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Abstract: While the current frontier in fixed-order precision for collider observables is N3LO,

important steps are necessary to consolidate NNLO cross-section predictions with improved

stability and efficiency. Slicing methods have been successfully applied to obtain NNLO and

N3LO predictions, but have shown poor performance in the presence of fiducial cuts due to

large kinematical power corrections. In this paper we implement Projection-to-Born-improved

qT (P2B qT ) and jettiness (P2B τ0) subtractions for a large class of color singlet processes in

MCFM. This method allows for the efficient evaluation of fiducial power corrections in any

non-local subtraction scheme using a Projection-to-Born subtraction. We demonstrate the

significant numerical improvements of this method based on fiducial Drell-Yan and Higgs

cross-sections. Moreover, with fiducial power corrections removed via this method, the leading-

logarithmic power corrections that have only been calculated without fiducial cuts can be

included, further improving the calculations. For di-photon production with photon isolation,

we devise a novel method in combination with P2B-improved subtractions, which we name

P2Bγ τ0, and P2Bγ qT for the two subtraction schemes, respectively. This method allows the

inclusion of both fiducial power corrections due to kinematic cuts on the photons and a set of

isolation power corrections in the fragmentation channel where a quark may enter the isolation

cone. We find significant improvements in the convergence of NNLO di-photon cross-sections

with photon isolation cuts, demonstrating that it is possible to achieve a stable and efficient

calculation of di-photon cross-sections using slicing methods.
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1 Introduction

The Large Hadron Collider (LHC) has been instrumental in advancing our understanding of

fundamental physics, largely due to its capability to measure Standard Model (SM) processes

with unprecedented precision. LHC measurements of key benchmark processes, such as the

production of electroweak bosons (W±, Z), have reached an astonishing level of accuracy,

previously only limited by the luminosity uncertainty [1, 2], see for example refs. [3–5]. Such

a level of precision has not yet been reached for Higgs boson measurements since the main

source of experimental uncertainty comes from the limited statistical power of current data

sets [6–9]. However, the situation will be dramatically different for a projected seven-fold

increase of statistics at the High Luminosity LHC (HL-LHC) [10, 11].

In order to match the accuracy of data from the LHC, precise theoretical predictions for

Standard Model scattering processes are required. To this end, one must include radiative

corrections from quantum chromodynamics (QCD) at least to the next-to-next-to-leading

order (NNLO), and, crucially, incorporate experimental cuts employed to define the fiducial

region. These are typically bounds on the transverse momenta and rapidity of final state
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leptons, or photon isolation cuts. Certain cuts used in experimental measurements are known

to induce numerical instabilities or make the calculation more challenging due to infrared (IR)

sensitivities [12, 13].

The calculation of perturbative higher-order corrections requires the isolation and cancellation

of infrared singularities between real and virtual contributions, which proceeds through so-

called subtraction methods. There are two main classes of methods for performing this

procedure: infrared singularities can either be subtracted after integration over the whole

phase space (slicing methods), or through the construction of more local, or point-wise (fully

local) counterterms.

While fully differential N3LO predictions for hadronic collisions are the current frontier in

fixed-order precision, reached for only a few processes [14–20], slicing and local subtraction

methods for NNLO cross-sections are moving towards full process generalization, consolidation

and increased computational efficiency, see e.g. refs. [21–24] and references therein. Slicing

methods are often easier to derive and implement, but can be numerically more challenging

due to non-local cancellations compared to local subtractions. On the other hand, local

subtractions require careful handling of all possible singular configurations and as a result

can suffer from a proliferation of subtraction terms with various consequences for numerical

efficiency.

While local subtractions are naively numerically superior as singularities cancel for each

integration point, a feature of slicing methods is that they can be systematically improved by

computing perturbative power corrections to the leading-power factorization formulae upon

which they rely. In the last decade, significant progress has been achieved in understanding

collider observables beyond leading power [25–43], making the calculation of power corrections

for slicing methods an obvious application of this program. The inclusion of such power

corrections in slicing methods offers the possibility of leveling or even tilting the playing field,

by increasing numerical stability and performance by orders of magnitude. However, the

interplay between the subtraction of IR singularities and the phase space cuts induced by

the definition of a fiducial region requires particular attention and can spoil the expected

performance of these methods.

A particularly efficient local subtraction method is the so-called Projection-to-Born (P2B)

scheme [44], which has recently been extended to the calculation of fully differential Higgs

production at the LHC [14]. The numerical advantage of P2B stems from using actual

process matrix elements as subtraction counterterms, obtained by projecting the full phase

space onto Born configurations. The drawback of this approach lies in the complexity of

obtaining the integrated counterterms, as this consists of the exact amplitudes integrated

over the projected phase space. Recently, it has been shown that fiducial and hadronic power

corrections in slicing methods can be disentangled and that the former can be efficiently

evaluated using a Projection-to-Born (P2B) prescription [42, 45]. This method can be applied

to both qT and 0-jettiness subtractions, and we refer to it as Projection-to-Born-improved
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qT subtraction (P2B-qT subtraction) and Projection-to-Born-improved τ0 subtraction (P2B-τ0
subtraction).

In this paper we implement P2B-improved subtractions in the public code MCFM. We discuss

the improvements in terms of stability and efficiency for the calculation of NNLO cross-sections

in the presence of fiducial cuts. In section 2 we review P2B-improved non-local subtractions

and provide some details of the impact of various components at NLO. In sections 3.1 and 3.2

we study fiducial NNLO cross-sections using P2B-τ0 subtraction for di-lepton Z production

and Higgs production in gluon fusion. In section 4, we study power corrections in di-photon

production at NNLO. The di-photon process is particular challenging since its measurement

crucially relies on photon isolation cuts, which are known to cause severe numerical instabilities

at higher orders in QCD. For this case, we introduce a novel method to include a sizable set of

isolation power corrections that make it possible to obtain numerically reliable results. These

additional power corrections cannot be accounted for by a recoil prescription [45–47] in the

case of qT subtractions. We conclude in section 5.

