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Abstract

The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP)
presents both opportunities and challenges to our community. Far beyond applications of stan-
dard ML tools to HEP problems, genuinely new and potentially revolutionary approaches are
being developed by a generation of talent literate in both fields. There is an urgent need to
support the needs of the interdisciplinary community driving these developments, including
funding dedicated research at the intersection of the two fields, investing in high-performance
computing at universities and tailoring allocation policies to support this work, developing
of community tools and standards, and providing education and career paths for young re-
searchers attracted by the intellectual vitality of machine learning for high energy physics.

Submitted to the Proceedings of the US Community Study
on the Future of Particle Physics (Snowmass)
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Executive Summary

This report on artificial intelligence (AI) and machine learning (ML) in high-energy physics
(HEP) constitutes the first time that this intersection is represented with a dedicated subgroup
in the Snowmass Community Planning process.

AI can be defined as the branch of computer science aimed at mimicking human intelli-
gence, while ML is the subset of AI which uses statistical learning algorithms to build models
based on data. While ML has been used in HEP, particularly in experimental applications, for
many years, rapid progress over the last decade including the development of deep learning
(complex neural-network based algorithms with significant numbers of layers, or ‘depth’) and
continuously evolving computing architectures, has led to a revolution in this area. ML is
now ubiquitous, and is enabling previously-intractable computational problems to be framed
in new ways, and solved, across industry spheres.

The recent burst of progress in AI and ML is directly impacting HEP, both by super-charging
long-standing applications of ML in this context and by creating completely new opportunities
and breaking down historical computational bottlenecks. While it is difficult to predict the
future of such a rapidly-evolving field, it is clear that ML will play an increasingly important
role in HEP and it is critical that the further development of this intersection is nurtured,
especially due to its attractiveness for young researchers. Below, we summarize the outlook
and recommendations made in the full report in several areas (with no priority ranking implied
by the ordering): interpretability and validation, theory calculations and detector simulations,
data reconstruction/analysis, anomaly detection, detector and accelerator design, community
tools, standards, resources, and management, and education and engagement.

In addition to these specific recommendations, a global theme emerges: it is crucial that
the HEP community nurture the source of the innovations which led to these impactful devel-
opments, both by funding interdisciplinary exploration and providing the flexible and open-
ended computing resources necessary for high-risk high-reward research.

Uncertainty Quantification, Validation and Interpretability It is vital that physicists can
validate the decisions of ML models and quantify their uncertainty, a goal made easier if the
inner workings of the models are conceptually accessible to physicists. HEP is not alone in
this concern, and can benefit from work in the wider community. The HEP community should
support continued research into interpretable AI and uncertainty quantification (UQ), includ-
ing making public benchmark data sets for rigorous testing and comparison of approaches
to physically interpretable AI-UQ for physics, and supporting challenges and competitions to
create and compare methods of uncertainty quantification, including bias mitigation.

First-principles theory calculations including detector simulations ML for first-principles
HEP-focused theory calculations and detector simulations is a rapidly-developing endeavour.
As this paradigm expands and matures, there is great potential for transformative impact on
the scope and precision of theory studies across areas as diverse as cosmology and lattice field
theory. Reaching this potential will likely require the scaling of complex coupled workflows
of data generation and training with diverse structures, features, and requirements, to large-
scale high-performance computing resources. To achieve this, it will be important to support
large-scale allocations for high-risk high-reward exploratory work.

Data reconstruction and analysis Physics-specific ML development is driving the AI-based
advancement of the frontiers of HEP research. For example, ML models with physics laws
baked in can preserve important aspects of nature, such as equivariance over certain symme-
try groups, and contribue in key ways to the interpretability of a model. Technical development
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in this area of research cannot be successful without key support including for common soft-
ware tools development, support for technical staff, development of a interdicplinary research
community, the development of standardized metrics and and benchmark datasets, and fi-
nally close connection between the funding agencies and the research community as this field
continues to evolve.

Anomaly Detection Anomaly detection is a vital component of the search for new physics
at colliders and elsewhere. ML provides a set of statistical tools for identifying anomalies, but
no single strategy has emerged as the most universally powerful, and important challenges
remain. Like other ML efforts, anomaly detection will require significant computing resources,
but perhaps more critical is continued community research and development to mature these
methods. Coordinated efforts such as the LHC Olympics 2020 should be encouraged and
repeated. The methods developed there will be applicable in both future colliders as well as
in non-collider contexts.

Detector and Accelerator design and operation ML tools could reduce accelerator design
time and the associated costs significantly whilst simultaneously improving the resulting de-
signs by covering a larger phase-space and yielding a deeper understanding of trade-offs. Fur-
thermore, optimization methods developed with ML techniques can be applied to the opera-
tions of experimental facilities including the control, calibration, and monitoring of dynamic
systems. Given the push toward the next generation of large HEP experiments, as well as
a broad range of smaller experiments under development, automated design and operation
methods and tools that can be shared across the discipline of science is both timely and po-
tentially massively impactful. Development in this program requires support that combines
research efforts by physicists, engineers, and computer scientists to bring novel ML techniques
into the front lines of physics experiment. In addition to salary of non-physicists such as engi-
neers and software developers, the costs of developing custom hardware to bring ML applica-
tions into the edge of experimental data taking pipeline must be considered.

