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Abstract There has been significant work recently in devel-
oping machine learning models in high energy physics (HEP),
for tasks such as classification, simulation, and anomaly
detection. Typically, these models are adapted from those
designed for datasets in computer vision or natural language
processing without necessarily incorporating inductive biases
suited to HEP data, such as respecting its inherent sym-
metries. Such inductive biases can make the model more
performant and interpretable, and reduce the amount of train-
ing data needed. To that end, we develop the Lorentz group
autoencoder (LGAE), an autoencoder model equivariant with
respect to the proper, orthochronous Lorentz group SO+ (3, 1),
with a latent space living in the representations of the group.
We present our architecture and several experimental results
on jets at the LHC and find it significantly outperforms a
non-Lorentz-equivariant graph neural network baseline on
compression and reconstruction, and anomaly detection. We
also demonstrate the advantage of such an equivariant model
in analyzing the latent space of the autoencoder, which can
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have a significant impact on the explainability of anomalies
found by such black-box machine learning models.

1 Introduction

The increasingly large volume of data produced at the LHC
and the new era of the High-Luminosity CERN Large Hadron
Collider (LHC) poses a significant computational challenge
in high energy physics (HEP). To face this, machine learn-
ing (ML) and deep neural networks (DNNs) are becoming
powerful and ubiquitous tools for the analysis of particle
collisions and their products, such as jets—collimated sprays
of particles [1] produced in high energy collisions.

DNNs have been explored extensively for many tasks,
such as classification [2–7], regression [8, 9], track recon-
struction [10–12], anomaly detection [13–18], and simula-
tion [19–24]. 1 In particular, there has been recent success
using networks that incorporate key inductive biases of HEP
data, such as infrared and colinear (IRC) safety via energy
flow networks [29] or graph neural networks (GNNs) [30–32]
and permutation symmetry and sparsity of jet constituents
via GNNs [5, 21, 33].

Embedding such inductive biases and symmetries into
DNNs can not only improve performance, as seen with GNNs
in HEP, but also improve interpretability, reduce training data
requirements, and reduce network complexity in terms of
learnable parameters. Motivated by this, in this paper, we
explore another fundamental symmetry of our data: equiv-
ariance to Lorentz transformations. Lorentz symmetry has
been successfully exploited recently in HEP for jet classifi-
cation [2, 34–36], with competitive and even state-of-the-art
(SOTA) results. We expand this work to the tasks of data

1Interested readers can find comprehensive reviews in Ref. [25–27] and
a living review in Ref. [28].
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compression and anomaly detection by incorporating the
Lorentz symmetry into an autoencoder.

Autoencoders learn to encode and decode input data
into a learned latent space, and thus have interesting ap-
plications in both data compression [37, 38] and anomaly
detection [7, 13, 15–18, 39, 40]. Both tasks are extremely im-
portant for HEP, to cope with the storage and processing of the
ever-increasing data at the LHC, and for model-independent
searches for new physics. Incorporating Lorentz equivariance
into an autoencoder has the potential to not only increase per-
formance in both regards, but also provide a more interpretable
latent space and reduce training data requirements. To this
end, in this paper, we develop a Lorentz-group-equivariant
autoencoder (LGAE) and explore its performance and inter-
pretability. We compare the LGAE’s performance in recon-
struction and anomaly detection to alternative architectures
that exhibit different symmetry properties.

This paper is structured as follows. In Section 2, we discuss
existing work, motivating the LGAE. We present the LGAE
architecture in Section 3, and discuss experimental results on
the reconstruction and anomaly detection of high energy jets
in Section 4. We also demonstrate the interpretability of the
model by analyzing its latent space. Finally, we conclude in
Section 5.

2 Related Work

In this section, we briefly review the large body of work on
frameworks for equivariant neural networks in Section 2.1, re-
cent progress in Lorentz-equivariant networks in Section 2.2,
and finally, applications of autoencoders in HEP in Sec-
tion 2.3.

2.1 Equivariant Neural Networks

A neural network NN : 𝑉 → 𝑊 is said to be equivariant with
respect to a group 𝐺 if

∀𝑔 ∈ 𝐺, 𝑣 ∈ 𝑉 : NN(𝜌𝑉 (𝑔) · 𝑣) = 𝜌𝑊 (𝑔) · NN(𝑣), (1)

where 𝜌𝑉 : 𝐺 → GL(𝑉) and 𝜌𝑊 : 𝐺 → GL(𝑊) are repre-
sentations of 𝐺 in spaces 𝑉 and 𝑊 respectively. The neural
network is said to be invariant if 𝜌𝑊 is a trivial representation,
i.e. 𝜌𝑊 (𝑔) = 1𝑊 for all 𝑔 ∈ 𝐺.