2 Projection-to-Born improved 0-jettiness and qT subtractions

We first set up the notation for non-local subtractions, discuss the general setup for P2B-τ0
and P2B-qT subtractions and present a general classification of power corrections in jettiness

and qT subtractions in terms of hadronic and fiducial components.

2.1 Review of 0-jettiness and qT subtractions

Jettiness subtractions [48, 49] and qT subtractions [50] differ in the observable used for identi-

fying and subtracting infrared singularities. For qT subtractions, the transverse momentum

qT is simply defined as the Euclidean norm of the transverse momentum components of the

color-singlet system momentum. For 0-jettiness the observable is defined by [51]

T0 =
∑
i

min

{
2pa · ki
Qa

,
2pb · ki
Qb

}
, (2.1)

where the sum runs over the final state momenta of the color-charged particles with momenta

ki. The reference incoming Born momenta pµa,b are defined as

pµa = xaEcm
nµ

2
= QeY

nµ

2
, pµb = xbEcm

n̄µ

2
= Qe−Y n̄µ

2
, (2.2)

and we identified with Y and Q the color singlet rapidity and invariant mass. We define the

lower-case observable τ0 through the dimensionless ratio τ0 = T0/Q, following the convention

often found in the literature.

The 0-jettiness definition of eq. (2.1) allows for some freedom in the choice of the normalization

factors Qa,b and fixing these normalizations leads to definitions that differ only beyond leading
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power. In particular, we have two common choices,

leptonic: Qa = Qb = Q , T lep
0 =

∑
i

min

{
xaEcm

Q
n · ki ,

xbEcm

Q
n̄ · ki

}
=
∑
i

min

{
eY n · ki , e−Y n̄ · ki

}
hadronic: Qa,b = xa,bEcm , T cm

0 =
∑
i

min
{
n · ki , n̄ · ki

}
. (2.3)

For 0-jettiness subtractions [48, 49], to be introduced below, the leptonic definition has

significantly smaller power corrections thanks to its invariance under longitudinal boosts of

the frame in which the minimization is performed [25, 27, 29]. The numerical implications of

this phenomenon in MCFM have been studied in depth in ref. [52] with the release of MCFM 9,

and since then the leptonic definition has been adopted as the default choice. In the remainder

of this paper we therefore consider only the leptonic definition of T0.

Slicing subtractions based on qT and 0-jettiness. In this paper we consider the

calculation of cross-sections σ for an observable O using a slicing variable x, where we focus

on x = τ0 = T0/Q (0-jettiness subtractions) [48, 49] and x = q2T /Q
2 (qT subtractions) [50].

Similarly, we denote the cutoff variables as

xcut = T0, cut/Q ≡ τcut , xcut = q2T cut/Q
2 . (2.4)

The subtraction method is organized as follows.

σ(O) =

∫ xcut

0
dx

dσ

dx
(O) +

∫ xmax

xcut

dx
dσ

dx
(O)

=

∫ xcut

0
dx

dσsub

dx
(O) +

∫ xcut

0
dx

[
dσ

dx
− dσsub

dx

]
(O) +

∫ xmax

xcut

dx
dσ

dx
(O) .

≡ σsub(xcut,O) + ∆σ(xcut,O) +

∫ xmax

xcut

dx
dσ

dx
(O) . (2.5)

The observables x are designed to regularize the infrared singularities with a cutoff xcut, and

the cross-section is split into parts x > xcut and x < xcut. For x < xcut a factorization theorem

is used to describe QCD in the region of soft and collinear kinematics, while, by construction,

x > xcut consists of the process under consideration with additional QCD radiation at a lower

order.

For the discussion in this paper we do not need a detailed description of the below-cut part that

also further depends in detail on the observable x. However, it is important to stress that the

leading-power behavior of these observables is very well understood. For qT -subtractions, the

leading-power factorization theorem was originally established in refs. [53–55] and subsequently

revised in various formalisms throughout the years [56–67]. With the recent calculation of the

three-loop qT beam functions [68, 69], and the previously known color-singlet hard functions
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[70] and qT soft function [71], the fixed-order expansion at N3LO at leading power (LP) is now

fully available. This has paved the way for the first N3LO predictions for fully differential color-

singlet production using the qT subtraction method [15–20]. For N -jettiness, the leading-power

factorization was given in ref. [51] using Soft-Collinear Effective Theory (SCET) [72–75]. The

NNLO fixed-order expansion of all the objects entering the factorization are available [76–86],

and in the past years significant progress has been made in extending these calculations to

N3LO [87–92].

In eq. (2.5) we define a subtracted term (usually obtained by deriving a factorization formula

in x)

σsub(xcut,O) ≡
∫ xcut

0
dx

dσsub

dx
(O) , (2.6)

for which we need to have analytic control as it encodes the singular behavior of the cross-

section as the slicing variable xcut goes to 0. We furthermore defined a slicing residual

term

∆σ(xcut,O) ≡
∫ xcut

0
dx

[
dσ

dx
− dσsub

dx

]
(O) , (2.7)

that is determined by integrable terms over which we lack analytic control and are therefore

compelled to neglect. This neglect constitutes the primary source of numerical uncertainty in

the slicing procedure, and we refer to it as the slicing residual, slicing cutoff error, or error

due to neglected power corrections. In the following section we review the analytic properties

of these power corrections.

2.2 Hadronic and fiducial power corrections in 0-jettiness and qT subtractions

To discuss power corrections, we start with the cumulant with respect to a slicing cutoff xcut
for a given observable O. Order by order in perturbation theory it takes the form

dσ(xcut,O) ∼
∑
l

(αs

4π

)l  2l∑
m=0

c
(0)
l,m(O) lnm xcut +

∑
j

c
(p)
l,j (O)xcut

p lnj xcut + . . .

