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ABSTRACT

We investigate how to improve new physics detection strategies exploiting variational autoencoders
and normalizing flows for anomaly detection at the Large Hadron Collider. As a working example,
we consider the DarkMachines challenge dataset. We show how different design choices (e.g.,
event representations, anomaly score definitions, network architectures) affect the result on specific
benchmark new physics models. Once a baseline is established, we discuss how to improve the
anomaly detection accuracy by exploiting normalizing flow layers in the latent space of the variational
autoencoder.

1 Introduction

Most searches for new physics at the CERN Large Hadron Collider (LHC) target specific experimental signatures.
The underlying assumption of a specific new physics model could enter at various stages in the search design, e.g.,
when reducing the data rate from 40 M to 1000 collision events per second in real time [1–3], when designing the
event selection, or when running the final hypothesis testing. When searching for preestablished and theoretically
well-motivated particles (e.g., the Higgs boson), this strategy is extremely successful because the underlying assumption
can be exploited to maximize the search sensitivity. On the other hand, the lack of a predefined target might turn this
strength into a limitation.

To compensate for this potential problem, model independent searches are also carried out [4–8] at hadron colliders.
These searches consist in an extensive set of comparisons between the data distribution and the expectation derived
from Monte Carlo simulation. Many comparisons are carried out in parallel for multiple physics-motivated features
while applying different event selections. However, when searching for new physics among many channels, the “global”
significance of observing a particular discrepancy must take into account the probability of observing such a discrepancy
anywhere. This so called look-elsewhere effect can be quantified in terms of a trial factor [9]. While the large trial
factor typically reduces the statistical power of this strategy in terms of significance, model independent searches are
valuable tools to identify possible regions of interest and provide data-driven motivations for traditional, more targeted
searches to be performed on future data.

Recently, the use of machine learning (ML) techniques has been advocated as a means to reduce the model depen-
dence [10–34]. In this context, the high energy physics (HEP) community engaged in two data challenges: the LHC
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Olympics 2020 [35] and the DarkMachines challenge [36], where different approaches were explored to attempt to
detect an unknown signal of new physics hidden in simulated data.

As part of our contribution to the DarkMachines challenge, we investigated the use of a particle-based variational
autoencoder (VAE) and the possibility of enhancing its anomaly detection capability by using normalizing flows [37]
in the latent space to improve the modeling of the decoding posterior. In this paper, we document those studies and
expand that effort, investigating the impact of specific architecture choices (event representation, network architecture,
usage of expert features, and definition of the anomaly score). This study is an update of Ref. [36], which benefits from
the lessons learned by the DarkMachines challenge. Taking inspiration from solutions presented by other groups in the
challenge (e.g., Refs. [38, 39]), we evaluate the impact of some of their findings on our specific setup. In some cases
(but not always), these solutions translate in an improved performance, quantified using the same metrics presented
in Ref. [36]. In this way, we establish an improved baseline model, on top of which we evaluate the impact of the
normalizing flow layers in the latent space.

2 Data samples and event representation

This study is based on the datasets released on the Zenodo platform [40] in relation to the Dark Machines Anomaly
Score Challenge [36]. It consists on a set of SM processes, mixed according to their production cross section at 13 TeV,
and a set of benchmark signal samples. The datasets contains labels, identifying the process that generated each event.
Labels are ignored during training and used to evaluate performance metrics.

For each sample, four datasets are provided, corresponding to four different event selections (called channels [36]):

• Channel 1: HT ≥ 600 GeV, pmiss
T ≥ 200 GeV, and pmiss

T /HT ≥ 0.2.

• Channel 2a: pmiss
T ≥ 50 GeV and at least three light leptons (muons or electrons) with pT > 15 GeV.

• Channel 2b: pmiss
T ≥ 50 GeV, HT ≥ 50 GeV and at least two light leptons (muons or electrons) with

pT > 15 GeV.

• Channel 3: HT ≥ 600 GeV, pmiss
T ≥ 100 GeV.

where pT is the magnitude of a particle’s transverse momentum, HT is the scalar sum of the jet pT in the event, and
~pmiss

T is the vector equal and opposite to the vector sum of the transverse momenta of the reconstructed particles in the
event, while pmiss

T is its magnitude1. More details are provided in Ref. [36].

Table 1: Summary of the available dataset size.

