
Performance portability for the CMS Reconstruction

with Alpaka

Andrea Bocci1, Angela Czirkos1, Antonio Di Pilato4,
Felice Pantaleo1, Gabrielle Hugo1, Matti Kortelainen2,
Wahid Redjeb1,3, on behalf of the CMS collaboration
1CERN, European Organization for Nuclear Research, Meyrin, Switzerland
2Fermilab, Fermi National Accelerator Laboratory, Batavia, IL, USA
3RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
4CASUS, Center for Advanced Systems Understanding, Görlitz, Germany

E-mail: wahid.redjeb@cern.ch

Abstract. For CMS, Heterogeneous Computing is a powerful tool to face the computational
challenges posed by the upgrades of the LHC, and will be used in production at the High Level
Trigger during Run 3. In principle, to offload the computational work on non-CPU resources,
while retaining their performance, different implementations of the same code are required.
This would introduce code-duplication which is not sustainable in terms of maintainability and
testability of the software. Performance portability libraries allow to write code once and run it
on different architectures with close-to-native performance. The CMS experiment is evaluating
performance portability libraries for the near term future.

1. Introduction
The increasing luminosity of the Large Hadron Collider (LHC) in Run 31, and subsequently in the
High Luminosity Phase of the LHC, will significantly increase the event description complexity
due to the higher number of simultaneous proton-proton collisions known as pileup. These
new conditions will pose significant challenges for the CMS [2] data taking and data processing
framework, and substantial improvements are needed to fulfill the computational timing and
memory requirements of the CMS online and offline infrastructures.
Heterogeneous Computing is becoming more and more popular due to the advent of diverse
computing resources such as Graphics Processing Units (GPUs) and Field Programmable Gate
Array (FPGAs), and can be exploited in computing farms to achieve a better time, cost, and
energy to solution. In particular, the CMS experiment is including GPUs in the trigger farms
for the Run 3 data taking, and several workflows are being implemented to run on GPUs,
exploiting parallelism. Currently, the Pixel Tracks and Vertices reconstruction, the calorimeters
local reconstruction, and the Particle Flow clustering [3] are all reconstruction algorithms that
will run at the CMS High Level Trigger [4] on GPUs during the Run 3 data taking.
Several architectures are now available: AMD, ARM, IBM Power, and Intel, for the CPU side,
and AMD, Intel, and NVIDIA for GPUs. The CMS experiment needs to support this whole
range to achieve better performance at a lower cost. However, specialized implementations of

1 Third data-taking period, beginning in 2022 and ending in 2025 [1]

FERMILAB-CONF-23-080-CMS

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department 
of Energy, Office of Science, Office of High Energy Physics.



the same code for each architecture would introduce a lot of code duplication, and would make
the framework hard to maintain, test, and validate. The CMS experiment is exploring solutions
to achieve performance portability, exploiting frameworks and libraries that allow writing a
single source code that can be compiled and executed on different architectures achieving
close-to-native performance. This approach avoids the need of maintaining and testing several
implementations of the same algorithm.
Performance portability libraries are a possible solution to achieve performance portability.
The CMS collaboration has chosen the Alpaka [5] performance portability library as a solution
for the Run 3 data taking. To evaluate the feasibility of the adoption of Alpaka for the CMS
reconstruction, in terms of performance, ease of use, and integration, the pixel tracks and vertices
reconstruction modules have been developed using this library.

