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ABSTRACT
We present our development experience and recent results for the MLPerf™ Tiny Inference Benchmark on
field-programmable gate array (FPGA) platforms. We use the open-source hls4ml and FINN workflows, which
aim to democratize AI-hardware codesign of optimized neural networks on FPGAs. We present the design and
implementation process for the keyword spotting, anomaly detection, and image classification benchmark tasks.
The resulting hardware implementations are quantized, configurable, spatial dataflow architectures tailored for
speed and efficiency and introduce new generic optimizations and common workflows developed as a part of this
work. The full workflow is presented from quantization-aware training to FPGA implementation. The solutions
are deployed on system-on-chip (Pynq-Z2) and pure FPGA (Arty A7-100T) platforms. The resulting submissions
achieve latencies as low as 20µs and energy consumption as low as 30µJ per inference. We demonstrate how
emerging ML benchmarks on heterogeneous hardware platforms can catalyze collaboration and the development
of new techniques and more accessible tools.

1 INTRODUCTION

Efficient implementations of machine learning (ML) algo-
rithms in dedicated hardware devices at the edge, or near
sensor, offer multiple advantages. Edge processing and
data compression can greatly reduce downstream data rates
and the energy required for data movement. Furthermore,
real-time data processing and interpretation can accelerate
decision making, hypothesis testing, and enable just-in-time
interventions. These edge ML tasks can have a significant
impact on a broad range of applications from internet of
things (IoT) to Industry 4.0 (Kagermann et al., 2013) and
new experimental methods for scientific discovery (Deiana
et al., 2022).

To enable broader adoption of these technologies, we
present our solutions for the open division of the
MLPerf™ Tiny Inference Benchmark v0.7. MLPerf Tiny
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has two divisions for submitting results: a stricter closed
division and a more flexible open division, which allows
submitters to alter ML model implementations and training
workflows. We participated in the open division to demon-
strate the advantages of hardware-AI codesign.

The hls4ml (Duarte et al., 2018; Fahim et al., 2021) and
FINN (Umuroglu et al., 2017; Blott et al., 2018b;a) teams
aim to democratize low-power, tiny (tinyML Foundation,
2019; Banbury et al., 2020), accelerated ML by releasing
accessible tools for the codesign of optimized neural net-
works on field-programmable gate arrays (FPGAs). The
hls4ml workflow originates from the Fast Machine Learn-
ing for Science community, which focuses on developing
tools for scientific applications. FINN is an open-source
project from AMD that enables the exploration of efficient
ML acceleration on FPGAs. These jointly developed solu-
tions are the product of an ongoing collaboration between
the FINN and hls4ml developers with the goal of making
FPGA-accelerated tiny ML broadly available.

There are a number of unique features of the hls4ml and
FINN workflows. Solutions support extreme flexibility in
data type precision. In fact, each solution from the team
uses a different precision, from 1- to 12-bit operations.
The resulting hardware implementations are configurable,
spatial, dataflow architectures that are tailored for speed
and efficiency. The code, from end-to-end, is open-source
and freely available including tools for design space explo-
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ration and the final implementations. The workflow includes
quantization-aware training (QAT) in QKeras (Coelho et al.,
2021; Google, 2020) and Brevitas (Pappalardo, 2021), hy-
perparameter optimization using Determined AI (Deter-
mined AI, 2018) and KerasTuner (O’Malley et al., 2019),
and FPGA implementation with hls4ml and FINN includ-
ing Python APIs for inspection, validation, and deployment.
Furthermore, one goal in these solutions is to develop a
more unified workflow for quantized neural networks that is
built on a common interchange format, called QONNX (Pap-
palardo et al., 2022; Xilinx, 2021). The envisioned workflow
is depicted in Fig. 1.

QKeras

Brevitas

QONNXCommon 
frontend

hls4ml

FINN

Figure 1. Common hls4ml-FINN FPGA codesign workflow based
on QONNX.

The team consists of researchers collaborating across in-
dustry and academia. The submissions are available on
the TUL Pynq-Z2 platform with a Zynq-7020 system-on-
chip (SoC) and Digilent Arty A7-100T platform with an
Artix-7 100T FPGA. The latter is the first submission on
an FPGA-only platform. Open division submissions are
provided for the keyword spotting, image classification, and
anomaly detection MLPerf Tiny benchmarks. The resulting
submissions on FPGA hardware were optimized for perfor-
mance and speed with latencies as low as 20µs. The paper
is structured as follows. In Section 2, we briefly describe the
benchmark tasks. Section 3 presents the model optimization
for performance, latency, and resources. The integration
of those models into hardware is detailed in Section 4. We
summarize in Section 5.

In this work, in the spirit of the MLPerf process, we do not
provide detailed comparisons of our solutions with solutions
on other hardware platforms. However, the other submitted
solutions for this benchmark can be found on the official
MLPerf Tiny results page1.

1.1 Previous Work

This work is built from a number of previous studies by
the hls4ml (Duarte et al., 2018; Summers et al., 2020; Nga-
diuba et al., 2020; Coelho et al., 2021; Aarrestad et al.,
2021; Iiyama et al., 2021; Elabd et al., 2022) and FINN

1https://mlcommons.org/en/inference-tiny-
07

teams (Umuroglu et al., 2017; Blott et al., 2018b;a). Other
open-source efforts have explored ML-FPGA codesign.
Surveys of existing toolflows can be found in Venieris
et al. (2018); Guo et al. (2019); Shawahna et al. (2019);
Abdelouahab et al. (2018). These workflows include fp-
gaConvNet (Venieris & Bouganis, 2017b;a;c; 2016), FP-
DNN (Guan et al., 2017), DNNWeaver (Sharma et al., 2016),
Caffeine (DiCecco et al., 2016), Snowflake (Gokhale et al.,
2017), Vitis AI (Xilinx, 2021), FixyNN (Whatmough et al.,
2019a;b), and others (Rahman et al., 2016; Majumder &
Bondhugula, 2019; Hacene et al., 2020; Chang et al., 2021).
The hls4ml and FINN workflows are unique with respect to
other ML-to-FPGA workflows in two primary ways: the ex-
treme configurability for low and arbitrary bit-precision and
optimizing throughput using spatial dataflow architectures
that resembles the flow of data through the NN on chip.

2 BENCHMARK TASKS AND MODELS

The MLPerf Tiny benchmark consists of four tasks and
reference implementations related to image classification
(IC), anomaly detection (AD), keyword spotting (KWS),
and visual wake words (VWWs). We submitted solutions
for the first three, which we describe in this section. The full
set of tasks is described in greater detail in Banbury et al.
(2021).

2.1 Image classification

Image classification is an important task for many au-
tonomous and low-power embedded systems. CIFAR-
10 (Krizhevsky et al., 2009) is a labeled subset of the 80
Million Tiny Images dataset (Torralba et al., 2008). The low
resolution of the images make CIFAR-10 suitable for train-
ing tiny image classification models. It consists of 60,000
32× 32× 3 RGB images, with 6,000 images per class. The
10 different classes represent airplanes, cars, birds, cats,
deers, dogs, frogs, horses, ships and trucks. The dataset
is divided into 50,000 training images and 10,000 testing
images.

The reference IC model for the closed division is a cus-
tomized version of ResNetV1 (He et al., 2016; Banbury
et al., 2021) which takes as input 32× 32× 3 images and
outputs a probability vector of size 10. This customized
model is composed of three residual residual stacks rather
than four. Each stack consists of three convolutional lay-
ers. Moreover, the first convolutional layer is not followed
by the pooling layer due to the low resolution of the input
data. The number of convolutional filters and strides are
also lower compared to the official ResNet.

