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Abstract

The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to
begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI)
to be included from the start at this facility and in all phases that lead up to the experiments. The second
annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring
all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for
the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This
paper summarizes the different activities and R&D projects covered across the sessions of the workshop
and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community,
as well as cutting-edge techniques currently studied in other experiments.

Keywords: Artificial Intelligence, Deep Learning, EIC, ePIC, Machine Learning, QCD, Physics

1 Introduction

In October 2022, the second workshop on Arti-
ficial Intelligence for the Electron-Ion-Collider
(AI4EIC) has been held at William & Mary. The
workshop delved into a range of active and poten-
tial application areas of AI/ML1 for the EIC, and
it was also an opportunity to showcase some of the
ongoing research activities in these areas for the
recently formed ePIC Collaboration.

The event also had a strong outreach and edu-
cational component with different tutorials given
by experts in AI and ML from national labs,
universities, and industry as well as a hackathon
satellite event during the last day of the workshop.

In Table 1 at the end of this document, we list
many of the methods encountered in this work,
with their respective acronyms.

As discussed in the EIC Yellow Report [1]
and as further deepened during the AI4EIC work-
shops, AI/ML will permeate all phases of the
EIC schedule (shown in Fig. 2), and will involve
accelerator and detector activities.

The second AI4EIC workshop broadened the
scope of its predecessor. While the initial work-
shop was centered on experimental applications
for accelerators and detectors, the subsequent
meeting pivoted towards the EIC detectors pro-
gram, emphasizing applications and fostering
linkages between theoretical and experimental
aspects.

1In this document, we follow a hierarchical taxonomy for
artificial intelligence (AI), subdivided into Machine Learn-
ing (ML) and Deep Learning (DL). ML, a subset of AI,
pertains to a machine’s ability to deduce input-output rela-
tionships without explicit mathematical instructions. DL, a
further refinement within ML, employs intricate neural net-
works to mimic human brain interactions, facilitating learning
from unstructured inputs. See Fig. 1.

Taxonomy

AI: The field of computer 
science that focuses on 

creating machines or 
software capable of 
intelligent behavior, 
emulating human 

cognitive functions such 
as learning, reasoning, 
problem-solving, and 

perception.
ML: A subset of AI 

that enables 
computers to learn 
from data without 

explicit programming

RL: Learning through 
trial and error, 

optimizing actions 
based on rewards

DL: A subset of ML that 
focuses on artificial 

neural networks with 
many layers

Fig. 1 Taxonomy: A diagrammatic representation of
artificial intelligence, machine learning, and deep learning
is provided to familiarize readers with the corresponding
acronyms utilized in the text.

Fig. 2 EIC schedule: the Gantt chart represents differ-
ent phases (design, construction, science) for accelerator,
the ePIC experiment, and a potential detector-2 at EIC.
Image taken from [2] and presented in October 2022.

The workshop was structured with the fol-
lowing sessions: AI/ML for Design, Experimen-
t/Theory Connections, Reconstruction and Par-
ticle Identification (PID), AI/ML Infrastructure
and Frontiers, and AI/ML in Streaming Readout
(SRO). Interwoven throughout the workshop were
comprehensive tutorials delivered by seasoned
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experts from academia, industry, and national
labs.

This document is organized as follows:

• In Sec. 2, we delve into discussions from the
design session.

• In Sec. 3, we underscore the interplay between
theory and experiment through AI/ML applica-
tions.

• In Sec. 4, we discuss recent advances in recon-
struction and particle identification, emphasiz-
ing their applications to the EIC case.

• In Sec. 5, we detail the infrastructure solu-
tions required for transitioning from prototype
to production environments. We also address
the stimulating panel discussion on AI/ML fron-
tiers, which could shape EIC science in the
coming years.

• Sec. 6 focuses on the potential of integrating
AI/ML within a streaming readout data pro-
cessing environment, prompting a convergence
between offline and online analyses.

• Sec. 7 highlights community efforts, including
tutorials and a hackathon, that were conducted
during the AI4EIC workshop week.

Concluding our report, Sec. 8 encapsulates our
findings and conclusions.

2 Design of EIC

The development of innovative experimental
equipment at the EIC is skillfully leveraging
cutting-edge algorithmic advancements within the
dynamic landscape of AI-inspired methodologies.
Throughout the instrumentation design process,
decisions are made with the primary objective of
optimizing performance, while thoroughly consid-
ering all project limitations and constraints.

Fundamentally, the design evolves into a
meticulous optimization process of a multiparam-
eter system, characterized either through Monte
Carlo (MC) simulation or by analytical models,
which are corroborated by existing experimen-
tal data and specific test results. At the EIC,
accelerators and spectrometers represent complex
systems, and their respective performances are
optimized individually, while acknowledging their
interconnected requisites. Ideally, these systems
should be optimized concurrently, but current
practices haven’t reached this stage.

In the design session, the presenters provided
a comprehensive summary of recent advance-
ments in the application of AI-based methods
to the definition and design of both spectrom-
eter components and accelerators, encapsulating
a brief overview of AI-assisted operations. The
following points were emphasized: (i) The vari-
ous sub-detectors within the spectrometer should
no longer be approached individually, as was
the norm previously, a practice largely due to
the diversity in specialized expertise and estab-
lished work routines. Instead, a holistic perspec-
tive that considers all sub-detectors as a unified
whole should be adopted. (ii) Design is funda-
mentally a Multi-Objective Optimization (MOO)
process, characterized by numerous parameters
that define the system under design and sev-
eral potentially conflicting objectives that need to
be optimized concurrently, subject to constraints.
The balancing act between optimizing objectives
and adhering to constraints typically necessitates
considerable computational effort and time.

The EIC could spearhead the applica-
tion of AI/ML to assist the design of large
scale experiments, starting with the first
detector, ePIC, and potentially extending
to a second detector planned for the coming
years. Considering the ongoing AI revolution, the
discussion surrounding the use of AI/ML to aid
the design of these experiments is particularly rel-
evant and timely, as their design phase is currently
underway.

A typical workflow for detector design is
displayed in Fig. 3 An emerging and effica-

Fig. 3 AI-assisted detector design: Flowchart of the
main steps characterizing detector design optimization.
Image taken from [3].

cious strategy to alleviate the computational
demands of design optimization is the utilization
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of Parallel Bayesian Optimization. This method,
which focuses on vector-based black-box func-
tions with Expected Hypervolume Improvement
[4], promises superior sample-efficiency. It accom-
plishes this by identifying the Pareto frontier
(optimal solutions) as the most effective trade-
offs. The implementation of this approach is made
simpler through the use of existing open-source
libraries. These include BoTorch [5], a Bayesian
Optimization library built on PyTorch, and Ax [6],
an Adaptive Experimentation Platform, which
provides higher-level APIs as well as scheduling,
storage, and orchestration capabilities.

The primary constraints of MOO and the
measures to address them are mainly centered
around four aspects: Firstly, the issue of scalabil-
ity: The model fitting process, typically utilizing
a Gaussian Process for the probabilistic surrogate
model, escalates at a rate of O(n3) where n rep-
resents the number of data points. The quality
of the model and its statistical efficiency degrade
with an increase in parameters. Additionally, the
hypervolume of the configuration space is super-
polynomial in relation to the number of objectives.
However, there are promising approaches, such
as one based on a sparsity-inducing prior and
Markov Chain Monte Carlo inference, designed to
address high-dimensional problems where a few
parameters exert a significant influence [7]. Sec-
ondly, the region of interest: The efficiency of
the model can be improved by defining appropri-
ate parameters like objective thresholds, in the
regions of interest in the objective functions. To
this end, a system is currently being developed
known as MORBO (Multi-Objective Trust-Region
Bayesian Optimization) [8]. The aim of MORBO
is to increase efficiency scaling for many evalu-
ation points by optimizing various parts of the
global Pareto frontier simultaneously using a coor-
dinated set of local trust regions. Thirdly, the issue
of noise: The model needs to be designed in a way
that it can handle noisy data, including intrinsic
tolerances and environmental fluctuations. Incor-
porating this flexibility would likely lead to more
realistic and robust optimization outcomes. To
optimally utilize noisy data, a MARS (Modified
Multivariate value-at-risk Approximation based
on Random Scalarizations) approach is currently
being developed [9]. Lastly, the matter of data
representation: To mitigate ill-conditioned linear

systems, a minimum of double precision is recom-
mended. The handling of discrete parameters can
be accomplished through probabilistic continuous
reparametrization.

