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can we use GPUs for reconstruction ?

physics event reconstruction is a very parallel problem, at multiple levels

● many tasks can be expressed using parallel algorithms and data structures:
● e.g. unpacking of detector data, signal fits and calibrations, clustering, track building and fitting, etc.
● large parallelism  good candidates for GPU kernels→

● many reconstruction steps are independent
● run different algorithms in parallel  increase GPU occupancy and optimise CPU utilisation→

● events are independent
● reconstruct multiple events  → further increase GPU occupancy and optimise CPU utilisation

https://creativecommons.org/licenses/by-sa/4.0/
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CMS HLT: online reconstruction

● fully integrated in the CMSSW framework
● can be reused in the offline reconstruction
● validated offline on GPU-equipped nodes on CMS Tier-1 and Tier-2s
● commissioned and optimised over last year
● deployed in production since the beginning of LHC Run-3
● if you missed it, check the talk earlier today by Ganesh on the

“Run-3 Commissioning of CMS Online HLT reconstruction using GPUs”

● with the deployment of a GPU-equipped HLT farm:
● 70% better event processing throughput
● 50% better performance per kW
● 20% better performance per initial cost

● work is ongoing to rewrite more algorithms to run on GPUs:
● particle flow clustering
● seeding of the electron reconstruction
● full primary vertex reconstruction - check yesterday’s talk on the “GPU-based algorithms for primary vertex reconstruction at CMS” by Carlos

and more, targeting also the Phase-2 reconstruction

2× AMD EPYC 7763 
2× NVIDIA T4

-40% time / event

https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11412/
https://indico.jlab.org/event/459/contributions/11412/
https://creativecommons.org/licenses/by-sa/4.0/
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the portability challenge

● new code written using the native CUDA API, targetting NVIDIA GPUs
● most widespread GPU architecture, supported by all architectures used by CMS: x86, ARM, Power

● brand new algorithms, e.g. Patatrack pixel reconstruction
● implemented from scratch to run on GPUs
● ad hoc compatibility layer, with a lot of #ifdef __CUDA_ARCH__ scattered through the code

● new implementations of existing algorithms, e.g. calorimeter local reconstruction
● two implementations: legacy (CPU-only) and parallel (GPU-only)
● duplication of development, maintenance and validation efforts

● most offline sites (CERN, WLCG) do not use GPUs…

● adoption of GPUs from other vendors in HPCs is increasing
● LUMI-G, in Finland, and Frontier, at Oak Ridge, use AMD MI250X GPUs
● Aurora, at Argonne National Laboratory, will use Intel Xe GPUs

● can we target different CPUs and GPUs with a single code base ?

how do we run there ?

and there ?

maintenance issues!

code dup
lication!

https://creativecommons.org/licenses/by-sa/4.0/
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performance portability ?

okkos
check Matti’s talk “Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction code”

std::par

https://indico.jlab.org/event/459/contributions/11824/
https://creativecommons.org/licenses/by-sa/4.0/
https://xkcd.com/927
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what is alpaka ?

● alpaka is a header-only C++17 abstraction library for heterogeneous software development
● it aims to provide performance portability

across accelerators through the abstraction
of the underlying levels of parallelism

● may expose the underlying details when necessary
● (almost) native performance on different hardware

● supports all platforms of interest to CMS
● x86, ARM and Power CPUs

– with serial and parallel execution

● NVIDIA and AMD GPUs
– with CUDA and ROCm backends

● support for Intel GPUs and FPGAs is under development, based on SYCL and oneAPI

● it is production-ready today !
● open source project, easy to contribute to: https://github.com/alpaka-group/alpaka/

https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/
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● evaluated on Run-3 algorithms within the
Patatrack pixel-only standalone reconstruction

● good performance on current hardware
● running on an AMD EPYC “Milan” 7763 CPU

(64 cores / 128 threads SMT)
● running on an NVIDIA Tesla T4 GPU

● header-only library, easy to integrate in the CMS
framework

● support multithreading in the host application
● support multiple targets in a single build

– GPUs from different vendors and different generations

– CPUs with different execution modes, e.g. parallel execution using TBB

● low-level approach, very close to CUDA
● easy to port code from CUDA, and to teach to students

why alpaka ?

