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Results from experiments like LSND and MiniBooNE hint towards the possible presence of an
extra eV scale sterile neutrino. The addition of such a neutrino will significantly impact the standard
three flavour neutrino oscillations. In particular, it can give rise to additional degeneracies due to
additional sterile parameters. For an eV scale sterile neutrino, the cosmological constraints dictate
that the sterile state is heavier than the three active states. However, for lower masses of sterile
neutrinos, it can be lighter than one and/or more of the three states. In such cases, the mass
ordering of the sterile neutrinos also becomes unknown along with the mass ordering of the active
states. In this paper, we explore the mass ordering sensitivity in the presence of a sterile neutrino
assuming the mass squared difference |∆41| to be in the range 10−4 − 1 eV2. We study (i) how
the ordering of the active states, i.e. the determination of the sign of ∆31 gets affected by the
presence of a sterile neutrino in the above mass range, (ii) the possible determination of the sign
of ∆41 for ∆41 in the range 10−4 − 0.1 eV2. This analysis is done in the context of a liquid argon
detector using both beam neutrinos traveling a distance of 1300 km and atmospheric neutrinos
which propagates through a distance ranging from 10 - 10000 km allowing resonant matter effects.
Apart from presenting separate results from these sources, we also do a combined study and probe
the synergy between these two in giving an enhanced sensitivity.

I. INTRODUCTION

Neutrino oscillations in which one flavour of neutri-
nos gets converted to others, have been discovered us-
ing diverse neutrino sources: from the sun to the atmo-
sphere, from reactors to accelerators, and a variety of
detection techniques in different terrestrial experiments.
This has validated the three neutrino oscillation picture
and most of the parameters governing the phenomenon
have been determined with sizable precision. These pa-
rameters are the mass squared differences ∆21, |∆31| (∆ij

is defined as m2
i −m2

j for the mass eigenvalues mi,mj),
and mixing angles θ12, θ23. The remaining unknowns
of the three flavour paradigm are the atmospheric mass
ordering (the sign of ∆31), the octant of the mixing an-
gle θ23, and the CP phase δCP . The next generation
beam based experiments like DUNE [1, 2], T2HK [3],
ESSνSB [4] are expected to resolve these issues. These
experiments plan to use a beam of higher intensity and
larger volume detectors which can increase the statis-
tics as compared to the current generation accelerator
experiments T2K [5] and NOνA[6]. Apart from these
there are dedicated future atmospheric neutrino exper-
iments like Hyper Kamiokande[7], India-based Neutrino
Observatory [8], IceCube and Pingu[9] which can also
help in throwing light on the final frontier of the three
neutrino oscillation. The liquid argon detector in DUNE
will also be able to observe atmospheric neutrinos [10–
12]. Apart from the determination of parameters in
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the standard three flavour oscillation, these next gener-
ation experiments also open up the possibility of prob-
ing beyond standard model (BSM) physics, which can
occur at a sub-leading level. Several new physics scenar-
ios like light sterile neutrinos, non-standard interactions,
long-range forces, neutrino decay, and violation of fun-
damental symmetries like CPT, Lorentz-invariance, etc
have been explored in the context of neutrino oscillation
experiments[13, 14].

Among these, the light sterile neutrino scenario is
motivated by three long-standing anomalies that have
served as primary drivers in the development of a vibrant
short-baseline neutrino program over the last decade.
Two of these pieces of evidence come from the appar-
ent oscillatory appearance of electron (anti)neutrinos
in muon-(anti)neutrino beams originating from charged-
pion decay-at-rest in the LSND experiment [15, 16], and
charged-pion decay-in-flight in the MiniBooNE experi-
ment [17, 18]. There have also been an anomaly associ-
ated with an overall normalization discrepancy of elec-
tron (anti)neutrinos expected in the radioactive decay of
Gallium-71[19–21]. One of the most theoretically mo-
tivated frameworks considered for the interpretation of
these anomalies is that of the presence of light (≈ 1 eV)
sterile neutrino state[22].

A sterile neutrino is a neutral SU(2)×U(1) singlet with
no ordinary weak interaction except those induced by
the mixing. Very heavy sterile neutrinos (1014 − 1016

GeV) are proposed as the mediators in the type I see-
saw model[23–25] which can give rise to small neutrino
masses. Such neutrinos also play a significant role in
leptogenesis[26, 27]. Such neutrinos are natural candi-
dates in grand unified theories. Sterile neutrinos of TeV
energies have also been studied in the context of low-scale
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seesaw models[28, 29]. Sterile neutrinos of keV mass are
especially interesting because the sterile neutrinos would
be a viable dark matter candidate[30].

The existence of an eV scale sterile neutrino motivated
by the short-baseline anomalies is in strong tension from
cosmological bound on the effective number of neutrinos
Neff and the sum of total masses of light neutrinos. From
the recent measurement of Planck data[31] and combin-
ing together with the Hubble parameter measurement
[32] and Supernova Ia data from the Pantheon sample
[33], the extended fit to the parameters are

Neff = 3.11+0.37
−0.36(95% CL)∑

mν < 0.16 eV
(1)

In order to get around cosmological constraints, we need
to introduce new physics that directly affects the cosmo-
logical phenomenology of the light sterile states. Since
the main problem of the canonical light sterile neutrino
is that its thermalization in the early universe raises Neff

to an unacceptably large level for BBN and CMB/LSS
constraints. All known new physics solutions so far in-
volve tampering with the thermalization process, in or-
der to maintain Neff as close to the SM value as pos-
sible. A number of ideas have been proposed and ex-
plored throughout the years, e.g., large chemical poten-
tials or, equivalently, number density asymmetries for
the active neutrinos[34]; secret interactions of the ster-
ile neutrinos[35, 36] and low reheating temperature of
the universe[37], etc.

Can there be sterile neutrinos lighter than the eV
scale? In the presence of a sterile neutrino, there is a
new mass squared difference ∆41 = m2

4 − m2
1. A very

light sterile neutrino corresponding to the mass-squared
difference in ranges 10−4−0.1 eV2 is expected to be con-
sistent with cosmological mass bounds. It was suggested
in ref. [38] that the existence of a very light (≈ 10−5eV 2)
sterile neutrino can provide the explanation for the lack
of upturn in the solar neutrino oscillation probability be-
low ≈ 8 MeV. A recent study has probed the possibility
of alleviating the tension between the results of the on-
going beam experiments, T2K and NOνA for the value
δcp using very light sterile neutrino with a wide mass
difference range of 10−5 : 0.1 eV2[39].