The latest implementation of detector design
optimization at EIC [10] draws inspiration from
the successful pilot attempt on the dual-radiator
RICH (dRICH) [11]. It harnesses the power
of the Multi-Objective Evolutionary Algorithm
(MOEA) and Bayesian Optimization (MOBO)
libraries, integrating them with the computation-
ally intensive Geant4-based full simulations to
facilitate the ECCE tracker design [3]. This frame-
work incorporates approximately ten design free
parameters and three key objectives, subject to
a variety of hard and soft constraints. It also
deals with the complex requirement of prevent-
ing Geant4 volume overlaps. Key facets of the
objective functions include momentum and angu-
lar resolutions, as well as the efficiency of tracking
reconstruction via Kalman Filtering. The results
of the optimization have been verified by compar-
ing them with the expected baseline performance
and post-hoc reconstructed physics observables,
such as D0 → π+K− invariant mass reconstruc-
tion. The optimization is currently in the process
of transitioning from the original ECCE software
framework to the more advanced ePIC software
framework. This transition aims to expand the AI-
assisted design to accommodate a larger parame-
ter space and include multiple sub-detectors (e.g.,
tracker, PID detectors such as the dRICH, and
calorimetry) in the optimization process, along
with a broader set of objectives. A significant
advantage of this approach is that of utilizing
accurate full simulations while limiting the num-
ber of design points necessary to approximate the
Pareto front in a multi-objective space.

In EIC, an alternative Machine Learning-
driven approach has been introduced [12] for
calorimetry design application. This approach
substitutes the computationally demanding
Monte Carlo simulation with an efficient surrogate
model. The surrogate model utilizes generative
frameworks such as Generative Adversarial Net-
works (GANs), Variational Autoencoders (VAEs),
and Normalizing Flows (NFs) [13].2 This results

2For additional details on surrogate models, please refer to
Sec. 3.
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in a differentiable simulation, in which minor per-
turbations are approximated using a first-order
Taylor expansion. In the final step, the optimal
detector parameters are identified through a Gra-
dient Descent optimization process, assuming the
use of suitable metrics.

A significant portion of the discourse concen-
trated on the incorporation of cutting-edge data
science tools that enable an interactive visual-
ization of solutions within a multifaceted Pareto
front. This front, which exists in a multidimen-
sional objective space, consists of a spectrum of
optimal solutions with various trade-offs between
competing objectives. This ability to visualize
solutions allows for a more intuitive understand-
ing of these trade-offs and assists decision-makers
in selecting the most suitable solution based on
their specific preferences or constraints. An illus-
tration of these applications, as they allow for an
interactive exploration of this space, can be found
in Fig. 4. These tools, therefore, represent a crit-
ical step forward in managing the complexity of
optimization problems in detector and accelerator
design. Beyond the progress made in automated

Fig. 4 Interactive Pareto front from AI-assisted
design. Left panel: interactive visualization taken from
the website [14]; right panel: A schematic of Python and
JavaScript libraries facilitating result visualization utiliz-
ing advanced data science tools.

optimization for detector design as previously
mentioned, the field of accelerator science also
presents fertile ground for the promising applica-
tions of optimization methodologies and AI/ML
techniques. Indeed, such methods have been inte-
gral to accelerator modelling for a number of
years. Nevertheless, the application of AI/ML
in accelerator science presents unique challenges.

These include managing the computational com-
plexity of the models, effectively addressing the
widespread Coulomb interactions, grappling with
the non-linearity inherent in many beam dynamics
problems, and delicately balancing between cost,
performance, technical challenges, and research-
and-development efforts. The recent Snowmass21
White Paper [15], contributed to by experts from
the AI/ML accelerator science community, con-
centrates on the priorities and strategies for accel-
erator modelling. It offers recommendations for
the design challenges of next-generation accel-
erators. These include the development of an
inclusive portfolio of particle accelerator and beam
physics modelling tools, creation of virtual twins
of accelerators, the application of advanced algo-
rithms rooted in AI/ML and quantum computing
technologies, and the establishment of efficient,
scalable software frameworks.

Several promising AI/ML approaches are cur-
rently making waves in the field of accelera-
tor physics. Firstly, the Multi-Objective Genetic
Algorithm (MOGA) is a prevalent method used
for the optimization of components such as Super-
conducting Radio Frequency (SRF) guns. Despite
its regular use, MOGA still necessitates human
intervention in scenarios involving parametric sin-
gularities, and the lack of harmony between the
myriad approaches in use could potentially limit
its overall efficiency and the fluidity of the opti-
mization process. Secondly, the concept of virtual
or digital twins has been gaining significant trac-
tion due to its ability to generate datasets with
minimal effort for the testing and training of
AI/ML models, operator training, and as a natural
expansion of control room online modeling. The
Snowmass21 White Paper accentuates the poten-
tial of digital twins to explore broader parameter
spaces. This extended exploration capacity could
pave the way for the design of innovative solutions
for particle acceleration in the near future. In addi-
tion to these established methods, recent advances
hold potential for future accelerator design. These
include algorithmic improvements in linear alge-
bra [16] and non-linear/chaotic system forecast-
ing [17, 18], which could significantly influence
accelerator surrogate models for non-linear design.
However, the impact of these emergent technolo-
gies is perhaps not yet robust enough for applica-
tion to the ongoing EIC accelerator design within
the project’s timeline.
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Particle accelerator optimization poses numer-
ous challenges, primarily stemming from the
necessity to navigate non-linear, multi-objective
functions that depend on thousands of dynamic
machine components and settings. These factors
collectively impact the design, operation, and con-
trol of particle beams, and often exceed the capac-
ity of traditional optimization methods. How-
ever, recent advancements have yielded promising
results. For instance, decision tree-based methods
have been successfully implemented to enhance
Large Hadron Collider (LHC) operations, result-
ing in improved luminosity through more effi-
cient beam optics control [19]. Techniques such
as Isolation and Random Forests have proven
effective for instrument fault detection, as well
as identification and correction of magnet errors.
These applications not only uncover previously
undetected hardware and electronics issues, but
they also conserve operational time through early
detection. Further, autoencoder Neural Networks
(NNs) have been employed to de-noise beam mea-
surements on simulated data, leading to an antici-
pated improvement in measurement quality. Addi-
tionally, the use of supervised learning with linear
regression models for virtual diagnostics enables
the reconstruction of optics observables with-
out direct measurements, potentially accelerating
machine commissioning and mitigating the need
for time-consuming measurements. These success-
ful applications have spurred ongoing research for
the design and optics corrections in the LHC
upgrade, which could potentially be adapted for
EIC or inspire new advanced methodologies for
collider operations.