Equivariance has long been built into a number of suc-
cessful DNN architectures, such as translation equivariance
in CNNs, and permutation equivariance in graph neural net-
works (GNNs) [41]. Recently, equivariance in DNNs has been
extended to a broader set of symmetries, such as those corre-
sponding to the 2-dimensional special orthogonal SO(2) [42],
the Euclidean E(2) [43], the 3-dimensional special orthogo-
nal SO(3) [44], the 3-dimensional Euclidean E(3) [45, 46]
groups, and arbitrary matrix Lie groups [47].

Broadly, equivariance to a group 𝐺 has been achieved
either by extending the translation-equivariant convolutions in
CNNs to more general symmetries with appropriately defined
learnable filters [48–51], or by operating in the Fourier space
of 𝐺 (or a combination thereof). The latter approach uses the
set of irreducible representations (irreps) of 𝐺 as the basis
functions for constructing an equivariant map [43, 52, 53],
and is what we employ for the LGAE.

2.2 Lorentz Group Equivariant Neural Networks

The Lorentz group O(3, 1) comprises the set of linear trans-
formations between inertial frames with coincident origins. In
this paper, we restrict ourselves to the special orthochronous
Lorentz group SO+ (3, 1), which consists of all Lorentz trans-
formations that preserve the orientation and direction of time.
Lorentz symmetry, or invariance to transformations defined
by the Lorentz group, is a fundamental symmetry of the data
collected out of high-energy particle collisions.

There have been some recent advances in incorporat-
ing this symmetry into NNs. The Lorentz group network
(LGN) [34] was the first DNN architecture developed to be
covariant to the SO+ (3, 1) group, based on a GNN architecture
but operating entirely in Fourier space on objects in irreps
of the Lorentz group, and using tensor products between
irreps and Clebsch–Gordan decompositions to introduce non-
linearities in the network. More recently, LorentzNet [2, 35]
uses a similar GNN framework for equivariance, with addi-
tional edge features — Minkowski inner products between
connected node features — but restricting itself to features
living only in scalar and vector representations of the group.
Both networks have been successful to jet classification, with
LorentzNet achieving SOTA results in top quark and quark
versus gluon classification, further demonstrating the benefit
of incorporating physical inductive biases into network archi-
tectures. In this work, we build on top of the LGN framework
to output not only scalars (e.g. jet class probabilities) but
covariantly encode and reconstruct an input set of particles
in an autoencoder-style architecture.

2.3 Autoencoders in HEP

An autoencoder is a NN architecture comprised of an encoder,
which maps the input into a, typically lower dimensional,
latent space, and a decoder, which attempts to reconstruct
the original input from the latent features. By using a lower
dimensional latent space, an autoencoder can learn a smaller
representation of data that captures salient properties [54],
which can be valuable in HEP for compressing the significant
volumes of data collected at the LHC [55].

This learned representation can also be exploited for
later downstream tasks, such as anomaly detection, where
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an autoencoder is trained to reconstruct data considered
“background” to our signal, with the expectation that it will
reconstruct the signal poorly relative to the background. Thus,
examining the reconstruction loss of a trained autoencoder
may allow the identification of anomalous data2. This can be
a huge advantage in searches for new physics, as a specific
signal is therefore not needed and instead a broader search can
be performed for data incompatible with the background. This
approach has been successfully demonstrated in Refs. [14,
39, 40, 56–61].

Furthermore, there are many possible variations to the
general autoencoder framework for alternative tasks [62, 63],
such as variational autoencoders (VAEs) [64], which are
popular generative models. To our knowledge, while there
have been some recent efforts at GNN-based models [18, 65],
there has not yet been an attempt at developing an autoencoder
architecture for any of these tasks that is equivariant to the
Lorentz group. In this work, we focus on data compression and
anomaly detection but note that our model can be extended
to a variety of applications.