We focus our study on only one sterile neutrino added
to the three light neutrinos, namely the 3+1 framework,
and consider a wide mass range for |∆41| varying in the
range of 10−4 − 1 eV2. The cosmological constraints on
the sum of all the neutrino masses imply that the sign
of ∆41 can not be negative for ∆41 > 0.1 eV2. However,
for lower mass squared differences both signs of ∆41 are
possible. In this work, we investigate the possibility of
determining (i) the sign of ∆31 in the presence of a sterile
neutrino corresponding to a) ∆41 = 1 eV2, b)∆41 in the
range of 10−4−0.1 eV2; (ii) the sign of ∆m2

41 for the mass
range 10−4−0.1 eV2. To answer these questions we use a
liquid argon time projection chamber (LArTPC) capable
of detecting both beam and atmospheric neutrinos. The

typical baseline we have used for the beam neutrinos is ∼
1300 km which is similar to the DUNE experiment. We
delineate the sensitivities to mass ordering by performing
a combined analysis of beam and atmospheric neutrinos,
along with a separate study for each. Additionally, we
present the results including the charge tagging capa-
bility of muon capture in liquid argon allowing one to
differentiate between µ+ and µ− events in the context of
atmospheric neutrinos.
The mass ordering in the presence of a light sterile

neutrino has been studied in ref. [40] with the additional
mass squared difference varying in a wide range in the
context of a magnetized iron calorimeter detector pro-
posed by the India-based Neutrino Observatory (INO)
collaboration. Recently the sensitivity of the sterile mass
ordering in the same mass range has been studied in ref-
erence [41] in the context of the DUNE experiment using
beam neutrinos. We perform our study in the context
of a liquid argon time projection chamber detector as in
DUNE using both beam and atmospheric neutrino events
separately as well as in a combined analysis.
The plan of the paper is as follows. In section II, we

present the 3+1 framework which is used for the analysis.
In section III, we discuss the probability level study of
Pµe, Pµµ in the presence of a sterile neutrino and explore
the effect of sterile mixing and point out where these
effects will be significant. Simulation procedures used
for the neutrinos coming from the beam and atmosphere,
detector specification, and numerical analysis are given
in section IV. Next, in section V, we present and discuss
the results. Finally, we conclude in section VI.

II. THE 3+1 FRAMEWORK:

The minimal scheme postulated to explain the LSND
and MiniBooNE results is the addition of one light ster-
ile neutrino of mass of the order of eV scale to the three
active neutrinos in the SM[15, 22, 42–46]. In this case,
there is one additional independent mass squared differ-
ence which we take as ∆41 = m2

4 −m2
1.

The possible mass orderings, in this case, are shown
in fig. 1. We will refer to the sign of ∆31 as the
atmospheric mass ordering (AMO) and the sign of ∆41

as sterile mass ordering (SMO) throughout the paper.
NO(IO) and SNO(SIO) will signify normal(inverted)
ordering for AMO and SMO respectively. There can be
four possibilities as follows,
(i) SNO-NO: where ∆41 > 0 and ∆31 > 0. The
positioning of the 4th state depends on the value of ∆41.
For ∆41 > 10−3 eV2 the 4th state lies above the 3rd
state while if ∆41 < 10−3 eV2 it lies below the 3rd state.
(ii) SNO-IO: in this case ∆41 > 0 and ∆31 < 0
corresponding to inverted ordering of the light active
neutrino. The 4th state lies above the three active states
with positioning depending on the value of ∆41.
(iii) SIO-NO: this signifies to ∆41 < 0 and ∆31 > 0. The
4th state will always lie below the lightest active states
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with the placement depending on the value of ∆41.
(iv) SIO-IO: for this case both ∆41 and ∆31 are < 0.
For ∆41 < 10−3 eV2, the 4th state lies above m3.

Note that the usual 3+1 picture corresponds to the
cases (i) and (ii) with ∆m2

41 ∼ eV2. The Cases (iii) and
(iv) with ∆m2

41 ∼ eV2 are disfavored from cosmology.

SNO-NO 

A. m4(Δ41≈1 eV2) 

 

 

 

m3(Δ31≈10-3 eV2) 

B. m4(Δ41≈10-4 eV2) 
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FIG. 1. The 3+1 mass spectrum: ordering of mass states
in the presence of an extra sterile neutrino state m4 (blue)
corresponding to two different sterile mass squared difference:
A. |∆41| ∼ 1 eV2, B. |∆41| ∼ 10−4 eV2 when the standard
mass ordering ∆31 lead by m3 (red) can be both +ve and -ve.

For the 3 + 1 oscillation framework, the new mix-
ing matrix U will have three additional mixing angles
θ14, θ24, θ34 corresponding to mixing between the extra
light sterile neutrino νs and the active sector neutrinos
along with two new CP phases δ14, δ34 and can be ex-
pressed as follows,

U = R̃34(θ34, δ34)R24(θ24)R̃14(θ14, δ14)×
R23(θ23)R̃13(θ13, δ13)R12(θ12) (2)

where R̃ij = U δ
ij(δij)Rij(θij)U

†δ
ij (δij), Rij(θij)’s are ro-

tational matrices in i-j plane and U δ
ij = diag(1, 1, 1, eιδij )

with δij ’s being the CP phases.
The global analysis of data performed in ref. [47] gives

the best-fit values and sterile mixing angles for ∆41 = 1.3
eV2 as given in Table I,

Parameters 3σ range Best Fit
sin2 2θ14 0.04 - 0.09 0.079

θ14 5.76◦ − 8.73◦ 8.15◦

sin2 θ24 6.7× 10−3 − 0.022 0.015
θ24 4.68◦ − 8.6◦ 7.08◦

TABLE I. 3σ Levels and Best fit values extracted from [47]

Ref. [47] provides an upper bound of θ34 ≤ 7.4◦ at the
90% C.L. However, the analysis performed in [48] includ-
ing the MINOS+ data disfavoured the allowed regions in
θ24 from above with a new bound at 90% C.L. sin2 θ24 ≤
0.006, i.e., θ24 ≤ 4.5◦. Also, the analysis[48] of DayaBay
and Bugey3 gives at 90% C.L. sin2 2θ14 ≤ 0.046. i.e.,
θ14 ≤ 6.2◦. The bounds on these sterile mixing angles
vary with ∆41. For values of ∆41 in the range 10−4 : 0.1
eV2, the 90% C.L. bounds vary from θ14 ≤ 25◦ : θ14 ≤ 2◦,
and θ24 ≤ 56◦ : θ24 ≤ 4◦.