Dataset Channel 1 Channel 2a Channel 2b Channel 3
Training 193, 800 13, 425 238, 450 7, 100, 934

Validation 10, 200 707 12, 550 373, 733
Bkg. Test 10, 000 5, 868 89, 000 1, 025, 333
Sig. Test 38, 666 5, 868 89, 676 1, 023, 320

The input consists of the momenta of all the reconstructed physics objects in the event (jets, b jets, electrons e, muons
µ, and photons), ordered by decreasing pT. Each list of objects is zero-padded to force each event into a fixed-length
matrix with the same order: up to 15 jets, and up to 4 each of b jets, µ±, e±, and photons. We preprocess the input by
applying the scikit-learn standard scaling [41] and arranging the list of objects into a matrix of 39 particles times
four momentum features (E, pT, η, φ), where E is the particle energy. This matrix is interpreted as an image or an
unordered graph, depending on the underlying VAE architecture.

The training and validation dataset consists of background events from the SM mixture. The available dataset size is
detailed in Table 1 for each of the channels. The background test samples are combined with the benchmark signal
samples listed in Table 2 to form the labelled test dataset on which performance is evaluated.

1We use a Cartesian coordinate system with the z axis oriented along the beam axis, the x axis on the horizontal plane, and the y
axis oriented upward. The x and y axes define the transverse plane, while the z axis identifies the longitudinal direction. The azimuth
angle φ is computed with respect to the x axis. The polar angle θ is used to compute the pseudorapidity η = − log(tan(θ/2)). The
transverse momentum (pT) is the projection of the particle momentum on the (x, y) plane. We fix units such that c = ~ = 1.
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Table 2: BSM processes contributing to the signal dataset in each channel. The process code, adopted in this study, is
taken from Ref. [36].

BSM process Code Ch.1 Ch.2a Ch.2b Ch.3
Z′ + jet monojet_Zp2000.0_DM_50.0 × × ×

Z′ + W/Z monoV_Zp2000.0_DM_50.0 ×
Z′ + t monotop_200_A × ×

Z′ in LFV U(1)Lµ−Lτ pp23mt_50 × ×
pp24mt_50 × ×

/R-SUSY t̃̃t stlp_st1000 × × ×
/R-SUSY q̃q̃ sqsq1_sq1400_neut800 × ×
SUSY g̃g̃ glgl1400_neutralino1100 × × × ×

glgl1600_neutralino800 × × × ×
SUSY t̃̃t stop2b1000_neutralino300 × ×
SUSY q̃q̃ sqsq_sq1800_neut800 × ×

SUSY χ̃±χ̃0 chaneut_cha200_neut50 × ×
chaneut_cha250_neut150 × ×

SUSY χ̃±χ̃± chacha_cha300_neut140 ×
chacha_cha400_neut60 ×
chacha_cha600_neut200 ×

3 Training setup and evaluation metrics

The VAE models are trained on the training and validation datasets, minimizing the loss function:

Ltotal = βDKL + (1− β)LC , (1)

where LC is an L1-type permutation-invariant Chamfer [42] loss:

LC =
∑

~x∈Sinput

min
~y∈Soutput

∣∣~x− ~y∣∣+
∑

~y∈Soutput

min
~x∈Sinput

∣∣~x− ~y∣∣ , (2)

similar to the L2-type Chamfer distance used in Refs. [43, 44]. In eq. (2), DKL is Kullback–Liebler (KL) divergence
term usually employed to force the data distribution in the latent space to a multidimensional Gaussian with unitary
covariance matrix [45], and β is a parameter that controls the relative importance of the two terms [46].

All of our models are optimized using the Adam minimizer [47]. A learning rate of 10−4 is applied along with a brute
force early stopping strategy used on an ad-hoc basis. A batch size of 32 is chosen to train models. All models are
implemented with the PyTorch [48] deep learning framework and are hosted on GitHub [49].

We train and test all our models on the WPI Turing Research Cluster2. We use 8 CPU nodes and 1 GPU node to train
our models on the cluster. NVIDIA Tesla V100 and Tesla P100 GPUs were used for acceleration.

At inference time, LC is used as an anomaly detection score, to quantify the distance between the input and the output.
By applying a lower-bound threshold on LC, we identify every event with an LC value larger than the threshold as an
anomaly. By comparing this prediction with the ground truth, we can assess the performance of the VAE on specific
signal benchmark models.