A subset of 200 images from the CIFAR-10 test set are
selected to evaluate the performances of the IC reference im-
plementation. For the v0.5 benchmark a class-unbalanced
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subset was chosen, whereas for the v0.7 benchmark the
subset was updated to maintain class balance. The refer-
ence model achieves 87.0% accuracy across the 200 testing
images of the v0.7 benchmark.

2.2 Anomaly detection

Anomaly detection is a task that requires separating nor-
mal and anomalous signals in various data formats. For
this benchmark as defined by MLPerf Tiny, an unsuper-
vised approach is developed to train the neural network to
closely match industrial use-cases where normal behavior
may be well defined because it is less feasible to collect
every possible anomalous signal and train a binary classifier
in a supervised learning approach.

The unsupervised AD model is trained on the DCASE
2020 Challenge Task 2 dataset which employs the ToyAD-
MOS (Koizumi et al., 2019) ToyCar dataset. The dataset is
comprised of 10 s WAV files. The full set is split into 7,000
normal audio files for training and 2,459 for testing.

Before training on the audio files, we preprocess them into
mel spectrograms of 128 bands describing each 32 ms inter-
val. The model is then trained on a sliding window of five
frames of the spectrogram yielding an input size of 640. We
use an autoencoder NN structure that attempts to recreate
the input. We calculate the mean-squared error (MSE) be-
tween the input and output and average it over each of the
windows (196×). We use a smaller version of the MLPerf
Tiny AD autoencoder network that has 128 inputs with an
encoder and decoder comprised of two quantized 72-unit
fully-connected (FC) layers with batch normalization (BN)
and ReLU activation. An FC layer is also used as the output
layer. To evaluate the model performance, we average the
MSE over each the windows in the audio sample to compute
an anomaly score. To set the threshold between normal and
anomalous sounds, we use the receiver operating charac-
teristic (ROC) curve and the corresponding area under the
curve (AUC) as the quality metric.

2.3 Keyword spotting

Over the last decade, keyword spotting has become increas-
ingly prevalent, especially in modern voice assistants. Run-
ning a full speech recognition system only to detect an
activation word is often impractical because of power im-
plications and privacy concerns. Instead, modern devices
only listen for an activation word, a specific keyword. Since
recognizing a limited set of words is significantly simpler
than full speech recognition, the keyword spotting system
can be run locally on a given device and with low power
impact. Keyword spotting is also interesting for general
robot control, by setting a vocabulary with words such as
“start,” “stop,” “louder,” and “quieter.”

For the MLPerf Tiny benchmark the KWS task is based on
the Google speech commands dataset V2 (Warden, 2018).
The dataset consist mainly of 1 s audio files, each containing
one spoken word. In total 105 829 data samples are avail-
able, recorded by different speakers. The data samples are
partitioned into training, validation, and test sets, such that a
given speaker only appears in one of the sets. Additionally,
longer files with background noises are included. Overall
the dataset contains 35 classes, each representing the utter-
ance of one word. The dataset is however more often used
in its twelve-class variant, where ten fixed classes are used
and the additional 25 classes are grouped into the unknown
class, while also adding a new class called silence, com-
prised of samples from the included background noises. For
MLPerf Tiny, this twelve-class variant is used. Along with
sample code for setting up the pre-processing for the dataset
MLPerf Tiny also provides a reference model for the KWS
task, which is a depthwise separable convolutional neural
network (DS-CNN) from Zhang et al. (2017). The DS-CNN
model is relatively compact and optimized for low-power
microcontrollers. For on-device testing, 1,000 samples from
the Google speech commands test test are selected for the
benchmark. Over this subset, the reference model achieves
an accuracy of 92.2%.

3 MODEL DEVELOPMENT AND CODESIGN

An overview of the models developed for the submission
are presented in Table 1. Two models for the IC task one
each for the AD and KWS tasks were submitted. Below,
we will describe in detail the model architecture and opti-
mizations, both for training and implementation, that were
performed for each of the models for the two FPGA hard-
ware platforms considered. To optimize performance, all
of the FPGA neural network do not use off-chip memory.
However, to measure the performance of the models using
the MLPerf Tiny benchmarking suite, the ARM processing
system uses off-chip memory which would not necessarily
be required in a standalone design. Each model is developed
through hardware-software codesign to search for Pareto-
optimal solutions in model accuracy and resource usage by
tuning a number of design machine learning and hardware
architecture parameters. The solutions are not configurable
at runtime for optimized performance.

Benchmark Flow Prec. [bits] Params. Accuracy
IC hls4ml 8–12 58 115 83.5%
IC FINN 1 1 542 848 84.5%
AD hls4ml 6–12 22 285 0.83 AUC
KWS FINN 3 259 584 82.5%

Table 1. Summary of models submitted for the v0.7 benchmark
including benchmark task, tool flow used, precision of model, num-
ber of parameters, and performance—by default this is accuracy
unless denoted as AUC
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3.1 Optimization for IC with hls4ml

To find models that simultaneously accomplished the goals
of high accuracy, low latency, low resource usage (such that
they can be accommodated on the chosen FPGA platforms),
and low power utilization, a sequence of neural architecture
search (NAS), QAT with QKeras, configuration and imple-
mentation with hls4ml, and model- and hardware-centric
optimizations were performed.

3.1.1 Bayesian Optimization

For the NAS, the MLPerf Tiny benchmark reference ResNet-
8 model was chosen as a starting point. The model was
generalized in several ways to allow a restricted NAS. In
particular the tunable hyperparameters include the total num-
ber of stacks, the number of filters, filter size, and strides
in each convolutional layer, whether average pooling is ap-
plied before the final dense layer, and whether whether skip
connections are enabled.

We perform several Bayesian optimization (BO) scans using
KerasTuner. We consider 1-, 2-, and 3-stack models in
separate scans of 100 models each. For each scan, we
consider 2, 4, 8, or 16 filters, filter sizes of 1, 2, or 3, and
particular strides to allow for valid skip connections. We
use a batch size of 32 and train each model for 10 epochs.
During training, the input data is normalized by dividing by
256. For each model, we compute the best test accuracy and
the number of floating point operations (FLOPs) (Yoshioka,
2020). The results of these BO scans are shown in Fig. 2. We
generally find that 1-stack models generally provide a good
balance of a smaller number of FLOPs, while maintaining
high accuracy. The number of filters has the biggest impact
on the accuracy and FLOPs of the models. Larger stride
lengths and smaller filter sizes can also reduce FLOPs at
the cost of some accuracy. Neither average nor max pooling
gave significant improvement.

BO allowed us to narrow down our choices to a very few
models by revealing the most important hyperparamter val-
ues. From the results of our scans, we found a 1-stack model
(3 convolutional layers with 32, 32, and 32 filters, kernel
sizes of 3, 3, and 3, and strides of 4, 4, and 1, respectively,
and an FC layer with 2048 units) used for the v0.5 submis-
sion that achieves a test accuracy of 75.0% for 2.5 MFLOPs
and 12.8 MFLOPs, respectively. We also found a 2-stack
model with no skip connections (5 convolutional layers,
with 32, 4, 32, 32, and 4 filters, kernel sizes of 1, 4, 4, 4, and
4, and strides of 1, 1, 1, 4, 1, respectively, and an FC layer
with 2048 units) used for the v0.7 submission that achieves
a test accuracy 83.5% for 12.8 MFLOPs. Compared to
the reference model, which corresponds to an accuracy of
87.0% for 25.0 MFLOPs, these optimized models represent
a substantial reduction of FLOPs for a minor reduction in ac-
curacy. After settling the model architecture, we performed
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Figure 2. Results of the BO scans for 1-, 2-, and 3-stack models.
The star represents the test accuracy achieved after 10 epochs with
tiny ResNet-8 model

QAT with QKeras (Google, 2020; Coelho et al., 2021) using
a fixed-point precision of 8 total and 2 integer bits. Because
the benchmark only measures the top-1 accuracy of the
model, it is only necessary to return the class predicted to
be highest probability. Since softmax layer is monotonic in
the input logits, it is not necessary to find the top-predicted
class (i.e. a simple max applied to the logits is sufficient),
and thus it is removed for inference.

