrinsic dimension of datasets focuses on relatively low dimensions

(i.e. d ≤ 20) and few datapoints n. Hence, we first benchmark ESS on synthetic

datasets of known dimensionality d more comparable to CaloChallenge data, using the

implementation from [157] with default hyperparameters. We randomly generate n

datapoints from d-dimensional Gaussian distributions, with n ∈ {100, 500, 1000, 5000},
and d spanning values from 10 to 1000, and apply the ESS estimator to each dataset.

We repeat the test for 10 random seeds on each setting. Figure 24 shows that ESS has

a consistent linear behaviour as d is increased, and that it is insensitive to n, even when

n < d. Noticing a slight negative bias, we fit a scale factor to the data for n = 5, 000,

and use its inverse to calibrate the ESS estimates on shower data. We also repeat the

experiment for data drawn from a uniform distribution on a hypercube with extremely

similar results. The calibration scaling factors are 1.0795 for Gaussian data, and 1.0793

for Uniform data♯.

With evidence that ESS can scale to high dimensional datasets, we applied the

ESS estimator to the four CaloChallenge training datasets without any preprocessing of

the data, and correct the results with our calibration factors. The intrinsic dimension

estimates are given in Table 7, and we based our latent space dimensions on these

values in the following. The results provide evidence for low-dimensional structure in

calorimeter data, and emphasize the potential efficiency gains over approaches that

♯ We acknowledge that the synthetic data we used does not itself have low-dimensional structure,

however similar benchmarking has been done for such data with consistent results [158]. More recent

work shows some limitations of ESS [159].
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Table 7: Estimated Dimensionality d with Gaussian (G) and Uniform (U) Calibration

Dataset Features ESS ESS (G) ESS (U)

Photons 368 28.6 30.9 30.9

Pions 533 17.2 18.5 18.5

Electrons 2 6480 209.0 225.6 225.5

Electrons 3 40500 749.2 808.7 808.6

model a full-dimensional latent space.

Modelling Similarly to [104], for CaloMan we separated the training procedure into two

stages. In the first stage, using a NF, we learn the distributions of energies per layer,

Eℓ, conditioned on the incident energies Einc. In the second stage, we model the voxel

energies Ev, conditioned on Einc and Eℓ by first learning the manifold with a generalized

autoencoder, then estimating a density on the manifold as described above.

Preprocessing Following [33], to ensure energy conservation, the Eℓ are first

transformed as

u0 =

∑n
l=0Eℓ

Einc

, u1 =
E0
ℓ∑n

l=0Eℓ

, u2 =
E1
ℓ

E2
rem

, ... , un =
En−1
ℓ

En
rem

, (19)

where n is the total number of layers, and Ei
rem =

∑n
l=0 Eℓ −

∑i
l=0 Eℓ. The resulting

variables are then transformed into logit space as

u′
i = log

xi
1− xi

; (20)

where xi = α + (1− 2α)ui and α = 10−6. The incident energy Einc is preprocessed as:

Einc ← log10

(
Einc

33.3GeV

)
. (21)

For the second stage, Einc and Eℓ are transformed as

Einc ← log10 (Einc + 1keV) , Eℓ ← log10

(
Eℓ + 1keV

100GeV

)
− 1. (22)

Finally, the voxel energy Ev is normalized so that the energies per layer sums up to

one. The conditioning vector for the second stage is given by the concatenation of the

incident energy Einc and the energies per layer Eℓ.

It is worth pointing out that, according to our tests, the most important modeling

aspects are the separation of the pipeline in two stages and the inclusion of the energy

per layer in the conditioning vector for the second stage. For simplicity, we adopted

a preprocessing strategy that closely follows [33] but we found that other reasonable

preprocessing choices at each step do not significantly impact the performance of the

model.
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Architectures For all the experiments, we used a NF for the first stage and a two-

step model for the second stage with a VAE as the generalized autoencoder and a NF

of the same type as the density estimator.

For stage one and the photon dataset we used a 8 layer × 384 units coupling

rational-quadratic neural spline flow [106] with a 6-block residual network [123] in each

layer. For the pion dataset, we used the same model with 8 layer × 512 units and

3-block residual networks. The output of each residual block was combined with the

conditioning input, namely the incident energy, using a gated linear unit. The NF’s

prior distribution was a unit variance diagonal Gaussian.

For stage two, the VAE’s encoder and decoder were both multi-layer perceptron

neural networks with three hidden layers of 512 units each, and ReLU activations.

The encoder output the means and variances for a diagonal Gaussian over the latent

dimensions. The decoder output was also treated as a diagonal Gaussian with means for

each data dimension but only a single variance shared across all dimensions. The prior

distribution was a unit variance diagonal Gaussian over the latent space. The latent

dimension was 35 for photons and 20 for pions, values which are slightly higher than

the estimates reported in Table 7. The NF was of the same type as in stage one with

4 layer × 128 units and 3-block residual networks. The output of each residual block

was combined with the conditioning input, now the incident energy concatenated with

the energies per layer, using a gated linear unit. The NF’s prior distribution was a unit

variance diagonal Gaussian.

Experiment details All models were trained with batch sizes of 512 and the Adam

optimizer [160] with a learning rate of 0.0001 in stage one and 0.001 in stage two. We

also applied gradient clipping with a max gradient norm of 10. The models were trained

for a maximum of 200 epochs each with early stopping after 20 epochs of no validation

improvement on a 20% hold-out set.

For stage two, the VAE and NF were trained sequentially. Once the VAE

was trained, its parameters were frozen and the training dataset was encoded

deterministically with the VAE encoder means. The encoded data were then passed

as inputs to the NF. The validation and early stopping metric was the average χ2

separation power over all high level features for stage one, the reconstruction error for

the VAE and the negative log-likelihood for the NF in stage two. Both the VAE and the

NF were conditioned on the incident energies and the energies per layer during training.

The models with the best validation metrics were used for evaluation.

6.3. DNN CaloSim

By Dalila Salamani, with figures and tables referring to this approach as

DNNCaloSim [61, 62] and code being available at [63].

The VAE model explored for dataset1 (pions) is inspired by the VAE model developed
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in the context of shower simulation in the ATLAS experiment [61, 62]. It comprises

four dense layers for the encoder with 1500, 1000, 500 and 100 nodes for each layer

respectively. The decoder has also four dense layers with a reversed order of the number

of nodes. The latent dimension is 50. A batch normalization layer is used after each

dense layer. The encoder and decoder networks are jointly trained to maximise the

variational lower bound on the marginal log-likelihood for the data, approximated with

the reconstruction loss (binary cross-entropy) and the KL divergence.

The model is not trained on the absolute voxel energies but rather on the voxel

energy ratios, where per shower, the energies of the voxels within each layer are

normalised to the total energy deposited in that layer. This reparametrisation of the

input allows the model to better preserve the correlations of the energies across layers. In

order to re-scale back the energies after generation, the VAE model learns, in addition,

the energy per layer and the total energy of the shower deposited in the calorimeter.

These quantities are encoded as additional N+1 nodes in the input and output of the

VAE model, where N represents the number of calorimeter layers (in dataset1, for pions

N=7). As the voxel energies are encoded as ratios the additional N+1 nodes are also

encoded as ratios, where for each layer its energy is divided by the total energy and

the total energy is divided by the incident energy. In total, the number of nodes in the

input and output layers is 541 = 533+7+1. The model is conditioned on the energy of

the incoming particle.

From prior knowledge on the deposited energy, ratios of voxel values and all total

energies per layer should sum up to one. This can be translated in the output layer of

the VAE by applying a softmax activation function. By using the softmax function, the

values are converted into probabilities that sum to one and automatically the range of

values falls in [0,1]. The softmax is applied for the voxels of each calorimeter layer and

for the ratios of the energy per layer. Figure 25 shows a schematic representation of the

VAE model.

One effective trick for improving the training of the VAE model is using an iterative

approach, where the model is trained on varying batch sizes and learning rates. By

cycling through different combinations, the model is exposed to a variety of training

conditions, which helps avoid local minima and potentially generalization. In total 8

iterations are used with different values of batch sizes and learning rates.
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Figure 25: For the DNNCaloSim model, the VAE is trained to reconstruct the voxel

energy ratios. The 533 inputs/outputs (the large pink box) represent the voxel energies

for layers 0,1,2,3,12,13 and 14. The additional input/output (dark blue) represents the

normalized energy of the shower to the energy of the particle (ETruth) and the 7 following

inputs/outputs (in grey) are the ratios of the energy of the layer to the energy of the

shower. The model is conditioned on the energy of the incoming particle, this is added

as one additional input to the latent space (brown box).

6.4. Geant4 Transformer

By Piyush Raikwar, Renato Paulo Da Costa Cardoso, Nadezda Chernyavskaya,

Kristina Jaruskova, Witold Pokorski, Dalila Salamani, Mudhakar Srivatsa, Kalliopi

Tsolaki, Sofia Vallecorsa, and Anna Zaborowska, with figures and tables referring to

this approach as Geant4-Transformer [64] and code being available at [65].

Given the recent success of transformer-based models in various tasks, i.e., from image

classification (ViT) [132] to text generation (GPT-3) [161], we explore the applicability

of transformers for the task of generating non-trivially structured particle showers,

specifically Dataset 3. The presence of an attention mechanism and the lack of a strong

inductive bias in the architecture should help in better modeling of energy distributions

in a highly granular mesh, given enough data.

Processing the input For the preprocessing, we divide the voxel energies (in MeV) by

a scalar of 4300 to bring all entries between 0 & 1. Also, to use the incident energies of

the particles as the condition, we divide the incident energies (in GeV) by 1024 so that

it is between 0 & 1.

Since transformers are permutation-invariant sequence-to-sequence models, a
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Figure 26: The figure shows the components of VQ-VAE and AR (top-right). The

shower is tokenized using the VQ-VAE’s encoder and tokenized by referring to the

codebook. The tokenized representation of the shower is then fed to VQ-VAE’s decoder

to get back the shower. AR models the tokenized shower’s space (red tokens) separately

in an autoregressive manner conditioned on E (blue token). During inference, VQ-

VAE’s encoder is not used.

shower needs to be in the form of a sequence. A naive way would be to treat each voxel

as an element of the sequence, but that would be computationally expensive. Therefore,

inspired by ViT, we create non-overlapping 3D patches of the shower to feed it to our

model. To be specific, the dimensions of the patch are ∆r×∆ϕ×∆z = 18× 5× 3, i.e.,

150 patches per shower. In addition to having a sequence, the transformer also needs

to know the position of an element in the sequence, which we feed by using sinusoidal

positional embeddings.

Model Our model is a two-stage model inspired by Dall-E [162], where the first

stage is a Vector Quantized Variational Autoencoder (VQ-VAE) [140], followed by an

Autoregressive model (AR) (Figure 26). VQ-VAE models the low-level features by

tokenizing the shower, and AR models the high-level features by learning the distribution

of these tokens. These models are trained separately.

VQ-VAE is similar to traditional VAE, except that its latent space is discrete and

can be represented by a set of codebook vectors (or tokens, T i) chosen from a codebook.

The codebook is a learnable entity that can be trained in parallel with the encoder

and decoder to represent the latent space optimally. The output from the encoder is

quantized using a nearest-neighbour search on the codebook to obtain a discrete latent

space. So, the VQ-VAE is trained to reconstruct the showers where the latent space

is a sequence of tokens. The distribution of these tokens is unknown, hence we cannot

generate new showers. Therefore, the task of AR is to model the distribution of the

tokens generated by the VQ-VAE, given the initial conditions, i.e., incident energy of

the particle in our case. AR learns the latent space of VQ-VAE by autoregressively



VAE-BASED SUBMISSIONS 56

predicting these tokens, i.e., learning the probability of the next token given all the

previous tokens. The process of sampling a new token from a multinomial distribution

makes the AR a generative model. Note that VQ-VAE is not conditioned on the incident

energy of the particle.

For the generation of new showers, we start by creating a condition token (T c).

Given the condition token, we sample the next token and this continues till we have

all the required tokens. All tokens except the condition token are then passed to the

VQ-VAE decoder to get the final shower.

Architecture Both VQ-VAE and AR have a ViT-like uniform architecture. Each of

them is described in detail as follows.

In the case of VQ-VAE, the patches form the sequence. These patches are linearly

projected to match the projection dimension of VQ-VAE, which is 256. To this, 3D

positional embeddings of 256 dimensions are added to inject the position information.

These patches are then fed to the VQ-VAE. The encoder and decoder of VQ-VAE consist

of 4 encoder-only [136] transformer blocks each. Each block consists of 16 attention

heads and 512 nodes in the MLP sub-block. The patches after the last transformer

block in the encoder are concatenated and projected to the desired dimensions of the

latent space. That is, the number of patches is independent of the number of tokens in

the latent space. Thus, a token can represent information from any of the patches. In

our case, the latent space consists of 64 tokens of 128 dimensions. The codebook however

consists of 200 tokens, out of which a combination of 64 tokens is used to represent a

shower. The opposite is done to project the latent space back to the patches, which are

then fed to the decoder. The activation function at the end of the decoder is sigmoid,

and binary cross-entropy is used as the loss function.

For the AR, the tokens form the sequence. The tokens are projected linearly to the

projection dimension of the AR, which is 128. Here, we use 1D positional embeddings

to denote a token’s position. These tokens are then passed to the AR. AR consists of

4 decoder-only [161] transformer blocks having 8 attention heads and 256 nodes in the

MLP. The condition token is created by linearly projecting our conditions to match the

projection dimension of the AR. The activation function at the end of the last block is

softmax, and the model is trained with categorical cross-entropy loss where the target

tokens are obtained from the VQ-VAE encoder.

6.5. CaloVAE+INN

By Luigi Favaro, Florian Ernst, Claudius Krause, Tilman Plehn, and David Shih, with

figures and tables referring to this approach as CaloVAE+INN [37] and code being

available at [38].
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Motivation In this section we describe our effort to improve the scaling of the CaloINN

model. The Idea is similar to the previously described VAE-Flow models. We train

a variational autoencoder on the individual CaloChallenge datasets in a first step and

a RQS-INN in the corresponding latent space. The advantages of this approach were

already discussed in the CaloMan section 6.2. Namely, the enhanced topological prop-

erties and the smaller input dimensionality for the normalizing flow.

However, we were approaching with a different perspective. Our main goal is not to

find the true manifold dimensionality, but we consider the VAE as a pure compression

tool. Using this point of view it is of utmost importance to get good reconstructions

first, before applying the INN in the latent space.

Loss function For the INN part we are employing the same loss function that was

introduced in the CaloINN section 4.3.

For the VAE we are using the β-VAE ELBO loss with a Gaussian encoder and a Bernoulli

decoder. For the latent space we chose a standard normal distribution resulting in the

following loss function:

Here λ is the parameter of the decoder Bernoulli distribution and µE and σE are

the parameters of the Gaussian encoder, as predicted by a neural network.

Preprocessing Our preprocessing consists out of four steps and is similar to the CaloINN

preprocessing. We keep the initial calorimeter layer normalization and extract our

“extra dimensions” just like before. However, we scale them with a factor of 0.9 to

prevent float precision problems. We did not add noise as we found it to be not helpful

during the reconstruction process. We replaced the logarithm with an α-regularized logit

logitα(x) = logit((1−2α)x+α) and added a final standardization layer. For the datasets

2 and 3 we used a learnable affine transformation, for dataset 1, we simply normalized to

zero mean and unit variance. The entire preprocessing is illustrated in figure 27 (left).

The biggest difference to the CaloINN preprocessing is the fact that the extra dimensions

are not learned explicitly but used as additional conditions for the VAE. Afterwards,

they are learned directly by the INN.

Architecture For the practical implementation we chose a fully connected encoder and

decoder for dataset 1 and a kernel VAE (KVAE) for dataset 2 and 3. The KVAE is an

architecture that is a compromise between a fully connected network and and a con-

volutional network. It tries to find a optimum between the reconstruction quality of

the MLP and the scaling properties of the convolutional architecture. The idea is to

use a two-step encoding, where neighboring detector layers are jointly encoded into a

sub-latent space. Afterwards these sub-latent spaces are concatenated and encoded for

a second time. This architecture emphasizes the stronger correlations between neighbor-

ing layers. We call the number of jointly encoded detector layers the “kernel size” and

the distance between the two first layers of neighboring encoding “blocks” the “kernel
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Figure 27: Left: Visualization of the preprocessing steps before the VAE-compression.

Right: Schematic visualization of the VAE-INN combination of CaloVAE+INN.

stride”

The decoder architecture is a copy of the encoder with inverted order of the size of the

hidden layers.

The INN is trained in the latent space of the second encoding step before the sam-

pling happens, as seen in figure 27 (right). This means, the INN is trained to predict

the actual σE and µE values, effectively doubling the size of the input space for the INN.

We found that this procedure improved the sampling quality of the resulting combined

architecture a lot. The reason is probably that our β-parameter in the ELBO-loss is so

small that VAE learned to store non-trivial information in the σE-parameters.

Therefore, the input space of the INN consists of the encoder means µE, the encoder

widths σE and the extra dimensions ui.

Hyperparameters Our final hyperparameter configurations for the three datasets can

be seen in table 8
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Parameter VAE

lr scheduler Constant LR




Inner VAE

lr 1 · 10−4

hidden dimension 5000, 1000, 500 (Set 1)

1500, 1000, 500 (Set 2)

2000, 1000, 500 (Set 3)

latent dimension 50 (Set 1,2) / 300 (Set 3)

# of epochs 1000

batch size 256

β 1 · 10−9

threshold t [keV] 2 (Set 1) / 15.15 (Set 2,3)

hidden dimension 1500, 800, 300




Kernelkernel size 7

kernel stride 3 (Set 2), 5 (Set 3)

Parameter INN (After VAE)

coupling blocks RQS

# layers 3

hidden dimension 32

# of bins 10

# of blocks 18

# of epochs 200

batch size 256

lr scheduler ”one cycle”

max. lr 1 · 10−4

β1,2 (ADAM) (0.9, 0.999)

α 1 · 10−6

Table 8: Network and training parameters for the CaloVAE+INN.

6.6. CaloLatent: Score-based Generative Modelling in the Latent Space for Calorimeter

Shower Generation

By Thandikire Madula and Vinicius M. Mikuni, with figures and tables referring to

this approach as CaloLatent [66] and code being available at [67].

Motivation In our work, we introduce CaloLatent [66], a latent diffusion inspired

surrogate model. The main idea in latent diffusion is to map the data into a compressed

latent representation using a variational autoencoder. Once the latent representation

has been obtained, a diffusion model can be deployed to learn the distribution of the
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latent space. The motivations behind this approach are similar to those outlined by

CaloMan and CaloVAE+INN.

In our approach we use the VAE backbone primarily for compression, therefore

we prioritise the VAE’s reconstruction ability over its generation ability. To this end,

we utilise the β VAE formulation where the KL divergence is weighted by a factor of

β. We chose β = 10−6. The diffusion model used to learn the latent distribution is a

score-based diffusion model, the intricacies of which have been outlined by CaloScore.

Preprocessing To evaluate the performance of our model we focused on dataset 2 of

the challenge. We processed the data for training using the following steps. First, we

normalised the voxel energy using (23).

x′
i =

xi
Ei

(23)

where xi are the pixels in layer i of the detector and Ei is the total energy of that layer.

Secondly, we apply minmax scaling to the data which is defined by (24).

x′ =
x− xmin

xmin − xmax
(24)

Where xmin and xmax are the minimum and maximum voxel values respectively.

The resulting data is then transformed using the logit function outlined in (20). Finally,

we take the values in the logit space and apply a standardisation as given by (25).

x′ =
x− µ

σ
(25)

Where µ and σ are the means and standard deviations repectively.

Architecture CaloLatent is comprised of three networks. First a scored-based diffusion

model that is used to learn the distribution of the layer energy. The layer score model is

a simple ResNet consisting of 3 layers each with 512 nodes. Secondly, we have the VAE

backbone. The encoder and decoder of the VAE are 3D convolutional neural networks

also inspired by the ResNet architecture. Figure 28 shows a schematic diagram of the

VAE encoder used for CaloLatent. The decoder of the VAE is a mirror image of the

encoder; however, it employs up sampling blocks in place of the encoder down sampling

blocks. The VAE reduces the data dimensionality from 6408 to 1008. The final network

in CaloLatent is the score-based diffusion model used to learn the latent space, the

architecture of this model is identical to that of the layer model.

Training Procedure All three networks are trained independently using 4 NVDIA A100

GPUs. The layer score model and the VAE are trained for 500 epochs using a cosine

decaying learning rate with an initial learning rate of 4 · 10−4. The latent score model

is trained for 250 epochs using the same learning schedule as the other models.
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Figure 28: Schematic diagram of the CaloLatent VAE encoder

7. Conditional Flow Matching-based Submissions

The conditional flow matching (CFM) algorithm was proposed in various forms

simultaneously by several groups [163, 164, 165], and developed in [166] which we follow

here. Like continuous normalizing flow models [167], flow matching learns to interpolate

probability densities pt between the data p1, and a simple prior p0 = N (x0 | 0, I).