To evaluate model performance we follow the same strategy and code used in Ref. [36] to enable comparison with other
models tested on this dataset. As explained in Ref. [36], we extract four main performance parameters from the receiver
operating characteristic (ROC) curves based on the chosen anomaly metric for each model, namely the area under the
curve (AUC) and the signal efficiency (εS) or true positive rate at three different, fixed background efficiencies (εB) or
false positive rates. We then combine these scores from all models on all available signal regions across all channels of
the dataset to form box-and-whisker plots, using 6 different combination and comparison strategies namely, the highest
mean score method, highest median score method, average rank method, top scorer method, top-5 scorer method, and
highest minimum scorer method. A box is drawn spanning the inner half (50% quantile centered at the median) of
the data as shown in Fig. 1. A line through the box marks the median. Whiskers extend from the box to either the
maximum and minimum unless these are further away from the edge of the box than 1.5 box lengths. The outlier points
are shown as circles.

2https://arc.wpi.edu/computing/hpc-clusters/
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Figure 1: Anomaly detection performance for the Conv-VAE with different inputs given (see text for more details): all
physics objects in the event (AllObj); truncated input object list (TrdObj); all objects and array of object multiplicity
(AllObj+Mult); truncated input object list and array of object multiplicity (TrdObj+Mult).

For Fig. 1 and the other figures, the representative ranking as denoted by the legend corresponds to the performance
based on the highest mean score method. However, to choose the best model for each experiment described in this
paper, we consider all six comparison methods to arrive at a consensus. The code to perform these comparisons and to
generate the corresponding plots is available in Ref. [36].

4 Baseline VAE model

The main goal of this study is to evaluate the impact of normalizing flow layers in the latent space on the anomaly
detection capability of a reference VAE model. This and the following sections describe how this reference model
is built, starting from the VAE based on convolutional layers (Conv-VAE) presented in Ref. [36] and modifying its
architecture based on some of the lessons learned during the DarkMachine challenge.

The encoder of the initial Conv-VAE consists of three convolutional layers, with 32, 16, and 8 kernels of size (3, 4),
(5, 1), and (7, 1), respectively. For all layers, the stride is set to 1 and zero padding to “same”. The output of the
convolutional layers is flattened and passed to 2 fully-connected neural network (FCN) layers that output the mean
and variance for the latent space. The cardinality of the latent space is fixed to 15. The decoder mirrors the encoder
architecture, returning an output of the same size as the input.

In order to define the reference model, the architecture of the starting model is modified in different ways, each time
evaluating the impact of a given choice on the test dataset. Several possibilities are considered: how to embed the event
in the 2D array (see section 4.1); how to interpret the array, e.g., as an image or a graph (see section 4.2); whether
to extend the event representation beyond the particle momenta, adding domain-specific high level features as an
additional input (see section 4.3); and which anomaly score to use (see section 4.4). We study various options for each
of these points, following this order. Doing so, we establish a candidate model, on which we evaluate the benefit of
using normalizing flow layers in the latent space (see section 5) to improve the anomaly detection accuracy.

4.1 Data representation

By their nature, events consist of a variable number of objects. To some extent, this conflicts with most neural network
architectures, which assume a fixed-size input. As a baseline, we adopt the simplest solution, i.e., to zero-pad all events
to standardized event sizes for all available samples. To get a better idea of how padding affects results, we study
performance across alternative input encodings. We consider two main types of encodings, listed as AllObj and TrdObj
in Fig. 1. The former involves considering the entire event which implies allowing for a large enough padding such that
every object per event is taken into consideration across the entire dataset. The latter involves cutting down the padding
and the input sequence by considering only up to four leading jets and three objects each of the other types per event.

4
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Figure 2: Comparison of the GCN-VAE and Conv-VAE performances, in terms of the benchmark figures of merit
adopted in the paper.

When using the truncated sequence, the model loses information regarding the number of objects of each type per event,
which is implicitly learned when the whole sequence is considered. To compensate for this loss, one can explicitly
add this information passing a second input to the model, consisting of a vector containing the multiplicities of each
object type. This input is concatenated to the flattened output received from the convolutional layers in the encoder
before passing them to the fully connected layers. For the sake of comparison, we also do the same for the AllObj case
(labelled as “+Mult” in Fig. 1).