In conclusion from the design session of the
workshop, it was agreed that EIC is poised to
greatly benefit from the application of AI in the
control, commissioning, monitoring, and opera-
tion of accelerators and spectrometers. It was
stressed that recognizing and integrating these
opportunities early in the design phase is cru-
cial. However, it’s important to underscore that
the implementation of AI/ML applications in
physics, or any other field, typically necessitates
the incorporation of new multidisciplinary exper-
tise, implying the potential need for the creation of
specific positions within the research teams. That
said, AI/ML should not be viewed as a panacea;
their application should be judiciously considered

where appropriate, and especially where conven-
tional methodologies are inadequate or underper-
forming. Over the past few years, a significant
challenge has been to surmount the cultural bar-
riers that have hindered broader acceptance of
AI/ML as established engineering tools in our
applications. Today, there is a growing consen-
sus that tasks involving optimization in multi-
dimensional and multi-objective spaces can be
more effectively addressed with AI/ML, rather
than relying on traditional approaches. This new
paradigm harnesses the power of AI/ML while
simultaneously leveraging the expertise of humans
in the optimization loop, which can lead to more
robust and efficient solutions.

3 Intersection between
Theory and Experiment

ML techniques have long been successfully
employed as data analysis tools within the realm
of experimental nuclear and particle physics. How-
ever, when it comes to theoretical or phenomeno-
logical perspectives, we’ve yet to fully explore the
potential these techniques offer.

In the context of QCD, ML seems particu-
larly adept at handling non-perturbative phenom-
ena. This includes initial state parton densities
(in a broader sense), as well as the final state
hadronization process. These complex aspects of
QCD could greatly benefit from a comprehensive
application of ML. Using QCD factorization theo-
rems and evolution, parton distribution functions
(PDFs) and other quantum correlation functions
are deduced by conducting global fits on available
data. This conventional method involves probing
various regions in the parameter space to find
the best location, given a specific objective. The
ideal parameters are pinpointed by minimizing
(or maximizing) a particular cost function, typi-
cally through the gradient descent algorithm. To
mitigate the influence of parametrization bias,
the NNPDF collaboration introduced the applica-
tion of NNs in extracting collinear proton PDFs
(as referenced in [20]). Later, they extended this
approach to fragmentation functions (FFs), as
detailed in [21]. This innovative use of NNs serves
to refine our understanding and analysis of pQCD.

Inspired by their success, several groups have
attempted to exploit the flexibility of the NNs
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Fig. 5 FemtoNet global analysis workflow: A
Physics-Informed Deep Learning Framework that Trans-
lates Exclusive Scattering Data into Insightful Information.

to determine more complex, higher dimensional
distributions [22, 23]. As a concrete example, we
discuss the benefits and challenges of using NNs to
extract generalized parton distributions (GPDs)
as perused by the FemtoNet Collaboration [23].

The current knowledge of GPDs lags far
behind that of collinear PDFs due to their depen-
dence on additional kinematic variables, sparse
kinematic coverage, and the overall amount of
data being limited. Moreover, in the deeply vir-
tual exclusive scattering processes of interest for
GPDs, the cross-sections are written in terms of
convolutions of the GPDs over one of the kine-
matic variables. Unlike DIS, direct access to the
relevant distributions is not possible, and thus
fully grasping the information enclosed in the
data is a formidable task for traditional fitting
methods. The workflow of Fig. 5 depicting the
FemtoNet global analysis framework is a response
to this challenge [23]. The main goal is to establish
an unprecedented precision analysis framework to
characterize the quark-gluon structure of mat-
ter. At each step of the analysis pipeline, specific
physics informed deep learning architectures are
implemented to ensure that the essential physics
constraints are satisfied in the ML algorithms’ pre-
dictions. Along the way in this analysis, there is
an intentional and strategic injection of physics
information from various sources such as theory,
lattice QCD, and possible higher twist/beyond the
standard model interactions. The pipeline culmi-
nates in the extraction of essential information on
hadronic structure.

As a first step in this analysis to determine the
GPDs, the FemtoNet collaboration applies super-
vised learning utilizing a Multi-Layer Perceptron

Fig. 6 FemtoNet results on DVCS cross-section
modeling: DVCS extrapolation on kinematics outside the
range covered in experiment at the kinematic point xBj =
0.365, t = −0.2GeV 2, Q2 = 2GeV 2, and Eb = 5.75GeV .
ML Model with Angle Symmetric Constraints. Figure and
caption taken from [23].

(MLP) complemented with regularization tech-
niques, namely “dropout”, to prevent over-fitting
[23, 24]. Due to the limitations in the data, a
key role for generalization is played in their study
by the incorporation of physical information into
the neural architecture. In practice, this is done
by adding terms to the loss functions, penaliz-
ing behaviors that deviate from the theoretical
knowledge. As evidenced in Fig. 6 and corrobo-
rated by [23], the physics-informed model notably
outperforms non-physics based counterparts in
cross-section prediction.

A pivotal subject of discussion was Monte
Carlo event generators (MCEGs) [25], indispens-
able tools for numerical simulations and subse-
quent data analysis. MCEGs play a crucial role
in high-energy and nuclear physics, being essen-
tial for model validation, facilitating discoveries,
experimental planning, and further advancement
of theories such as QCD. Their enhancement is
geared towards the improvement of prediction
accuracy and computational efficiency. Tradition-
ally, non-perturbative aspects rely on phenomeno-
logical models. These models, in turn, depend on
numerous parameters that are derived from exper-
imental data. An integral facet of the MCEGs is
the modeling of hadronization, a transformative
process wherein high-energy, color-charged quarks
and gluons morph into color-neutral hadrons.
Gaining insight into the ‘hadronization’ pro-
cess, or the mechanism by which these parti-
cles reconfigure into their final state, is crucial
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for establishing significant comparisons between
data and theoretical predictions and improving
our understanding of the hadronization process.
The high-dimensionality of these models esca-
lates the complexity of the task at hand. There-
fore, it’s unsurprising that current models can’t
completely encapsulate data across the entire
energy spectrum explored. This raises the ques-
tion: could Machine Learning present a more
efficacious approach?

Currently, three potential ML strategies are
being considered: VAEs, GANs, and NFs [26–28].

VAEs have been deployed to emulate a simpli-
fied version of the Lund string model in Pythia,
with the assumption of flavor and kinematics of
hadron emission being independent [29]. In par-
ticular, the conditional sliced-Wasserstein Auto-
encoder (sWAE) was trained using kinematic dis-
tributions for variables - p′z (a rescaling of pz), pT
extracted from Pythia’s first emission events (refer
to Eq. (2) of [29]), and specific values of string
energy. The network was tested using a unique
set of string energies not included in the train-
ing set. This strategy facilitated a more accurate
assessment of the network’s ability to general-
ize across the entire phase space. To simplify the
process, only pions in the final state were consid-
ered, and the performance was compared with the
average Pythia output. This methodology conve-
niently allows the inclusion of an energy depen-
dence in the hadronization process, if required by
the data. The first hadron emissions, which form
the basis of the training, are successfully repro-
duced (refer to Fig.10 in [29]). Comparison with
the full hadronization chain (see Fig.11 in [29])
shows a deviation of no more than 10%; such dif-
ferences originate from the different treatment of
the first and subsequent emissions in Pythia which
is not considered in the ML approach. While the
architecture was applied to a simplified version of
the Lund string model, the results are promising
and the use of ML is foreseen to be more relevant
once training is done on real data, for which the
hadronization is not physically accessible.

GANs, instead, were used to learn the clus-
ter decay of the cluster hadronization model using
Herwig data [30]. Differing from VAE’s, which
learn mappings for both encoding and decoding,
GANs learn only the decoding from a base dis-
tribution utilizing a discriminative loss function,
comparing generations with ground truth. This

was done for single e+ + e− annihilation into
two π0. Despite the simplifications introduced for
faster training, it was found that the method gen-
eralizes to other hadron species and, even more
importantly, that the level of discrepancy with
real data is similar to the one achieved with the
original cluster decay model.

