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A Roadmap of the DUNE Technical Design
Report

The Deep Underground Neutrino Experiment (DUNE) far detector (FD) technical design report
(TDR) describes the proposed physics program, detector designs, and management structures and
procedures at the technical design stage.

The TDR is composed of five volumes, as follows:

• Volume I (Introduction to DUNE) provides an overview of all of DUNE for science policy
professionals.

• Volume II (DUNE Physics) describes the DUNE physics program.
• Volume III (DUNE Far Detector Technical Coordination) outlines DUNE management struc-

tures, methodologies, procedures, requirements, and risks.
• Volume IV (The DUNE Far Detector Single-Phase Technology) and Volume V (The DUNE

Far Detector Dual-Phase Technology) describe the two FD liquid argon time-projection cham-
ber (LArTPC) technologies.

The text includes terms that hyperlink to definitions in a volume-specific glossary. These terms
appear underlined in some online browsers, if enabled in the browser’s settings.
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Chapter 1

Executive Summary

1.1 Introduction

The overriding physics goals of the Deep Underground Neutrino Experiment (DUNE) are the
search for leptonic charge parity (CP) violation, the search for nucleon decay as a signature of a
Grand Unified Theory underlying the Standard Model, and the observation of supernova neutrino
bursts (SNBs) from supernovae. Central to achieving this physics program is the construction of
a detector that combines the many-kiloton fiducial mass necessary for rare event searches with
sub-centimeter spatial resolution in its ability to image those events, allowing us to identify the
signatures of the physics processes we seek among the numerous backgrounds. The single-phase
(SP) liquid argon time-projection chamber (LArTPC) [1] allows us to achieve these dual goals,
providing a way to read out with sub-centimeter granularity the patterns of ionization in 10 kt
volumes of liquid argon (LAr) resulting from the MeV-scale interactions of solar and SNB neutrinos
up to the GeV-scale interactions of neutrinos from the Long-Baseline Neutrino Facility (LBNF)
beam.

To search for leptonic CP violation, we must study νe appearance in the LBNF νµ beam. This
requires the ability to separate electromagnetic activity induced by charged current (CC) νe inter-
actions from similar activity arising from photons, such as photons from π0 decay. Two signatures
allow this: photon showers are typically preceded by a gap prior to conversion, characterized by the
18 cm conversion length in LAr; and the initial part of a photon shower, where an electron-positron
pair is produced, has twice the dE/dx of the initial part of an electron-induced shower. To search
for nucleon decay, where the primary channel of interest is p→ K+ν, we must identify kaon tracks
as short as a few centimeters. It is also vital to accurately fiducialize these nucleon-decay events to
suppress cosmic-muon-induced backgrounds, and here the detection of argon-scintillation photons
is important for determining the time of the event. Detecting a SNB poses different challenges:
those of dealing with a high data-rate and maintaining the high detector up-time required to ensure
we do not miss one of these rare events. The signature of a SNB is a collection of MeV-energy
electron tracks a few centimeters in length from CC νe interactions, spread over the entire detector
volume. To fully reconstruct a SNB, the entire detector must be read out, a data-rate of up to
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2 TB/s, for 30 s to 100 s, including a ∼4 s pre-trigger window.

In this Executive Summary, we give an overview of the basic operating principles of a SP LArTPC,
followed by a description of the DUNE implementation. We then discuss each of the subsystems
separately, connecting the high-level design requirements and decisions to the overriding physics
goals of DUNE.

1.2 The Single-Phase Liquid Argon Time-Projection Chamber
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Figure 1.1: The general operating principle of the single-phase liquid argon time-projection chamber.

Figure 1.1 shows a schematic of the general operating principle of a SP LArTPC, as has been
previously demonstrated by ICARUS [2], ArgoNeuT [3], MicroBooNE [4], LArIAT [5], and Pro-
toDUNE [6]. A large volume of LAr is subjected to a strong electric field of a few hundred volts
per centimeter. Charged particles passing through the detector ionize the argon atoms, and the
ionization electrons drift in the E field to the anode wall on a timescale of milliseconds. This anode
consists of layers of active wires forming a grid. The relative voltage between the layers is chosen
to ensure all but the final layer are transparent to the drifting electrons, and these first layers
produce bipolar induction signals as the electrons pass through them. The final layer collects the
drifting electrons, resulting in a monopolar signal.

LAr is also an excellent scintillator, emitting VUV light at a wavelength of 127 nm. This prompt
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scintillation light, which crosses the detector on a timescale of nanoseconds, is shifted into the
visible and collected by photon detector (PD) devices. The PDs can provide a t0 determination for
events, telling us when the ionization electrons begin to drift. Relative to this t0, the time at which
the ionization electrons reach the anode allows reconstruction of the event topology along the drift
direction, which is crucial to fiducialize nucleon-decay events and to apply drift corrections to the
ionization charge.

The pattern of current observed on the grid of anode wires provides the information for recon-
struction in the two coordinates perpendicular to the drift direction. A closer spacing of the wires,
therefore, results in better spatial resolution, but, in addition to increasing the cost of the readout
electronics due to the additional wire channels, a closer spacing worsens the signal-to-noise (S/N)
of the ionization measurement because the same amount of ionization charge is now divided over
more channels. S/N is an important consideration because the measurement of the ionization
collected is a direct measurement of the dE/dx of the charged particles, which is what allows us
to perform both calorimetry and particle identification.

1.3 The DUNE Single-Phase Far Detector Module

Figure 1.2: A 10 kt DUNE far detector (FD) SP module, showing the alternating 58.2m long (into the
page), 12.0m high anode (A) and cathode (C) planes, as well as the field cage (FC) that surrounds the
drift regions between the anode and cathode planes. On the right-hand cathode plane, the foremost
portion of the FC is shown in its undeployed (folded) state.

The DUNE SP LArTPC consists of four modules of 10 kt fiducial mass (17.5 kt total mass), con-
tributing to the full 40 kt FD fiducial mass. Figure 1.2 shows a 10 kt module, and the key param-
eters of a SP module are listed in Table 1.1. Inside a cryostat of outer dimensions 65.8m ×17.8m
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×18.9m (shown in Figure 1.3), four 3.5 m drift volumes are created between five alternating anode
and cathode walls, each wall having dimensions of 58 m× 12 m.

Table 1.1: Key parameters for a 10 kt FD SP module.

Item Quantity
TPC size 12.0m ×14.0 m×58.2m
Nominal fiducial mass 10 kt
APA size 6 m× 2.3 m
CPA size 1.2 m× 4 m
Number of APAs 150
Number of CPAs 300
Number of X-ARAPUCA PD bars 1500
X-ARAPUCA PD bar size 209 cm× 12 cm× 2 cm
Design voltage −180 kV
Design drift field 500V/cm
Drift length 3.5m
Drift speed 1.6 mm/µs

The FD is located underground, at the 4850 ft level of the Sanford Underground Research Facility
(SURF) in South Dakota. The detector is 1300 km from the source of the LBNF neutrino beam
at Fermi National Accelerator Laboratory (Fermilab); this baseline provides the matter effects
necessary for DUNE to determine the neutrino mass hierarchy. The SURF underground campus
is shown in Figure 1.4. The four 10 kt FD modules will be located in the two main caverns, which
are each 144.5m long, 19.8m wide and 28.0mhigh. Each cavern houses two 10 kt modules, one
either side of the central access drift. Between the two caverns is the central utility cavern (CUC),
a 190m long, 19.3m wide, 11.0m high cavern in which many of the utilities and the upstream
data acquisition (DAQ) reside.

Each cathode wall in a module is called a cathode plane assembly (CPA) array. The CPA is the
1.2 m × 4 m panel from which the CPA arrays are formed; each CPA array contains 150 CPAs.
The CPA arrays are held at −180 kV. With the anode walls held close to ground, this results in a
uniform 500V/cm E field across the drift volume. A FC surrounds the remaining open sides of the
time projection chamber (TPC), ensuring the field is uniform to better than 1% throughout the
active volume. A typical minimum ionizing particle passing through the argon produces around
60k ionization electrons per centimeter, which drift towards the anodes at around 1.6 mm/µs; the
time taken to drift the full distance from cathode to anode would therefore be around 2.2 ms.

The anode walls are each made up of 50 anode plane assembly (APA) units that are 6 m × 2.3 m
in dimension. As shown in Figure 1.5, the APAs hang vertically; each anode wall is two APAs
high and 25 APAs wide. The APAs are two-sided, with three active wire layers and an additional
shielding layer, also called a grid layer, wrapped around them. The wire spacing on the layers is
∼5 mm. The collection layer is called the X-layer; the induction layer immediately next to that is
called the V -layer; the next induction layer is the U -layer; and the shielding layer is the G-layer.
X-layer and G-layer wires are vertical; the U - and V -layer wires are at ±35.7° to the vertical.
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Figure 1.3: A 65.8m (L) by 18.9m (W) by 17.8m (H) outer-dimension cryostat that houses a 10 kt
FD module. A mezzanine (light blue) installed 2.3m above the cryostat supports both detector and
cryogenics instrumentation. At lower left, between the LAr recirculation pumps (green) installed on the
cavern floor, the figure of a person indicates the scale.

Central access drift

Figure 1.4: The underground layout of the SURF laboratory. The two main caverns each hold two 10 kt
modules, one either side of the central access drift. The CUC houses utilities and the upstream DAQ.
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Figure 1.5: Left: two APAs linked together to form one unit of an APA wall. PD bars can be seen
installed across the width of the APAs. Right: a zoom into the top and bottom ends of the APA stack
showing the readout electronics, and the center of the stack where the APAs are connected together.

Readout electronics, called cold electronics (CE), are attached to the top end of the top APA and
the bottom end of the bottom APA. These front-end (FE) electronics benefit from the low LAr
temperature through the reduction of thermal noise. The front-end electronics shape, amplify, and
digitize the signals from the induction and collection wires thanks to a series of three different
types of ASIC through which all signals pass. Cables from the CE pass through feedthroughs on
the roof of the cryostat; cables from the motherboards on the bottom APA pass through the inside
of the hollow APA frames up to the top.

Once signals from APAs leave the cryostat through feedthroughs, they are passed to warm interface
boards that put the signals onto 10Gbps optical fibers, ten fibers per APA, which carry the signals
to the upstream DAQ system located in the CUC. Each 10 kt module has its own, independent
DAQ system, built around the Front-End Link eXchange (FELIX) system, developed by European
Organization for Nuclear Research (CERN), which is responsible for triggering, buffering, and
shipping data out to permanent storage above ground; when triggered, each 10 kt module will
provide data at a rate of up to 2TB/s. This separation of DAQ systems allows each module to
run as an independent detector to minimize any chance of a complete FD outage. Modules can,
however, provide the others with a supernova trigger signal. The DAQ system also provides the
detector clock. A Global Positioning System (GPS) one-pulse-per-second signal (1PPS signal)
is used to time-stamp events, both to allow matching to the beam window and to allow time-
stamping of supernova triggers. Within a 10 kt module a 62.5 MHz master clock keeps all detector
components synchronized to within 1 ns.

In addition to the ionization, charged particles passing through the argon produce approximately
24,000 scintillation photons per MeV. These photons are collected by devices called X-Arapucas,
which are mounted in the APAs, in between the two sets of wire layers, as shown in Figure 1.5.
There are ten X-Arapucas on each APA, which are bars running the full 2.3m width of the APA.
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The X-Arapuca bars consist of layers of dichroic filter and wavelength-shifter that shift the VUV
scintillation light into the visible and trap these visible photons, transporting them to silicon
photomultiplier (SiPM) devices. The signals from these SiPMs are sent along cables that pass
through the hollow APA frames, up to feedthroughs in the cryostat roof. The signals are then sent
along 10Gbps optical fibers, one fiber per APA (ten X-Arapuca bars), to the DAQ system where
the PD and APA-wire data-streams are merged.

1.4 The Liquid Argon

The primary requirement of the LAr is its purity. Electronegative contaminants such as oxygen
or water absorb ionization electrons as they drift. Nitrogen contaminants quench scintillation
photons.

The target purity from electronegative contaminants in the argon is <100ppt (parts per trillion)
O2 equivalent, which is enough to ensure a > 3 ms ionization-electron lifetime at the nominal
500V/cm drift voltage. This target electron lifetime means that, for a charged particle traveling
near a CPA array, there is 48% attenuation of the ionization by the time it reaches the anode,
which ensures that we achieve S/N ratios of S/N > 5 for the induction planes and S/N > 10 for the
collection planes, which are necessary to perform pattern recognition and two-track separation. We
have an additional requirement for electronegative impurities released into the argon by detector
components of < 30 ppt, to ensure such sources of contamination are negligible compared to the
contamination inherent in the argon. Data from ProtoDUNE has shown that we can exceed our
target argon purity, with electron lifetimes in excess of 6ms achieved.

Nitrogen contamination must be < 25 ppm (parts per million). This is necessary to ensure we
achieve our requirement of at least 0.5 photoelectrons per MeV detected for events in all parts of
the detector, which in turn ensures, through the timing requirements discussed in Section 1.5, that
we can fiducialize nucleon decay events throughout the detector.

Fundamental to maintaining argon purity is the constant flow of argon through the purification
system. It is, therefore, important to understand the fluid dynamics of the argon flow within the
detector to ensure there are no dead regions where argon can become trapped. This fluid dynamics
also informs the placement of purity, temperature, and level monitors.

1.5 Photon Detection System

Compared to the ionization electrons, which can take milliseconds to drift across the drift vol-
ume, the scintillation photons are fast, arriving at the PDs nanoseconds after production. This
scintillation light provides a t0 for each event. By comparing the arrival time of ionization at
the anode with this t0, reconstruction in the drift direction becomes possible. A 1µs requirement
on the timing resolution of the PD system enables ∼ 1 mm position resolution for 10MeV SNB
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events. The PD t0 is also vital in fiducializing nucleon-decay events, which allows us to reject
cosmic-muon-induced background events that will occur near the edges of the detector modules.
We must be able to do this throughout the entire active volume with >99% efficiency, leading to a
requirement of at least 0.5 photoelectrons per MeV detected for events in all parts of the detector.
These requirements are discussed later in Chapter 5.

PD modules, shown in Figure 1.6, are 209 cm×12 cm×2 cm bars, ten of which are mounted in each
APA between the wire layers. Each bar contains 24 X-Arapuca1 cells, grouped into four supercells.
An X-Arapuca cell is shown in Figure 1.7. The outer layers are dichroic filters transparent to
the 127 nm scintillation light. Between these filters is a wavelength-shifting (WLS) plate, which
converts the UV photons into the visible spectrum (430 nm); one WLS plate runs the full length
of each supercell. Visible photons emitted inside the WLS plate at an angle to the surface greater
than the critical angle reach SiPMs at the edges of the plates. Visible photons that escape the
WLS plates are reflected off the dichroic filters, which have an optical cutoff, reflecting photons
with wavelengths more than 400 nm back into the WLS plates.

Figure 1.6: Left: an X-ARAPUCA PD module. The 48 SiPMs that detect the light from the 24 cells
are along the long edges of the module. Right: X-ARAPUCA PD modules mounted inside an APA.

The 48 SiPMs on each X-Arapuca supercell are ganged together and the signals are collected by
front-end electronics, mounted on the supercell. The design of the front-end electronics is inspired
by the system used for the Mu2e cosmic-ray tagger [7], which uses commercial ultrasound ASICs.
The front-end electronics define the 1 µs timing resolution of the PD system.

1.6 High Voltage, Cathode Planes and Field Cage

The design voltage at which the DUNE TPC will operate is −180 kV, corresponding to 500V/cm
across each drift volume. This voltage is a trade off. A higher voltage results in more charge

1An arapuca is a South American bird trap, the name used here in analogy to the way the X-Arapuca devices trap
photons.
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Figure 1.7: Left: an X-Arapuca cell. Right: an exploded view of the X-Arapuca cell, where the blue
sheet is the wavelength-shifting plate and the yellow sheets the dichroic filters.

collected, and hence better S/N ratio, better calorimetry, and lower detection thresholds, as well
as less saturation of free charge at the point of ionization. A higher voltage, however, also reduces
the amount of scintillation light produced and requires more space between the CPAs and the
cryostat walls to prevent discharges, reducing the fiducial volume. The ProtoDUNE experience
shows that we can achieve this design voltage; nevertheless, from MicroBooNE, we also know that
a drift voltage of 250V/cm achieves an adequate S/N ratio.

The high voltage (HV) is supplied to the CPA arrays. Each CPA array (two per 10 kt module)
has its own independent high voltage supply. These commercial high voltage devices will supply
a current of 0.16mA at −180 kV. The voltage is delivered, via ∼ 30 m length commercial cables,
through a series of few-MW filtering resistors that act as low-pass filters to reduce noise and
thereby satisfy the ripple-voltage requirement of <0.9 mV on the CPA array, which corresponds to
a requirement of <100 e− of noise injected into the TPC by the high-voltage system. The supply
unit monitors the voltage and current every 300ms; toroids mounted on the cables are sensitive
to much faster changes in current and enable responses to current changes on a timescale of 0.1 µs
to 10 µs.

The high voltage passes into the cryostat through a feedthrough based on the ICARUS design [2],
the stainless steel conductor of which mates with the CPA array via a spring-loaded feedthrough.
When at −180 kV, each CPA array stores 400 J of energy, so the CPAs must have at least 1 MΩ/cm2

resistance to prevent damage if the field is quenched. The CPA, an example of which from Pro-
toDUNE is shown in Figure 1.8, is a 1.2 m × 4 m planar unit, each side of which is a 3mm thick
FR-4 sheet, onto which is laminated a thin layer of carbon-impregnated Kapton that forms the
resistive cathode plane.

The field must be uniform throughout the active TPC volume to within 1%, and this is achieved
by a FC that surrounds the drift volumes. The FC is built from field-shaping aluminum profiles,
terminated with 6mm thick ultra-high molecular-weight polyethylene caps (see Figure 1.9). All
surfaces on these profiles must be smooth to keep local fields below 30 kV/cm, a requirement
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Figure 1.8: A ProtoDUNE-SP cathode plane assembly. The black surface is the carbon-impregnated
Kapton resistive cathode plane.

that reduces the possibility of voltage breakdowns in the argon; the shape of the profiles leads
to a maximum local field near the surface of the FC of ∼ 12 kV/cm. The aluminum profiles are
connected together via a resistive divider chain; between each profile, two 5GW resistors, arranged
in parallel, provide a 2.5GW resistance to create a nominal 3 kV drop.

Figure 1.9: A section of the field cage, showing the extruded aluminum field-shaping profiles, with white
polyethylene caps on the ends to prevent discharges.

1.7 Anode Planes

The APAs are 6 m×2.3 m planes that form the three anode walls of the TPC. An APA is shown in
Figure 1.10. In the FD, the APAs are mounted in pairs, in portrait orientation, one above another,
with the head end of the top APA at the top of the detector and the head end of the bottom APA
at the bottom of the detector.
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Figure 1.10: Top: a schematic of an anode plane assembly. In black is the steel APA frame. The
green and pink areas indicate the directions of the induction wire layers. The blue area indicates the
directions of the induction and shielding (grid) wire layers. The blue boxes at the right-hand end are
the CE. Bottom: a ProtoDUNE APA in a wire-winding machine. The right-hand end of the APA as
shown in this picture is the head end, onto which the CE are mounted.
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The basic building block of the APA is the steel frame that can be seen outlined in Figure 1.10,
consisting of three long steel bars, a head shaft onto which the CE are mounted, a foot shaft, and
four thinner cross-braces. The two outer long sections are 4 inch× 4 inch square-profile steel tubes
through which run the PD cables and the CE cables from the bottom APA of a pair. The PDs
are mounted into the APAs, after production, through slots in these long sections.

Mounted directly onto both sides of the APA frame is a grounding mesh, which ensures any
ionization produced inside the APA cannot cause signals on the active wire layers. The four
wire layers, consisting of 152µm diameter copper-beryllium wire, are wound around the grounding
mesh. The inside layer is the collection layer, called the X-layer, the 960 wires of which run parallel
to the long axis of the APA. Next are the two induction layers, the U - and V -layers, each with
800 wires at ±35.7° to the long axis. Finally, the uninstrumented shielding layer, the G-layer,
has 960 wires running parallel to the X-layer wires; this layer shields the three active layers from
long-range induction effects. The wire spacing on each layer is 4.79mm for the X and G layers
and 4.67mm for the U and V layers; the inter-plane spacing is 4.75mm. The wire spacing on
each plane defines the spatial resolution of the APA; it is wide enough to keep readout costs low
and S/N high, but small enough to enable reconstruction of short tracks such as few-cm kaon
tracks from proton-decay events. The tolerance both on the wire spacing in the plane and on the
plane-to-plane spacing is 0.5mm; this is most important in the plane-to-plane direction where the
spacing ensures that the induction planes remain transparent to the drifting charge.

The wires are soldered to printed circuit boards located around the four sides of the APA. These
boards, shown in Figure 1.11, are called geometry boards since they define the wire spacing in all
dimensions; they consist only of pads and traces: no active components. At the head end, these
boards lie flat in the plane of the APA, and the wires are terminated onto these boards for readout.
On the remaining three sides, the boards sit on the sides of the APA, perpendicular to the wire
planes, and control the wrapping of the wires around the APA. These wrap boards have insulating
pins on their edges, around which the wires are wrapped, to set the wire spacing. At the head
end, additional active boards are installed after all wires are wound: G-bias boards provide the
necessary capacitance to the G-layer and a resistor to provide the bias voltage; CR-boards provide
the interface between the X and U layers and the CE, resistors providing the bias voltages and
capacitors providing DC blocking. Relative to the ground, the four wire layers are biased to 820V
(X-layer), 0V (V -layer), −370V (U -layer), and −665V (G-layer). To maintain the wire spacing
across the APA, wire-support combs, also shown in Figure 1.11, run along the four cross-braces
across the short dimension of the APA.