3.1.2 FIFO Buffer Depth Optimization

By exploiting the dataflow preprocessor directive (or
pragma) of Vivado HLS, each layer composing a neural
network is connected with the rest of the model through
first-in first-out (FIFO) buffers. The implementation of the
FIFO buffers contribute to the overall resource utilization of
the design, impacting in particular the block random access
memories (BRAMs) or look-up table (LUT) utilization. Be-
cause the neural networks can have complex architectures
generally, is hard to know a priori the correct depth of each
FIFO buffer. In order to reduce the impact on the resources
used for FIFO buffer implementation, an optimization has
been developed which aims to correctly size the depth of the
FIFO buffers by analyzing the data produced by the register-
transfer level (RTL) simulation. We implemented this FIFO
buffer resizing within the hls4ml framework as an optimiza-
tion pass. Through RTL simulation with large FIFO buffers,
we estimate the maximum occupation of each FIFO. Once
the maximum depth is determined, the optimization pass
sets the FIFO buffer depth to that value plus 1. In Table 3,
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the FPGA resource usage for the hls4ml IC model is shown
with and without the optimization. This optimization signifi-
cantly reduces the FPGA resources enabling the deployment
of larger models.

For FINN an equivalent optimization exists, which was
applied to all FINN-based models in this submission. Fun-
damentally the optimization executes very similar steps to
the optimization in hls4ml, running PyVerilator (Wright
et al., 2020) on the full design, to perform an estimation
for the optimal FIFO buffer depths between the layers of a
given neural network design. The found FIFO buffer depths
are then saved in the internal ONNX representation and are
applied at a later step. Even though the simulation of the
whole model in an RTL simulation is time consuming, this
approach has proven useful for many FINN models, such
that it is now part of the default compiler flow in FINN.

Table 2 shows a summary of the FIFO buffer sizes set with
this optimization for both hls4ml and FINN.

Benchmark Flow FIFO optimization FIFO size
IC hls4ml enabled 1–1066
IC FINN enabled 2–512
AD hls4ml disabled 1
KWS FINN enabled 32–64

Table 2. Summary of FIFO buffer sizes for models submitted for
the v0.7 benchmark. For the hls4ml FIFO optimization the FIFO
buffer sizes can take an arbitrary integer values, while for FINN
they can only be powers of two. No FIFO optimization was per-
formed for the AD model.

3.1.3 ReLU Layer Merging

As mentioned in the previous section, each dataflow stage
consists of a neural network layer, which are linked together
by FIFOs that cost BRAMs, LUTs, and flip flops (FFs). By
default in hls4ml, each rectified linear unit (ReLU) layer
is implemented as its own dataflow stage. Because each
additional dataflow stage costs extra logic and FIFOs, we
reduce the resource utilization by merging the ReLU activa-
tion function into the layer preceding it. Although the layers
with the newly merged ReLU functionality use more logic
than before, there is still a net decrease in resources. Table 3
shows the resulting resource utilization reductions.

BRAM [18 kb] FF LUT
Available 280 106 400 53 200
Without opt. 477 170.4% 79 177 74.4% 66 838 125.6%
With FIFO opt. 278 99.3% 72 686 68.3% 58 515 110.0%
With ReLU opt. 345 123.2% 72 921 68.5% 55 292 103.9%
With all opt. 146 52.1% 66 430 62.4% 46 969 88.3%

Table 3. Resource estimates from Vivado HLS for the IC model
with hls4ml for the v0.7 MLPerf Tiny submission

3.2 Optimization for IC with FINN

The model submitted for the IC task with FINN is called
CNV-W1A1 from Umuroglu et al. (2017). The model ar-
chitecture takes inspirations from BinaryNet (Hubara et al.,
2016) and VGG-16 (Simonyan & Zisserman, 2015), con-
sisting of first multiple convolutional blocks and then fully
connected layers at the end. The whole architecture can be
described as follows:

• Three convolutional blocks, consisting of two 3 × 3
convolutions and one 2 × 2 max pooling layer at the
end. The convolutions in each of these blocks have the
following number of channels respectively: 64, 128,
256.

• The network then continues with two fully connected
layers with 512 neurons and one output layer with 10
neurons.

• Finally a top-k layer is inserted to calculate the classifi-
cation result in hardware.

Since the original release of the FINN paper the framework
has been extended to support arbitrary bit widths, meaning
that weight and activations with more than one bit can also
be synthesized. However, bit widths below eight bit are gen-
erally recommended for FINN, due to how the underlying
activation implementation scales with bit width. As such
the CNV model also exists in variants with two bit weights
and activations. For the MLPerf Tiny submission, the bi-
nary version of the model is used. Here, the weights and
activations are quantized to a bipolar representation, with
the notable exception being the input layer, which processes
the input images as 8-bit data. Consequently the activation
function associated with the input layer performs an eight
bit calculation, while all other layers of the network work
with a binary representation of the weights and activations.

3.2.1 ASHA for IC with FINN

We used the adaptive ASHA algorithm (Li et al., 2020) from
Determined AI to search for a more efficient or accurate
model. The starting point for the scan was the CNV-W1A1
model. The hyperparameters that were varied were the
number of convolutional filters (from 32 to 512), whether
or not to pool after convoluational layers, strides (from 1 to
4), kernel sizes (from 1 to 4), pooling size (2 or 4), number
of neurons in fully connected layers (from 16 to 512), and
activation and weight bit widths (1 or 2), The adaptive scan
allocates a set of resources to scan varied hyperparameter
configurations, throwing out the worse half based on the
specified validation metric and repeating until only one
optimal configuration remains. A batch size of 50 was used
and each model was trained for up to 100 epochs, although
the adaptive ASHA algorithm may terminate training earlier.

For each model, several inference cost metrics are computed
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including total bit operations (BOPs) (Baskin et al., 2018;
Hawks et al., 2021) and the total number of bits needed to
store the weights in memory (WM). BOPs count the num-
ber of multiply-accumulate operations in a neural network
multiplied with the bit width at which this operation is per-
formed. For a single convolutional layer with bw-bit weights
and ba-bit activations containing n input channels, m output
channels, and k × k filters,

BOPs ≈ mnk2(babw + ba + bw + log2 nk
2) . (1)

For computing BOPs for fully connected layers, we set
k = 1 in Eq. 1. This metric functions as a preliminary
estimate for the FPGA resource usage of the network im-
plemented with FINN and thus allows for a first compar-
ison between networks before any synthesis takes place.
These two metrics, BOPs and WM, were inspired by the
ITU AI for Good Challenge: Lightning-Fast Modulation
Classification with Hardware-Efficient Neural Networks (In-
ternational Telecommunication Union, 2021). A summary
inference cost metric also inspired from that competition is
defined as

C =
1

2

(
BOPs

BOPsCNV-W1A1
+

WM
WMCNV-W1A1

)
, (2)

where the CNV-W1A1 model is taken as reference for com-
parison. Figure 3 shows the result of the scan in terms of
accuracy as a function of the inference cost. Based on our
results, the CNV-W1A1 model performs near optimally.