NFs have been used to further improve the
generation scheme, utilizing a Conditional Masked
Autoregressive Flow (CMAF) [31] as the gen-
eration mechanism for the kinematic [32]. The
network is conditioned on a set of hadron masses
with differing initial energies. Contrary to ear-
lier methods that restricted consideration to pions
alone, the introduction of functional dependence
via the hadron mass condition enables the gen-
eration of a range of masses in the final state
[32]. Additionally, the conditional flow adeptly
captures the correlation between the pT and pz
kinematic distributions.

On the experimental side of connecting the-
ory to experiment, we have identified four major
challenges. The first of these challenges pertains
to fast simulation, a suite of tools designed for
the swift transition from particle-level predictions
to detector-level observations. Significant progress
has been made in ML-based fast simulations, par-
ticularly with the advent of ‘surrogate models’.
These models leverage various deep generative
modeling approaches, including VAEs [26], GANs
[27], NFs [28], and Diffusion Models (DMs) [33].
Much of the community’s attention has been
devoted to the simulation of calorimeters, which
typically form the slowest segment of the simu-
lation stack [34–37]. Calorimeters, featuring both
longitudinal and transverse segmentation, offer
a high-dimensional emulation space. Despite the
complexity, the latest neural network models have
managed to mimic Geant4 simulations [38] with
impressive accuracy [39].

The second significant challenge lies in recon-
struction. Traditional shallow learning has long
been employed for tasks such as momentum recon-
struction and particle identification. However, the
advent of DL has ushered in innovative methods
that process low-level inputs in a more compre-
hensive manner. Furthermore, ML continues to
influence even the most foundational tasks in
data analysis. The reconstruction of the kinematic
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variables in DIS such as Bjorken x and four-
momentum transfer squared Q2 is being reevalu-
ated in light of the advancements made in ML. It
has been shown for inclusive DIS measurements
that the reconstruction methods benefit from the
application of ML-based models [40, 41]. This is
now studied further for semi-inclusive DIS where
it is important to precisely determine the inelas-
ticity y of the process and the azimuthal angles of
the final state. The success of ML in these foun-
dational areas underlines its potential for tackling
complex problems in nuclear and particle physics.
It also underscores the importance of develop-
ing ML techniques that are robust and versatile
enough to meet the demands of a rapidly evolving
scientific landscape.

The third critical challenge is tied to param-
eter inference. This aspect distinctly differs from
reconstruction, which focuses on deducing proper-
ties of an individual event or a single object within
that event. In contrast, parameter inference is con-
cerned with extracting physical parameters from
entire datasets, thereby providing a holistic under-
standing of the reaction or system under con-
sideration. Such a nuanced analysis is invaluable
in scenarios with complex or high-dimensional
datasets, where conventional statistical methods
may struggle. For example, recently, DL have been
used in the search for exotic hadrons where pro-
duction and decay parameters may be determined
from models built on the underlying quantum
mechanical amplitudes [42, 43]. By leveraging ML,
we can uncover intricate correlations and patterns
that might otherwise remain hidden. This makes
ML an indispensable tool for parameter inference
in the modern data-centric world.

Finally, the fourth challenge pertains to cross-
section inference. For a vast array of measure-
ments, experimental teams provide corrected dif-
ferential cross-section results in a readily usable
format for subsequent inferential tasks outside
the scope of the originating collaboration. ML
is precipitating a paradigm shift in how we
execute these corrections, commonly known as
deconvolution or unfolding. Cutting-edge methods
have facilitated the unfolding of high-dimensional
and unbinned data [44–46]. This development is
paramount to effectively harness EIC data, given
that intricate correlations across numerous dimen-
sions are necessary to comprehensively analyze the
three-dimensional structure of the proton.

In conclusion, we highlight two frameworks
that amalgamate theoretical and experimental
aspects, and include uncertainty quantification:
the A(i)DAPT group [47, 48], has introduced
an innovative employment of ML-based MCEG
for data analysis and preservation. Its objectives
encompass data compression, providing power-
ful interpolation tools, and the ability to unfold
detector effects, enabling the acquisition of accu-
rate vertex-level data. Additionally, the frame-
work incorporates a GAN-based surrogate model
for rapid detector folding, as demonstrated in [49].
Successful testing and validation of this frame-
work, along with its potential to mitigate theory
bias during the inference of event distributions,
represent a significant advancement towards the
reconstruction of physical observables. The Quan-
tOm collaboration [50], has presented another pio-
neering approach that adopts a holistic strategy
for global analysis, seamlessly integrating theo-
retical and experimental components. By employ-
ing an event-based analysis methodology, this
approach capitalizes on generative models such
as GANs to establish an event-level Quantum
Correlation Function (QCF) inference framework.
This framework provides a comprehensive and
advanced perspective on 3D hadron tomography
and nuclear imaging.

4 Reconstruction and Particle
Identification

PID and reconstruction are crucial components of
physics analyses at EIC.

The integration of AI and ML in these domains
is witnessing a rapid surge, providing promising
opportunities for performance enhancement and
comprehensive utilization of detector information
beyond conventional techniques in these fields.

This session featured eight insightful talks,
meticulously selected for their direct relevance to
ongoing EIC endeavors and their complementarity
to additional inputs we collected during the first
AI4EIC workshop, whose contributions are also
encapsulated in this section. The content from the
second workshop broadly covered four pivotal sub-
jects: (i) Reconstruction/PID; (ii) Tracking; (iii)
Jet Classification; and (iv) Domain Adaptation
and Data-Driven Methods.
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At the workshop, we had four contributions
to reconstruction/PID via calorimeter responses.
The first study focused on the use of inter-
pretable networks for lepton identification amidst
jet-induced backgrounds [51]. This paper under-
lined how deep learning, like Convolutional Neural
Networks (CNN), can uncover overlooked low-
level image data and isolate novel high-level
features, outperforming traditional high-level fea-
ture physics models. The second contribution was
about muon identification with DL [52], show-
ing that modern deep-learning architectures that
efficiently combine the information coming from
the tracking and calorimetry sub-systems can
learn how to distinguish charged µ’s from charged
π’s, the latter representing the main background
source. Our third contribution coupled the recon-
struction of shower profiles within a hybrid bar-
rel calorimeter, integrating sandwiched layers of
monolithic silicon sensors Astropix and Pb/ScFi
fibers, with a CNN for PID assessment of these
profiles [53]. This synergy between hardware and
deep learning enable superior e/π separation, pre-
cise γ and π0 differentiation, radiative γ tagging,
and low-energy µ identification, impacting multi-
ple areas of the EIC physics, such as DIS, deeply
virtual Compton scattering, QED internal correc-
tions, J/ψ and timelike Compton scattering. The
fourth study delved into the application of ML
for pixelated calorimetry, specifically for cluster
separation in the electron endcap [55]. Different
Artificial Intelligence/Machine Learning (AI/ML)
techniques were evaluated, with a particular focus
on using VAEs. VAEs were leveraged on a full-
scale calorimeter to condense clusters into single
points representing their total energies.