1.8 Electronics

The job of the readout electronics is to send out of the cryostat digitized waveforms from the
APA wires. To enable us to look at low-energy particles, we aim to keep noise to below 1000 e−

per channel, which should be compared to the 20k–30k e− per channel collected from a minimum-
ionizing particle traveling parallel to the wire plane and perpendicular to the wire orientation.
For large signals, we require a linear response up to 500k e−, which ensures that fewer than 10%
of beam events experience saturation. This can be achieved using 12 analog-to-digital converter
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Figure 1.11: Left: V -layer geometry boards, showing the head-end boards face-on and the wrap boards
along the bottom. Back plastic insulating pins are visible on the edges of the wrap boards. The V -layer
wires can be seen running diagonally, and the X-layer wires, horizontal in this picture, are visible behind
those. Right: wire-support combs, showing all four layers of wires.

(ADC) bits. In addition, the electronics are designed with a front-end peaking time of 1µs, which
matches the time for the electrons to drift between wires planes on the APA; this then leads to a
design sampling frequency of 2MHz to satisfy the Nyquist criterion.

The digitization electronics are mounted on the head ends of the APAs in the LAr and are therefore
referred to as CE. The low, 87K temperatures reduce thermal noise. Figure 1.12 shows a block
diagram of the front-end mother board (FEMB)s mounted on the APAs. Each APA is instrumented
with 20 FEMBs, each of which takes the signals from 40 U -layer wires, 40 V -layer wires, and 48 X-
layer wires. The signals pass through a series of three ASICs. The first ASIC, the front-end ASIC,
shapes and amplifies the signals. The next ASIC, the ADC ASIC, performs the analogue-to-digital
conversion. Finally, a COLDATA ASIC merges the data streams from the preceding ASICs for
transmission to the outside world; this COLDATA ASIC also controls the front-end motherboard
and facilitates communications between the motherboard and the outside world.

The data passes out of the cryostat through feedthroughs in the roof. Mounted directly to each
feedthrough is a warm interface electronics crate (WIEC). Each WIEC contains five warm interface
board (WIB)s, each of which processes the signals from five FEMBs. A WIEC also contains a
power and timing card (PTC) that provides the fiber interface to the timing system, fanning out
timing and control systems, as well as the low-voltage power, to the WIBs via a power and timing
backplane (PTB).
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Figure 1.12: Left: an APA with 20 FEMBs installed on the head end. Right: a block diagram of the
readout electronics mounted on the APAs.

1.9 Data Acquisition

The DAQ is divided between an upstream section, located underground in the CUC, and a down-
stream DAQ back-end subsystem (DAQ BE) above ground at SURF. All trigger decisions are
made underground, and the data buffered underground until the DAQ BE indicates it is ready to
receive data, in order to minimize the rate of data flowing to the surface. An end-goal of the DAQ
is to achieve a data-rate to tape of no more than 30PB/year.

The DAQ architecture is based on the FELIX system designed at CERN and used for the LHC
experiments. The 150 APAs from each 10 kt module are processed by 75 DAQ readout unit (DAQ
RU); each DAQ RU contains one FELIX board. The PDs from the module will have a lower
data-rate since the PD electronics, unlike that of the TPC, perform zero-suppression; therefore
the PDs of a module will be processed by six to eight additional DAQ RUs. The DAQ will be
partitionable: it will be possible to run multiple instances of the DAQ simultaneously so that the
majority of the detector can be taking physics data whilst other DAQ instances are running test
runs for development or special runs such as calibration runs. A key philosophy is that all the
primary DUNE physics goals can be achieved using only the TPC as the trigger; information from
the PDs can then further enhance the trigger.

There will be two basic triggers operating. Beam, cosmic and nucleon decay events will be triggered
using the localized high-energy trigger. This will trigger on localized regions of visible activity, for
example in a single APA, with a > 99% trigger efficiency at 100MeV and a trigger threshold as low
as 10MeV. A localized high-energy trigger will open a readout window of 5.4ms, enough to read
out the full TPC drift around an event. For SNBs, we will use an extended low-energy trigger. This
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will look for coincident regions of low-energy deposits, below 10MeV, across an entire module and
in a 10 s period. An extended high-energy trigger will open a readout window of 100 s to capture a
full SNB. The upstream DAQ identifies per-channel regions of interest and forms them into trigger
primitives. These are then formed into trigger candidates that contain information from an entire
module; on these trigger candidates, trigger decisions are made. Once a trigger decision has been
made, this will be communicated to the surface, and the data buffered underground until the DAQ
BE indicates it is ready to receive data.

The DAQ must also provide the system clock that keeps the detector components synchronized
and provides the timestamp for all data. The timestamp derives from a GPS 1PPS signal that
is fed into the DAQ with 1 µs precision, adequate to timestamp beam and supernova events. To
provide the finer synchronization between detector components, a 10MHz reference clock drives
the module’s 62.5MHz master clock, which is fanned out to all detector components, providing an
overall synchronization to a precision of 1 ns.

1.10 Calibration

The challenge of calibrating the DUNE FD is to control the response of a huge cryogenic detector
over a period of decades, a challenge amplified by the detector’s location deep underground and
therefore shielded from the cosmic muons that were typically used as standard candles by previous
LArTPCs.

To achieve our O(GeV) oscillation and nucleon decay physics goals, we must know our fiducial
volume to 1–2% and have a similar understanding of the vertex position resolution; understand
the νe event rate to 2%; and control our lepton and hadron energy scales to 1% and 3%, respec-
tively. At the O(MeV) scale our physics requirements are driven by our goal of identifying, and
measuring the spectral structure of, a SNB; here, we must achieve a 20–30% energy resolution,
understand our event timing to the 1 µs level, and measure our trigger efficiency and levels of radi-
ological background. These are all high-level calibration requirements, but the underlying detector
parameters that we are characterizing are parameters such as the energy deposited per unit length
(dE/dx), ionization electron drift-lifetimes, scintillation light yield and detection efficiency, E field
maps, timing precision, TPC alignment, and the behavior (noise, gain, cross-talk, linearity, etc.)
of electronics channels.

The tools available to us for calibration include the LBNF beam, atmospheric neutrinos, atmo-
spheric muons, radiological backgrounds, and dedicated calibration devices that will be installed in
the detector. At the lowest energies, we have deployable neutron sources and intrinsic radioactive
sources; in particular the natural 39Ar component of the LAr with its 565 keV end-point can, given
its pervasive nature across the detector, be used to measure the spatial and temporal variations
in electron lifetime. The possibility of deploying radioactive sources is also being explored. In the
10MeV to 100MeV energy range we will use Michel electrons, photons from π0 decay, stopping
protons and both stopping and through-going muons. We will also have built-in lasers, purity
monitors and thermometers, and the ability to inject charge into the readout electronics. Fi-
nally, data from the ProtoDUNE detectors will be invaluable in understanding the response and
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particle-identification capabilities of the FD.

Once the first 10 kt module is switched on, there will be a period of years before LBNF beam sources
are available for calibration — and even then the statistics will be limited. In this time, cosmic
muons will be available, but the low rate of these means that it will take months to years to build
up the necessary statistics for calibration. The inclusive cosmic muon rate for each 10 kt module is
1.3×106 per year. However, for calibrations such as APA alignment, the typical rate of useful muons
is 3000–4000 per APA per year. For energy-scale calibrations, stopping cosmic muons are the most
relevant and here the rate is 11000 per 10 kt module per year. Therefore the earliest calibrations
will come from dedicated calibration hardware systems and intrinsic radiological sources.

A 266 nm laser will be used to ionize the argon, and this can be used to map the E field and to
make early measurements of APA alignment. The laser system will be used throughout the lifetime
of the detector to measure the gradual changes in the E field map as positive ions accumulate and
flow around the detector. An externally deployed pulsed neutron source provides a triggered,
well defined energy deposition from neutron capture in argon which is an important component
of signal processes for SNB and long-baseline (LBL) physics. A radioactive source deployment
system, which is complementary to the pulsed neutron system, can provide at known locations
inside the detector a source of gamma rays in the same energy range as SNB and solar neutrino
physics

Over time, the FD calibration program will evolve as statistics from the cosmic rays and the LBNF
beam amass and add to the information gained from the calibration hardware systems. These
numerous calibration tools will work alongside the detector monitoring system, the computational
fluid dynamics models of the argon flow, and ProtoDUNE data to give us a detailed understanding
of the FD response across the DUNE physics program.

1.11 Installation

A major challenge in building the DUNE SP modules is transporting all the detector and infras-
tructure components down the 1500m Ross shaft, to the detector caverns. To aid the planning
of the installation phase, installation tests will be performed at the NOvA FD site in Ash River,
Minnesota, USA. These tests will allow us to develop our procedures, train the installation workers,
and develop our labor planning through time and motion studies.

Once the module’s cryostat has been installed, a temporary construction opening (TCO) is left
open at one end through which the detector components are installed. A cleanroom is built around
the TCO to prevent any contamination entering the cryostat during installation. The detector
support system (DSS) is then installed into the cryostat, ready to receive the TPC components.

Inside the cryostat, the various monitor devices (temperature, purity, argon level) are installed at
the end furthest from the TCO. The far end of the FC is then installed. Rows of APAs and CPAs,
along with the top and bottom FC sections, are then installed and cabled, working from the far
end of the detector towards the TCO. The integration of the PDs and CE with the APA happens
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in the cleanroom immediately outside the TCO. Finally, the second FC end-wall is installed across
the TCO, along with the monitoring devices at the TCO end. The TCO can then be closed up
and the cryostat is ready to purge and fill with LAr. The warm electronics and DAQ are installed
in parallel with the TPC installation.

Throughout the installation process, safety is the paramount consideration: safety both of per-
sonnel and of the detector components. Once the detectors are taking data, safety is still the
priority with the DUNE detector safety system (DDSS) monitoring for argon level drops, water
leaks and smoke. A detailed detector and cavern grounding scheme has been developed that not
only guards against ground loops, but also ensures that any power faults are safely shunted to the
facility ground.

Throughout the project, quality assurance (QA) and quality control (QC) are written into all pro-
cesses. Most detector components are constructed off-site at collaborating institutions; strict QC
procedures will be followed at all production sites to ensure that components are working within
specifications before delivery to SURF. Underground at SURF integrated detector components are
tested in the cleanroom to ensure functionality, before passing them through the TCO for instal-
lation. Finally, QC is performed on all integrated components inside the cryostat, in particular to
ensure that all connections have been made through to the CUC.

1.12 Schedule and Milestones

A set of key milestones and dates have been defined for planning purposes in the development of the
technical design report (TDR). The dates will be finalized once the international project baseline
has been defined. Table 1.2 shows the key dates and milestones (colored rows) and indicates
the way that detector consortia will add subsystem-specific milestones based on these dates (no
background color). A more detailed schedule for the detector installation is discussed in Chapter 9.

1.13 Conclusion

This executive summary has provided an overview of the design of the 10 kt SP LArTPC modules
of the DUNE FD, explaining how key design choices have been made to ensure we can achieve our
primary physics goals of searching for leptonic CP violation, nucleon decay and neutrinos from
supernova bursts. The chapters that follow go into significantly more detail about the design of
the SP FD modules. In addition to describing the design and requirements, these chapters include
details on the construction, integration and installation procedures, the QA and QC processes
that have been developed to ensure that the detector will function for a period of decades, and
the overall project management structure. The chapters also describe how the design has been
validated and informed by ProtoDUNE.
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Table 1.2: (Sample subsystem) construction schedule milestones leading to commissioning of the first
two FD modules. Key DUNE dates and milestones, defined for planning purposes in this TDR, are
shown in orange. Dates will be finalized following establishment of the international project baseline.

Milestone Date (Month YYYY)
Technology Decision Dates April 2020
Final Design Review Dates June 2020
Start of module 0 component production for ProtoDUNE-2 August 2020
End of module 0 component production for ProtoDUNE-2 January 2021
Start of ProtoDUNE-SP-II installation March 2021
Start of ProtoDUNE-DP-II installation March 2022
South Dakota Logistics Warehouse available April 2022
production readiness review dates September 2022
Beneficial occupancy of cavern 1 and CUC October 2022
Start procurement of (subsystem) hardware December 2022
CUC counting room accessible April 2023
Top of detector module #1 cryostat accessible January 2024
Start of detector module #1 TPC installation August 2024
Top of detector module #2 cryostat accessible January 2025
End of detector module #1 TPC installation May 2025
Start of detector module #2 TPC installation August 2025
End of detector module #2 TPC installation May 2026
Full (subsystem) commissioned and integrated into remote opera-
tions

July 2026
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Chapter 2

Anode Plane Assemblies

2.1 Anode Plane Assembly (APA) Overview

The anode plane assemblies (APAs), or wire planes, are the Deep Underground Neutrino Exper-
iment (DUNE) single-phase (SP) module elements used to sense, through both signal induction
and direct collection, the ionization electrons created when charged particles traverse the liquid
argon (LAr) volume inside the SP module. All elements of the DUNE physics program depend on
a high performing system of APAs and their associated readout cold electronics (CE).

Volume II of this technical design report (TDR), DUNE Physics, describes the simulations that
rigorously establish the requirements for achieving the needed performance. Here we summarize
some of the APA capabilities required for the key elements of neutrino charge-parity symmetry
violation (CPV) and associated long-baseline oscillation physics, nucleon decay (NDK), and intra-
galactic supernova neutrino burst (SNB) searches. As a multipurpose detector accessing physics
from MeV to multi-GeV scales, the DUNE liquid argon time-projection chamber (LArTPC) cannot
be optimized for a narrow range of interaction signatures in the manner of noble liquid time
projection chambers (TPCs) dedicated to direct dark matter (DM) or neutrino-less double beta
decay searches. The APAs must collect ionization charge in a way that preserves the spatial and
energy profiles of ionization events that range from few hundred keV point-like depositions (from
low energy electrons and neutrons created in SNB neutrino interactions) to the double-kinked
K → µ → e decay chain with its combination of highly- and minimum-ionizing particles (HIPs
and MIPs) that is a key signature in proton decay searches. The APAs must record enough hits
on tracks within a few cm of a neutrino interaction vertex to differentiate the 1 minimum ionizing
particle (MIP) dE/dx signature of a νe-induced electron from the 2 MIP signature of a ν neutral
current photon conversion to enable the νµ − νe separation demanded for CPV physics; and they
must provide the pattern recognition and calorimetry for multi-GeV neutrino interaction products
spread over cubic meters of the detector needed for the precision neutrino energy estimates that
allow separation of CPV effects from those related to matter effects.

Anode planes in the APA must be well-shielded from possible high voltage breakdown events in
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the detector module. The APA wire spacing and orientations must maximize pattern recognition
capabilities and signal-to-noise (S/N) in a cost-effective manner. The APA wires must maintain
their positions to a level that is small compared to the wire spacing so that energy estimators
based on range and multiple Coulomb scattering remain reliable over two decades of operation.
The wires must hold their tension, lest microphonic oscillations develop that degrade S/N or anode
plane field distortions arise that inhibit the transmission of drifting electrons through the induction
planes to the collection plane. Any wire break would destroy fiducial volumes (FVs), so the APA
design must both minimize the possibility of this occurrence and contain the extent of any damage
that would ensue should it happen. An APA implementation that meets all these goals follows in
the remainder of this chapter, along with a summary of significant validations achieved through
dedicated simulations and ProtoDUNE-SP construction and operations.

Figure 2.1: A 10 kt DUNE far detector (FD) SP module, showing the alternating 58.2m long (into the
page), 12.0m high anode (A) and cathode (C) planes, as well as the field cage (FC) that surrounds the
drift regions between the anode and cathode planes. On the right-hand cathode plane, the foremost
portion of the FC is shown in its undeployed (folded) state.

To facilitate fabrication and installation underground, the anode design is modular, with APAs
tiled together to form the readout system for a 10 kt detector module. A single APA is 6m
high by 2.3m wide, but two of them are connected vertically, and twenty-five of these vertical
stacks are linked together to define a 12.0m tall by 58.2m long mostly-active readout plane. As
described below, the planes are active on both sides, so three such wire readout arrays (each one
12.0m × 58.2m) are interleaved with two high voltage (HV) surfaces to define four 3.5m wide
drift regions inside each SP module, as Figure 2.1 shows in the detector schematic views. Each SP
10 kt module, therefore, will contain 150 APAs.

Each APA frame is covered by more than 2500 sense wires laid in three planes oriented at angles
to each other: a vertical collection plane, X, and two induction planes at ±35.7 ◦ to the vertical, U
and V . Having three planes allows multi-dimensional reconstruction of particle tracks even when
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the particle propagates parallel to one of the wire plane directions. An additional 960 wires that
are not read out make up an outer shielding plane, G, to improve signal shapes on the U induction
channels. The angled wires are wrapped around the frame from one side to the other, allowing all
channels to be read out from one end of the APA only (the top or bottom), thereby minimizing the
dead regions between neighboring APAs. Signals induced or collected on the wires are transferred
through soldered connections to wire termination boards mounted at the end of the APA frame
that in turn connect to front-end (FE) readout CE sitting in the LAr. Figures 2.2 and 2.3 illustrate
the layout of the wires on an APA, showing how they wrap around the frame and terminate on
wire boards at the head end where readout CE are mounted.

The APAs are a critical interface point between the various detector subsystems within the SP
module. As already mentioned, the TPC readout CE mount directly to the APA frames. The
photon detectors (PDs) for detecting scintillation light produced in the LAr are also housed inside
the frames, sandwiched between the wires on the two sides, requiring careful coordination in frame
design as well as requiring transparency for the APA structures. In addition, the electric field cage
(FC) panels connect directly to the edges of the APA frames. Finally, the APAs must support
routing cables for both the TPC electronics and the PD systems. All these considerations are
important to the design, fabrication, and installation planning of the APAs.

Figure 2.2: Illustration of the DUNE APA wire wrapping scheme showing small portions of the wires
from the three signal planes (U, V,X). The fourth wire plane (G) above these three, and parallel to X,
is present to improve the pulse shape on the U plane signals. The TPC electronics boxes, shown in blue
on the right, mount directly to the frame and process signals from both the collection and induction
channels. The APA is shown turned on its side in a horizontal orientation.

The APA consortium oversees the design, construction, testing, and installation of the APAs.
Several APA production sites will be set up in both the US and the UK with each nation producing
half of the APAs needed for the SP modules. Production site setup is anticipated to begin in 2020,
with APA fabrication for the first 10 kt SP module running from 2021–2023.

The Physical Sciences Laboratory (PSL) at the University of Wisconsin and the Daresbury Labora-
tory in the UK have recently produced full-scale APAs for the ProtoDUNE-SP project at European
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Figure 2.3: Cross section view of an APA frame near the head end showing the layers of wires
(G,U, V,X) on both sides of the frame that terminate on wire boards, which connect to TPC readout
CE through a capacitor-resistor chain on the CR boards and a connector adapter board.

Organization for Nuclear Research (CERN). Figure 2.4 shows a completed APA produced at PSL
just before shipment to CERN. This effort has greatly informed the design and production planning
for the DUNE detector modules, and ProtoDUNE-SP running has provided valuable validation for
many fundamental aspects of the APA design.

The remainder of this chapter is laid out as follows. In Section 2.2, we present an overview
of the design of the APAs, focusing on the key design parameters and their connection to the
physics requirements of DUNE. In Section 2.3, we discuss quality assurance for the design with an
emphasis on lessons learned from ProtoDUNE-SP construction and operations and a summary of
remaining prototyping efforts being planned before the start of production next year. Section 2.4
summarizes three important interfaces to the APAs: TPC cold electronics (CE), photon detectors
(PD), and the cable routing for both systems. In Section 2.5, we detail the production plan for
fabricating the large number of APAs needed for the experiment including a description of the
main construction sites being developed in the US and UK by the APA consortium. Section 2.6
describes some requirements for handling the large and delicate APAs throughout construction
and presents the design for a custom transport system for delivery to the far detector site for
installation. Section 2.7 reviews the safety considerations for APA construction and handling.
Finally, Section 2.8 summarizes the organization of the APA consortium that is responsible for
building the APAs and provides the high-level cost, schedule, and risk summary tables for the
project.
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Figure 2.4: Completed ProtoDUNE-SP APA ready for shipment to CERN.
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2.2 Design

The physics performance of the SP module is a function of many intertwined detector parameters
including argon purity, drift distance, E field, wire pitch, wire length, and noise levels in the
readout CE. Energy deposits from MIPs originating anywhere inside the active volume of the
detector should be identifiable with near 100% efficiency. This requirement constrains aspects of
the APA design, specifically, the limits on wire pitch, wire length, and choice of wire material. This
section details the design of an individual APA. We begin with an overview of the key fundamental
parameters of the APAs and their connection to the physics requirements of the DUNE experiment.

2.2.1 APA Design Parameters

Each APA is 6m high, 2.3m wide, and 15 cm thick. The underlying support frame is made
from stainless steel hollow tube sections that are precisely machined and bolted together. A fine,
conducting mesh covers the rectangular openings in the frame on both sides to define a uniform
electrical ground plane (GP) behind the wires. The four layers of sense and shielding wires at
varying angles relative to each other completely cover the frame. The wires terminate on boards
that anchor them as well as provide the electrical connection to the TPC readout CE. Starting from
the outermost wire layer, there is first an uninstrumented shielding (grid) plane (strung vertically,
G), followed by two induction planes (strung at ±35.7 ◦ to the vertical, U, V ), and finally the
collection plane (vertical, X). All wire layers span the full height of the APA frame. The two
planes of induction wires wrap in a helical fashion around the long edges and over both sides of
the APA. Figures 2.2 and 2.3 illustrate the layout of the wire layers. Below, we summarize the
key design parameters and the considerations driving the main design choices for the APAs. A
tabulated summary of APA specific requirements is also provided in Table 2.1.

Table 2.1: APA specifications

Label Description Specification
(Goal)

Rationale Validation

SP-FD-6
Gaps between APAs < 15 mm between

APAs on same
support beam;
< 30 mm between
APAs on different
support beams

Maintains fiducial volume.
Simplified contruction.