Community tools, standards, resources and management ML will require significant com-
puting resources, in hardware, software, education, and personnel. Exploratory research
should receive healthy support, alongside development and deployment. In hardware, CPU-
based computing will be sufficient for some cases, but others scenarios require the use of
specialized processors, such as GPU, FPGAs, or ASICs. It will be important to not only expand
the availability of computational resources to address problems at the intersection of physics
and ML, but also to re-visit the structure of computing allocations to support high-risk high-
reward work on this frontier. Providing flexible, allocation-free computing resources located
at universities will support rapid development pipelines, train the next generation of junior
scientists, and enable innovation among the junior researchers currently leading work at this
intersection. In software, it is essential that the field maintain a close partnership with the
broader community, in academia and industry, but that our tools remain open-source to allow
for collaboration and development.

Education and engagement Given the rapidly-changing landscape of ML in HEP, it is critical
to continue to educate our community and develop a workforce with skills to advance this in-
tersection. As a community, we must create career pipelines both inside and outside academia
for the junior scientists who are primarily driving innovation at the intersection of ML and HEP.
It is imperative that we take a broad perspective to recruit and retain a diverse cross-section of
scientists. Capitalizing on industry expertise with cross-disciplinary collaboration will require
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community assessments of the ethics of such arrangements, as well as the expansion of open
data.
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1 Introduction

Over the last decade, the use of machine learning (ML) has become ubiquitous across high-
energy physics (HEP); for recent reviews, see Refs. [1–4]. While particle physics has a long
history of the use of neural networks and multi-variate analysis, recent bursts of progress in ma-
chine learning have had a ripple effect, yielding qualitatively new developments. These include
super-charging long-standing applications to exceed the power of expert-designed heuristics,
extend the capacity to handle data with very large dimensionality and data sizes, as well as
creating completely new opportunities, such as in fast simulation, anomaly detection and the-
oretical physics. While ML was only mentioned in passing in the previous community summer
study, its rise in importance motivates a comprehensive dedicated study of the role of ML in
HEP, and what is needed to support the future of this young but dynamic and impactful area
of research.

Both the physics goals and types of ML paradigms which are used to address them are
diverse, spanning from the acceleration of exact first-principles theoretical physics calcula-
tions based on generative models, through to online triggering or anomaly detection using
computer vision tools. From this rich spectrum, several common themes are emerging. In
particular, for many applications there are clear needs for interpretability, validation, and un-
certainty quantification of ML-based algorithms (Sec. 2) beyond what is typical for other ap-
plications. Moreover, physics problems often have specific features, for example in terms of
their symmetries, particular data structures, requirements of robustness, reproducibility, or
speed of online training, that are not shared by typical industry applications of ML. As a re-
sult, off-the-shelf ML tools are often not sufficient, but rather there is a genuine need for the
development of custom ML solutions that build in the physics of the application at hand, i.e.,
"physics-specific ML" (Sec. 3). These features present both opportunities and challenges for
our community; opportunities for transformative and innovative new approaches developed
by a new generation of scientists literate at this intersection of physics, computer science, and
high-performance computing, and challenges in meeting the ever-changing and growing needs
of the community in this phase of rapid and unpredictable development. It also highlights the
importance of maintaining a vibrant research community in this interdiscplinary field,
capable of adapting methods from industry and broader academia, developing entirely
novel methods, and finding new applications for existing methods.

Given the rapid pace of development of ML, and the breadth of ML paradigms that find
applications in HEP, it is impossible to accurately predict the impact or role of this class of tools
over the next decade. What is clear, however, is that the current trajectory points towards ever
more, and more sophisticated, applications of ML in this context. This has several important
consequences. In particular, it will be important for access to high-performance computing
to expand, and allocation policies to evolve, to suit the diverse workflows of ML applications,
many of which may have a ‘training’ phase whose length is difficult to estimate, complicating
planning, and concerted efforts must be made to develop community tools and standards
for this new paradigm (Sec. 4). Moreover, there is an urgent need for the development of
educational pipelines; fully exploiting the potential of ML for HEP will require the engagement
of experts with different skill-sets, such as parallel programming and foundational artificial
intelligence, to complement the more physics-oriented expertise of our community. This is one
component of a larger need to maintain close connections with the wider ML community in
academia and industry; physics-specific challenges can spark broader innovation, and physics
can benefit from concepts invented for tasks in adjacent fields. Achieving this will require
attention to undergraduate and graduate education, but also to the career pathways available
for the postdoctoral researchers and other junior scientists who are driving much of the current
innovation at this intersection (Sec. 5).
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The goal of this document is both to summarize the major HEP applications in which ML-
based algorithms have already had or promise impact, and to sketch, as much as possible, the
future role of this class of tools to anticipate needs in funding, resources and planning.

2 Uncertainty Quantification, Validation and Interpretability

A central goal of high-energy physics is to understand the nature of our Universe. That is,
it seeks to do more than simply reveal the fundamental building blocks of matter and its in-
teractions, but to provide some explanation as to why it works one way and not some other
way. So it is natural, therefore, that in employing powerful ML algorithms to help process
the high-dimensional and voluminous data produced by high-energy experiments, physicists
would seek to go beyond achieving strong performance in a particular task, but to understand
how the problem has been solved, and to ensure that the solution makes sense.