3 LGAE Architecture

The LGAE is built out of Lorentz group-equivariant message
passing (LMP) layers, described in Section 3.1, which con-
stitute the two encoder and decoder networks, described in
Section 3.2 and Section 3.3 respectively. The LMP layer and
overall model architecture are depicted in Fig. 1. The LGAE
code is available at Ref. [66].

3.1 LMP

LMP layers are a form of message-passing neural network [67]
layers, but based on the LGN framework in Ref. [34]. The
input to each LMP layer is a fully-connected graph with
nodes representing particles and the Minkowski distance
between respective node 4-vectors as edge features. Each
node F𝑖 is defined by its features, all transforming under a
corresponding irrep of the Lorentz group in the canonical
basis [68], including at least one 4-vector (transforming under
the (1/2, 1/2) representation) representing its 4-momentum.

The (𝑡 + 1)-th MP layer operation consists of message-
passing between each pair of nodes, with a message 𝑚

(𝑡)
𝑖 𝑗

to
node 𝑖 from node 𝑗 (where 𝑗 ≠ 𝑖) and a self-interaction term
𝑚𝑖𝑖 defined as

𝑚
(𝑡)
𝑖 𝑗

= 𝑓

((
𝑝
(𝑡)
𝑖 𝑗

)2
)
𝑝
(𝑡)
𝑖 𝑗

⊗ F (𝑡)
𝑗

(2)

𝑚
(𝑡)
𝑖𝑖

= F (𝑡)
𝑖

⊗ F (𝑡)
𝑖

(3)

2Another approach directly examines the latent space [16, 17].

where F (𝑡)
𝑖

are the node features before the (𝑡 + 1)-th layer,
𝑝𝑖 𝑗 = 𝑝𝑖 − 𝑝 𝑗 is the difference between node four-vectors, 𝑝2

𝑖 𝑗

is the squared Minkowski norm of 𝑝𝑖 𝑗 , and 𝑓 is a learnable,
differentiable function acting on Lorentz scalars. A Clebsch–
Gordan (CG) decomposition, which reduces the features to
direct sums of irreps of SO+ (3, 1), is performed on both terms
before concatenating them to produce the message 𝑚𝑖 for
node 𝑖:

𝑚
(𝑡)
𝑖

= CG
[
𝑚

(𝑡)
𝑖𝑖

]
⊕ CG

[∑︁
𝑗≠𝑖

𝑚
(𝑡)
𝑖 𝑗

]
. (4)

Finally, this aggregated message is used to update each
node’s features, such that

F (𝑡+1)
𝑖

= 𝑊

(
F (𝑡)
𝑖

⊕ 𝑚
(𝑡)
𝑖

)
(5)

for all 𝑖 ∈ {1, . . . , 𝑁particle}, where 𝑊 is a node-wise operator
with learnable parameters which linearly mixes features in the
same representation space to the desired multiplicity. As in
Ref [34], we use 𝜏 (𝑡)(𝑚,𝑛) to denote the multiplicity of the (𝑚, 𝑛)
representation in each node at the 𝑡-th LMP layer. In practice,
we truncate the output irreps to a maximum dimension to
make computations more tractable.

3.2 Encoder

The encoder takes as input a point cloud of 𝑁 particles, termed
a “particle cloud”, each associated with a 4-momentum vector
and an arbitrary number of scalars representing physical fea-
tures such as mass, charge, and spin. Each isotypic component
is then mixed via learned weights, to a chosen multiplicity
of

(
𝜏
(0)
(𝑚,𝑛)

)
E
. The resultant graph is then processed through

𝑁E
MP LMP layers, specified by a sequence of multiplicities{(
𝜏
(𝑡)
(𝑚,𝑛)

)
E

}𝑁 E
MP

𝑡=1
, where

(
𝜏
(𝑡)
(𝑚,𝑛)

)
E

is the multiplicity of the
(𝑚, 𝑛) representation at the 𝑡-th layer. Weights are shared
across the nodes in a layer to ensure permutation equivariance.

After the final MP layer, node features are aggregated
to the latent space by a component-wise minimum (min),
maximum (max), or mean. The min and max operations are
performed on the respective Lorentz invariants. We also find,
empirically, interesting performance by simply concatenating
isotypic components across each particle and linearly “mix-
ing" them via a learned matrix as in Eq. (5), which thereby
breaks the permutation symmetry.