 (2.8)

for some p > 0, and the dots indicate terms that are further power suppressed as xcut → 0.

The first term in the bracket is divergent as xcut → 0 and must be included in the subtraction

term. We recognize it as the cumulant of the leading-power distribution

dσLP(xcut) =

∫ xcut

0
dx

dσLP

dx
∼
∑
l

(αs

4π

)l 2l∑
m=0

c
(0)
l,m lnm xcut . (2.9)

The simplest and most common choice for slicing subtractions is to take the cumulant of the

leading-power terms. Therefore, only the fixed-order expansion of the leading-power (LP)

factorization theorem is needed analytically.
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For the residual subleading-power terms no factorization theorems exist so far. However, at

fixed order they take the general form

∆σ(xcut) ∼ xpcut
∑
j

lnj xcut + . . . . (2.10)

where p crucially depends on the measurement (observable) constraints and, to a lesser degree,

on the slicing variable. In the following we categorize these power corrections and discuss

their scaling behavior.

Hadronic power corrections. In the case of observables without fiducial cuts, we have

p = 1 [25, 27, 29, 30, 41, 49, 93, 94]. We refer to this class of perturbative power corrections

as hadronic or dynamical power corrections, to distinguish them from the fiducial (and

photon-isolation) power corrections that have an origin closely related to the kinematics of

the non-QCD interacting lepton or photon final states. The hadronic power corrections can be

written as

∆σhad(xcut,O) ∼ xcut

(
c
(1)
l,2l−1(O) ln2l−1 xcut + c

(1)
l,2l−2(O) ln2l−2 xcut + . . .

)
, (2.11)

where l is the perturbative order, as in eq. (2.8). In this case, significant effort has been made

to obtain analytic control of the first term in ∆σhad(xcut). While this involves understanding

and performing complicated next-to-leading-power calculations, results have been obtained for

different processes and slicing schemes [25–32, 41], recently up to N3LO [42].

Power corrections from refs. [25, 27, 29] were implemented in MCFM in refs. [52, 95] and studied

extensively for total inclusive cross-sections and differential cross-sections in the absence of

fiducial cuts. In this paper we include those leading logarithmic (LL) next-to-leading-power

(NLP) corrections in numerical comparisons with the label “NLP LL”.

Note that the power p = 1 for these hadronic power corrections has only been demonstrated

for the case of a Drell-Yan like process with one hard scale Q. This may no longer hold

for (color-singlet) multi-boson processes with more complicated leading-order topologies and

therefore multiple hard scales.

Fiducial power corrections. While hadronic power corrections are important, fiducial

cuts are always present in experimental measurements. These fiducial cuts induce additional

power corrections that are therefore present in virtually every relevant theoretical prediction.

Their impact on numerical calculations can be significant and understanding how they affect

the behavior of the residual slicing error is crucial in obtaining efficient, stable and reliable

results.

In ref. [45], a first analytic examination of the structure of fiducial power corrections was

performed: For a Drell-Yan like process with symmetric transverse momentum cuts on the

leptons plT > pmin
T one has power corrections with p = 1/2, proportional to pmin

T /Q. There is a
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further logarithmic suppression compared to the hadronic power corrections.

∆σfiducial
pℓT

(xcut) ∼
√
xcut ln

2l−2(xcut) + . . . . (2.12)

Since these power corrections originate from breaking the azimuthal symmetry that is only

present in the Born process, it is expected that p = 1/2 for generic fiducial cuts [45].

2.3 Numerical calculation of fiducial power corrections using Projection-to-

Born

As we have analyzed in sec. 2.2, fiducial power corrections have a numerical impact that is

often dominant over hadronic ones. Unfortunately, it is in general complicated to capture them

analytically. However, one can account for them efficiently in a numerical manner by using a

Projection-to-Born prescription [42, 45]. In short, for the calculation of an observable O, point

by point in the real emission phase space one calculates a Born projection of the momenta.

The projected observable Õ is naturally calculated as the observable on this projected Born

phase space. With O and Õ at hand one can calculate σ(O) in the following way,

σh,NnLO(O) = σh,NnLO(Õ) + σh+j,Nn−1LO(O − Õ) (2.13)

=

∫ xcut

0
dx

dσsub
h,NnLO

dx
(Õ) +

∫
x>xcut

dσfull
h+j,Nn−1LO(Õ) (Slicing for Õ)

+

∫ xcut

0
dx

[
dσfull

h,NnLO

dx
−

dσsub
h,NnLO

dx

]
(Õ)

(Slicing residual ∆σ(xcut)

for Õ. No dependence on

fiducial cuts.)

+

∫
dσfull

h+j,Nn−1LO(O − Õ) .
(P2B correction factor for

O vs Õ)

The slicing residual ∆σ does not depend on the fiducial cuts and can therefore be subject only

to the hadronic power corrections of eq. (2.11). Note that the above-the-cut contributions

may be combined, such that the P2B corrections are calculated only below the cut,

σh,NnLO(O) =

∫ xcut

0
dx

dσsub
h,NnLO

dx
(O) +

∫
x>xcut

dσfull
h+j,Nn−1LO(O) (2.14)

+

∫ xcut

0
dx

[
dσfull

h,NnLO

dx
−

dσsub
h,NnLO

dx

]
(Õ)

(Slicing residual ∆σ(xcut)

for Õ. No dependence on

fiducial cuts.)

+

∫ xcut

0
dσfull

h+j,Nn−1LO(O − Õ) .
(P2B correction factor for

O vs Õ, only below xcut)
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The P2B method laid out here is a general way to compute the fiducial power corrections

using an arbitrary slicing variable x. In the case of x = q2T /Q
2 an efficient alternative is to

recoil-boost the Born kinematics [45–47] in the factorization formula to a finite value of qT
and integrate up to the slicing cutoff qT,cut. This prescription has been implemented in various

codes [19, 96, 97]. While the methods therefore seem equivalent for qT , an important difference

emerges in the presence of photon isolation. In this case the qT recoil cannot capture the

associated power corrections since it starts from Born-level kinematics, while the P2B method

makes this possible. We discuss this in detail in section 4.