This desire is more than philosophical, as often ML models are trained using samples of
simulated data. While HEP benefits from extraordinarily high-fidelity simulations and large
datasets, discrepancies between the data and its simulation-based model do remain, and can
lead to sources of bias when an ML model trained on simulation is applied to data. This is true
of any simulation-derived analysis technique, but ML models’ ability to extract subtle, non-
linear correlations among input features makes them uniquely powerful, but also potentially
susceptible to small discrepancies. It is therefor vital that ML models be validated, in which
physicists confirm that the aspects of the simulation on which the model relies are accurately
described; one avenue towards validation is to develop models which are interpretable. His-
torically, physicists have used heuristic calculations to summarize the information and reduce
the dimensionality into a small set of interpretable features, but ML’s power to directly analyze
high-dimensional datasets and recapture information sacrificed by the high-level summaries
make it more difficult to validate and interpret a model.

The need for validation and desire for interpretability are not unique to particle physics,
and the community can benefit from the attention paid to it by other fields [5]. But the chal-
lenge will only grow in importance as data become more voluminous and high-dimensional,
and the field searches for signals of new physics which may leave subtle or rare traces.

2.1 Interpretable ML

A major challenge for interpretability of ML models arises precisely from the source of their
strength: the ability to non-parametrically describe non-linear functions of high-dimensional
inputs. That the effective functional form is not constrained by physical insight allows it to
discover unexpected strategies, but also cloaks the learned strategy within a black box. One
can, of course, open the box to examine the specifics of the model’s construction, but insight is
difficult to extract from thousands (or more) nodes and their millions (or more) connections.

Several approaches have been developed to tackle this important problem. For deep learn-
ing using neural networks with smaller dimensional input spaces, one can compare the per-
formance of the network with and without an input, expand the network function in the basis
of an input feature, or projecting the decision surfaces along physical observables in an ef-
fort to gain insight [6–10]. Many of these approaches, however, are limited to studying the
structure of the model in terms of already-identified physical observables. An extension of this
strategy is to assemble a complete basis of interpretable observables [11], and map the black-
box strategy into that space [12]; see example applications to muon [13] or jet substructure
identification [14] in collider environments.

An alternative approach is to improve the interpretability of a black box ML algorithm
by constraining its internal structure. In the wider ML community, there is extensive study
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of white-box algorithms, with a preference for those built from linear, mono-tonic functions,
which may trade performable for explainability. These can be seen as providing accurate ex-
planations for approximate models rather than approximate explanations for accurate models.
Another thrust imposes requirements on networks to respect physical symmetries, such as ro-
tational or Lorentz symmetries [15–17], or to insist that the global function be comprised of
a restricted set of functions which do not cross theoretical lines such as infrared and collinear
safety [18]. These efforts do not provide explicit explanations for individual model decisions,
but global guarantees about the functional form. Finally, one can attempt to interpret spe-
cific model choices by constructing local linear approximations of models [19, 20]; see early
examples in high-energy physics [21,22].

2.2 Validation and uncertainty quantification

The ultimate goal of interpretability for ML models is to ease the validation of their predictions
as physically sensible, and to quantify uncertainties that arise from biases they may introduce.
In the end, the the usefulness of physical measurements is tied to the magnitude and reliability
of their estimated uncertainties.

Especially important in the case of ML for HEP are sources of systematic uncertainty, which
can arise from several underlying mechanisms. Examples include uncertainty in the modeling
of detector response, or lack of knowledge of the value of theoretical parameters which are
not of interest. See Refs. [23, 24] for comprehensive reviews, but note that different model,
experimental or analysis decisions may lead to variations in observations, but this does not
necessarily constitute a source of uncertainty. Equally important is to understand that sources
of systematic uncertainty are not created equal; some may be reduced via auxilliary datasets,
while others are more descriptive than statistical; see Ref [25] for a cautionary tale on how
efforts to reduce the dependence of ML on nuisance parameters may only obscure the true
uncertainty.

A wide variety of techniques have been developed to quantify uncertainties as propagated
through machine learning models. A powerful and straightforward approach is validation of
the ML model predictions in data control regions, which could alternatively be used to extract
estimates of systematic uncertainties. Recent efforts have been made to develop metrics to
quantify uncertainty [26].

Nevertheless, the flexibility of ML models allows them to potentially reduce the impact of
uncertainties. Early examples of efforts to optimize ML-based analyses to be explicitly robust
against uncertainties used neuro-evolution [27] or adversarial models [28,29]. An alternative
is to condition the network [30] explicitly on nuisance parameters [31], allowing the ML model
to adjust to the changing context. Recently, efforts have been made to calculate the gradient
of the final result with respect to all analysis parameters, which allows for global optimiza-
tion and reduction of uncertainties [32]. The introduction of differentiable simulations allow
for reducing data-simulation differences [26], thereby reducing the associated uncertainties.
Another approach to reducing such uncertainties by is to training GANs which can learn to
adjust simulation to reduce discrepancies with data [26]. Modeling uncertainties are often
present even in weakly-supervised or unsupervised learning from data, due to extrapolation
from control regions [33].

2.3 Outlook and recommendations

Machine learning will continue to play an important role in analysis of HEP data as its com-
plexity grows, both in volume and dimensionality. The community will need to balance inter-
pretability with analysis power to ensure that uncertainties are reliably estimated. Fortunately,
in this respect particle physics is not unique, as the wider community has similar concerns, in
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areas sech as self-driving cars and facial recognition. The statistical demands of HEP applica-
tions are however distinct, and so will require careful attention.