The results in Fig. 1 show that the truncated sequence does worse than the full sequence. We also see little improvement
in performance with the addition of multiplicity information per event in both the AUC as well as performance at
lower background efficiencies. As a result, we fix the input encoding that considers the complete sequence per event as
described in section 4.

4.2 VAE architecture

The convolutional architecture used for the baseline VAE is not the only option to handle the input considered in this
study. The ensemble of reconstructed particles in an event can be represented as a point cloud and process it with a graph
network. The main advantage of this choice stands with the permutation invariance of the graph processing, which pairs
that of the loss in Eq. 2 and complies with the unordered nature of the input list of particles. Graph-based architectures
have already been shown to perform better with sparse, non-Euclidean data representations in general [50, 51] and
particle physics in particular [52, 53].

To this end, we consider a GCN-VAE model composed of multilayer graph convolutional network layers (GCNs) [54]
and FCN layers in both the encoder and the decoder. As for the VAE, the input graphs are built from the input list
described in section 2, each particle representing one vertex of the graph in the space identified by five particle features:
E, pT, η, φ, and object type. The object type is a label-encoded integer that signifies the object type. The input is
structured as a fully connected, undirected graph which is passed to the GCN layers of the encoder, defined as [54]:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W(l)) , (3)

where H(l) is the input to the (l + 1)th GCN layer with H(0) = X where X represents the node feature matrix. H(l+1)

is the layer output, Ã = A+ I is the adjacency of the graph A with I being the identity matrix which implies added
self connections for each node. D̃ii =

∑
j Aij is defined for the normalized adjacency based message passing regime,

W(l) is the layer weights matrix and σ(•) is a suitable nonlinear activation function. The output of the last GCN layer is
flattened and passed to an FCN layer which populates the latent space. The encoder has 3 GCN layers that scale the 5
node features to 32, 16, and 2 respectively, followed by a single FCN layer which generates a 15-dimensional latent
space. The decoder has a symmetrically inverted structure with the sampled point being upscaled through an FCN layer
first and the resulting output is unflattened and passed to GCN layers that reconstruct back the node features.

Considering all comparison metrics along with the representative results shown in Fig. 2, we see a definitive improvement
in performance compared to the Conv-VAE. The improvement is seen not only in the AUC metric, but more significantly
in the signal efficiencies at lower background efficiencies. Because of this, the GCN-VAE is used as the reference
architecture in the rest of this section and in section 5.

4.3 Physics-motivated high-level features

We also experiment with adding high-level features (HLFs) that are physics motivated, as explicit inputs to the model,
similar to what was done with object multiplicities in section 4.1. Doing so, we intend to check if domain knowledge

5



A PREPRINT - OCTOBER 19, 2021

0.0 0.5 1.0
AUC

GCN-VAE

GCN-VAE_HLF

10-4 10-3 10-2 10-1 100

εS(εB = 10−2)

10-4 10-3 10-2 10-1 100

εS(εB = 10−3)

10-4 10-3 10-2 10-1 100

εS(εB = 10−4)

Best

2nd

Best models on all channels combined based on mean score

Figure 3: Comparison of the GCN-VAE performance with and without HLFs added as a separate input.

helps in improving anomaly detection capability. We pass event information such as the missing transverse momentum
in the event (pmiss

T ), the scalar sum of the jet pT (HT) and mEff = HT + pmiss
T to the model, by concatenating these with

the output of the convolutional layers of the encoder. The concatenated output is then passed to the fully connected
layers in the encoder to form the latent space. After the point sampled from the latent space passes through the fully
connected layers of the decoder, the reconstructed pmiss

T , HT and mEff are extracted and the rest of the layer output is
re-shaped and further passed to the subsequent layers of the decoder.

To include the reconstruction of these features in the loss, we add to Eq. (1) a mean-squared error (MSE) term, computed
from the reconstructed and input HLFs and weighted by a coefficient. This coefficient is treated as a hyperparameter
that is scanned until the best performance is found.

Figure 3 shows that adding HLFs shows no definitive improvement in performance, thereby leading us to conclude that
the baseline model with marginally lower number of trainable parameters is a good choice.

4.4 Anomaly scores

While so far the Chamfer loss has been used as the anomaly score, this is not the only possibility. We consider two
alternative metrics: the DKL term in Eq. (1) and [36]:

Rz =
∑
i

(
µi

σi

)2

(4)

where µ and σ are the mean and RMS returned by the encoder and the index i runs across the latent-space dimensions.