The interpolation is determined by a vector field at each time µt(x), which transports

datapoints x via the ODE

dx = µt(x)dt. (26)

When pt and µt(x) jointly satisfy the continuity equation for conservation of probability

d

dt
pt +∇x · (ptµt) = 0, (27)

pt will be a properly normalized density at each t. Hypothetically, one could train a

model νθ(t, x) of the vector field µt(x) by direct regression,

LFM = Et∼U(0,1), x∼pt∥νθ(t, x)− µt(x)∥22, (28)

however in practice neither pt nor µt(x) is uniquely determined, we can only sample

from pt for t = 1 (data) and 0 (prior), and we do not have access to µt(x) for evaluation.

As a workaround, CFM proposes to use conditional densities pt(x | (x1, x0)) and vector

fields µt(x | (x1, x0)), where x1 ∼ p1 is a training datapoint and x0 ∼ p0 is noise, such

that both are tractable. For example, when

pt(x | (x1, x0)) = N (x | tx1 − (1− t)x0, σ
2), (29)

µt(x | (x1, x0)) = x1 − x0, (30)
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the CFM loss

LCFM = Et∼U(0,1), x1∼p1, x0∼p0, x∼pt(·|(x1,x0)),∥νθ(t, x)− µt(x | (x1, x0))∥22, (31)

has the same gradients as (28), and therefore will lead to the same model νθ(t, x), but

now pt(x | (x1, x0)) and µt(x | (x1, x0)) are tractable for all t. Finally, new datapoints

are generated by solving the ODE in (26) starting from x0 ∼ p0 but using the learned

vector field νθ(t, x).

7.1. CaloDREAM

By Luigi Favaro, Ayodele Ore, Sofia Palacios Schweitzer, and Tilman Plehn, with

figures and tables referring to this approach as CaloDREAM [68] and code being

available at [69].

Overview The CaloDREAM [68] architecture consists of two continuous normalizing flows

trained with the CFM objective given in (31) ††. The first is an energy model, which

is responsible for generating the total energy deposited in each calorimeter layer. The

model uses the energy ratio variables u, defined in (4), as a basis for the layer energies.

CaloDREAM then employs a shape model to generate voxel values, given the u ratios as

conditions. In order to enforce energy conservation, the shape model is trained on voxels

normalized by their layer energy. In the following, the unique aspects of the two models

comprising CaloDREAM are detailed.

Energy model As discussed above, the heart of a CFM model is a learnable vector field

vθ. Although it is typical to use a single neural network as a direct parameterization,

other choices are also viable. In particular, the causal nature of energy flow through a

calorimeter inspires an autoregressive construction of the full vector field.

CaloDREAM adopts an autoregressive CFM architecture introduced in [168] to learn

the distribution of energy ratios given an incident energy, p(u|Einc). The model structure

is illustrated in figure 29 (left). Instead of directly learning a 45-dimensional vector field,

a single network is trained to solve 45 CFM tasks — one for each layer. In order to

distinguish these tasks, the network is conditioned on previous layer energy ratios. The

full vector field can be written as

vfull(t, u |Einc) = (vθ(t, u0 | c0), . . . , vθ(t, u44 | c44)) , (32)

where vθ is a neural network and each ci is a condition that encodes the incident energy

and the sequence of previous u’s

ci =

{
ci(u0, . . . , ui−1, Einc) i > 0

ci(Einc) i = 0
. (33)

††Here the resolution parameter σ from (29) is taken to be zero.
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Figure 29: Schematic diagrams of the CaloDREAM energy network (left) and shape

network (right).

In practice, an encoder-decoder transformer is used to learn the conditions. Both the

encoder and decoder contain four attention blocks with four heads and an embedding

dimension of 64. By applying a triangular mask to the relevant attention matrices, the

structure prescribed in (33) is respected. For vθ, a dense network with eight layers and

width of 512 is used.

When training the energy model, all components of the full vector field can be

evaluated in parallel. During inference, on the other hand, the CFM network must be

sampled for each component in sequence. Specifically, u0 is first sampled by integrating

vθ(t, u0 | c0) and can then be used to compute c1. This condition is in turn required to

generate u1 and so forth.

Shape model CaloDREAM also uses CFM for the shape model, which is responsible for

learning to sample showers x from p(x |Einc, u). Unlike the energy model, here the

vector field is parameterized directly with a neural network vψ(t, x |Einc, u). In order to

obey energy conservation, the shape network is trained on layer-normalized voxels. The

network is a vision transformer (ViT) similar to [135] and illustrated in figure 29 (right).

As a first step, the network divides the shower into non-overlapping rectangular blocks in

the three-dimensional calorimeter space (z, α, r). Each of these regions defines a patch,

which is embedded with a shared linear layer. The embeddings are supplemented with

learnable position encodings which break the permutation invariance among patches.

The network uses a joint embedding for the conditional inputs, t, Einc and u. The

time embedding is first transformed to Fourier space and embedded with a two-layer
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dense network. The energy conditions are instead directly embedded with a separate

dense network using the same architecture. The final operation sums the two embedded

conditions into a single vector.

After applying these initial transformations, the patches and the conditions are

passed to a stack of ViT blocks. Each block contains a self-attention over patches

followed by a dense network transformation. The conditional information is introduced

via affine transformations with shift and scale a, b ∈ R and an additional rescaling factor

γ ∈ R learned by a dense network, referred to as AdaLN in figure 29. Concretely, the

operation inside the ViT block is summarized by

xh = x + γhgh(ahx + bh), (34)

xl = xh + γlgl(alxh + bl), (35)

where gh is the multi-head self-attention step and gl is the fully connected

transformation. After the stack of ViT blocks, the same modulation is applied to the

final patch features before projecting back to the original size. The patches can then be

assembled into the full calorimeter shape.

The training is carried out using the AdamW optimizer with an initial learning

rate of 10−3 and a cosine learning rate scheduler. We train the model for 800 and 600

epochs for dataset 2 and dataset 3 respectively. The patch sizes used in each dataset

are (3, 16, 1) and (3, 5, 2). In both cases there are six self-attention blocks with six heads

each. The CaloDREAM samples evaluated in the results section are obtained by solving

the energy and shape model ODEs with the Runge-Kutta 4 solver with 0.02 step size.

7.2. CaloForest

By Jesse C. Cresswell and Taewoo Kim, with figures and tables referring to this

approach as CaloForest [70] and code being available at [71].

Introduction The methods in the above sections differ in their learning tasks and

architectures, but all use neural networks as function approximators. Neural network

architectures are often carefully designed to have inductive biases that are beneficial for

a specific data modality. A case in point are Datasets 2 and 3 of Section 2.2 which have

an image-like structure; each layer of the calorimeter corresponds to a channel, and the

voxels of each layer are arrayed in a consistent manner giving a familiar c×h×w format.

Convolutional neural networks are well-adapted for this structure, achieving efficiency

through parameter sharing by applying the same kernel across the image.

However, tabular datasets (like Dataset 1 in Section 2.1) have minimal structure

that neural networks can take advantage of. Researchers still often resort to basic

MLP architectures with little-to-no useful inductive bias. Overwhelmingly, tree-based

algorithms outperform on discriminative tasks for tabular data at scale [169, 170].

There are additional advantages to tree models: they usually do not require any
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data pre-processing (whereas neural networks are highly sensitive to input data scale

and distribution); they can operate on data that contains null values (whereas neural

networks require null values to be dropped or imputed); they can be trained efficiently

on GPU or CPU (whereas large neural networks usually necessitate GPU training,

but most high performance computing clusters are still CPU based); and they have

improved explainability (for example, Shapley values [171] are generally intractable to

compute for large neural networks, but the TreeSHAP algorithm makes them workable

for trees [172, 173]). Yet tree-based learning is not common for generative tasks, even on

tabular data. The following section explores applications of trees to calorimeter shower

generation.

We propose training generative models for the tabular Dataset 1 using a tree-

based function approximator, namely XGBoost [174]. Just like MLP neural networks,

XGBoost is a universal function approximator, meaning that with large enough number

of parameters (i.e. tree depth) and training datapoints, it can in principle fit any function

[175]. This begs the question of why tree-based models are still rarely used for generative

tasks [176, 177]. In principle, XGBoost could be used as a replacement for the neural

network function approximator in any generative modelling algorithm, such as the ones

used throughout Sections 3-6. In practice, the mechanics of training trees deviates

significantly from how neural networks are trained, requiring non-trivial reengineering

of algorithms.

Generative Modelling with Trees The difficulties of replacing neural network function

approximators with XGBoost (in this case for νθ(t, x)) are well-illustrated by the work

[177] which provides an implementation of CFM backed by XGBoost. First, notice

that when using neural networks, (31) would ordinarily be optimized by sampling a

minibatch of data x1 from p1, sampling a t, sampling x0 from the prior p0 and then

generating x from pt(x | (x1, x0)) in (29). In particular, the noise vector x0 would

be sampled anew every batch, eventually leading to good coverage of the distribution

in the expectation. XGBoost is not trained with minibatches; for regression tasks it

requires an entire dataset to be fed in and then minimizes the squared error loss overall.

Therefore, the noise x0 associated to each training point x1 would only be sampled once.

For better coverage of the noise distribution, [177] proposes to duplicate each of the n

training datapoints K times, and for each copy of x1 generate different noise x0.

Second, whereas with a neural network the time step t could be fed in as an

additional input to the network during training and generation, simply adding t as

a feature to XGBoost is unlikely to give sufficient emphasis to it, because only a single

feature is used in each split of each tree in the ensemble. Instead, [177] proposes to

discretize t into nt uniform steps and train a different XGBoost ensemble to represent

νθ(tj, x) for each timestep tj. The expectation over t is removed in the loss function 31,

and it is instead treated as a constant for each of nt separate loss functions.

Third, whereas a neural network can easily be designed with a number of outputs

equal to the number of features p in x (the same size as the regression target µt(x |
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(x1, x0)) for a given t), XGBoost only outputs a scalar. A brute-force workaround

is to simply train a different ensemble to predict each element of the vector field

µt(x | (x1, x0)).

Fourth, when conditional generation on a class label y is required, a neural network

can accept y as an input during training and generation to adapt its behaviour while

sharing parameters. Like conditioning on t, conditioning on y is better done by training

a separate XGBoost ensemble for each of the ny classes.

Despite these challenges, the promises of tree-based generative modelling are

seductive: better performance on tabular regression tasks may translate to better

tabular generation; lack of need for preprocessing; native handling of missing values;

efficient training on CPU; and improved explainability. As a proof of concept for tree-

based generative modelling of calorimeter showers, we applied CFM backed by XGBoost

to the tabular Dataset 1.

Modelling Dataset 1 In total, for a tabular dataset of size [n, p], the method described

by [177] requires training nt × p × ny XGBoost ensembles, each on a dataset of size

[ni × K, p], where ni is the number of points belonging to class i (with
∑ny

i ni = n).

This poses a practical challenge. The largest training datasets benchmarked in [177]

had sizes [16,512, 9] (largest n), [288, 90] (largest p), and [10,888, 16] (largest product

np), while the pions CaloChallenge training dataset is 370× larger at [120,800, 533].

Unfortunately, the implementation of CFM with XGBoost published by [177] does

not scale to problems of this magnitude.† Noting that [177] recommend nt = 50

and K = 100, the pions dataset (with ny = 15) would necessitate training 399,750

XGBoost ensembles, most of which would use a dataset of size [1,000,000, 533]. From

the original [n, p] dataset, the implementation attempts to create a duplicated version

of size [nt, K×n, p] as a numpy array in memory all at once, which for the pions training

dataset requires 2.34 TiB of CPU memory. Training thousands of XGBoost ensembles

on slices of the data in parallel further exacerbates the memory burden, since many

copies of the data array are created and persisted in RAM or RAM disk. We estimate

that a full training run using the default hyperparameters on the pions dataset would

require more than 1.2 PiB of CPU memory.

However, this memory burden is not a fundamental limitation of the proposed

method, but rather a lack of optimization of the original implementation. For our proof-

of-concept, we reimplemented CFM with XGBoost solving many engineering challenges

around memory efficiency and parallelization in python. Our implementation runs with

a peak CPU memory burden of 78 GiB on the pions dataset, or roughly 16,000 times

less.

In addition to improving the memory efficiency and runtime, we also mention

methods to increase model performance. From hyperparameter ablation we found

that nt has the largest effect on model fit and should be increased as high as feasible,

† We accessed this code repository https://github.com/SamsungSAILMontreal/ForestDiffusion

as of Dec. 1, 2023, commit hash 855281b.

https://github.com/SamsungSAILMontreal/ForestDiffusion
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noting that this comes with a linear increase in the training time and number of model

parameters. We found that for datasets with larger n a more conservative value of K

was sufficient compared to the recommendation in [177]. Larger tabular datasets tend

to have more redundant rows built in, and different noise is added to these rows giving

sufficient coverage with lower K. We observe that the model consistently underfits

the dataset for all sizes we tested, in agreement with [177], but underfitting can be

mitigated by increasing the learning rate substantially. Although XGBoost typically

does not require data preprocessing, the CFM algorithm adds noise which must be

commensurate to the data’s typical scale. Hence, it is important to at least scale the

data to a finite domain similar to the standard deviation of the added noise. The original

implementation uses MinMax scaling over the entire dataset. However, when the data

has distinct classes with different properties, as is the case for the incident energy levels

of Dataset 1, we find that it is more beneficial to scale each class separately since

XGBoost models are trained separately for each class.

In summary, we trained models for the photons and pions datasets using a single

desktop workstation with 250 GiB RAM and 40 CPUs (Intel Xeon Silver 4114T). We

discretized time into nt = 100 steps, and duplicated each datapoint K = 20 times. Each

XGBoost ensemble had 20 trees of maximum depth 7, a learning rate of 1.5, and all

other hyperparameters left as defaults.‡ We trained up to 20 XGBoost ensembles in

parallel at a time, each with 2 CPUs. In total, for the photons model 552,000 XGBoost

ensembles were trained in 135 hours with a peak memory burden of 54 GiB, while the

pions model used 799,500 ensembles, completed in 281 hours, and required 78 GiB of

memory.

This proof of concept shows that tabular generative modelling with tree-based

function approximators trained on CPU is feasible for calorimeter shower simulation.

We have worked through an example of how to convert from neural networks to XGBoost

using a modern generative framework. However, our trained models have clear room for

improvement on several fronts. First, performance is not yet competitive with highly-

tuned neural network approaches. Second, our models are massively overparameterized

(although we do not observe overfitting), with the number of XGBoost ensembles

several times larger than the number of datapoints they were trained on (each ensemble

having thousands of parameters). Third, the sheer number of trees trained contributes

to slow training and large model size on disk. We believe these are solvable issues.

Performance could be improved by replacing the simple Euler ODE solver with more

advanced methods, though we point out that the learned vector field νθ(t, x) only allows

sampling at discrete values of t. We anticipate model size could still be reduced with

additional hyperparameter optimization, or by moving to multi-output trees. Training

time could be slashed by parallelizing training steps across a cluster of CPUs, which is

straightforward for this method.

‡ We used XGBoost version 2.0.0.
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8. Introduction to metrics

The evaluation of DGMs is a challenging task that has seen significant research in itself

in the past years [178, 179, 20]. For the application of DGMs as part of the detector

simulation, we are interested in surrogate models that are faithful (i.e. reproduce the

showers of Geant4 as close as possible), light-weight (i.e. do not require much space

to store and are fast to load), and fast in generation. Each of these aspects by itself is

hard to capture with a single number, so we will report a set of different metrics to give

a more complete picture. It is expected that there will not necessarily be a single clear

winner, and different submissions will have their pros and cons.

8.1. High-level features (histograms)

We begin the evaluation by looking at high-level features, i.e. physical observables that

are derived from the energy depositions in the calorimeter. We focus on the following

set:

• The energy deposition in each voxel: Iia.
• The energy depositions in each layer of the calorimeter, as the sum over all voxels

in that layer: Ei =
∑

a Iia.
• The total energy deposition in the shower, as sum over all voxels, normalized to

the incident energy: Edep/Einc =
∑

a,i Iia/Einc.

• The centers of energy in η, ϕ, and r direction, defined via
∑

a laIia/
∑

a Iia. The

locations la are either ϕa = ra sinαa, ηa = ra cosαa or ra, where ra and αa are the

centers of the voxels in α and r. These are taken as the mean of the voxel boundary

values defined in the binning.xml files. The sum goes over all voxels a in a given

layer.

• The width of the center of energy distributions in η, ϕ, r direction:√∑
a l

2
aIia∑

a Iia −
(∑

a laIia∑
a Iia

)2

• The sparsity, defined as 1 minus the activity, with the activity being the fraction

of voxels per layer with an energy deposition above threshold (threshold is defined

per dataset in section 2).

For each of these observables, we compute the separation power between the

submissions and the held-out test set. We use the same binning as shown in appendix A

in the reference histograms for the two Geant4 datasets. The separation power between

two histograms is defined as [180]

S(h1, h2) =
1

2

∑

i

(h1,i − h2,i)
2

h1,i + h2,i

, (36)

where hj,i is count of the ith bin of histogram j. The histogram counts are expected to

be normalized:
∑

i hj,i = 1. With these definitions, we have S = 0 if and only if h1 = h2

and S = 1 if the two distributions have no overlap.
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The separation power is closely related to the χ2 homogeneity test [181, 182, 183].

The difference is that the χ2 test statistic does not include normalization of the histogram

counts.

To get a better feeling for the natural statistical spread of the separation power

between different Geant4 datasets, we show a gray band in all figures of separation

powers, indicating the minimal and maximal separation power we found comparing ten

different pairs of Geant4 datasets. For dataset 1, we constructed these pairs by joining,

shuffling, and then splitting the events from the two given datasets (i.e. drawing without

replacement from the joined dataset), ensuring that the Einc distribution is always the

same. For datasets 2 and 3, we generated 9 additional datasets with Geant4, 100 000

showers each, such that we get ten sets of pairs.

8.2. Correlations

The energies deposited in subsequent layers are correlated with each other due to the

size of the particle shower in z direction. One measure to study if these correlations are

learned correctly is given by Pearson correlation coefficient (PCC) between the layer-

wise energy depositions [20]. For two sets of layer energies {Ei} and {Ej} of the same

size, the PCC is given by

PCC(Ei, Ej) =

∑
k (Ei,k −mean(Ei)) (Ej,k −mean(Ej))√∑

k (Ei,k −mean(Ei))
2
√∑

k (Ej,k −mean(Ej))
2
, (37)

where k runs over all samples in the set, and i and j are layer numbers.

8.3. Classifier-based metrics.

Classifiers offer a way to perform a two-sample test [184] that is sensitive to the full

distribution, including correlations between features. In the context of generative models

for calorimeter simulation, they have been proposed as metric in [104] and were further

discussed in [179], where it was also shown that they can give valuable insights to what

failure mode the generative model has.

Here we focus on two different classifier tests. The first one, a binary classification

task, compares each submission with the Geant4 test set. The second one, a multiclass

classification task, compares all submissions with each other. For each, we consider two

different neural network architectures.

Binary classification The binary classification test evaluates how well the underlying

distribution was learned and therefore how close the generated distribution is to the

reference. It relies on the Neyman-Pearson Lemma [185], stating that the most powerful

classifier to distinguish two samples is their likelihood ratio. If a well-trained classifier

is unable to distinguish submitted samples from the Geant4 test set, we conclude that

the submission replicates the Geant4 distribution well [104, 179]. The result of this

test, however, depends on the preprocessing that was applied to the data. Using the
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Table 9: Number of samples in training, testing and evaluation datasets in the binary

classification setup.

dataset training testing evaluation

1 - photon 80 000 20 000 21 000

1 - pion 80 000 20 000 20 800

2 60 000 20 000 20 000

3 60 000 20 000 20 000

calorimeter showers in the physical space lets the classifier focus on the brightest voxels

only, since energy depositions in them are orders of magnitude above the low-energy

depositions. Applying a logarithm or logit transformation, enhances the sensitivity to

mismodelling in them. While this gives a better understanding on whether or not the

entire distribution was learned well, it might be that the difference is only in features and

correlations that are irrelevant for the down-stream physics analysis. For that reason,

we consider two different sets of input features. The first one are the energy depositions

in the voxels (called “low-level” observables), the second one are the observables we

introduced in Section 8.1 (called “high-level” observables).

The figure of merit in this setup is the AUC, the area under the receiver operating

characteristic (ROC) curve. The ROC curve shows the true positive rate (TPR) as a

function of the false positive rate (FPR). In a random classifier, the TPR will grow

linearly with the FPR giving a AUC of 0.5. In a classifier that can separate the two

datasets perfectly well, the ROC curve will become a step function, so the AUC becomes

1. We train ten classifiers with different random initialization and average the AUCs

when reporting the results.