3.3 Decoder

The decoder recovers the 𝑁-particle cloud by acting on the la-
tent space with 𝑁 independent, learned linear operators, which
again mix components living in the same representations.
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Input features
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LMP LMP LMP

Decoder

Reconstructed features

Latent space features

LMP LMP LMP

Node embeddings

Fig. 1 Individual Lorentz group equivariant message passing (LMP) layers are shown on the left, and the LGAE architecture is built out of LMPs on
the right. Here, MixRep denotes the node-level operator that upsamples features in each (𝑚, 𝑛) representation space to 𝜏(𝑚,𝑛) channels; it appears
as 𝑊 in Eq. (5).

This cloud passes through 𝑁D
MP LMP layers, specified by a

sequence of multiplicities
{(
𝜏
(𝑡)
(𝑚,𝑛)

)
D

}𝑁D
MP

𝑡=1
, where

(
𝜏
(𝑡)
(𝑚,𝑛)

)
D

is the multiplicity of the (𝑚, 𝑛) representation at the 𝑡-th LMP
layer. After the LMP layers, node features are mixed back

to the input representation space
(
𝐷 (0,0) ) ⊕𝜏 (0)

(0,0) ⊕ 𝐷 (1/2,1/2)

by applying a linear mixing layer and then truncating other
isotypic components.

4 Experiments

We experiment with and evaluate the performance of the
LGAE on reconstruction and anomaly detection for simulated
high-momentum jets. LGAE model results are presented using
both the min-max (LGAE-Min-Max) and “mix” (LGAE-Mix)
aggregation schemes for the latent space, which consists of
varying numbers of complex Lorentz vectors — correspond-
ing to different compression rates.

We compare the LGAE to a baseline GNN autoencoder (re-
ferred to as “GNNAE”) model composed of fully-connected
MPNNs adapted from Ref. [21]. We experiment with two
types of encodings: (1) particle-level (GNNAE-PL), as for the
PGAE [18] model, which compresses the features per node in
the graph to form the latent space, and (2) jet-level (GNNAE-
JL), which aggregates the features across the nodes as in the
LGAE using the mean aggregation. Particle-level encodings
produce better performance overall for the GNNAE, but the
jet-level provides a more fair comparison with the LGAE,
which uses jet-level encoding to achieve a high level of com-
pression of the features. Hyperparameter and training details
for both models can be found in Appendix A and Appendix

B respectively, and a summary of the relevant symmetries
respected by each model is provided in Table 1. We find
the LGAE models to be equivariant to Lorentz boosts and
rotations up to numerical error, with further details provided
in Appendix C.

In this section, we briefly describe the dataset in Sec-
tion 4.1, before discussing the reconstruction and anomaly
detection results in Sections 4.2 and 4.3 respectively, and
finally an interpretation of the latent space in Section 4.4.

4.1 Dataset

The model is trained to reconstruct 30-particle high transverse
momentum jets from the JetNet [69] dataset, obtained using
the associated library [70], zero-padding jets with fewer than
30, produced from gluons and light quarks. These are collec-
tively referred to as quantum chromodynamics (QCD) jets.
For particle features, we use the respective 3-momenta in ab-
solute coordinates. In the processing step, each 3-momentum
is converted to a 4-momentum: 𝑝𝜇 = ( |p|, p), where we
consider the mass of each particle to be negligible. We use a
60%/20%/20% training/testing/validation splitting for the
total 177,000 jets. For evaluating performance in anomaly de-
tection, we consider jets from JetNet produced by top quarks,
𝑊 bosons, and 𝑍 bosons as our anomalous signals. Further
details about the dataset and its generation are available in
Ref. [21].
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Table 1 Summary of the relevant symmetries respected by each model discussed in Section 4.

Model Aggregation Name Lorentz symmetry Permutation symmetry

LGAE Min-Max LGAE-Min-Max X(covariance) X(invariance)
Mix LGAE-Mix X(covariance) ✗

GNNAE Jet-level GNNAE-JL ✗ X(invariance)
Particle-level GNNAE-PL ✗ X(covariance)

4.2 Reconstruction

We evaluate the performance of the LGAE and GNNAE mod-
els, with the different aggregation schemes discussed, on the
reconstruction of the particle and jet features of QCD jets. We
consider relative transverse momentum 𝑝rel