ProtoDUNE

SP-FD-7
Drift field uniformity
due to component
alignment

< 1% throughout
volume

Maintains APA, CPA, FC
orientation and shape.

ProtoDUNE

SP-FD-8
APA wire angles 0° for collection

wires, ± 35.7° for
induction wires

Minimize inter-APA dead
space.

Engineering calcu-
lation

SP-FD-9
APA wire spacing 4.669mm for U,V;

4.790mm for X,G
Enables 100% efficient MIP
detection, 1.5 cm yz vertex
resolution.

Simulation
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SP-FD-10
APA wire position
tolerance

± 0.5 mm Interplane electron trans-
parency; dE/dx, range, and
MCS calibration.

ProtoDUNE and
simulation

SP-APA-1
APA unit size 6.0m tall × 2.3m

wide
Maximum size allowed for
fabrication, transportation,
and installation.

ProtoDUNE-SP

SP-APA-2
Active area Maximize total ac-

tive area.
Maximize area for data col-
lection

ProtoDUNE-SP

SP-APA-3
Wire tension 6N ± 1N Prevent contact beween

wires and minimize break
risk

ProtoDUNE-SP

SP-APA-4
Wire plane bias volt-
ages

The setup, includ-
ing boards, must
hold 150% of max
operating voltage.

Headroom in case adjust-
ments needed

E-field simula-
tion sets wire
bias voltages.
ProtoDUNE-SP
confirms perfor-
mance.

SP-APA-5
Frame planarity
(twist limit)

<5mm APA transparency. Ensures
wire plane spacing change of
<0.5 mm.

ProtoDUNE-SP

SP-APA-6
Missing/unreadable
channels

<1%, with a goal of
<0.5%

Reconstruction efficiency ProtoDUNE-SP

• APA size: The size of the APAs is chosen for fabrication purposes, compatibility with
over-the-road shipping, and for eventual transport to the 4,850L at Sanford Underground
Research Facility (SURF) and installation into a cryostat. The dimensions are also chosen
so that an integral number of electronic readout channels and boards instrument the full area
of the APA.

• Detector active area: APAs should be sensitive over most of the full area of an APA
frame, with any dead regions between APAs due to frame elements, wire boards, electronics,
or cabling kept to a minimum. The wrapped style shown in Figure 2.2 allows all channels
to be read out at the top of the APA, eliminating the dead space between APAs that would
otherwise be created by electronics and associated cabling. In addition, in the design of the
SP module, a central row of APAs is flanked by drift-field regions on either side (Figure 2.1),
and the wrapped design allows the induction plane wires to sense drifted ionization that
originates from either side of the APA. This double-sided feature is also effective for the
APAs located against the cryostat walls where the drift field is on only one side; the grid
layer facing the wall effectively blocks any ionization generated outside the TPC from drifting
in to the wires on that side of the APA.

• Wire angles: The X wires run vertically to provide optimal reconstruction of beam-induced
particle tracks, which are predominantly forward (in the beam direction). The angle of the
induction planes on the APA, ±35.7 ◦, was chosen to ensure that each induction wire only
crosses a given collection wire once, reducing the ambiguities that the reconstruction must
address. Simulation studies (see next item) show that this configuration performs similarly
to an optimal 45◦ wire angle for the primary DUNE physics channels. The design angle
of the induction wires, coupled with their pitch, also satisfies the requirement of using an
integer multiple of electronics boards to read out one APA.

• Wire pitch: The wire spacing, 4.8mm for (X,G) and 4.7mm for (U, V ), combined with
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key parameters for other TPC systems can achieve the required performance for energy
deposits by MIPs while providing good tracking resolution and good granularity for particle
identification. The SP requirement that it be possible to determine the fiducial volume to
1% implies a vertex resolution of 1.5 cm along each coordinate direction. The ∼4.7mm wire
pitch achieves this for the y and z coordinates. The resolution on x, the drift coordinate, will
be better than in the y–z plane because of the combination of drift velocity and electronics
sampling rate. Finally, as already mentioned, the total number of wires on an APA will
match the granularity of the electronics boards (each front-end mother board (FEMB) can
read out 128 wires, mixed between the U, V,X planes). This determines the exact wire
spacings of 4.8mm on the collection plane and 4.7mm on the induction planes. To achieve
the reconstruction precision required (e.g., for dE/dx reconstruction accuracy and multiple
Coulomb scattering determination), the tolerance on the wire pitch is ±0.5mm.
In 2017, the DUNE FD task force, using a full FD simulation and reconstruction chain,
performed detector optimization studies to quantify the impact of design choices, including
wire pitch and wire angle, on DUNE physics performance. The results indicated that reducing
wire spacing (to 3mm) or changing wire angle (to 45◦) would not significantly affect the
performance for the main physics goals of DUNE, including νµ to νe oscillations and CPV
sensitivity. A key low-level metric for oscillation physics is the ability to distinguish electrons
versus photons in the detector because photon induced showers can fake electron showers
and create neutral current (NC) generated backgrounds in the νe charged current (CC)
event sample. Two important handles for reducing this contamination are (1) the visible gap
between the vertex of the neutrino interaction and the start of a photon shower, and (2) the
accordance of the energy density at the start of the shower with one MIP instead of two.
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Figure 2.5: Summary of electron–photon separation performance studies from the DUNE FD task force.
(a) e–γ separation by dE/dx for the nominal wire spacing and angle (4.7mm/37.5◦) compared to 3mm
spacing or 45◦ induction wire angles. (b) Electron signal selection efficiency versus photon (background)
rejection for the different detector configurations. The 3mm wire pitch and 45◦ wire angle have similar
effects, so the 45◦ curve is partly obscured by the 3mm curve.

A detector spatial resolution much smaller than the radiation length for photons (0.47 cm
vs. 14 cm) allows the gap between the neutrino interaction vertex and a photon conversion
point to be easily visible, and Figure 2.5(a) shows the reconstructed ionization energy loss
density (dE/dx) in the first centimeters of electron and photon showers, illustrating the
separation between the single MIP signal from electrons and the double MIP signal when
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photons pair-produce an e+e−. In the figure, the (dE/dx) separation for electrons and
photons is compared for finer wire pitch (3mm) and optimal wire angle (45◦). The final
electron signal selection efficiency is also shown as a function of the background rejection
rate for different wire configurations in Figure 2.5(b). At a signal efficiency of 90%, for
example, the background rejection can be improved by about 1% using either 3mm spacing
or 45◦ wire angles for the induction planes. This slight improvement in background rejection
with more dense hit information or more optimal wire angles is not surprising, but the effect
on high-level physics sensitivities from these changes is very small. The conclusions of the
FD task force, therefore, were that the introduction of ambiguities into the reconstruction
by increasing the wire angles is not a good trade off, and the increase in cost incurred by
decreasing the wire pitch (and, therefore, increasing the number of readout channels) is not
justified.

• Wire plane transparency and signal shapes: The ordering of the layers, starting from
the active detector region, is G-U -V -X, followed by the grounding mesh. The operating
voltages of the APA layers are listed in Table 2.2. These were calculated by COMSOL
software in order to maintain a 100% ionization electron transparency as they travel through
the grid and induction wire planes. Figure 2.6 shows the field simulation and expected signal
shapes for the bias voltages listed in the table. When operated at these voltages, the drifting
ionization follows trajectories around the grid and induction wires, terminating on a collection
plane wire. The grid and induction layers are completely transparent to drifting ionization,
and the collection plane is completely opaque. The grid layer is present for pulse-shaping and
not connected to the electronics readout; it effectively shields the first induction plane from
the drifting charge and removes a long leading edge from the signals on that layer. These
operating conditions were confirmed by a set of dedicated runs in ProtoDUNE-SP taken with
various bias voltage settings during spring 2019 (see Sec. 2.3.2 for a detailed discussion).

Table 2.2: Baseline bias voltages for APA wire layers for a 100% ionization electron transparency as
they travel through the grid and induction wire planes. These values were calculated by COMSOL
software and confirmed by analytical calculations based on the conformal representation theory as well
as dedicated data from ProtoDUNE-SP.

Anode Plane Bias Voltage
G - Grid −665V
U - Induction −370V
V - Induction 0V
X - Collection 820V
Grounding Mesh 0V

• Wire type and tension: The wire selected for the APAs is 152µm beryllium (1.9%)
copper wire, chosen for its mechanical and electrical properties, ease of soldering, and cost.
The tension on the wires, combined with intermediate support combs on the APA frame
cross beams (described in Section 2.2.5.4), ensure that the wires are held taut in place with
minimal sag. Wire sag can affect the precision of reconstruction, as well as the transparency
of the TPC wire planes. The tension must be low enough that when the wires are cooled,
which increases their tension due to thermal contraction, they stay safely below the break
load of the beryllium copper wire. A tension of 6±1N is the baseline for DUNE, to be
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a) b)

Figure 2.6: Field lines (a) and resulting signal shapes on the APA induction and collection wires (b)
according to a 2D electric field simulation. The bi-polar nature of the induced signals on the U and V
wires together with the uni-polar collection signals on Y are clearly illustrated.

confirmed after ProtoDUNE-SP analysis is completed. See Section 2.2.4 for more details
about the APA wires.

Table 2.3 summarizes some of the principal design parameters for the SP module anode plane
assemblies.

Table 2.3: APA design parameters

Parameter Value
Active height 5.984m
Active width 2.300m
Wire pitch (U, V ) 4.7mm
Wire pitch (X,G) 4.8mm
Wire pitch tolerance ±0.5mm
Wire plane spacing 4.8mm
Wire plane spacing tolerance ±0.5mm
Wire Angle (w.r.t. vertical) (U, V ) ±35.7 ◦

Wire Angle (w.r.t. vertical) (X,G) 0 ◦

Number of wires / APA 960 (X), 960 (G), 800 (U), 800 (V )
Number of electronic channels / APA 2560
Wire material beryllium copper
Wire diameter 152 µm
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2.2.2 Support Frames

The APA frames are built of rectangular hollow section (RHS) stainless steel tubes. Figure 2.7
shows three long tubes, a foot tube, a head tube, and eight cross-piece ribs that bolt together to
create the 6.0m tall by 2.3m wide frame. All hollow sections are 10.2 cm (4 in) deep with varying
widths depending on their role.

The head and foot tubes are bolted to the side and center pieces via abutment flanges welded to
the tubes. In production, the pieces can be individually machined to help achieve the flatness and
shape tolerances. During final assembly, shims are used to create a flat, rectangular frame of the
specified dimensions. The central cross pieces are similarly attached to the side pieces. Figure 2.8
shows models of the different joints.

The APA frames also house the photon detection system (PD system) (Chapter 5). Rectangular
slots are machined in the outer frame tubes and guide rails are used to slide in PD elements from
the edges. (See Section 2.4 for more details on interfacing with the PD system.)

In a FD SP module, pairs of APA frames will be mechanically connected to form a 12.0m tall
structure with electronics for TPC readout at both the top and bottom of this two-frame assembly
and PDs installed throughout. The APA frame design, therefore, must support cable routing to
the top of the detector from both the bottom APA readout electronics and the PDs mounted
throughout both APAs. Section 2.4 discusses the interfaces.

2.2.3 Grounding Mesh

Beneath the layers of sense wires, the conducting surface should be uniform to evenly terminate
the E field and improve the uniformity of field lines around the wire planes. A fine woven mesh
that is 85% optically transparent is used to allow scintillation photons to pass through to the PDs
mounted inside the frame. The mesh also shields the APA wires from spurious electrical signals
from other parts of the APA or the PD system.

In the ProtoDUNE-SP APAs, the mesh was installed in four long sheets, along the length of the
left- and right-hand halves of each side of the APA and epoxied directly to the frame. This approach
to mesh installation was found to be slow and cumbersome. For the DUNE mass production, a
modular window-frame design is being developed, where mesh is pre-stretched over smaller sub-
frames that can be clipped into each gap between cross beams in the full APA frame. This improves
the reliability of the installed mesh (more uniform tension across the mesh) and allows much easier
installation on the APA frame. The mesh will be woven of conducting 304 stainless steel 89µm
wire. It will be mounted on 304 stainless steel 20mm×10mm box section frames, stretched over
the frame with jigs and pneumatic actuators built for the purpose, and TIG welded around the top
surface and again around the side surfaces. Five different panel designs are needed to match the
openings in the APA frames: two for the foot end, two for the head end, and one for the central
panels that are all the same. There are 20 panels per APA. Stainless steel brackets will be fixed
to the inner window sections of the APA frame and the panels will be secured into position using
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Figure 2.7: A DUNE APA frame showing the 13 separate stainless steel tube sections that bolt together
to form a complete frame. The long tubes and foot tube are a 10.2×10.2 cm (4×4 inch) cross section,
the head tube is 10.2×15.2 cm (4×6 inch), and the ribs are 10.2×5.1 cm (4×2 inch).
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Figure 2.8: APA frame construction details. Top: The corner joint between the foot tube and the side
tube. Middle: The joint between the side tube and a rib. Bottom: The joint between the head tube
and the side tube.
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steel fasteners. The design ensures good electrical contact between the mesh and the frame. A
full-scale APA (APA-07) has been built at Daresbury Lab for CE testing at CERN using the mesh
panel design. Figure 2.9 shows images of the mesh design and the prototypes built for APA 7.

a) b)

c) d)

Figure 2.9: APA grounding mesh construction and installation. a) The mesh panel stretching jig, b)
mesh being welded to the support frame, c) model showing the mesh sub-frame (in dark gray) fitting
into the APA frame (green), and d) photo of an installed mesh panel in APA 7.

2.2.4 Wires

The 152µm (0.006 in) diameter beryllium copper (CuBe) wire chosen for use in the APAs is known
for its high durability and yield strength. It is composed of 98% copper, 1.9% beryllium, and a
negligible amount of other elements. Each APA contains a total of 23.4 km of wire.

The key properties for its use in the APAs are low resistivity, high tensile or yield strength, and a
coefficient of thermal expansion suitable for use with the APA’s stainless steel frame (see Table 2.4
for a summary of properties). Tensile strength of the wire describes the wire-breaking stress. The
yield strength is the stress at which the wire starts to take a permanent (inelastic) deformation and
is the important limit for this case. The wire spools purchased from Little Falls Alloys1 for use on
ProtoDUNE-SP were measured to have tensile strength higher than 1380MPa and yield strength

1Little Falls Alloys™, http://www.lfa-wire.com/
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more than 1100MPa (19.4N for 152µm diameter wire). The stress while in use is approximately
336MPa (6N), leaving a comfortable margin.

The CTE describes how a material expands or contracts with changes in temperature. The CTEs
of CuBe alloy and 304 stainless steel are very similar. Integrated down to 87K, they are 2.7mm/m
for stainless steel and 2.9mm/m for CuBe. The wire contracts slightly more than the frame, so for
a wire starting at 6N at room temperature the tension increases to around 6.5N when everything
reaches LAr temperature.

The rate of change in wire tension during cool-down is also important. In the worst case, the
wire cools quickly to 87K before any significant cooling of the much larger frame. In the limiting
case with complete contraction of the wire and none in the frame, the tension would peak around
11.7N, which is still well under the 19N yield tension. In practice, however, the cooling will be
done gradually to avoid this tension spike as well as other thermal shocks to the detectors.

Table 2.4: Summary of properties of the beryllium copper wire used on the APAs.

Parameter Value
Resistivity 7.68 µΩ-cm @ 20◦ C
Resistance 4.4 Ω/m @ 20◦ C
Tensile strength (from property sheets) 1436MPa / 25.8N for 152µm wire
CTE of beryllium copper integrated to 87K 2.9× 10−3 m/m
CTE of stainless steel integrated to 87K 2.7× 10−3 m/m

2.2.5 Wire Boards and Anchoring Elements

To guide and secure the 3520 wires on an APA, stacks of custom FR-4 circuit boards attach all
along the outside edges of the frame, as shown in the engineering drawings in Figure 2.10. There
are 337 total circuit boards on each APA (50,550 in an SP module with 150 APAs), where this
number includes 204 wire boards (X/V/U/G = 30/72/72/30), 72 cover boards to protect the wire
solder pads and traces on the top layer of wire boards, 20 capacitive-resistance (CR) boards, 20
adapter boards to connect the CRs to the CE, 20 G-layer bias boards, and one safe high voltage
(SHV) board to distribute bias voltages to the planes. Figure 2.3 shows the positions of the boards
at the head of the APA and the path connecting TPC wires to the CE.

2.2.5.1 Head Wire Boards

All APA wires terminate on wire boards stacked along the electronics end of the APA frame. The
board stack at the head end is shown in an engineering drawing in the right panel of Figure 2.10. A
photograph showing the head boards and G-bias boards on one of the completed ProtoDUNE-SP
APAs is shown in Figure 2.11. Attaching the wire boards begins with the X-plane (innermost).
Once the X-plane wires are strung on both sides of the APA frame, they are soldered and epoxied
to their wire boards and trimmed. Next, the V -plane boards are epoxied in place and the V wires
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Figure 2.10: Engineering drawings that illustrate the layering of the wire carrier boards that are secured
along the perimeter of the APA steel frames. Left: The full set of V -layer boards. Right: Detail showing
the stack of four boards at the head end of the APA (bottom to top: X, V, U,G).

installed, followed by the U -plane boards and wires, and finally the G-plane boards and wires. The
wire plane spacing of 4.8mm is set by the thickness of these wire boards.

Figure 2.11: The wire board stack at the head end of an APA. The four wire boards within a stack can
be seen on both the top and bottom sides of the APA. Also visible are the T-shaped brackets that will
hold the CE boxes when electronics are installed.

Mill-Max2 pins and sockets provide electrical connections between circuit boards within a stack.
They are pressed into the circuit boards and are not repairable if damaged. To minimize the
possibility of damaged pins, the boards are designed so that the first wire board attached to the
frame has only sockets. All boards attached subsequently contain pins that plug into previously
mounted boards. This process eliminates exposure of any pins to possible damage during winding,
soldering, or trimming.

The X, U and V layers of wires are connected to the CE (housed in boxes mounted on the
2Mill-Max™, https://www.mill-max.com/
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APA) either directly (V ) or through DC-blocking capacitors (U,X). Ten stacks of wire boards
are installed across the width of each side along the head of the APA. The X-layer board in each
stack has room for 48 wires, the V -layer has 40 wires, the U -layer 40 wires, and the G-layer 48
wires. Each board stack, therefore, has 176 wires but only 128 signal channels since the G wires
are not read out. With a total of 20 stacks per APA, this results in 2560 signal channels per APA
and a total of 3520 wires starting at the top of the APA and ending at the bottom. Many of the
capacitors and resistors that in principle could be on these wire boards are instead placed on the
attached CR (capacitive-resistance) boards (Section 2.2.5.3) to improve their accessibility in case
of component failure.

2.2.5.2 Side and Foot Wire Boards

The boards along the sides and foot of the APA have notches, pins, and other location features to
hold wires in the correct position as they wrap around the edge from one side of the APA to the
other.

The edge boards need a number of hole or slot features to provide access to the underlying frame
(see Figure 2.12 for examples). In order that these openings not be covered by wires, the sections
of wire that would go over the openings are replaced by traces on the boards. After the wires are
wrapped, the wires over the opening are soldered to pads at the ends of the traces, and the section
of wire between the pads is snipped out. These traces can be easily and economically added to
the boards by the many commercial fabricators who make circuit boards.

Figure 2.12: Side boards with traces that connect wires around openings. The wires are wound straight
over the openings, then soldered to pads at the ends of the traces. The wire sections between the pads
are then trimmed away.

The placement of the angled wires are fixed by teeth that are part of an injected molded strip glued
to the edge of the FR-4 boards. The polymer used for the strips is Vectra e130i (a trade name for
30% glass filled liquid crystal polymer, or LCP). It retains its strength at cryogenic temperature
and has a CTE similar enough to FR-4 that differential contraction is not a problem. The wires
make a partial wrap around the pin as they change direction from the face of the APA to the edge.
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2.2.5.3 Capacitive-Resistive (CR) Boards

The CR boards carry a bias resistor and a DC-blocking capacitor for each wire in the X and U -
planes. These boards are attached to the board stacks after fabrication of all wire planes. Electrical
connections to the board stack are made through Mill-Max pins that plug into the wire boards.
Connections from the CR boards to the CE are made through a pair of 96-pin Samtec3 connectors.

Surface-mount bias resistors on the CR boards have resistance of 50MW and are constructed
with a thick film on a ceramic substrate. Rated for 2.0 kV operation, the resistors measure
3.0mm× 6.1mm (0.12 in× 0.24 in). The selected DC-blocking capacitors have capacitance of
3.9 nF and are rated for 2.0 kV operation. Measuring 5.6mm× 6.4mm (0.22 in× 0.25 in) across
and 2.5mm (0.10 in) high, the capacitors feature flexible terminals to comply with PCB expansion
and contraction. They are designed to withstand 1000 thermal cycles between the extremes of the
operating temperature range. Tolerance is also 5%.

In addition to the bias and DC-blocking capacitors for all X and U -plane wires, the CR boards
include two R-C filters for the bias voltages4. The resistors are of the same type used for wire biasing
except with a resistance of 5MW, consisting of two 10MW resistors connected in parallel. Wire
plane bias filter capacitors are 39 nF, consisting of ten 3.9 nF surface-mount capacitors connected
in parallel. They are the same capacitors as those used for DC blocking.

The selected capacitors were designed by the manufacturer to withstand repeated temperature ex-
cursions over a wide range. Their mechanically compliant terminal structure accommodates CTE
mismatches. The resistors use a thick-film technology that is also tolerant of wide temperature
excursions. Capacitors and resistors were qualified for ProtoDUNE-SP by testing samples repeat-
edly at room temperature and at −190 ◦C. Performance criteria were measured across five thermal
cycles, and no measurable changes were observed. During the production of 140 CR boards, more
than 10,000 units of each component were tested at room temperature, at LAr temperature, and
again at room temperature. No failures or measurable changes in performance were observed.