In training, we split the submission and Geant4 dataset each into training, testing,

and evaluation sets first, before merging them with the corresponding labels. This

ensures having always a balanced setup. The number of events in each set is shown

in table 9. We select the model state with the highest accuracy on the test set for the

final evaluation. Before evaluating the AUC on the evaluation dataset, we calibrate the

classifier with isotonic regression [186] on the test set.

However, since a different neural classifier is trained for each submission, a

comparison between submissions on equal conditions is harder to make. Therefore,

we consider a second classifier test based on a multiclass classification setup below.

Multiclass classification With the multiclass classification setup, we try to assess which

of the submissions is closest to Geant4. The method was introduced in [187] in the

context of comparing hydrodynamical galaxy simulations, and subsequently applied to

high-energy physics scenarios in [30, 188]. It relies on training a single classifier with

cross entropy loss on the task “submission 1 vs. submission 2 vs. . . . vs. submission n”.

When evaluating the trained classifier on a Geant4-based test set, we can read off
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which submission the Geant4 sample is closest to.

As figure of merit, we consider the average of the log posterior [187]. It is defined

as

LP (model i|samples j) =
1

N

∑

xk∈j

log pmodel i(xk), (38)

the average logarithm of the probability that samples j come from the model

(submission) i. Here, the index k goes over all N samples in the set j. As a cross

check of the quality of the trained multiclass classifier, we look at its performance in

identifying the held-out test sets of each submission. A well-trained classifier will be

able to distinguish the individual submissions from each other, so

LP (model i|samples j = i) > LP (model i|samples j ̸= i). (39)

We check that this holds for each trained multiclass classifier before using it for final

evaluation. We train ten classifiers with different random initialization and average the

mean log posteriors of the ten runs. The results of the cross check can be found in

appendix B.

The submissions are split in training, testing, and evaluation sets as shown

in table 9, before they are merged and shuffled into single training, testing and evaluation

sets. In training (both the DNN and the CNN ResNet architecture), the best model

state based on the validation loss is used for the final evaluations.

DNN We consider a regular DNN for the binary classification on low- and high-level

observables, and the multiclass classification setup. The DNN of the binary classification

consists of an input layer, two hidden layers of 2048 neurons each, and an output layer.

We use leaky ReLU activations (with negative slope 0.01) in all layers except the last

one, where we use a sigmoid activation. We do not use dropout or batch normalization.

The network is optimized with the Adam optimizer [160], a learning rate of 2 ·10−4, and

in batches of 1000 samples for 50 epochs.

The DNN of the multiclass classification test consists of an input layer, one hidden

layer with 4096 neurons, and an output layer. We use leaky ReLU activations (with

negative slope 0.01) in all layers except the last one, where we use a softmax activation.

No dropout or batch normalization is used. We optimize the network with a schedule-

free AdamW optimizer [189] and an initial learning rate of 1 · 10−3 in batches of 2000

samples for 25 epochs (or fewer, if the validation loss already increases).

When classifying “low-level” observables, we use the voxel energies normalized to

the incident energy and the decadic logarithm of the incident energy as input features.

“High-level” observables are given by the observables we introduced in section 8.1.

CNN ResNet An alternative architecture based on 3D CNNs is considered for the

binary and multiclass classification on low-level features. Compared to a fully-connected

DNN, a CNN is more capable of exploiting the spatial structures of particle showers,

therefore allowing it to provide stronger separation between different models. We adapt
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a 3D CNN implementation [190] based on the ResNet architecture [123] to process the

particle showers. Each shower is treated as a 3-dimensional image where the intensity

of each pixel is the energy deposition in the corresponding voxel. This leads to images

of a shape (45, 16, 9) for dataset 2, and (45, 50, 18) for dataset 3. The shower image is

first processed by a 3D convolution with a kernel size of 7 and a stride of 2, followed

by a max pooling layer with a kernel size of 3 and a stride of 2, for downsampling.

Then, an 18-layer ResNet is applied to the downsampled image. A kernel size of 3 is

used in all the convolutions in the ResNet, and the number of output channels in each

convolution ranges between 32 to 128. A global average pooling is used to aggregate the

output to a 1D feature vector summarizing the full image. This feature vector is then

concatenated with the incidence energy, normalized with a batch normalization layer

[94], before being processed by a final fully-connected layer for the classification.

For dataset 2, we optimize the network for 48 epochs using the AdamW

optimizer [110] with learning rate 2.5 · 10−5 and otherwise default settings. For dataset

3, it was sufficient to use the same optimizer setup, but with learning rate 5 · 10−5 for

12 epochs.

8.4. Computer Science inspired metrics

A standard quantitative benchmark for state-of-the-art generative models in computer

vision is the Fréchet Inception distance (FID) [191]. The idea behind FID is to

extract salient high-level features of real and generated images via the activations of

the penultimate layer of a high-performing inception classifier, and then compare them

using the Fréchet, or 2-Wasserstein, distance between Gaussian fits to the two sets of

features. This metric has been shown to be highly sensitive to the quality and diversity

of generated images and has been extended as well to evaluate jet simulations using the

ParticleNet classifier [192]. Recently, however, Ref. [178] studied a physics-informed

alternative to this method, referred to as the Fréchet physics distance (FPD) based

on high-level physical features of the samples, rather than DNN classifier activations,

which proved to be highly performant. The complementary kernel physics distance

(KPD) metric was proposed as well, similarly inspired by the popular kernel Inception

distance (KID) [193], which calculates a kernel-based estimate of the maximum mean

discrepancy between the two sets of features. In this work, we apply FPD and KPD

to evaluate the various surrogate models by using the meaningful high-level features

of calorimeter simulations outlined in section 8.1. We also importantly derive baseline

scores and errors with which to compare the submissions for the different datasets using

the procedures described in Ref. [178].

8.5. Manifold-based metrics

Manifold-based metrics construct a proxy for the generated and reference data manifold

and provide a computationally straightforward way to asses the diversity of the

submitted samples. The diversity measures how well the generated samples populate the
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entire data manifold. There is a trade-off between realism and diversity [194] observed

for natural images, which immediately triggers the question if such a trade-off also exist

for calorimeter showers. Here, we study four different metrics: Precision, Recall, Density,

and Coverage, which are defined in the following [195, 196, 197]. While Precision and

Density are more a measure of shower quality, Recall and Coverage measure diversity.

We report results on the former two as well because all four metrics are closely related

to each other and correlations between them provide additional insights.

Precision and Recall first construct a manifold of “real”, i.e. reference, and “fake”,

i.e. generated samples. These are defined as the union of all d-dimensional spheres

around the points xi, with the radii chosen such that the k nearest samples are inside

the sphere,

manifold(x1, . . . , xn) =
n⋃

i=1

B(xi,NNDk(xi)). (40)

Here, B(x, r) defines a sphere around x with radius r and NNDk(x) denotes the

distance of x to its kth nearest neighbor.

• Precision. Following the definition of the improved precision of [196], it counts the

binary decision of whether the generated data yj is contained in any neighbourhood

sphere of reference samples xi. It is bounded by 1.

precision =
1

m

m∑

j=1

1yj∈manifold(x1,...,xn) (41)

Here, 1 is the indicator function and n(m) is the number of reference (generated)

samples.

• Density improves the Precision metric by taking into account that the manifold

around reference outliers is overestimating the manifold [197]. It counts how many

reference-sample neighbourhood spheres contain yj. The manifold is now defined as

the superposition of spheres instead of the union, and models that place samples in

regions where the reference samples are densely packed are getting a higher score.

However, it is not bounded by 1 anymore.

density =
1

km

m∑

j=1

n∑

i=1

1yj∈B(xi,NNDk(xi)) (42)

• Recall. Following the definition of the improved recall of [196], it is symmetrically

with respect to precision. It counts the binary decision of whether the reference

data xi is contained in any neighbourhood sphere of generated samples yj. It is

also bounded by 1.

recall =
1

n

n∑

i=1

1xi∈manifold(y1,...,ym) (43)
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• Coverage measures the fraction of reference samples whose neighbourhoods contain

at least one generated sample. It is bounded between 0 and 1.

coverage =
1

n

n∑

i=1

1∃j s.t. yj∈B(xi,NNDk(xi)) (44)

In our analysis, we chose k = 5 [197] and preprocess all voxels by log10 I. Voxels without

energy deposition, i.e. below threshold, are set to log10 0.1 MeV = −1.

8.6. Generation timings

To properly compare the generation times of all submissions, each submitting group

created a singularity container [198] of the necessary software environment. We

transferred them to the clip cluster [199] and measured the time it takes to load the

container, load the model (weights and biases), if applicable move it on the GPU,

generate the samples, and save them as .hdf5 [72] to disk. While this contains an

additional overhead, we think that it is more realistic, closer to the real-life application.

There is some scatter from run to run, but that comes from the execution on a cluster

and most likely is also present in a full simulation chain. We therefore repeat these steps

ten times and show the mean and standard deviation of the run times.

Current fast simulation frameworks, with or without deep generative models,

simulate with batch size of 1, since this is how simulation is handled in Geant4, with the

parallelisation applied commonly on the event, and not particle, level (different events

are simulated simultaneously in different threads). Most of the DGM architectures,

however, benefit from larger batch sizes. We therefore study batch sizes of 1, 100, and

10 000 to show how the models behave under different use cases.

Unless explicitly noted otherwise, we generate as many samples as were in the

training set. However, for some models and smaller batch sizes we had to reduce the

overall number of generated events. In this cases, the overhead of loading the model will

have a higher share in the overall generation time compared to the sample generation.

DGMs usually run a lot faster on graphics processing units (GPU), since these

are optimized for matrix-vector multiplications. Yet, these are not as widely available

on HPC clusters, where the majority of nodes have only CPUs. We therefore run the

timing evaluations on both types of hardware and report the results. We run the CPU

timings on an Intel® Xeon® Gold 6138 CPU @2.00GHz with 170 GB RAM. While this

is more on the slow end, we used this node because of the larger RAM requirements of

some models. The GPU timings were done with a NVIDIA® A100-SXM4 with 40GB

Graphics RAM, 360GB RAM, and Intel® Xeon® Gold 6226R CPU @2.90GHz. These

are the C2 and G4 partitions of the clip cluster [199], respectively.

8.7. Memory requirements

As a proxy of the memory requirements to store each model on disk, we report the

number of trainable parameters that each model requires. In particular, we report two



RESULTS: INDIVIDUAL METRICS 75

numbers. One refers to how many trainable parameters are involved in training the

generative model. The other one refers to how many trainable parameters are required

for generation, i.e. how many need to be loaded in production. These numbers can differ

for example in GANs, where only the generator network is needed in production, or in

cases where the generative network is a distilled version of another model. We know that

the actual memory requirements depend on the floating point representation used for the

parameters and on the number of additional, non-trainable parameters that are required

to load and run the model. Techniques like node pruning and weight quantization can

reduce the number of parameters and the memory footprint significantly, sometimes

without loss in sample quality. Nevertheless, we decided to not focus on these aspects

and just work with the number of trainable parameters.

9. Results: Individual Metrics

In total, we present here the results of 59 submissions. These are evenly spread across

the different datasets and generative model architectures as can be seen in figure 30 and

table 1.

Figure 30: Number of submissions per dataset and DGM architecture.

9.1. Preprocessing

All submitted files were checked for NaN entries, if the Einc distribution matches the

expectation, and if the correct number of samples were submitted. Then they were

saved as np.float32 numbers in a hdf5 file [72] with gzip compression. A threshold
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cut was applied to all voxels before they were used in evaluation. The Geant4 reference

was treated the same way, and all results below use the second Geant4 dataset that

was provided at [74, 80, 81].

9.2. Dataset 1, photons (ds 1 – γ)

We begin the evaluation with the high-level features, and especially the energy

depositions in figure 31. The separation power of the submissions vary roughly within

2 orders of magnitude and they stay almost everywhere just at the upper limit of the

Geant4 reference. It is interesting to note that almost all submissions show a better

performance, i.e. a smaller separation power, in layers with an angular segmentation (1

and 2, see table 2). Having more voxels per layer seems therefore beneficial for modeling

the layer energies. The best performance is given by normalizing flow (CaloFlow) and

diffusion model (CaloScore) based submissions. We should note that the otherwise well-

performing CaloDiffusion has a bad separation power in the total energy deposition,

one of the crucial observables.

The centers of energy in η and ϕ direction are summarized in figure 32. Here we

see the diffusion model based submissions CaloDiffusion and CaloScore with the best

performance, at the level of the Geant4 reference. In general, we observe all models

performing equally well in η and ϕ direction.

The widths of centers of energy in η and ϕ in figure 33 tell a similar story. Again, the
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Figure 31: Separation power of energy depositions with threshold at 1 MeV.
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Figure 32: Separation power of centers of energy with threshold at 1 MeV.
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Figure 33: Separation power of widths of centers of energy with threshold at 1 MeV.
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Figure 34: Separation power of centers of energy with threshold at 1 MeV.
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Figure 35: Separation power of widths of centers of energy with threshold at 1 MeV.
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Figure 36: Separation power of the sparsity with threshold at 1 MeV.

model performance in η and ϕ directions is about the same, and the diffusion models

CaloDiffusion and CaloScore have the best separation power, just slightly worse

than the Geant4 reference. However, the distilled versions CaloScore distilled and

CaloScore single-shot are worse now, having a larger separation power than the first

normalizing flow models of CaloFlow.

The centers of energy in r in figure 34 and its width in figure 35 show separation

powers that are more or less constant from layer to layer, stemming from the fact

that Nr roughly stays within one order of magnitude. A few submissions show worse

performance in the width for layers 1 and 2, where the angular segmentation is present.

The ordering of the different DGMs is about the same as for the η and ϕ directions,

as these are correlated. CaloDiffusion is at the upper level of the Geant4 reference

and CaloScore is next, with the distilled versions a little worse and at the level of the

normalizing flow submissions CaloINN and CaloFlow.

The last observables we compare with separation powers are the sparsities shown

in figure 36. These show the largest spread among the considered observables, spanning

four orders of magnitude between the Geant4 reference and the worst performing

submission. The ordering of the models, however, is similar to all the other considered

observables. The diffusion models are at the upper end of the reference, with distilled

versions in between normalizing flow based models. CaloGraph, which was just slightly

worse than these in all other observables too, is now at the same level.
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Figure 37: Pearson correlation coefficients of layer energies in ds 1 – γ, with threshold

at 1 MeV.

We now move on to investigate the correlations between the energies deposited in

the layers in figure 37. Overall, most of the submissions reproduce the pattern induced

by Geant4 well, but there is a noticeable tendency of models to overestimate the

correlation between layers 3 and 12, as seen in the top right corners. Some models

based on GANs and VAEs, which had higher separation powers, also seem to have a

harder time reproducing these correlations.

Another way to look at the correlations between all observables is given by

the classifier metric. Figure 38 (and table C1) shows the AUCs of classifying low-

level and high-level observables of the submission against the Geant4 reference. In

general, we observe a good consistency between the two sets of observables and a

small spread of AUCs for reruns with different initialization. Submissions that have
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Figure 38: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 1 – γ, averaged over 10 independent evaluation runs. For the precise numbers, see

Table C1.
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Figure 39: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – γ. For the

precise numbers, see Table C2.
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Figure 40: Log-posterior scores for ds 1 – γ Geant4 test data, averaged over 10

independent classifier trainings. For the precise numbers, see Table C3.

a high (low) score in the low-level observables also have a high (low) score when high-

level observables are used as an input. The difference between the AUCs of the same

submission is below 0.2. These results are also consistent to what we have seen in the

separation power. DGMs based on diffusion models or normalizing flows achieve the best

results, with AUCs of O(0.6). We also observe that distilled versions tend to perform

worse compared to their base model. This is more prominent for CaloScore distilled

to CaloScore distilled and CaloScore single-shot than for CaloFlow teacher

distilled to CaloFlow student.

When judged by KPD and FPD in figure 39 (see also table C2), the relative

performance of the submissions is confirmed by this metric, too. We do see, however,

that these metrics (especially the KPD) scatter a bit more, so the flow-based and

diffusion model-based submission’s scores now almost all agree with each other within

the uncertainties. This larger scatter of the KPD would also result in concluding

that some submissions are indistinguishable from the reference data, since the KPD

is consistent with 0. This, however, cannot be confirmed by the FPD and the AUCs of

figure 38, which see the best scores of CaloDiffusion still significantly away from the

baseline scores obtained with the Geant4 reference.
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Figure 41: Precision, density, recall, and coverage for ds 1 – γ submissions. For the

precise numbers, see Table C4.

Now we move on to the multiclass classifier. The crosscheck of the well-trained

classifier can be found in figure B1. Figure 40 shows the main results, the mean log-

posterior for the Geant4 test set (and the same results are reported in table C3). These

results are consistent with the other classifier test, with CaloDiffusion and CaloINN

in the lead. Interestingly, CaloScore, which was having good results in terms of the

separation power of the high-level observables, was overtaken by the classifier metrics

by normalizing flow-based submissions like CaloFlow and CaloINN.

Overall, in terms of shower quality of ds 1 – γ, we observe that some models

approach the Geant4 reference, telling us that the comparatively easy and low-

dimensional distribution of photon showers can indeed be learned by DGMs. In

particular, we see that diffusion model and normalizing flow-based submissions get

consistently better scores than GAN and VAE-based submissions.

In figure 41 and table C4 we show precision, density, recall, and coverage of the

ds 1 – γ submissions. We observe different classes of results. The first one shows values

for all 4 metrics that are of the same order as the scores for the Geant4 reference,

indicating a diverse and realistic dataset. CaloDiffusion, CaloINN, CaloScore, and

CaloGraph fall in this class.

The second prominent pattern we observe shows values of precision and coverage

that are of the same size as for Geant4, but a much larger density and a much smaller

recall. Most of the GAN and VAE-based models like Calo-VQ, CaloMan, CaloShowerGAN,

and CaloVAE+INN, but also CaloForest fall in this class. The high density suggests that

the generated samples all fall close to the bulk of the reference data, but the low recall

indicates that the relative distance between the generated samples is fairly small, so not
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Figure 42: Number of trainable parameters for training and generation of ds 1 – γ

submissions. For the precise numbers, see Table C5.

many of the reference samples lie on the generated manifold. Overall, these generative

models seem to focus on generating samples in the bulk that are similar to each other.

The third class have good scores for recall and coverage, but a small precision, with

the density being at the order of Geant4 or smaller. In table C4, we see CaloScore

single-shot and CaloFlow in this category. They have a good distribution of samples

close to the reference manifold, but a noticeable subset of them falls outside the manifold.

When the density is low, it also indicates that the bulk is not as densely populated.

The last pattern we observe has all four metrics below the Geant4 reference, as

seen for BoloGAN.

In terms of the the requirements of resources, the situation is different. Figure 42

shows the number of trainable parameters of each submission, with the precise numbers

in table C5. Normalizing Flow-based models are now at the back of the list, as they

usually require larger models. GANs and VAEs are much more lightweight, as can be

seen by CaloShowerGAN and BoloGAN, which need the fewest parameters. Given the

rather small dimensionality of ds 1 – γ, the diffusion model of CaloDiffusion also only

needs a comparatively small number of parameters.

Which model is the fastest really depends on specific setup of the evaluation.

We see the generation times per shower of the submissions in figure 43 (with details

in table C6 and table C7). On the CPU in figure 43 (and table C6), we observe a

reduction in generation time when moving from batch size 1 to batch size 100 for all

submissions. Further increasing the batch size to 10000 does not decrease the generation

time further, indicating that now the algorithms are not dominated by the for loop over

all batches anymore. The fastest models, BoloGAN and CaloVAE+INN reach generation

times of about one millisecond per shower for batch size 100, and even below for larger

batch size. On the GPU in figure 43 (and table C7), generation times are usually

smaller than on the CPU, but different models gained differently under the changing

hardware. For batch size 100, we now have five submissions at or below one millisecond

generation time. For batch size 10000, only CaloDiffusion, CaloScore, and CaloFlow

teacher are well above the one millisecond mark. The fastest models are now GAN-

based (like BoloGAN) or VAE-based (like Calo-VQ, CaloMan, and CaloVAE+INN). We

now also observe improvements when increasing the batch size to 10000, even though

the advantage in going from 100 to 10000 is not as big as the one going from 1 to 100.
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Figure 43: Timing of ds 1 – γ submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C6 and table C7.

Rather surprisingly, we observe a larger generation time for the GAN-based models

CaloShower2GAN and CaloShower3GAN. We suspect that this is a remnant of these

being part of the larger ATLAS software pipeline that was not fully optimized for the

challenge submission.

9.3. Dataset 1, pions (ds 1 – π+)

Starting again with high-level features, we first look at the energy depositions

in figure 44. The separation power of the submissions vary roughly within 2 orders

of magnitude and they stay about one order of magnitude worse than the Geant4

reference. CaloFlow shows the best performance overall, but occasionally another model

is better in modeling a single layer. Diffusion models are not as good as for ds 1 – γ,

now VAE-based models like DNNCaloSim, Calo-VQ, or CaloMan are better, especially for

earlier layers. Again, many models show better performance in layers 12 and 13, which

have a higher segmentation in angular direction.