The effective interaction Hamiltonian in matter for the
3+1 framework in flavour basis is given as follows,

Hint = diag(VCC , 0, 0,−VNC)

= diag(
√
2GFNe, 0, 0,

√
2GFNn/2), (3)

where VCC =
√
2GFNe is the charge current interaction

potential, VNC = −
√
2GFNn/2 is the neutral current in-

teraction potential and GF is the Fermi coupling constant
with Ne, Nn corresponding to the density of electron and
neutron respectively of the medium in which neutrinos
travel. In the presence of matter, the total Hamiltonian
in flavour basis is expressed as follows,

H =
1

2Eν
U

0 0 0 0
0 ∆21 0 0
0 0 ∆31 0
0 0 0 ∆41

U† +
1

2Eν


A 0 0 0
0 0 0 0
0 0 0 0
0 0 0 A

2


(4)

where the propagation medium has been considered to be
the Earth’s matter with neutron density being equal to
electron density, i.e, Ne = Nn and the matter potential
term is A = 2

√
2GFNeEν for neutrino with energy Eν .

III. OSCILLATION PROBABILITIES IN
PRESENCE OF A STERILE NEUTRINO

In this section, we present both the appearance proba-
bility Peµ and disappearance probability Pµµ at baselines
of 1300 km and 7000 km for different sterile parame-
ters. As in the three flavour framework, there are two
useful approximate methods to calculate the oscillation
probability in the matter: (i) α− s13 approximation[41],
(ii) ∆21 = 0 approximation[49]. In the first case α =
∆21

∆31
, sin θ13 are considered small parameters whereas in

the second case ∆21 is considered as negligible. The
probabilities evaluated in these approximations consid-
ering θ34 = 0◦ are presented in the following section.
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A. α− s13 Approximation

The appearance probability calculated using α − s13 approximation in [41] is well suited for any ∆41 values and
baseline of 1300 km and can be expressed as,

Pm
µe = 4s213s

2
23

sin2[(A′ − 1)∆]

(A′ − 1)2
+ 8αs13s12c12s23c23

sin[A′∆]

A′
sin[(A′ − 1)∆]

A′ − 1
cos(∆ + δ13)

+4s13s14s24s23
sin[(A′ − 1)∆]

A′ − 1
[P s

14 sin δ̃14 + P c
14 cos δ̃14]

, (5)

where the terms corresponding to sterile neutrino are,

P s
14 = R[

1

2
A′c23 + (R− 1)(1 + s223)]

sin[(R − 1 + A′

2 )∆]

R− 1 + A′

2

sin[(R − A′

2 )∆]

R− A′

2

+Rc223 sin[(R − 1− A′

2
)∆]

sin[(R + A′

2 )∆]

R+ A′

2

(6)

P c
14 =

R

R− 1
2

(
[R− 1

2
s223 −

1

2
] cos[(R− 1− A′

2
)∆]

sin[(R − A′

2 )∆]

R− A′

2

+ s223(R− 1) cos[(R− A′

2
)∆]

sin[(R − 1 + A′

2 )∆]

R− 1 + A′

2

+s223
sin[(A′ − 1)∆]

A′ − 1

)
+Rc223 cos[(R− 1 +

A′

2
)∆]

sin[(R + A′

2 )∆]

R+ A′

2

,

(7)

where A′ = A
∆31

, R = ∆41

∆31
, ∆ = 1.27∆31L

E , δ̃14 = δ13 + δ14 and cij ∼ cos θij , sij ∼ sin θij .

at limit R >> 1, for R >> A′

2 , approximately R− A′

2 ≃ R+ A′

2 ≃ R, also R− 1
2 ≃ R, R− 1

2s
2
23 − 1

2 ≃ R

P s
14 ≃ 1

2A
′c23

sin[(R−1)∆]
R−1 sin[R∆] + 2 sin[(R − 1)∆] sin[R∆] ≃ ( 1

2RA′c23 + 2) sin[R∆]2 (8)

P c
14 ≃ (1 + c223) cos[(R− 1)∆] sin[R∆] + s223 cos[R∆] sin[(R − 1)∆] + s223

sin[(A′−1)∆]
A′−1 ≃ sin[2R∆] + s223

sin[(A′−1)∆]
A′−1 (9)

B. ∆21 = 0 Approximation

The dominant term in the νµ − νe oscillation probability in OMSD approximation, valid for ∆21L/E << 1, e.g., at
7000 km baseline around the resonance energy (7 GeV), is given by [49],

P 1
µe = 4 cos2 θ13m cos2 θ14m sin2 θ13m(cos2 θ24m sin2 θ23 − sin2 θ14m sin2 θ24m) sin2

1.27∆m
31L

E

+ 2 cos3 θ13m cos2 θ14m sin θ13m sin θ14m sin 2θ24m sin θ23 sin
1.27∆m

31L

E
sin(

1.27∆m
31L

E
+ δ13 − δ14)

− 2 cos θ13m cos2 θ14m sin3 θ13m sin θ14m sin 2θ24m sin θ23 sin
1.27∆m

31L

E
sin(

1.27∆m
31L

E
− δ13 + δ14)

(10)

where θ13m, θ14m, θ24m are modified mixing angles, ∆m
ij ’s are modified mass-squared differences as defined in ref. [49].

C. Effect of sterile parameters on sign of ∆31

In this section, we discuss the dependence of the proba-
bilities on the sterile parameters. For our study, we chose
two illustrative mixing angles θ14 = θ24 = 4◦ and/or 7◦.
The phases δ13 and δ14 are varied in the range −180◦ to
180◦, unless otherwise mentioned. The probabilities for
both θ34 = 0◦ and non-zero θ34 = 7◦ are discussed. In
this section, GLoBES[50] package is used to generate the
probabilities.

1. Effect of non-zero θ14, θ24

We have plotted the appearance (left), and disappear-
ance (right) probabilities in fig. 2 as a function of the neu-
trino energy varying the phases δ13, δ14. The blue[NO]
and orange[IO] bands at the top (bottom) panels refer
to mixing angles θ14 = θ24 = 4◦(7◦) in the 3+1 frame-
work. Whereas, the regions between cyan and yellow
lines correspond to the variation of δ13 in three genera-
tion framework in NO and IO respectively. In the right
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3ν	IO
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FIG. 2. Probabilities Pµe(left) and Pµµ (right) as a function
of energy Eν due to variation of phases δ13, δ14 for NO and IO
at 1300 km baseline for ∆41 = 1 eV2. Blue and orange bands
in top (bottom) panels refer to varied phases for θ14 = 4◦ (7◦),
θ24 = 4◦ (7◦) corresponding to NO and IO respectively. The
regions between cyan(yellow) curves are due to the variation
of δ13 in 3ν case for NO(IO).

panel, we also show Pµµ over 2 − 4 GeV in a magnified
inset. The important observations are as follows,

• In the 3+1 framework, the probability bands cor-
responding to NO and IO are closer than those in
the three generation framework. This suggests a re-
duced hierarchy sensitivity in the 3+1 framework.