3.3 Optimization for AD with hls4ml

When implementing the reference AD multilayer perceptron
(MLP) model on the Pynq-Z2 and Arty A7-100T platforms,
the limiting resource was LUTs. The reference floating
point implementation was too large to synthesize, therefore,
we optimized the architecture using quantization and model
compression techniques with minimal AUC performance
reduction. As a part of this process, we implemented a
generic optimization to fold the batch normalization (BN)
into the FC layer and reduced the the depth and width of the
autoencoder network.

3.3.1 QDenseBatchnorm Layer

To remove the LUT utilization from the BN computation,
we developed a new quantized FC layer in QKeras (Muhizi,
2021) where during the forward pass, we compute the matrix
multiplication of the FC layer as well as BN in the same pass
and then save a kernel that “folds” the FC kernel with the BN
parameters into a folded kernel by transforming the dense
kernel with the BN parameters as defined in equation 3.
Furthermore, within the same pass, both the BN parameters
as well as the folded kernel are updated. During the forward
pass, we compute the FC layer outputs then pass the outputs
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Figure 3. Results of ASHA scan in terms of accuracy as a function
of the inference cost hardware metric. The CNV-W1A1 used in
the submission is shown for reference (inference cost of 1), with
its test accuracy after 100 epochs of training

into a BN pass in order to update the BN parameters. Once
we have the new BN parameters, we then fold them into the
FC layer parameters as,

kfolded = vkFC (3)
bfolded = v(bFC − µ) + β (4)

where v = γ
√
σ2 + ε with µ and σ the moving mean and

standard deviation and ε and β the BN scale and shift pa-
rameters. γ represents a learned scale factor in the original
kernel. kFC (kfolded) represents the original (folded) kernel,
and bFC (bfolded) is the original (folded) bias.

3.3.2 Reuse Factor, Input Size, and Layer Depth

To further tune the LUT utilization for the model, we var-
ied the parallelization of the algorithm via the reuse factor
(RF), or how many times each multiplier unit is used, which
controls the parallelization of the algorithm. With the goal
of a low latency solution, we optimized for the lowest RF
factor. We then performed a scan across the available RFs
and synthesized onto the Pynq-Z2, while also tracking the
overall resource utilization on the FPGA. After the scan, we
found that the smallest RF deployable on the FPGA is 144.
Table 4 summarizes the optimizations from the reference
model to the final submitted model. By reducing the number
of hidden layers and width of each layer from 9 to 5 and
128 to 72, respectively, we reduce the key bottleneck, the
LUT count, to 161 228. Combined with downsampling of
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the input from 640 to 128, our optimizations achieve a final
58.5% utilization of the FPGA LUTs on the Pynq-Z2.

AUC FF LUT
Available – 106 400 53 200
Reference 87.1% – – – –
With folding 68.1% 161 228 151.5% 221 063 451.5%
With downsampling 81.4% 55 341 52.0% 35 366 66.5%
With all opt. 83.3% 44 300 41.6% 31 094 58.5%

Table 4. Resource utilization from Vivado HLS logic synthesis on
the Pynq-Z2 for the hls4ml AD model with various optimizations
at 144 reuse factor.

3.4 Optimization for KWS with FINN
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Figure 4. Quantization exploration for keyword spotting. Each
data point is annotated with its weight and activation bit width, in
the following schema: WnAm, with n the weight bit width and m
the activation bit width. Additionally, floating point data points are
annotated with FP. The model accuracy on the validation dataset is
shown on as a function of the network complexity quantified by
BOPs.

The model submitted for keyword spotting and synthesized
by FINN is directly inspired by Zhang et al. (2017). Ini-
tially, two architectures from this paper were explored, the
MLP and the convolutional neural network (CNN). How-
ever, given the more complex rectangular convolutions em-
ployed in the CNN, the MLP was chosen for its simplicity.
The architecture of the MLP consists of three fully con-
nected (FC) layers, each with BN and ReLU activations.
One final output layer with 10 neurons is also used. Similar
to the image classification network synthesized with FINN
an in-hardware top-k node was inserted at the end.

A weighted cross-entropy loss was employed during train-

ing. The re-weighting largely suppresses the unknown label
in the dataset to combat the imbalance between classes,
where for the 12 class version of the google speech com-
mands V2 dataset, the unknown label is present about 17
times more often than any other label. The exact suppression
setting for the unknown label was then found by running
an adaptive ASHA hyperparameter search (Li et al., 2020).
Additionally, the training was managed using Determined
AI (Determined AI, 2018), which allowed for easy inte-
gration of the adaptive ASHA algorithm into the general
training flow. For the feature extraction, mel-frequency cep-
stral coefficients (MFCC) were adapted and implemented as
done for the closed division reference implementation. The
primary optimizations for the KWS submission included in-
vestigating the different quantization settings for activations
and weights. QAT was performed with Brevitas (Pappalardo,
2021), which is an extension to the popular machine learning
framework PyTorch (Paszke et al., 2019). The exploration
process is shown in Fig. 4. Here, the model accuracy on the
validation dataset is plotted against the network complexity
quantified by BOPs. To find the appropriate quantization for
the network, a reference model was first trained at floating-
point precision. After this, the bit widths of the weights
and activations were successively lowered, until the network
validation accuracy dropped significantly. This sudden de-
crease was found for both the CNN and MLP to be below
three bits for weights and activations. Thus, 3-bit quantiza-
tion was chosen for the submission. However, notably the
network input is 8 bits.

3.5 Automatic Optimizations for FINN Models

In addition to the optimizations applied to the IC and KWS
models described above, FINN automatically applies multi-
ple optimizations before a design is synthesized.

As a first step, FINN applies constant folding. Here,
constant initialized tensors are propagated through the
ONNX (Bai et al., 2019) computation graph, and nodes
that return the constant values are precomputed at compile
time. This basic optimization can save significant compute
overhead and makes most networks easier for the compiler
to handle.

Afterwards, a graph transformation called streamlining
is applied. This transformation is a direct application
of Umuroglu & Jahre (2017). The operation folds layers,
which are usually computed at floating-point precision into
integer operations for uniformly quantized neural networks.
For FINN, this primarily affects BN layers, which are folded
into multi-threshold nodes, which can represent arbitrarily
quantized activation functions. In addition to removing
time-consuming floating-point operations, this optimization
eliminates some runtime computations entirely.

Before layers are converted into generated HLS code,
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FINN will minimize the final accumulator datatypes for
all threshold-based operations. In particular, FINN mini-
mizes the memory footprint for all activation layers. After
the individual layers of a network have been synthesized
into Vivado intellectual property (IP) blocks, FINN per-
forms a FIFO buffer optimization to balance its dataflow
pipeline. This method is conceptually similar to the recently
implemented optimization pass in hls4ml (see Sec. 3.1.2)
and achieves similar performance improvements.

4 SYSTEM INTEGRATION

4.1 QONNX Interchange Format

Currently, all networks synthesized with hls4ml were trained
with QKeras and all submissions synthesized with FINN
were trained with Brevitas. In the future, we plan to be
able to synthesize models trained with either quantization
aware training (QAT) library in both compiler frameworks.
The central component to this process is an interchange
format called QONNX (Pappalardo et al., 2022; Xilinx,
2021), which is an extension to the ONNX standard (Bai
et al., 2019). It introduces new quantization nodes for ar-
bitrary uniform quantization, as is required by both frame-
works. Already now FINN and Brevitas both fully support
the QONNX format, since version 0.7 of both frameworks,
and the KWS submission already uses this format. QONNX
should enable simpler and faster exchange of QAT models
between different FPGA-ML flows like hls4ml and FINN.