The centers of energy, shown in figure 45, show a consistent picture in both

directions η and ϕ. The separation power again spans about two orders of magnitude

with CaloDiffusion just at the Geant4 reference, followed by CaloFlow, CaloINN, and

CaloShowerGAN. Interestingly, DNNCaloSim shows larger separation powers even though
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Figure 44: Separation power of energy depositions with threshold at 1 MeV.
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Figure 45: Separation power of centers of energy with threshold at 1 MeV.
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Figure 46: Separation power of widths of centers of energy with threshold at 1 MeV.
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Figure 47: Separation power of centers of energy with threshold at 1 MeV.
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Figure 48: Separation power of widths of centers of energy with threshold at 1 MeV.
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Figure 49: Separation power of the sparsity with threshold at 1 MeV.

its performance in other metrics indicates otherwise, as we will see below.

The widths of these center of energy distributions are compared to each other

in figure 46. We again observe a very good performance of CaloDiffusion, but now

CaloGraph and CaloShowerGAN come in second before the flow-based models.

When turning to the radial direction, the centers of energy in figure 47 and its

width in figure 48 show again results consistent with the evaluation along η and

ϕ: CaloDiffusion with the smallest separation powers, followed by CaloGraph and

CaloShowerGAN. While most submissions show separation powers of the same size for

each layer, DNNCaloSim does a lot better in layers 0, 3, and 14 than in layers 1, 2, 12,

and 13.

For the sparsities in figure 49, we see a lot more variation from layer to layer in each

of the submission. Even the separation power of the Geant4 reference varies almost

two orders of magnitude between layers 2 and 3. The best performing submission is still

CaloDiffusion, but the gap to the other submissions is smaller.

Figure 50 shows the correlation in layer energies for the submissions. The

submissions CaloDiffusion, CaloFlow, CaloMan, and DNNCaloSim reproduce the

pattern of Geant4 well. Other submissions, such as CaloINN, Calo-VQ, BoloGAN,

CaloVAE+INN, and CaloShowerGAN, have some problems with correlations of layers 0

and/or 14, which are the first and last layers. CaloForest finds a smaller correlation

between the first layers and a too large correlation for the rest while CaloGraph has too
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Figure 50: Pearson correlation coefficients of layer energies in ds 1 – π+, with threshold

at 1 MeV.

large correlations everywhere.

Moving on to classifier-based metrics, we find the AUCs of high- and low-level

observables in figure 51 (and table C8). Here we observe several things. First, the AUC

for separating the training and test Geant4 samples is larger than the expected value

of 0.5. This is due to the fact that two slightly different versions of the ATLAS software

were used due to technical problems in generating high statistics with the old version

used for the ATLAS internal training. The differences were expected and deemed small

enough to be irrelevant for physics applications. Detailed comparison between the two

samples that justify this statement are provided in A.2. The AUC from the generative

models will have this value as the maximum achievable separation instead of the usual

0.5. Second, we see very low AUCs for CaloDiffusion, which was already indicated by
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Figure 51: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 1 – π+, averaged over 10 independent evaluation runs. For the precise numbers, see

Table C8.
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Figure 52: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – π+. For the

precise numbers, see Table C9.
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Figure 53: Log-posterior scores for ds 1 – π+ Geant4 test data, averaged over 10

independent classifier trainings. For the precise numbers, see Table C10.

the separation powers of the obervables before. Third, we see a low AUC for DNNCaloSim

in the low-level observables which is, however, not reflected in the AUC of the high-level

observables. This latter fact also correlates with the separation powers seen before.

Other than that, we see overall good scores from diffusion and normalizing flow-based

models, whereas GAN and VAE-based models show AUCs worse than 0.9.

The same is true for KPD and FPD metrics shown in figure 52 (and also in table C9).

The best scores are attained for CaloDiffusion, followed by CaloGraph and CaloFlow.

The submission of DNNCaloSim is not among the top contestants here.

When looking at the results of the multiclass classification, the situation is slightly

different. CaloDiffusion, CaloINN, and CaloGraph show again good scores, but

DNNCaloSim is outperforming them. Since the multiclass classification is also based

on low-level observables, this observation confirms the low-level AUC of table C8. The

consistency check of the multiclass classifier can be seen at figure B2.

In figure 54 and table C11 we show precision, density, recall, and coverage of

the ds 1 – π+ submissions. We again observe similar patterns as in the ds 1 – γ

case. The submissions CaloDiffusion, DNNCaloSim, and CaloGraph have their scores

around the scores of the Geant4 reference, indicating a good fit to the underlying

distribution. The normalizing flow-based submissions CaloINN and CaloFlow have good
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Figure 54: Precision, density, recall, and coverage for ds 1 – π+ submissions. For the

precise numbers, see Table C11.
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Figure 55: Number of trainable parameters for training and generation of ds 1 – π+

submissions. For the precise numbers, see Table C12.

recall and coverage, but a relatively small precision and density, indicating that a large

enough subset of samples were generated away from the reference manifold. VAE-based

submissions Calo-VQ, CaloMan, CaloVAE+INN, and to some extend also CaloShowerGAN

show a large density paired with a very small recall. As for ds 1 – γ, we interpret this

as generative models that seem to focus on generating samples in the bulk of the data,

with all samples being fairly similar to each other.

Figure 55 compares the sizes of the submissions, with table C12 giving the precise

numbers. Most models require (at least in training) more than 106 trainable parameters,

only CaloDiffusion and CaloGraph stay below that. Overall, we observe normalizing-

flow based models to be much larger than diffusion and GAN-based models. The BDT-

based CaloForest stands out because of the many parameters that are required to

define all trees.

Figure 56 (with details in table C13 and table C14) show the generation times

per particle shower of the submissions. Across all batch sizes and architectures, we



RESULTS: INDIVIDUAL METRICS 93

10 1 100 101 102 103 104 105

time per shower [ms]

GPU batch size 10000

GPU batch size 100

GPU batch size 1

CPU batch size 10000

CPU batch size 100

CPU batch size 1

 better

Generation times, dataset 1 - pions

CaloDiffusion
CaloINN
Calo-VQ
CaloFlow teacher

CaloFlow student
CaloMan
BoloGAN
DNN CaloSim

CaloShowerGAN
CaloVAE+INN
CaloForest
CaloGraph

Figure 56: Timing of ds 1 – π+ submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C13 and table C14.

see DNNCaloSim as being the fastest model, only beaten for very large batch sizes on a

GPU but not by a large margin. This model only needs a few milliseconds (for batch

size 1) to a fraction of a millisecond (for lager batch sizes) to generate a single shower.

Other GAN-based and VAE-based models like BoloGAN and CaloVAE+INN also show fast

shower generation times. Normalizing-flow-based submissions, however, show a strong

dependence on the implemented algorithm. The coupling-layer based implementation of

CaloINN is much faster than the MAF/IAF-based implementations of CaloFlow, with

the MAF being much slower than the IAF, as expected [113]. CaloForest does not

have timings on a GPU, as the tree-based algorithm only runs on a CPU. Also here,

we observe a larger generation time for the GAN-based model CaloShowerGAN. Again,

we suspect that this is a remnant of CaloShowerGAN being part of the larger ATLAS

software pipeline that was not fully optimized for the challenge submission.

9.4. Dataset 2, electrons (ds 2)

As explained in section 2.2, the minimal energy that can be read out is given by 15.15 keV

and we apply a threshold cut to all submissions before evaluation.

We again start the evaluation with the separation power of the energy depositions

in all layers, all voxels, and the total deposited energy in figure 57. The values for the

submissions span roughly 2 orders of magnitude and only for early layers they reach
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Figure 57: Separation power of energy depositions.
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Figure 58: Separation power of centers of energy in η direction.
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Figure 59: Separation power of centers of energy in ϕ direction.
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Figure 60: Separation power of widths of centers of energy in η direction.
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Figure 61: Separation power of widths of centers of energy in ϕ direction.
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Figure 62: Separation power of centers of energy in radial direction.
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Figure 63: Separation power of widths of centers of energy in radial direction.
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Figure 64: Separation power of the sparsity.
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Figure 65: Pearson correlation coefficients of layer energies in ds 2.

down to the reference values given by Geant4. In general, we observe all submissions

getting worse towards the end of the detector, i.e. for a larger layer number. While

some submissions show a smooth change of separation powers from layer to layer, some

others oscillate with a period of a few layers.

The centers of energy in η and ϕ are shown in figure 58 and figure 59. There is a

rotational symmetry in the data, so the distributions in η and ϕ look very similar to each

other (see figure A10 and figure A12). Judging by the separation powers, the models
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learn the distributions in these two variables equally well, reflecting this symmetry. In

detail, we see CaloDiffusion and CaloDREAM having the smallest separation powers,

just at the upper bound of the Geant4 reference band. VAE-based submissions

like CaloVAE+INN, CaloMan, or Calo-VQ again have the the largest separation powers.

Looking at the change from layer to layer, we now see a different pattern compared to

the energy distributions in figure 57. Now, only some submissions show an increasing

separation power for an increasing layer number. Others are either rather constant or

have a large separation power for small layer numbers, show better results in the central

part of the detector and then increase again towards the end. We also notice some

models having a rather steep increase only in the last layer.

The separation powers of the widths of centers of energy in η (figure 60) and ϕ

(figure 61) are very similar to the separation powers of the centers of energies themselves.

Both directions, η and ϕ, show almost identical results. Now CaloDREAM is having the

best score, at the level of the Geant4 reference band. Other submissions show again

their best performance in the central region of the calorimeter segment, before the

separation power rises again at larger layer numbers.

Given the rotational symmetry in η and ϕ, the separation powers in centers of

energy and its width in radial direction resemble the ones in η and ϕ strongly, as can

be seen in figure 62 and figure 63.

The last set of separation powers we look at are from the sparsities in figure 64.

Here, the spread between different models is larger, ranging more than three orders of

magnitude. Interestingly, CaloDREAM still shows very good results, at the level of the

Geant4 reference band. CaloDiffusion on the other hand does not reproduce the

sparsities well, with CaloScore, SuperCalo, CaloINN, and iCaloFlow outperforming it

in all layers.

We show the Pearson correlation coefficients in layer energies in figure 65.

Interestingly, we do not reproduce all findings of [20], which trained a few models

from scratch, indicating that some of the observed patterns fluctuate from training

to training. In general, we observe two different failure modes in these figures: One

group (most prominently CaloLatent and CaloDiT) do not reproduce the correlations

in a large region. A second group (consisting of CaloScore distilled, iCaloFlow,

and CaloPointFlow) show problems in single layers, indicated by streaks in figure 65.

Also, the distillation procedure worsened the pattern for CaloScore single-shot, but

slightly improved it for iCaloFlow student. CaloDiT shows only correlation to one of

the nearest neighbor layers, nothing beyond that, which is consistent with the larger

separation powers we saw before.

We now turn to classifier-based metrics and start with the AUC of the binary

classifiers in figure 66 (and table C15). In addition to the DNN architecture that we

also used for dataset 1, we now have an additional, CNN-ResNet-based architecture

that we use for the evaluation. This CNN-ResNet architecture is much more sensitive

to differences in the distributions and it moves the AUC of many submissions close

to 1.0. While CaloDREAM has the best scores in the DNN-based classifiers, it is tied
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Figure 66: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 2,

averaged over 10 independent evaluation runs. For the precise numbers, see Table C15.
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Figure 67: KPD and FPD for evaluating Geant4 vs. submission of ds 2. For the precise

numbers, see Table C16.
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Figure 68: Log-posterior scores for ds 2 Geant4 test data, averaged over 10 independent

DNN classifier trainings. For the precise numbers, see Table C17.

with CaloDiffusion in the stronger CNN-ResNet classifier. However, as before, the

submissions CaloDREAM, CaloDiffusion, and CaloScore show in general the best

(lowest) binary AUC scores, independent of the classifier architecture used. Flow-based

models follow, while VAE and GAN-based submissions have the highest AUC.

The computer science-inspired metrics KPD and FPD in figure 67 (with details in

table C16) show results consistent with the classifier AUCs. CaloDREAM, CaloDiffusion,

and CaloScore again have the best (lowest) scores, but now CaloScore is slightly better

than CaloDiffusion, which is in fact overlapping with conv. L2LFlows now. At the

other end of the spectrum we again see submissions based on GANs and VAEs.

For the multiclass classification we also employ a DNN and a CNN-ResNet

architecture. Both of these have well-trained classifiers, as can be seen in figure B3

and figure B4. In figure 68 (as well as table C17), we see the results for the

DNN architecture. CaloDREAM is again leading with CaloDiffusion at a very close

second place. CaloScore with its distilled versions and the flow-based submissions

of SuperCalo, conv. L2LFlows, CaloINN, and iCaloFlow follow with very small

differences. Distilled submissions of CaloScore and iCaloFlow perform in general

slightly worse than the original versions that they have been distilled from. Turning to

the CNN-ResNet architecture in figure 69 (and table C18), the story is roughly the same

as for the DNN before. Overall, we observe the errorbars becoming larger, indicating a

larger spread of result in different trainings. However, the spread in the log posterior
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Figure 69: Log-posterior scores for ds 2 Geant4 test data, averaged over 10 independent

CNN ResNet classifier trainings. For the precise numbers, see Table C18.

from the best to the worst model decreased by a factor two from about 20 to about

10. The three submissions CaloDiffusion, CaloScore, and CaloDREAM are on top and

have comparable scores within their error bars. conv. L2LFlows follows closely and has

a small gap to the midfield, which is composed of iCaloFlow, the distilled versions of

CaloScore, and SuperCalo.

In figure 70 (with details in table C19) we show precision, density, recall, and

coverage of the ds 2 submissions. We first notice that there is a group of submissions

— consisting of CaloDiffusion, conv. L2LFlows, CaloScore and its distillations,

iCaloFlow, and CaloDREAM — that gets all four metrics close to the Geant4 reference.

This is another indication that these models generate high-quality showers. Another

group stands out with a large density value. These are CaloINN, Calo-VQ, CaloVAE+INN,

and CaloDiT. The large density, together with the small recall that most of the

submissions in this group have, suggests again that samples are generated very similar to

each other, but not diverse enough. The GAN submissions MDMA and DeepTree stand out

in a third group, with low precision, density and coverage, but large recall. We interpret

this pattern as generating samples that are fairly spread out, but not really close to the

reference samples. That way, precision and density are low, but the large distance

between the submitted samples makes the recall manifold large enough to contain the

references. The remaining submissions, SuperCalo, CaloPointFlow, and CaloLatent

do not really fit in these groups, but are somehow similar to the GAN submissions with
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Figure 70: Precision, density, recall, and coverage for ds 2 submissions. For the precise

numbers, see Table C19.
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Figure 71: Number of trainable parameters for training and generation of ds 2

submissions. For the precise numbers, see Table C20.

smaller precision, density, and coverage, but larger recall than the Geant4 reference.

However, the gap is smaller in these cases.

To summarize the shower quality, we see a similar pattern than already for dataset

1: The diffusion and conditional flow matching models have the best quality, followed

then by Normalizing Flows and GAN and VAE-based models at the end.

Figure 71 compares the sizes of the submissions, with table C20 giving the precise

numbers. The by-far smallest model is MDMA, with about an order of magnitude fewer

parameters than the next submissions, CaloDiffusion and DeepTree. Normalizing-

flow-based architectures like conv. L2LFlows and CaloINN have the most parameters,

so the bijective transformation in this 6480-dimensional space takes it toll on the required

number of parameters.

Figure 72 (with detailed numbers in table C21 and table C22) show the generation
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Figure 72: Timing of ds 2 submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C21 and table C22.

times of the submissions normalized to generating a single shower. Overall, they span

several orders of magnitude, even when only looking at one of the two architectures

alone. This spread depends also on the batch size, with smaller batch sizes having a

larger spread between slowest and fastest submission. For example, for a batch size of 1,

we see four to five orders of magnitude difference. On the CPU, sample generation is in

general slower and more spread out between slowest and fastest submission than on the

GPU. Batching helps to speed up generation, but some of the models run into memory

problems at very large batch sizes, even more on a GPU with limited VRAM. As for the

DGM types, we see VAE and GAN-based models in the lead, with MDMA, CaloVAE+INN,

and Calo-VQ being the fastest. The symmetric flow architecture of CaloINN is also fast

in generation, but only on a GPU and for larger batch sizes. The diffusion models and

MAF-based normalizing flows are the slowest submissions. Distillation of models clearly

improves the generation speed in all cases, as expected. Generating showers in batches

improves the generation speed in all cases, but also leads to out of memory errors in

11 out of 17 cases on the GPU. Given that some of the generation times (especially for

smaller batch sizes) get considerably large, we restricted the number of samples used to

time the models to fewer than 100 000 events, see the details in table C21 and table C22.
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Figure 73: Separation power of energy depositions.
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Figure 74: Separation power of centers of energy in η direction.
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Figure 75: Separation power of centers of energy in ϕ direction.

9.5. Dataset 3, electrons (ds 3)

Also for dataset 3, the minimal energy that can be read out is given by 15.15 keV.

We again start our evaluation with the separation power of high-level observables, in

particular with the energy depositions per layer and in total in figure 73. We notice

that many models show the best performance around layers 3 – 10, and separation

powers then grow towards the end of the detector. CaloDREAM, CaloDiffusion,

conv. L2LFlows, and L2LFlows-MAF even reach the Geant4 reference band in this

region. Further, CaloDREAM matches the total energy deposition very well.

Moving on to centers of energy in η and ϕ in figure 74 and figure 75, we see again

two very similar distributions in both of these directions, indicating that the rotational

symmetry was learned well by all submissions. At the level of the Geant4 reference,
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Figure 76: Separation power of widths of centers of energy in η direction.
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Figure 77: Separation power of widths of centers of energy in ϕ direction.
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Figure 78: Separation power of centers of energy in radial direction.
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Figure 79: Separation power of widths of centers of energy in radial direction.
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Figure 80: Separation power of the sparsity.
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Figure 81: Pearson correlation coefficients of layer energies in ds 3.
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we see CaloDiffusion and CaloDREAM, both with rather smooth separation powers

from one calorimeter layer to the next. Slightly worse, we have CaloPointFlow, which

was also smooth, and conv. L2LFlows, which shows some ups and downs from layer

to layer. Among the rest, we notice a similar, but stronger up and down pattern for

Calo-VQ (which is however not present in the improved version Calo-VQ(norm)). MDMA

shows the largest spread between the lowest and largest separation power. The VAE-

based submissions CaloVAE+INN and Geant4-Transformer have the most problems

reproducing the Geant4 data.

Most of the statements of the centers of energy also apply to their widths

in figure 76 and figure 77. CaloDREAM has the smallest separation powers, close to

Geant4. CaloDiffusion comes second, but with a larger gap for earlier layers,

where conv. L2LFlows shows a better match to the reference. In between these

submissions and the bulk, we see CaloScore distilled and CaloScore single-shot.

Calo-VQ again has an oscillating behavior over the entire size of the detector, and

Geant4-Transformer and CaloVAE+INN have the largest separation powers. The order

of submissions is also preserved when looking at the centers of energy in r in figure 78

and their widths in figure 79.

Only for the sparsities in figure 80 we see a difference. CaloDREAM still shows the best

performance, again at the level of Geant4, but CaloDiffusion has a much harder time

reproducing the correct distribution. Instead, CaloScore distilled and CaloScore

single-shot (for early layers), iCaloFlow (for later layers), and conv. L2LFlows have

small separation powers and get close to CaloDREAM. Also in this observable, the VAE-

based submissions Geant4-Transformer and CaloVAE+INN show the largest separation

powers. In fact, overall we see the separation powers ranging over five orders of

magnitude between best and worst submission.

In figure 81 we look at the Pearson correlation coefficients of the layer energies.

Also in this case we do not reproduce all findings of [20], again indicating that some of

the observed patterns might fluctuate from training to training. Similar to what we have

observed for the other datasets, we see three different groups of correlation patterns.

The first one reproduces the Geant4 shape quite well and consists of CaloClouds,

iCaloFlow student, and CaloDREAM. The submissions MDMA, Geant4-Transformer in

the second group are also very smooth and only have small regions that appear slightly

brighter than the reference. The third group consists of submissions that have single

layers that do not have the correct correlation, indicated by stripes in the figures. While

some are very faint and just a few (like for CaloDiffusion, Calo-VQ, CaloVAE+INN,

or iCaloFlow teacher), others have more and a stronger contrast (like CaloScore

distilled, CaloScore single-shot, CaloPointFlow, or Calo-VQ(norm)). We also

find again the intriguing pattern that the distillation of CaloScore made the correlations

worse, but the distillation of iCaloFlow improved the correlations.