T = 𝑝
particle
T /𝑝jet

T
and relative angular coordinates 𝜂rel = 𝜂particle − 𝜂jet and
𝜙rel = 𝜙particle − 𝜙jet (mod 2𝜋) as each particle’s features,
and total jet mass, 𝑝T and 𝜂 as jet features. Figure 2 shows
random samples of jets, represented as discrete images in the
angular-coordinate-plane, reconstructed by the models with
similar levels of compression in comparison to the true jets,
while Figure 3 shows histograms of the reconstructed features
compared to the true distributions. The differences between
the two distributions are quantified in Table 2 by calculating
the median and interquartile ranges (IQR) of the relative
errors between the reconstructed and true features. To cal-
culate the relative errors of particle features for permutation
invariant models, particles are matched between the input and
output clouds using the Jonker–Volgenant algorithm [71, 72]
based on the L2 distance between particle features.

We can observe visually in Figure 2 that out of the
two permutation invariant models, while neither is able to
completely reconstruct the jet substructure, the LGAE-Min-
Max outperforms the GNNAE-JL. Perhaps surprisingly, the
permutation-symmetry-breaking mix aggregation scheme
improves the LGAE in this regard. Both visually in Figure 3
and quantitatively from Tables 2 and 3, we can conclude that
the LGAE-Mix has the best performance overall, significantly
outperforming both GNN models at similar compression rates.
The LGAE-Min-Max model outperforms the GNNAE-JL in
reconstructing all features, and the GNNAE-PL in all but the
IQR of the particle angular coordinates.

4.3 Anomaly Detection

We test the performance of these models as unsupervised
anomaly detection algorithms by pre-training them solely on
QCD and then using a reconstruction error for the QCD and
new signal jets as a discriminating variable. We consider top
quark, W boson, and Z boson jets as potential signals and
QCD as the “background”. We test the Chamfer distance,
energy mover’s distance [73], and MSE between input and
output jets as reconstruction errors, and find the Chamfer
distance most performant for all models.

Receiver operating characteristic (ROC) curves showing
the signal efficiencies (𝜀𝑠) versus background efficiencies
(𝜀𝑏) for individual and combined signals are shown in Fig-
ure 4, and 𝜀𝑠 values at particular background efficiencies are
given in Table 4. We see that in general LGAE models have
significantly higher signal efficiencies than GNNAEs for all
signals when rejecting > 90% of the background (which is the
minimum level we typically require in HEP), and LGAE-Mix
consistently performs better than LGAE-Min-Max.

4.4 Latent Space Interpretation

The outputs of the LGAE encoder are irreducible representa-
tions of the Lorentz groups; they consist of a pre-specified
number of Lorentz scalars, vectors, and potentially higher-
order representations. This implies a significantly more in-
terpretable latent representation of the jets than traditional
autoencoders, and indeed we are able to understand the latent
spaces of LGAE models to a considerable extent. For example,
we learn how the LGAE-Mix model with 𝜏(1/2,1/2) = 2 is
encoding the target jet momentum from Fig. 5, which shows
a significant correlation between the target jet momenta and
the total momentum of the imaginary components of each
latent vector.

We can also understand the anomaly detection perfor-
mance by looking at the encodings of the training data
compared to the anomalous signal. Figure 6 shows the indi-
vidual and total invariant mass of the latent vectors of sample
LGAE models for QCD and top quark, W boson, and Z boson
inputs. We observe that despite the overall similar kinematic
properties of the different jet classes, the distributions for the
QCD background are significantly different from the signals,
indicating that the LGAE learns and encodes the difference in
jet substructure, explaining the high performance in anomaly
detection. We also note that through the LGAE we have
derived novel Lorentz-invariant jet observables in the form
of these invariant masses, a detailed study of which we leave
to future work.

5 Conclusion

We develop the Lorentz group autoencoder (LGAE), an au-
toencoder model equivariant to Lorentz transformations. We
argue that incorporating this key inductive bias of high energy
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Fig. 2 Jet image reconstructions by LGAE-Min-Max (𝜏(1/2,1/2) = 4, 56.7% compression), LGAE-Mix (𝜏(1/2,1/2) = 9, 61.7% compression),
GNNAE-JL (dim(𝐿) = 55, 61.11% compression), and GNNAE-PL (dim(𝐿) = 2 × 30, 66.67% compression).
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Fig. 3 Top: Particle momenta (𝑝rel
T , 𝜂rel, 𝜙rel) reconstruction by LGAE-Min-Max (𝜏(1/2,1/2) = 4, resulting in 56.67% compression) and and