• The gap between NO and IO bands increases with
the decreasing values of the sterile mixing angles.

• In Pµe channel, for the 3+1 framework the differ-
ence between the two probability bands is seen in
the energy range 1-3 GeV.

• The disappearance channel probability Pµµ doesn’t
depend on the phases, as can be seen from the nar-
row bands in NO and IO cases, for both three and
3+1 frameworks.

• The Pµµ curves for opposite mass orderings are
hard to separate from each other at energies lower
than 2 GeV. However, some demarcation is visi-
ble at energies in the range of 2-7 GeV for both
three generation and 3+1 generation, as shown in
the right panels.

• In the disappearance channel, we don’t see a signif-
icant effect of variation of the sterile-active mixing
angles θ14, θ24 on the probability bands.

3ν	NO
3ν	IO

θ14,θ24=4°

----	θ14,θ24=7°

NO
IO

L:	7000	Km

P
µ

	e

0

0.1

0.2

0.3

0.4

Eν	(GeV)
2 4 6 8 10

P
µ

µ

0

0.2

0.4

0.6

0.8

1

Eν	(GeV)
2 4 6 8 10

FIG. 3. Probabilities Pµe(left) and Pµµ (right) as a function of
energy Eν at 7000 km baseline for ∆41 = 1 eV2. The shaded
bands of blue and orange refer to varied phases δ13, δ14 for
θ14 = 4◦ (7◦) for NO(IO). The regions between cyan(yellow)
curves are due to the variation of δ13 in 3ν case for NO(IO).

In fig. 3, the appearance (left) and disappearance
(right) probabilities have been shown at 7000 km base-
line. Such baselines will be relevant for atmospheric neu-
trinos. The significant observations are as follows,

• There is a prominent difference between the prob-
ability bands of NO and IO, implying sensitivity
to mass ordering at 7000 km baseline in the 3+1
framework. The difference decreases for sterile case
w.r.t. the standard one.

• Also, with lower values of θ14, θ24, the gap between
the probability bands of opposite mass ordering in-
creases.

• For Pµµ channel, a significant gap exists between
bands of opposite mass orderings at energies higher
than 4 GeV whereas, in Pµe channel, the gap is
present even at much lower energies of 3 GeV.

In order to understand the features of the fig. 2, 3 from
analytical expression, we compute the minimum differ-
ence in the probability Pµe for two different mass order-
ings by varying the phases,

∆P ≡ [P 1NO
µe (δNO

13 , δNO
14 )− P 1IO

µe (δIO13 , δIO14 )]min (11)

where the other parameters have been kept fixed. Using
only the dominant first term of (10), the difference in
probability can be expressed as,

∆P = ∆Pnp+

A1[sin
2(M −N) cos δNO − sin2(M +N) cos δIO]+

A2[sin 2(M −N) sin δNO + sin 2(M +N) sin δIO]
(12)

where ∆Pnp is the part with no phases involved, and is
given as follows,

∆Pnp = cos2 θ14m sin2 2θ13m(sin2 θ24m sin2 θ14m−
cos2 θ24m sin2 θ23) sin 2M sin 2N (13)
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The other part containing the phases depends on the am-
plitude parameters A1, A2 and the frequency parameters
M,N that are defined as,

A1 = cos2 θ14m cos 2θ13m sin 2θ13m sin θ14m sin 2θ24m sin θ23
(14)

A2 = cos2 θ14m sin 2θ13m sin θ14m sin 2θ24m sin θ23 (15)

M = ∆31 cos 2(θ13 − θ13m)× 1.27L

E
(16)

N = A cos 2θ13m(1 + cos2 θ14 + cos2 θ14 sin
2 θ24)×

1.27L

E
(17)

We use ∆31 = 2.5 × 10−3 eV2, θ24 = 7◦, θ14 = 7◦,
θ23 = 45◦ to calculate the ∆P at the first oscillation
maxima. For L = 1300 km at E = 2.5 GeV, ∆P < 0,
which means the minima of the NO curve is below the
maxima of the IO curve. This implies the overlap of
NO and IO bands suggesting the presence of degeneracy.
Whereas, for 7000 Km at E = 7 GeV, ∆P > 0, i.e., mass
ordering can be determined even with varying the phases
δ13 and δ14.

2. Effect of non-zero θ34

3ν	IO
3ν	NO

NO
IOL:	1300	Km,	θ14:7°,	θ24:7°,	θ34:7°

P μ
	e

0

0.025

0.05

0.075

0.1

0.125

Eν	(GeV)
2 4 6 8 10

L:	7000	Km

P μ
	e

0

0.1

0.3

0.4

Eν	(GeV)
2 4 6 8 10

FIG. 4. Pµe as a function of energy Eν with the variation
of phases δ13, δ14, δ34 for NO (blue) and IO(orange), ∆41 = 1
eV2 at 1300 km (left) and 7000 km (right). Shaded blue
(orange) bands refer to θ14, θ24, θ34 = 7◦ for NO(IO). Regions
between cyan(yellow) curves are due to variation of δ13 in 3ν
case for NO(IO).

In fig. 4, the appearance probability is plotted as a
function of neutrino energy at 1300 km (left) and 7000
km (right) baseline for θ14, θ24, θ34 = 7◦. The shaded
blue (yellow) bands are due to the variation of the phases
δ13, δ14, δ34 for NO(IO). The regions between the solid
cyan(yellow) curves correspond to the variation of δ13
in the 3ν framework for NO(IO). The most important
observation is a notable decrease in the gap between NO
and IO bands at both baselines. In the case of 7000 km,
there is still a gap between the opposite mass ordering
bands, which gets diminished for a non-zero θ34.

3. Effect of |∆41|

In this section, the sensitivity to atmospheric mass or-
dering is studied at the probability level, with the sterile
mass squared difference ∆41 in the range 10−4 - 0.1 eV2.
To understand the effect of ∆41 on sensitivity to at-

mospheric mass ordering, we probe the difference in the
appearance probability ∆Pµe as a function of ∆41.