Projection mapping. A crucial element of P2B-improved subtractions is the concept of

Born-projection of the partonic momenta. For our purposes, the P2B map is a function that

takes 3 + n momenta {pa, pb, q, k1, . . . , kn} representing a 2 → 1 + n scattering event and

maps it to a set of 3 momenta {p̃a, p̃b, q̃} in a 2 → 1 scattering configuration. Following

ref. [14], we can obtain the projection-to-Born map via a redefinition of the incoming parton

momenta

pa → p̃a = ξapa , pb → p̃b = ξbpb . (2.15)

The map is completely fixed by the value of ξa,b and by requiring momentum conservation for

the projected momenta, i.e. p̃µa + p̃µb = q̃µ. We can fix the fractions ξa,b by imposing that the

following relations hold,

q2 = q̃2 ,
n̄ · q
n · q

=
n̄ · q̃
n · q̃

, (2.16)

which are trivially related to the preservation of the invariant mass and rapidity of the

color singlet under the map. The n and n vectors are normalized light-like directions, e.g.

n = pa/|pa|, n = pb/|pb|. In the case of a subsequent decay of the color singlet to j final state

particles with momenta {qµ1 , . . . , q
µ
j } we can project their momenta as

qµi → q̃µi = qµi +
2qi · q
q2

q̃µ − 2(q + q̃) · qi
(q + q̃)2

(q + q̃)µ , (2.17)

which accounts for the change of the rest frame of the color singlet after the P2B.

Alternative mappings for the final state particles are possible. In fact, the one that we use for

the predictions in this paper is defined by considering a pure boost

qµi → q̃µi = qµi +

(
n̄δ · q̃
n̄δ · q

− 1

)
n̄δ · qi

nµ
δ

2
+

(
nδ · q̃
nδ · q

− 1

)
nδ · qi

n̄µ
δ

2
, (2.18)

where

nµ
δ ≡

(
1,

δ⃗q

|δ⃗q|

)
, n̄µ

δ ≡

(
1,− δ⃗q

|δ⃗q|

)
, δ⃗q = ⃗̃q − q⃗ . (2.19)
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Figure 1: Z → ℓ+ℓ− at NLO: The left plot shows the slicing residual ∆σ for 0-jettiness

subtractions and improvements thereon. The right plot shows the total cross-sections and a

comparison to the local subtraction result. Interpolation and scaling lines are shown to guide

the eye.

3 Di-lepton and Higgs production at NNLO with P2B-improved subtrac-

tions

We now study the numerical impact of P2B-improved subtractions. We discuss Z production

with symmetric transverse momentum cuts in section 3.1 and gluon fusion Higgs production

in section 3.2. In both cases we show results for a center-of-mass energy
√
s = 13GeV with

the PDF set NNPDF31 nnlo as 0118 [98]. The factorization and renormalization scales are set

to the invariant mass Q of the color-singlet system.

3.1 Z → ℓ+ℓ−

For Z production we consider the case of symmetric cuts on the transverse momenta of the

leptons,

qℓT > 25GeV , |ηℓ| < 2.4 , 71GeV < mZ < 111GeV . (3.1)

We begin by examining the situation at NLO for the total cross-section. We are first interested

in the asymptotic behavior of the residual subleading-power terms defined in eq. (2.7), in

particular to demonstrate the scaling indicated by the power p discussed in section 2.2. We

compute the slicing residual from the difference of the NLO cross-section computed using local

dipole subtraction and the one calculated in 0−jettiness subtractions at a given value of the

τcut parameter.

Our numerical findings are shown in fig. 1 (left). We see that the default procedure suffers

from fiducial
√
τcut power corrections, i.e. p = 1/2, but that after using the P2B prescription

these are removed and linear τcut scaling of the slicing residual is restored. This is in agreement

with the findings of ref. [45]. Once the fiducial power corrections are removed with P2B, the
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Figure 2: Z → ℓ+ℓ− at NNLO: The left plot shows ∆σ for various subtraction methods and

improvements thereon. The right plot shows the total cross-section coefficients (CNNLO) and a

comparison to the result obtained with qT subtractions with recoil.

pp → Z → ℓ+ℓ− NNLO coefficient qq̄ + qq′ qg gg

MCFM qT + recoil 48 732± 316 fb −31 819± 175 fb 13 870± 25 fb

Matrix qT + recoil 48 695± 364 fb −31 798± 131 fb 13 786± 205 fb

Relative Difference 0.08± 0.99 % 0.07± 0.69 % 0.61± 1.53 %

Table 1: Comparison of NNLO corrections to the total fiducial Z cross-section obtained via

Matrix and MCFM using qT subtractions with a recoil prescription. Results are broken down

by different partonic channels.

next-to-leading-power leading-logarithmic (NLP LL) corrections that are computed without

fiducial cuts can be properly included, see section 2.2. They lead to a substantial further

decrease in the size of the residual. The impact of the slicing residual on the calculation of

the total NLO cross-section in each of these scenarios is summarized in fig. 1 (right).

The situation at NNLO is summarized in fig. 2. While no convergence is apparent at all for

the default 0-jettiness slicing, which suffers from sizable
√
τcut power corrections, the P2B

corrections allow for cross-sections with per-mille level cutoff truncation errors. Our reference

result is computed using qT -subtractions with recoil power corrections and is shown as the

dashed line. This result is obtained from a calculation using qT cut/Q = 0.003 that is in full

agreement channel-by-channel with the corresponding result from Matrix [96, 99], as reported

in Table 1.