The AUCs of the binary classifiers in figure 82 (and table C23) corroborate the

results of the separation power. For the high-level features, the best three models

— CaloDREAM, CaloDiffusion, and conv. L2LFlows— are clearly separated from the
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Figure 82: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 3,

averaged over 10 independent evaluation runs. For the precise numbers, see Table C23.
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Figure 83: KPD and FPD for evaluating Geant4 vs. submission of ds 3. For the precise

numbers, see Table C24.

other submissions. For low-level features, these three submissions still have the best

performance, independent of the classifier architecture, but the ordering changed with

CaloDiffusion having the best AUC. While the DNN indicates differences between

submissions, yielding a spread between all the AUCs, the CNN-ResNet architecture

essentially identifies the three best submissions — CaloDiffusion, CaloDREAM, and

conv. L2LFlows— and gives all other submissions an AUC of 1.
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Figure 84: Log-posterior scores for ds 3 Geant4 test data, averaged over 10 independent

DNN classifier trainings. For the precise numbers, see Table C25.

A similar ordering, at least in terms of the top three models, is also seen in the KPD

and FPD scores in figure 83 (with details in table C24). Now CaloDREAM is closest to the

Geant4 reference. Also for these scores (especially for the KPD), the bulk of all other

submissions is very close to each other with scores overlapping within uncertainties.

The multiclass classifier metric, shown in figure 84, figure 85, table C25, and

table C26 is consistent with the binary AUCs shown before. CaloDREAM and

CaloDiffusion have the highest log-posterior, and conv. L2LFlows comes in third

before there is a gap to the remaining submissions. Again, we see the CNN-ResNet

being more powerful, giving low scores to almost all submissions when compared to

Geant4. As with ds 2, we also observe here that the spread in log-posterior between the

best and worst model is smaller in the CNN-ResNet compared to the DNN architecture.

However, both of the considered architectures have well-trained classifiers, as can be seen

in figure B5 and figure B6. The size of the error bars, coming from ten independent

retrainings of the classifier, seems to be correlated with the central value of the log-

posterior, with smaller (worse) log-posterior scores having larger error bars.

In figure 86 and table C27 we show precision, density, recall, and coverage of

the ds 3 submissions. The first thing we notice are the Geant4 scores, which now

have much smaller precision and recall compared to ds 2 in figure 70, maybe a

sign for the much higher-dimensional dataset. When looking at the submissions, we

observe groups with similar patterns as for the other datasets before. The first one
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Figure 85: Log-posterior scores for ds 3 Geant4 test data, averaged over 10 independent

CNN ResNet classifier trainings. For the precise numbers, see Table C26.
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Figure 86: Precision, density, recall, and coverage for ds 3 submissions. For the precise

numbers, see Table C27.
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Figure 87: Number of trainable parameters for training and generation of ds 3

submissions. For the precise numbers, see Table C28.

of these are CaloDiffusion, CaloScore distilled, and iCaloFlow teacher, which

have scores comparable to the Geant4 reference. Similar to these, but with a slightly

larger density are CaloDREAM, conv. L2LFlows and iCaloFlow student. These groups

overlap to a large extend with the “winners” of the classifier-based metrics, but have

with iCaloFlow also new members. With increasing density, we but otherwise similar

scores is L2LFlows-MAF. These all indicate samples that are distributed similarly close

to the validation data like the training data. Another group of submissions, consisting

of MDMA, CaloClouds, CaloScore single-shot, and CaloPointFlow, have precision,

density and coverage below the Geant4 scores, and at the same time a very large

recall. As already for ds 2, we interpret such a pattern as samples being generated fairly

spread out, but not really close to the reference samples. Also these observations are

consistent with what we saw for other metrics before. The last group, with a very large

density, a larger precision and a low recall was also present in ds 2. In this group we

have Calo-VQ, Calo-VQ(norm), Geant4-Transformer, and CaloVAE+INN.

Figure 87 compares the sizes of the submissions, with table C28 giving the precise

numbers. Overall, the entire span in number of parameters is more than four orders

of magnitude. Similar to ds 2, MDMA has by far the fewest number of trainable

parameters, making it a very economic submission. Following behind are with Calo-VQ

and CaloDiffusion a VAE and a diffusion model, showing that these architectures can

generate high-dimensional data much more economically than normalizing flows.

Lastly, we look at the generation time per shower in figure 88 (see table C29 for

CPU and table C30 for GPU details). Overall, we see the same pattern as for all

datasets before. Increasing the batch size and moving from a CPU to a GPU architecture

speeds up generation. Depending on the architecture, sometimes by several orders of

magnitude. However, the high dimensionality of ds 3 makes generation with large batch

sizes sometimes impossible due to memory constraints. For example at batch size 10000,

nine out of 15 submissions run into CUDA out of memory errors on the GPU. The large

spread in generation times also required us to restrict the number of samples used to

time the models to fewer than 100 000 events, especially for smaller batch sizes. For

the largest batch size of 10 000, we had three cases on the CPU in which generation

of a single batch took longer than two days. Details for this are given in table C29

and table C30. The fastest models are again GAN-based submissions like MDMA and
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Figure 88: Timing of ds 3 submissions on CPU and GPU architectures. Not all

submissions are shown everywhere due to memory and other constraints. More details

are in table C29 and table C30.

VAE-based submissions like Calo-VQ or CaloVAE+INN. As for the previous datasets, we

observe that distillation worked and speeds up generation in all cases.

10. Results: Correlations Between Metrics

In this section we study how the scores in different metrics are related to each other. The

goal of that is two-fold: First, in section 10.1, we study how various different metrics

that all measure the same property correlate with each other. In the case of the sample

quality, this will shed light on various aspects regarding the evaluation of generative

models , a result of great importance beyond detector fast simulation. Second, in

section 10.2, we are interested in the Pareto fronts in the “quality vs. speed vs. resource

consumption” space, as these will be the ultimate results of the CaloChallenge. The

observations made in the first part, i.e. how which quality metrics correlate with each

other, will be especially important for the choice of metrics shown in the final evaluation

Pareto Fronts.

10.1. Metric Comparison

A nice side result of the challenge, we can evaluate how different metrics that measure

the quality of the showers correlate with each other. These tests also justify that the
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Pareto fronts we will show below are representative.
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Figure 89: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 31–figure 36) vs. the binary AUC (figure 38 and table C1).
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Figure 90: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 44–figure 49) vs. the binary AUC (figure 51 and table C8).

The first of these tests looks at the high-level observables that were defined in

section 8.1 and compares the sum of all separation powers to the AUC of the binary

classifier. While the former is only sensitive to the distribution of the individual

observables, the latter also captures correlations between them. We see in figure 89

that the results for ds 1 – γ show a clear correlation. Submissions with a higher AUC

also have a larger sum of their separation powers. The situation is similar for ds 1 – π+

in figure 90, but there the submissions are a little more spread out, indicating that some

models struggled a bit more to capture all correlations between the observables. Also

datasets 2 and 3 in figure 91 and figure 92 show a clear correlation of the two metrics,

confirming that they both capture the essential features of the high-level observables.
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Figure 91: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 57–figure 64) vs. the binary AUC (figure 66 and table C15).

100 101

sum of all separation powers

0.5

0.6

0.7

0.8

0.9

1.0

hi
gh

-le
ve

l b
in

ar
y 

AU
C

 better

Correlation of high-level binary AUC to sum of separation powers, dataset 3
CaloDiffusion
L2LFlows MAF
conv. L2LFlows
MDMA
CaloClouds
Calo-VQ
CaloScore distilled
CaloScore single-shot

iCaloFlow teacher
iCaloFlow student
GEANT4 transformer
CaloPointFlow
CaloVAE+INN
Calo-VQ(norm)
CaloDREAM

Figure 92: Correlation of two metrics based on high-level observables: the sum of all the

separation powers (figure 73–figure 80) vs. the binary AUC (figure 82 and table C23).

Next we investigate how the choice of the input representation to the binary

classifier influences the AUC. In particular, we look at the correlation of the AUC

of the binary classifier with low-level inputs vs. the AUC of the binary classifier with

high-level inputs. Figure 93 shows the result for ds 1 – γ. While there is a clear

correlation between the two metrics visible, there is also a noticeable spread between

submissions, for example when comparing CaloINN to CaloScore. The situation is

more clear for ds 1 – π+ in figure 94. Here, we see two different lines forming. One

with CaloDiffusion, CaloINN, CaloGraph, and CaloFlow, where the low-level AUC is

slightly worse than the corresponding high-level AUC. The other one with DNNCaloSim,

CaloVAE+INN, CaloShowerGAN, CaloForest, Calo-VQ, and CaloMan, where the high-

level AUC is larger than the low-level AUC. Interestingly, the division in these two sets

aligns with the underlying architectures, with the diffusion models and normalizing flows
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Figure 93: Correlation of two metrics based on binary classifiers (figure 38 and table C1):

the AUC based on low-level observables vs. the AUC based on high-level observables.
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Figure 94: Correlation of two metrics based on binary classifiers (figure 51 and table C8):

the AUC based on low-level observables vs. the AUC based on high-level observables.

in the first group and the VAEs and GANs in the second group. We interpret these

differences as follows: the first group (diffusion and Normalizing Flow-based) generates

showers which better capture the correlations between voxels that form the high-level

observables and the remaining mismodeling between the submissions and Geant4 is

in the lower-energetic, subleading voxels. The second group (VAE and GAN-based),

however, already mismodels the correlations that form the high-level observables leading

to a larger AUC for this classifier. The strong correlation between the AUCs is also

present for dataset 2 in figure 95. For dataset 3 in figure 96 it is not as pronounced,

but that is mostly due to the high-level AUCs being close to 1 for many submissions.

The correlations between high and low-level AUCs also tell us something about the

classifier metric itself. Since all the high-level observables are derived from the low-
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Figure 95: Correlation of two metrics based on binary classifiers (figure 66 and

table C15): the AUC based on low-level observables vs. the AUC based on high-level

observables.
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Figure 96: Correlation of two metrics based on binary classifiers (figure 82 and

table C23): the AUC based on low-level observables vs. the AUC based on high-level

observables.

level ones, there cannot be any additional information in the high-level observables.

The AUC based on low-level inputs should therefore be strictly larger, i.e. indicating

a better classifier than the AUC based on high-level features alone. The fact that we

do not see this here indicates that the DNN classifier used in this study is not at the

Neyman-Pearson limit and additional studies based on the high-level observables are

indeed necessary to get a better understanding on the quality of the generated samples.

For datasets 2 and 3 we can also compare the AUCs obtained by the two different

architectures used for the binary classification: the DNN and the CNN ResNet. The

results are shown in figure 97 and figure 98. In both cases we see a correlation, but we

also see many submissions having a CNN ResNet-based AUC close to 1, making it hard
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Figure 97: Correlation of two metrics based on binary classifiers and low-level

observables (figure 66 and table C15): the AUC based on a DNN classifier vs. the

AUC based on CNN ResNet classifier.
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Figure 98: Correlation of two metrics based on binary classifiers and low-level

observables (figure 82 and table C23): the AUC based on a DNN classifier vs. the

AUC based on CNN ResNet classifier.

to order them by this metric. This is especially true for dataset 3. We therefore use the

DNN architecture for the Pareto fronts below.

Lastly, we compare the results of the binary classification to the results of the

multiclass classification. Also in these cases (ds 1 – γ in figure 99, ds 1 – π+ in figure 100,

ds 2 in figure 101, and ds 3 in figure 102), we observe a clear correlation: submissions

performing well in one metric also perform well in the other metric, indicating that

both the binary and multiclass classification capture the main differences between the

submissions. The spread for ds 3 in figure 102 is larger than for ds 2 in figure 101, which

is maybe due to the rather small sample size compared to the high-dimensionality of

ds 3. Overall, this implies that the binary classification can be used for further model
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Figure 99: Correlation of two metrics based on classifiers : the log posterior (figure 40

and table C3) of the multiclass classification vs. the AUC of the binary classification

(figure 38 and table C1).
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Figure 100: Correlation of two metrics based on classifiers : the log posterior (figure 53

and table C10) of the multiclass classification vs. the AUC of the binary classification

(figure 51 and table C8).

development and it is not required to have all other submitted samples at hand to

perform a multiclass classification for model evaluation.

In addition to the quality metrics, we also look at the correlation between the

generation times per shower on CPU and GPU architectures. In particular, we consider

generation batch sizes of 100 in figure 103 for ds 1 – γ, figure 104 for ds 1 – π+, figure 105

for ds 2, and figure 106 for ds 3. In all cases, we see the scatter between fastest and

slowest model to be much larger on the CPU than on the GPU. On top of the usual

speed-up on the GPU, we observe the actual speed-up factor vary from model to model,

depending on the specific building blocks of the models.
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Figure 101: Correlation of two metrics based on classifiers : the log posterior (figure 68

and table C17) of the multiclass classification vs. the AUC of the binary classification

(figure 66 and table C15).
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Figure 102: Correlation of two metrics based on classifiers : the log posterior (figure 84

and table C25) of the multiclass classification vs. the AUC of the binary classification

(figure 82 and table C23).
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Figure 103: Correlation of generation times on CPU and GPU (see figure 43, table C6

and table C7).
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Figure 104: Correlation of generation times on CPU and GPU (see figure 56, table C13

and table C14).
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Figure 105: Correlation of generation times on CPU and GPU (see figure 72, table C21

and table C22).
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Figure 106: Correlation of generation times on CPU and GPU (see figure 88, table C29

and table C30).
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10.2. Pareto Fronts

This section compiles the main results of the “Fast Calorimeter Simulation Challenge

2022”. We show the performance of the submissions in the abstract “quality vs. speed

vs. resource consumption” space. We are interested in submissions which are lightweight

(i.e. have few parameters), are fast in generation, and have good sample quality. In

particular, we focus on two planes in which there is a trade-off between two properties:

quality vs. resource consumption and quality vs. speed. The third option, speed

vs. resource consumption, does not show a real trade-off, so we collect the figures in

appendix D.
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Figure 107: Pareto front in sample quality (from figure 40 and table C3) and number

of parameters in generation (from figure 42 and table C5).
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Figure 108: Pareto front in sample quality (from figure 53 and table C10) and number

of parameters in generation (from figure 55 and table C12).

We start by comparing sample quality to model size by plotting the DNN multiclass

log-posterior with respect to the number of trainable parameters in generation. While

we expect models with more parameters to better learn the underlying probability
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Figure 109: Pareto front in sample quality (from figure 68 and table C17) and number

of parameters in generation (from figure 71 and table C20).
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Figure 110: Pareto front in sample quality (from figure 84 and table C25) and number

of parameters in generation (from figure 87 and table C28).

distribution that generates the showers, the use of the generative model inside a fast

simulation framework prefers models that require less memory and are faster to load,

i.e. have fewer parameters in generation. The figures for both particles in dataset 1

(photons in figure 107 and pions in figure 108) are very similar. In both cases we see

CaloDiffusion in the top left corner, indicating that this diffusion model can generate

high-quality showers with a comparatively small number of parameters. For dataset 2

in figure 109, we do not have a clear winner in the corner. Instead, we observe a cluster of

various submissions (including CaloScore, its distillations, iCaloFlow, and SuperCalo)

at good scores, but relatively large number of parameters. CaloDiffusion is part of

the Pareto front, with similar or better quality than submissions of said cluster, but

more than an order of magnitude fewer parameters. Sacrificing some quality moves the

Pareto front to even fewer parameters with the submission MDMA. Dataset 3 in figure 110

shows a similar trade-off between CaloDiffusion and MDMA around the top-left corner,
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but not such a large cluster of submission in the top-right.
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Figure 111: Pareto front in sample quality (from figure 40 and table C3) and generation

speed (from figure 43 and table C7).
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 1 - pions
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Figure 112: Pareto front in sample quality (from figure 53 and table C10) and generation

speed (from figure 56 and table C14).

Next, we show the money plots in figure 111, figure 112, figure 113, and figure 114.

Here, we compare the sample quality, measured by the DNN multiclass log-posterior,

to the generation time, measured by the per-shower-time it takes to generate the entire

dataset in batches of 100 on a GPU.

For ds 1 – γ, we truly see a trade-off between the two metrics in figure 111. On

the one side, we have submissions with good sample quality, i.e. a high log-posterior

and large generation time in the top-right corner. The submissions CaloDiffusion,

CaloScore, CaloGraph, and CaloFlow teacher belong to this group. The distillations

CaloScore distilled and CaloScore single-shot for a line to smaller generation

times at the expense of a little shower quality, as we had seen in the individual metrics

before. On the other side, we have submissions with lower log-posterior score, but a much
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 2
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Figure 113: Pareto front in sample quality (from figure 68 and table C17) and generation

speed (from figure 72 and table C22).
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Pareto front: shower generation time on a GPU vs. multiclass log-posterior, dataset 3
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Figure 114: Pareto front in sample quality (from figure 84 and table C25) and generation

speed (from figure 88 and table C30).

faster generation time per shower. The VAE-based submissions CaloMan, Calo-VQ, and

CaloVAE+INN belong to this group. In the corner with the best scores of both dimensions,

we have the Normalizing Flow-based submission CaloINN. Also CaloFlow student is

close, indicating that the low-dimensional data of dataset 1 – photons can be described

well with normalizing flows and that a good choice for the architecture can also make

the generation fast.

With ds 1 – π+ in figure 112, the situation is similar than with ds 1 – γ, given

that it has comparable dimensionality. We again observe a cluster of submissions

in the top-right at good shower quality and large generation time. Again, these are

the diffusion models CaloDiffusion, CaloGraph, the MAF-based normalizing flow of

CaloFlow teacher, and the GAN of CaloShowerGAN. Much faster, but also worse in

quality we again see VAE and GAN-based models of Calo-VQ, BoloGAN, and CaloMan.

In the corner of fast generation of good showers, we see four submissions that actually
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form a line, making it easy to give them an order towards better showers at shorter

times: From worst to best, these are CaloFlow student, CaloVAE+INN, CaloINN, and

DNNCaloSim. Out of these, we have two normalizing flow-based submissions with

CaloINN and CaloFlow student— as we had before for the photon dataset. Howerver

this time, we also have two VAE-based submissions at the Pareto frong: DNNCaloSim and

CaloVAE+INN. This indicates that the larger shower-to-shower variability of pion showers

is better captured by VAEs as the rather uniform photon showers we had before.

Dataset 2 now increases the dimensionality of the samples by an order of magnitude.

The Pareto front in figure 113, however, does show similar features as we have seen for

dataset 1 before. There is a group of diffusion and normalizing flow-based submissions

in the top right with very high log-posterior scores, but also rather big generation times

per shower. In this group, we have CaloDREAM, CaloDiffusion, CaloScore, iCaloFlow,

and conv. L2LFlows. At the other end of the spectrum, we have again fast submissions

with worse log-posterior scores. In this group we have GAN-based submissions MDMA

and DeepTree, and VAE-based submissions Calo-VQ and CaloVAE+INN. In the corner

with both scores being good, we have three submissions: CaloPointFlow, iCaloFlow

student, and CaloINN from “worst” to best. So also for this dataset, the normalizing

flow-based submissions have the best trade-off between shower quality and generation

speed.

In dataset 3, the Pareto front in figure 114 is a little more diffuse, with the

individual groups more spread out and no single submission in the best corner.

Nevertheless, the similar general trends than before also apply. Diffusion models

like CaloDiffusion and CaloScore distilled, the CFM model CaloDREAM, and

normalizing flow-based submissions L2LFlows-MAF and iCaloFlow teacher have good

shower quality, but need longer to generate the showers. VAE and GAN-based

submissions Calo-VQ, Calo-VQ(norm), Geant4-Transformer and MDMA are much faster

in generation, but at the expense of shower quality. In the top-left corner, we see the

remaining submissions. While CaloClouds and iCaloFlow student are outperformed

by CaloVAE+INN, CaloScore single-shot, CaloPointFlow and conv. L2LFlows they

still show a decent trade-off of quality and generation speed. The latter group now

forms the Pareto front. The fastest among them is CaloVAE+INN. With a better shower

quality, but at slightly bigger generation time, we have CaloPointFlow and CaloScore

single-shot almost at the exact same spot, just slightly slower. Slowest of these four,

but best in quality, is conv. L2LFlows. For this high-dimensional dataset finding the

optimal point really influences the choice of generative architecture, since this group

consists of normalizing flows, a diffusion model, and a VAE.

11. Conclusions and Outlook

In this document, we summarize the results of the Fast Calorimeter Simulation

Challenge 2022. We present a broad survey of state-of-the-art generative AI

architectures on four different calorimeter shower datasets with dimensionalities ranging
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from a few hundred to a few tens of thousand voxels. The data has a few physics-specific

characteristics, like a high degree of sparsity, energy depositions in voxels spanning

several orders of magnitude, and correlations between voxels across several layers. With

about 15 submissions per dataset, and at least one submission for each type of generative

architecture (GAN, VAE, Normalizing Flow, Diffusion, and Conditional Flow Matching)

per dataset, this document provides the most detailed and complete survey of generative

AI for high-energy physics. It is complementary to the recent review in [13], as we are

able to evaluate all submitted generative models on the same footing.