The use of different anomaly scores requires a tuning of the β hyperparameter. Since β determines the relative
importance of the DKL and Chamfer loss terms in the loss, the use of one or the other as anomaly score is certainly
related to the choice of the optimal β value. Similarly, the use of Rz (i.e., anomaly detection in the latent space) might
not be optimal when using a β value that was tuned to emphasize the reconstruction accuracy (i.e., the minimization
of the Chamfer term in the loss). On the other hand, the study in Ref. [36] shows that an excessive tuning of the
hyperparameters affects generalization of performance negatively beyond the available dataset.

In order to address this point, we compare three weights for the β term. In the first case represented as β = 1 in Fig. 4,
the weight is chosen such that the contribution of the reconstruction loss is negligible to the total loss. The second case
involves equal contribution of both terms to the loss represented as β = 0.5, and the final case corresponds to negligible
contribution of the KL divergence term, represented as β = 10−6.

Figure 4 shows that all three anomaly scores underperform in the β = 10−6 case. The best performing models overall
are the β = 1 and β = 0.5 cases. On comparing across the three different anomaly scores as well, we see that the β = 1
model that uses KL divergence and radius metrics, as well as the β = 0.5 model that uses the reconstruction metric
perform the best. All three cases also show very similar performance across all comparison metrics as well as methods,
implying that either model-anomaly score combination is equally suitable. We also find that the β = 1 KL score and
the β = 0.5 reconstruction score are positively correlated. This implies that combining the two metrics would perform
similarly as either metric used individually, thereby eliminating the need for a combination strategy as used in Ref. [38].

4.5 Baseline discrimination

As a result of the tests presented so far, the baseline VAE model is established as a GCN-VAE taking as input the
whole set of reconstructed physics object but no domain-specific high level features. The Chamfer loss function is
used as the anomaly score. The GCN-VAE is trained and tested only with data available within a given channel and
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Figure 4: Comparison of anomaly detection performance from different anomaly score definitions, applied to the
GCN-VAE.

the dataset sizes per channel are described in Table 1. Figure 5 shows the ROC curves for the baseline VAE model on
benchmark signals in the four channels. It is evident that we suffer from a shortage of events for some signal models at
very low FPRs (εB) specially in the smaller channels. We still depict ROC curves down to εB = 10−4 because this
was a convention chosen in Ref. [36] to make a fair comparison. Apart from a few signal models however, we see a
definitive overall improvement in εS at very low εB for the GCN-VAE compared to our Conv-VAE submission in [36].

5 Normalizing flows

With the GCN-VAE serving as the baseline, we investigate how the use of normalizing flows impacts the anomaly-
detection performance. Normalizing flow layers are inserted between the Gaussian sampling and the decoder. They
provide additional complexity to learn better posterior distributions [45] by morphing the multivariate prior of the latent
space to a more suitable, learned function. In other words, we use normalizing flows to go beyond the Gaussian prior
approximation of our baseline VAE model.

A normalizing flow can be generalized as any invertible transformation that can be applied to a given distribution. In
order to be compatible with variational inference, it is desirable for the transformations to have an efficient mechanism for
computing the determinant of the Jacobian, while being invertible [45]. The normalizing flows are trained sequentially,
together with the baseline VAE model.

We utilize four major families of flow models:

• Planar flows (PFs) are invertible transformations whose Jacobian determinant can be computed rather effi-
ciently, making them suitable candidates for variational inference [45]. PF transformations are defined as:

z′ = z + uh(wT z + b) , (5)
where u,w ∈ RD, b ∈ R and h is a suitable smooth activation function.

• Sylvester normalizing flows (SNFs) [55] build on the planar flow formulation and extend it to be analogous
to a multilayer perceptron with one hidden layer of M units and a residual connection as:

z′ = z + Ah(Bz + b) , (6)

where A ∈ RD×M ,B ∈ RM×D, b ∈ RM and M ≤ D. Computing the Jacobian determinant for such a
formulation is made more efficient by utilizing the Sylvester determinant identity [55]. Depending on the

7
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Figure 5: ROC curves for the baseline GCN-VAE model in channel 1 (top left), channel 2a (top right), channel 2b
(bottom left), and channel 3 (bottom right), computed from the εS and εB values obtained on the background sample
and the benchmark signal samples. Most of the ROC curves are not smooth, due to the small dataset size for some of
the channels.

way A and B are parametrized, we get different types of Sylvester normalizing flows. In this paper we use
orthogonal, Householder, and triangular SNFs, as described in Ref. [55].