To focus attention on this question and develop consensus around how to estimate and
report uncertainties in analyses which rely heavily on ML, the HEP-Stats-AI community should
create benchmark data sets for rigorous testing and comparison of approaches to physically
interpretable AI-UQ for physics [34]. Additionally, studies which make heavy use of ML should
be encouraged to make all code publicly available, to allow for reproducibility. Funding agen-
cies should endorse challenges and competitions to create and compare methods of uncertainty
quantification, including bias mitigation. Common AI-UQ methods should be embedded into
deep learning software suites, similar to SKLearn, to enable widespread usage, testing, and
comparison in the HEP community.

3 Physics-specific ML

Target applications of ML in HEP often have specific features such as symmetries, invariances,
limiting behaviors, or unique data structures, which distinguish these problems from those
which appear in other (e.g., industry) contexts. As a result, optimal applications of ML tools
for HEP often demands custom, or physics-specific, solutions. This section outlines the diverse
types of HEP applications which are likely to be impacted by physics-specific ML methods over
the coming years, and highlights the challenges and opportunities that can be anticipated at
this intersection.

3.1 First-principles theory calculations including detector simulations

An emerging and promising application of physics-specific ML is to first-principles theory calcu-
lations. This is a diverse and growing area, spanning provably-exact algorithms incorporating
ML-based accelerators, though to ML-based proxies for expensive numerical simulations or
learned model corrections.

An important class of theory calculations are those that require exactness, i.e., studies in
which there is no room for modeling, approximation, or uncertainty arising from imperfect ML
if the rigor of the first-principles framework is to be maintained. Naturally, this requirement
places a number of important constraints on the ways in which ML can be employed which are
problem-specific and often require custom solutions. One example of this paradigm is the ap-
plication of ML to lattice quantum field theory calculations, summarized in Ref. [35]; another is
in first-principles simulations for event generation, discussed in Ref. [15]. There have recently
been promising proof-of-principle applications of ML methods in these contexts spanning gen-
erative models for sampling path-integral contributions (in lattice field theory) or phase space
(in event generators), through to accelerated observable computation and analysis pipelines,
all of which carry exactness guarantees, often achieved through symmetry-preserving ML algo-
rithms and/or the application of a mathematically-rigorous correction step which corrects for
imperfect ML at the expense of computational efficiency. Efforts to accelerate the computations
required for hydrodynamic simulations [36] face similar challenges; each specific application
involves different hierarchies of computational scale, requiring different resources, structures
(e.g., support for model parallelism) and optimizations (e.g., efficient 4D convolutions).

Another class of applications in the category of first-principles theory studies is efforts to
test the consistency of experiments with high-dimensional theory model spaces. For example,
it is in many cases straightforward (if computationally expensive) to calculate observables in
beyond-Standard-Model theories given a set of theory parameters, while the inverse problem
of constraining theory parameters from experimental data is often intractable; the standard
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approach of scanning over parameters and rejecting those that are not consistent with exper-
imental data scales exponentially in cost with the dimension of the parameter space. This is
an application where ML methods are already making an impact, and where the themes of
interpretability and validation of Sec. 2 are of particular import. For example, various gener-
ative ML frameworks have been used to improve the sampling efficiency of searches in high-
dimensional supersymmetric parameter spaces, with orders of magnitude of improvement in
sampling efficiency [37]. Similar improvements have been achieved in simulation-based infer-
ence frameworks [38]. These efforts have strong parallels with efforts in cosmology, where the
goal is to constrain both cosmology and galaxy formation parameters with the highest accu-
racy from observational data. Proposals have been made to carry out this task using machine
learning methods trained using state-of-the-art cosmological hydrodynamic simulations [36].

Finally, many of the same challenges arise in the application of ML to first-principles de-
tector simulations, which are essential to link the vast data output of multi-purpose detectors
with fundamental theory predictions and interpretation. The computational cost for HEP de-
tector simulation in future experimental facilities will exceed the current available resources;
ML-based acceleration thus has an important role to play. Surrogate models or approximations
of first-principles simulations based on ML frameworks such as deep generative models have
been shown to accelerate simulation pipelines [15, 39] either end-to-end, or in key compo-
nents, while maintaining fidelity. Of particular value to the physics community are unfolding
algorithms [40], which in removing detector effects rather than modeling them, are comple-
mentary to the simulation efforts; some inevitable approaches can learn to do both [41, 42].
As an alternative to using ML for an entire (component of) a simulation pipeline, ML-based
corrections to fast approximate models are finding success [39], as are paradigms based on
differentiable programming [39] and inverse simulations and inference [15].

Outlook and recommendations
ML for first-principles HEP-focused theory calculations and detector simulations is a rapidly-

developing endeavour. As this paradigm expands and matures, there is great potential for
transformative impact on the scope and precision of theory studies across areas as diverse as
cosmology and lattice field theory. Reaching this potential will likely require the scaling of
complex coupled workflows of data generation and training with diverse structures, features,
and requirements, to large-scale high-performance computing resources. To achieve this, it
will be important to not only expand the availability of computational resources to address
problems at this intersection, but also to re-visit the structure of computing allocations to sup-
port exploratory and high-risk work on this frontier.