First announced in February 2022, the challenge quickly motivated the first

publications using the dataset with CaloScore [49, 50], CaloFlow [33], and CaloMan [59].

More followed and were presented at the ML4Jets conference in November 2022 at

Rutgers [17]. While we first planned to close the challenge with the dedicated meeting

in Frascati [19] in May 2023, we saw a constant interest in the challenge with new

submissions being presented at ML4Jets in Hamburg in November 2023 [18]. In total, we

have received 59 submissions, sampled from 31 models, from 23 collaborations consisting

of researchers from the theory and the experimental communities, as well as from outside

academia. By now most of the submissions have been published by physics journals or

ML conferences, highlighting the high quality of the individual works.

While the main focus of this challenge was on generative models for calorimeter

showers, with the requirements of the (HL)-LHC and future colliders in mind, many

of the results will likely translate to other domains in high-energy physics in which

generative AI is used as well, such as generative unfolding [200, 201, 202, 203, 204, 205,

206, 207, 208, 209, 210, 211, 212], modeling of hadronization effects [213, 214, 215, 216,

217], end-to-end simulations like flashsim [218], or anomaly detection with generative

aspects [219, 220, 221]. CK: more?

11.1. Overall Physics Results

Since fast simulation frameworks are in the ideal case faithful, fast, and light-weight,

it was expected that with such ambitious objectives there will be no clear winner of

the CaloChallenge. Instead, our goal was to create a survey of different generative

architectures, their pros and cons, and especially their scaling behavior when increasing

the dimensionality of the dataset. Ultimately, the objectives of experiments will differ,

with some in need of high fidelity simulation, others prioritising the speed, trading off

physics accuracy to a certain extent.

For low-dimensional datasets, i.e. dataset 1 – photons with 368 voxels, we saw

that diffusion models like CaloDiffusion [43] and Normalizing Flow-based models like

CaloINN [37] have the best quality, meaning they reproduce the Geant4 distribution

most faithfully. The diffusion model has a rather small number of trainable parameters,

so it’s also more lightweight than the normalizing flow, but since generation requires

multiple steps and calls to the neural network, the diffusion model is much slower in

generation. The invertible architecture of CaloINN does not require multiple calls to
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the same neural network, it also avoids a more resource-consuming distillation step like

CaloFlow, making CaloINN the optimal submission for ds 1 – γ, see figure 111. GAN

and VAE-based architectures are in general also fast in generation, but do not produce

high-quality showers, making them less favorable if high fidelity is top priority.

For dataset 1 – pions, the situation is very similar. With 533 voxels, the dataset

is still relatively low-dimensional, so normalizing flows and diffusion models, namely

CaloINN [37] and CaloDiffusion [43] show again a good performance. In addition,

the VAE-based submission DNNCaloSim [61, 62] showed great performance in many

of the quality metrics. The statement regarding model size and generation speed of

dataset ds 1 – γ also applies here. The diffusion model does not need a lot of trainable

parameters, which makes it very lightweight. Generation speed, however, is lower due to

the subsequent denoising steps in generation. The normalizing flow, on the other hand,

is growing at least linearly in size with the dimensionality of the dataset, so it is now

already about 1.4 times bigger than for the photons. Nevertheless, it is still very fast

in generation, and, at least on the GPU, only marginally behind the well-performing

submission DNNCaloSim. This VAE-based model is the fastest in generation on the CPU

for all batch sizes and is only beaten marginally on the GPU for very large batch sizes.

It is midrange in terms of model size, with some GANs having fewer parameters and

most normalizing flows having more. It is also interesting to note that DNNCaloSim had

the best scores in the low-level binary AUC and the multiclass log-posterior, but had

worse scores for KPD and FPD, as well as the separation powers we looked at. In these

latter cases, CaloDiffusion, CaloFlow student [33], and CaloGraph [53] performed

better than DNNCaloSim.

Dataset 2 now increases the dimensionality by an order of magnitude to 6480. This

also increases the number of parameters in the so-far well-performing normalizing flow of

CaloINN [37] by an order of magnitude to about 2.7·108, making it the largest submission

for dataset 2. Nevertheless, it still gives the best trade-off in quality and generation speed

in figure 113. In terms of quality alone, the diffusion models CaloDiffusion [43] and

CaloScore [49, 50] as well as the conditional flow matching model CaloDREAM [68] have

better multiclass log-posteriors, KPD/FPD, and binary AUCs. However, in generation

all of these require multiple steps and hence they are slower than CaloINN. With the use

of distillation, CaloScore was able to speed up generation generation times by an order

of magnitude to CaloScore distilled and another order of magnitude to CaloScore

single-shot [49, 50] at the expense of a little shower quality. Similar techniques can

also be applied to CaloDiffusion and CaloDREAM, which would bring them closer to

CaloINN in figure 113. In terms of model size, MDMA [23, 24] needed by far the fewest

parameters, making it also the fastest in generation, especially for small batch sizes.

Dataset 3 increases the complexity of the showers by another order of magnitude,

to 40500 voxels. This was too big for the bijector in CaloINN, so it was not submitted

to this dataset. Diffusion and conditional flow matching models CaloDiffusion [43],

CaloScore distilled [49, 50], and CaloDREAM [68] show again the best shower quality,

but not the fastest generation. Splitting the entire shower into individual calorimeter



CONCLUSIONS AND OUTLOOK 128

layers makes the problem again manageable for a normalizing flow, as can be seen by

the good shower quality of conv. L2LFlows [31]. In terms of model sizes, MDMA [23, 24]

again is the smallest submission, followed by the VAE-based model Calo-VQ [57] and

its variant Calo-VQ(norm) [57] and then CaloDiffusion and CaloDREAM. In terms of

generation speed, GAN-based submission MDMA and VAE-based submissions Calo-VQ

and CaloVAE+INN [37] are the fastest, which is correlated to the model sizes. When

looking at the trade-off between quality and speed in figure 114, we see four submissions

competing with each other. Fastest, but worst in quality of those four is CaloVAE+INN.

In the center, we have CaloPointFlow [41] and CaloScore single-shot [49, 50],

and slowest, but best in quality, is conv. L2LFlows. The potential speed-up of

CaloDiffusion and CaloDREAM with model distillation, as discussed at the end of the

dataset 2 paragraph, also applies here.

Summarizing, there is no single submission that excels in all three types of metrics:

speed, quality, and size. Normalizing Flows show the best trade-off in sample quality

and generation speed, but since they have to train a bijective mapping they do not scale

well to higher dimensional datasets. Diffusion and conditional flow matching models

have the highest sample quality, but suffer from a slow generation process. GAN and

VAE-based submissions have fewer trainable parameters and are usually very fast in

generation, but that comes at the expense of shower quality. Even the best performing

model is not perfect for the high-dimensional datasets 2 and 3, so there is still a lot of

room for improvement in generative architectures to be even more faithful and resource-

efficient in the future.

Model distillation improves speed at expense of quality and we have seen some

submissions that use this technique already, while it could be applied to others, too.

Techniques like weight quantization or node pruning can have a large effect on the

resource requirements with some or little effect on the sample quality. This has not

been studied here and should be investigated more in the future.

11.2. Take-aways of the CaloChallenge beyond Detector Simulation

This challenge triggered the development and adaptation of a lot of generative

architectures to high-dimensional calorimeter shower data, leading to more than 20

publications in physics and ML journals or conferences, as well as talks at the central

machine learning conference in particle physics, ML4Jets [17, 18] and other specialized

workshops [19]. This collaborative effort was done by experimentalists, theorists, and

scientists working outside academia in industry alike, but mostly outside of the big

collaborations ATLAS and CMS. We hope that the presented results are useful for the

experiment-specific development of fast simulation frameworks in the future.

The challenge also provided four datasets that will now serve as benchmarks for

future generative models. Despite the large body of results we reported, there are

a few questions that this challenge cannot answer. For example, some submissions

(CaloPointFlow [41], MDMA [23, 24], DeepTree [27, 28], and CaloClouds [45, 46]) worked
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with point clouds instead of with the voxelized data that we provided. Since they did

not have access to the hits that Geant4 simulated before we voxelized the data, they

had to rely on suboptimal methods to create the point clouds. Further studies that

directly use the point clouds coming from Geant4 are needed to understand if that

had an effect on shower quality.

Something else we noticed but were unable to disentangle and study in detail was

the effect of model distillation. CaloScore distilled and CaloScore single-shot

were distilled from CaloScore and CaloFlow student and iCaloFlow student were

distilled from CaloFlow teacher and iCaloFlow teacher respectively. Since both,

samples from the original model and samples from the distilled version of the same

original model were submitted, there is a correlation between the scores of these

submissions. This is most visible in the multiclass classification metric, where original

and distilled model were sometimes confused with each other (see for example figure B3).

We also see it in the Pearson correlation coefficients of layer energies in figure 65

and figure 81, where the distinct pattern of CaloScore got worse with distillation.

The situation is, however, different for iCaloFlow, where the pattern got fainter with

distillation. Other metrics were also sometimes better, sometimes worse in distilled

versions, as previously seen also in [113]. We suspect that a smoothing that takes place

in distillation can improve an incorrectly learned feature. One way of disentangling such

effects would be to train multiple instances of the original model and use one for sample

generation of the submission and the other one for training the distilled model.

The irregular geometry of datasets 1 posed a special challenge, in particular for

models that were using 3-dimensional convolutions. While for example conv. L2LFlows

decided not to work on ds 1 – γ and ds 1 – π+ for that reason, CaloDiffusion came

up with a special solution to the problem. It also triggered some dedicated approaches

for irregular geometries, like for example CaloGraph.

In addition, we also gained more insights in the evaluation of generative models for

physics applications. We studied how different quality metrics, motivated by physics or

coming from computer science, correlate with each other.

11.3. Outlook to the Future

To serve as a benchmark for future developments in calorimeter simulation, we collected

the raw data that went into all the figures of section section 9 and tables in section C

in a pandas [222] dataframe that we publish together with the jupyter notebook [223]

required to reproduce the figures on the GitHub page of the CaloChallenge [224].

For a better understanding on the resource requirements and best working point

in the shower quality vs. generation speed trade-off, a full end-to-end implementation

in fast simulation frameworks of experiments is needed. Since the generation times

improve a lot for generating showers in batches, this should also be taken into account

properly. In that sense, the results presented here focus only on one single step of

the full fast simulation chain. The produced showers still need to be projected back
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into the detector geometry and the generative model needs to be embedded in the

appropriate software framework. These additional constraints go beyond the scope of

this challenge, but they are required to get a full picture on the impact of generative

AI in making the simulation faster. It could therefore very well be that sacrificing a

little performance for a better speed, or sacrificing some speed advantage for a better

performance is more beneficial when looking at the end-to-end performance. Also,

conditioning on more initial conditions, like for example the incident angle vs. training

more individual models can only be evaluated in a more complete framework. Another

practical question that arises is the computing architecture which will run the final fast

simulation. While inference clearly benefits GPU utilisation and large batch sizes, this

must be well incorporated in experiments’ computing workflows so that speed-up factors

can be maximised. In any case, further studies in all of these directions are therefore

needed, and the corresponding results are applicable well beyond (HL)-LHC.

It is also important to stress that while many figures of merit are presented in this

work, any experiment should not simply pick a technology but a careful evaluation

of several models should be carried out. The granularity of the calorimeters, the

geometry of the cells in the sub-systems and the overall detector geometry will impose

constraints on which models can be used. For example, ATLAS trains and runs 100

models (one per η slice) but has a relatively low detector granularity while CMS HGCAL

covers only a small region of the detector but has much higher granularity. Therefore,

ATLAS may struggle to handle hundreds of models with many parameters but will

be less affected by poor modelling of the shape, making some of the less performing

models better candidates. For HGCAL the opposite is true, although in this case the

complex geometry of the calorimeter may require additional studies for the voxelisation

strategy. What needs to be mentioned here is an important work of the LHCb on

the implementation of the workflow presented in the Par04 example of Geant4 into

their simulation framework, featuring a Par04-inspired VAE model [225]. This allows

them to test any of the models submitted to the CaloChallenge, looking not only at the

simulation level observables, but at the broader spectrum of important variables that

are typically a part of validation chain.

To summarize, we are very excited to have received so many different submissions to

the CaloChallenge. We now have a full toolbox with successful examples: and their code

as well as a detailed set of comparisons of various different approaches for experiments

and other interested users to try out. It will be highly exciting to see how these

methods evolve in the future and how they are deployed in experiments, expanding

our understanding of Nature by improved simulation techniques!
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A. Histograms of high-level features

Here we show the histograms of the high-level features that were used to compute the

separation powers in section 8.1. In particular, we show the distributions of the Geant4

training and evaluation datasets. The exact same binning was chosen to compute the

separation powers with (36).
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A.1. Dataset 1, photons (ds 1 – γ)
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Figure A1: Distribution of Geant4 training and evaluation data in layer energies Ei,

ratio of total deposited energy to incident energy, sparsity, and energy per voxel for ds1

— photons.
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Figure A2: Distribution of Geant4 training and evaluation data in centers of energy

along η and ϕ, as well as the widths of these distributions for ds1 — photons.
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Figure A3: Distribution of Geant4 training and evaluation data in centers of energy

along the radial direction, as well as their widths for ds1 — photons.
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A.2. Dataset 1, pions (ds 1 – π+)
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Figure A4: Distribution of Geant4 training and evaluation data in layer energies Ei,

and ratio of total deposited energy to incident energy for ds1 — pions.
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Figure A5: Distribution of Geant4 training and evaluation data in sparsity and energy

per voxel for ds1 — pions.
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Figure A6: Distribution of Geant4 training and evaluation data in centers of energy

along η and ϕ, as well as their widths for ds1 — pions.
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Figure A7: Distribution of Geant4 training and evaluation data in centers of energy

along the radial direction, as well as their widths for ds1 — pions.
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A.3. Dataset 2, electrons (ds 2)
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Figure A8: Distribution of Geant4 training and evaluation data in ratio of total

deposited energy to incident energy and energy per voxel for ds2.
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Figure A9: Distribution of Geant4 training and evaluation data in layer energies Ei

for ds2.
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Figure A10: Distribution of Geant4 training and evaluation data in centers of energy

in η direction for ds2.
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Figure A11: Distribution of Geant4 training and evaluation data in width of the

centers of energy in η direction for ds2.
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Figure A12: Distribution of Geant4 training and evaluation data in centers of energy

in ϕ direction for ds2.
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Figure A13: Distribution of Geant4 training and evaluation data in width of the

centers of energy in ϕ direction for ds2.
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Figure A14: Distribution of Geant4 training and evaluation data in centers of energy

in r direction for ds2.
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Figure A15: Distribution of Geant4 training and evaluation data in width of the

centers of energy in r direction for ds2.
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Figure A16: Distribution of Geant4 training and evaluation data in sparsity for ds2.
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A.4. Dataset 3, electrons (ds 3)
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Figure A17: Distribution of Geant4 training and evaluation data in ratio of total

deposited energy to incident energy and energy per voxel for ds3.
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Figure A18: Distribution of Geant4 training and evaluation data in layer energies Ei

for ds3.
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Figure A19: Distribution of Geant4 training and evaluation data in centers of energy

in η direction for ds3.
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Figure A20: Distribution of Geant4 training and evaluation data in width of the

centers of energy in η direction for ds3.
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Figure A21: Distribution of Geant4 training and evaluation data in centers of energy

in ϕ direction for ds3.



APPENDIX 154

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 0

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 1

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 2

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 3

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 4

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 5

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 6

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 7

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 8

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 9

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 10

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 11

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 12

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 13

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 14

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 15

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 16

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 17

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 18

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 19

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

Width of Center of Energy in  in layer 20

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in  in layer 21

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in  in layer 22

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100
Width of Center of Energy in  in layer 23

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 24

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 25

0 5 10 15 20 25 30

[mm]

10 4

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 26

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 27

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 28

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 29

0 5 10 15 20 25 30

[mm]
10 4

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 30

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 31

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 32

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 33

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 34

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 35

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 36

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 37

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 38

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 39

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 40

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 41

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 42

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 43

0 5 10 15 20 25 30

[mm]

10 3

10 2

10 1

100

Width of Center of Energy in  in layer 44

training evaluation

Figure A22: Distribution of Geant4 training and evaluation data in width of the

centers of energy in ϕ direction for ds3.
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Figure A23: Distribution of Geant4 training and evaluation data in centers of energy

in r direction for ds3.
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Figure A24: Distribution of Geant4 training and evaluation data in width of the

centers of energy in r direction for ds3.
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Figure A25: Distribution of Geant4 training and evaluation data in sparsity for ds3.
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B. Consistency check of the multiclass classifier

A well-trained multiclass classifier identifies samples from each submission correctly.

We show this test here in terms of the log posterior of (38). We show the mean and

standard deviation of ten independent trainings and subsequent determination of the

log posterior. In figure B1 to figure B6 we show all log posteriors in terms of confusion

matrices. The consistency condition of (39) can be read line by line in them: In each

line, the largest entry is in the diagonal position. This holds for all tests, except for

the DNN classifier of dataset 2, where a CaloScore submission was confused as being

CaloDREAM, which could bias the test with the Geant4 dataset towards CaloDREAM. In

addition, there are a few cases where a class confusion is within error bars, but these

concern mostly models that are distilled versions from each other, most notably between

CaloScore distilled and CaloScore single-shot for both, datasets 2 and 3.
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Figure B1: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 1 – γ.
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Figure B2: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 1 – π+.
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Figure B3: Log posteriors for evaluating the DNN multiclass classifier on submission

test sets for ds 2.
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Figure B4: Log posteriors for evaluating the CNN ResNet multiclass classifier on

submission test sets for ds 2.
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C. Numerical Results in Tables

In this appendix we show tables with all the results that went into the figures of section 9.

C.1. Dataset 1, photons (ds 1 – γ)

Table C1: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 1 –

γ, averaged over 10 independent evaluation runs. For visualization, see Figure 38.

Submission low-level AUC ↓ high-level AUC ↓
Geant4 0.499± 0.002 0.499± 0.003

CaloDiffusion [43] 0.635± 0.003 0.536± 0.003

CaloINN [37] 0.626± 0.004 0.638± 0.003

Calo-VQ [57] 0.998± 0.000 0.989± 0.001

CaloScore [49, 50] 0.751± 0.002 0.552± 0.005

CaloScore distilled [49, 50] 0.816± 0.004 0.641± 0.003

CaloScore single-shot [49, 50] 0.866± 0.003 0.726± 0.004

CaloFlow teacher [33] 0.733± 0.003 0.636± 0.002

CaloFlow student [33] 0.761± 0.002 0.667± 0.004

CaloMan [59] 1.000± 0.000 0.999± 0.000

BoloGAN [26] 0.927± 0.003 0.966± 0.001

CaloShower2GAN [21] 0.938± 0.004 0.942± 0.002

CaloShower3GAN [21] 0.928± 0.004 0.947± 0.002

CaloVAE+INN [37] 0.889± 0.003 0.966± 0.001

CaloForest [70] 0.845± 0.002 0.924± 0.002

CaloGraph [53] 0.820± 0.002 0.672± 0.004
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Table C2: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – γ. For

visualization, see Figure 39.

Submission KPD ·103 ↓ FPD ·103↓
Geant4 0.0279± 0.0592 0.1192± 0.0534

CaloDiffusion [43] −0.0100± 0.0515 0.6497± 0.1308

CaloINN [37] 0.2327± 0.2165 3.8974± 0.1707

Calo-VQ [57] 2.4053± 0.1363 35.9531± 0.3235

CaloScore [49, 50] 0.0008± 0.0579 0.4381± 0.1296

CaloScore distilled [49, 50] 0.0319± 0.0504 1.1200± 0.1310

CaloScore single-shot [49, 50] 0.2214± 0.0537 3.0866± 0.1348

CaloFlow teacher [33] 0.0824± 0.0679 3.1124± 0.0938

CaloFlow student [33] 0.0902± 0.0723 3.1512± 0.1080

CaloMan [59] 11.1063± 0.5458 141.3752± 0.4676

BoloGAN [26] 11.6268± 1.1852 142.4424± 1.3268

CaloShower2GAN [21] 2.8025± 0.4946 52.0972± 0.3547

CaloShower3GAN [21] 1.1561± 0.2029 20.5146± 0.3082

CaloVAE+INN [37] 1.2138± 0.0542 14.5877± 0.1710

CaloForest [70] 2.2297± 0.3132 33.5196± 0.5523

CaloGraph [53] 1.1558± 0.2367 15.7884± 0.2592

Table C3: Log-posterior scores for ds 1 – γ Geant4 test data, averaged over 10

independent classifier trainings. For visualization, see Figure 40.