• Inverse autoregressive flows (IAFs) [56] are computation-efficient normalizing flows based on autoregressive
models. Autoregressive transformations are invertible, making them suitable candidates for our case. However,
computing the transformation requires multiple sequential steps [55]. The inverse transformation however,
leads to certain simplifications as described in Ref. [55], allowing more efficient parallel computing, thereby
making it a more desirable transformation for our case. We use the IAFs formulated as:

zti = µt
i(z

t−1
1:i−1) + σt

i(z
t−1
1:i−1) · zt−1

i , i = 1, 2, ..., D . (7)

Such a formulation allows one to stack multiple transformations to achieve more flexibility in producing target
distributions.
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Figure 6: Comparison of anomaly detection performance for GCN-VAE models with different normalizing flow
architectures in the latent space

• Convolutional normalizing flows (ConvFs) [57] are an extension of single-hidden-unit planar flows [56] to
the case of multiple hidden units, further enhanced by replacing the fully connected network operation with a
1D convolution, to achieve bijectivity. They are defined by the following transformation:

z′ = z + u� h(conv(z,w)) , (8)

where w ∈ Rk is the parameter of the 1D convolution filter with k-sized kernel, h is a monotonic nonlinear
activation function and � denotes pointwise multiplication.

The hyperparameters for each normalizing flow architecture are chosen arbitrarily to avoid overtuning on the available
dataset as learned from Ref. [36]. The PF model consists of a stack of six flows, each made of three dense layers with
90 neurons each. SNFs are defined by stacking six flows with 8 orthogonal, Householder and triangular transformations
for each of the respective types of SNF. IAFs are constructed with four masked autoencoder for distribution estimation
(MADE) [58] layers as described in [56], each containing 330 neurons. ConvFs include four flow layers with kernel
size k = 7 and applying kernel dilation as described in [57].

Figure 6 shows the results of all GCN-VAE models combined with all the different types of flows as described in
section 5. Based on results from all data channels combined, it is evident that using normalizing flows improves not
only the AUC metric but also the signal efficiencies at low background efficiencies. We find that the Householder
variant of SNFs produces the best improvement with respect to the baseline GCN-VAE model. The exercise was also
repeated with a Conv-VAE model and similar trends were observed. There, the normalizing flows showed a larger
improvement from the baseline Conv-VAE than for the GCN-VAE model but the overall results are less accurate than
that of GCN-VAE with normalizing flows.

Figure 7 shows the ROC curves for the best presented model, GCN-VAE_HouseholderSNF across all available signal
samples in all data channels. For some of the samples, the small dataset size translates in a discontinuous curve and
larger uncertainties.

6 Conclusions

We constructed a graph-based anomaly detection model to identify new physics events in the DarkMachines challenge
dataset, building its architecture by a set of tests aiming at optimizing performance with respect to specific design
choices (data representation, use of physics-motivated high-level features, and anomaly score definition), inspired by
the outcome of the DarkMachines challenge. As for many other deep learning applications to HEP data, the graph
architecture better captures the point-cloud nature of HEP data, resulting in an enhanced performance.

On this baseline, we investigate the impact of using a stack of normalizing flows in the latent space of the variational
autoencoder (VAE), between the Gaussian sampling and the decoding, in order to improve the accuracy of the posterior
learning process by morphing the Gaussian prior to a more suitable prior, learned during training.
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Figure 7: ROC curves of GCN-VAE_HouseholderSNF for all signals in each of channel 1 (top left), channel 2a (top
right), channel 2b (bottom left), and channel 3 (bottom right).

Testing the trained model on a set of benchmark signal samples, we observe a general improvement when normalizing
flows are used, with the Householder variant of the Sylvester normalizing flow model giving the best results. With that,
we reach a median anomaly identification probability of 72% (34%) for an εB of 1% (0.1%) across all signal samples
over all available channels. The median anomaly identification probability increases to 95% (96%) for an εB of 30%
(60%).

This work represents an improvement over our convolutional neural network VAE model, submitted to the DarkMachines
challenge [36].
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