The inclusion of the NLP LL corrections further improves the 0-jettiness result, leading to

asymptotic flat results already at τcut = 10−3. For example, in practical applications one

might aim for an accuracy of better than 0.5% on the total NNLO cross-section, corresponding

to σNNLO × 0.005 = 733 pb× 0.005 ∼ 3.5 pb. This cannot be obtained with the unimproved
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Figure 3: Z → ℓ+ℓ−: Dependence of the NNLO total cross-section coefficient (CNNLO) on

various subtraction improvements for the quark channel (left) and quark-gluon channel (right).

The gluon-gluon channel is smaller and its plot is left out here, but is included in the overall

result in fig. 2.

jettiness methods (nor qT subtractions) without a τcut value well below 10−4, which requires

an extraordinary amount of computational effort and begins to enter the regime of numerical

instability for double precision calculations. However, when using P2B-improved jettiness

subtractions it can be reached using τcut ∼ 2 × 10−3. After including NLP LL corrections,

τcut ∼ 10−2 suffices.

In order to gain further insight into the behavior of the power corrections, we also analyze

the calculation of the NNLO coefficient in two different combinations of channels: the qg and

the qq̄ + qq′ channels. This is especially instructive since the overall pattern observed in fig. 2

is obscured by the fact that the NNLO coefficient is very small. The breakdown into the

two channels is shown in fig. 3. Again, we see that the removal of fiducial power corrections

through the P2B subtractions significantly reduces the dependence on τcut. We further observe

that the NLP LL terms dramatically improve the convergence in the off-diagonal channel qg.

This is the channel with the largest power corrections for this process and it therefore drives

the improvement seen when including NLP LL corrections in fig. 2.

For the diagonal channel the NLP LL terms do not improve the size of the residual here, but

they simply break the degeneracy that creates the erroneous plateau around τcut ∼ 10−3.

If, as in this case, the difference to the P2B-improved result is large one could use this as

a diagnostic to avoid being misled by a local extremum. Overall, the size of the NLP LL

contributions can be used as another way to quantify the size of the slicing residual. The NLP

LL terms can also play an important role when asymptotically small values cannot be directly

reached, but one instead has to rely on an extrapolation fit, for example in the case of limited

computing resources or at higher orders. The additional simplification from removing the

NLP LL terms in the extrapolation formula can allow for improved asymptotic fits and a more
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Figure 4: Z → ℓ+ℓ−: Z rapidity distribution with symmetric lepton cuts at NLO (left) and

NNLO (right).

precise extraction of subleading logarithmic terms.

3.1.1 Z rapidity distribution

Having established the improvements of the P2B-τ0 subtractions on the total cross-section, we

now look at the rapidity distribution of the dilepton pair as an example of a more differential

distribution.

Results for the total Z rapidity distribution at NLO are shown in fig. 4 (left plot) for

τcut = 5 · 10−3. We observe that the convergence with P2B-τ0 subtractions is excellent.

In fig. 5 we show the slicing residuals at NLO for the different methods. We observe remarkable

precision with the inclusion of P2B corrections and further improvements when NLP LL

corrections are accounted for.

Results for the total Z rapidity distribution at NNLO are shown in fig. 4 (right plot) for

τcut = 10−3. We see that without the P2B corrections the size of the slicing residual is about

2%, flat across the distribution. Once these are included the remaining correction from the

inclusion of NLP LL terms is less than half a percent, again flat in Y .

To better understand the τcut-dependence of the total rapidity distribution we again present

results in the different channels at NNLO in fig. 6. We observe that the convergence of each

separate channel is improved using P2B-τ0 subtraction but that the NLP LL corrections are

especially important for the qg channel, as already observed for the total cross-section. Note

that the gg channel does not receive any such corrections at this order.
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Figure 5: Z → ℓ+ℓ−: rapidity distribution residuals at NLO. Each line corresponds to a

different value of the cut parameter and represents the residual error as a function of Y,

normalized to the NLO distribution calculated using dipole subtraction.
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Figure 6: Z → ℓ+ℓ−: Z rapidity distribution residuals at NNLO, for the qq̄ + qq′ channel

(top) and qg channel (bottom).

3.2 Higgs production

We consider Higgs production with decay into a photon pair, H → γγ, with a representative

set of cuts:

phardT,γ > 40GeV , psoftT,γ > 30GeV , |ηγ | < 2.37 . (3.2)

The scaling behavior of the slicing residual at NLO is shown in fig. 7 (left). Including the

P2B corrections changes the scaling from p = 1/2 to p = 1, as expected. Accounting for

the NLP LL power corrections decreases the overall size of the residual error. The impact of
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Figure 7: H → γγ at NLO: The left plot shows the slicing residual ∆σ for various subtraction

method improvements. The right plot shows the total cross-sections and a comparison to the

local subtraction result. Interpolation lines are shown to guide the eye.

these improvements on the NLO cross-section calculation is demonstrated in fig. 7 (right). For

0.1% control of the NLO result one only needs τcut ∼ 5 × 10−3 (P2B+NLP LL) rather than

τcut ∼ 10−5 (unimproved).

At NNLO we obtain the results shown in fig. 8. It is clear that, without the inclusion of any

improvements, the default calculation has a large residual error and is only just beginning to

enter the region of asymptotic scaling. After inclusion of P2B corrections the calculation is

clearly in the asymptotic regime, with further improvement in scaling after accounting for

the NLP LL corrections. These effects obviously result in significant improvements in the

calculation of the NNLO coefficient, as shown in fig. 8 (right). In this case the inclusion of

NLP LL corrections does not lead to substantial numerical improvements because the size of

the power corrections accounted for by the P2B scheme is already quite large.

3.2.1 Higgs rapidity distribution

We now turn to a more differential quantity, the Higgs rapidity distribution. In fig. 9 we

show the total result at NLO and NNLO for τcut = 10−3 in the different approaches. At NNLO

the unimproved result shows a flat slicing residual of about 3%. Once P2B corrections are

included, the distribution agrees with our qT+recoil reference result within numerical errors.

Improvements from including NLP LL terms are small at the given τcut.