4.2 ML Accelerators

4.2.1 hls4ml and FINN for Dataflow Architectures

The hls4ml flow generates the C++ code listed on the top
of Fig. 5 as the top-level module for the HLS-synthesizable
accelerator. The module has memory-mapped registers and
interfaces (lines 1–4) that allow the accelerator to be pro-
grammed, and to read and write data from the off-chip mem-
ory, which is shared between the accelerator implemented on
the programmable logic and the application running on the
processor core. The bundle keyword on the INTERFACE
pragma specifies the name of the ports as shown in the
generated Vivado IP core. The port CTRL BUS groups con-
trol registers to program, start, and check the status of the
accelerator (line 2). The bandwidth and throughput of the
accelerator can be increased by creating multiple ports (lines
3–4) to load and store data in the local buffers of the accel-
erators. This accelerator style, defined as loose out-of-core
with direct memory access to main memory, is typical for
high-throughput applications that have clear memory ac-
cess patterns and have input sizes large enough to make
vector-processing impractical (Cota et al., 2015).

To further increase performance, the hls4ml accelerator uses
a dataflow implementation to produce and consume data in

1 void top_module_axi(input_axi_t in[N_IN], output_axi_t out[N_OUT])
2 {
3 #pragma HLS INTERFACE s_axilite port=return bundle=CTRL_BUS
4 #pragma HLS INTERFACE m_axi port=in offset=slave bundle=IN_BUS
5 #pragma HLS INTERFACE m_axi port=out offset=slave bundle=OUT_BUS
6
7 hls::stream<input_t> in_local("input_1");
8 #pragma HLS STREAM variable=in_local depth=N_IN_LOCAL
9 hls::stream<output_t> out_local("output_1");

10 #pragma HLS STREAM variable=out_local depth=N_OUT_LOCAL
11
12 for(unsigned i = 0; i < N_IN / input_t::size; ++i) {
13 input_t ctype;
14 #pragma HLS DATA_PACK variable=ctype
15 for(unsigned j = 0; j < input_t::size; j++) {
16 ap_ufixed<16,8> tmp = in[i * input_t::size + j];
17 ctype[j] = typename input_t::value_type(tmp >> 8);
18 }
19 in_local.write(ctype);
20 }
21
22 module(in_local, out_local);
23
24 for(unsigned i = 0; i < N_OUT / output_t::size; ++i) {
25 output_t ctype = out_local.read();
26 for(unsigned j = 0; j < output_t::size; j++) {
27 out[i * output_t::size + j] = output_axi_t(ctype[j]);
28 }
29 }
30 }

AXI Interface

Off-chip Memory

ML
Accelerator

In Out
S-AXI Interface

Local
Buffers

Figure 5. Code for the hls4ml top-level module and accelerator
architecture.

a streaming fashion, thus the local buffers are implemented
as FIFOs (line 6–9). Finally, the interface uses specialized
large-width data types, such as the arbitrary precision integer
data type ap int<W> in Vivado HLS, where W is a data
width (64, 128, 256, etc.) to increase the bandwidth of the
data communication between the off-chip memory and local
buffers. The data movers in the HLS code are in charge
of unpacking and packing the data to and from the ML
processing core of the accelerator (lines 11–19 and 23–28).

While FINN produces an accelerator, which looks similar to
the one from hls4ml at a conceptual level, the build process
is significantly different. Both FINN and hls4ml produce a
dataflow style accelerator that can be easily integrated into
existing designs using the Vivado IP integrator. Both ac-
celerators exploit a streaming architecture, which keeps the
activation data of the neural network on-chip, thus reducing
overall data movement. However, while hls4ml builds the
whole accelerator from one top level module, FINN builds
a similar design by interconnecting multiple IP blocks in
Vivado. Here, each IP block represents one layer of the
neural network. This means in particular that only the final
IP block stitching must be run in series, while the synthesis
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of each IP block can be done in parallel.

4.2.2 IP Integration

We used the Xilinx Vivado Design Suite 2019.1 to instan-
tiate and interconnect IP cores from the Vivado IP catalog
and the hls4ml and FINN codesign workflows. We first
interactively used the IP integrator design canvas to develop
an automated flow using the Tcl programming interface. In
particular, we integrated most of the IP cores at the advanced
extensible interface (AXI) level, but we also worked at the
port-and-constraint level to interface the device under test
(DUT) with the Embedded Microprocessor Benchmark Con-
sortium (EEMBC) performance and power analysis setup.

Fig. 6 shows the main components for the integration on
both Zynq SoCs and pure FPGA chips. A Zynq SoC com-
bines hard cores, e.g., ARM Cortex-A, of the processing
system (PS) and with the flexibility of the programmable
logic (PL). AXI ports connect the PL with the off-chip mem-
ory through the PS. In Fig. 6a, we integrate both FINN
and hls4ml accelerators with AXI buses to support both the
accelerator control (s axi) and data movement (m axi).
Fig. 6b shows the design on a pure FPGA, where we sim-
ilarly instantiate the accelerator, but we integrate a soft
processor (MicroBlaze) on the PL instead. The memory
controller (MIG) and the on-chip memory (OCM) are in-
stantiated as soft IPs as well. For our experiments, we sized
the MicroBlaze instruction and data cache in the range 1–
16 kB and the on-chip memory in the range 32–128 kB to
balance BRAM usage and software performance.
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Figure 6. Acceleration integration for (a) SoC and (b) FPGA-only
designs

4.2.3 Experimental Results on Development Boards

In our experimental setup we used two off-the-shelf develop-
ment boards: the TUL Pynq-Z2 and Digilent Arty A7-100T
boards. The TUL Pynq-Z2 board is based on a Xilinx Zynq
SoC and designed for the Xilinx University Program to
support the Pynq software stack. The Zynq SoC on the
board (xc7z020-1clg400c) combines an ARM dual-

core Cortex-A9 processor at 650 MHz with 13,300 logic
slices (four 6-input LUTs and eight FFs), 630 kB of BRAM,
and 220 DSP slices.

The Digilent Arty A7-100T board is based on Xilinx Artix-7
technology and designed for low-power and low-cost appli-
cations. The FPGA chip (xc7a100t-1csg324) comes
with 15,850 logic slices (four 6-input LUTs and eight FFs),
607.5 kB of BRAM, and 240 DSP slices. Table 5 reports
the final resource usage after placement and routing for all
designs implemented on both platforms.

We can directly compare the two different solutions—one
based on hls4ml and one based on FINN—that were submit-
ted on the same hardware platforms for the IC benchmark
task. First, we note some differences in the model design.
The hls4ml IC model is a relatively small CNN (58 115 pa-
rameters) implemented using fixed-point precision weights
and activations with bit widths in the range 8–12, while the
FINN IC model is significantly larger (1 542 848 parame-
ters), but implemented with binary weights and activations.
Thus while the FINN IC model implements more operations,
they are each less computationally expensive.

Another distinction between the models is the chosen
resource-latency tradeoff. The hls4ml IC model utilizes
58% fewer BRAMs compared to the FINN IC model for
the Pynq-Z2 platform. However the latency is 18.2 times
larger, the bulk of which is required by the penultimate
convolutional layer (6.6 times longer latency than the next
slowest layer). The hls4ml streaming architecture chosen
is such that the 32 × 32 input image size is iterated over
sequentially. For each iteration, the inputs are assembled
into the corresponding 4× 4× 32 input tensor for a single
kernel multiplication and up to 16 384 multiplications are
performed sequentially, resulting in 32 outputs per kernel
multiplication. Thus while the resource usage is kept to a
minimum, the worst-case latency scales approximately as
32× 32× 16 384 clock cycles. In future submissions, we
plan to more efficiently pipeline these operations to substan-
tially reduce the latency of the hls4ml IC model.