Submission Log-posterior ↑
CaloDiffusion [43] −2.1893± 0.0053

CaloINN [37] −2.2046± 0.0083

Calo-VQ [57] −17.9096± 0.4605

CaloScore [49, 50] −3.3126± 0.0254

CaloScore distilled [49, 50] −4.2047± 0.0408

CaloScore single-shot [49, 50] −5.4383± 0.0507

CaloFlow teacher [33] −2.7946± 0.0133

CaloFlow student [33] −2.9796± 0.0143

CaloMan [59] −30.3461± 1.5767

BoloGAN [26] −9.7551± 0.3416

CaloShower2GAN [21] −7.1072± 0.1705

CaloShower3GAN [21] −6.7926± 0.1889

CaloVAE+INN [37] −5.2225± 0.1405

CaloForest [70] −3.6188± 0.0307

CaloGraph [53] −3.5833± 0.0310
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Table C4: Precision, density, recall, and coverage for ds 1 – γ submissions. A

visualization is shown in figure 41.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.704 0.992 0.699 0.964

CaloDiffusion [43] 0.730 1.152 0.665 0.974

CaloINN [37] 0.607 0.831 0.716 0.911

Calo-VQ [57] 0.957 115.883 0.003 0.952

CaloScore [49, 50] 0.662 0.891 0.708 0.939

CaloScore distilled [49, 50] 0.613 0.781 0.722 0.907

CaloScore single-shot [49, 50] 0.482 0.441 0.807 0.782

CaloFlow teacher [33] 0.595 0.799 0.718 0.913

CaloFlow student [33] 0.617 0.859 0.701 0.912

CaloMan [59] 0.888 612.387 0.010 0.888

BoloGAN [26] 0.207 0.315 0.194 0.411

CaloShower2GAN [21] 0.761 72.665 0.036 0.832

CaloShower3GAN [21] 0.734 65.729 0.039 0.795

CaloVAE+INN [37] 0.873 73.873 0.139 0.973

CaloForest [70] 0.906 17.494 0.186 0.957

CaloGraph [53] 0.657 0.982 0.670 0.933
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Table C5: Number of trainable parameters in training and for generation for ds 1 – γ

submissions. A visualization is shown in figure 42.

number of parameters ↓
Submission total generator only

CaloDiffusion [43] 521581 521 581

CaloINN [37] 18 821 350 18 821 350

Calo-VQ [57] 4 060 878 2 152 637

CaloScore [49, 50] 2 447 366 2 447 366

CaloScore distilled [49, 50] 4 894 732 2 447 366

CaloScore single-shot [49, 50] 4 894 732 2 447 366

CaloFlow teacher [33] 28 043 810 28 043 810

CaloFlow student [33] 84 500 898 56 554 930

CaloMan [59] 19 276 658 17 061 148

BoloGAN [26] 1 185 520 368 558

CaloShower2GAN [21] 1 183 606 367380

CaloShower3GAN [21] 1 696 459 472 120

CaloVAE+INN [37] 15 747 908 8 321 308

CaloForest [70] 3 837 598 845 3 837 598 845

CaloGraph [53] 823 617 823 617
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Table C6: Timing of ds 1 – γ submissions on a CPU. The symbols ∗, †, ‡, and ⋄ indicate

that only 1000 / 10 000 / 20 000 / 50 000 events were generated in timing the submission.

A visualization of these timings is shown in figure 43.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 15 677± 633† 4266± 106† 4500± 357‡

CaloINN [37] 37.9±3.2 2.78± 0.34 2.88± 0.31

Calo-VQ [57] 93.6± 5.6 10.4± 1.8 14.1± 3.1

CaloScore [49, 50] 19 324± 729∗ 9425± 322∗ 12 871± 1197†

CaloScore distilled [49, 50] 2456± 178† 1078± 54† 1276± 190‡

CaloScore single-shot [49, 50] 223.3± 10.1 20.5± 2.0 19.8± 3.5

CaloFlow teacher [33] 42 875± 3085∗ 2053± 171† 1912± 141‡

CaloFlow student [33] 575.9± 22.2 11.1± 1.3 6.11± 0.60

CaloMan [59] 186.5± 31.8 3.20± 0.51 1.46± 0.16

BoloGAN [26] 105.5± 6.5 1.73±0.10 0.55±0.03

CaloShower2GAN [21] 582.0± 9.4† 65.6± 3.2 1.28± 0.07

CaloShower3GAN [21] 480.0± 19.5† 55.5± 2.9 1.20± 0.07

CaloVAE+INN [37] 38.0±3.2 1.58±0.14 1.20± 0.11

CaloForest [70] 28 400± 916∗ 308.1± 17.4 27.3± 1.7

CaloGraph [53] 3250± 277† 914.4± 70.2† 1382± 83⋄
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Table C7: Timing of ds 1 – γ submissions on a GPU. The symbols ∗ and ‡ indicate

that only 5000 or 10 000 events were generated in timing the submission; a – indicates

a model that does not run on a GPU; and “CUDA o.o.m” ran out of VRAM on the

GPU. A visualization of these timings is shown in figure 43.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 5593± 64∗ 75.2± 2.1 24.4± 0.1

CaloINN [37] 24.6±1.6 0.51±0.03 0.19± 0.01

Calo-VQ [57] 48.2± 0.6 0.81± 0.08 0.16±0.01

CaloScore [49, 50] 4706± 171∗ 60.4± 4.1 36.00± 0.01

CaloScore distilled [49, 50] 756.6± 22.8 8.8± 0.2 4.96± 0.02

CaloScore single-shot [49, 50] 189.4± 12.5 2.0± 0.0 0.56± 0.02

CaloFlow teacher [33] 4193± 130∗ 45.5± 1.1 8.13± 0.03

CaloFlow student [33] 56.9± 0.5 0.79± 0.01 0.26± 0.10

CaloMan [59] 76.0± 1.1 1.04± 0.08 0.30± 0.25

BoloGAN [26] 286.1± 12.3 2.26± 0.48 0.53± 0.03

CaloShower2GAN [21] 611.6± 44‡ 70.8± 1.8 1.71± 0.67

CaloShower3GAN [21] 518.8± 44.7‡ 63.8± 1.2 1.49± 0.05

CaloVAE+INN [37] 34.0± 0.4 0.64± 0.02 0.26± 0.01

CaloForest [70] – – –

CaloGraph [53] 1633± 25‡ 25.0± 0.4 CUDA o.o.m.
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C.2. Dataset 1, pions (ds 1 – π+)

Table C8: Low-level and high-level AUCs for evaluating Geant4 vs. submission of ds 1 –

π+, averaged over 10 independent evaluation runs. For visualization, see Figure 51.

Submission low-level AUC ↓ high-level AUC ↓
Geant4 0.609± 0.004 0.558± 0.002

CaloDiffusion [43] 0.680± 0.002 0.652± 0.006

CaloINN [37] 0.784± 0.002 0.732± 0.002

Calo-VQ [57] 0.958± 0.002 0.976± 0.001

CaloFlow teacher [33] 0.845± 0.002 0.797± 0.002

CaloFlow student [33] 0.884± 0.002 0.827± 0.004

CaloMan [59] 0.999± 0.000 0.999± 0.000

BoloGAN [26] 0.913± 0.002 0.969± 0.001

DNNCaloSim [61, 62] 0.676± 0.004 0.819± 0.002

CaloShowerGAN [21] 0.889± 0.002 0.922± 0.001

CaloVAE+INN [37] 0.853± 0.003 0.921± 0.002

CaloForest [70] 0.909± 0.002 0.965± 0.001

CaloGraph [53] 0.811± 0.005 0.763± 0.002

Table C9: KPD and FPD for evaluating Geant4 vs. submission of ds 1 – π+. For

visualization, see Figure 52.

Submission KPD ·103 ↓ FPD ·103↓
Geant4 −0.0075± 0.0362 0.5110± 0.0730

CaloDiffusion [43] 0.0893± 0.0572 2.7746± 0.0922

CaloINN [37] 1.4781± 0.2448 29.2598± 0.2133

Calo-VQ [57] 6.2679± 0.2652 126.9924± 0.6750

CaloFlow teacher [33] 0.8083± 0.0923 25.6634± 0.3002

CaloFlow student [33] 0.9937± 0.0846 25.6868± 0.2292

CaloMan [59] 31.1636± 0.9840 524.4263± 0.9067

BoloGAN [26] 25.2457± 0.9748 498.6887± 2.9504

DNNCaloSim [61, 62] 20.0149± 1.0029 464.6882± 2.2500

CaloShowerGAN [21] 3.0518± 0.1067 113.2271± 0.6673

CaloVAE+INN [37] 4.3241± 0.2868 82.9985± 0.8746

CaloForest [70] 9.5250± 0.9264 204.7435± 1.6359

CaloGraph [53] 0.8500± 0.2796 22.3235± 0.4428
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Table C10: Log-posterior scores for ds 1 – π+ Geant4 test data, averaged over 10

independent classifier trainings. For visualization, see Figure 53.

Submission Log-posterior ↑
CaloDiffusion [43] −2.3189± 0.0135

CaloINN [37] −3.0949± 0.0234

Calo-VQ [57] −8.5998± 0.1748

CaloFlow teacher [33] −3.7110± 0.0316

CaloFlow student [33] −4.5623± 0.0365

CaloMan [59] −25.9528± 1.0659

BoloGAN [26] −8.0202± 0.1331

DNNCaloSim [61, 62] −1.9262± 0.0239

CaloShowerGAN [21] −4.7157± 0.0807

CaloVAE+INN [37] −4.0618± 0.0511

CaloForest [70] −4.8811± 0.0406

CaloGraph [53] −3.4762± 0.0360

Table C11: Precision, density, recall, and coverage for ds 1 – π+ submissions. A

visualization is shown in figure 54.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.643 0.782 0.739 0.913

CaloDiffusion [43] 0.632 0.750 0.743 0.895

CaloINN [37] 0.474 0.474 0.789 0.734

Calo-VQ [57] 0.954 54.862 0.134 0.947

CaloFlow teacher [33] 0.394 0.390 0.799 0.621

CaloFlow student [33] 0.414 0.445 0.772 0.625

CaloMan [59] 0.669 27.709 0.133 0.584

BoloGAN [26] 0.268 0.487 0.335 0.386

DNNCaloSim [61, 62] 0.945 0.788 1.000 0.931

CaloShowerGAN [21] 0.710 2.803 0.185 0.855

CaloVAE+INN [37] 0.709 5.857 0.416 0.808

CaloForest [70] 0.643 1.625 0.490 0.661

CaloGraph [53] 0.626 0.800 0.687 0.827
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Table C12: Number of trainable parameters in training and for generation for ds 1 – π+

submissions. A visualization is shown in figure 55.

number of parameters ↓
Submission total generator only

CaloDiffusion [43] 525901 525901

CaloINN [37] 26 592 624 26 592 624

Calo-VQ [57] 4 314 739 2 237 538

CaloFlow teacher [33] 57 079 326 57 079 326

CaloFlow student [33] 110 389 398 53 426 622

CaloMan [59] 18 452 248 16 032 327

BoloGAN [26] 1 678 334 848 733

DNNCaloSim [61, 62] 6 052 063 3 169 663

CaloShowerGAN [21] 1 715 742 880 541

CaloVAE+INN [37] 17 426 875 9 165 275

CaloForest [70] 5 297 822 388 5 297 822 388

CaloGraph [53] 823 617 823 617

Table C13: Timing of ds 1 – π+ submissions on a CPU. The symbols ⋄, ‡, ∗, and †

indicate that only 100 / 1000 / 10 000 / 20 000 events were generated in timing the

submission. A visualization of these timings is shown in figure 56.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 15 144± 1126‡ 4571± 333∗ 4501± 181†

CaloINN [37] 42.8± 2.9 3.92± 0.36 4.57± 0.3

Calo-VQ [57] 108.2± 10.5 12.7± 1.4 16.5± 4.3

CaloFlow teacher [33] 197 570± 34 423⋄ 5430± 489∗ 3509± 177†

CaloFlow student [33] 620.1± 18.4 14.2± 2.2 10.2± 0.6

CaloMan [59] 605.5± 38.3 12.1± 1.3 7.38± 0.54

BoloGAN [26] 79.6± 3.1 1.38± 0.05 0.49± 0.03

DNNCaloSim [61, 62] 3.85±0.96 0.47±0.04 0.39±0.03

CaloShowerGAN [21] 1163± 301∗ 70.7± 6.3 1.60± 0.07

CaloVAE+INN [37] 40.8± 1.1 1.72± 0.14 1.20± 0.14

CaloForest [70] 37 876± 1905∗ 432.8± 22.9 41.2± 4.2

CaloGraph [53] 3168± 135∗ 1263± 112∗ 2419± 153†
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Table C14: Timing of ds 1 – π+ submissions on a GPU. The symbols ∗, ‡, and † indicate

that only 4000 / 5000 / 10 000 events were generated in timing the submission; a –

indicates a model that does not run on a GPU; and “CUDA o.o.m” ran out of VRAM

on the GPU. A visualization of these timings is shown in figure 56.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 5673± 49‡ 76.9± 2.2 27.0± 0.2

CaloINN [37] 24.7± 2.0 0.44± 0.01 0.20±0.01

Calo-VQ [57] 53.3± 0.8 0.83± 0.05 0.18±0.01

CaloFlow teacher [33] 6166± 112∗ 70.1± 1.0 17.7± 0.0

CaloFlow student [33] 77.4± 3.6 1.00± 0.02 0.25± 0.08

CaloMan [59] 181.4± 3.6 2.07± 0.02 0.27± 0.01

BoloGAN [26] 209.5± 12.9 1.59± 0.13 0.48± 0.03

DNNCaloSim [61, 62] 2.34±0.17 0.32±0.01 0.29± 0.01

CaloShowerGAN [21] 1119± 56† 122.6± 1.5 2.06± 0.06

CaloVAE+INN [37] 34.2± 0.5 0.68± 0.02 0.27± 0.01

CaloForest [70] – – –

CaloGraph [53] 1475± 22† 28.4± 0.02 CUDA o.o.m.

C.3. Dataset 2, electrons (ds 2)
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Table C15: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 2, averaged over 10 independent evaluation runs. For visualization, see Figure 66.

Submission
AUC ↓

low-level high-level ResNet

Geant4 0.500± 0.002 0.499± 0.002 0.500± 0.004

CaloDiffusion [43] 0.577± 0.004 0.591± 0.009 0.680± 0.006

conv. L2LFlows [31] 0.708± 0.004 0.737± 0.002 0.941± 0.003

CaloINN [37] 0.743± 0.002 0.865± 0.003 0.994± 0.000

MDMA [23, 24] 0.942± 0.005 0.987± 0.001 1.000± 0.000

Calo-VQ [57] 0.986± 0.001 0.994± 0.000 0.999± 0.000

CaloScore [49, 50] 0.595± 0.003 0.666± 0.002 0.795± 0.011

CaloScore distilled [49, 50] 0.710± 0.002 0.891± 0.003 0.965± 0.002

CaloScore single-shot [49, 50] 0.747± 0.003 0.902± 0.002 0.973± 0.002

iCaloFlow teacher [34] 0.763± 0.004 0.837± 0.005 0.970± 0.002

iCaloFlow student [34] 0.819± 0.004 0.886± 0.003 0.975± 0.002

SuperCalo [39] 0.694± 0.006 0.757± 0.004 0.986± 0.001

DeepTree [27, 28] 0.963± 0.002 0.927± 0.002 0.999± 0.000

CaloPointFlow [41] 0.863± 0.005 0.908± 0.004 0.999± 0.000

CaloVAE+INN [37] 0.907± 0.004 1.000± 0.000 0.993± 0.001

CaloLatent [66] 0.983± 0.001 0.995± 0.001 1.000± 0.000

CaloDiT [55] 0.984± 0.001 0.912± 0.002 0.988± 0.001

CaloDREAM [68] 0.531± 0.003 0.521± 0.002 0.681± 0.015



APPENDIX 176

Table C16: KPD and FPD for evaluating Geant4 vs. submission of ds 2. For

visualization, see Figure 67.

Submission KPD ·103 ↓ FPD ·103 ↓
Geant4 −0.0276± 0.0215 10.7760± 0.7901

CaloDiffusion [43] 0.1741± 0.0422 146.9334± 0.8703

conv. L2LFlows [31] 0.2705± 0.0897 157.4047± 0.9684

CaloINN [37] 2.8210± 0.4194 732.8274± 5.3303

MDMA [23, 24] 4.9624± 0.2728 864.9781± 5.1452

Calo-VQ [57] 8.5212± 0.5043 1315.7233± 7.0344

CaloScore [49, 50] 0.1486± 0.0568 112.4790± 0.9080

CaloScore distilled [49, 50] 1.0129± 0.0738 638.8525± 1.5996

CaloScore single-shot [49, 50] 0.9294± 0.0684 546.2661± 1.9396

iCaloFlow teacher [34] 0.5679± 0.1375 377.0613± 1.8961

iCaloFlow student [34] 1.0406± 0.2190 449.2585± 3.2844

SuperCalo [39] 0.5564± 0.1900 300.8183± 2.7275

DeepTree [27, 28] 0.6803± 0.1285 292.6319± 2.9330

CaloPointFlow [41] 0.3241± 0.0392 494.0547± 1.7906

CaloVAE+INN [37] 45.6091± 0.8315 5443.4295± 27.2305

CaloLatent [66] 2.8791± 0.1998 962.9750± 2.4089

CaloDiT [55] 11.0322± 0.4274 1690.9873± 6.7650

CaloDREAM [68] 0.0231± 0.0364 24.6488± 1.0350
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Table C17: Log-posterior scores for ds 2 Geant4 test data, averaged over 10

independent DNN classifier trainings. For visualization, see Figure 68.

Submission Log-posterior ↑
CaloDiffusion [43] −2.5226± 0.0094

conv. L2LFlows [31] −3.1295± 0.0219

CaloINN [37] −3.2032± 0.0153

MDMA [23, 24] −7.4399± 0.3234

Calo-VQ [57] −11.8863± 0.2627

CaloScore [49, 50] −2.8415± 0.0238

CaloScore distilled [49, 50] −3.4226± 0.0556

CaloScore single-shot [49, 50] −3.5974± 0.0685

CaloDREAM [68] −2.4102± 0.0105

iCaloFlow teacher [34] −3.6423± 0.0286

iCaloFlow student [34] −4.2617± 0.0360

SuperCalo [39] −2.8204± 0.0237

CaloDiT [55] −22.1206± 0.4549

DeepTree [27, 28] −10.5062± 0.2094

CaloPointFlow [41] −5.2306± 0.1996

CaloVAE+INN [37] −6.4103± 0.1439

CaloLatent [66] −11.6683± 0.2679
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Table C18: Log-posterior scores for ds 2 Geant4 test data, averaged over 10

independent CNN ResNet classifier trainings. For visualization, see Figure 69.

Submission Log-posterior ↑
CaloDiffusion [43] −1.9901± 0.2358

conv. L2LFlows [31] −2.4500± 0.1546

CaloINN [37] −7.2706± 0.4780

MDMA [23, 24] −9.3476± 0.4435

Calo-VQ [57] −7.0740± 0.4898

CaloScore [49, 50] −2.1544± 0.1303

CaloScore distilled [49, 50] −4.1027± 0.4292

CaloScore single-shot [49, 50] −4.6509± 0.4837

CaloDREAM [68] −1.9761± 0.1203

iCaloFlow teacher [34] −3.9376± 0.2385

iCaloFlow student [34] −4.6476± 0.2627

SuperCalo [39] −4.4702± 0.4064

CaloDiT [55] −5.8461± 0.5629

DeepTree [27, 28] −8.5889± 0.6987

CaloPointFlow [41] −9.0910± 0.4704

CaloVAE+INN [37] −6.9001± 0.3468

CaloLatent [66] −8.2169± 0.5325
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Table C19: Precision, density, recall, and coverage for ds 2 submissions. A visualization

is shown in figure 70.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.239 1.021 0.241 0.971

CaloDiffusion [43] 0.239 1.236 0.235 0.933

conv. L2LFlows [31] 0.231 1.656 0.177 0.969

CaloINN [37] 0.193 4.573 0.090 0.957

MDMA [23, 24] 0.003 0.009 0.937 0.033

Calo-VQ [57] 0.345 254.397 0.217 0.868

CaloScore [49, 50] 0.228 1.013 0.228 0.933

CaloScore distilled [49, 50] 0.197 1.407 0.181 0.880

CaloScore single-shot [49, 50] 0.171 1.056 0.208 0.852

iCaloFlow teacher [34] 0.152 0.809 0.253 0.817

iCaloFlow student [34] 0.155 1.354 0.253 0.827

SuperCalo [39] 0.120 0.347 0.310 0.692

DeepTree [27, 28] 0.003 0.013 0.834 0.045

CaloPointFlow [41] 0.016 0.575 0.335 0.487

CaloVAE+INN [37] 0.739 1793.855 0.026 0.961

CaloLatent [66] 0.016 0.176 0.622 0.235

CaloDiT [55] 0.500 10.228 0.060 0.924

CaloDREAM [68] 0.253 1.146 0.220 0.976
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Table C20: Number of trainable parameters in training and for generation for ds 2

submissions. A visualization is shown in figure 71.

number of parameters ↓
Submission total generator only

CaloDiffusion [43] 517 969 517 969

conv. L2LFlows [31] 158 017 226 158 017 226

CaloINN [37] 270 999 370 270 999 370

MDMA [23, 24] 108656 66416

Calo-VQ [57] 3 317 546 1 231 433

CaloScore [49, 50] 14 436 206 14 436 206

CaloScore distilled [49, 50] 28 872 412 14 436 206

CaloScore single-shot [49, 50] 28 872 412 14 436 206

iCaloFlow teacher [34] 19 470 168 19 470 168

iCaloFlow student [34] 41 237 080 24 519 512

SuperCalo [39] 87 465 608 87 465 608

DeepTree [27, 28] 2 240 496 527 676

CaloPointFlow [41] 14 215 334 14 215 334

CaloVAE+INN [37] 96 356 674 48 393 824

CaloLatent [66] 10 707 408 1 942 402

CaloDiT [55] 1 221 544 1 221 544

CaloDREAM [68] 28 427 393 28 427 393
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Table C21: Timing of ds 2 submissions on a CPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission. “LLVM: o.o.m.” crashes with

an LLVM out of memory error, “o.o.m.” crashes with an memory allocation error,

“> 17 280” translates to >48h/batch. A visualization of these timings is shown in

figure 72.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 36 502± 2127(1000) 23 317± 3343(1000) > 17 280

conv. L2LFlows [31] 1969± 234(10 000) 121.2± 4.4 89.2± 13.2

CaloINN [37] 387.7± 31.6 59.7± 10.1 46.2± 0.7

MDMA [23, 24] 14.3±0.6 19.9± 5.3 32.4± 4.5

Calo-VQ [57] 168.4± 7.3 26.1± 1.2 36.2± 9.6

CaloScore [49, 50] 133 549± 5286(1000) 147 694± 12 981(500) LLVM: o.o.m.