Patatrack Preliminary 13 TeV

Patatrack Preliminary 13 TeV

NVIDIA Tesla T4 GPU

AMD EPYC Milan 7763 CPU
64 cores / 128 threads

https://github.com/cms-patatrack/pixeltrack-standalone/
https://creativecommons.org/licenses/by-sa/4.0/
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CMS contributions to alpaka

NVIDIA Tesla T4 GPU

async memory allocations give
+270% throughput

Patatrack Preliminary 13 TeV

caching allocators give +25% throughput

● more flexible support for CUDA and HIP
● support for CUDA and HIP APIs in the host compiler
● support for CUDA and HIP targets in a single build

● asynchronous memory allocations,
on backends that support them

● cudaMallocAsync()/ cudaFreeAsync()
● CUDA ≥ 11.2, ROCm ≥ 5.4, CPUs

● caching of GPU resources
● streams and events
● device and host memory buffers

● contribute to the SYCL implementation
● support for USM memory model in oneAPI

● more efficient atomic operations
● improved memory buffer and kernel syntax
● bug fixes, improvements to the tests, etc.

● fruitful collaboration with the Alpaka development team
● improve efficiency for CMS workflows
● contribute support for new features  and architectures
● students’ projects !

in progress

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka in CMSSW: backends

● in CMSSW we tie together the Device, Queue, Event and Accelerator types in a “backend”
● each backend is associated to a namespace

● synchronous execution on the CPU, with a single thread:

● asynchronous execution on a GPU, with a grid of blocks and threads:

namespace alpaka_serial_sync {

    using Platform = alpaka::PltfCpu;

    using Device = alpaka::DevCpu;

    using Queue = alpaka::QueueCpuBlocking;

    using Event = alpaka::EventCpu;

    template <typename TDim> using Acc = alpaka::AccCpuSerial<TDim, uint32_t>;

}

namespace alpaka_cuda_async {

  using Platform = alpaka::PltfCudaRt;

  using Device = alpaka::DevCudaRt;

  using Queue = alpaka::QueueCudaRtNonBlocking;

  using Event = alpaka::EventCudaRt;

  template <typename TDim> using Acc = alpaka::AccGpuCudaRt<TDim, uint32_t>;

}

https://creativecommons.org/licenses/by-sa/4.0/
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files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends,
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories    under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│   ├── TestHostCollection.h
│   └── TestSoA.h
│
│
└── src/
    │
    │
    │
    ├── classes.h
    └── classes_def.xml 

HeterogeneousCore/AlpakaTest/
├── plugins/
│   ├── BuildFile.xml
│   └── TestAlpakaAnalyzer.cc
│
│
│
│
│
└── test/
    ├── BuildFile.xml
    ├── reader.py
    ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
    └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/
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├── interface/
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https://creativecommons.org/licenses/by-sa/4.0/


May 9th, 2023 A. Bocci   -   Adoption of the alpaka performance portability library in the CMS software 12 / 14

alpaka/ directories

● *.dev.cc files by the device compiler
● for example, nvcc 11.5
● what is available:

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

– device code:
e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● what is discouraged
– access to ROOT and the full CMSSW framework

● *.cc files by the host compiler
● for example, gcc 10.2
● what is available:

– standard C++ functionality, e.g. ROOT and CMSSW
framework

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

● what is not allowed:
– device code:

e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● all code under the …/{src,plugins,test}/alpaka/ directories is compiled multiple times
● into a separate shared library for each back-end

– isolate compile-time and run-time dependencies, minimise code loaded at runtime