4.3 Software Integration

4.3.1 Bare-Metal Setup

In our setup, the processor, or microcontroller, is in charge
of initiating the memory with the benchmark data, program-
ming the accelerator, starting it, and waiting for its com-
pletion with polling on a register. Finally, we compare the
correctness of the accelerator outputs against precomputed
reference outputs. The accelerator responds to the initial
configuration from the processor, and then autonomously
transfers data between off-chip memory and local buffers.
The communication between processor and accelerator al-
ways uses memory-mapped I/O. The processor can directly
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Model LUT LUTRAM FF BRAM [36 kb] DSP Latency [ms] Energy/inf. [µJ]
Pynq-Z2

Available 53 200 17 400 106 400 140 220 – –
IC (hls4ml) 28 544 53.7% 3 756 21.6% 49 215 46.3% 42 30.0% 4 1.8% 27.3 44 330
IC (FINN) 24 502 46.1% 2 086 12.0% 34 354 32.3% 100 71.4% 0 0.0% 1.5 2 535
AD 40 658 76.4% 3 659 21.0% 51 879 48.8% 14.5 10.4% 205 93.2% 0.019 30.1
KWS 33 732 63.4% 1 033 5.9% 34 405 32.3% 37 26.4% 1 0.5% 0.017 30.9

Arty A7-100T
Available 63400 19 000 126 800 135 240 - -
IC (hls4ml) 39 126 61.7% 5 877 30.9% 59 184 46.7% 50 37.0% 6 2.5% 33.1 73 166
IC (FINN) 32 096 50.6% 3 154 16.6% 39 962 31.5% 113.5 84.1% 2 0.8% 1.5 3 419
AD 51 429 81.1% 5 780 30.4% 61 639 48.6% 22.5 16.7% 207 86.3% 0.045 98.4
KWS 42 518 67.1% 1 634 8.6% 43 157 34.0% 59.5 44.1% 2 0.8% 0.033 53.7

Table 5. Resource usage, latency, and energy per inference for the submitted models implemented on the Pynq-Z2 and Arty A7-100T
platforms.

read and write registers of the accelerator interface that are
accessible using pointers in C/C++.

The EEMBC benchmarking framework requires a serial
console connected to the board to view and process the
standard output from printf statements. We also use a
programmable baud rate for both the Zynq and Microb-
laze designs with an AXI universal asynchronous receiver
transmitter (UART) Lite IP for the latter.

4.4 EEMBC EnergyRunner™ and Test Harness

In order to submit official results to the benchmark, we must
use the benchmarking framework that consists of two pieces
of software: the EEMBC EnergyRunner™ (runner) and test
harness. The former runs on a host computer and the latter
on the DUT.

The runner application runs on a host computer and com-
municates over a serial connection with the DUT and other
hardware required to perform various benchmark measure-
ments. The runner software is responsible for configuring
benchmark hardware, sending input samples to the DUT,
and calculating benchmark metrics such as latency, network
accuracy/AUC, and energy used per inference based on data
the DUT and other hardware report.

The test harness is provided as partially implemented C++
code that must be integrated onto the DUT. The harness
communicates with the runner, with functionality including
basic command parsing and benchmark-related operations
already implemented (and unable to be modified). More
DUT-specific operations need to be implemented by the
submitter, such as loading input data into the accelerator,
running a batch size of 1 inference, timer functionality,
and general hardware setup. We implemented the required
functionality for the Pynq-Z2 and Arty A7-100T in separate
instances of the test harness, and ran the test harness as a
bare-metal application, programming it and the applicable
bootloader into the DUT’s memory to launch the application

Figure 7. Top: Image of device testing setu. Bottom: Block dia-
gram of testing setup with numerical labels corresponding to the
top image.

upon a device restart.

4.4.1 Performance and Accuracy Measurements

When running the benchmark in performance mode, we
test the latency of the accelerator, and, as our submission
is in the open division, we measure the accuracy over the
whole test dataset. The physical setup of performance mode
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consists of the DUT, programmed with the test harness,
connected over a serial port to a host computer running the
runner application. In our case, both the Arty A7-100T and
Pynq-Z2 were connected over a USB serial connection to
a host PC running either Microsoft Windows 10 or Linux.
For the latency test, a total of 5 samples are sent to the
DUT one at a time. For each sample, the DUT performs
sufficient batch-1 inferences to accumulate at least 10 s of
continuous accelerator run time. Once complete, the runner
calculates the median latency to perform a single inference
over the 5 different samples. To perform the accuracy test,
each sample in the entire test dataset for a given benchmark
is sent to the DUT one at a time. The DUT runs all single-
sample inferences, after which the results are returned to the
runner to compute the overall accuracy/AUC. Logs of both
benchmarks are recorded, then submitted along with the
code into the official MLPerf Tiny v0.7 GitHub repository.

Table 5 shows the latencies and Table 1 shows the mea-
sured accuracies. The submitted designs are comparable in
accuracy or AUC to the reference models and have laten-
cies ranging from 30 ms to 20µs, demonstrating the high
throughput achievable with this approach.

4.4.2 Energy Consumption Measurements

To run the benchmark in energy mode, the hardware setup
is more complex than in performance mode, as can be seen
in Fig. 7. It is comprised of a host computer, the DUT, an
energy monitor that measures and records the power used
over a set interval, an IO Manager (Arduino UNO) running
firmware to act as a serial bridge between the host computer
and DUT for power isolation and serial port stability when
power cycling the DUT, and level shifters between the IO
Manager and the DUT.

Minor modifications are also made to the test harness when
running in energy mode. First, the baud rate of the DUT
is changed from 115 200 to 9 600, which is required to
communicate with the IO Manager. Additionally, the time
measurement protocol is changed from the DUT’s internal
timer to holding a GPIO pin that is connected to the en-
ergy monitor low for at least 10µs, as the energy monitor
manages the timer in this mode.

When running the energy benchmark, the methodology is
nearly the same as the latency test, except that the power uti-
lization of the DUT is also recorded by the energy monitor,
and the energy per inference is also taken as the median over
all of the samples. We used the Joulescope JS110 as our
energy monitor, and an HP/Agilent E3610A power supply
to power the DUT and energy monitor.

The measured energies per inference for each design are
shown in Table 5. They vary from 70 mJ to 30µJ per infer-
ence depending on the task and hardware platform, demon-

strating the relatively low energy consumption possible with
our workflows.

5 SUMMARY

This paper details the hls4ml-FINN solutions implementing
field-programmable gate array (FPGA)-based acceleration
for the MLPerf Tiny Inference Benchmark. The goal of the
submissions was to demonstrate efficient and low-latency so-
lutions on FPGAs using open-source workflows developed
by the hls4ml and FINN teams; the solutions also catalyzed
collaboration and the development of more accessible tools
towards the democratization of powerful tiny ML.

Solutions were provided for the anomaly detection, keyword
spotting, and image classification benchmarks. Model and
design space exploration is presented including performance
and hardware implementation optimizations. This enabled
novel capabilities merged into the tool flows, including layer
fusion, FIFO buffer optimization, and the development of
the QONNX interchange format for representing flexibly
quantized neural networks.

