
Adoption of the alpaka performance portability library

in the CMS software
CHEP 2023 – May 9th, 2023

Andrea Bocci1, Eric Cano1, Adriano Di Florio2, Antonio Di Pilato3, Jakub Andrzej Gajownik4, Gabrielle
Hugo1, Vincenzo Innocente1, Matti Kortelainen5, Shahzad Muzaffar1, Breno Orzari6, Felice Pantaleo1,

Dimitrios Papagiannis1, Wahid Redjeb1,7, Thomas Reis4, Marco Rovere1, Davide Valsecchi8

1 CERN, 2 INFN and University of Bari, 3 formerly at CASUS,
4 STFC, 5 FNAL, 6 UNESP, 7 RWTH, 8 ETH Zurich

FERMILAB-SLIDES-23-090-CMS-CSAID

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 2 / 14

can we use GPUs for reconstruction ?

physics event reconstruction is a very parallel problem, at multiple levels

● many tasks can be expressed using parallel algorithms and data structures:
● e.g. unpacking of detector data, signal fits and calibrations, clustering, track building and fitting, etc.
● large parallelism good candidates for GPU kernels→

● many reconstruction steps are independent
● run different algorithms in parallel increase GPU occupancy and optimise CPU utilisation→

● events are independent
● reconstruct multiple events → further increase GPU occupancy and optimise CPU utilisation

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 3 / 14

CMS HLT: online reconstruction

● fully integrated in the CMSSW framework
● can be reused in the offline reconstruction
● validated offline on GPU-equipped nodes on CMS Tier-1 and Tier-2s
● commissioned and optimised over last year
● deployed in production since the beginning of LHC Run-3
● if you missed it, check the talk earlier today by Ganesh on the

“Run-3 Commissioning of CMS Online HLT reconstruction using GPUs”

● with the deployment of a GPU-equipped HLT farm:
● 70% better event processing throughput
● 50% better performance per kW
● 20% better performance per initial cost

● work is ongoing to rewrite more algorithms to run on GPUs:
● particle flow clustering
● seeding of the electron reconstruction
● full primary vertex reconstruction - check yesterday’s talk on the “GPU-based algorithms for primary vertex reconstruction at CMS” by Carlos

and more, targeting also the Phase-2 reconstruction

2× AMD EPYC 7763
2× NVIDIA T4

-40% time / event

https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11412/
https://indico.jlab.org/event/459/contributions/11412/
https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 4 / 14

the portability challenge

● new code written using the native CUDA API, targetting NVIDIA GPUs
● most widespread GPU architecture, supported by all architectures used by CMS: x86, ARM, Power

● brand new algorithms, e.g. Patatrack pixel reconstruction
● implemented from scratch to run on GPUs
● ad hoc compatibility layer, with a lot of #ifdef __CUDA_ARCH__ scattered through the code

● new implementations of existing algorithms, e.g. calorimeter local reconstruction
● two implementations: legacy (CPU-only) and parallel (GPU-only)
● duplication of development, maintenance and validation efforts

● most offline sites (CERN, WLCG) do not use GPUs…

● adoption of GPUs from other vendors in HPCs is increasing
● LUMI-G, in Finland, and Frontier, at Oak Ridge, use AMD MI250X GPUs
● Aurora, at Argonne National Laboratory, will use Intel Xe GPUs

● can we target different CPUs and GPUs with a single code base ?

how do we run there ?

and there ?

maintenance issues!

code dup
lication!

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 5 / 14

performance portability ?

okkos
check Matti’s talk “Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction code”

std::par

https://indico.jlab.org/event/459/contributions/11824/
https://creativecommons.org/licenses/by-sa/4.0/
https://xkcd.com/927

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 6 / 14

what is alpaka ?