2.2.5.4 Support Combs

Support combs are glued at four points along each side of the APA, along the four cross beams.
These combs maintain the wire and plane spacing along the length of the APA. A dedicated jig
is used to install the combs and also provides the alignment and pressure as the glue dries. The
glue used is the Gray epoxy 2216 described below. Before the jig can be removed and production
can continue, an eight-hour cure time is required after comb installation on each side of the APA.
Figure 2.13 shows a detail of the wire support combs on a ProtoDUNE-SP APA.

3Samtec™https://www.samtec.com/
4The V -plane does not carry a bias voltage, so does not require these components.
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Figure 2.13: Left: APA corner where end boards meet side boards. The injection molded teeth that
guide the U and V wires around the edge are visible at the bottom. Right: The wire support combs.

2.2.5.5 Solder and Epoxy

The ends of the wires are soldered to pads on the edges of the wire boards. Solder provides both
an electrical connection and a physical anchor to the wire pads. A 62% tin, 36% lead, and 2%
silver solder was chosen. A eutectic mix (63/37) is the best of the straight tin-lead solders, but
the 2% added silver gives better creep resistance. The solder contains a no-clean flux and does
not need to be removed after soldering. Most of it is encapsulated when subsequent boards are
epoxied in place. At room temperatures and below, the flux is not conductive or corrosive.

Once a wire layer is complete, the next layer of boards is glued on; this glue provides an additional
physical anchor. Gray epoxy 2216 by 3M5 is used for the glue. It is strong and widely used
(therefore much data is available), and it retains good properties at cryogenic temperatures.

2.2.6 The APA Pair

In an SP module, pairs of 6m tall APA frames are mechanically connected at their ends to form a
12m tall readout surface. Figure 2.14 shows a connected pair (turned on its side) with dimensions.
The TPC readout electronics require that the individual APA frames be electrically isolated. The
left panel of Figure 2.15 shows the design for mechanically connecting APAs while maintaining
electrical isolation. The two APAs are connected through a stainless steel link that is attached to
both frames with a special shoulder screw. The steel part of the link is electrically insulated from
the frames using a G10 panel. The links connect to the side tubes with a special shoulder screw
that screws into plates welded to the frame.

53M™ https://www.3m.com/
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Figure 2.14: Diagram of an APA pair, with connected bottom and top APA. The dimensions of the APA
pair, including the accompanying cold electronics and mechanical supports (the yoke), are indicated.

Figure 2.15: Design for the APA-to-APA connections. Left: For the vertical connection there are two
steel links joining the upper APA to the lower APA; one link connected to one APA is shown here. The
steel part of the link is electrically insulated from the frames. Right: Along adjoining vertical edges, two
pins keep neighboring APAs in plane. Two side tubes before engagement with the screw and insulating
sleeve installed are shown at the top, and the engaged side tubes are shown below.
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The APA yoke, shown in Figure 2.16, is a bolted stainless steel structural assembly with a central
support point and a pair of pins to connect to the load. Two T-shaped brackets, referred to as
the structural tees, mount to the head tube of the top APA and provide the mating pin holes
to connect the yoke to the APA. The center support point consists of a M20 stainless steel bolt,
oversize washers, and a PEEK washer for electrical isolation. The yoke is mounted to the top APA
before an APA pair is assembled. To move into the cryostat, the pair is hung from two trolleys that
connect to the structural tees. Once in final position, the load of the APA pair can be transferred
from the trolleys to the detector support system (DSS) in the cryostat through the center support
point of the yoke. To accomplish this, the M20 bolt and washer assembly is inserted from the
bottom of the yoke and the threaded end of the bolt connects to the DSS.

Figure 2.16: The yoke at the top of an APA pair that provides connection to the DSS.

Adjacent APA pairs are kept in plane with each other by simple insertion pins at the top and
bottom of the side tubes. The pins are made up of a screw and an insulating sleeve to ensure
electrical isolation, and each pin engages a slot in the adjacent APA pair side tubes. The right
panel of Figure 2.15 shows a schematic of the side pin connectors before and after insertion.

Once installed in the detector, a physical gap of 12mm exists along this vertical connection between
all adjacent APAs at room temperature. Since the APAs are suspended under the stainless steel
DSS beams, which contract similarly to that of the APA frames, the gaps between most adjacent
APAs stay about the same (12mm) in the cold. The DSS beams, however, are segmented at 6.4m
length, and each beam segment is independently supported by two DSS feedthroughs, one of which
does not allow lateral movement. As a result, the gaps between DSS beams open up in the cold by
another 17mm, making the physical gaps 29mm as shown in Figure 2.17. The actual gap between
the APAs active width 28mm is approximately 16mm wider than the physical gap (45mm) in the
two scenarios described above.

To minimize the loss of signal charge over the gaps between APAs in ProtoDUNE-SP, special elec-
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Figure 2.17: Illustration of the gap width between APAs

trodes (electron diverters) were installed along the vertical gaps to nudge the incoming electrons
into the active regions of the APAs. The data from ProtoDUNE-SP are being used to study the
impact of using electron diverters and determine the need for them in DUNE. See Section 2.3
for a discussion of the ProtoDUNE-SP data analysis (ProtoDUNE-SP had some gaps with elec-
tron diverters installed and some without, enabling comparisons of the tracking and calorimetry
performance in the two cases).

2.2.7 APA Structural Analysis

The APAs will be subjected to a variety of load conditions throughout construction, installation,
and operation of the experiment, so it is important to analyze carefully and confirm the design
of the mechanical components. A structural and safety analysis was performed to confirm the
strength of the APA frame, the APA yoke, and the APA-to-APA link. The full report can be
found at [8]. As noted, the way the APA frame is supported and loaded changes during the
construction and transport of the APA. Twenty different load cases were checked. These load
cases cover the handling of the bare frame, the APA during wiring, the fully integrated APA, and
the APA pair. The analysis covered the loaded APA pair in the installed warm and dry state as
well as spatial and transient thermal gradients that might be encountered during cool down.

The masses of components mounted on the frame were determined from the material densities
and the geometry defined in the 3D models. Loads from the supported masses and the APA wire
load were applied to the frame in the analysis to replicate the way loads are applied to the actual
frame. The analysis was performed in accordance with the standard building code for large steel
structures, the ASICs Specification for Structural Steel Buildings (AISC document 360-10). For
stainless steel structures, the ASIC publication Design Guide 27: Structural Stainless Steel was
also applied. The analysis was performed using the Load and Resistance Factor Design method
(LRFD).

Per LRFD, a load factor of 1.4 was applied to all loads and to the self-weight of the APA frame.
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The factored loads were used to calculate the required strength or stress. Strength reduction
factors were assigned to the strength or stress rating of the component or material. The strength
reduction factors determined the allowable strengths and the design was considered to meet code
as long as the allowable strength of the material or component is greater than the required strength
as determined by the factored loading.

In order to evaluate the structure, a finite element analysis (FEA) model of the APA frame was
built in SolidWorks Simulation6. For each load case, proper constraints were defined and factored
loads were applied. The stress in the frame members were directly extracted from the model. Also
extracted from the model were the forces and moments acting on the welded and bolted joints.
These forces and moments and methods from code were used to determine the required strength.
The allowable strength was also determined using methods from the code. For transportation
cases, the analysis was used to determine that the maximum shock or g-load the APA frame can
tolerate is 4g (39.2m/s2). This value has been incorporated into the requirements for the design
of the transport frame.

Two thermal cases were run. In one case, a steady state thermal gradient of 17K/m was applied
to the frame in addition to the installed state loading. The second thermal case was a transient
case. In this case, the fastest cool down rate the APA frame can tolerate without over stressing
the wires and wire solder/epoxy joints was estimated. The wire cools faster than the frame and
the cool-down rate is limited by a 75 ◦C allowable differential temperature between the frame and
the wire. The estimation of the differential was done using a conservative method that is described
in the section that presents the results for case 20 in the APA analysis document. The allowable
cool down rate of the ambient environment is 70 ◦C/hr.

In addition to the frame, the yoke was also analyzed for strength. These components are not
subjected to multiple load states and see their maximum loads when in the installed state. The
yoke was analyzed using FEA to check stress and buckling of the side plates. The APA -to-APA
link was checked using methods for pinned connections defined in code.

Results for the frame analysis show the frame members are most heavily stressed in the transporta-
tion cases. This is expected because the g-load was increased until strength limits were reached.
Here the ratio of allowable to required strength is 1.1 for both the beam structural members and
for the welds and 1.5 for the bolts. The results for the yoke analysis show that the allowable stress
over the required strength for the yoke plates is 2.2. The ratio of the load that will cause buckling
to the applied load is 33.

The structural analysis clearly shows the APA frame members, welds, and bolts are strong enough
to carry the loads.

6https://www.solidworks.com/
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2.3 Quality Assurance

The most important and complete information for assuring the quality of the APA design, com-
ponents, materials, and construction methods comes from the construction and operation of
ProtoDUNE-SP. We have learned much about the design and fabrication procedures that has
informed the detailed design and plans for the DUNE APA construction project. ProtoDUNE-SP
included six full-scale DUNE APAs instrumenting two drift regions around a central cathode. Four
of the ProtoDUNE-SP APAs were constructed in the USA at the University of Wisconsin-PSL,
and two were made at Daresbury Laboratory in the UK. All were shipped to CERN, integrated
with PDs and CE, and tested in a cold box prior to installation into the ProtoDUNE-SP cryostat.
Figure 2.18 shows one of the drift regions in the fully constructed ProtoDUNE-SP detector.

Figure 2.18: One of the two drift regions in the ProtoDUNE-SP detector at CERN showing the three
installed APAs on the left.

2.3.1 Results from ProtoDUNE-SP Construction

A thorough set of quality control (QC) tests were performed and documented throughout the
fabrication of the ProtoDUNE-SP APAs. The positive outcomes give great confidence in the
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quality of the overall APA design and construction techniques. Here we summarize some of the
testing that was done for ProtoDUNE-SP and the results.

After each wire layer was applied to an APA, electrical continuity between the head and foot
boards was checked for each wire. This test is most useful for the U and V layers, where metal
traces on the side boards can be damaged during construction. All boards were visually inspected
as construction proceeded.

Channels were checked for isolation. In the beginning, wire-to-wire isolation was measured over a
long period of time, and no problems arose. In the end, each wire was individually hipot tested
(a dielectric withstand test) at 1 kV. No failures were ever seen. However, leakage currents were
seen to be highly dependent on relative humidity. The surface of the epoxy has some affinity for
moisture in the air and provides a measurable leakage path when relative humidity exceeds about
60%. Tests have confirmed that in a dry environment, such as the LAr cryostat, these leakage
currents disappear.

Wire tension was measured for all wires at production. Figure 2.19 displays the measured ten-
sions for wires on the instrumented wire planes (X,U, V ) for the six ProtoDUNE-SP APAs, four
constructed at PSL in the US and two at Daresbury Laboratory in the UK. In total, 4.4% of the
14,972 wires considered for this analysis had a tension below 4N, and 22.5% were above 6N. A
wire which has a tension higher than specification should not impact the physics in any meaningful
way. Wires with tension lower than specification could move slightly out of position and impact
detector function primarily through modifying the local E field. E field modification can lead to
the number of ionization electrons being incorrectly reconstructed in the deconvolution process
or alter the transparency so that less than 100% of the ionization electrons reach the collection
plane. Because these processes change the amount of reconstructed charge, they would alter the
reconstruction of the energy deposited by charged particles near these wires. A further complica-
tion from very low-tension wires might be an increase in noise level, introduced by wire vibrations,
which can lead to vortex shedding. Each of these impacts is expected to be quite small, but to
confirm, cosmic muon tracks in ProtoDUNE-SP data are now being used to test if differences in
response can be seen on wires with particularly low tension. The target tension for DUNE APAs
has already been increased to 6N, and these ProtoDUNE-SP studies will quantitatively inform a
minimum tension requirement, but no challenges in meeting specifications are foreseen based on
current knowledge from ProtoDUNE-SP construction.

Wire tension measurements were also performed for a subset of wires on each APA after arriving
at CERN. Figure 2.20 shows the comparison of tension values measured at CERN versus at the
production site for the selected subset of wires from each wire plane. Based on the traveler
documents provided by the production sites, wires having outlier tension values were selected
from each APA for re-measurement at CERN. In addition, a set of randomly selected wires from
each plane was measured. In total, for six APAs, ∼1500 wires had their tension re-measured at
CERN. Measurements took place in the clean room with APAs hanging vertically, the first time
the tensions were sampled in this orientation. Tension measurements were performed by using the
laser-photodiode based method, the same as at the production sites.

Finally, to test if a cold cycle had any effect on the wire tension, samples of wires were measured
again after the cold box tests at CERN. This is the only tension data we have after a cold-cycle
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Figure 2.19: Distributions of wire tensions in the ProtoDUNE-SP APAs for wires longer than 70 cm, as
measured during production at PSL and Daresbury. For the X-plane, every wire has the same length
(598.39 cm), and so every wire is included. The histograms for the six APAs are stacked.
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Figure 2.20: Comparison of wire tensions upon arrival at CERN versus at the production sites for a
sample of wires on each of the ProtoDUNE-SP APAs.
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for ProtoDUNE-SP APAs. Figure 2.21 presents the results, showing no significant change in the
resonant frequency of the wires, indicating cold cycle does not have a significant effect on wire
tension.
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Figure 2.21: Comparison of wire tensions after the cold box test versus before at CERN for a sample
of wires on each of the ProtoDUNE-SP APAs.

2.3.2 Results from ProtoDUNE-SP Operation

Several useful analyses for evaluating the APA design have been carried out including monitoring
the number of non-responsive or disconnected channels in the detector, studying the impact of
the electron diverters on reconstruction and calorimetry, and measuring the change in electron
transparency with wire bias voltage. The status of these studies is presented below.

2.3.2.1 Disconnected Channels

APA channels with a “broken connection” can be identified in ProtoDUNE-SP data by comparing
channels that do not record hits during detector runs against channels that do respond to the
internal calibration pulser system on the FEMBs. If pulser signals are seen on a channel with
no hits, this most likely points to a mechanical failure in the wire path to the electronics. The
failure could be, for example, at a bad solder connection, a damaged trace on a wire board, or a
faulty connection between a wire, CR, and CE adapter boards. Studies have been done using data
throughout the ProtoDUNE-SP run, looking for channels non-responsive to ionization. Note that
this analysis is insensitive to the X-plane wires that face the cryostat walls since no ionization
arrives at those wires.

The results show a very low count of permanently disconnected channels in the ProtoDUNE-SP
APAs (28 channels out of 12,480 channels facing the drift volume). In addition, we identified 21
channels that are intermittently not responsive, most probably due to APA problems. This is
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summarized in tables 2.5 and 2.6. The fractions of disconnected and intermittent channels are
low, 0.22% and 0.17%, respectively.

Table 2.5: Summary of disconnected channels per plane in ProtoDUNE-SP due to mechanical failures
in the APAs.

U -plane V -plane X-plane Total Channels Rate Total
Disconnected 16 8 4 12,480 0.22% 0.39%Intermittent 7 7 7 0.17%

Table 2.6: Summary of disconnected channels per APA in ProtoDUNE-SP due to mechanical failures
in the APAs.

APA 1 APA 2 APA 3 APA 4 APA 5 APA 6
Disconnected 4 5 8 3 1 7
Intermittent 10 0 1 4 3 3

So far, analysis of data throughout the ProtoDUNE-SP run shows no evidence of increasing num-
bers of disconnected or intermittent channels.

2.3.2.2 Effect of Electron Diverters on Charge Collection

Active strip-electrode electron diverters were installed in ProtoDUNE-SP between APAs 1 and 2
(ED12) and between APAs 2 and 3 (ED23), which are both on the beam-right side of ProtoDUNE-
SP for the 2018-2019 run. The two inter-APA gaps on the beam-left side did not have electron
diverters in them. ED12 developed an electrical short early in the run, and as a consequence, both
ED12 and ED23 were left unpowered for the beam run and all but a small number of test runs after
the beam run. A voltage divider on the electron diverter HV distribution board provided a path to
ground, and so the electron diverter strips were effectively grounded. Since they protrude into the
drift volume in front of the APAs, the grounded diverters collect nearby drifting charge instead of
diverting it towards the active apertures of the APAs, leading to broken tracks with charge loss
in the gaps. When powered properly, charge is primarily displaced away from the gap, and tracks
that are more isochronous provide good measurements of the charge arrival time delays due to the
longer drift paths of diverted charge. Figure 2.22 shows the collection-plane view of the readout
of APAs 3 and 2 for a test run in which ED23 was powered at its nominal voltage. Figure 2.23
shows the collection-plane view of a track crossing the drift volumes read out by APAs 6 and 5,
which do not have an electron diverter installed between them. Timing and spatial distortions in
the absence of diverters appear minimal.

The impact of charge distortions can be seen in Figure 2.24, which shows the average dQ/dx
distributions for ProtoDUNE-SP run 5924, which has ED12 at ground voltage, ED23 at nominal
voltage, and no diverters on the beam-left side of the detector between APAs 4, 5, and 6. Pro-
nounced drops in the charge collected near ED12 (grounded diverter) are seen, while much smaller
distortions are seen elsewhere. Run 5924 was taken while the grid plane in APA 3 was charging
up, resulting in artifacts in the dQ/dx measurements with a period of three wires. APA 2 has an
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artifact from an ASIC with a slightly different gain reading out channels near the boundary with
APA 1, causing even and odd channels to be offset.

Figure 2.22: Collection-plane charge signals in ProtoDUNE-SP for a single readout window in APAs 3
(left) and 2 (right) for a test run in which ED23 was powered at its nominal voltage. The horizontal
axis is wire number, arranged spatially along the beam direction, and the vertical axis is readout time.
The event is run 5924, event 275.

2.3.2.3 Effect of Wire Support Combs on Charge Collection

Inclusive distributions of charge deposition on each channel can be made with ProtoDUNE-SP data
using the cosmic-ray tracks. Tracks that cross from the cathode to the anode have unambiguous
times even without association with PDs, and thus distance-dependent corrections to the lifetime
can be made. The reconstruction of tracks in three dimensions makes use of the charge deposited
in each of the three wire planes. Maps of the median dQ/dx response have been made for each
plane in each APA in the (y, z) plane, the plane in which the APA resides. The granularity of
these maps is the wire spacing, in both dimensions, and so the charge response of small segments
of wires is measured. These maps are projected onto the U , V , y, and z coordinate axes in order
to visualize more easily the impacts of localized detector inhomogeneities.

The wire-support combs are approximately evenly spaced in the y coordinate. In order to inves-
tigate the impact of the wire combs on charge collection and induction signals, the average of
the median binned dQ/dx values as a function of y is shown for U , V , and collection-plane (Z)
wires in Figure 2.25. APA 6, which is in the middle of the detector and thus is minimally affected
by features on the neighboring field cages, is chosen so the effects of the combs are most visible,
though similar effects are seen in all six APAs in ProtoDUNE-SP. Localized dips of the order of
2% in the average signals can be seen at the locations of the combs in the U and V views, while
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Figure 2.23: Collection-plane event display for APAs 6 (left) and 4 (right). No electron diverter was
installed between these two APAs. The event is run 5439, event 13.

the collection-plane channels show smaller dips and other features. Charge is expected to divert
around the dielectric combs after they charge up, and if the diversion is purely in the vertical
direction, then the impact on the collection-plane response is expected to be suppressed. The
induction-plane response may be understood as the result of the dielectric comb locally polarizing
in the field of the drifting charge, thus modifying the E field at the wires. This analysis well
exhibits the uniformity of the response of the ProtoDUNE-SP APAs as well as the level of detail
that can be extracted from TPC data for the precise calibration of the SP modules.

2.3.2.4 Wire Bias Voltage Scans and Electron Transparency

A set of dedicated runs were taken at ProtoDUNE-SP in order to confirm the bias voltage settings
calculated by the COMSOL software and presented in Section 2.2.1. In particular, the bias voltages
in the G (grid), (induction) U , and (collection) X wire plane were uniformly reduced from 5% to
30% relative to the nominal settings. For each wire plane, the transparency condition depends
on the ratio of the E field before and after the wire plane. Therefore, in the situation of uniform
reduction of the bias voltages, some ionization electrons are expected to be collected by the grid
plane, leading to a loss of ionization electrons collected by the X wires. Figure 2.26 shows the
results from each of six APAs in ProtoDUNE-SP. The ratio “R”, ranging from 0.7 (30% reduction)
to 0.95 (5% reduction), represents the different bias voltage settings used in these runs. “T”
represents the transparency of the ionization electrons, which is proportional to the number of
ionization electrons collected by the X wire plane. As a result of the significant space charge
effect in ProtoDUNE-SP, the sources of ionization electrons (presumably dominated by cosmic
muons) are different for different APAs. To facilitate the comparison among different APAs, the
transparency at each bias voltage setting is normalized by the transparency at the highest bias
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Figure 2.24: The dQ/dx distributions as a function of the collection wire number zoomed in near the
gaps, using cosmic ray muons in ProtoDUNE-SP run 5924. The electron diverters are only instrumented
for the gaps at the beam right side (x < 0). The electron diverter between APA 2 and APA 3 was
running at the nominal voltage while the electron diverter between APA1 and APA 2 was turned off.
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Figure 2.25: Average dQ/dx on the U , V , and collection-plane (Z) wires in APA 6 as a function of
the height y from the bottom of the ProtoDUNE-SP detector.
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voltage setting (R=0.95). Except for APA 3, all APAs show a similar trend in the change of
transparency. The spread represents the uncertainty in calculating the transparency. The grid
plane of APA 3 was found to be disconnected since December 2018, which led to incorrect bias
voltage settings in these runs. This explained the abnormal behavior in its transparency data.
Two sets of predictions (COMSOL vs. Garfield) are compared with the ProtoDUNE-SP data.
The ranges of R in these predictions are different from that of the ProtoDUNE-SP data, since
these two predictions were obtained prior to the ProtoDUNE-SP data taking. The COMSOL
prediction is clearly confirmed by the ProtoDUNE-SP data, which also validates the nominal bias
voltage settings listed in Section 2.2.1. The incorrect prediction from the Garfield simulation is
attributed to inaccurate E field calculations near the boundary of the wires (152µm diameter),
which is much smaller than the wire pitch (∼4.79mm).
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Figure 2.26: The transparency results from the bias voltage scan in ProtoDUNE-SP. "R", the ratio to
the nominal bias voltages, represents different bias voltage settings. "T" represents the transparency of
the ionization electrons, which is proportional to the number of ionization electrons collected by the X
wire plane. The prediction of COMSOL (Garfield) is confirmed (refuted) by the ProtoDUNE-SP data.
The abnormal behavior of APA 3 is a result of incorrect bias voltage settings. See Section 2.3.2.5 for
more discussion.