From this work, we demonstrated a common methodol-
ogy for building FPGA-optimized ML model implementa-
tions targeting different benchmarks. First, a 32-bit floating-
point precision model was trained to determine the baseline
expected performance. Then we generalized the model
by introducing additional hyperparameters related to layer
sizes, number of layers, pooling choices, and more, and
performed a hyperparameter optimization to determine the
Pareto-optimal front balancing the performance and infer-
ence cost of a given ML model. Next, we quantized the
model from 32-bit floating-point to integer/fixed-point pre-
cision reducing the bit width until the model performance
began to degrade—the smallest bit width that retained the
original baseline performance was then chosen. Finally,
we synthesized the model for the FPGA platforms with
further hardware-specific optimizations to fit it within the
FPGA resources with minimal latency and maximal through-
put. This approach can be further refined and formalized
by integrating with all-in-one, end-to-end workflows like
Sherlock (Gautier et al., 2022).

The system-level integration of the AI algorithms is also
presented including interfaces to the control platform and
setup for measuring performance, latency, and power in the
standardized benchmark workflow. The optimized designs
are comparable in performance to the reference models
and have latencies as low as 20µs and measure as low as
30µJ per inference. The end-to-end workflows are publicly
available online2.

2https://github.com/mlcommons/tiny_
results_v0.7/tree/main/open/hls4ml-finn

https://github.com/mlcommons/tiny_results_v0.7/tree/main/open/hls4ml-finn
https://github.com/mlcommons/tiny_results_v0.7/tree/main/open/hls4ml-finn


Open-source FPGA-ML codesign for the MLPerf™ Tiny Benchmark

ACKNOWLEDGMENTS

This work was supported by the DOE (Contract No. DE-
AC02-07CH11359, Award Nos. DE-SC0021187, DE-
SC0021396), the NSF (Cooperative Agreement OAC-
2117997, Award No. 1764000), DARPA (C#: FA8650-
18-2-7862), and the ERC (Grant No. 966696).

REFERENCES

Aarrestad, T., Loncar, V., Pierini, M., Summers, S., Nga-
diuba, J., Petersson, C., Linander, H., Iiyama, Y.,
Guglielmo, G. D., Duarte, J., Harris, P., Rankin, D., Jin-
dariani, S., Pedro, K., Tran, N., Liu, M., Kreinar, E., Wu,
Z., and Hoang, D. Fast convolutional neural networks
on FPGAs with hls4ml. 2021, arXiv:2101.05108.
Submitted to Mach. Learn.: Sci. Technol.

Abdelouahab, K., Pelcat, M., Serot, J., and Berry, F. Ac-
celerating cnn inference on FPGAs: A survey. 2018,
arXiv:1806.01683.

Bai, J., Lu, F., Zhang, K., et al. Onnx: Open neural
network exchange. https://github.com/onnx/
onnx, 2019.

Banbury, C., Reddi, V. J., Torelli, P., Holleman, J., Jeffries,
N., Kiraly, C., Montino, P., Kanter, D., Ahmed, S.,
Pau, D., Thakker, U., Torrini, A., Warden, P., Cordaro,
J., Guglielmo, G. D., Duarte, J., Gibellini, S., Parekh,
V., Tran, H., Tran, N., Wenxu, N., and Xuesong,
X. MLPerf Tiny benchmark. In Vanschoren, J. and
Yeung, S. (eds.), Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks,
volume 1, 2021, arXiv:2106.07597. URL https:
//datasets-benchmarks-proceedings.
neurips.cc/paper/2021/file/
da4fb5c6e93e74d3df8527599fa62642-
Paper-round1.pdf.

Banbury, C. R., Reddi, V. J., Lam, M., Fu, W., Fazel,
A., Holleman, J., Huang, X., Hurtado, R., Kanter, D.,
Lokhmotov, A., Patterson, D., Pau, D., Seo, J.-s., Sier-
acki, J., Thakker, U., Verhelst, M., and Yadav, P. Bench-
marking tinyml systems: Challenges and direction. 2020,
arXiv:2003.04821.

Baskin, C., Schwartz, E., Zheltonozhskii, E., Liss, N.,
Giryes, R., Bronstein, A. M., and Mendelson, A. UNIQ:
Uniform noise injection for the quantization of neural
networks. 2018, arXiv:1804.10969.

Blott, M., Preußer, T., Fraser, N., Gambardella, G.,
O’Brien, K., and Umuroglu, Y. FINN-R: An end-
to-end deep-learning framework for fast exploration

of quantized neural networks. ACM Trans. Reconfig-
urable Technol. Syst., 11(3), 2018a. ISSN 1936-7406,
doi:10.1145/3242897, arXiv:1809.04570.

Blott, M., Preußer, T. B., Fraser, N. J., Gambardella, G.,
O’brien, K., Umuroglu, Y., Leeser, M., and Vissers,
K. Finn-r: An end-to-end deep-learning framework for
fast exploration of quantized neural networks. ACM
Transactions on Reconfigurable Technology and Systems
(TRETS), 11(3):1, 2018b.

Chang, S.-E., Li, Y., Sun, M., Shi, R., So, H. K. H.,
Qian, X., Wang, Y., and Lin, X. Mix and match: A
novel FPGA-centric deep neural network quantization
framework. In 27th IEEE International Symposium on
High-Performance Computer Architecture (HPCA), 2021,
arXiv:2012.04240.

Coelho, C. N., Kuusela, A., Li, S., Zhuang, H., Aarrestad,
T., Loncar, V., Ngadiuba, J., Pierini, M., Pol, A. A., and
Summers, S. Automatic deep heterogeneous quantization
of deep neural networks for ultra low-area, low-latency
inference on the edge at particle colliders. Nat. Mach.
Intell., 3:675, 2021, arXiv:2006.10159.

Cota, E. G., Mantovani, P., Di Guglielmo, G., and Carloni,
L. P. An analysis of accelerator coupling in heterogeneous
architectures. In ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1. IEEE, 2015.

Deiana, A. M., Tran, N., et al. Applications
and Techniques for Fast Machine Learn-
ing in Science. Front. Big Data, 5:787421,
2022, doi:10.3389/fdata.2022.787421,
arXiv:2110.13041.

Determined AI. Determined ai, 2018. URL https://
www.determined.ai.

DiCecco, R., Lacey, G., Vasiljevic, J., Chow, P.,
Taylor, G., and Areibi, S. Caffeinated fpgas:
Fpga framework for convolutional neural net-
works. In 2016 International Conference on
Field-Programmable Technology (FPT), pp. 265.
IEEE, 2016, doi:10.1109/FPT.2016.7929549,
arXiv:1609.09671.

Duarte, J., Han, S., et al. Fast inference
of deep neural networks in FPGAs for par-
ticle physics. JINST, 13:P07027, 2018,
doi:10.1088/1748-0221/13/07/P07027,
arXiv:1804.06913.

Elabd, A. et al. Graph Neural Networks for Charged
Particle Tracking on FPGAs. Front. Big Data, 5:828666,
2022, doi:10.3389/fdata.2022.828666,
arXiv:2112.02048.

http://www.arXiv.org/abs/2101.05108
http://www.arXiv.org/abs/1806.01683
https://github.com/onnx/onnx
https://github.com/onnx/onnx
http://www.arXiv.org/abs/2106.07597
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/da4fb5c6e93e74d3df8527599fa62642-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/da4fb5c6e93e74d3df8527599fa62642-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/da4fb5c6e93e74d3df8527599fa62642-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/da4fb5c6e93e74d3df8527599fa62642-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/da4fb5c6e93e74d3df8527599fa62642-Paper-round1.pdf
http://www.arXiv.org/abs/2003.04821
http://www.arXiv.org/abs/1804.10969
http://doi.org/10.1145/3242897
http://www.arXiv.org/abs/1809.04570
http://www.arXiv.org/abs/2012.04240
http://www.arXiv.org/abs/2006.10159
http://doi.org/10.3389/fdata.2022.787421
http://www.arXiv.org/abs/2110.13041
https://www.determined.ai
https://www.determined.ai
http://doi.org/10.1109/FPT.2016.7929549
http://www.arXiv.org/abs/1609.09671
http://doi.org/10.1088/1748-0221/13/07/P07027
http://www.arXiv.org/abs/1804.06913
http://doi.org/10.3389/fdata.2022.828666
http://www.arXiv.org/abs/2112.02048


Open-source FPGA-ML codesign for the MLPerf™ Tiny Benchmark

Fahim, F., Hawks, B., et al. hls4ml: An Open-Source Code-
sign Workflow to Empower Scientific Low-Power Ma-
chine Learning Devices. In tinyML Research Symposium
2021, 3 2021, arXiv:2103.05579.