A similar picture emerges by looking at the slicing residuals at NLO and at NNLO for various

values of the cut parameters, which are shown in fig. 10 and fig. 11, respectively. At NLO the

residuals are computed relative to the local dipole subtraction, while at NNLO our reference is

the calculation that employs P2B and includes NLP LL corrections with τcut = 10−4.

As expected from the discussion of the total cross-section, there is significant improvement in

convergence when using the P2B corrections. At NLO, for τcut = 10−3 the residual error is
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Figure 9: H → γγ: Higgs rapidity distribution at NLO (left) and NNLO (right), computed

using τcut = 10−3 in the default, P2B and P2B+NLP LL schemes.

approximately flat at 1% in the unimproved case, a couple per mille once P2B corrections are

included, then completely negligible (within numerical uncertainties) after including NLP LL

effects. At NNLO we see again that the P2B corrections provide a huge improvement in the

convergence, with a more modest further gain after accounting for NLP LL terms.

– 15 –



-2 -1 0 1 2

0.005

0.010

0.015

0.020

0.025

-2 -1 0 1 2 -2 -1 0 1 2

Figure 10: H → γγ: residual errors in the Higgs rapidity distribution at NLO, computed by
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-2 -1 0 1 2

0.00

0.05

0.10

0.15

-2 -1 0 1 2 -2 -1 0 1 2

Figure 11: H → γγ: residual errors on the Higgs rapidity distribution at NNLO. Each line

corresponds to a different value of the cut parameter and represents the residual error as

a function of y, where the reference calculation is the one using P2B and NLP LL terms at

τcut = 10−4.

4 Di-photon production at NNLO with P2Bγ τ0 and P2Bγ qT subtrac-

tions

The P2B method described in the previous sections directly captures fiducial power corrections

for color-singlet processes. However, for di-photon production with photon isolation, additional

power corrections due to the isolation prescription contribute. The goal of this section is to

understand how to incorporate some of these isolation power corrections into the subtraction

term for the non-local subtractions, improving their precision for photon processes.

In sec. 4.1, we briefly review the behavior of power corrections for photon processes. Then

in sec. 4.2, we discuss their interplay with P2B-improved subtractions and present P2Bγ-

improved non-local subtractions, a new method to simultaneously incorporate kinematic power

corrections and a set of isolation power corrections in the τ0 and qT subtractions.

4.1 Power corrections in the presence of photon isolation

In the case where photon isolation is included, the scaling of the power corrections depends on

the isolation criterion in a non-trivial way. We consider Frixione’s isolation [100] for prompt
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photon production, with cone size R, exponent n, and transverse energy threshold Eiso
T , which

imposes the following requirement on the final state partons∑
d(i,γ)≤r

Ei
T ≤ Eiso

T

[
1− cos(r)

1− cos(R)

]n
, ∀r ≤ R . (4.1)

Sometimes the isolation energy is taken as a fraction of the photon transverse momentum, in

which case Eiso
T = εisopγT . The angular distance measure d(i, γ) between photon and parton i is

defined via d(i, γ) =
√
(ηi − ηγ)2 + (ϕi − ϕγ)2 with rapididies η and azimuthal angles ϕ.

Here one has to distinguish between the case of a quark or a gluon in the isolation cone. The

case of a gluon in the isolation cone has been extensively discussed at NLO in ref. [45]. In the

case of a quark (the actual fragmentation case), this smooth isolation prescription ensures

the QCD infrared-safe removal of the collinear quark-photon singularity. The scaling of the

power corrections in this case has been derived at NLO in ref. [101]. Generally one expects

the scaling behavior to be similar at NNLO, but this has not been studied in detail so far. For

a gluon, taking R ≪ 1 and for n ≥ 1/2, at NLO one has [45, 101]

gluon: ∆σfiducial
Frixione−iso(xcut) ∼

R2 n

√
T0 cut/Eiso

T 0-jettiness subtraction

R2 n

√
qT cut/Eiso

T qT -subtraction
(4.2)

or equivalently,

gluon: ∆σfiducial
Frixione−iso(xcut) ∼

R2 n
√
xcut

n

√
Q/Eiso

T 0-jettiness subtraction

R2 2n
√
xcut

n

√
Q/Eiso

T qT -subtraction .
(4.3)

Here Q is a hard scale of the process which is typically taken to be mγγ , the invariant mass of

the di-photon pair.

To test eq. (4.3), we have calculated the difference of the P2B correction for qq̄ → γγ cross-

sections at NLO with and without isolation for different isolation parameters using τ0 and

qT subtraction as a function of the cut parameter. The results are presented in fig. 12 and

show that the n-dependence follows eq. (4.3). Moreover, as indicated, we see that changing

the cone radius only impacts the overall size of the power correction but not its cutoff-scaling

behavior.

In the fragmentation case for a quark, at NLO one has

quark: ∆σfiducial
Frixione−iso ∼

{
T0 cut
Q log(R) 0-jettiness subtraction

qTcut
Q log(R) qT -subtraction .

(4.4)

The scaling in the qT subtraction case has been derived analytically in ref. [101] while we have

determined the equivalent for jettiness subtractions numerically.
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Figure 12: Difference between the P2B correction with and without isolation for different

isolation parameters at NLO for the qq̄ channel. Left: 0-jettiness, right: qT . For comparison

we also plot the P2B correction without isolation. Note that the choice of colors in this figure

is not related to the one in eq. (4.5).

The net result is that in the sum of all partonic channels, where both gluon and quark final

states contribute, linear power corrections will always be present, irrespective of the value

of n that determines the scaling for the gluonic case. Typically, due to the scaling in R, the

quark fragmentation power corrections dominate for small R, even when n > 1.