∆Pµe = |P true
µe (∆31, δ13, δ14)− P test

µe (−∆′
31, δ

′
13, δ

′
14)|min

(18)

We compute the minimum difference ∆Pµe (using
GLoBES), by considering a particular AMO with con-
stant δ13, δ14 in P true

µe whereas P test
µe is calculated for the

opposite AMO by varying the phases and |∆31|. The
phases are varied over their full range and for ∆31 vari-
ation over the current 3σ range in the opposite mass or-
dering is considered.
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FIG. 5. The difference in appearance channel probability
∆Pµe for opposite AMO as a function of ∆true

41 and Eν at
1300 km baseline for SNO-NO (above) and SNO-IO (below).
The plots in the left (right) panel has δtrue13 = 90◦(−90◦) and
fixed δ14 = 0◦.

In fig. 5, we illustrate the probability difference ∆Pµe

in the ∆41−Eν plane at 1300 km. The important obser-
vations are as follows,

• Around ∆41 = 2.5× 10−3 eV2, ∆Pµe is either very
high or low depending upon the values of δ13 and
NO/IO.

• We observe an oscillating pattern of ∆Pµe along
∆41 for a fixed energy. This oscillation becomes
rapid at higher ∆41 values.
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• Significant contribution to ∆Pµe is seen for energies
in the range of 1.5− 4 GeV.

• For the SNO-NO case (top panels), the occurrence
for maxima and minima reverses for δ13 = 90◦, and
−90◦.

• However, for the SNO-IO case, the maxima and
minima occur at the same ∆41 for δ13 = 90◦,−90◦.
Although, the magnitude is higher for δ13 = 90◦.

D. Effect of the sign of ∆41 in Pµe channel

As we consider ∆41 in the rage 5 × 10−4 : 10−1 eV2,
the sterile mass ordering also becomes unknown giving us
four possibilities depending on the ordering of the three
active states. The difference in the probability for the
opposite signs of ∆41 is defined as,

∆Ps = |P true
µe,µµ(+∆41, δ13, δ14)−P test

µe,µµ(−∆′
41, δ

′
13, δ

′
14)|min

(19)
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FIG. 6. Difference in the appearance probability ∆Pµe(left),
and disappearance probability ∆Pµµ(right) for different ster-
ile mass ordering in the ∆41−Eν plane at 1300 km(top), 7000
km(bottom).

We plot ∆Ps (using GLoBES) by marginalizing over
∆′

41 in opposite SMO and phases δ′13, δ
′
14 in fig. 6 for

appearance (left) and disappearance channel(right) over
a wide range of the sterile mass squared difference and
neutrino energy at 1300 km baseline (top) and 7000 km
(bottom). We have taken constant values of θ14, θ24 = 7◦,
δ13 = −90◦, δ14 = 90◦ in P true

µe,µµ. It can be observed
that the high values of ∆Ps are mostly concentrated in

the mass square range of 10−3 : 10−2 eV2 range. In
Pµe channel, the contribution is lower than Pµµ. The
difference is observed to be larger at higher baselines.
In Pµe channel, probability difference is higher around

∆41 = 1 − 2 × 10−3 eV2 while a dip is found immedi-
ately after around ∆41 = 2.5 − 3 × 10−3 eV2 . In Pµµ

channel for energy below 4 GeV, a similar pattern is ob-
served. However, at higher energies, a higher ∆P value
is observed.

IV. SIMULATION PROCEDURE AND DETAILS
OF THE EXPERIMENTAL SETUP

The experimental setup under consideration consists
of a megawatt-scale muon neutrino beam source accom-
panied by a near detector (ND) and a far detector(FD).
The ND will be placed close to the source of the beam,
while the FD, comprising a 40 Kton LArTPC detector is
placed at a distance of 1300 km away from the neutrino
source. The large LArTPC at an underground observa-
tory is also capable of observing atmospheric neutrinos.
The proposed DUNE experiment has a similar experi-
mental configuration[1]. In this analysis, both neutrino
beam coming from the accelerator and the atmospheric
neutrinos have been considered.

A. Events from accelerator beam

A beam-power of 1.2MW leading to a total exposure
of 10× 1021 pot has been implemented for the numerical
analysis. The neutrino beam simulation has been carried
out using the GLoBES[50] software. We assume the ex-
periment to be running for 3.5 years each in the neutrino
mode and the antineutrino mode.

B. Atmospheric events

The atmospheric neutrinos produce muons and elec-
trons. These event rates corresponding to an energy bin
of width dE and in a solid angle bin of width dΩ are
expressed as,

d2Nµ

dΩ dE
=

σcDeff

2π

[(
d2Φµ

d cos θ dE

)
Pµµ +

(
d2Φe

d cos θ dE

)
Peµ

]
,

(20)

d2Ne

dΩ dE
=

σcDeff

2π

[(
d2Φµ

d cos θ dE

)
Pµe +

(
d2Φe

d cos θ dE

)
Pee

]
(21)

Here Φµ and Φe stands for the νµ and νe atmospheric
fluxes [51] respectively, the disappearance and appear-
ance probabilities are given as Pµµ and Peµ respectively,
σc is the total CC cross section and Deff is the detector
efficiency. The energy and angular resolutions for the
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LArTPC detector, implemented using Gaussian resolu-
tion function R, are defined as follows,

RE(Et,Em) =
1√
2πσ

exp

[
− (Em − Et)

2

2σ2

]
. (22)

Rθ(Ωt,Ωm) = Nexp

[
− (θt − θm)

2 + sin2 θt (ϕt − ϕm)
2

2(∆θ)2

]
,

(23)
where N is the normalization constant. Here, Em (Ωm)
and Et (Ωt), denote the measured and true values of en-
ergy (angle) respectively. The smearing width σ is a func-
tion of Et. The smearing function for the zenith angle
is a bit more complicated. The direction of the incident
(measured) neutrino is specified by two variables: the po-
lar angle θt(θm) and the azimuthal angle ϕt(ϕm), denoted
together by Ωt(Ωm). The measured direction denoted by
Ωm is expected to be within a cone of half angle ∆θ of the
true direction. The far detector (LArTPC) parameters
assumed are mentioned in Table II[52].

Parameter Uncertainty Value

µ+/− ∆θ 2.5◦

e+/− ∆θ 3.0◦

(µ+/−, e+/−) Energy GLB files for each E bin [1]
Detection efficiency GLB files for each E bin [1]
Flux normalization 20%

Zenith angle dependence 5%
Cross section 10%

Overall systematic 5%
Tilt 5%

TABLE II. Assumptions of the LArTPC far detector param-
eters and uncertainties.

1. Charge identification using muon capture in Argon

The charge id of the muon can be identified using
the capture vs decay process of the muon inside the
argon[53]. The working principle of charge id of the
muon is as follows: a fraction of the µ− like events that
undergo the capture process are identified using capture
fraction efficiency and the rest of the muons as well as
all the µ+ undergo muon decay. We have implemented
these as mentioned in [49].