3.2 Data reconstruction and analysis

Incorporating domain knowledge, also referred to as inductive bias, for data reconstruction and
analysis into a machine learning solution can provide significant benefits including better task
performance, better sample efficiency, smaller model size, interpretability and explainability,
and robustness against domain shift. Inductive biases may be based on the specific nature of
HEP data, physics laws, or the requirements and constraints for performing physics analysis
using the output of such ML models.

For example, the unique structures of HEP datasets can present unique challenges to ML
applications. While convolutional neural networks (CNNs), originally designed for image pro-
cessing, have been applied to a wide range of HEP data that is either naturally structured as
or can be converted into 2D or 3D image formats [43–66], specialized architectures can be
designed to address challenges specific to physics data. For instance, HEP image data is often
globally sparse yet locally dense (i.e., a small fraction of pixels carry meaningful values but
the signal region is densely sampled), which makes it challenging to scale standard CNNs with
dense matrix multiplications to large images. In neutrino experiments, CNNs with sparse ma-
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trix operations have been used to develop applications that scale to meet the needs of the next
generation of experiments with orders of magnitude larger detectors [67,68]. There are also
challenges associated with multiple modalities of HEP data recorded by multiple distinct type
of particle detectors with different geometries. Solutions to such challenges include the devel-
opment of Graph Neural Networks (GNN) designed to effectively combine different detector
information for reconstructing particle flows [69]. Future research in this area wil combine
techniques specially designed for each detector in an effective manner for multi-modal data
analysis that is scalable.

Another way to incorporate domain knowledge into ML architectures is to incorporate
constraints arising from physics laws directly, which mitigates the need to learn such features
from training data and hence helps to reduce the model size and complexity while improving
training sample efficiency. Furthermore, the resulting models are more interpretable since the
physical laws are preserved by design, and are also potentially more generalizable. Examples
in this class of HEP specific ML models include QCD-aware deep neural networks [70, 71]
as well as matrix element calculators [72]. In particular, equivariant models that preserve
symmetry groups have been developed specifically for HEP applications [73–78]. A white
paper that summarizes the current state and future directions of research in this regard can be
found in [17] with recommendations for a set of metrics to specifically measure the strengths
of such ML models and support to develop standardized software tools and develop community
talent at this intersection.

Finally, inspiration to design features of ML architectures specifically for HEP data recon-
struction and analysis may come from constraints and requirements for such tasks. For in-
stance, while recurrent neural networks (RNN) have been successfully applied to many ex-
amples of sequential HEP data [60, 79–83], such as lists of particles, the output of RNNs are
not permutation invariant. Recently, models including Deep Sets, Transformer, and various
types of GNNs have been developed with permutation symmetry in order to address this chal-
lenge [18,57,77,84–92]. Another example of such constraints is the need to be robust against
nuisance parameters, uncertainties, and issues associated with domain shift. For example,
adversarial training can be used to reduce variance of output with respect to nuisance pa-
rameters [28] or avoid dependence on domain bias [93]. A more generalized approach for
an uncertainty-aware models and optimization methods can be found in Ref. [31]. Finally,
development of ML models for object reconstruction is key for improving explainability of
physics inference. Examples in this class, including a composite model for an end-to-end data
reconstruction, can be found in Refs. [69,94–99].

Outlook and recommendations Physics-specific ML development has made key contri-
butions in advancing the frontiers of HEP research in a number of ways. ML models with
baked-in physics laws can preserve important aspects HEP problems such as equivariance over
certain symmetry groups, and provide interpretability of models. Furthermore, by encoding
key physics knowledge as a part of a model, it results in quicker learning with less statistics
of training sample. In order to boost the R&D effort in this area, there should be a dedicated
support and review criteria that helps research along this category. Such criteria may clearly
define metrics concerning the strengths of physics-specific ML (e.g. sample efficiency, learn-
ing speed, interpretability). Key ingredients for science-specific ML includes support for both
common and application-specific software development, technical research staff, establishing
an interdisciplinary research community as well as a close connection between the funding
agencies and the research community.

3.3 Anomaly Detection

In addition to searching for hints of new physics motivated by theoretical concepts, there
is great value in treating HEP experiments as an exploration of the unknown, and in being

12



prepared for unexpected discoveries. The power of ML to analyze high-dimensional spaces has
already produced a rich literature of its application to the task of anomaly detection [100–128],
i.e., the identification of data which are unlikely to be due to known Standard Model (SM)
processes.

Various methods of ML-based anomaly detection have already been explored. A major
theme is the use of auto-encoders, which map data to a latent space and back, but may fail to
similarly map anomalous events. Another category of efforts attempt to model the density of
the SM background in order to identify events which have low likelihood of being drawn from
that density, using normalizing flows or kernel methods. Anomaly detection methods may be
supervised, or unsupervised, or a hybrid [33].

Capabilities The strengths and weaknesses of anomaly detection were extensively studied
in the recent LHC Olympics 2020 challenge [129], which are summarized here. Several black-
box datasets were prepared, in some of which were embedded a variety of new physics signals.
These represent reasonable models of new physics, but cannot span the space of possible
signals. However, they are illuminating as the predictions by the participating teams span a
wide range of scenarios, including correctly identified new physics (true positives), incorrect
claims of new physics in SM-only datasets (false positives), and missed opportunities (false
negatives).