Overall power corrections. Taking Frixione isolation with n = 1 as an example, the sum

of the hadronic, fiducial and photon isolation power corrections is as follows,

∆σfiducial+hadronic
pγT+iso,n=1

∼


√

T0 cut
Q + T0 cut

Q R2 Q
Eiso

T

+ T0 cut
Q log(R) + T0 cut

Q , 0-jettiness subtraction

qTcut
Q + qTcut

Q R2 Q
Eiso

T

+ qTcut
Q log(R) +

q2Tcut
Q2 , qT -subtraction

(4.5)

where we have ignored the logarithmic τcut and qT cut behavior for brevity and have indicated

the contributions coming from generic pγT cuts, photon isolation cuts, and hadronic/dynamical

power corrections with different colors. Note that power corrections for fiducial leptonic and
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photon isolation cuts have only been analyzed at NLO [45, 101], although these corrections

are expected to be dominant at higher orders as well. Further, as mentioned in sec. 2.2, the

scaling of the hadronic power corrections (green in eq. (4.5)) is based on a Drell-Yan analysis.

A generalization has yet to be demonstrated in the literature, in particular for non-Born

channels at higher orders.

Before moving on we now summarize the discussion of power corrections in sec. 2.2 and here.

We highlight the following:

• In general, fiducial power corrections due to the kinematic cuts on the transverse

momentum of the final state leptons (or photons, e.g. for H → γγ in gluon fusion), scale

as O(
√
xcut), therefore dominating over the hadronic ones, which scale as O(xcut).

• In the presence of photon isolation, power corrections are overall dominated by the

fragmentation contribution with a quark in the final state. These further dominate over

all other power corrections due to the log(R) scaling.

For the gluonic channel there is a strong dependence of the power corrections on the

isolation parameters and the subtraction method. For example, with n = 1 these isolation

power corrections are important and behave as a leading source of power correction for

qT -subtraction, while for 0-jettiness they have a smaller impact, comparable to that of

hadronic power corrections.

• In scenarios where multiple scales are at play, power corrections to slicing schemes can

acquire dependence on several of these scales. Even for the simple case of color singlet

production, as one turns on fiducial cuts, the power corrections may depend on scales

such as Eiso
T , R, etc. While these scales formally enter as O(1) parameters, they strongly

change the numerical impact of power correction compared to a naive analysis of linear

or quadratic scaling. It is therefore of paramount importance to be able to treat them

systematically.

4.2 Capturing fragmentation power corrections

A crucial difference between di-photon production with photon isolation and Drell-Yan

processes is that, when quarks are produced in the final state, the inclusive cross-section is

ill-defined in perturbation theory in the absence of an isolation criterion or a non-perturbative

object such as a fragmentation function. For example, in qT subtractions with a recoil

prescription for fiducial power corrections, it is clear that no photon isolation power corrections

can be captured given that it only operates at the Born kinematics level. While a naive

application of the P2B prescription is also not effective, as we describe below, the access to

the full matrix element allows modifications of the scheme to capture a set of these power

corrections.

To be more precise, in the case of the emission of a gluon into the isolation cone the P2B

prescription works as expected, as the inclusive cross-section is well defined even in the absence
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of an isolation criterion. With the isolation removing the gluon emission’s phase space that

is collinear to the photon, the soft-gluon singularity is canceled between O and Õ in the

P2B prescription, leaving behind a finite power correction that is captured. In section 4.3

we demonstrate numerically that the P2B-improvements in this case follow the expected

power behavior and magnitude. The power corrections from the P2B terms match the power

corrections obtained from a recoil prescription in qT subtractions.

On the other hand, in the case of the emission of a quark, the isolation prescription takes care

of removing the collinear quark-photon singularity. As the quark becomes soft the isolation

ceases to act, but no soft QCD singularity arises as the soft quark emission is power suppressed.

A source of slicing residual is that in the slicing calculation such a contribution is neglected

when the quark energy is smaller than the cut parameter. Fortunately, we can correct for this

effect in a simple way. In realistic scenarios the photon has some transverse momentum cuts

and, combined with the isolation, this implies that every quark that is close to the photon

must be soft. Even below the cut, such quarks don’t need any P2B counterterm because their

matrix element is not singular. This implies that we can account for this effect by simply

turning off the P2B counterterm in the cone of radius R around the photon. We demonstrate in

section 4.3 that this procedure significantly improves the overall convergence, hence capturing

a significant portion of the isolation power corrections.

Since this is a prescription for one emission, we apply it at NLO and for the NNLO real-virtual

corrections with a quark emission. Further adjustments should be necessary to handle the

double emission contributions and require further study. Nevertheless, we find that the

prescription presented here significantly improves the cutoff dependence at NNLO even if

just applied to the real-virtual corrections, as presented in the results section. We refer to

this improved scheme as P2Bγ subtractions, distinguishing it from the normal P2B improved

subtractions which do not include this prescription.

4.3 Numerical results

Following our discussion of photon-isolation power corrections, in this section we demonstrate

the improvements from the P2Bγ-subtraction for di-photon production. We use photon cuts

as in H → γγ: phardT,γ > 40GeV, psoftT,γ > 30GeV, |ηγ | < 2.37 and Frixione photon isolation as

in eq. (4.1) with Eiso
T = 10GeV, R = 0.4, and n = 1. We show results for a center-of-mass

energy
√
s = 13GeV with the PDF set NNPDF31 nnlo as 0118 [98]. The factorization and

renormalization scales are set to the invariant mass Q of the di-photon system. Because the

distinction between final-state gluons (P2B) and quarks (P2Bγ) is crucial for the discussion

of different schemes, we separate the qq̄ + qq′ and qg (fragmentation) channels in our initial

discussion.

Note that in all cases the smallest qT,cut and τcut are as low as can be achieved using numerical

double precision, even using an improved treatment of all matrix elements in MCFM [102].

Smaller values of qT,cut and τcut would require technical cutoffs that have an impact on the
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Figure 13: NNLO coefficient K-factor for di-photon production, qq̄ + qq′ channel only, for

0-jettiness (left) and qT subtractions (right) and their improved versions.

slicing cut itself. As will become clear, the inclusion of power corrections in the photon

isolation itself is essential to achieve a reliable result.