2.3.2.5 Abnormal Behavior of G-plane on APA 3

Dedicated studies of dQ/dx, the recorded ionization charge per unit path length from cosmic muon
tracks, have been performed for each APA. For runs immediately after periods when the cathode
HV was off for an extended length of time, of the order of a few days, the average of the dQ/dx
distribution on APA 3 collection and induction planes was found to be systematically lower than for
the other APAs. The dQ/dx would then slowly increase with time. Detailed investigations showed
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that this behavior is explained by the assumption that the G-plane on APA 3 is not connected
to a proper reference voltage. When the cathode HV is turned on after a long off period, the
G-plane, initially at a floating potential close to ground, slowly charges up towards a negative HV,
re-establishing transparency for the ionization electrons towards the signal planes. It takes about
100 hours for the G-plane to reach a negative potential close to the nominal value that allows full
transparency.

We are presently evaluating more accessible locations for the connection of the bias HV cables
from the cryostat feedthroughs to the APAs, to minimize connection problems with the SHV
connectors. In addition, during installation, we will include as part of the standard checkout
procedure either a direct confirmation of the bias connection between a wire plane and its bias
input on the feedthrough flange, or an indirect measurement of the connection by recording the
charging current in the bias line when increasing the bias voltage to its nominal value. The
construction and integration tests with a pre-production APA, described below in Sec. 2.3.3, will
fully test any changes to the SHV system.

2.3.3 Final Design Prototyping and Test Assemblages

To confirm modifications made to the APA design and production process since ProtoDUNE-SP
and to work through the multi-APA assembly procedures, several prototypes are planned for 2020.

A seventh ProtoDUNE-SP-like APA was completed at Daresbury Laboratory by utilizing an up-
graded winding machine with the new interface arm design (see Section 2.5.1). This APA was
shipped to CERN in March 2019 for a test of the CE in the cold box, expected to be performed
in 2020. In addition, work is in progress to implement a new winding head on the APA winding
machines, with automatic tension feedback and control on the wires. These same upgrades will be
implemented on the winding machine at PSL in 2020.

A top and bottom version of the new supporting APA frame design were built in spring 2019 at
PSL and shipped to Ash River. A full test of the APA pair assembly procedure was successfully
completed in early October 2019 (see Figure 2.27). The procedure of routing the CE cables
along the side tubes of the APA pair was also successfully tested. In addition, a preliminary
test of the installation of PD system prototype cables inside the APA frames and the mating of
cable connections between the lower and upper APA was performed. See Section 2.4.3 for more
information on cable routing in the APA frames.

Also planned is the construction of a pre-production APA for an integration test with the CE and
PD system systems at CERN, which will fully test all interface aspects. This test will inform the
final design review of the APA system in May 2020.

In addition, three fully wound APAs with pre-installed PD system cables, will be built by the end
of 2020 for deployment in ProtoDUNE-SP-II, replacing the detectors of one of the drift volumes.
This will allow a test of all APA components, including the larger size frames and geometry
boards and a final tuning of the winding machines. The three APAs will be shipped to CERN,
integrated with CE boxes and PD system detectors, and tested in the cold box before installation
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in ProtoDUNE-SP. The pre-production APA mentioned above could serve as one of the three if no
design modifications are required. These final prototyping activities will serve to test all critical
aspects of the APA design before starting DUNE APA production in 2020.

Figure 2.27: APA pair assembly and integration tests at Ash River.

2.4 Interfaces

The interfaces between the APA consortium and other detector consortia, facilities, and working
groups covers a wide range of activities. Table 2.7 lists the interface control documents under
development. In the following sections, we elaborate slightly on the interfaces with the TPC
readout electronics and the PD system, as well as the cable routing plan for both systems. Other
important interfaces are to the TPC HV system (the FC) and the DSS inside the DUNE cryostats.

2.4.1 TPC Cold Electronics

The TPC readout electronics (CE) are directly mounted to the APA and thus immersed in LAr
to reduce the input capacitance and inherent electronic noise. With the wire-wrapped design, all
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Table 2.7: APA Interface Links.

Interfacing System Linked Reference
TPC electronics DocDB 6670 [9]
Photon detector system DocDB 6667 [10]
Drift high voltage system DocDB 6673 [11]
DAQ DocDB 6676 [12]
Slow controls and cryogenics DocDB 6679 [13]
Integration facility DocDB 7021 [14]
Facility interfaces DocDB 6967 [15]
Installation DocDB 6994 [16]
Calibration DocDB 7048 [17]
Software computing DocDB 7102 [18]
Physics DocDB 7075 [19]

2560 wires to be read out (recall 960 are G-plane wires used for charge shielding only and are
not read out) terminate on wire boards that stack along one end (the head) of the APA frame.
The 2560 channels are read out by 20 FE motherboards (128 channels per board), each of which
includes eight 16-channel FE ASICs, eight 16-channel analog-to-digital converter (ADC) ASICs,
LV regulators, and input signal protection circuits. Figure 2.28 shows a ProtoDUNE-SP APA
during integration at CERN with the TPC electronics partially installed and a cable tray mounted
above.

Figure 2.28: The head region of an APA frame during installation at ProtoDUNE-SP. On the left the
head wire boards, CR boards, and yoke are clearly visible. On the right, five of the 20 CE boxes have
been installed.

The mechanical interface includes the support of the 20 CE boxes, each housing a 128 channel
FEMB. They are the gray vertically oriented boxes on the right in Figure 2.28.

The electrical interface covers the choice of wire-bias voltages to the four wire planes so that 100%
transparency can be achieved for drifting ionization electrons, cable connection for the wire bias
voltages from the cryostat feedthroughs to the CR boards, interface boards connecting CR boards
and CE boxes, filtering of wire-bias voltages through CR boards to suppress potential electronic
noise, and an overall grounding scheme and electrical isolation scheme for each APA. The last item
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is particularly important to achieve the required low electronic noise levels. See Section 4.2 for
information on all parts of the CE system.

2.4.2 Photon Detection System

The PD system is integrated into the APA frame to form a single unit for detecting both ionization
charge and scintillation light. The APA frame design must also accommodate cables for the PDs.
Individual PD units are inserted through 10 slots machined in the side steel tubes of the frame
and supported by rails mounted in the APA. Figures 2.7 and 2.8 show examples of these features
in the frame. Figure 2.29 shows a PD module being inserted into a slot in the frame and mating
with an electrical connector mounted along the center tube in the APA.

The interface between the PD system and APAs involves the mechanical hardware design and
production, cable routing, and integration, installation, and testing procedures. The electrical
interface includes a grounding scheme and electrical insulation. The strict requirements on noise
from the CE means the electrical interface must be defined together with the SP TPC electronics
consortium.

For more information on the PD system, see Chapter 5

2.4.3 Cable Routing

Cable routing schemes for both the TPC electronics and PD system must be integrated into the
design of the APAs. The CE signal and power cables must be routed so that the head end of
the lower APA in the two-APA assembly can be reached. CE cables, therefore, will be routed
inside the two side beams of the APA frames. Figure 2.30 depicts such a cable routing scheme.
The CE cables at the lower end of the lower APA are formed into two bundles, each about 50mm
in diameter. Installation of the cables through the side tubes of the two stacked APAs is done
by pulling them through a large, smooth conduit placed inside each of the side tubes. To fully
accommodate the cables, the APA frame hollow tube sections were enlarged relative to the PD
design from 7.6 cm to 10.2 cm (3 in to 4 in) deep. Prototyping of this solution was carried out at
PSL during summer 2018, as shown in the right photograph in Figure 2.30.

The concept being developed for the cables of the PDs is depicted in Figure 2.31. The cables
run along the outside of the central tube in the APA frame, joining together into a bundle of five
cables by the time they reach the top of the frame. Cables from the bottom APA in a stack are
fed through the foot tubes to the upper APA and ran along the outside tubes on either side. In
this way, all PD cables make it to the head of the upper APA.
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Figure 2.29: Top: A PD module in ProtoDUNE-SP being inserted into a slot in the frame. Bottom:
The PD unit mating with an electrical connector mounted along the center tube in the APA.
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Figure 2.30: Cable routing scheme. Left: Conduit for the CE cables protruding from the end of the
long side tubes of the APA frame. Right: One of the CE cable bundles being pulled through conduit of
equal length to the two stacked APAs. The cable bundle is wrapped with a protective cover of braided
PET plastic.

2.5 Production Plan

The APA consortium oversees the design, construction, and testing of the DUNE SP module APAs.
Production sites are being planned in the USA and UK. This approach allows the consortium to
produce APAs at the rate required to meet overall construction milestones and, at the same time,
reduce risk to the project if any location has problems that slow the production pace.

The starting point for the APA production plan for DUNE SP modules is the experience and lessons
learned from ProtoDUNE-SP construction. For ProtoDUNE-SP, the APAs have been constructed
on single production lines set up at PSL in the USA and at Daresbury Laboratory in the UK. The
plan now is to construct APAs for DUNE at US and UK collaborating institutions with ten total
production lines, four in the UK and six in the US.

A production line is centered around a wire winding robot, or winder, that enables continuous
wrapping of wire on a 6m long frame (see figures 2.32 and 2.33). Two process carts are needed
to support the APA during board epoxy installation and QC checks, among other construction
processes. A means of lifting the APA in and out of the winder is also required. A gantry-style
crane was used for ProtoDUNE-SP construction.

The fabrication of an APA is a three-stage process requiring about 50 eight-hour shifts to complete,
with a mix of engineering, technical, and scientific personnel. The first stage, estimated at about
four shifts, is a preparation stage in which PD system cables and rails, wire mesh panels, comb
bases, X-plane wire boards, and tension test boards are installed on the bare APA frame. In
the second and longest stage, lasting 38–40 shifts, the APA occupies a winding machine. All the
wires are strung and attached in this stage, and tension and electrical tests of each channel are

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 2: Anode Plane Assemblies 2–60

Figure 2.31: A concept for PD system cable routing (shown horizontal). Top: The bottom APA. The
PDs are the ten transparent pieces spanning the frame – two between each set of ribs. They connect
to their cables at the center tube. The cables run up either side of the center tube (outside the tube)
joining with others and forming two bundles of five cables by the time they reach the foot tube at the
right end of this image. Middle: The top APA. The two five-cable bundles from the lower APA continue
to the head tube of the upper APA (at the right in this image) where they go through the head tube.
The cables from the PDs in the upper APA run up the outside of the center tube and form bundles
which also go through the head tube. Bottom: Detail showing the five PD system cables gathered
together at the foot tube (the top) of the bottom APA.
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performed. The third and final stage, requiring an estimated 8 shifts, is completed in a process
cart and involves the installation of wire harnesses, G-bias boards, and cover boards. Protection
panels are then installed over the wire planes and the completed APA is transferred to a transport
frame (see Section 2.6). During ProtoDUNE-SP construction, we were able to complete an APA
in 64 shifts, on average. Several improvements to the process and tooling have been developed
since then to reduce this to the maximum allowed 50 shifts.

The approximately 40 shifts that an APA spends in the winding machine combined with the total
number of winders determines the overall pace of production since the pre- and post-winding
stages can be done in parallel with winding. The overall production model assumes that the APA
production sites run one shift per day, that all winding machines are operated in parallel, and
that two weeks per year are devoted to maintaining equipment. The work plan at production sites
further assumes a steady supply of the necessary hardware for APA wiring, such as completed
frames, grounding mesh panels, and wire boards. Detailed planning is underway within the APA
consortium for collaborating institutions to help source and test components and ensure their
on-time delivery to production sites.

Having several APA production sites in two different countries presents quality assurance and
quality control (QA/QC) challenges. A key requirement is that every APA be the same, regardless
of where it was constructed. To achieve this goal, we are building on ProtoDUNE-SP experience
where six identical APAs were built, four in the US and two in the UK. The same tooling, fabrica-
tion drawings, assembly, and test procedures were used at each location, and identical acceptance
criteria were established at both sites. This uniform approach to construction is necessary, and the
APA consortium is developing the necessary management structure to ensure that each production
line follows the agreed-upon approach to achieve APA performance requirements.

2.5.1 Assembly Procedures and Tooling

The central piece of equipment used in APA production is the custom-designed wire winder ma-
chine, shown schematically in Figure 2.32 and in use in Figure 2.33. An important centerpiece of
the winder machine is the wiring head. The head releases wire as motors move it up and down and
across the frame, controlling the tension in the wire as it is laid. The head then positions the wire
at solder connection points for soldering by hand. The fully automated motion of the winder head
is controlled by software, which is written in the widely used numerical control G programming
language. The winder also includes a built-in vision system to assist operators during winding,
which is currently used at winding start-up to find a locator pin on the wire boards.

In the scheme used for wiring the ProtoDUNE-SP APAs, an APA moved on and off the winder
machine several times for wiring, soldering, and testing. Several design changes were developed in
2018–2019 to enable the APA to remain on the winding machine throughout the wiring process.
The design concept allows the winder head to pass from one side to the other nearly continuously.
The interface frames at either end have been replaced by retractable linear guided shafts. These
can be withdrawn to allow the winding head to pass around the frame over the full height of the
frame. These shafts have conical ends and are in shafts fixed to the internal frame tube to provide
guides to location. This design change does not alter the design of the frame itself, but it does
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Figure 2.32: Schematic of the custom-designed APA wiring machine. This shows the updated version
with upper and lower supports and the spherical bearings for rotating the APA on the winder.

Figure 2.33: Left: Partly wired ProtoDUNE-SP APA on the winding machine at Daresbury Lab, UK.
Right: Partly wired ProtoDUNE-SP APA on the winding machine during wire tension measurements at
PSL.
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allow for rotation in the winding machine. It is now possible to carry out board installation, gluing,
and soldering all while on the winding machine. This eliminates any transfer of the APA to the
process cart for the entire production operation, making it an inherently safer and faster production
method.The upgraded design has been implemented on the winding machine at Daresbury, which
has been used to build a new prototype, APA 7 (Figure 2.34). All winding, board installation,
gluing, soldering and testing operations are being carried out in the winding machine. APA 7 also
incorporates the pre-built grounding mesh sub-frames, another new feature that saves significant
time in production.

Figure 2.34: Left: Upgraded winding machine with new interface arm design being used to wire APA-07.
Fitted mesh panels are also shown installed. Right: The V-layer soldering process at the head end of
APA-07. Soldering can now be done with the APA in the winding machine.

The wiring head has also been updated. The upgraded design offers real-time tension feedback
and control, which will save time in wiring and produce better tension uniformity across wires. A
prototype of the new head has been constructed and is undergoing extensive commissioning and
qualification.

An important element in the long-term use of the winders will be maintenance. During ProtoDUNE-
SP construction winding machine problems traceable to a lack of routine maintenance occurred
from time to time, shutting the production line down until repair or maintenance was performed.
We will formulate a routine and preventive maintenance plan that minimizes winder downtime
during APA production for the SP module.

The large process carts are important to the flow of activities during production (Figure 2.35). The
process carts are used to hold APAs during wiring preparations, for QC checks after wiring, and
to safely move APAs around within the assembly facility. Process carts are fitted with specialized
360◦ rotating casters that allow the cart, loaded with a fully assembled APA, to maneuver corners
while moving the large frames between preparation, assembly, and packing/shipping areas.
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Figure 2.35: A ProtoDUNE-SP APA being moved around the PSL production facility on a process cart.

2.5.2 APA Production Sites

Multiple APA production lines spread over several sites in the USA and the UK will provide some
margin on the production schedule and provide backup in the event that technical problems occur
at any particular site.

The space requirements for each production line are driven by the size of the APA frames and
the winding robot used to build them. The approximate dimensions of a class 100,000 clean space
needed to house winder operations and associated tooling is 175m2. The estimated requirement
for inventory, work in progress, and completed APAs is about 600m2. Each facility also needs
temporary access to shipping and crating space of about 200m2. Floor layouts at each institution
are being developed, with current layouts shown in Figure 2.36. Adequate space is available at
each site, and the institutions have offered commitments for space for this purpose.

At Daresbury Laboratory in the UK, the existing single production line used for ProtoDUNE-SP
construction will be expanded to four. The Inner Hall on the Daresbury site has been identified as
an area that is large enough to be used for DUNE APA construction. It has good access and crane
coverage throughout. Daresbury Laboratory management has agreed that the area is available,
and a working environment that meets DUNE’s safety standards is now being prepared, starting
with clearing the current area of existing facilities, obsolete cranes, and ancillary equipment. The
renovation of a plant room is also in progress, so that it can be used for storage and as a shipping
area. The production area is designed to hold four winding machines and associated process
equipment and tooling. A production site design review of the Daresbury facility is planned for
January 2020, and a production site readiness review is anticipated for June 2020, followed by the
start of APA production for DUNE detector module #1 in August 2020.

In the USA, there will be six total production lines at three sites: two at the University of Chicago,
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Figure 2.36: Developing concepts for production site layouts at Daresbury Lab (top left), University of
Chicago (top right), and Yale University (bottom left), and the existing APA production area at PSL
(bottom right).
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two at Yale University, and two at the University of Wisconsin’s PSL, including the existing winder
where the construction for ProtoDUNE-SP was carried out.

The APA production site at the University of Chicago will be housed in the Accelerator Building
on the campus in Hyde Park. The building has hosted the assembly of large apparatuses for
numerous experiments over the course of its history and features an extensive high bay with an
overhead crane, an indoor truck bay, clean laboratory spaces, a professional machine shop, and
proximity to faculty and staff offices. Winding will be done inside a clean room installed on the
first floor-level mezzanine, where there is 234m2 of floor space above the machine shop. A 2 ton
capacity bridge crane will be installed inside this clean room to move APAs between the two
winders and the process carts that will be located here. APAs will enter and exit the mezzanine
by way of a loading deck external to the cleanroom. Preparation of APA frames, including mesh
installation, will be done inside a second clean room on the basement level floor of the high bay.
Ample space, roughly 170m2, between this clean room and the truck bay allows for simultaneous
receiving of bare frames or other larger items, hoisting of APAs to and from the mezzanine, and
packaging of completed APAs for outbound shipment. When needed, additional off-site storage
will be available for holding excess inventory and completed APAs before they are transported to
South Dakota.

Yale’s Wright Laboratory will host another of the USA-based APA production sites in a recently
renewed area named “The Vault” where the nuclear accelerator operated previously. The Vault is
approximately 720m2 of total floor space and it satisfies all the safety and space requirements for
an APA production site. Indeed, the area, which is planned to be completely transformed into a
cleanroom, can easily host two winders and four processing carts and has sufficient space for crating
the APAs for shipment and receiving and stocking all the material, e.g., bare frames, electronics
boards, and mesh panels. A large high bay door at one end offers direct road access, allowing
trucks to back inside the room where a 10 ton crane operates all along the length. Moreover,
Wright laboratory has good support infrastructure, including cleanrooms and modern mechanical
and prototyping workshops that are directly connected to the Vault. Faculty, researchers and
postdoc offices are located upstairs in the same building.

The Physical Sciences Laboratory (PSL) Rowe Technology Center has up to 1850m2 (20,000 ft2)
total space available for continued DUNE activities. A clean work area that houses the existing
winding machine used for ProtoDUNE-SP is already in place and will be used for DUNE APA
construction. A second APA production line using the updated winder design will assembled in
2020, and the existing winder will be upgraded. PSL will host other major activities as well,
including the assembly of bare APA frames for wiring in the USA, production of CR boards, and
fabrication of APA pair linkage and installation hardware.

Development work relevant for local planning at each site is rapidly advancing. Figure 2.36 shows
current conceptual layouts for the future production setups at Daresbury, Chicago, and Yale and
a photograph of the existing APA production facility at PSL-Wisconsin. Production Site Design
Reviews of the Chicago and Yale facilities are planned for early in 2020.
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2.5.3 Material Supply

Ensuring the reliable supply of raw materials and parts to each APA production site is critical to
keeping APA production on schedule through the years of construction. Here the consortium insti-
tutions are pivotal in taking responsibility for delivery of APA sub-elements. Supplier institutions
will be responsible for sourcing, inspecting, cleaning, testing, quality assurance (QA), and delivery
of hardware to each production site. In particular, the critical activities to supply production sites
with the minimum needed APA components for assembly include:

• Frame construction: There will be separate sources of frames in the USA and the UK. The
institutions responsible will rely on many lessons learned from ProtoDUNE-SP. The effort
requires specialized resources and skills, including a large assembly area, certified welding
capability, large-scale metrology tools and experience, and large-scale tooling and crane sup-
port. We are considering two approaches for sourcing: one is to outsource to an industrial
supplier; the other is to procure all the major machined and welded components and then
assemble and survey in-house. Material suppliers have been identified and used with good
results on ProtoDUNE-SP.

• Grounding mesh supply: The modular grounding mesh frame design allows the mesh screens
to be produced outside of the APA production sites and supplied for APA construction.
Suitable vendors to supply the needed units (20 mesh frames per APA) will be identified in
both the USA and UK.

• Wire wrapping board assembly: Multiple consortium institutions will take on the respon-
sibility of supplying the tens of thousands of wire-wrapping boards required for each SP
detector module. The side and foot boards with electrical traces are procured from suppliers
and a separately bonded tooth strip is installed to provide wire placement support. The
institutions responsible for boards will work with several vendors to reduce risk and ensure
quality.