Outlook and Recommendations Anomaly detection is a vital component of the search for
new physics, at colliders and elsewhere. ML provides a set of statistical tools for identifying
anomalies, but no single strategy has emerged as the most universally powerful. Important
challenges remain, such as confronting data with higher dimensionality, especially in cases
where the new physics is non-resonant and so the definition of the background is harder to
extract from sidebands. How to respond to a significant detection, and how to quantify the sig-
nificance of a lack of detection, remain important open questions. In addition, online anomaly
detection, in which unusual events are identified at the trigger level, remains an important
frontier.

Like other ML efforts, anomaly detection will require significant computing resources. Per-
haps more critical, however, is continued community research and development to mature
these methods. Coordinated efforts such as the LHC Olympics 2020 should be encouraged
and repeated. The methods developed there will be applicable in both future colliders as well
as in non-collider contexts.

3.4 Detector and Accelerator design and operation

Detector design and optimization for HEP experiments (e.g. design of detector components,
accelerator magnets) is an essential and complex task, often involving multi-year processes re-
lying heavily on expert intuition and brute force search methods through the design and layout
parameter space. Similar challenges are present in the need to maintain optimal operation of
components over time, and to make smart trigger decisions to collect high quality yet unbiased
physics data. Advancements made by ML research in predictive modeling and optimization
tasks are yet under-explored in this area and have the potential to enable expert-guided, au-
tomated tools to design and control experimental instruments and data taking processes.

Within the applied mathematics and optimization communities, a great deal of research
has been performed on constrained optimization tasks. The recent rapid progress of AI/ML has
accelerated such work and simultaneously enabled new methods. Among the most promising
frameworks for approaching design challenges are Bayesian optimization using Gaussian pro-
cesses (GPs), reinforcement learning (RL) inspired approaches, surrogate based approaches,
and differentiable programming. These approaches are strongly coupled with the tasks in
scientific applications, computing capacity, and available models to describe the underlying
physics. For example, AI/ML-enabled automated design is already employed in many fields
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of science, such as in chemistry experimentation [130], protein and material design, and in
ASIC electronics design [131], all of which have achieved either significant design speed up,
improved parameter space optimization, or both. Similarly, in HEP, AI/ML applications are
developed for detector modeling and design optimizations that employ differentiable pro-
gramming frameworks to enable differentiable detector physics modeling as well as gener-
ative differentiable surrogates for fast approximation of gradients [132–136]. In addition to
design, optimization of control for running facilities including experiment detectors and ac-
celerators is critical for delivering high quality physics data. Optimal control requires calibra-
tions [137–139] and timely diagnostics of a dynamic system [140] to identify potential issues
or predict them in advance.

Integration of powerful ML techniques into the front edge of the experiment’s data taking
requires innovations in both hardware and software design. Many advancements have been
made in the area of Edge-ML including implementation of ML algorithms on Field Gate Pro-
grammable Arrays (FPGAs) [141–149] and Application-Specific Integrated Circuits (ASICs) [150].
ML-supported smart physics trigger systems [151] will integrate these research advancements
and are critical for the future HEP experiments, including DUNE and HL-LHC, where the rate of
data streaming is expected to increased by an order of magnitude or more. These customized
software and firmware frameworks are often not only fast bust also energy efficient, and may
be used as tools for offline data analysis [152].

Finally, there are opportunities for existing ML methods to make immediate impact on the
present hardware workflow. For example, a computer vision model may be used for a quality
control by identifying defect detector components through a visual scanning [153]. Applying
ML methods to support humans, in particular for repetitive tasks where a constant focus over
certain duration of period is difficult, may improve a work quality and reduce risks.

Beyond the automation of individual tasks in designing experiments and operating facil-
ities, there is also an overarching goal of optimizing entire HEP experimental pipelines in-
cluding physics hypothesis generation, the design and modeling of an experiment to test the
hypothesis, experiment construction and data taking, extraction of physics, and finally the re-
turn to the first stage of hypothesis generation for the next generation of experiments. This will
require a greater scope of discussion and planning including consideration of socio-economic
changes and the impact of large projects on society over the lifecycle of an experiment, and it
will not be further discussed in this report. However, this is an important research topic to be
considered for future funding since the expansion of the scope of automation and optimization
can only be expected to accelerate.

Outlook and Recommendations
ML tools could reduce design time and the associated costs of HEP experiments significantly,
possibly by multiple orders of magnitudes, whilst improving the resulting designs by cover-
ing a larger design phase-space and enabling a deeper understanding of design trade-offs.
Furthermore, optimization methods developed with ML techniques can be applied to the op-
erations of experimental facilities including control, calibration, and monitoring of dynamic
systems. Given the push toward the next generation of large HEP experiments, as well as
a broad range of smaller experiments under development, automated design and operation
methods and tools that can be shared across science disciplines is both timely and potentially
massively impactful. Development of this program requires support for combined research
efforts by physicists, engineers, and computer scientists to bring novel ML techniques into the
front line of a physics experiment. Development of a set of common tools across experiments
and frontiers should be strongly supported in a coherent manner with the projects within each
experiment. Such a support should include not only the salary of non-physicists such as en-
gineers and software developers,but also the cost to develop custom hardware to bring ML
applications to the front edge of the experimental data taking pipeline.
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Figure 1: Comparison across various high-energy experiments and industry facili-
ties of the streaming data rate, in units of bytes per second and the latency require-
ments in seconds. The area of each bubble indicates the total annual data volume.
From [154]

4 Community Tools, Standards, Resources and Management

The previous sections make it clear that ML is emerging as a powerful tool for HEP which can
tackle important challenges facing the field as the volume and complexity of experimental data,
as well as the volume and complexity of computational theory calculations, grows dramatically.
Unfortunately, ML models are often computationally expensive, especially in training, and will
require significant resources in terms of providing sufficient computing hardware as well as
dynamic and flexible software which take advantage of industrial efforts but remain adaptable
to the specific features of HEP problems.