2. Abstraction Library for Parallel Kernel Acceleration - Alpaka
Alpaka [5] is a header-only C++ library that allows performance portability across several
computing architectures. To achieve that, Alpaka abstracts the underlying backend
implementation and levels of parallelism, defining a hierarchical redundant parallelism model,
similar to the one implemented in CUDA.
Currently, Alpaka supports several backends: the serial execution on the host CPU, the parallel
execution on the host CPU, through C++ threads, Boost.Fiber [6] and Threading Building
Blocks (TBB) [7]. It Supports OpenMP [8] and openACC [9] for the parallel execution on the
host CPU and supported GPUs, and the parallel execution on AMD and NVIDIA GPUs with
the corresponding HIP [10] and CUDA [11] backends. An experimental SYCL [12] backend is
available for Intel and Xilinx devices. Moreover, the Alpaka C++ interface allows to define the
user-defined representation of accelerators as C++ entities.
The single source code obtained via Alpaka can be compiled for a single or multiple backends,
building an application that supports different platforms and accelerator types in a single binary,
allowing the user to choose the one to use at the run-time.
To achieve portability across multiple devices, the memory management implemented by Alpaka
is uniform for the different platforms. The memory allocation is performed via smart pointers
to avoid memory leaks and manual freeing. Alpaka does not optimize the memory operations
between devices, but data are stored in data-structure agnostic buffers that support copies
between devices. Thus, the user needs to take care of data distribution between devices.
The model adopted by Alpaka, enables the separation of the parallelization strategy from the
algorithm. The algorithm is defined by a kernel function that is executed by threads. The
parallelization strategy is described by the Accelerator and the Work Division. The accelerator
defines the acceleration strategy by mapping the parallelization levels to the hardware. It is
important to mention that the Alpaka model exploits parallelism and memory hierarchies on a
node at all the levels available in current hardware, and ignores the unsupported levels, allowing
the user to program all the hardware types in the same way.

The abstraction introduced by the Alpaka library relies on the definition of constraints a
certain type has to fulfill to be usable with the template functions the library provides. These
constraints, called concepts in C++, allow defining algorithms that use different objects and
types. The Alpaka interface separates the different concepts using namespaces, obtaining an
ergonomic programming model quite simple to use.

3. CMS Patatrack Pixel Tracks and Vertices Reconstruction in Alpaka
Alpaka has been tested porting algorithms from the CMS Software (CMSSW), with the goal
of obtaining a single source code that can be executed on several devices and with different
parallelization strategies, with computing performance close to the native ones. In order to
understand the strengths and weaknesses of the library, an exploratory study has been performed



porting to Alpaka the Patatrack Pixel Tracks and Vertices reconstruction algorithms [13, 14, 15].
These algorithms perform the track and vertices reconstruction on GPUs, starting from the
raw data of the CMS Pixel detector. The first step of the track reconstruction is the local
reconstruction, where the digitized information of every detector module and of every pixel is
unpacked and interpreted in parallel, to build the final digis collection. The neighboring digis
are then clustered using an iterative process that produces clusters. The clusters’ shapes are
used to determine the hit position. To obtain the final track, clusters are linked together to
form n-tuplets, that are eventually fitted to obtain the track parameters. Several steps are
needed to produce the n-tuplets. First, hits belonging to adjacent pairs of pixel detector layers
are connected together, to create the doublets. Several selection criteria are applied to check
the compatibility and form a doublet; this step is performed in parallel by different threads,
starting from the outer hits. Afterward, doublets that share a common hit are tested for
compatibility to create a triplet. Moreover, all the doublets that have an inner hit on the
first pixel layer are marked as root doublets, as well as doublets starting from the second pixel
layer without inner neighbors. The root doublets are used as starting point for a Depth-First-
Search (DFS) to connect doublets and form the n-tuplets. During the doublets creation, the
Fishbone [14] mechanism is used to clean possible duplicates, solving the ambiguities by merging
the overlapping doublets. The multiple-scattering aware Broken Line fit [14, 16] is used to fit
the n-tuplets and obtain the track parameters, to produce the final track object. To reconstruct
the vertices, the pixel tracks obtained are clustered together along the beam axis.
The whole process happens on the GPU, and to optimize the coalesced memory access, data are
stored in Structures-of-Arrays. Eventually, the final pixel tracks and vertices collection can be
copied back to the CPU and can be converted to the legacy data format (Arrays-of-Structures)
on-demand.
To test the Alpaka library, a standalone version of this sequence of algorithms has been prepared,
with a lightweight version of the CMSSW framework [17, 18], to emulate the whole infrastructure
and understand how to interface Alpaka with CMSSW. This reconstruction module counts tens
of small kernels that run one after the other, contrary to standard HPC applications that have few
big kernels that run for a long time. Moreover, the algorithms make use of several instructions
that may work differently in Alpaka: threads barriers, atomics, etc. Thus, this study allows
testing Alpaka on multiple aspects.