In the preceding workshop, we emphasized the
vital role of Cherenkov detectors for Electron-Ion
Collider (EIC) experiments [56, 57]. As the pri-
mary component of the PID for the ePIC detector,
these units are equipped with a Ring Imaging
Cherenkov (RICH) detector in the electron end-
cap, a dRICH in the hadronic endcap, and a
Detection of Internally Reflected Cherenkov light
(DIRC) also in the hadronic endcap. This setup
ensures superior PID capabilities across a broad
range of the particle phase space [1]. When it
comes to Cherenkov detectors, there are two chal-
lenging areas. The first pertains to the simulation
of these detectors, which typically demands signif-
icant computational resources. This is because the

Electron Shower Sample Pion Shower Sample

Event Sample (Projection)

Fig. 7 (top) ECal hybrid concept: the barrel hybrid
electromagnetic calorimeter concept for EIC. More details
can be found in [54]; (bottom) Projection of Showers
in the ECal: Shower projections of electrons (left) and
pions (right) as a function of ψ and η. Energy deposition
in the pixelated array is represented via color, commonly
occupying the channel axis in vision-based neural networks.

process involves tracking a substantial number of
photons across complex surfaces, as illustrated in
the contribution [56]. The second area of challenge
lies in the reconstruction process, specifically in
recognizing patterns of sparse ring images amid
noisy conditions. This complexity is further exac-
erbated in the context of DIRC detectors due to
the intricate ring topologies. In addressing these
challenges, advancements in ML and DL present
considerable promise for enriching the state of the
art in both reconstruction and PID in relation to
Cherenkov detectors [58]. As discussed in [57, 59],
algorithms such as DeepRICH [60] leverage gener-
ative models to offer rapid, accurate simulations.
Additionally, as demonstrated in the context of
the DIRC detector, these algorithms are capable
of reconstructing intricate hit patterns, with per-
formance on par with traditional reconstruction
methods, but at a significant speed—roughly four
orders of magnitude faster during inference time
on a Graphics Processing Unit (GPU). Further-
more, we highlighted the substantial opportunities
presented by ML/DL applications, which enable
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learning at the event level as opposed to the
particle level. This approach not only leverages
the additional information characterizing each
event, but also effectively manages the simulta-
neous detection of multiple particles within the
detectors. This shift in focus coupled with the
possibility to train these models on high-purity
real data, can lead to deeper understanding of the
detector response.

In the realm of jet classification (for a com-
prehensive review on this topic, the reader may
refer to, e.g., [61, 62]), a novel approach, JetVLAD
[63, 64], was presented. JetVLAD employs vec-
tors of locally aggregated descriptors (VLAD) to
tag heavy-flavor jets, proving instrumental for
examining jet interactions with the quark-gluon
plasma (QGP) created in high-energy heavy ion
collisions. Such interactions are crucial for under-
standing partonic energy loss within the QGP
medium. The JetVLAD architecture, mirroring
the ResNet model family [65], uses residual blocks
with batch normalization to simplify learning. The
model’s width was designed to match the output
of the NetVLAD layer [66], a CNN architecture
created for weakly supervised place recognition.
This innovative approach efficiently identifies jet
flavor, enabling the analysis of mass dependence
in jet-QGP interactions, and sets the stage for
high-purity heavy-flavor measurements in contem-
porary and forthcoming collider experiments. In
our inaugural workshop, we explored the poten-
tial of AI/ML in enhancing heavy-flavor and jet
tagging in EIC experiments [67]. This insightful
presentation emphasized the critical role of merg-
ing low-level and high-level track/calorimeter data
for the efficient identification of jets or heavy flavor
states, and showcased several effective examples
of such implementations drawn from LHC stud-
ies, like the possibility of simultaneous estimation
of b jet energy and resolution [68]. In the discus-
sion concerning AI/ML applications for jets, it was
mentioned a manuscript published concurrently
with the workshop in October 2022 [69]. Notably,
this work delves in the usage of out-of-jet radiation
information, incorporates infrared jet flavor defi-
nition for handling non-perturbative QCD effects,
and underscores the potential for training such
deep learning models with real data. The inte-
gration of deep learning for jet analysis could
profoundly impact EIC research by reinforcing
constraints on transverse momentum-dependent

PDFs, augmenting sensitivity to transverse single
spin asymmetry, and elucidating cold nuclear mat-
ter effects. More comprehensive information can
be gleaned from the manuscript [69].

Regarding AI/ML for tracking at the EIC, we
extended the discussion initiated in the first work-
shop [70, 71], taking cues from the forthcoming
upgrade of the LHC to the HL-LHC. Despite the
proficiency of existing track reconstruction algo-
rithms based on Kalman filters, they encounter
scaling issues with increased data volumes. This
necessitates active research into new or enhanced
algorithms, involving accelerated hardware appli-
cation of existing Kalman filters, the integration of
ML techniques, and the creation of complete ML-
pipelines for tracking like those proposed by the
Exa.TrkX project [72]. Also, A Common Track-
ing Software (ACTS), a new algorithm test bed
for track reconstruction research, was highlighted
[73], and in the second AI4EIC workshop, we
decide to delve deeper into this topic. ACTS is an
agnostic, open-source tracking toolkit [74]. Writ-
ten in C++, ACTS streamlines the entire track
fitting process and provides an example framework
with Python bindings. Its utilization spans vari-
ous experiments, like ATLAS, ALICE, sPHENIX,
and EIC studies. ACTS serves as a comprehen-
sive tool for developing and testing new ML-based
tracking algorithms, making it crucial for cur-
rent EIC advancements. It also offers an open
data detector (ODD) for algorithm benchmarking
and ML tracking tests. Noteworthy tools avail-
able in ACTS include hashing for hits selection,
parameter auto-tuning, and Graph Neural Net-
work (GNN) for track finding. Regarding GNN
for tracking, we had discussed the deployment
of GNN in a streamlined pipeline for trigger-
background event classification in both sPHENIX
and EIC and its implementation on Field Pro-
grammable Gate Arrays (FPGAs) [75, 76]. This
subject is expanded further in Sec. 6.

In our discussion on domain adaptation, we
examined the usage of Graph Isomorphism Net-
works (GIN)—an implementation of GNNs that
maintains injective functions—for Λ-event tagging
at CLAS12. Leveraging adversarial adaptation,
this approach effectively addresses the dispari-
ties between training (with simulated data) and
deployment (using real data) [77, 78]. When
designing ML models, it is often convenient to
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train and/or test models utilizing simulated data.
Simulated data provides high-purity samples in
which it is possible to correctly tag each detec-
tor candidate given ground truth information.
However, when the model is deployed on actual
detector response variables, it is assumed that the
two data schemes are exact matches, and thus a
bias can be introduced. Fig.8 shows an example
in which the target domain (data) does not match
the source domain (MC) for the invariant Λ0 mass
spectrum.
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Fig. 8 Comparison between data and simulation
at CLAS12: Invariant mass spectrums for the Λ0 for
data (left) and MC (right). Notice the distinct differences
in the shapes of background distributions. Domain adap-
tation attempts to overcome this via training the GNN
with an adversarial loss between the two data formats.
Figure taken from Ref. [78]. Original figure available under
https://creativecommons.org/licenses/by/4.0/legalcode.
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Fig. 9 Comparison between regular GIN and GIN
with domain adaptation (DAGIN) for data and
simulation at CLAS12: The output of the regular GIN
(left) shows significant differences between data (blue) and
MC (orange). In comparison, the distribution of the out-
puts for the DAGIN (right) come similar for data and
simulation with a Kolmogorov-Smirnov distance for the
GIN. Figure taken from Ref. [78]. Original figure avail-
able under https://creativecommons.org/licenses/by/4.0/
legalcode.

To overcome this, domain adaptation via the
utilization of an adversarial training technique was
deployed. Information learned from the MC sam-
ples should not be disregarded but rather adjusted
given the transition to data. After training with
an adversarial network with the goal to distinguish
between data and simulation, the output distri-
bution of the network becomes significantly more

similar as shown in Fig. 9. More details can be
found in Ref. [78].