4.1 Current Status and Needs

Machine learning plays an important role in many different aspects of HEP, including collider,
neutrino, dark matter, lattice QCD as well as astrophysics, and in many different contexts, in-
cluding triggering, reconstruction and data analysis. Figure 1 shows a comparison of the data
rates versus the latency requirements for some of these systems, demonstrating the extraordi-
narily wide range of settings.

Collider, Neutrino, Astrophysics: The needs and opportunities of these experiments are
explored in detail in Ref [154], and are summarized here. These communities have fully em-
braced the use of ML in nearly every aspect of experimental operation, including triggering,
data quality monitoring, reconstruction and analysis. These activities span a very wide range
of computational needs, including low-latency applications such as triggering and latency-
tolerant applications such as offline analysis. With the broadening application of these tools
comes a rising computational cost, which will require more than simply additional CPU re-
sources. Use of GPUs has become standard, and special contexts will require FPGAs (for trig-
ger) and ASICs (for radiation-hard environments). The broader use of ML in industry and
academia is fueling rapid innovation in hardware, which may soon lead to new technologies
such as Tensor PUs, Intelligence PUs and photon-based processing units [154]. On the other
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hand, ML may provide some relief for the largest fraction of the computational budget in
many experiments, generation of large simulated samples [155]. From a software perspec-
tive, a new model of ML resources provides via Software as a Service, may allow for more
flexible deployment of ML resources. Smaller experiments, such as FASER, MicroBooNE, g-2,
LUX-ZEPLIN, COHERENT, and DESI also have significant computing needs which should not
be neglected [156].

Theoretical calculations: Recent developments in ML-accelerated theory studies repre-
sent a new workflow paradigm which requires the availability of computing resources in a pat-
tern distinct from that in experimental work (see Ref [35] for a review in the context of lattice
QCD; similar challenges are faced in the application of ML methods to accelerate cosmolog-
ical pipelines [36], first-principles detector simulations [37, 38], and event generation [15]).
In particular, computational resources need to be made available in a way that is more flex-
ible, responsive, and open-ended, to be compatible with the exploratory and unpredictable
nature of ML work in this area, which often involves completely new physics-specific architec-
ture designs. Moreover, resource availability must accommodate the challenges and costs of
developing ML algorithms to reach the same scale as state-of-the-art theory calculations via
conventional approaches. This will require the availability of both large-scale open-ended allo-
cations on national resources for work at this intersection, and allocation-free university-based
resources to enable rapidly-evolving low-overhead developmental work by junior researchers
in this area. Fully exploiting the opportunities at this intersection will ultimately require devel-
opment and maintenance of specialized software toolkits [35]. Just as with software, trained
models should be treated as a community resource, particularly for at-scale applications where
training may be expensive.

Direct Detection: Searches for dark matter in underground or quiet substrates have
demonstrated how to improve expected signal-to-background rates as well as particle recon-
struction using machine learning methods [157]. Uncertainty quantification and interpretabil-
ity are seen as especially important in such low-rate experiments. These experiments will
require similar levels of education and training, community standards on uncertainty quantifi-
cation and interpretability, and access to specialized computing resources [158].

4.2 Outlook and recommendations

While ML will clearly play a central role in many–if not all–aspects of high energy physics in
the next decade, the rapidly-evolving nature of that role makes it challenging to predict what
resources and tools will be needed by the community. What is clear is that it will require
significant computing resources, in hardware, software, education and personnel, and that
exploratory research should receive healthy support, alongside development and deployment.

On the hardware front, CPU-based computing will be sufficient for some use cases, but
other scenarios require the use of specialized processors, such as GPU, FPGAs, or ASICs. The
field should be prepared to adapt as new hardware is developed which may create transfor-
mative opportunities [154].

For software, it is essential that the field maintain a close partnership with the broader
community, in academia and industry, but that our tools remain open-source to allow for col-
laboration and development [157,159].

There are efforts within the computer science community to understand the impact of AI
research. HEP should participate thoughtfully, as it helps spark innovation and development
of AI.
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5 Education and Engagement

Given the continued expansion and rapidly-changing landscape of the applications of ML in
HEP, it is clear that education and community engagement in the development of talent at
this intersection are crucial and will require careful consideration and investment over the
coming years. A particular challenge arises from the hierarchy of expertise in ML across our
community; while the current generation of faculty in physics typically do not have formal
training in machine learning or even in computer science or high-performance computing, this
landscape is changing. Perhaps naturally, much of the transformative work at the intersection
of ML and HEP is being undertaken by relatively junior scientists, and the question of how to
nurture and retain this talent and what career paths will be open to them within our field is of
utmost importance. Looking towards the future, it is imperative to expand the understanding
of ML in our community, and that the generation of scientists currently pursuing their degree
programs have the opportunity to learn ML in particular as it intersects with HEP and other
science domains.