4. Computing Performance
The whole pixel tracks and vertices reconstruction modules have been successfully ported to
Alpaka, supporting the CPU serial and GPU CUDA backends, but additional backends can
be easily added. The physics performance obtained are the same with respect to the native
implementation. The computing performance has been tested on a machine equipped with a
dual-socket AMD EPYC 7543 32-Core, 64 threads, and two NVIDIA Tesla T4 GPUs. The
application has been executed on one GPU, pinning a single CPU socket.
Multiple events can be executed in parallel by different CPU threads on different EDM
streams [18], performing asynchronous operations on the same GPU, thus, the performance
are evaluated in terms of throughput (events per second). Each stream processes 10k events,
and for the GPU implementations, the transfer of the results back to the host is not considered.
Figure 1 shows the results obtained by compiling Alpaka for the CPU serial backend. It shows
a good scaling with the number of concurrent CPU threads. The current GPU native version
of the reconstruction module has two main optimizations: the stream-ordered asynchronous
memory operations, introduced in CUDA 11.2, that allow ordering the memory allocations and
deallocations within a certain stream and avoid global synchronisations, and a custom caching
allocator that exploits memory pools to reduce the cost of the API calls [17]. At the time of
writing, the stream-ordered memory operations are also implemented in Alpaka, while a custom



Figure 1. Results of the Alpaka version compiled for the CPU serial backend, varying the
number of concurrent CPU threads

caching allocator is currently under development.
Figure 2 shows the results obtained and the differences between the various implementations
The introduction of the stream-ordered asynchronous memory operations increases the overall
performance, avoiding the need of synchronizing the entire device, restricting the lifetime of
the memory operations to the specific stream, eliminating in this way the synchronization
of the GPU work submitted in other streams. The caching allocator optimization for the
native CUDA version shows higher performance, making use of memory pools that can be
re-used within the same event, reducing the number of API calls needed to allocate the
memory. Regarding the version without any optimizations, the Alpaka performance are very
close to the native-implementation one. Comparing the results with the stream-ordered memory
operations, Alpaka shows lower throughput values until 10 concurrent CPU threads. The Alpaka
implementation of the stream-ordered memory operations has been developed during this study,
and more efforts are ongoing to obtain performance closer to the native ones. Considering the
advantages introduced by Alpaka, being able to compile the application for different backends,
and considering that there is still room for improvement to enhance the run-time performance
obtained using the Alpaka abstraction layer, the results obtained are very promising.

5. Conclusion and Future Perspectives
The CMS experiment is investigating solutions to adopt Heterogeneous Computing in its
computing farm, to face the challenges that will be posed by the future upgrades of the LHC. To
exploit multiple architectures and avoid code duplication, performance portability frameworks
are a solution to obtain a single source code that can be compiled and executed on multiple
architectures, making the framework more maintainable and testable in the long term. The
Alpaka library is currently the best solution to achieve that. The demonstrator described in
this work has shown how the different implementations can be built from a single code base and
can run on multiple back-ends, with performance comparable to the native one. Not only the
computing performance but also the simple usage of the Alpaka interface, make the library a
good solution that fulfills the CMS computing requirements. Given the results obtained with
this study, Alpaka has been selected as the official Portability-layer for the deployment at the
CMS High Level Trigger for the Run 3 data acquisition.