● alpaka is a header-only C++17 abstraction library for heterogeneous software development
● it aims to provide performance portability

across accelerators through the abstraction
of the underlying levels of parallelism

● may expose the underlying details when necessary
● (almost) native performance on different hardware

● supports all platforms of interest to CMS
● x86, ARM and Power CPUs

– with serial and parallel execution

● NVIDIA and AMD GPUs
– with CUDA and ROCm backends

● support for Intel GPUs and FPGAs is under development, based on SYCL and oneAPI

● it is production-ready today !
● open source project, easy to contribute to: https://github.com/alpaka-group/alpaka/

https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 7 / 14

● evaluated on Run-3 algorithms within the
Patatrack pixel-only standalone reconstruction

● good performance on current hardware
● running on an AMD EPYC “Milan” 7763 CPU

(64 cores / 128 threads SMT)
● running on an NVIDIA Tesla T4 GPU

● header-only library, easy to integrate in the CMS
framework

● support multithreading in the host application
● support multiple targets in a single build

– GPUs from different vendors and different generations

– CPUs with different execution modes, e.g. parallel execution using TBB

● low-level approach, very close to CUDA
● easy to port code from CUDA, and to teach to students

why alpaka ?

Patatrack Preliminary 13 TeV

Patatrack Preliminary 13 TeV

NVIDIA Tesla T4 GPU

AMD EPYC Milan 7763 CPU
64 cores / 128 threads

https://github.com/cms-patatrack/pixeltrack-standalone/
https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 8 / 14

CMS contributions to alpaka

NVIDIA Tesla T4 GPU

async memory allocations give
+270% throughput

Patatrack Preliminary 13 TeV

caching allocators give +25% throughput

● more flexible support for CUDA and HIP
● support for CUDA and HIP APIs in the host compiler
● support for CUDA and HIP targets in a single build

● asynchronous memory allocations,
on backends that support them

● cudaMallocAsync()/ cudaFreeAsync()
● CUDA ≥ 11.2, ROCm ≥ 5.4, CPUs

● caching of GPU resources
● streams and events
● device and host memory buffers

● contribute to the SYCL implementation
● support for USM memory model in oneAPI

● more efficient atomic operations
● improved memory buffer and kernel syntax
● bug fixes, improvements to the tests, etc.

● fruitful collaboration with the Alpaka development team
● improve efficiency for CMS workflows
● contribute support for new features and architectures
● students’ projects !

in progress

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 9 / 14

alpaka in CMSSW: backends

● in CMSSW we tie together the Device, Queue, Event and Accelerator types in a “backend”
● each backend is associated to a namespace

● synchronous execution on the CPU, with a single thread:

● asynchronous execution on a GPU, with a grid of blocks and threads:

namespace alpaka_serial_sync {

 using Platform = alpaka::PltfCpu;

 using Device = alpaka::DevCpu;

 using Queue = alpaka::QueueCpuBlocking;

 using Event = alpaka::EventCpu;

 template <typename TDim> using Acc = alpaka::AccCpuSerial<TDim, uint32_t>;

}

namespace alpaka_cuda_async {

 using Platform = alpaka::PltfCudaRt;

 using Device = alpaka::DevCudaRt;

 using Queue = alpaka::QueueCudaRtNonBlocking;

 using Event = alpaka::EventCudaRt;

 template <typename TDim> using Acc = alpaka::AccGpuCudaRt<TDim, uint32_t>;

}

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 10 / 14

files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends,
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│ ├── TestHostCollection.h
│ └── TestSoA.h
│
│
└── src/
 │
 │
 │
 ├── classes.h
 └── classes_def.xml

HeterogeneousCore/AlpakaTest/
├── plugins/
│ ├── BuildFile.xml
│ └── TestAlpakaAnalyzer.cc
│
│
│
│
│
└── test/
 ├── BuildFile.xml
 ├── reader.py
 ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
 └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 11 / 14

files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends,
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│ ├── TestHostCollection.h
│ ├── TestSoA.h
│ └── alpaka/
│ └── TestDeviceCollection.h
└── src/
 ├── alpaka/
 │ ├── classes_cuda.h
 │ └── classes_cuda_def.xml
 ├── classes.h
 └── classes_def.xml

HeterogeneousCore/AlpakaTest/
├── plugins/
│ ├── BuildFile.xml
│ ├── TestAlpakaAnalyzer.cc
│ └── alpaka/
│ ├── TestAlgo.dev.cc
│ ├── TestAlgo.h
│ ├── TestAlpakaProducer.cc
│ └── TestAlpakaTranscriber.cc
└── test/
 ├── BuildFile.xml
 ├── reader.py
 ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
 └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 12 / 14

alpaka/ directories

● *.dev.cc files by the device compiler
● for example, nvcc 11.5
● what is available:

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

– device code:
e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● what is discouraged
– access to ROOT and the full CMSSW framework

● *.cc files by the host compiler
● for example, gcc 10.2
● what is available:

– standard C++ functionality, e.g. ROOT and CMSSW
framework

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

● what is not allowed:
– device code:

e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● all code under the …/{src,plugins,test}/alpaka/ directories is compiled multiple times
● into a separate shared library for each back-end

– isolate compile-time and run-time dependencies, minimise code loaded at runtime

● defining the ALPAKA_ACCELERATOR_NAMESPACE macro to the corresponding backend namespace
– automate using the correct types, avoid symbol clashes

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 13 / 14

migration to alpaka

● migration of CUDA code in CMSSW to Alpaka is ongoing
● implemented build rules, core framework, unit tests
● support for CPUs, NVIDIA GPUs via CUDA, AMD GPUs via ROCm

● opportunity to review various design choices taken in the past years
● adopt a generic and consistent SoA approach for heterogeneous data structures

– implement common optimisations and minimise memory operations

– offer a common interface, and reduce the development and maintenance efforts

● adopt an improved version of the accelerator framework in CMSSW
– automate data transfers from GPUs to host

– support automatic selection of the “best” backend among the host and all available accelerators

● simplify the logic and the dependency among modules, reduce code duplication

● aim to deploy an Alpaka-based version of the HLT during this year’s data taking
● eventually, drop support for native CUDA code

https://creativecommons.org/licenses/by-sa/4.0/

Questions ?

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 16 / 14

a brief history of GPUs at CMS

● 2016: first concrete interest in using (NVIDIA) GPUs for offloading reconstruction algorithms
● 2017: first CUDA code for Pixel local reconstruction
● 2018: continuous R&D activities

● data structures, memory allocation strategies, caching and reuse
● CUDA-based algorithms

● 2019: optimisations and debugging
● more CUDA-based algorithms
● first work on GPU-to-CPU code portability (“cudacompat”)

● 2020: upstream integration
● support for Run-3 and Phase-2 workflows
● better integration with the HLT menu
● improved compatibility

– GPU vs CPU workflows

– automatic offloading when GPUs are available

– improve multi-GPU support

● 2021: integration and adoption at HLT
● 2022: deployment in production

NVIDIA GTC
(2018)

ACAT 2019

CHEP 2019ACAT
2021

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 17 / 14

caveat emptor

● parallel algorithms have some additional problems with respect to serial ones
● more complicated to design and implement efficiently

– e.g. divergences in the parallel execution may lead to suboptimal performance

● undefined order of execution may produce results that are not fully reproducible
– e.g. in combinatorial algorithms and reductions

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 18 / 14

alpaka core concepts

Platform and Device
● identify the type of hardware (e.g. NVIDIA GPUs) and individual devices (e.g. each single GPU) present on

the machine
● the DevCpu device serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, run EDProducer, etc.)

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms cannot be instantiated, and are only used as a type
● devices should be created at the start of the program and used consistently

owning Buffer and non-owning View
● point to a scalar or a N-dimensional array in host or device memory
● scalars and 1-dimensional arrays can be accessed with the pointer *, -> and array [] operators
● on device that support it, the buffer allocations/deallocations can use a queue-ordered semantic

nota bene: all Alpaka objects behave like shared_ptrs, and should be passed by value or by const&

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 19 / 14

alpaka core concepts

Queues and Events
● queues identify a work queue where tasks (memory ops, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread

● queues can be sync(hronous or blocking) or async(hronous or non-blocking)
– work submitted to a sync queue is executed immediately, before returning to the caller

– work submitted to an async queue is executed in the background, without waiting for its completion

● events identify points in time along the work queue
– can be used to query or wait for the readiness of a task submitted to a queue

● queues and events are always associated to a specific device

Accelerator
● encapsulates the execution policy on a specific device

– N-dimensional work division (1D, 2D, 3D, …)

– on CPU: serial vs parallel execution of the “blocks” (single thread, multi-threads, TBB tasks, …)

● accelerators are created any time a kernel is executed, and can be used in device code to extract the
execution configuration

https://creativecommons.org/licenses/by-sa/4.0/

May 9th, 2023 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 20 / 14

CMS HLT reconstruction break down

https://creativecommons.org/licenses/by-sa/4.0/