5.1 Pipeline development

It is clear that knowledge of not only physics, but of data science in the form of algorithms,
high-performance computing, software carpentry, statistics, and ML is becoming a critical tool
in HEP. Sustaining innovation at this intersection in our community demands developing and
broadening the pool of researchers with this skillset, and integrating computational education
within physics curricula. While computer science courses on these topics exist at many insti-
tutions, and Massive Open Online Courses (MOOCs), online broadcasting of seminars from
interdisciplinary artificial intelligence institutes, and educational-focused journals (e.g., dis-
till.pub), are addressing this need in part in the form of free, online resources, relatively few
such resources exist developed by physicists and for physicists that detail the scientifically-
informed, data-driven methodologies most relevant to our field. As the HEP/ML intersection
continues to develop in scope and complexity, developing such resources as a community will
become increasingly important, as emphasized in Ref. [160]. Simultaneously, it is critical for
our community to advocate for and acknowledge the relevance of computational skills for
modern physics research. For example, ML for physics must be seen as a legitimate topic for
a physics degree, and barriers such as qualifying exams at the graduate level should allow for
students specialized in computation. We must make room within physics for researchers whose
work is in the area of physics-informed ML.

In addition to support for developers, physicists interested in applying ML tools need an
opportunity to become familiar with the options, pipelines and pitfalls. There are scattered
opportunities at summer schools and one-off training sessions, but much as the modern exper-
iment requires some basic fluency in statistics, particle physics of the present and future needs
a basic understanding of machine learning.

As particularly emphasized in Ref. [36], an important aspect of pipeline development must
also be to improve diversity; particularly if innovation is to flourish in our field, the goal must
be to nurture critical and questioning perspectives, shaped by a wide breath of experience,
particularly experiences different from the traditional norms currently represented in our com-
munity. As we engage in the education of the next generation, a broad perspective must be
taken to train and engage students in the ethics and efficacy of emerging technologies such as
ML. Recruiting and retaining currently minoritized groups is an important piece of expanding
the innovation quotient of the workforce.
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5.2 Career paths for junior scientists at the physics/ML intersection

The current innovation at the intersection of HEP and ML is being driven strongly by junior
researchers; to sustain this field, investment must be made in the targeted development of
career paths to nurture this talent. In particular, it will be important to make space in our
community for permanent positions to retain highly-skilled early-career researchers, particu-
larly those engaged in valuable but technical work which does not lend itself to a traditional
academic career trajectory but is readily fostered in industry settings. Increased support for
research scientists working on ML for physics will promote a vibrant interdisciplinary commu-
nity and bridge gaps between different subfields of physics. A number of contributed White
Papers detail the challenges faced on this front by particular communities, for example lattice
field theory and cosmology [35,36].

5.3 Open data and industry engagement

The parallel development of ML in HEP and industry contexts creates a wealth of opportu-
nities for cross-engagement. Cross-disciplinary academia-industry collaborations may enable
rapid progress and development as well as access to substantial non-traditional funding and
computational resources. Fully exploiting such arrangements will require assessing within our
community and at a policy level the ethics of such arrangements; for example, non-disclosure
agreements for industry collaboration may in some cases be at odds with the principles of
open science, but provide valuable technology transfer into our community in the long term.
The production and public dissemination of HEP datasets geared towards ML applications, or
ML-based coding challenges based on open data, can be a particularly effective tool to create
industry engagement [36]. The expansion of such data sharing will require a corresponding
expansion of the availability of centralized and decentralized institutional resources (e.g. HPC
clusters as well as cloud computing and storage facilities).

6 Conclusions

Machine Learning has developed into a powerful set of statistical methods that have influenced
nearly every aspect of high-energy physics. While the above sections detail its current role and
future outlook along specific thrusts, there are a few global themes which emerge and deserve
attention.

Importance of exploratory interdisciplinary research: In many cases, ideas which de-
velop into large-scale and impactful veins of research start very small, sparked by a small team
of investigators who explore the boundaries between high energy physics and adjacent statisti-
cal fields [10,29,46,135,161–163]. However, very often this research is not directly supported
by HEP programs, and relies on individual PIs to cobble together funding from multiple sources
for the students and post-docs. The HEP program often supports such ideas once they have
gained traction, but care should be taken to also support the source of these innovations, and
to ensure that career paths exist for young researchers at the boundaries of HEP and computer
science.

Need for computing support for exploratory research: Many of the most transformative
advances in ML for HEP are arising from novel physics informed AI. By definition, this does not
involve applying known and established ML tools to HEP problems in their standard form, but
designing genuinely innovative ML algorithms tailored for HEP problems. Currently, alloca-
tion policies at national computing facilities do not support high-risk high-reward exploratory
research, where the outcome of significant efforts at training complex ML architectures may
be nothing but a deeper understanding of how such architectures behave, which may in the fu-
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ture lead to transformative algorithmic advances. Such exploration is currently concentrated
at the dwindling number of universities with local high-performance computing capabilities.
Allocation policies at national facilities must be revised to accommodate this important area
of research, and new support for hardware at university groups is needed, to fully exploit the
potential of ML for HEP.
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