• Wire procurement: Approximately 24 km of wire is required for each unit. During ProtoDUNE-
SP construction, an excellent supplier worked with us to provide high-quality wire wound
onto spools that we provide. These spools are then used directly on the winder head with no
additional handling or re-spooling required. Wire samples from each spool are strength-tested
before use.

• Comb procurement: Each institution will either work with our existing comb supplier or
find other suppliers who can meet our requirements. The ProtoDUNE-SP supplier has been
very reliable.

2.5.4 Quality Control in APA Production

QC testing is a critical element of APA production. All QC procedures are being developed by
the consortium and will be implemented identically at all production sites in order to ensure a
uniform quality product as well as uniform available data from all locations. Important QC checks
are performed both at the level of components, before they can be used on an APA, as well as on
the completed APAs, to ensure quality of the final product before leaving the production sites. In
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addition, a 10% sample of the completed APAs produced at each of the production sites each year
will be cold cycled in a cryogenic test facility available at PSL.

2.5.4.1 APA Frame Acceptance Tests

Each APA support frame must meet geometrical tolerances in order to produce a final APA that
meets requirements for physics. In particular, the wire plane-to-plane spacing must be within the
specified tolerance of ±0.5mm (see Sec. 2.2.1). Flatness of the support frame, therefore, is a key
feature and is defined as the minimum distance between two parallel planes that contain all the
points on the surface of the APA. Although the frame could be distorted out of plane in several
ways, the most likely causes are: (1) a curve in the long side tubes causing the frame to bow out
of plane, (2) a twist in the frame from one end to the other, or (3) a fold down the center-line (if
the ends of the ribs are not adequately square).

As detailed in Section 2.2.2, APA frames are constructed of 13 separate rectangular hollow steel
sections. Before machining, a selection procedure is followed to choose the sections of the steel
most suited to achieving the geometrical tolerances. After assembly, a laser survey is performed
on the bare frames before they can be delivered to an APA production site. Three sets of data are
compiled into a map that shows the amount of bow, twist, and fold in the frame. A visual file is
also created for each APA from measured data.

A study was performed to determine the tolerances on the three distortions characterized above
and is documented in [20]. It was determined that a 0.5mm change in the final wire plane spacing
could result from:

1. An 11mm out-of-flatness caused by curved long side tubes.

2. A 6mm out-of-flatness due to a twist in the frame. This is assumed to be evenly distributed
between each of the 5 cells of the APA with ∼1.2mm out-of-flatness per cell.

3. A 1.2mm out-of-flatness due to a fold down the middle of the APA.

The bow, twist, and fold extracted from the survey data will be compared against these allowable
amounts before the support frame is used to build an APA. Later, during APA wiring at the
production sites, a final frame survey will be completed after all electrical components have been
installed, and the as-built plane-to-plane separations will be measured to verify that the distance
between adjacent wire planes meets the tolerances.

Another check performed at the APA production site before the frame is transferred to a winder
will confirm sufficient electrical contact between the mesh sub-panels and the APA support frame.
A resistance measurement is taken immediately after mesh panel installation for all 20 panels
before wiring begins.
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2.5.4.2 Material Supply Inspections

All components require inspection and QC checks before use on an APA. Most of these tests will be
performed at locations other than the APA production sites by institutions within the consortium
before the hardware is shipped for use in APA construction. This distributed model for component
production and QC is key to enabling the efficient assembly of APAs at the production sites. The
critical path components are the support frames (one per APA), grounding mesh panels (20 per
APA), and wire carrier boards (204 per APA). Section 2.8 provides details about which consortium
institutions in the US and UK will be responsible for each of these work packages.

2.5.4.3 Wire Tension Measurements and Channel Continuity and Isolation Checks

The tension of every wire will be measured during production to ensure wires have a low probability
of breaking or moving excessively in the detector. Every channel on the completed APAs will also
be tested for continuity across the APA and isolation from other channels. The plan is to perform
all tests at once, using the methods described in this section. As will be described in Section 2.5.4.4,
it is also planned that 10% of the APAs will be shipped to PSL for a cold test, where the full APA
will be brought to LN2 temperature. Following the cold test, the wire tensions and continuity will
be remeasured. Finally, for this 10% sample of APAs, a measurement of the wire plane spacing
will be performed using a Faro arm that can precisely record the position of each wire plane in
space. This checks that the QC on the flatness of the support frames remains sufficient.

Wire tensions will be measured after each new plane of wires is installed on an APA. The optimal
target tension has been set at 6N based on ProtoDUNE-SP experience. ProtoDUNE-SP data,
where the tensions did have substantial variation, is also being used to study the effects of varying
tensions and finalize the allowed range of values.

The technique used to measure tensions for the APAs of ProtoDUNE-SP was based on a laser
and a photodiode system [21]. In this method, the laser shines on an individual wire and its
reflection is captured by the photodiode. An oscillation is produced in the measured voltage when
a vibration is induced on the wire, such as by manually plucking it. This oscillation is dominated
by the fundamental mode of the wire, which is set by the wire’s tension. Since the length and
density of the wire are known, the measured fundamental frequency can be converted into a tension
value. The method works very well, but due to the necessity of aligning the laser and exciting
and measuring wires individually, this technique can take tens of seconds per wire. Given the
large number of wires per detector module, development of a faster technique represents a major
opportunity for the full DUNE construction.

A technique that can reduce the overall time required to measure the tension of every wire is
currently being developed [22]. In this method, DC and AC voltages are applied on the neighboring
wires of a wire under test. A sine wave of the same frequency as that of the applied AC voltage
is measured from the tested wire, since it is capacitively coupled to its neighbors. The amplitude
of the sine wave exhibits a resonant behavior when the frequency of the AC voltage corresponds
to the fundamental frequency of the wire. Thus, a frequency sweep of the AC voltage can be
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performed to determine at which frequency there is a resonance, from which the wire tension can
be obtained. As electrical signals can be injected and measured in several wires simultaneously,
this technique has the potential of measuring the tension of many wires at once.

A wire tension measurement device based on the electrical method is being developed within the
context of the DUNE APAs. While the underlying principle of the electrical method has been
demonstrated, its technical implementation requires consideration. The wire pitch of the APAs
requires summed input voltages on the order of 500V to reasonably discern resonances against
noise. The head boards, cf. Section 2.2.5.1, have been designed to withstand temporarily such
large differential voltages across neighboring channels. Additionally, the components of the CR
boards or of the CE would interfere with the method and need to be absent.

The exact specifications of the measurement system are being finalized. It is planned to connect
to one of the twenty head board stacks at a time. Within a given stack, the device is projected to
inject and read out signals by groups of sixteen wires simultaneously. The device could be used to
measure the tension of any wire layer at any stage of the production process, in particular after
the winding of a wire layer or after all the wires are wound. The designs of the winder machine
and of the APA protection panels have clearance provisions for the usage of such a measurement
device.

The measurement system design is a combination of a commercial field programmable gate array
(FPGA) board and a custom printed circuit board for analog signal processing. An FPGA board
is used as it can produce a square wave at any frequency that is expected to be encountered while
measuring a wire’s fundamental frequency, i.e., below 5 kHz. In addition, the FPGA board can be
used for digital signal processing of the readout signal. The analog circuitry would act as a bridge
between the FPGA and the APA wires. It is needed to filter the square wave into a sine wave,
to amplify that sine wave before sending it to the wires and to digitize the readout signal before
sending it to the FPGA. The analog board is also needed to provide electrical connections to the
head boards. With such a design, it is expected that the concurrent tension measurement of eight
wires would take on the order of ten seconds.

A prototype of the measurement device has been built. The main difference between the prototype
and the planned design is that the former is restricted to three wires instead of sixteen: a single
readout wire and two stimulus wires. The prototype has been employed on a test bench in which
wires with the same physical properties as those that will be used in the APAs have been wound.
The wires were wound according to these wire parameters, which are similar to those of the APAs:
6N tension, 6m length, 4.7mm pitch. The applied voltages were 400V DC and 26V for the AC
peak amplitude. The results obtained are shown in Figure 2.37. The expected resonant frequency
is 16.1Hz. The observed resonant frequency is obtained from the raw data by offline data analysis
using numerical algorithms that can be implemented directly in the FPGA. The value obtained is
16.0Hz, corresponding to a tension value of 5.9N, which is within a few percent of the physical
value.

In this test bench setup, no wire support combs, cf. Section 2.2.5.4, are present. Their presence
shortens the wire length that needs to be considered in this method, resulting in several higher
resonant frequencies per wire. A similar effect happens for the wire channels that wrap around the
APA frame. Although they are a succession of wire segments electrically connected, the segments
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Figure 2.37: Amplitude of the readout signal as a function of the stimulus frequency, as used in the
electrical wire-tension method. The vertical line is located at the observed resonant frequency. The
raw digitized signal values corresponding to the first data point of the main plot are shown in the inset
plot.

are mechanically independent and can have different tension values. Several resonant frequencies
can be present per readout channel, possibly corresponding to different tension values.

In addition to measuring tension values, the measurement device is envisioned to be able to test
wires for electrical isolation and electrical continuity, given the flexibility of the FPGA and pro-
visions put in place in the design of the analog circuitry. Injecting a signal in a readout channel
and detecting it in a different channel would indicate that these channels are not electrically iso-
lated, for example, due to a solder bridge. The electrical continuity could be tested by sending a
pulse down a channel and measuring the time it takes to travel through the wire and back to the
measurement device. If the measured time is shorter than expected, this could indicate cold solder
joints, for example.

A final review of the electrical tension measuring system design will take place in spring 2020.
Once completed, mobile APA test stands will be built for each of the APA production sites, the
South Dakota Warehouse Facility (SDWF), and SURF. The introduction of the electrical testing
methods for APAs presents a fantastic opportunity for more efficient APA fabrication and more
flexible testing during the integration and installation phases.

2.5.4.4 Cold Testing of APAs

The six APAs produced for ProtoDUNE-SP have demonstrated clearly that the APA design,
materials, and fabrication methods are sufficiently robust to operate at LAr temperature. No
damage or change in performance due to cold have been identified during ProtoDUNE-SP running.
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Nevertheless, over a five year construction effort, it is prudent to cold cycle a sample of the APAs
produced to ensure steady fabrication quality. A cold testing facility sized for DUNE APAs exists
at PSL and can be used for such tests. Throughout the construction project, it is anticipated that
10% of the produced APAs will be shipped to PSL for cold cycling. This amounts to about 1 APA
per year per production site during the project. It is planned that all APAs will still be cold tested
during integration at SURF and before installation in the DUNE cryostats.

2.5.4.5 Documentation

Each APA is delivered with a traveler document in which specific assembly information is gathered,
initially by hand on a paper copy, then entered into an electronic version for longer term storage.
The traveler database contains a detailed log of the production of each APA, including where and
when the APA was built and the origin of all parts used in its construction.

Assembly issues that arise during the construction of an APA are gathered in an issue log for each
APA, and separate short reports provide details of what caused the occurrence, how the issue was
immediately resolved, and what measures should be taken in the future to ensure the specific issue
has a reduced risk of occurring.

2.6 Handling and Transport to SURF

Completed APAs are shipped from the APA production sites to the SDWF in South Dakota. As
they are transported to the 4850L, they are integrated with the TPC FE electronics and PDs
followed by installation in the cryostat. Extensive QC testing will be performed before installation
to ensure the fully integrated APAs function properly. Installation activities at SURF are described
in Chapter 9.

2.6.1 APA Handling

The handling of the APAs must ensure their safety. Several lifting and handling fixtures will
be employed for transferring and manipulating the APAs during fabrication, integration, and
installation. At the production sites a fixture called the edge lift kit will be used to transfer the
APA to and from the process cart and the winder, as well as to the transport containers. The lift
kit is shown schematically in Figure 2.38. It is essential that the fixture connect to the APA along
an outer edge because after wires are attached to the support frame, it can no longer be grabbed
anywhere on the front or back face of the frame.
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Figure 2.38: A custom lifting fixture is used to pick up an APA from the long edge and safely handle
it during the various construction steps at the production sites.

2.6.2 APA Transport Frame and Shipping Strategy

The transport packaging for the APAs is designed to safely transport them from the production
sites to the SDWF. The design of the packaging is shown in Figure 2.39. Light rigid metalized
foam protective panels are attached via clamps affixed to the APA frames and provide the primary
protection for the wire planes. Pairs of APAs (one upper and one lower in an APA pair) are
loaded onto welded structural steel transport frames at the factory. The APA frames are bolted to
mounts on the transport frames that incorporate shock-attenuating coil springs designed to reduce
possible accelerations on the APA frames to less than 4g. The APAs and transport frames will
be instrumented with accelerometers to find out if the APAs were subject to shocks above their
specifications. Removable side frames, made from aluminum, are then bolted to the transport
frames providing a structure around the APAs, and this whole structure is then sealed in plastic
sheeting.

The packaged transport frames from the US sites will be covered in wooden panels, loaded on cus-
tom pallets, and shipped via truck from the APA factories to the SDWF. The packaged transport
frames from the UK will be packed, in pairs, inside wooden crates for shipping. They then will be
trucked to the nearby port in Liverpool, transported by ship to the port of Baltimore, and then
shipped by truck to the SDWF. APAs may be stored for three years or longer at the SDWF – an
APA crate cannot arrive at SURF until it is required underground.

The size of the packaging and rigging hardware is constrained by the Ross headframe dimensions
and over-the-road shipping requirements in the US. The design of the protective panels and the side
frames allow for temporarily removing a portion of the shipping packaging and protective panels
to access the APA head boards for wire tension, isolation, and continuity tests after shipment and
after transport underground.

When a crate is required underground, it will be stripped of its wooden crating and transported
via Conestoga-type trailer to the headframe area. Near the headframe, the crates will be moved
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Figure 2.39: The current design of the APA shipping frame (maroon) and removable side frames (green)
with two APAs covered with protective panels (shown in grey and tan). The external wooden packaging
is not shown in this view.
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by forklift onto a cart on a rail system and rolled into the headframe. The inside portion of the
headframe will have rigging gear attached to hard points on both short ends of the crate. The
crate’s upper end will be attached to the hoist below the cage and will be used to lift the crate
from horizontal to vertical and pull it into the shaft. The shipping frame is designed to clear
the headframe during this operation. The other end (lower) will be used to attach a horizontal
tugger that will control the crate as it is pulled into the shaft station (Figure 2.40). When in the
shaft, fixtures on the sides of the crate will engage wooden guides in the shaft to keep the crate
from swinging or rotating while being lowered down the shaft. This operation is consistent with
standard slung-load transport procedures at SURF. When the crate arrives underground, it will
be pulled out of the shaft by reversing the shaft rigging operation; it will land on the opposite long
edge of the crate that was used on the surface. The crate is placed on a transport cart and pulled
down the drift to the cavern. When in the cavern, the APAs will be uncrated, rotated to vertical
by the cavern crane, mounted on a vertically oriented cart, tested, and stored temporarily (a few
weeks) in the cavern adjacent to the clean room prior to final integration and installation. The
transport frames and carts have been designed to be stable in each of these configurations.

2.6.3 APA Quality Control During Integration and Installation

All active detector components are shipped to the SDWF before final transport to SURF. After
unpacking an APA (underground at SURF), a visual inspection will be performed and wire con-
tinuity and tension measurements will be made. Tension values will be recorded in the database
and compared with the original tension measurements performed at the production sites, as was
done for ProtoDUNE-SP and shown in Figure 2.20. Definite guidance for the acceptable tension
values will be available to inform decisions on the quality of the APA. Clear pass/fail criteria will
be provided as well as clear procedures to deal with individual wires lying outside the acceptable
values. This guidance will be informed also by the ProtoDUNE-SP experience. In addition, a
continuity test and a leakage current test is performed on all channels and the data recorded in
the database.

When all tests are successful, the APA can be prepared for integration with the other components.
This step is critical for ensuring high performance of the integrated APAs. The procedures for
APA transport to the 4850L at SURF, integration with the PD system and CE, and the schedule
for testing the integrated APA are addressed in Chapter 9. APA consortium personnel will play
direct and key roles throughout the integration and installation activities.

2.7 Safety Considerations

The LBNF and DUNE project (LBNF/DUNE) is committed to ensuring a safe work environment
for workers at all institutions and facilities, from APA fabrication to installation. The project
utilizes the concept of an Integrated Safety Management System (ISMS) as an organized process
whereby work is planned, performed, assessed, and systematically improved to promote the safe
conduct of work. The LBNF/DUNE Integrated Environment, Safety and Health Management Plan
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Figure 2.40: Motion study of loading an APA frame into the shaft.
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[23] contains details on LBNF/DUNE integrated safety management systems. This work planning
and hazard analysis (HA) program utilizes detailed work plan documents, hazard analysis reports,
equipment documentation, safety data sheets, personnel protective equipment (PPE), and job task
training to minimize work place hazards.

Prior to APA production, applying the experience of ProtoDUNE-SP, the project will coordinate
with fabrication partner facilities to develop work planning documents, and equipment documen-
tation, such as the Interlock Safety System for APA winding machines to implement an automated
protection against personnel touching the winding arm while the system is in operation. Addi-
tionally, the project will work with the local institutions’ environment, safety and health (ES&H)
coordinators to ensure that ES&H requirements within the home institution’s ES&H Manual ad-
dress the hazards of the work activities occurring at the facility. Common job hazard analyses
may be shared across multiple fabrication facilities.

Handling of the large but delicate frames is a challenge. Procedures committed to the safety
of personnel and equipment will be developed for all phases of construction, including frame
assembly, wiring, transport, and integration, and installation in the cryostat. This documentation
will continue to be developed through the Ash River trial assembly process, which maps out the
step-by-step procedures and brings together the documentation needed for approving the work
plan to be applied at the far site.

As is Fermi National Accelerator Laboratory (Fermilab)’s practice, all personnel have the right to
stop work for any safety issues.

2.8 Organization and Management

Coordination of the groups participating in the DUNE APA consortium is critical to successfully
executing the large-scale multi-year construction project that is needed to produce high-quality
APAs for the DUNE SP modules. The APA consortium comprises 21 institutions, of which 14
are in the USA and 7 in the UK (see Table 2.8). The consortium is organized along the main
deliverables, which are the final design of the APA and the APA production and installation
procedures (see Figure 2.41). The two main centers of APA construction are in the USA and the
UK, so usually the leaders of a working group are chosen to represent the main stakeholders to
ensure that common procedures and tooling are developed. We plan to produce half of the DUNE
APAs in the USA and half in the UK.

The university groups and Brookhaven National Laboratory (BNL) are responsible for validating
the design, while engineering and the production set up is being developed at PSL (USA) and
Daresbury Laboratory (UK), where the APAs for ProtoDUNE-SP have been built. In addition
to PSL and Daresbury Laboratory, the University of Chicago and Yale University are developing
detailed plans for the layouts, activities, and schedule at each site.

In addition to the APA production sites, a successful production effort will require significant and
sustained contributions from university groups throughout the production process. Table 2.9 and
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Figure 2.41: APA consortium organizational chart.

Table 2.8: Current APA consortium institutions and countries.

Institution Country
University of Cambridge UK
Daresbury Laboratory - Science and Technology Facilities Council UK
Lancaster University UK
University of Liverpool UK
University of Manchester UK
University of Sheffield UK
University of Sussex UK
Brookhaven National Laboratory USA
University of Chicago USA
Colorado State University USA
Harvard University USA
University of Houston USA
University of Iowa USA
University of Mississippi USA
Northern Illinois University USA
Syracuse University USA
University of Texas at Arlington USA
Tufts University USA
College of William & Mary USA
University of Wisconsin-Madison, Physical Sciences Laboratory USA
Yale University USA
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Figure 2.42 list the main work packages that are part of the overall APA construction process and
the institutions in the USA and UK who are taking the leading roles in each effort. The tasks
range from the production of bare support frames, to the assembly and testing of many thousands
of wire boards, to the procurement of the custom transport crates for shipping the completed
APAs. The on-time supply of materials to each of the APA production sites will be imperative to
maintaining the production schedule, and detailed plans are being developed for the execution of
the project in both countries.
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Figure 2.42: APA construction project organizational chart.

2.9 Schedule and Risks

2.9.1 Schedule

A schedule for key design and production readiness reviews leading up to the start of APA pro-
duction is provided in Table 2.10. The high-level milestones for the final design and construction
of the DUNE APAs between 2019 and 2026 are given in Table 2.11.

Analysis of the ProtoDUNE-SP data will inform the decision on the electron diverters. Additional
design considerations that cannot be directly tested through ProtoDUNE-SP, like the APA pair
assembly and related cabling issues require the full test with cabling of an APA pair frame assembly,
planned to be performed at Ash River. Also planned is the construction of a pre-production APA
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Table 2.9: Institutional responsibilities for APA production in the UK and USA.

APA Construction Work Packages Institutions
Production in the UK

APA production site Daresbury Laboratory
U/V -plane wire boards University of Cambridge, University of Sussex
X/G-plane wire boards Lancaster University, University of Sheffield
G-bias boards University of Manchester
CR boards University of Manchester
Cold electronics adapter boards University of Sheffield
Grounding mesh frames University of Sheffield
APA frames University of Liverpool
APA transport crates University of Liverpool, University of Manchester
Yokes and structural tees University of Liverpool
QA/QC management Lancaster University

Production in the US
APA production site University of Wisconsin-PSL
APA production site University of Chicago
APA production site Yale University
U/V-plane wire boards College of William & Mary
X-plane wire boards University of Texas at Arlington
G-plane wire boards University of Houston
G-bias boards Syracuse University
CR boards University of Wisconsin-PSL
Cold electronics adapter boards Northern Illinois University
Grounding mesh frames University of Chicago
APA frames University of Iowa, University of Wisconsin-PSL
APA transport crates College of William & Mary
Yokes and structural tees University of Wisconsin-PSL
CE interface hardware Colorado State University, University of Wisconsin-PSL
QA/QC management, wire tension Harvard University
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Table 2.10: Planned review schedule for the APA design and production preparations.