The workshop also spotlighted data-driven
inspired approaches [79]. In [80], the authors
presented a strategy called ‘Flux+Mutability’,
which is based on a combination of a conditional
autoencoder (cAE), a cMAF, and Hierarchical
Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) for one-class classifica-
tion and anomaly detection. This method has been
employed for both γ/n shower classification in
the GlueX barrel calorimeter and detection of
potential beyond Standard Model (BSM) di-jet
signatures at LHC. The F+M algorithm, trained
using a single reference class, leverages cAE to
filter anomalous events, providing reconstructed
features and residuals. The cMAF, fed with these
features, generates data for forming a reference
cluster, facilitating object-by-object fitting rel-
ative to the reference cluster via HDBSCAN.
Objects are then labeled using a quantile cut,
ensuring class-agnosticity.

5 Infrastructure and Frontiers

Artificial intelligence use cases are one of the
primary drivers for developing or utilizing new
computing infrastructure for the EIC. For exam-
ple, many scientific domains have developed the
foundation for including high performance com-
puting and next generation architectures into their
workflows. Similarly, efforts are being made to
push ML models closer to the edge of experiments,
such as with FPGAs [81–83]. The utilization of
such hardware requires networks with low compu-
tational overhead, in terms of both memory and
required floating point operations. Research and
development is ongoing to integrate these, and
other, new infrastructures into EIC workflows.

One of the biggest challenges currently facing
the EIC is the design and development of future-
proof infrastructure, viable both currently and in
the next decade when data collection commences.
Furthermore, any infrastructure developed should
also be modular enough to change during the life-
time of the experiments at the EIC, which are
expected to be several decades. Designing and
deploying a modular computing infrastructure is
therefore essential. Defining interfaces between
data processing stages such that when new tech-
nologies become available, pieces of the overall
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infrastructure can be updated without disrupt-
ing the entire workflow. Lessons can be learned
from the LHC, whose computing infrastructure
was designed nearly two decades before the accel-
erator facility began operation. Frameworks did
not necessarily just stop working at the LHC
as the facility moved farther into the operations
phase but rather became inefficient at using the
available resources as those resources changed over
time which then necessitated changes in the over-
all infrastructure [84]. With a sufficiently modular
design, pieces that become inefficient could be
replaced by new efforts that, for example, take
advantage of GPU architectures that were not
envisioned to play a large role at the time of
design.

It is also important to consider the role of tech-
nologies that are in the early stages of application
towards High Energy Physics (HEP) and Nuclear
Physics (NP) workflows, such as quantum com-
puting. Continuously checking in and scheduling
reviews of the state of technologies, for example
when some milestone has been reached, will help
assess how applicable they are for workflows at
the EIC. Scheduling these “check ins” regularly,
and starting them early, will help prepare for their
possible integration. As an example, a few decades
ago GPUs were not expected to be as computa-
tionally valuable as they are currently; therefore,
it is essential to remain proactive in evaluating
emerging technologies given the timescale of the
EIC.

Often times, when designing computing infras-
tructure, only the hardware and associated soft-
ware are considered during framework develop-
ment. However, it is also important to consider
the workforce, specifically, how to develop and
retain the people necessary to successfully design
and implement a computing infrastructure that
will serve the EIC science program for its entirety.
Building a diverse and interdisciplinary team will
help bring technical expertise from computing
and physics domains necessary for hardware, algo-
rithm, and physics development. The EIC is a
facility that is poised to develop such collabo-
rations due to the size of the project and the
necessary cross-cutting challenges that must be
overcome for its success, especially with regard
to the implementation of ML algorithms in data
analysis workflows. Large collaborations, such as
those at the EIC, can provide a platform for

approaching difficult computational problems; as
an example, the Worldwide LHC Computing Grid
was created to address the challenges of data col-
lection and processing at the LHC [85]. To develop
an interdisciplinary team, connections need to be
forged, commonly generated through conferences
and workshops. At forums such as these, scien-
tists from a variety of domains are able to discuss
approaches to the same problem from the differ-
ent perspectives their expertise offers. Developing
a computing infrastructure that can serve the EIC
must include hardware, software, and an inter-
disciplinary team that is capable of designing,
implementing, and maintaining the infrastructure
needed to serve the lifetime of the EIC project.

The emergence of Generative Pretrained
Transformers (GPT) has offered new potential
within the realm of AI for the EIC. With its
capability to understand and generate human-like
text based on the context provided, GPT models
can be pivotal in data interpretation, document
generation, and even hypothesis formulation for
EIC science and NP at large. This deep learning-
based model can sift through large amounts of
data, detect patterns, and identify key insights
faster and more efficiently than traditional meth-
ods, driving further advancements in the field. At
the AI4EIC workshop in October 2022, a month
prior to the release of chatGPT, the potential of
AI applications in nuclear and particle physics
was underlined. The advent of chatGPT further
emphasizes this potential, illuminating a promis-
ing future where AI tools like GPT can accelerate
scientific discovery by automating and enhancing
various facets of research in the EIC community.

6 Streaming Readout

SRO is rapidly becoming the go-to paradigm for
readout processes in contemporary nuclear and
high energy physics experiments. Unlike tradi-
tional or pipelined methods that rely on hardware
signals for initiating data conversion into the dig-
ital realm or marking time regions of interest
within close-memory buffers, an SRO data acqui-
sition system incessantly converts and streams
detector data to potentially heterogeneous com-
puting systems. The retention of data is deter-
mined by software, with possible acceleration by
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FPGAs or Application-Specific Integrated Cir-
cuits (ASICs). Fig. 10 provides a conceptual
overview of a potential system configuration.

The SRO scheme promptly avails all detector
information in digital form, paving the way for
AI-powered tagging and filtering algorithms to be
employed early in the data collection stage. By
making raw data accessible to high-level recon-
struction frameworks—typically written in lan-
guages such as C++, Python, or Java—SRO
allows for the utilization of standard AI tools with-
out necessitating bespoke adjustments for dedi-
cated hardware. A wide array of system scales
and implementations exist, ranging from systems
that record all data to disk, to those that conduct
high-level analyses while data is in transit, only
preserving high-level physics objects.

SRO has already been implemented in numer-
ous experiments at the LHC (see, e.g., [86–89])
and has been officially designated as the chosen
paradigm for the EIC, as evidenced in the EIC Yel-
low Report [1]. In the case of the sPHENIX experi-
ment, the conventional triggered readout system is
augmented with a streaming system for principal
detectors, a strategy that permits the exploration
of physics phenomena that would otherwise be
missed by a triggered system. Similarly, various
experiments at Jefferson Lab are experimenting
with partial SRO solutions, thereby paving the
way towards a comprehensive transition to a full
SRO design [90–92].

The flexible data routing in a streaming read-
out system enables new or eases the implementa-
tion of various quality control and time-to-paper
improvements. For example, the INDRA-ASTRA
lab at Jefferson Lab is developing techniques to
move analysis tasks into the readout [94]. ML
has a role here, especially in automatic anomaly
detection, for example by using the Adaptive
Windowing (ADWIN) technique [95]. In general,
streaming readout blurs the lines between online
and offline analysis, with the goal to fuse these
together as much as possible.

Similarly, ML has been used for online cal-
ibration of the GlueX Central Drift Chamber
(CDC) monitoring gain and time-to-distance con-
version factors [96, 97]. Implementation of real-
time (or quasi-) detector calibration is an essen-
tial component of SRO supremacy with-respect-to
conventional triggered Data Acquisition systems

(DAQs). HDBSCAN, a form of unsupervised hier-
archical clustering detailed in Section 4, has been
employed for clustering non-calibrated data from
the CLAS12 forward tagger calorimeter in SRO
mode [98] and reconstruct the electro-production
of π0(γγ). To take full advantage of the full off-
line data reconstruction framework during data
acquisition, raw data need to be calibrated and
continuously monitored in order to provide reli-
able information to tagging/filtering algorithms.
This request represents a great opportunity for AI-
supported calibration and monitoring algorithms
like those discussed in [96], where the AI system
prototype deployed to control and calibrate the
GlueX CDC provided good results, paving the
way towards a self-calibrating detector.