Figure 2. Comparison between the Alpaka version compiled for the GPU CUDA backend and
the corresponding native version, running on an NVIDIA T4 GPU and varying the number of
concurrent CPU threads. The blue and orange lines correspond respectively to the Alpaka
and native-CUDA versions without any optimization. The green and red lines correspond
respectively to the Alpaka and native-CUDA versions with the stream-ordered asynchronous
memory operations. The pink line corresponds to the native-CUDA version with the stream-
ordered memory operations and the custom caching allocator.

The Alpaka version of the pixel tracks and vertices reconstruction will be included in the CMS
software, also providing the opportunity to port other algorithms with this library.
A rich R&D program is ongoing in CMS, including further investigations of other performance
portability layers aiming Run 4 and beyond.

Acknowledgements
The work of M. Kortelainen was supported by the U.S. Department of Energy, Office of Science,
Office of High Energy Physics, High Energy Physics Center for Computational Excellence (HEP-
CCE) at Argonne National Laboratory, Fermi National Accelerator Laboratory, and Lawrence
Berkeley National Laboratory under B&R KA2401045.
The work of W. Redjeb was supported by the Innovative Digital Technologies for Research on
Universe and Matter (ErUM IDT) program of the German Federal Ministry of Education and
Research.

References
[1] 2022 LHC Time Schedule https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm [On-

line; accessed 10-May-2022]
[2] 2006 CMS Physics: Technical Design Report Volume 1: Detector Performance and Software Tech. rep.
[3] 2017 Journal of Instrumentation 12 P10003–P10003
[4] 2007 CMS High Level Trigger Tech. rep. CERN Geneva revised version submitted on 2007-10-19 16:57:09

URL https://cds.cern.ch/record/1043242

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://cds.cern.ch/record/1043242


[5] Zenker E, Worpitz B, Widera R, Huebl A, Juckeland G, Knüpfer A, Nagel W E and Bussmann M 2016
CoRR abs/1602.08477 (Preprint 1602.08477) URL http://arxiv.org/abs/1602.08477

[6] Boost C++ Libraries URL http://www.boost.org/

[7] Intel Threading Building Blocks URL https://software.intel.com/en-us/intel-tbb

[8] OpenMP Application Program Interface URL http://www.openmp.org

[9] The OpenACC Application Programming Interface, version 3.1 (2020) URL https://www.openacc.org/

[10] HIP Programming Guide v4.5
[11] CUDA C Programming manual
[12] The Khoronos SYCL Working Group, SYCL 2020 Specification (revision 2) (2021)
[13] Collaboration C 2021 The Phase-2 Upgrade of the CMS Data Acquisition and High Level Trigger Tech. rep.

CERN Geneva URL https://cds.cern.ch/record/2759072

[14] Bocci A, Kortelainen M, Innocente V, Pantaleo F and Rovere M 2020 Front. Big Data 3 601728. 12 p
(Preprint 2008.13461) URL http://cds.cern.ch/record/2744911

[15] 2022 Patatrack pixeltracks URL https://doi.org/10.5281/zenodo.6552773

[16] Blobel V 2006 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 566 14–17 ISSN 0168-9002 tIME 2005 URL https://www.

sciencedirect.com/science/article/pii/S0168900206007996

[17] 245 ISSN 2100-014X
[18] Jones C D, Paterno M F, Kowalkowski J, Sexton-Kennedy L and Tanenbaum W 2006 The new cms event

data model and framework

1602.08477
http://arxiv.org/abs/1602.08477
http://www.boost.org/
https://software.intel.com/en-us/intel-tbb
http://www.openmp.org
https://www.openacc.org/
https://cds.cern.ch/record/2759072
2008.13461
http://cds.cern.ch/record/2744911
https://doi.org/10.5281/zenodo.6552773
https://www.sciencedirect.com/science/article/pii/S0168900206007996
https://www.sciencedirect.com/science/article/pii/S0168900206007996