LGAE-Mix (𝜏(1/2,1/2) = 9, resulting in 61.67% compression), and GNNAE-JL (dim(𝐿) = 55, resulting in 61.11% compression) and GNNAE-PL
(dim(𝐿) = 2 × 30, resulting in 66.67% compression). Bottom: Jet feature (𝑀, 𝑝T, 𝜂) reconstruction by the four models. For the jet feature
reconstruction by the GNNAEs, the particle features in relative coordinates were transformed back to absolute coordinates before plotting. The jet 𝜙
is not shown because it follows a uniform distribution in (−𝜋, 𝜋 ] and is reconstructed well.

physics (HEP) data can have a significant impact on the per-
formance, efficiency, and interpretability of machine learning
models in HEP. We apply the LGAE to tasks of compres-
sion and reconstruction of input quantum chromodynamics
(QCD) jets, and of identifying out-of-training-distribution
anomalous top quark, W boson, and Z boson jets. We report
excellent performance in comparison to a baseline graph neu-
ral network autoencoder (GNNAE) model, with the LGAE
outperforming the GNNAE on several key metrics. We also
demonstrate the interpretability of the LGAE by analyzing
the latent space of the LGAE models for both tasks. The
LGAE opens up many promising avenues both in terms of
performance and model interpretability, with the exploration
of new datasets, higher-order Lorentz group representations,
and characterization of the derived jet observables in the
LGAE latent space all exciting possibilities for future work.
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Appendix A: Model Details

Appendix A.1: LGAE

For both encoder and decoder, we choose 𝑁E
MP = 𝑁D

MP = 4
LMP layers. The multiplicity per node in each LMP layer has
been optimized to be{(
𝜏
(𝑡)
(𝑚,𝑛)

)E
}4

𝑡=1
= (3, 3, 4, 4) (A.1)

for the encoder and{(
𝜏
(𝑡)
(𝑚,𝑛)

)D
}4

𝑡=1
= (4, 4, 3, 3) (A.2)

for the decoder. After each CG decomposition, we truncate
irreps of dimensions higher than (1/2, 1/2) for tractable
computations. Empirically, we did not find such a truncation
to affect the performance of the model.

The differentiable mapping 𝑓 (𝑑𝑖 𝑗 ) in Eq.(2) is chosen to
be the Lorentzian bell function as in Ref. [34]. For all models,
the latent space contains only 𝜏(0,0) = 1 complex Lorentz
scalar, as increasing this does not improve the performance
in either reconstruction or anomaly detection.

Appendix A.2: GNNAE

The GNNAE is constructed from fully-connected MPNNs.
The update rule in the (𝑡 + 1)-th MPNN layer is based on
Ref. [21], and given by

𝑚
(𝑡)
𝑖

=

𝑛∑︁
𝑗=1

𝑓
(𝑡)
𝑒

(
𝑥
(𝑡)
𝑖

⊕ 𝑥
(𝑡)
𝑗

⊕ 𝑑

(
𝑥
(𝑡)
𝑖

, 𝑥
(𝑡)
𝑗

))
, (A.3)

𝑥
(𝑡+1)
𝑖

= 𝑓
(𝑡)
𝑛

(
𝑥
(𝑡)
𝑖

⊕ 𝑚
(𝑡)
𝑖

)
, (A.4)

where 𝑥
(𝑡)
𝑖

is the node embedding of node 𝑖 at 𝑡-th iteration,
𝑑 is any distance function (Euclidean norm in our case), 𝑚 (𝑡)

𝑖

is the message for updating node embedding in node 𝑖, 𝑓 (𝑡+1)
𝑒

and 𝑓
(𝑡+1)
𝑛 are any learnable mapping at the current MP layer.

A diagram for an MPNN layer is shown in Fig. 7. The overall
architecture is similar to that in Fig. 1, with the LMP replaced
by the MPNN. The code for the GNNAE model can be found
in the Ref. [66].

NodeNet

EdgeNet

Node embeddings

Fig. 7 An MPNN layer in the GNNAE. Here, EdgeNet and NodeNet
are feed-forward neural networks.