CaloScore distilled [49, 50] 16 785± 388(10 000) 17 989± 595(1000) LLVM: o.o.m.

CaloScore single-shot [49, 50] 406.6± 14.3 278.0± 16.6 LLVM: o.o.m.

iCaloFlow teacher [34] 250 171± 18 156(100) 11 614± 380(1000) 8179± 164(20 000)

iCaloFlow student [34] 3048± 102(10 000) 135.2± 4.9 77.6± 1.5

SuperCalo [39] 397 940± 114 537(100) 7988± 470(1000) 7609± 663(20 000)

DeepTree [27, 28] 67.5± 3.4 38.3± 3.3 48.4± 3.9

CaloPointFlow [41] 154.6± 5.6 161.1± 25.2 132.6± 27.0

CaloVAE+INN [37] 64.1± 3.9 4.60±0.19 3.38±0.31

CaloLatent [66] 6611± 577(10 000) 541.3± 54.9 LLVM: o.o.m.

CaloDiT [55] 24 642± 1883(1000) 33 355± 4854(1000) o.o.m.

CaloDREAM [68] 16 942± 1707(1000) 5052± 496(10 000) 5727± 271(20 000)
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Table C22: Timing of ds 2 submissions on a GPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission, “CUDA o.o.m.” ran out of

VRAM on the GPU; and “array o.o.m.” crashed because created arrays were too large.

A visualization of these timings is shown in figure 72.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 5291± 88(5000) 99.5± 1.8 CUDA o.o.m.

conv. L2LFlows [31] 1409± 29(10 000) 14.2± 0.1 1.64± 0.01

CaloINN [37] 53.4± 0.9 1.18±0.03 0.65± 0.03

MDMA [23, 24] 6.4±0.1 1.2±0.1 CUDA o.o.m.

Calo-VQ [57] 72.8± 1.0 1.1±0.1 0.36±0.01

CaloScore [49, 50] 2389± 92(5000) 241.3± 0.6 array o.o.m.

CaloScore distilled [49, 50] 470.6± 37.5(50 000) 31.9± 0.3 array o.o.m.

CaloScore single-shot [49, 50] 138.2± 3.0 2.5± 0.1 array o.o.m.

iCaloFlow teacher [34] 77 016± 3447(100) 829.4± 16.7(10 000) 56.1± 0.1

iCaloFlow student [34] 1127± 12(10 000) 13.2± 0.5 1.45± 0.05

SuperCalo [39] 8508± 77(1000) 103.0± 1.6 CUDA o.o.m.

DeepTree [27, 28] 37.3± 0.9 5.82± 0.14 CUDA o.o.m.

CaloPointFlow [41] 49.9± 1.2 3.00± 0.04 CUDA o.o.m.

CaloVAE+INN [37] 41.5± 0.5 1.22± 0.03 0.77± 0.02

CaloLatent [66] 8497± 79(2500) 79.8± 8.5 array o.o.m.

CaloDiT [55] 1036± 18(25 000) 179.0± 0.7 CUDA o.o.m.

CaloDREAM [68] 4846± 47(10 000) 74.3± 0.8 CUDA o.o.m.
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C.4. Dataset 3, electrons (ds 3)

Table C23: Low-level and high-level AUCs for evaluating Geant4 vs. submission of

ds 3, averaged over 10 independent evaluation runs. For visualization, see Figure 82.

Submission
AUC ↓

low-level high-level ResNet

Geant4 0.498± 0.002 0.500± 0.003 0.499± 0.002

CaloDiffusion [43] 0.561± 0.003 0.607± 0.005 0.656± 0.015

L2LFlows-MAF [30, 31] 0.720± 0.016 0.946± 0.002 1.000± 0.000

conv. L2LFlows [31] 0.588± 0.004 0.733± 0.006 0.919± 0.003

MDMA [23, 24] 0.944± 0.002 0.987± 0.001 1.000± 0.000

CaloClouds [45, 46] 0.865± 0.005 0.980± 0.001 1.000± 0.000

Calo-VQ [57] 0.996± 0.001 0.998± 0.000 1.000± 0.000

Calo-VQ(norm) [57] 0.975± 0.003 0.994± 0.000 1.000± 0.000

CaloScore distilled [49, 50] 0.776± 0.005 0.924± 0.002 0.994± 0.001

CaloScore single-shot [49, 50] 0.807± 0.005 0.939± 0.001 0.995± 0.002

iCaloFlow teacher [34] 0.911± 0.003 0.962± 0.001 1.000± 0.000

iCaloFlow student [34] 0.891± 0.003 0.971± 0.001 1.000± 0.000

Geant4-Transformer [64] 0.886± 0.011 1.000± 0.000 1.000± 0.000

CaloPointFlow [41] 0.720± 0.012 0.945± 0.002 1.000± 0.000

CaloVAE+INN [37] 0.881± 0.005 1.000± 0.000 1.000± 0.000

CaloDREAM [68] 0.630± 0.005 0.524± 0.004 0.802± 0.014
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Table C24: KPD and FPD for evaluating Geant4 vs. submission of ds 3. For

visualization, see Figure 83.

Submission KPD ·103 ↓ FPD ·103↓
Geant4 −0.0091± 0.0466 8.7578± 0.5587

CaloDiffusion [43] 0.2278± 0.0978 71.2380± 1.9208

L2LFlows-MAF [30, 31] 1.5398± 0.1831 665.4975± 1.6930

conv. L2LFlows [31] 0.3245± 0.1521 171.6365± 1.7965

MDMA [23, 24] 1.6705± 0.1370 588.6035± 2.5358

CaloClouds [45, 46] 5.1826± 0.7016 948.2275± 4.6265

Calo-VQ [57] 5.6838± 0.2075 1193.9149± 2.8258

Calo-VQ(norm) [57] 3.9937± 0.3564 930.8472± 3.4598

CaloScore distilled [49, 50] 1.7304± 0.2490 610.8560± 4.0175

CaloScore single-shot [49, 50] 1.5934± 0.1380 584.0234± 2.9294

iCaloFlow teacher [34] 2.8602± 0.3240 897.5908± 5.2608

iCaloFlow student [34] 2.5991± 0.2299 841.1136± 5.1413

Geant4-Transformer [64] 241.0380± 2.6919 22947.3168± 23.3703

CaloPointFlow [41] 2.0229± 0.4123 670.7538± 3.3806

CaloVAE+INN [37] 83.0692± 0.7260 11060.7266± 13.9947

CaloDREAM [68] 0.0098± 0.0145 20.7469± 1.0767

Table C25: Log-posterior scores for ds 3 Geant4 test data, averaged over 10

independent DNN classifier trainings. For visualization, see Figure 84.

Submission Log-posterior ↑
CaloDiffusion [43] −2.3860± 0.0063

L2LFlows-MAF [30, 31] −4.3836± 0.1634

conv. L2LFlows [31] −2.6992± 0.0171

MDMA [23, 24] −9.8424± 0.3800

CaloClouds [45, 46] −5.9925± 0.2542

Calo-VQ [57] −19.8196± 0.6060

Calo-VQ(norm) [57] −9.6010± 0.2645

CaloScore distilled [49, 50] −3.2759± 0.0844

CaloScore single-shot [49, 50] −3.8002± 0.1135

CaloDREAM [68] −2.2337± 0.0132

iCaloFlow teacher [34] −6.7583± 0.2071

iCaloFlow student [34] −5.8949± 0.1835

Geant4-Transformer [64] −12.0696± 0.4366

CaloPointFlow [41] −3.6853± 0.1748

CaloVAE+INN [37] −6.4805± 0.2134
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Table C26: Log-posterior scores for ds 3 Geant4 test data, averaged over 10

independent CNN ResNet classifier trainings. For visualization, see Figure 85.

Submission Log-posterior ↑
CaloDiffusion [43] −1.1254± 0.1035

L2LFlows-MAF [30, 31] −9.8665± 0.5211

conv. L2LFlows [31] −2.3183± 0.1994

MDMA [23, 24] −10.1538± 0.6095

CaloClouds [45, 46] −10.2566± 0.5892

Calo-VQ [57] −8.9864± 0.3448

Calo-VQ(norm) [57] −8.3526± 0.4014

CaloScore distilled [49, 50] −5.3080± 0.4710

CaloScore single-shot [49, 50] −6.3708± 0.5287

CaloDREAM [68] −1.4174± 0.1267

iCaloFlow teacher [34] −9.1767± 0.4420

iCaloFlow student [34] −9.3465± 0.5997

Geant4-Transformer [64] −9.9694± 0.5631

CaloPointFlow [41] −10.1480± 0.3690

CaloVAE+INN [37] −9.3558± 0.4615

Table C27: Precision, density, recall, and coverage for ds 3 submissions. A visualization

is shown in figure 86.

Submission Precision ↑ Density ↑ Recall ↑ Coverage ↑
Geant4 0.098 1.145 0.095 0.980

CaloDiffusion [43] 0.122 1.118 0.090 0.973

L2LFlows-MAF [30, 31] 0.079 6.126 0.068 0.870

conv. L2LFlows [31] 0.109 1.667 0.065 0.887

MDMA [23, 24] 0.000 0.097 0.790 0.233

CaloClouds [45, 46] 0.001 0.000 0.841 0.002

Calo-VQ [57] 0.313 199.747 0.000 0.948

Calo-VQ(norm) [57] 0.561 227.616 0.002 1.000

CaloScore distilled [49, 50] 0.078 1.020 0.085 0.708

CaloScore single-shot [49, 50] 0.038 0.262 0.153 0.536

iCaloFlow teacher [34] 0.070 0.989 0.123 0.786

iCaloFlow student [34] 0.079 1.463 0.115 0.793

Geant4-Transformer [64] 0.623 1570.369 0.074 0.478

CaloPointFlow [41] 0.004 0.045 0.284 0.171

CaloVAE+INN [37] 0.879 1990.146 0.009 0.787

CaloDREAM [68] 0.114 1.637 0.079 0.989
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Table C28: Number of trainable parameters in training and for generation for ds 3

submissions. A visualization is shown in figure 87.

number of parameters ↓
Submission total generator only

CaloDiffusion [43] 1 221 153 1 221 153

L2LFlows-MAF [30, 31] 556 526 578 556 526 578

conv. L2LFlows [31] 194 964 482 194 964 482

MDMA [23, 24] 108656 66416

CaloClouds [45, 46] 77 475 856 77 475 856

Calo-VQ [57] 2 155 763 876 050

Calo-VQ(norm) [57] 2 767 443 1 471 282

CaloScore distilled [49, 50] 28 872 412 14 436 206

CaloScore single-shot [49, 50] 28 872 412 14 436 206

iCaloFlow teacher [34] 95 088 152 95 088 152

iCaloFlow student [34] 187 423 704 95 088 152

Geant4-Transformer [64] 1 262 921 306 1 262 921 306

CaloPointFlow [41] 14 215 334 14 215 334

CaloVAE+INN [37] 204 609 270 93 935 070

CaloDREAM [68] 8 253 575 8 253 575



APPENDIX 187

Table C29: Timing of ds 3 submissions on a CPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission, “LLVM: o.o.m.” crashes with

an LLVM out of memory error, “o.o.m.” crashes with an memory allocation error,

“> 17 280” translates to >48h/batch. A visualization of these timings is shown in

figure 88.

Submission
CPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 205 235± 6154(100) 269 230± 50 007(100) o.o.m.

L2LFlows-MAF [30, 31] 880 131± 61 699(100) 141 317± 8151(1000) > 17 280

conv. L2LFlows [31] 2357± 283(10 000) 340.2± 15.2(10 000) 428.7± 25.7

MDMA [23, 24] 32.1±1.4 193.7± 12.7 o.o.m.

CaloClouds [45, 46] 2404± 96(10 000) 3924± 701(10 000) o.o.m.

Calo-VQ [57] 260.0± 16.3 68.1± 4.7 58.2± 8.4

Calo-VQ(norm) [57] 3957± 269(10 000) 3635± 219(10 000) 3543± 311(20 000)

CaloScore distilled [49, 50] 83 500± 3567(1000) 96 869± 6748(1000) o.o.m.

CaloScore single-shot [49, 50] 1416± 30 1539± 111(10 000) o.o.m.

iCaloFlow teacher [34] 15 512 081± 3 471 602(10) 438 642± 55 017(100) > 17 280

iCaloFlow student [34] 20 217± 4133(1000) 454.7± 20.5(10 000) 446.3± 58.4

Geant4-Transformer [64] 762.3± 35.9 179.5± 12.9 193.4± 15.1

CaloPointFlow [41] 301.7± 19.2 308.5± 6.4 o.o.m.

CaloVAE+INN [37] 90.6± 3.2 13.6±0.9 16.2±1.9

CaloDREAM [68] 33 292± 672(1000) 32 138± 2721(1000) > 17 280
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Table C30: Timing of ds 3 submissions on a GPU. Superscripts indicate if fewer than

100 000 events were generated in timing the submission, “CUDA o.o.m.” ran out of

VRAM on the GPU. A visualization of these timings is shown in figure 88.

Submission
GPU [ms per shower]

batch size 1 batch size 100 batch size 10 000

CaloDiffusion [43] 6171± 45(2500) 810.2± 2.4(10 000) CUDA o.o.m.

L2LFlows-MAF [30, 31] 235 537± 4910(100) 2454± 120(10 000) 3112± 1(10 000)

conv. L2LFlows [31] 1430± 16(10 000) 16.0± 0.2 6.8± 0.1

MDMA [23, 24] 9.51±0.13 5.47± 0.30 CUDA o.o.m.

CaloClouds [45, 46] 94.9± 1.1 25.3± 0.2 CUDA o.o.m.

Calo-VQ [57] 127.4± 1.9 1.8±0.1 0.98± 0.02

Calo-VQ(norm) [57] 466.0± 5.0(10 000) 26.6± 0.2 CUDA o.o.m.

CaloScore distilled [49, 50] 473.2± 24.3(50 000) 162.2± 0.5 CUDA o.o.m.

CaloScore single-shot [49, 50] 135.5± 5.9 6.5± 0.3 CUDA o.o.m.

iCaloFlow teacher [34] 470 081± 3379(50) 5596± 56(5000) 1979± 1(10 000)

iCaloFlow student [34] 1156± 31(10 000) 16.7± 0.5 6.0± 0.2

Geant4-Transformer [64] 203.2± 5.8 8.77± 0.36 CUDA o.o.m.

CaloPointFlow [41] 57.9± 4.6 5.52± 0.03 CUDA o.o.m.

CaloVAE+INN [37] 44.3± 0.6 3.83± 0.09 3.18±0.15

CaloDREAM [68] 5003± 67(10 000) 179.6± 0.5 CUDA o.o.m.
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D. Generation time vs. number of parameters
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Figure D1: Pareto front in number of trainable parameters in generation (from figure 42

and table C5) and generation speed (from figure 43 and table C7).
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Figure D2: Pareto front in number of trainable parameters in generation (from figure 55

and table C12) and generation speed (from figure 56 and table C14).

When looking at the Pareto front in generation speed (here taken as the time it

takes to generate in batches of 100 on a GPU) and the model size (in terms of number

of trainable parameters in generation), we barely see an actual front emerging. The

generation time strongly depends on the model architecture and not so much on the

actual size of the submissions, as can be seen for example by the CaloFlow examples

in ds 1 – γ in figure D1: CaloFlow student has more parameters than CaloFlow

teacher, but is almost 2 orders of magnitude faster in sampling. The diffusion model

CaloDiffusion even has the fewest number of parameters in figure D1, but is one of

the slowest in sampling. Datasets 2 (in figure D3) and 3 (in figure D4) show even less
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Figure D3: Pareto front in number of trainable parameters in generation (from figure 71

and table C20) and generation speed (from figure 72 and table C22).
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Figure D4: Pareto front in number of trainable parameters in generation (from figure 87

and table C28) and generation speed (from figure 88 and table C30).

of a front, but with MDMA a submission clearly in the sweet spot at few parameters and

fast generation.
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[223] Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick

J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S and Willing C 2016 Jupyter notebooks

– a publishing format for reproducible computational workflows Positioning and Power in

Academic Publishing: Players, Agents and Agendas ed Loizides F and Schmidt B (IOS Press)

pp 87 – 90

[224] Faucci Giannelli M, Kasieczka G, Krause C, Nachman B, Salamani D, Shih D and Zaborowska

A 2022 Fast calorimeter simulation challenge 2022 github page https://github.com/

CaloChallenge/homepage

[225] Mazurek M, Corti G and Kmiec M 2024 Performance of the Gaussino CaloChallenge-compatible

infrastucture for ML-based fast simulation in the LHCb Experiment URL https://indico.

cern.ch/event/1330797/contributions/5796650/

2308.00027
2308.12351
2311.17175
2404.14332
2404.18807
2203.04983
2203.12660
2305.17169
2311.09296
2312.08453
2109.00546
2203.09470
2212.11285
https://doi.org/10.5281/zenodo.5774815
https://doi.org/10.5281/zenodo.5774815
https://github.com/CaloChallenge/homepage
https://github.com/CaloChallenge/homepage
https://indico.cern.ch/event/1330797/contributions/5796650/
https://indico.cern.ch/event/1330797/contributions/5796650/

	Introduction
	Datasets
	Dataset 1 photons and pions
	Datasets 2 and 3

	GAN-based Submissions
	CaloShowerGAN
	Matching Deep Mean-field Attentive (MDMA) GAN
	BoloGAN
	DeepTree

	Normalizing Flow-based Submissions
	L2LFlows
	(inductive) CaloFlow
	CaloINN
	SuperCalo
	CaloPointFlow

	Diffusion-based Submissions
	CaloDiffusion with GLaM
	CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation
	Score-based Generative Models for Calorimeter Shower Simulation
	CaloGraph
	Diffusion transformer

	VAE-based Submissions
	Latent Generative Models for Calo Simulation with VQ-VAE
	CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds
	DNN CaloSim
	Geant4 Transformer
	CaloVAE+INN
	CaloLatent: Score-based Generative Modelling in the Latent Space for Calorimeter Shower Generation

	Conditional Flow Matching-based Submissions
	CaloDREAM
	CaloForest

	Introduction to metrics
	High-level features (histograms)
	Correlations
	Classifier-based metrics.
	Computer Science inspired metrics
	Manifold-based metrics
	Generation timings
	Memory requirements

	Results: Individual Metrics
	Preprocessing
	Dataset 1, photons
	Dataset 1, pions
	Dataset 2, electrons
	Dataset 3, electrons

	Results: Correlations Between Metrics
	Metric Comparison
	Pareto Fronts

	Conclusions and Outlook
	Overall Physics Results
	Take-aways of the CaloChallenge beyond Detector Simulation 
	Outlook to the Future

	Histograms of high-level features
	Dataset 1, photons
	Dataset 1, pions
	Dataset 2, electrons
	Dataset 3, electrons

	Consistency check of the multiclass classifier
	Numerical Results in Tables
	Dataset 1, photons
	Dataset 1, pions
	Dataset 2, electrons
	Dataset 3, electrons

	Generation time vs. number of parameters
	References