C. χ2 analysis

We have evaluated the χ2 for a fixed set of parameters
using the method of pulls. We can tackle various statis-
tical and systematic uncertainties directly through this
method. The flux, cross sections, and other systematic
uncertainties are taken into account by allowing these
inputs to vary from their standard values in the compu-
tation of the expected rate in the i-jth bin, Nth

ij . Let the

kth input deviate from its standard value by σk ξk with
σk denoting the uncertainty. The value of Nth

ij with the
modified inputs is given by,

Nth
ij = Nth

ij (std) +

npull∑
k=1

ckijξk , (24)

where Nth
ij (std) gives the expected rate obtained with

the standard values of the inputs in the i-jth bin and npull
is the total number of sources of uncertainty (5 for our
case). The ξk’s are the pull variables and they determine
the number of σ’s by which the kth input deviates from
its standard value. In eq. (24), ckij signifies the change

in Nth
ij when the kth input is changed by σk (i.e. by

1 standard deviation). The uncertainties in the inputs
being not very large, we only consider changes in Nth

ij

that are linear in ξk. Hence we evaluate the modified χ2

as,

χ2(ξk) =
∑
i,j

[
N th

ij (std) +
∑npull

k=1 ckijξk −Nex
ij

]2
Nex

ij

+

npull∑
k=1

ξ2k , (25)

where the additional ξ2k-dependent term is added due to
the penalty imposed for moving the value of the kth input
away from its standard value by σk ξk. χ

2 in the case of
the standard LArTPC detector and for a detector with
change id for muons are evaluated as,

χ2
standard = χ2

µ−+µ+ + χ2
e−+e+ (26)

χ2
charge−id = χ2

µ− + χ2
µ+ + χ2

e−+e+ (27)

The χ2 with pulls, which includes the effects of all theo-
retical and systematic uncertainties, is obtained by min-
imizing χ2(ξk) with respect to all the pulls ξk.

χ2
pull = Minξk

[
χ2(ξk)

]
. (28)

Finally, We marginalize the χ2 over the allowed range of
the oscillation parameters as mentioned in Table III. For
the combined analysis we add the chi-square for beam
and atmospheric and then marginalize over the oscil-
lation parameters. The marginalization has been per-
formed in θ23, θ14, θ24, δ13, δ14 over the range specified in
Table III for all cases unless otherwise mentioned.

V. RESULTS AND DISCUSSION

In this section, we present the results for the analysis
of beam, atmospheric, and a combination of both data
for the following cases,
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Parameter True Values Marginalization Range
θ12 33.47◦ N.A.
θ13 8.54◦ N.A.
θ23 45◦ 39◦ : 51◦

θ14, θ24 7◦ 0◦ : 10◦

θ14, θ24 4◦ 0◦ : 6◦

θ34 0◦, 7◦ 0◦ : 17◦

∆21 7.42× 10−5 eV2 N.A.
∆31(NO) 2.5× 10−3 eV2 −(2.42 : 2.62)× 10−3 eV2

∆31(IO) −2.5× 10−3 eV2 (2.42 : 2.62)× 10−3 eV2

∆41 (for AMO) 1 eV2 N.A.
∆41 (for SMO) 0.0005 : 0.01 eV2 ±15% of −∆41

δ13 many −180◦ : 180◦

δ14 0◦, 90◦,−90◦ −180◦ : 180◦

TABLE III. The table depicts true values of all the parameters
and their range of marginalization as used in our analysis.
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FIG. 7. The sensitivity to the atmospheric mass ordering
as a function of true δ13 for various δtrue14 values at 1300 km
baseline considering normal (left), inverted (right) ordering.

• determination of the sign of ∆31 (AMO) for ∆41 =
1 eV2

• determination of the sign of ∆31 for ∆41 in the
range of 5× 10−4 : 0.1 eV2

• determination the sign of ∆41 (SMO) when it’s
value lies in the range of 5× 10−4 : 0.1 eV2

A. Sensitivity to the AMO for |∆41| = 1 eV2

In fig. 7, the sensitivity to the atmospheric mass or-
dering (AMO) is presented as a function of δtrue13 in stan-
dard three flavor framework (black) for normal (left) and

inverted (right) ordering. We also present the sensitiv-
ity in the presence of a sterile neutrino corresponding to
SNO-NO (left), and SNO-IO (right) for true values of
δ14 = 0◦(blue), 90◦(green), −90◦(orange), 180◦(red). We
will call −180◦ < δ13 ≤ 0◦ as the lower half plane[LHP]
and 0◦ < δ13 ≤ 180◦ as the upper half plane[UHP]
throughout this section. The important points to be
noted are,

• The sensitivity decreases in the presence of a sterile
neutrino compared to the three flavor case.

• The sensitivity for the sterile cases depends on the
true values of δ14, δ13.

• For θ14, θ24 = 4◦, the sensitivity is higher than that
of θ14, θ24 = 7◦ and also closer to the standard 3ν
case. This is due to the fact that the smaller the
sterile mixing angles are the more the sensitivity
of the sterile case gets closer to the results of the
standard 3ν case.

• For NO, in the LHP of true δ13 the highest sensi-
tivity is observed for δtrue14 = −90◦, and the lowest
sensitivity for δtrue14 = 90◦ whereas in the UHP, this
order gets reversed.

• For IO, δtrue14 = 0◦ (blue) shows the lowest sensi-
tivity in the LHP of true δ13 and also the highest
sensitivity in UHP.

Next, in fig. 8, the AMO sensitivity is shown as a func-
tion of true δ13 corresponding to the analysis of only
beam(red), only atmospheric (blue) and a combination of
both beam and atmospheric(green) simulated data. The
cases with charge identification in atmospheric only (vio-
let) and combined analysis (orange) are also depicted.
The representative sensitivity curves are obtained for
θ14, θ24 = 7◦, δ14 = 0◦ corresponding to true hierarchy
considered as normal (left) and inverted (right). The ob-
servations from fig. 8 are following,

• Sensitivity for atmospheric neutrinos doesn’t have
significant dependence on δ13.

• Combined sensitivity of beam and atmospheric is
greater than the sum of individual sensitivities of
these two, which demonstrates the synergy between
them.