For both the encoder and decoder, there are 3 MPNN
layers. The learnable functions in each layer are optimized to
be

𝑓
(1)
𝑛 = (LeakyReLU0.2 ◦ Linear30→15)

◦ (LeakyReLU0.2 ◦ Linear60→30)

𝑓
(1)
𝑒 = (LeakyReLU0.2 ◦ Linear40→30),

◦ (LeakyReLU0.2 ◦ Linear50→40)
◦ (LeakyReLU0.2 ◦ Linear61→50),

(A.5)
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𝑓
(2)
𝑛 = (LeakyReLU0.2 ◦ Linear15→8)

◦ (LeakyReLU0.2 ◦ Linear45→15)

𝑓
(2)
𝑒 = (LeakyReLU0.2 ◦ Linear31→30),

◦ (LeakyReLU0.2 ◦ Linear30→30)
◦ (LeakyReLU0.2 ◦ Linear30→30),

(A.6)

𝑓
(3)
𝑛 = (LeakyReLU0.2 ◦ Linear8→𝛿)

◦ (LeakyReLU0.2 ◦ Linear38→8)

𝑓
(3)
𝑒 = (LeakyReLU0.2 ◦ Linear20→30),

◦ (LeakyReLU0.2 ◦ Linear16→20)
◦ (LeakyReLU0.2 ◦ Linear17→16),

(A.7)

where LeakyRelu0.2 (𝑥) = max(0.2𝑥, 𝑥) is the LeakyReLu
function.

Depending on the aggregation layer, the value of 𝛿 in 𝑓
(3)
𝑛

and the final aggregation layer is different. For GNNAE-JL
encoders, 𝛿 = 𝑁 ×dim(𝐿), where 𝐿 is the latent space, and 𝑁

is the number of nodes in the graph. Then, mean aggregation
is done across the graph. For GNNAE-PL encoders, 𝛿 = 𝑑,
where 𝑑 is the node dimension in the latent space. In the
GNNAE-JL decoder, the input layer is a linear layer that
recovers the particle cloud structure similar to that in the
LGAE.

Appendix B: Training Details

We use the Chamfer loss function [74–76] for the LGAE-
Min-Max and GNNAE-JL models, and MSE for LGAE-Mix
and GNNAE-PL. We tested the Hungarian loss [72, 77] and
differentiable energy mover’s distance (EMD) [73], calculated
using the JetNet library [70], as well but found the Chamfer
and MSE losses more performant.

All models are optimized using the Adam optimizer [78]
implemented in PyTorch [79] with a learning rate 𝛾 = 10−3,
coefficients (𝛽1, 𝛽2) = (0.9, 0.999), and weight decay 𝜆 = 0.
They are each trained on single NVIDIA RTX 2080 Ti GPUs
each for a maximum of 2000 epochs using early stopping with
a patience of 200 epochs. The total training time for LGAE
models is typically 35 hours, and at most 100 hours, while

GNNAE-PL and GNNAE-JL train for 50 and 120 hours on
average, respectively.

Appendix C: Covariance Tests

We test the covariance of the LGAE models to Lorentz
transformations and find they are indeed equivariant up to
numerical errors. Bogatskiy et al. point out that equivariance
to boosts in particular is sensitive to numerical precision [34],
so we use double precision (64-bit) throughout the model.
In addition, we scale down the data by a factor of 1,000 (i.e.
working in the units of PeV) for better numerical precision at
high boosts.

For a given transformation Λ ∈ SO+ (3, 1) we compare
Λ ·LGAE(𝑝) and LGAE(Λ · 𝑝) are compared, where 𝑝 is the
particle-level 4-momentum. The relative deviation is defined
as

𝛿𝑝 (Λ) =
����mean(LGAE(Λ · 𝑝)) − mean(Λ · LGAE(𝑝))

mean(Λ · LGAE(𝑝))

����
(C.8)

Figure 8 shows the mean relative deviation, averaged over
each particle in each jet, over 3000 jets from our test dataset
in rotation and boost equivariance test.

We find the relative deviation from boosts to be within
O

(
10−3) in the interval 𝛾 ∈ [0, cosh(10)] (equivalent to

𝛽 ∈ [0, 1 − 4 × 10−9]) and from rotations to be < 1012.
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Fig. 8 The relative deviations, as defined in Eq. (C.8), of the output
4-momenta 𝑝𝜇 to boosts along the 𝑧-axis (left) and rotations around the
𝑧-axis (right).