In fig. 13 we first consider the qq̄ + qq′ channels. Note that this channel doesn’t receive P2Bγ

improvements since there is only a gluon in the final state for the real-virtual contribution.

We observe that the corrections from P2B in τ0 and recoil in qT are substantial and allow

asymptotic behavior to be reached much faster. This is in line with previous observations for

qT subtractions in Matrix [96].

In fig. 14 we consider the qg fragmentation channels. In this channel a quark in the final state

is always present and an isolation procedure is required to define a finite cross-section. Here

we distinguish between P2B improvements and P2Bγ improvements. Looking first at the qT
subtraction results in fig. 14 (right) we see numerically equal improvements from the recoil

and P2B power corrections, as expected. Unlike for the Born channel, they are small and do

not help noticeably. This issue is again in line with the findings in the literature [96]. No

reliable result can be obtained, even with power corrections from recoil, in stark contrast to

the cases of Z and H production.

The power corrections associated with the photon isolation itself are dominant, and these are

not captured by a recoil or P2B approach. On the other hand the P2Bγ improvements seen in

fig. 14 are substantial. It stands out that, compared to the non-fragmentation channel, the τ0
subtractions perform substantially better than qT subtractions, reaching asymptotics already

for τcut < 10−4 down to the smallest value 5 · 10−6 that can be achieved in double precision

numerics. The huge improvements comparing the nominal slicing procedure to the new P2Bγ

scheme are the same for qT and τ0 subtractions. For both slicing variables the P2Bγ procedure

includes a sizable class of xcut-linear power corrections.

Finally, the sum of all channels (including the gg component) is presented in fig. 15, where
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Figure 14: NNLO coefficient K-factor for di-photon production, qg fragmentation channel

only, for 0-jettiness (left) and qT subtractions (right) and their improved versions.

we have used a fitted asymptotic extrapolation to continue the qq̄ + qq′ channel down to

τcut = 5 · 10−6 for 0-jettiness (it is already asymptotically flat at τcut = 10−3, as can be seen in

fig. 13). We performed asymptotic fits based on the two to three dominant subleading terms of

the expected power corrections as laid out in section 4.1. For qT subtractions with or without

recoil improvements we observe that the asymptotic extrapolation has large uncertainties given

that the distribution has not plateaued. On the other hand a robust asymptotic extraction is

possible using P2Bγ + qT and 0-jettiness subtractions. In our study, the most reliable result is

achieved by adding the P2Bγ corrections to 0-jettiness subtractions. There one additionally

reaps the benefit in the fragmentation channel of a better intrinsic scaling compared to qT .

The results achievable in double precision reach well into the asymptotic flat region, such that

the constant piece in the asymptotic fit is well constrained.

5 Conclusions

The LHC has enabled the measurement of many Standard Model processes with a high

precision, challenging theoretical predictions that rely on continued developments in higher-

order calculations. The continuation of this program with the HL-LHC will significantly raise

these challenges for the whole high-energy collider physics community, but is expected to

result in significant scientific, technological and societal advancements.

One particularly important aspect of theoretical predictions is the combination of individually

infrared divergent higher-order amplitudes into a finite cross-section that can be compared

with experimental measurements. These subtraction methods are developed order by order

in perturbation theory, and several different methods exist with individual benefits and

drawbacks.

In this paper we have introduced P2B-improved 0-jettiness and qT subtraction methods in
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Figure 15: NNLO coefficient K-factor for di-photon production for 0-jettiness and qT subtrac-

tions and their improved versions. Asymptotic fits take into account two to three subleading

terms.

the code MCFM. The P2B-improved scheme [45] includes power corrections that arise in the

presence of fiducial cuts on the color-singlet system and are typically dominant compared to

other subleading-power corrections. With these power corrections accounted for, much more

reliable and robust results can be obtained. We exemplified the implementation for Z-boson

production in the case of symmetric lepton cuts, and for Higgs production. Both for total

cross-section rates as well as for rapidity distributions we find dramatic improvements in the

processes examined, both at NLO and NNLO. We find that the P2B-qT method captures the

same O(qT,cut) power corrections as the recoil prescription for these Drell-Yan-type processes.

In the case of 0-jettiness the P2B-improvements allow one to additionally benefit, in the

presence of realistic experimental cuts, from the analytically computed leading-logarithmic

hadronic power corrections [25, 27, 29], further improving the calculation of predictions.

For processes with photon isolation an additional source of power corrections arises due to

the isolation procedure. These power corrections are typically large and dominant among the

fiducial power corrections. In the non-fragmentation channel we find large improvements with

both P2B schemes, and also the recoil scheme in the case of qT subtractions. In the numerically

dominant fragmentation channel, where the collinear photon-quark singularity is removed,

we find that the P2B corrections (and recoil in the case of qT subtractions) are ineffective.

The dominant set of power corrections is not removed by this procedure. In the case of qT
subtractions with a recoil this can be readily understood, since the power correction procedure
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does not take into account any information from the isolation prescription itself.

For this numerically-dominant fragmentation channel we developed a method, P2Bγ , to

include the bulk of photon-isolation power corrections. We numerically studied this for di-

photon production, finding that it significantly improved the calculation and enabled reliable

and robust results in the presence of photon isolation. Additionally, we found that in the

fragmentation channel the isolation power corrections of 0-jettiness are substantially better

than qT -subtractions (compared to the non-fragmentation channels). The combination of

intrinsically better power corrections and the photon-isolation-improved P2Bγ scheme allows

us to extract a reliable result even without the need for extrapolation. We demonstrate

asymptotically flat behavior for over an order of magnitude in the cutoff parameter. Without

these improvements a significant cutoff dependence is present even for very small values of the

cutoff, making the extraction of a result with an error less than a few percent challenging to

obtain.

The P2B and P2Bγ power corrections presented in this paper will be made available in the

upcoming 10.4 release of MCFM and complement and improve upon the existing recoil power

corrections for qT subtractions.
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