• We observe slightly higher sensitivity when we use
partial charge identification for atmospheric neutri-
nos. This also leads to higher sensitivity for com-
bined analysis.
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FIG. 8. Atmospheric mass ordering sensitivity as a function
of δtrue13 corresponding to the analysis of only beam (red), only
atmospheric (violet), combined atmospheric+beam (green)
neutrinos for normal (left) and inverted (right) hierarchy with
400 kt-yr exposure of LArTPC

In fig. 9, we present the effect of θ34 on the sensitiv-
ity to the atmospheric mass ordering. In this plot, the
sensitivity is shown as a function of true δ13 for various
combinations of true values of θ34, δ34. We consider for
beam only analysis, θ34 = 0◦, δ34 = 0◦(green dotted),
and θ34 = 7◦,δ34 = 90◦(red dotted) along with the sen-
sitivity curve for standard three flavors (black). We also
plot the sensitivity with combined beam and atmospheric
analysis θ34 = 7◦,δ34 = 90◦ (red-dashed). Other sterile
parameters are fixed as δ14 = 90◦, θ14 = θ24 = 7◦. The
observations are as follows,

• The sensitivity decreases as θ34 becomes higher.

• In the combined analysis of beam and atmospheric
data, the sensitivity is higher than the beam anal-
ysis compensating for the decrease due to non-zero
θ34.
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FIG. 9. The sensitivity to mass ordering as a function of
δtrue13 for various θtrue34 values for beam neutrinos with 1300
km baseline for normal (left), inverted (right) ordering

B. Sensitivity of the sign of ∆31 for
∆41 = 10−4 : 10−1 eV2

In this section, we study how the sensitivity to the
sign of ∆31 behaves with ∆41 where the latter varies in
the range of 10−4 : 10−1 eV2. Note that for ∆41 ∼

1 eV2 only SNO-NO, SNO-IO cases are cosmologically
allowed. However, for ∆41 = 10−4 : 10−1 eV2 all the
four possibilities depicted in fig. 1 are admissible.
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FIG. 10. Sensitivity to atmospheric mass ordering as a func-
tion of δtrue13 in SNO(top), SIO (bottom) scenarios with true
∆31 for different values of ∆true

41 at 1300 km baseline

In fig. 10, the AMO sensitivity is shown as a function
of δtrue13 at various true values of ∆41. The upper(lower)
panels correspond to the true value in SNO (SIO) cases
while the left (right) panels are for NO(IO). During the
computation of χ2, the |∆41| is fixed in true and test
cases for this plot. The observations of significance in
fig. 10 are as follows,

• The nature of variation of sensitivity with δtrue13

doesn’t change significantly for different true val-
ues of ∆41.

• Sensitivity gets notably reduced for ∆41 = 0.001
eV2(blue) for the most of values of δtrue13 in the
UHP in SNO-NO and SIO-IO case. In SNO-IO
and SIO-NO cases, blue curves give minimum sen-
sitivity over the full range of δ13

• However, sensitivity for ∆41 = 0.001 eV2 is very
high in the LHP of δtrue13 in SNO-NO, SIO-IO.

• The maximum sensitivity is observed for ∆41 =
0.01 eV2(violet) in SIO-NO and SIO-IO case over
almost the full range of δtrue13 .
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FIG. 11. Sensitivity to atmospheric mass ordering as a func-
tion of ∆true

41 with marginalisation in ∆31 for θtrue23 = 45◦,
δtrue14 = 0◦, δtrue13 = −90◦(red), 90◦(blue) at 1300 km baseline.
The violet curve shows ∆P s

14 at 2.5 GeV.

We note that for the difference in the probability be-
tween the opposite AMO, the dependence on ∆41 will
come from the last term in eq. (5). The probability dif-
ference for fixed values of θ13, θ23, θ14, θ24, δ13, δ14 and a
given SMO can be expressed as,

∆P st
µe = Pm,true

µe (i1∆41, j1∆31)− Pm,test
µe (i2∆41, j2∆31)

∝ 4s13s14s24s23[∆P s
14 sin δ̃14 +∆P c

14 cos δ̃14],(29)

where we define;

∆P s,c
14 = sin[(A′−1)∆]

(A′−1) P s,c
14 (i1∆41, j1∆31)

− sin[(A′+1)∆]
−(A′+1) P s,c

14 (i2∆41, j2∆31) (30)

Depending upon the true value considered in a certain
mass ordering, there can be four scenarios as follows

• SNO-NO: i1 = i2 =+ve, j1 =+ve and j2 =-ve

• SNO-IO: i1 = i2 =+ve, j1 =-ve and j2 =+ve

• SIO-NO: i1 = i2 =-ve, j1 =+ve and j2 =-ve

• SIO-IO: i1 = i2 =+ve, j1 =+ve and j2 =-ve

Note that ∆P s,c
14 for different cases are connected as,

∆P s,c
14 |SNO−NO = −∆P s,c

14 |SNO−IO, (31)

∆P s,c
14 |SIO−NO = −∆P s,c

14 |SIO−IO (32)

In fig. 11, we have depicted the sensitivity to AMO as
a function of |∆41| with marginalization performed only
over ∆31 with all other parameters being fixed. The red

(blue) curve refers to δ13 = −90◦(90◦). We also show
the difference in probability term ∆P s

14(30) evaluated at
2.5 GeV by the violet curve. The understandings from
fig. 11 are as follows,

• Since we have chosen δ14 = 0◦ for δ13 = 90◦ and
−90◦, the value of sin δ̃14 = sin[δ13 + δ14] is +1, -1

respectively and cos δ̃14 = 0. For the fixed phases
and mixing angles in both true and test cases, the
difference in probability(29) between NO and IO
will only depend on ∆P s

14 as,

∆P st
µe = 4s13s14s24s23∆P s

14 sin δ̃14 (33)

This means ∆P st
µe will be opposite for δ13 = 90◦ and

−90◦ leading to the opposite nature of chi-square.

• In the case of SNO-NO, for δ13 = 90◦, we have
∆P st

µe ∝ ∆P s
14|SNO−NO. This can be seen from the

top-left panel which shows that the nature of the
blue and violet curves are similar. For δ13 = −90◦,
∆P st

µe ∝ −∆P s
14|SNO−NO which is reflected in the

red curve being opposite to the violet curve.

• The sensitivity for SNO-IO is just opposite in na-
ture to SNO-NO as shown in eq. (31). Therefore, in
the top-right panel, the red curve for δ13 = −90◦ is
similar to the violet curve here, and the blue curve
for δ13 = +90◦ is the opposite of the violet curve.

• In SIO-NO, and SIO-IO cases, we also observe simi-
lar patterns as SNO-NO and SNO-IO, respectively.