Machine Learning, particularly GNNs as out-
lined in Section 4, is adept at managing hit and
track identification, as showcased in [99]. This
study also examines the use of Recurrent Neural
Networks (RNNs) and Long Short-Term Memory
networks (LSTMs) for track fitting tasks. Fur-
thermore, ML proves highly effective for noise
and background suppression, decreasing the data
volume that needs to be transmitted via the
readout network and stored on disk. Such imple-
mentation yields the most significant impact when
deployed early in the readout chain. Considering
throughput requirements, there’s a clear incentive
to incorporate NNs on FPGAs. While packages
like hls4ml [100] can aid in the implementation,
it’s noteworthy that not all network topologies are
currently supported.

Interesting design advancements have been
demonstrated through the development of
‘bicephalous autoencoders’, which offer a lossy
compression scheme that retains critical infor-
mation while suppressing noise, as illustrated in
[101, 102]. Current studies are also exploring the
use of GNNs for heavy-flavor tagging and their
implementation on FPGAs within the context
of the sPHENIX project [75, 103]. The develop-
ment of a real-time ML FPGA filter for particle
identification and tracking in SRO is outlined in
[92]. Generally, it is expected that future FPGA
devices will include more IP cores aimed at accel-
eration of NNs, for example by integration of
matrix multiplication capabilities or higher num-
ber of DSP slices. However, the field will have to
watch the developments closely. Our needs are
not the driver for these developments, and it is
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Fig. 10 Conceptual SRO DAQ System: The deployment of DAQ electronics is generally segmented by location,
comprising the Front End Electronics (FEE) modules adjacent to the detector, the Front End Processor (FEP) boards for
digitizing or reformatting detector data, and Stream Aggregator Boards (SAB) located in the hall for bundling streams,
with online filtering and monitoring carried out in the counting room. For additional details, refer to [93].

unclear if the addition of these abilities will go
hand in hand with a reduction in uncommitted
resources required for data acquisition IP. This
potentially presents a challenge, as these newly
developed NN accelerator cores may not be com-
patible with the specific data types required for
our unique implementations.

ML also drives developments of new compute
models like in-memory computing, with low laten-
cies and very good energy consumption. It is
clear that the field needs to further approaches,
techniques and packages to ease the implemen-
tation of NN on multiple FPGA architectures
over multiple generations and capabilities, and
also to ease the transition from a Central Pro-
cessing Unit (CPU)/GPU implementation onto
an FPGA. This must include also verification
tools. For a streaming readout system, orchestrat-
ing a considerable number of nodes is typically
required. This circumstance introduces intricate
challenges pertaining to system bring-up and con-
figuration, thus necessitating the standardization
of communication protocols. One such frame-
work addressing these challenges is APEIRON
[104, 105].

As already mentioned, beside the world effort
driven by CERN experiments, a significant effort

is undergoing at Berkeley Nation Laboratory
(BNL) and Jefferson Lab (JLab) to test compo-
nents and concepts of a suitable SRO DAQ for
EIC. Prototypes of a full DAQ SRO chain have
been deployed and tested in both controlled (lab)
and realistic (on-beam) conditions (see, e.g., [98]).
Results are generally positive and even if current
SRO schemes are not expected to be final, the
experience gained by the EIC community is valu-
able for understanding limitations, requirements
and opportunities of SRO at EIC.

7 Community efforts

As we progress further into the 21st century, AI
stands as a significant driving force of our econ-
omy. In the next decade, as the EIC reaches its
operational phase, the impact of AI will be more
pronounced than ever. It is in this context that
we pivot to the concerted community efforts being
made to integrate AI into the EIC landscape.

Recognizing the transformative potential of
AI, we have initiated a range of educational
activities aimed at enhancing its understanding
within the EIC community. These activities are
intended to not only increase awareness, but also
foster a culture of innovation and exploration
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centered around AI. One of our core commu-
nity initiatives includes organizing hackathons
designed around specific challenges pertinent to
EIC. These hackathons serve as creative platforms
for identifying and discussing promising strategies,
architectures, and algorithms. By doing so, they
present a unique opportunity to unearth solutions
that could significantly bolster the EIC physics
program.

In the following, we delve into the nuances of
these community efforts and elucidate how they
are instrumental in shaping the role of AI within
the EIC.

Tutorials

The workshop incorporated a robust outreach and
educational aspect, featuring a series of tutorials
presented by esteemed AI and machine learning
experts drawn from national laboratories, uni-
versities, and industry. Furthermore, a hackathon
satellite event was organized, adding a practical
element to the last day of the workshop. Four com-
prehensive tutorials were offered, each designed to
impart knowledge on key topics in AI and machine
learning. The subjects of these tutorials included
Multi-objective optimization with BoTorch/Ax, a
technique of unfolding, the concept and applica-
tions of Graph Neural Networks, and the Machine
Learning lifecycle. This educational component,
by bridging the gap between theory and prac-
tice, played an essential role in enhancing the
attendees’ understanding and proficiency in these
complex domains.

Multi-objective optimization with
BoTorch/Ax:

Solving multi-objective optimization problems in
a sample-efficient fashion is key for in particle
accelerator design (and far beyond). BoTorch [5]
is a modular and highly customizable library for
Bayesian Optimization with state-of-the-art algo-
rithmic capabilities. Ax [6] exposes BoTorch’s
algorithms through a user-friendly interface and
provides additional high-level management, stor-
age, and orchestration capabilities.

In this tutorial, we go over some basic hands-on
examples of how to use Ax to perform multi-
objective Bayesian Optimization via Ax’s Service
API (an ask/tell interface) on a synthetic prob-
lem. This setup is straightforwardly adapted to

any actual multi-objective black-box optimization
problem with costly evaluations. The full tuto-
rial is available here: [106] (slides), [107] (colab
notebook).

Unfolding:

Unfolding aims to correct measured observables
for detector distortions and provide easy access to
theoretical quantities for the broader nuclear and
high energy physics community. Existing unfold-
ing methods require the usage of histograms and
are limited to low-dimensional inputs and out-
puts. Machine learning can naturally incorporate
high-dimensional data to estimate the detector
response, providing a more accurate estimation
of the measured observable. In this tutorial, we
will introduce OmniFold [44], a machine learning-
based method that simultaneously determines the
unfolded response of multiple distributions. We
present recent results of the application of Omni-
Fold to particle collisions collected by the H1
Collaboration and provide hands-on tutorials on a
toy example using normal distributions as well as
an example motivated by the EIC, unfolding the
kinematics of leptons and hadrons in deep inelastic
scattering (DIS). The Colab notebook is available
here [108].

Machine Learning Lifecycle:

The phases of the machine learning life cycle may
be thought of as 1) data analysis, 2) experimen-
tation, 3) model reproducibility, 4) deployment,
and 5) production monitoring. This tutorial intro-
duces the Machine Learning Operations (MLOps)
open-source platform MLFlow [109] and describes
MLFlow’s four components to support the ML
lifecycle with a specific focus on the MLFlow
Tracking component, which is used to record
and compare machine learning trials. The python
library HyperOpt is also introduced, a library
for hyperparameter optimization. The tutorial is
contained within a Colab notebook and uses pub-
licly available data from the 2021 Jefferson Lab
hackathon when an imaginary calorimeter, with
a single shower and no noise, was simulated. The
problem is easily solvable with a simple neural
network and is used only to illustrate the ease of
implementing hyperparameter optimization and
MLFlow tracking. First, users are guided through
a grid search for a “best model” by creating
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different types of neural networks with differ-
ent hyperparameters and tracking the results.
Then comparing the results to determine the
best-performing model.