Review Date
APA Electrical Preliminary Design Review November 2019
APA Production Site Design Internal Review – UK January 2020
APA Transport Frame Preliminary Design Review April 2020
Wire Tension Measurement Internal Review March 2020
APA Production Site Design Internal Review – USA April 2020
APA Final Design Review May 2020
Production Site Readiness Review - UK June 2020
Production Sites Readiness Review – U. of Wisconsin-PSL November 2020
Production Sites Readiness Review – U. of Chicago & Yale U. April 2021

Table 2.11: Schedule milestones for the production and installation of anode plane assemblies for two
SP DUNE far detector modules.

Milestone Date
Final report on the necessity and design of electron diverters August 2019
Completion of APA pair frame assembly & cabling at Ash River October 2019
Decision on the wire tension measurement method April 2020
Completion of winding machine modifications and commissioning April 2020
Start of APA Components Production – UK June 2020
Start of APA production for ProtoDUNE-SP-II July 2020
Start of APA Production for DUNE – UK August 2020
Completion of APA integration test with CE and PDS at CERN September 2020
Start of APA Components Production – USA November 2020
End of APA production for ProtoDUNE-SP-II December 2020
Start of APA Production for DUNE – U. of Wisconsin-PSL January 2021
Start of ProtoDUNE-SP-II installation March 2021
Start of APA Production for DUNE – U. of Chicago & Yale U. June 2021
South Dakota Logistics Warehouse available April 2022
Beneficial occupancy of cavern 1 and central utility cavern (CUC) October 2022
CUC counting room accessible April 2023
End of APA Production - detector module #1 September 2023
Start of APA Production - detector module #2 October 2023
Top of detector module #1 cryostat accessible January 2024
Start of detector module #1 TPC installation August 2024
Top of detector module #2 accessible January 2025
End of detector module #1 TPC installation May 2025
Start of detector module #2 TPC installation August 2025
End of APA Production - detector module #2 April 2026
End of detector module #2 TPC installation May 2026
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for an integration test with CE and PD systems at CERN in spring 2020, which will fully test all
interface aspects. This test will inform the final design review of the APA system in May 2020.

Design reviews of APA production sites in the UK and USA, to validate the layout of the pro-
duction lines, are planned for early 2020, together with the finalization of the winding machine
modifications. Production site readiness reviews are planned in June 2020 in the UK and in
December 2020 in the USA.

Production of three APAs for a final test in ProtoDUNE-SP-2 is foreseen in the second half of
2020. The pre-production APA used for the integration test at CERN in spring 2020 could be
used for installation in ProtoDUNE-SP-2, if no additional modifications are required.

Dates are also provided in Table 2.11 for the start and end of APA production for detector modules
#1 and #2. Steady-state production rates are 24 APAs/year at Daresbury Laboratory with four
production lines, 12 APAs/year both at Yale and Chicago, each with two production lines, and six
APAs/year at PSL, with one production line. The production time for detector module #1 takes
into account a gradual start-up of the production lines, and the different start dates and number of
production lines in the UK and USA. The end of APA production for detector module #1 happens
comfortably ten months before the start of installation. In the UK, with four assembly lines, in
order to meet the installation date for detector module #2 the APA production time would need
to be reduced by about seven months. This could be achieved by a reduction of the APA assembly
time, an opportunity mentioned in Section 2.9.2, and, if necessary, by increasing the number of
working shifts per week.

2.9.2 Risks

Risks have been identified for the finalization of the APA design and the prototyping phase, for the
setup of the production sites, for the production of APAs, and for installation at SURF. Risks are
summarized in Table 2.12. For each risk source, we describe a brief mitigation strategy as well as
an estimation of the probability of occurring (P) and the impact that risk would have on costs (C)
and on schedule (S). These are each indicated as Low (L), Medium (M), or High (H) probability
of impact. One opportunity is also listed and uses the same probability and impact indicators.

Table 2.12: APA risks (P=probability, C=cost, S=schedule) The risk probability, after taking into
account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%), or H
(high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule delay < 2
months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-APA-01 Loss of key personnel Implement succession planning and

formal project documentation
L L M

RT-SP-APA-02 Delay in finalisation of
APA frame design

Close oversight on prototypes and in-
terface issues

L L M

RT-SP-APA-03 One additional pre-
production APA may
be necessary

Close oversight on approval of de-
signs, commissioning of tooling and
assembly procedures

L L L
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RT-SP-APA-04 APA winder construc-
tion takes longer than
planned

Detailed plan to stand up new wind-
ing machines at each facility

M L M

RT-SP-APA-05 Poor quality of APA
frames and/or inaccu-
racy in the machining
of holes and slots

Clearly specified requirements and
seek out backup vendors

L L M

RT-SP-APA-06 Insufficient scientific
manpower at APA
assembly factories

Get institutional commitments for
requests of necessary personnel in re-
search grants

M M L

RT-SP-APA-07 APA production qual-
ity does not meet re-
quirements

Close oversight on assembly proce-
dures

L M M

RT-SP-APA-08 Materials shortage at
factory

Develop and execute a supply chain
management plan

M L L

RT-SP-APA-09 Failure of a winding
machine - Drive chain
parts failure

Regular maintenance and availability
of spare parts

L L L

RT-SP-APA-10 APA assembly takes
longer time than
planned

Estimates based on proto-
DUNE. Formal training of every
tech/operator

L M M

RT-SP-APA-11 Loss of one APA due to
an accident

Define handling procedures sup-
ported by engineering notes

M L L

RT-SP-APA-12 APA transport box in-
adequate

Construction and test of prototype
transport boxes

L L M

RO-SP-APA-01 Reduction of the APA
assembly time

Improvements in the winding head
and wire tension mesurements

M M M

Risks with medium or greater probability and/or medium or greater impact are discussed in more
detail below:

• RT-SP-APA-01, Loss of key personnel:
– Description: If loss of key personnel happens, it will cause delays as knowledge is lost

and new team members will need to come up to speed.
– Mitigation: Implement succession planning and formal project documentation at all

stages. All key tasks to be shared between multiple people, including production site
management.

– Probability and impact: While the post-mitigation probability is low, below 10%, if the
risk is realized, the impact on the schedule could range from a couple of months to a
half-year.

• RT-SP-APA-02, Delay in finalization of APA frame design:
– Description: If problems are encountered with the APA pair frame assembly and cabling

tests at Ash River, or with the integration test of the pre-production APA at CERN,
this will delay the finalization of the APA frame design.

– Mitigation: Oversight of the APA Consortium on the schedule of components procure-
ment for the Ash River tests and close coordination with the Ash River team. Close
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coordination with CE and PD systems consortia on all interface issues, to be formalized
in the interface documents.

– Probability and impact: On the basis of the work done up to now we believe that the
probability of this risk is low. However, if materialized, it would imply a delay in the
start of APA production from a couple of months to a half-year.

• RT-SP-APA-04, APA winders construction takes longer than planned:
– Description: If the construction of the winding machines takes longer than planned,

the schedule for APA production will be delayed, and additional labor for winders
production will be needed. We plan the construction of four additional winders in the
USA and the modification of winder, presently at PSL, as well as the construction of
three additional winders in the UK, in addition to the modification and relocation of
the winder at Daresbury Lab. The estimated time for the production of the additional
winders is approximately one year, both in the UK and the USA.

– Mitigation: Get commitments from the relevant institutions for the necessary resources
for winder production, both for space and skilled manpower availability. Develop and
execute a detailed plan to set up new winding machines at each production site. This
plan will include contingencies in the event that technical problems cause schedule
delays.

– Probability and impact: Winders are complex machines, and we estimate a medium
probability for this risk, of less than 25%. The impact on the schedule is also medium,
with possible delays up to a half-year.

• RT-SP-APA-05, Poor quality of APA frames and/or inaccuracy in the machining of holes
and slots:

– Description: APA frames are constructed from structural stainless steel tubing. The
quality of the material provided by the vendor may change with time and be outside the
required tolerances. Problems with QA during machining of holes and slots may result
in unusable products. If this happens, it may delay the supply of frames of sufficient
quality, which would delay the APA construction schedule.

– Mitigation: All requirements must be clearly specified in the purchase contracts. We
will establish a well managed relationship with a vendor to provide the stainless steel
tubing and the machining for the components of an APA frame. In addition, through
our prototyping efforts, we will seek out at least one solid backup vendor for material
supply and machining in both the USA and UK.

– Probability and impact: While the post-mitigation probability is low, below 10%, if the
risk is realized, the impact on the schedule is medium, since finding a new vendor may
take up to a half-year.

• RT-SP-APA-06, Insufficient scientific manpower at APA assembly factories:
– Description: For US production, if it is not possible to recruit scientific resources, costed

professional manpower is needed and costs will increase. This risk does not apply to
the UK production since the required scientific staff is costed and awarded on project.

– Mitigation: Proactively contact institutions and get their commitments for inclusion of
the necessary personnel in their research grants.

– Probability and impact: This is a medium probability risk; we estimate a 50% probability
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that 50% of the US scientific resources may be missing. The cost impact is also medium,
up to 20%.

• RT-SP-APA-07, APA production quality does not meet requirements:
– Description: If wire planes are outside the required tolerances, they will need to be

reworked, and the APA production schedule will be affected. A point of concern is to
stay within limits for the tension of the wires.

– Mitigation: The overall quality of each constructed APA will be ensured by following
detailed procedures for every step of the assembly process (e.g., mesh installation, board
placement and gluing, soldering, wire winding, etc.). These procedures already exist
from our ProtoDUNE-SP work and are in the process of being modified to the final
design of the DUNE FD APAs. For critical steps, an operator and quality control
representative will record information in travelers for each APA.

– Probability and impact: Given the ProtoDUNE-SP experience and the steps outlined in
the mitigation strategy, we can keep this risk probability low, below 10%. If realized,
we assume a maximum impact on cost and schedule of 20%, corresponding to a medium
impact.

• RT-SP-APA-08, Materials shortage at an APA production site:
– Description: A material shortage at an APA production site would delay production.
– Mitigation: As part of our comprehensive production strategy, we are in the process of

developing and executing a supply chain management plan. This plan will include the
details of material source, delivery logistics, critical milestones, and personnel resources
required to meet APA production site needs for efficient APA production. All suppliers
(vendors, laboratories, academic institutions) will be included in the implementation of
the supply chain plan. A key part of this plan will be the establishment of supplier
metrics that will be gathered and reported to DUNE management by the APA produc-
tion manager. These metrics will serve as an early warning of potential problems and
trigger mitigation efforts early in the cycle.

– Probability and impact: Even with mitigation, this is a realistic risk with an estimated
probability of up to 25%. Delays on the schedule would probably not exceed a couple
of months, making the impact low.

• RT-SP-APA-10, APA assembly takes longer than planned:
– Description: If the labor for APA assembly is underestimated, it will correspondingly

lengthen the time to produce APAs. We estimate an upper limit on the additional
required labor of 10%.

– Mitigation: APA assembly time estimates have been based on ProtoDUNE-SP expe-
rience and improvements to the winding machine. Formal training of every techni-
cian/operator of the winding machine should maintain a high production efficiency.

– Probability and impact: We believe that this risk probability is low, below 10%, but
even a 10% increase in the required labor would have a medium impact on both cost
and schedule.

• RT-SP-APA-11, Loss of an APA due to an accident:
– Description: If during APA assembly or integration/installation an accident happens,
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this may cause the destruction of an APA. We already plan to build two spare APAs
for each detector module. In addition, we assume a probability of up to 10% to lose an
additional APA during assembly or integration/installation.

– Mitigation: We define procedures to handle APAs at all stage of fabrication, integra-
tion/installation, together with associated engineering notes for all modes of handling.
Wire planes are delicate, and once damaged they would not be repairable.

– Probability and impact: This is a marginally medium risk, with low impact both on cost
and schedule.

• RT-SP-APA-12, APA transport box inadequate:
– Description: If the transport box will not provide enough mechanical protection for the

safe transportation of the APAs or if the size of the box is inadequate for transfer to
the underground location, it will impact the schedule.

– Mitigation: Construct and test prototype transport boxes. Test all handling steps at
Ash River and SURF. Coordinate closely with the team at SURF and APA Consortium
oversight of transport boxes.

– Probability and impact: Given the mitigation steps, we estimate a probability for this
risk of less than 10%. In case of redesign, it may have a medium impact on the schedule.

• RO-SP-APA-01, Reduction of the APA assembly time:
– Description: If the new winding head will provides better uniformity in wire tension,

it will reduce the time necessary for re-tensioning of the wires. If the new electrical
method for wire tension measurements work as planned, it will reduce substantially the
time required for wire tension measurements. A saving of up to 10% in APA assembly
time will be possible with these improvements.

– Opportunity: This is an opportunity that the APA Consortium is actively pursuing
with ongoing testing of a new winding head design and development of the electronic
tension measurement method. The APA boards have been already redesigned to allow
for electronic tension measurements.

– Probability and impact: Given the preliminary results obtained up to now, we estimate
a medium probability for this opportunity. A saving of 10% in the APA assembly time
could be realized, corresponding to a medium impact for both cost and schedule.
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Chapter 3

High Voltage

3.1 High Voltage System Overview

3.1.1 Introduction and Scope

A liquid argon time-projection chamber (LArTPC) requires an equipotential cathode plane at
high voltage (HV) and a precisely regulated interior electric field (E field) to drive electrons from
particle interactions to sensor planes. To achieve this, the Deep Underground Neutrino Experiment
(DUNE) single-phase (SP) time projection chamber (TPC) consists of

• vertical cathode planes, called cathode plane assembly (CPA) arrays, held at HV;
• vertical anode planes, called anode plane assembly (APA) arrays, described in Chapter 2;

and
• formed sets of conductors at graded voltages surrounding the drift volumes to ensure unifor-

mity of the E field; the conductors are collectively called the field cage (FC).

The SP TPC configuration is shown in Figure 3.1. The drift fields transport the ionization electrons
towards the APAs at the sides and center.

The scope of the SP HV system, provided by the DUNE high voltage system (HVS) consortium,
includes the selection and procurement of materials for, and the fabrication, testing, delivery, and
installation of systems to generate, distribute, and regulate the voltages that create a stable and
precise E field within a SP module.

The HV system consists of components both exterior and interior to the cryostat. The voltage
generated at the HV power supplies passes through the cables, filters, and the HV feedthrough
into the cryostat. From the point of delivery into the cryostat, components that form part of the
TPC structure further distribute the voltage. The internal HV components in fact form a large
fraction of the total internal structures of the TPC itself, and effectively bound the fiducial volume
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Figure 3.1: A schematic of a SP module showing the three APA arrays (at the far left and right and
in the center, all of which span the entire 58.2m detector module length) and the two CPA arrays,
occupying the intermediate second and fourth positions. The top and bottom FC modules are shown
with ground planes (GPs) in blue. On the right, the front top and bottom FC modules are shown folded
up against the CPA panels to which they connect, as they are positioned for shipping and insertion
into the cryostat. The CPAs, APAs, and FC together define the four drift volumes of the SP module.
The sizes and quantities of the FC and CPA-array components are listed in Tables 3.2 and 3.3 and
represented in this image.
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of the detector module.

The SP HV system consists of

• HV power supplies, cables, filters, and feedthrough;
• CPA array;
• top field cage (top FC), bottom field cage (bottom FC), and GPs; and
• endwall field cage (endwall FC).

The system operates at the full range of voltages, −180 kV to ground, inside the TPC volume.

The SP and dual-phase (DP) modules will implement similar designs for some of the HV system
components, in particular, aspects of the FC and its supporting beams. This chapter describes
the SP versions.

3.1.2 Design Specifications

The working principle of the LArTPC relies on the application of a very uniform strong E field
in ultra-pure liquid argon (LAr). A number of detector performance parameters benefit from
such an E field in ways that directly support the core components of the DUNE physics program.
Some of these are examined in detail in Volume II, DUNE Physics. Here we present a qualitative
description of E field impacts on physics to set context.

Since free electron drift velocity in LAr is a function of E field, a uniform E field leads to a
simple time versus position mapping along the drift direction, enabling precise and efficient 3D
reconstruction. This allows, for example, the establishment of a well defined fiducial volume for
beam neutrino events reconstructed in the far detector (FD). Since a neutrino charge-parity sym-
metry violation (CPV) measurement or neutrino mass hierarchy (MH) test at root consists of
the comparison of normalized spectra for electron and muon neutrino and antineutrinos interac-
tions in the fiducial volume of the FD as projected from the near detector (ND), fiducial volume
characterization is critical.

The optimal E field range at which to operate the LArTPC is a trade-off of detector performances
that improve with increasing field against others that degrade. For instance, spectral information
is necessary to separate charge parity (CP) and MH effects, necessitating efficient tracking and
shower reconstruction and good energy resolution. To accomplish this, higher E field strength is
generally better; more free charge is created at the ionization points, as electron-ion recombination
decreases at higher fields, improving signal-to-noise (S/N) and calorimetry.

Drift times are reduced, resulting in less free electron capture from residual electronegative impu-
rities, and hence better S/N, even under less than optimal purity conditions. Spatial resolution
improves, as free electron diffusion (proportional to the square root of the drift time) lessens.

Higher free charge production and lower electron capture allows for lower detection thresholds for
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components of electromagnetic showers, improving shower energy reconstruction. Lower detection
thresholds also lead to higher detection efficiency for MeV-scale electron, photon, and neutron
signatures of low-energy νe interactions from supernova neutrino burst (SNB) events.

The electron-ion recombination more strongly affects highly ionizing particles, usually protons.
With decreased recombination, less saturation of free charge production occurs, leading to better
particle identification and more precise energy measurements. Lower recombination particularly
aids in proton-kaon separation by dE/dx, a key component of a search for p→ K+ν baryon decay
events.

However, the E field should not be raised beyond certain limits. For example, while free charge
production increases with E field, scintillation photon production decreases, resulting in fewer
photons available for triggering and determination of t0. Two-track separation can degrade if
the drift velocity is increased while keeping the anode wire separation and electronic wave form
sampling frequency fixed. The distance between the TPC boundaries and the cryostat walls might
need to be increased for very high E fields to prevent electrostatic discharge. This would in turn
reduce the fraction of LAr in the fiducial volume (FV). The impacts of the first two effects are
modest, and all effects are subsidiary to technical challenges in the delivery of high voltage to
the cryostat and the maintenance of highly stable HV surfaces for multiple decades of operation.
These challenges require development of non-commercial cryogenic HV feedthroughs, HV ripple-
repression through custom HV RC circuits, careful construction and deployment of HV cables,
redundant HV connections, high-precision monitoring, and best practices at all stages of design,
installation, and operation.

To the best of present common knowledge, the response and stability of a LArTPC to HV is
strongly dependent on many boundary conditions that are not fully related to the HV design.
There are for instance hints and tests that suggest that gas bubble formation as well as residual
dust circulating in the LAr are primary sources of HV instability. Insulator charging up can also
affect HV performance in the long term. Finally, because we found no information on applying
−180 kV in an LAr detector, our approach to designing the HV system relied heavily on past
experience, applying in addition sufficient safety margins from previous designs. ProtoDUNE-SP
has provided experience and understanding of HV behavior, giving us confidence that the upgraded
design documented in this technical design report (TDR) is appropriate for underground long-term
operation.

Two decades of design and operational experience that began with ICARUS have established
that a 500V/cm field is an appropriate trade-off value that can be realistically achieved through
utilization of cost-effective design and construction methods. In practice, achieving this design goal
has been challenging as the drift distance has been progressively increased to the 3.5m foreseen
for the SP module, and overall detector optimization has proved to be important. For example,
MicroBooNE operates at 273V/cm (lower than its nominal value of 500V/cm) and is able to
operate well by exploiting its very high argon purity, (characterized by an electron lifetime in
excess of 15 ms), as well as an excellent S/N ratio from the front-end (FE) cold electronics (CE).
MicroBooNE (and a number of other noble liquid TPCs) compensated for electrostatic instability
problems by achieving higher purity, and DUNE might well operate in this mode during its run.

In DUNE, the minimum requirement of the drift E field has been set to 250V/cm, with a goal
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of 500V/cm for long-term stable operation. With good free electron lifetime (>10ms), and the
electronics S/N demonstrated in ProtoDUNE-SP, experience shows that DUNE will be able to
operate above 250V/cm. The advantage of running at higher E field is that the lower electron-ion
recombination rate and the higher electron drift velocity can compensate for any lower purity
conditions that could arise during the planned operation period.

Running ProtoDUNE-SP at a higher HV value (as allowed by HV cables and filtering systems) is
under consideration to gain better understanding of the HV stability issues.

Positive ProtoDUNE experience (see Section 3.6.4) indicates that the 500V/cm E field goal is
within reach. This goal, combined with high LAr purity and a large S/N ratio, will allow a
wide range of possible operating points to optimize detector performance for maximum physics
potential over decades of stable conditions and very high live-time. The specification minimum of
250V/cm will provide adequate detector performance, assuming achievable purity and electronics
parameters.

The HV system is designed to meet the physics requirements of the DUNE experiment, both
physical (e.g., E fields that allow robust event reconstruction) and operational (e.g., avoiding over-
complication that could affect the time available for collecting neutrino events). The important
requirements and specifications for the HV system are given in Table 3.1.

Table 3.1: HV specifications

Label Description Specification
(Goal)

Rationale Validation

SP-FD-1 Minimum drift field > 250 V/cm
(> 500 V/cm)

Lessens impacts of e−-Ar re-
combination, e− lifetime, e−

diffusion and space charge.

ProtoDUNE

SP-FD-11
Drift field uniformity
due to HVS

< 1 % throughout
volume

High reconstruction effi-
ciency.

ProtoDUNE and
simulation

SP-FD-12
Cathode HV power
supply ripple con-
tribution to system
noise

< 100 e− Maximize live time; maintain
high S/N.