• The sensitivity is seemed to be almost constant for
R >> 1, i.e., ∆41 >> ∆31. This can be understood
analytically as follows. The difference in Pµe for
fixed energy and phases will only depend on ∆P s

14

and can be evaluated using eq. (30) for ∆41 >> 1
limit as,

∆P s
14 =

(
sin[(A′−1)∆]

(A′−1) + sin[(A′+1)∆]
(A′+1)

)
×
{
( A′

2Rc23 + 2) sin[R∆]2
}
, (34)

where the term in the braces is dependent on ∆41.
For R >> 1 the term sin[R∆] shows fast oscilla-
tion. Summing over energies, sin[R∆], will give a
constant value that is reflected in the sensitivity
curves.

In fig. 12, we depict the sensitivity to the sign of ∆31 as
a function of true ∆41 for δ13 = −90◦(red), 90◦(blue), and
δ14 = 0◦ at 1300 km. For this figure, we have marginal-
ized over the parameters as mentioned in table‘ III.
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FIG. 12. Sensitivity to atmospheric mass ordering as a func-
tion of ∆true

41 for θtrue23 = 45◦, δtrue14 = 0◦, δtrue13 = −90◦ (red),
90◦(blue) at 1300 km baseline

Some interesting features of sensitivity to the AMO as
seen from fig. 12 are as follows,

• For SNO-NO (top-left panel) and SIO-IO (bottom-
right panel) cases we observe a contrasting nature
of the sensitivity between δ13 = 90◦ and −90◦.
Note that a similar contrasting nature has been
observed in the top two panels of fig. 5 showing
the oscillogram of ∆Pµe. For instance, in SNO-
NO, at ∆41 = 3×10−3 eV2 a maxima of sensitivity
occurs for δ13 = 90◦ whereas minima occurs for
δ13 = −90◦.

• However, the nature of the sensitivity curves for
δ13 = 90◦ and −90◦ is similar in SNO-IO (top-right
panel) and SIO-NO (bottom-left panel) cases. This
behavior was also observed in ∆Pµe oscillogram in
the bottom panels of fig. 5 for SNO-IO case.

• In all the cases the minima and maxima are ob-
served in the range of 0.001 − 0.01 eV2. Beyond
that, the sensitivity is relatively flat with ∆41.

C. Sensitivity to the sign of ∆41 (SMO)

In this section, we present the sensitivity of the sign of
∆41 considering it’s values in the range of [5×10−4 : 10−1]
eV2 for which all four possibilities depicted in fig 1 will
be viable. In fig. 13, the sensitivity of the sign of sterile
mass squared differences are depicted as a function of the
true value of ∆41 for various true values of δ13, δ14[54].
The salient features of the fig. 13 are as follows,
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FIG. 13. Sensitivity to sterile mass ordering as a function of
∆true

41 for ∆31 = +ve(left), −ve(right) and ∆41 = +ve(top),
−ve(bottom) using different values of δtrue14 , δtrue13 at 1300 km.

• The sensitivity curves for SNO-NO and SIO-IO
show two prominent maxima around true values of
∆41 = 1 × 10−3 eV2, 5 × 10−3 eV2 cases. There
is a dip in sensitivity when true ∆41 is around
2.5× 10−3 eV2 due to its proximity to atmospheric
mass squared difference as discussed in ref. [41].

• In the case of SNO-IO and SIO-NO, the maxima
occurs around ∆41 = 2.5 × 10−3 eV2, i.e, when
the sterile mass squared difference is close to the
atmospheric mass squared difference ∆31.

• The SNO-IO and SIO-IO cases provide relatively
higher sensitivity than the SNO-NO and SIO-IO
cases.

• The features of sensitivity in SNO-NO can be qual-
itatively understood from the plot of probability
difference in top panels of fig. 6.

In fig. 14, we have used the simulated data from atmo-
spheric neutrino analysis to perform a combined analysis
of beam and atmospheric neutrinos and get the sensitiv-
ity of the sterile mass ordering as a function of the true
value of ∆41 for the true value of phases δ13 = −90◦(left),
δ14 = 90◦(right). In these four panels, it is observed that
the sensitivity to SMO is bettered in combined analysis
than the beam neutrinos. The nature of the sensitivity is
almost similar for beam and atmospheric analysis. This
can be understood from the similar profile of difference
in probabilities ∆Pνe,∆Pµµ at 1300 km and 7000 km as
shown in fig. 5. The combined sensitivity is above 3σ for
most of the parameter space up to ∆41 = 10−2 eV2. For
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FIG. 14. Sensitivity to sterile mass hierarchy as a function
of ∆true

41 using combined beam and atmospheric neutrinos at
1300 km baseline.

the values of ∆41 greater than that, even with the addi-
tion of atmospheric neutrinos, we get fixed sensitivity of
1.5σ − 2σ.

VI. CONCLUSIONS

Our work focuses on the effect of an additional light
sterile neutrino with a mass squared difference in the
range of 10−4 : 1 eV2 on the determination of atmo-
spheric mass ordering and sterile mass ordering. For our
study, we use a liquid argon detector for a) beam neutri-
nos (baseline 1300 km), and b) atmospheric neutrinos.

The main new aspect of our study is to do a combined
analysis of beam and atmospheric neutrinos to determine
the sign of ∆31 and ∆41 when the latter is varied in the
range 10−4 − 1 eV2. We also study in detail the impact

of various sterile parameters.

The sensitivity to the sign of ∆31(AMO) for ∆41 = 1
eV2 gets diminished w.r.t. to the 3ν case in the presence
of a sterile neutrino. The decrement in the sensitivity is
higher for larger values of θ14, θ24. The values of χ2 also
depend on δ13, δ14. The sensitivity to AMO decreases fur-
ther in the presence of a non-zero θ34. However, with the
combined analysis of beam and atmospheric neutrino, we
are able to recover the sensitivity over 10σ, irrespective
of the choice of true values of δ13, δ14. The presence of a
light sterile neutrino gives the possibility of both positive
and negative values of ∆41. Our study also demonstrates
for the first time the dependence of the atmospheric mass
ordering sensitivity on the absolute value of ∆41 as well
as the on the nature of the 3+1 mass spectrum (SNO-
NO, SNO-IO, SIO-NO, SIO-IO).

We also study the sensitivity to the sign of ∆41 (SMO)
for the ∆41 = 5 × 10−4 : 0.1 eV2 in different scenarios
of the 3+1 mass spectrum. The sensitivity gets reduced
when ∆41 is in the proximity of ∆31 for the SNO-NO
and SIO-IO cases whereas in the SNO-IO and SIO-NO
cases, the sensitivity gets enhanced. The addition of at-
mospheric neutrinos boosts the sensitivity over 3σ for
∆41 < 10−2 eV2. However, for higher values of ∆41,
the sensitivity falls off to ∼ 1.5σ − 2σ for the combined
analysis.
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