● defining the ALPAKA_ACCELERATOR_NAMESPACE macro to the corresponding backend namespace
– automate using the correct types, avoid symbol clashes

https://creativecommons.org/licenses/by-sa/4.0/
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migration to alpaka

● migration of CUDA code in CMSSW to Alpaka is ongoing
● implemented build rules, core framework, unit tests
● support for CPUs, NVIDIA GPUs via CUDA, AMD GPUs via ROCm

● opportunity to review various design choices taken in the past years
● adopt a generic and consistent SoA approach for heterogeneous data structures

– implement common optimisations and minimise memory operations

– offer a common interface, and reduce the development and maintenance efforts

● adopt an improved version of the accelerator framework in CMSSW
– automate data transfers from GPUs to host

– support automatic selection of the “best” backend among the host and all available accelerators

● simplify the logic and the dependency among modules, reduce code duplication

● aim to deploy an Alpaka-based version of the HLT during this year’s data taking
● eventually, drop support for native CUDA code

https://creativecommons.org/licenses/by-sa/4.0/
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a brief history of GPUs at CMS

● 2016: first concrete interest in using (NVIDIA) GPUs for offloading reconstruction algorithms
● 2017: first CUDA code for Pixel local reconstruction
● 2018: continuous R&D activities

● data structures, memory allocation strategies, caching and reuse
● CUDA-based algorithms

● 2019: optimisations and debugging
● more CUDA-based algorithms
● first work on GPU-to-CPU code portability (“cudacompat”)

● 2020: upstream integration
● support for Run-3 and Phase-2 workflows
● better integration with the HLT menu
● improved compatibility

– GPU vs CPU workflows

– automatic offloading when GPUs are available

– improve multi-GPU support

● 2021: integration and adoption at HLT
● 2022: deployment in production

NVIDIA GTC 
(2018)

ACAT 2019

CHEP 2019ACAT
2021

https://creativecommons.org/licenses/by-sa/4.0/


May 9th, 2023 A. Bocci   -   Adoption of the alpaka performance portability library in the CMS software 17 / 14

caveat emptor

● parallel algorithms have some additional problems with respect to serial ones
● more complicated to design and implement efficiently

– e.g. divergences in the parallel execution may lead to suboptimal performance

● undefined order of execution may produce results that are not fully reproducible
– e.g. in combinatorial algorithms and reductions

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka core concepts

Platform and Device
● identify the type of hardware (e.g. NVIDIA GPUs) and individual devices (e.g. each single GPU) present on

the machine
● the DevCpu device serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, run EDProducer, etc.)

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms cannot be instantiated, and are only used as a type
● devices should be created at the start of the program and used consistently

owning Buffer and non-owning View
● point to a scalar or a N-dimensional array in host or device memory
● scalars and 1-dimensional arrays can be accessed with the pointer *, -> and array [] operators
● on device that support it, the buffer allocations/deallocations can use a queue-ordered semantic

nota bene: all Alpaka objects behave like shared_ptrs, and should be passed by value or by const&

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka core concepts

Queues and Events
● queues identify a work queue where tasks (memory ops, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread

● queues can be sync(hronous or blocking) or async(hronous or non-blocking)
– work submitted to a sync queue is executed immediately, before returning to the caller

– work submitted to an async queue is executed in the background, without waiting for its completion

● events identify points in time along the work queue
– can be used to query or wait for the readiness of a task submitted to a queue

● queues and events are always associated to a specific device

Accelerator
● encapsulates the execution policy on a specific device

– N-dimensional work division (1D, 2D, 3D, …)

– on CPU: serial vs parallel execution of the “blocks” (single thread, multi-threads, TBB tasks, …)

● accelerators are created any time a kernel is executed, and can be used in device code to extract the
execution configuration

https://creativecommons.org/licenses/by-sa/4.0/
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CMS HLT reconstruction break down

https://creativecommons.org/licenses/by-sa/4.0/