Gautier, Q., Althoff, A., Crutchfield, C. L., and Kastner,
R. Sherlock: A multi-objective design space exploration
framework. ACM Trans. Des. Autom. Electron. Syst., 27
(4), 2022, doi:10.1145/3511472.

Gokhale, V., Zaidy, A., Chang, A. X. M., and Culurciello,
E. Snowflake: An efficient hardware accelerator for
convolutional neural networks. In 2017 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pp.
1, 2017, doi:10.1109/ISCAS.2017.8050809,
arXiv:1708.02579.

Google. Qkeras, 2020. URL https://github.com/
google/qkeras.

Guan, Y., Liang, H., Xu, N., Wang, W., Shi, S., Chen,
X., Sun, G., Zhang, W., and Cong, J. FP-DNN: An
automated framework for mapping deep neural networks
onto FPGAs with RTL-HLS hybrid templates. In 2017
IEEE 25th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM),
pp. 152, 2017, doi:10.1109/FCCM.2017.25.

Guo, K., Zeng, S., Yu, J., Wang, Y., and Yang, H. A sur-
vey of FPGA-based neural network inference acceler-
ators. ACM Trans. Reconfigurable Technol. Syst., 12,
2019. ISSN 1936-7406, doi:10.1145/3289185,
arXiv:1712.08934.

Hacene, G. B., Gripon, V., Arzel, M., Farrugia, N., and
Bengio, Y. Quantized guided pruning for efficient
hardware implementations of convolutional neural
networks. In 2020 18th IEEE International New Circuits
and Systems Conference (NEWCAS), pp. 206, 2020,
doi:10.1109/NEWCAS49341.2020.9159769,
arXiv:1812.11337.

Hawks, B., Duarte, J., Fraser, N. J., Pappalardo,
A., Tran, N., and Umuroglu, Y. Ps and Qs:
Quantization-aware pruning for efficient low la-
tency neural network inference. Front. AI, 4:676564,
2021, doi:10.3389/frai.2021.676564,
arXiv:2102.11289.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pp. 770, 2016, doi:10.1109/CVPR.2016.90,
arXiv:1512.03385.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv,
R., and Bengio, Y. Binarized neural networks. In

Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.,
and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems, volume 29. Curran
Associates, Inc., 2016, arXiv:1602.02830.
URL https://proceedings.
neurips.cc/paper/2016/file/
d8330f857a17c53d217014ee776bfd50-
Paper.pdf.

Iiyama, Y. et al. Distance-weighted graph neural networks
on FPGAs for real-time particle reconstruction in
high energy physics. Front. Big Data, 3:598927,
2021, doi:10.3389/fdata.2020.598927,
arXiv:2008.03601.

International Telecommunication Union. ITU-ML5G-
PS-007: Lightning-Fast Modulation Classifica-
tion with Hardware-Efficient Neural Networks.
https://challenge.aiforgood.itu.int/
match/matchitem/34, 2021. Accessed: 2022-03-
31.

Kagermann, H., Wahlster, W., and Helbig, J. Recommen-
dations for implementing the strategic initiative industrie
4.0 – securing the future of german manufacturing in-
dustry. Final report of the industrie 4.0 working group,
acatech – National Academy of Science and Engineering,
München, 2013. URL http://forschungsunion.
de/pdf/industrie_4_0_final_report.pdf.

Koizumi, Y., Saito, S., Uematsu, H., Harada, N., and Imoto,
K. Toyadmos: A dataset of miniature-machine operating
sounds for anomalous sound detection. In 2019 IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA), pp. 313. IEEE, 2019.

Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10 (canadian
institute for advanced research), 2009. URL http://
www.cs.toronto.edu/˜kriz/cifar.html.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E.,
Ben-tzur, J., Hardt, M., Recht, B., and Talwalkar,
A. A system for massively parallel hyperparameter
tuning. In Dhillon, I., Papailiopoulos, D., and Sze, V.
(eds.), Proceedings of Machine Learning and Systems,
volume 2, pp. 230, 2020, arXiv:1810.05934.
URL https://proceedings.
mlsys.org/paper/2020/file/
f4b9ec30ad9f68f89b29639786cb62ef-
Paper.pdf.

Majumder, K. and Bondhugula, U. A flexible FPGA
accelerator for convolutional neural networks. 2019,
arXiv:1912.07284.

Muhizi, J. Add support for qdense batchnorm in qk-
eras, 2021. URL https://github.com/google/
qkeras/pull/74.

http://www.arXiv.org/abs/2103.05579
http://doi.org/10.1145/3511472
http://doi.org/10.1109/ISCAS.2017.8050809
http://www.arXiv.org/abs/1708.02579
https://github.com/google/qkeras
https://github.com/google/qkeras
http://doi.org/10.1109/FCCM.2017.25
http://doi.org/10.1145/3289185
http://www.arXiv.org/abs/1712.08934
http://doi.org/10.1109/NEWCAS49341.2020.9159769
http://www.arXiv.org/abs/1812.11337
http://doi.org/10.3389/frai.2021.676564
http://www.arXiv.org/abs/2102.11289
http://doi.org/10.1109/CVPR.2016.90
http://www.arXiv.org/abs/1512.03385
http://www.arXiv.org/abs/1602.02830
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
http://doi.org/10.3389/fdata.2020.598927
http://www.arXiv.org/abs/2008.03601
https://challenge.aiforgood.itu.int/match/matchitem/34
https://challenge.aiforgood.itu.int/match/matchitem/34
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.arXiv.org/abs/1810.05934
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf
http://www.arXiv.org/abs/1912.07284
https://github.com/google/qkeras/pull/74
https://github.com/google/qkeras/pull/74


Open-source FPGA-ML codesign for the MLPerf™ Tiny Benchmark

Ngadiuba, J., Loncar, V., Pierini, M., Summers, S.,
Di Guglielmo, G., Duarte, J., Harris, P., Rankin, D.,
Jindariani, S., Liu, M., and et al. Compressing deep neu-
ral networks on FPGAs to binary and ternary precision
with hls4ml. Mach. Learn.: Sci. Technol., 2:015001,
2020, doi:10.1088/2632-2153/aba042,
arXiv:2003.06308.

O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H.,
Invernizzi, L., et al. Kerastuner. https://github.
com/keras-team/keras-tuner, 2019.

Pappalardo, A. Xilinx/brevitas, 2021,
doi:10.5281/zenodo.3333552. URL
https://github.com/xilinx/brevitas.

Pappalardo, A., Umuroglu, Y., et al. QONNX: Rep-
resenting Arbitrary-Precision Quantized Neural
Networks. In 4th Workshop on Accelerated Ma-
chine Learning (AccML) at HiPEAC 2022 Con-
ference, 2022, arXiv:2206.07527. URL
https://accml.dcs.gla.ac.uk/papers/
2022/4thAccML_paper_1(12).pdf.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning
library. In Wallach, H., Larochelle, H., Beygelzimer, A.,
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