After users understand the few lines of code
needed to implement the grid search implementa-
tion of MLFlow Tracking they are introduced to
the HyperOpt python library, the concept of the
“search space”, the “minimization function”, and
how to combine these concepts into the model’s
training function and how to track the best per-
forming hyperparameters using MLFlow.

The Colab notebook is available [110].

Graph Neural Network:

Many real-world data, such as social networks,
molecules, roadway maps, cellular biological path-
ways and so on, are sparse. It is more effective to
represent such data as a graph representing rela-
tionship among entities. Graph Neural Networks
feature permutation invariance on handling graph
data. Similar to translation invariance in convolu-
tional neural networks, where the kernel remains
the same at different locations of an image, graph
neural network is invariant to how the nodes are
ordered.

This tutorial is a self-contained Colab note-
book that goes through a basic graph neural
network on solving a regression problem: deter-
mine the solubility given a molecule structure.
In particular, the tutorial dives deep in practical
GNN techniques such as how to generate node fea-
tures, how to construct a graph convolution layer,
how to batch multiple graphs in a mini-batch and
so on. At the end, users can pick different hyper-
parameters to train and evaluate the GNN model.
The Colab note is available here [111].

Hackathon

The format of the hackathon was hybrid and inter-
national (both local and remote participation),
with more than 30 participants connected from
around the world (America, Asia and Europe,
mainly) grouped in 10 different teams competing
to solve the assigned problems. Access to cloud
computing resources has been provided during the
event, and each team was endowed with an Ama-
zon Web Services (AWS) g5.12xlarge instance, 4
Nvidia a10g GPUs, 48 vCPUs, 192GB Ram, 3.9
TB of disk.

For this hackathon we proposed problems
with increased level of difficulty and that are
deemed to be solvable in a one-day event, start-
ing from a problem that is accessible to everyone.
We focused on the dual-radiator Ring Imaging
Cherenkov detector under development as part
of the particle-identification system at the future
ePIC detector at EIC. Data have been produced
using the ePIC software stack.

The hackathon was structured around three
problems, each escalating in complexity. Initially,
we selected a momentum range around 15 GeV
as our foundation problem. This range is signifi-
cant as it corresponds to a momentum zone where
both aerogel and gas radiators can potentially con-
tribute to the π/K separation. In order to raise
the level of challenge, we embedded realistic pho-
ton yields. An exemplar π+ event as detected in
dRICH is depicted in Fig. 11. Moving to the sec-
ond problem, we expanded the scope by varying
the momentum range and altering the positions
of the pions and kaons within the dRICH. For
the ultimate challenge, the final problem intro-
duced a layer of complexity with a set of random
noise hits, making it the most demanding among
all three problems. Documentation and data sets
have been made available on Zenodo [112]. Despite
the inherent ‘simplicity’ of the problems, given
the approximations made as explained in this
document, this event can potentially become a
first step towards machine learning/deep learn-
ing application for PID with the dRICH. At the
end of the hackathon event, the best solutions
provided were all machine learning/deep learning-
based, they were quite original, and they outper-
formed other solutions based on more ‘classical’
approaches (like cut-based analyses). Though an
initial foray into leveraging machine learning and
deep learning for PID with the dual-RICH, these
studies unequivocally point towards the potential
these novel approaches hold for reconstruction and
PID within the ePIC dual-RICH framework. This
endeavor proved to be a valuable learning oppor-
tunity, especially for students, and intriguingly, it
showcased the potential edge that contemporary
AI/ML methods hold over traditional strategies
for PID in imaging Cherenkov detectors, as dis-
cussed in [58] and references therein.
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Fig. 11 A sample dRICH π+ event visualized using ePIC
framework.

8 Conclusions

The AI4EIC workshop has successfully high-
lighted the critical role that AI/ML play in the
design and execution of the Electron Ion Col-
lider (EIC). The event was organized into multiple
sections, each focusing on various aspects of the
EIC science and the connections with AI/ML
applications, providing participants with a com-
prehensive understanding of these complex topics.

As a community, we are enthused to see the
funding opportunities for AI/ML in relation to the
EIC, which is promising to yield significant results
in the coming years. This financial commitment
will undoubtedly contribute to the acceleration of
research and innovation within the field. AI4EIC
is not only a platform for showcasing the remark-
able advancements and progress in AI, but also
plays a vital role in increasing AI literacy. By
disseminating the knowledge and understanding
of AI across the community, we hope to inspire
more individuals and institutions to engage with
this technology. We are also pleased to collabo-
rate with the ePIC experiment at the EIC. This
partnership is set to bring new perspectives and
opportunities for progress, strengthening the role
of AI in our initiatives. The success of our educa-
tional activities, such as hackathons and schools,
affirms the effectiveness of these strategies. We
are committed to continuing such events, facili-
tating an environment that encourages learning,
innovation, and collaboration.

We are excited to host the third AI4EIC
workshop at The Catholic University of America
(CUA) in Washington D.C., in November 2023.
We look forward to building on the success of

this workshop, furthering the discussion, and driv-
ing the integration of AI into the EIC’s future
endeavors. As plans for future events, we antici-
pate formats such as conference, schools, and data
challenges.
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Table 1 Table of acronyms discussed in this document with description. Listed in alphabetical order.

Acronym Brief Description

ACTS A Common Tracking Software

ADWIN Adaptive Windowing

AI Artificial Intelligence

AI4EIC Artificial Intelligence for the Electron Ion Collider

ASICs Application-Specific Integrated Circuit

AWS Amazon Web Services

BNL Berkeley National Laboratory

CDC Central Drift Chamber

cMAF Conditional Masked Autoregressive Flow

cAE Conditional Autoencoder

CNN Convolutional Neural Network

CPU Central Processing Unit

DAQ Data Acquisition

DIRC Detection of Internally Reflected Cherenkov light

DIS Deep Inelastic Scattering

DL Deep Learning

DM Diffusion Model

dRICH dual-radiation Ring Imaging Cherenkov

FPGA Field Programmable Gate Array

GAN Generative Adversarial Network

GIN Graph Isomorphism Networks

GNN Graph Neural Network

GPD Generalized Parton Distribution

GPU Graphics Processing Unit

HEP High Energy Physics

JLab Jefferson Lab

LHC Large Hadron Collider

LSTM Long-Short Term Memory

MARS Modified Multivariate value-at-risk Approximation based on Random
Scalarizations

MC Monte Carlo

MCEG Monte Carlo Event Generator

ML Machine Learning

MLP Multi-Layer Perceptron

MLOps Machine Learning Operations

MOBO Multi-Objective Bayesian Optimization

MOEA Multi-Objective Evolutionary Algorithm

MOGA Multi-Objective Genetic Algorithm

MOO Multi-Objective Optimization

MORBO Multi-Objective Trust-Region Bayesian Optimization

NF Normalizing Flow

NN Neural Network

NP Nuclear Physics

ODD Open Data Detector

PDF Parton Distribution Function

PID Particle Identification

pQCD Perturbative Quantum Chromodynamics

QCD Quantum Chromodynamics

QCF Quantum Correlation Function

SI-DIS Semi-Inclusive Deep Inelastic Scattering

SRF Super-conducting Radio Frequency

SRO Streaming Readout

sWAE Sliced-Wasserstein Auto-encoder

VAE Variational Auto-encoder

VLAD Vectors of Locally Aggregated Descriptors