Engineering cal-
culation, in situ
measurement,
ProtoDUNE

SP-FD-17 Cathode resistivity > 1 MΩ/square
(> 1 GΩ/square)

Detector damage prevention. ProtoDUNE

SP-FD-24
Local electric fields < 30 kV/cm Maximize live time; maintain

high S/N.
ProtoDUNE

SP-FD-29 Detector uptime > 98%
(> 99%)

Meet physics goals in timely
fashion.

ProtoDUNE

SP-FD-30 Individual detector
module uptime

> 90%
(> 95%)

Meet physics goals in timely
fashion.

ProtoDUNE

SP-HV-1
Maximize power
supply stability

> 95 % uptime Collect data over long period
with high uptime.

ProtoDUNE

SP-HV-2 Provide redundancy
in all HV connec-
tions.

Two-fold
(Four-fold)

Avoid interrupting data col-
lection or causing accesses to
the interior of the detector.

Assembly QC

We note that specification SP-FD-1 is discussed in the text above Table 3.1. SP-FD-2 is met
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in case of stable HV operation (lessons from ProtoDUNE-SP). The noise contribution from HV
instabilities is unclear and under investigation with ProtoDUNE-SP. The remaining requirements
specific to the HV system, summarized here, are all addressed and referred to in the remainder of
this chapter.

• SP-FD-11: Non-uniformity could be due to defects in resistor chains; muon and laser cali-
brations will mitigate this effect. [Section 3.4]

• SP-FD-12: Lessons learned from ProtoDUNE-SP demonstrate that the present filtering
scheme is adequate. [3.2, 3.4.1]

• SP-FD-17: The CPA design is based on few MW/square resistivity surfaces. Such surfaces
have been demonstrated in ProtoDUNE-SP to be adequate to prevent fast discharges that
could potentially damage CE and the cryostat (no event was ever recorded). Underground
operation will allow higher resistivity, thus further slowing down the potential release of
stored energy. [3.3, 3.4.1]

• SP-FD-24 is met by calculation in ProtoDUNE-SP. In the present design, the E field in the
critical region between FC and GP is further reduced. [3.4.1, 3.5]

• SP-FD-29, 30: These uptime requirements are already met in ProtoDUNE-SP; the much
lower ionization density in underground operation and optimization in the design (FC to GP
distance) will ensure meeting the requirement even in the case of the much wider detector
surface.

• SP-HV-1: The HV distribution and filtering has been tested in ProtoDUNE-SP; the design of
these items will be revised to minimize long-term degradation and maintenance requirements.
[3.4.1]

• SP-HV-2: Two-fold redundant connections to the CPA are foreseen. The HV feedthrough
and its connection to the CPA is designed in such a way that it could be extracted and
replaced even with the detector filled with LAr (based on ICARUS experience). [3.3, 3.5]

3.1.3 Design Overview

3.1.3.1 Cathode Plane Assembly (CPA) Arrays

CPA arrays are made up of adjacent resistive cathode panels, secured in frames and connected by
an HV bus. HV cups are mounted at both ends to receive input from the power supply.

Two CPA arrays span the length and height of the SP module, as shown in Figure 3.1. Each
array is assembled from a set of 25 adjacent full-height CPA planes, each of which consists of
two adjacent full-height panels. Each panel consists of three stacked units, approximately 4m
in y (height) by 1.2m in the z-coordinate (parallel to beam). A unit consists of two vertically
stacked resistive panels (RPs) framed by FR-41 members. The HV cathode components are listed
in Table 3.2 and will hereafter be referred to by their names as defined in this table.

1NEMA grade designation for flame-retardant glass-reinforced epoxy laminate material, multiple vendors, National
Electrical Manufacturers Association™, https://www.nema.org/pages/default.aspx.
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Table 3.2: HV cathode components

Component and Quantity Length (z) Height (y) Per SP module
CPA array (2 per SP module) 58m 12m 2
CPA plane (25 per CPA array) 2.3m 12m 50
CPA panel (2 per CPA plane) 1.2m 12m 100
CPA unit (3 per CPA panel) 1.2m 4m 300
RP (2 per CPA unit) 1.2m 2m 600

The RPs are made of a highly resistive material. An installation rail supports the CPA panels
from above through a single mechanical link.

The cathode bias is provided by an external HV power supply through an HV feedthrough con-
necting to the CPA array inside the cryostat.

3.1.3.2 Field Cage

In the SP module, an FC covers the top, bottom, and endwalls of all the drift volumes, thus
providing the necessary boundary conditions to ensure a uniform E field, unaffected by the presence
of the cryostat walls. The FC is made of adjacent extruded aluminum open profiles (electrodes)
running perpendicular to the drift field and set at increasing potentials along the 3.5m drift
distance from the CPA HV (−180 kV) to ground potential at the APA sensor arrays.

The FC modules come in two distinct types: the identical top and bottom modules, which are
assembled to run the full length of the detector module, and the endwall FC modules, which
are assembled to complete the detector at either end. The profiles in both types of modules are
supported by FRP2 (fiber-reinforced plastic) structural beams.

The top FC and bottom FC modules extend nominally 2.3m in z and 3.5m in x; the top and
bottom of the SP module each requires 25 modules lengthwise in z and four across in x. The
endwall FC modules are 3.5m wide by 1.5m in high; each endwall requires four adjacent stacks,
eight units high. A GP consisting of modular perforated stainless steel sheets runs along the
outside surface of each of the top FC and bottom FC, with a 30 cm clearance. The endwall FC
modules do not require a GP because the distance to the cryostat wall is sufficient, approximately
2m.

To provide a linear voltage gradient within each drift volume, a chain of resistive divider boards
connects the adjacent pairs of aluminum profiles along each FC module.

Table 3.3 lists the FC components.
2Fiber-reinforced plastic, a composite material made of a polymer matrix reinforced with fibers, many vendors.
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Table 3.3: HV field cage components

Component Count Length
(z)

Width
(x)

Height
(y)

Submodules Grand
Total

Top FC modules 100 (4×25) 2.3 m 3.5 m - - 100
Bottom FC modules 100 (4×25) 2.3 m 3.5 m - - 100
Profiles per module
(all top and bottom module types) 57 2.3 m - - - 11400
GP modules per top or bottom
FC module 5 2.3 m 0.7 m - - 1000
Endwall FC plane 2 - 14.4 m 12 m 4 2
Endwall FC modules per endwall FC 32 - 3.5 m 1.5 m - 64
Profiles per endwall FC module 57 - - 1.5 m - 3648

3.1.3.3 Electrical Considerations

As shown in Figure 3.1, the outer APA arrays face the cryostat walls, and the CPA arrays are
installed between the APA arrays in two of the three interior positions (A-C-A-C-A). In this
configuration, as opposed to C-A-C-A-C, most of the cathode plane surfaces are far away from the
grounded cryostat walls, reducing electrostatic breakdown risks and decreasing the total energy
stored in the E field to 800 J.

Figure 3.2 maps out the E field strength over a cross section of a drift volume. The energy is
stored mostly in the high E field region between the FC and the facing GPs. In the case of an
unexpected HV breakdown, the entire 400 J associated with one CPA array could be discharged
to ground, potentially causing physical damage. Given the difficulty of predicting the distribution
of energy along a discharge path, we treat the possibility of discharged energy, conservatively, as
a risk to the TPC components and the cryostat membrane.

Previous large LArTPCs (e.g., ICARUS and MicroBooNE) have used continuous stainless steel
tubes as their FC electrodes; however, a continuous electrode in a DUNE detector module would
need to be at least 140m long. This would increase the stored energy in each electrode and, in
turn, increase the risk of damage in the case of a discharge.

Subdividing the FC into electrically isolated modules limits the stored energy in each FC module,
thereby minimizing the risk of damage. Each FC module must have its own voltage divider network
to create a linear voltage gradient. Dividing the FC into mechanically and electrically independent
modules also eases the construction and assembly of the FC and greatly restricts the extent of
drift field distortion caused by a resistor failure on the divider chain of a FC module.

An HV discharge onto a metallic cathode could cause the electrical potential of the entire cathode
surface to swing from its nominal bias (e.g., −180 kV) to 0V in a few nanoseconds, inducing a
large current into the analog FE amplifiers connected to the sensing wires on the APAs (mostly
to the first induction wire plane channels). An internal study[24] has shown that with a metallic
cathode structure, an HV discharge could swing the outer wire plane by nearly 100V and inject
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Figure 3.2: A simplified cross sectional view of an outer drift volume of the TPC showing the distribution
of the static E field (in V/m). Since the electrostatic potential energy is proportional to E2, most of
the energy is stored between the FC modules and their facing GPs.
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0.9A current into the input of the FE amplifiers connected to the first induction plane, possibly
overwhelming the internal electrostatic discharge (ESD) protection in the FE ASICs.

On the other hand, a highly resistive cathode structure can significantly delay the change in its
potential distribution in a discharge event due to its large distributed RC time constant. Such a
delay reduces both the current flowing through the discharge path and the current induced on the
anode readout amplifiers. The upper limit in the cathode surface resistivity is determined by the
voltage drop between the center and the edges of the cathode array driven by the ionization current
flowing to the cathode. For example, a surface resistivity of 1GW/square will have a voltage drop
less than 1V from the 39Ar ionization flux at the underground site. Figure 3.3 illustrates the two
main benefits in such a design in an event of HV discharge at the edge of the cathode: (1) reducing
the rate of transfer of the stored energy in the cathode plane to reduce the risk of damage to the
HVS and cryostat membrane; and (2) slowing down the change in cathode voltage distribution that
capacitively injects charge into the readout electronics. With a surface resistivity of 1GW/square
on the entire cathode, the time constant of a discharge is on the order of a few seconds. An HV
discharge on the edge of the cathode would inject a maximum current of only about 50µA into
the FE ASICs, avoiding damage.

3.1.3.4 Structural Considerations

The frames around the CPA panels and the frames supporting the FC aluminum profiles are made
from materials with similar thermal expansion coefficients, minimizing issues of differential thermal
expansion. The FC frames are restrained at only one location. The CPAs and APAs support the
top FC and bottom FC modules, whereas installation rails above the CPAs and APAs support the
endwall FC modules.

All structural members of the CPAs and FCs are made of either FR-4 or FRP with very similar
coefficients of thermal expansion (CTE). However, the structures supporting the CPAs and FCs
are made of stainless steel, with a CTE about 50% greater. To accommodate the mismatch in
the CTEs, small expansion gaps are added between CPAs at installation time. These gaps are set
during installation between CPA panels by adjusting the distance between the CPA hanger bars
and between CPA planes at the top of the TPC on the CPA beam; these 3mm gaps, 49 of them
in total, will disappear once the TPC is submerged in LAr.

3.1.3.5 Design Validation

Successful ProtoDUNE running and extensive testing has validated the mechanical and electrical
properties of materials selected for the HV system. These are fully documented in references [25,
26, 27]. More details follow in Section 3.6.

Issues identified in earlier testing form the basis of an ongoing R&D program.

Operations experience from ProtoDUNE-SP is summarized in Section 3.6. It revealed some in-
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Figure 3.3: Simulated discharge event on a highly resistive cathode surface with a surface resistivity of
1 GW/square. Top: stored energy on the cathode as a function of elapsed time from an HV discharge.
0.2 second after the discharge, only about 15% of the stored energy contributes to the discharge.
Bottom: voltage distribution on a section of the cathode (2.3m× 12m) 0.2 s after the discharge at
the upper right edge. Due to the long time constant of the cathode, most of the surface area remains
at the −180 kV operating potential. Only the region close to the discharge site shifts positively toward
0V. Charge injection to the wire readout electronics, proportional to dV/dt averaged over the cathode
area facing an APA, is therefore greatly suppressed.
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stabilities in the HVS operations. Design changes (see Section 3.4.2) have been introduced to the
top and bottom FC assemblies to further decrease the overall E field between the profiles and the
GPs.

3.1.4 HV System Safety

Safety is central to the design of the HV system and is the highest priority concern in all phases:
fabrication, installation, and operations. Documentation of assembly, testing, transport, and in-
stallation procedures is in progress and systematically catalogued. Particular attention was paid
to these procedures in the design and construction of ProtoDUNE-SP, with the explicit under-
standing that they be applicable to the SP module. The most critical procedures are also noted
in the current HV risk assessment.

The structural and electrical designs for the SP module HV are closely modeled on designs that
were vetted and validated in the ProtoDUNE-SP construction. Prior to ProtoDUNE-SP, a full-
voltage and full-scale HV feedthrough, power supply, filtering, and monitoring system were tested
at Fermi National Accelerator Laboratory (Fermilab), along with the HV connection cup and
arm, after completing full safety reviews. These devices worked as designed and were used in
ProtoDUNE-SP. They will be reproduced for the SP module, except for specific optimizations
described in this chapter.

At full operating voltage, the FC stores a substantial amount of energy. As discussed in Sec-
tion 3.1.3.3, the CPA is designed to limit the power dissipated during a power supply trip or other
failure that unexpectedly drops the HV. Its design has succeeded in tests at full voltage over 2m2

surfaces and at larger scale in ProtoDUNE-SP.

Integral to the ProtoDUNE-SP and SP module design is the concept of pre-assembled modular
panels of field-shaping conductors with individual voltage divider boards. The structural design
and installation procedures used in ProtoDUNE-SP were selected to be compatible with use at
the FD site and were vetted by project engineers, engineering design review teams, and safety
engineers at the European Organization for Nuclear Research (CERN). Any revisions to these
designs based on lessons learned in ProtoDUNE-SP installation and operations will be reviewed
both within the project and by Fermilab environment, safety and health (ES&H) personnel. The
safety features of the overall design are on solid footing.

3.2 HV Power Supply and Feedthrough

The HV delivery system consists of

• two power supplies,
• HV cables,
• filter resistors, and
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• HV feedthrough into the cryostat.

For HV delivery, two power supplies generate the voltage, one for each CPA array. This separated
setup accommodates any necessary different running voltages between the two CPA arrays. The
cryostat design has two feedthrough ports for each CPA array, one at each end of the cryostat. Cor-
respondingly, two HV receiving cups are mounted on the CPA array frame. The spare downstream
port provides redundancy against any failure of the primary HV delivery system. In addition, the
HV feedthrough is designed to be extracted and replaced in case of misbehavior.

Each CPA array separates and services two adjacent drift volumes, presenting a net resistance of
1.14GW to each power supply. At the nominal 180 kV cathode voltage, each power supply must
provide 0.16mA. The power supply model planned for the SP module is similar to that used on
ProtoDUNE-SP.3 The HV cables are commercially available models compatible with the selected
power supplies.

Filter resistors are placed between the power supply and the feedthrough. Along with the cables,
these resistors reduce the discharge impact by partitioning the stored energy in the system. The
resistors and cables together also serve as a low-pass filter reducing the 30 kHz voltage ripple on
the output of the power supply. With filtering, such supplies have been used successfully in other
LArTPC experiments, such as MicroBooNE and ICARUS. Figure 3.4 shows the HV supply circuit.

HV Power Supply

HV Out

Varistor 
(MOV) RF 

RG = 10 kΩ 
DigiKey 696-1716

Ferrite to 
monitor 

instabilities

HV into 
cryostat

HV 
Feedthrough 
on cryostat

Varistor 
(MOV) RF 

RG = 10 kΩ 
DigiKey 696-1716

Ferrite to 
monitor 

instabilities

Heinzinger PNChp 3000000 
Negative polarity 

Voltage:  0 to -300 kV 
Current:  0-0.5 mA

Dielectric 
Sciences HV 

Cable 
#2236, rated 

for 320 kV DC

Figure 3.4: Left: Photo of 300 kV and 200 kV power supplies. Right: A schematic showing the HV
delivery system to the cryostat. One of the two filter resistors sits near the power supply; the other sits
near the feedthrough.

The requirement on low electronics noise sets the upper limit of residual voltage ripple on the
3Heinzinger, PNC HP300000 HV power supply, Heinzinger™ Power Supplies, http://www.heinzinger.com/.
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cathode to be 0.9mV.

Typically, commercial supplies specify a ripple variation limit of 0.001% around an absolute pre-
cision in nominal voltage of ± 50mV. Assuming cable lengths of 30m and 3m between the filters
themselves and between the filter and feedthrough, respectively, calculations and experience con-
firm that resistances as low as a few MW yield the required noise reduction.

The filter resistors are of a cylindrical design. Each end of a HV resistor is electrically connected
to a cable receptacle. The resistor must withstand a large over-power condition. A cylindrical
insulator is placed around the resistor.

The HV feedthrough is based on the successful ICARUS design [2], which was adapted for ProtoDUNE-
SP. The voltage is transmitted by a stainless steel center conductor. On the warm side of the
cryostat, this conductor mates with a cable end. Inside the cryostat, the end of the center conduc-
tor has a spring-loaded tip that contacts a receptacle cup mounted on the cathode, delivering HV
to the FC. The center conductor of the feedthrough is surrounded by ultra-high molecular weight
polyethylene (UHMWPE), an insulator. This is illustrated in Figure 3.5.

Recommended Liquid Level Position (~1cm 
over the terminal ground ring)

HMDPE RCH1000 with minimum 
thickness 36mm (breakdown voltage 

90kV/mm)

Transversally and vertically sliding HV 
contact

Figure 3.5: Photograph and drawing of a HV feedthrough. Photograph shows ProtoDUNE-SP instal-
lation. The distance from the cup to the top surface is approximately 1.3m.

On a feedthrough, to a first approximation, the operating voltage upper bound is set by the
maximum E field. This E field can be reduced by increasing the insulator radius. For the target
voltage, the feedthrough uses a UHMWPE cylinder of approximately 15 cm diameter. In the
gas space and into at least 15 cm of the liquid, the insulator is surrounded by a tight-fitting
stainless steel ground tube. A Conflat industry-standard flange is welded onto the ground tube
for attachment to the cryostat.

Outside the cryostat, the HV power supply and cable-mounted toroids monitor the HV. The
power supplies have capabilities down to tens of nA in current read-back and are able to sample
the current and voltage every 300ms. The cable-mounted toroids are sensitive to fast changes in
current; the polarity of a toroid’s signal indicates the location of the current-drawing feature as
either upstream or downstream of it. Experience from the DUNE 35 ton prototype installation
suggests that sensitivities to changing currents are on a timescale between 0.1µs to 10µs.
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Inside the cryostat, pick-off points near the anode monitor the current in each resistor chain.
Additionally, the voltage of the GPs above and below each drift region can diagnose problems via
a high-value resistor connecting the GP to the cryostat. In the DUNE 35 ton prototype, such
instrumentation provided useful information on HV stability and locations of any stray charge
flows.

Both commercial and custom HV components must be rated for sufficient voltage and must satisfy
tests to meet the specifications summarized in Section 3.1.2. Section 3.9.1 provides further details
on these tests.

The resistances in the filters, in combination with the capacitances between the HV system and
the cathode, determine the attenuation of the tens-of-kHz ripple from the power supply. The filters
are designed such that the ripple is reduced to an acceptable level when installed in the complete
system, thus satisfying specification SP-FD-12 that the power supply ripple be negligible.

3.3 CPA Arrays

Two vertical, planar CPA arrays held at HV each provide constant-potential surfaces at −180 kV.
Each CPA array also distributes HV to the first profile on the top and bottom FC and to the
endwall FCs. The configuration of the CPA arrays is described in Section 3.1.3.1.

RPs form the constant-potential surfaces of each CPA unit. The RPs are composed of a thin layer
of carbon-impregnated Kapton4 laminated to both sides of a 3mm thick FR-4 sheet of 1.2m× 2m
size.

A CPA array receives its HV via the feedthrough that makes contact with the HV bus mounted
on the CPA frame through a cup assembly attached to the frame, as shown in Figure 3.6. One cup
assembly attaches to each end of the two CPA arrays, for a total of four. Details on the electrical
connections are in Section 3.5.

In accordance with specification SP-FD-17, the surface resistivity of the RPs is required to be
greater than 1MW/square to provide for slow reduction of accumulated charge in the event of a
discharge. Given the anticipated higher stored energy at the FD relative to the prototypes, we set
a goal of 1GW/square to further protect against potential discharges.

To maintain the position and flatness of the cathode, 6 cm thick FR-4 frames are placed at 1.2m
intervals between the CPA panels. This design ensures the cathode distortion caused by a small
pressure differential (up to 1Pa) across the cathode surface from the convective flow of the LAr is
less than 1 cm, meeting the specification of less than 3 cm, which causes a field uncertainty of 1%.

The CPA frames are required to support, in addition to the HV components, the top FC and bottom
FC units attached to both sides of the CPA plane. The arrangement and deployment of these
components is identical to that in ProtoDUNE-SP. Figure 3.7 shows a completed ProtoDUNE-SP

4DuPont™, Kapton® polymide film, E. I. du Pont de Nemours and Company, http://www.dupont.com/.
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Figure 3.6: HV input cup connection to CPA array.

CPA panel on the production table ready for lifting into vertical position.

Since FR-4 is a good insulator at cryogenic temperatures with a dielectric constant different from
that of LAr, the presence of the CPA panel frames causes a local E field distortion that can become
pronounced if the frame surface becomes charged from ionization in the TPC. To minimize this
distortion, resistive field-shaping strips (FSS) are placed on the frame and biased at a different
potential. Figure 3.8 illustrates the drift field uniformity improvement with these strips.

Other HV components of the CPA arrays include edge aluminum profiles (to act as the first
elements of the FC) and cable segments forming the HV bus.

There are at least two instances of electrical connections on the CPA array and between the CPA
array and other HV system components (top, bottom, and endwall FCs), and four connections
between RPs in a CPA unit. Each of the different types of electrical connections on the CPA were
tested in a LN2 tank at Brookhaven National Laboratory (BNL) [25] and in ProtoDUNE-SP. No
failures occurred at either BNL or ProtoDUNE-SP. The HV connection from the HV power supply
is a closed loop around the CPA that can sustain at least one broken connection without loss of
the cathode HV. This ensures compliance with requirement SP-HV-2.

Visual inspection of these items during the assembly process is done to ensure that no accidental
sharp points or edges have been introduced. The surface resistivity of the CPA RPs and the FSS
are checked multiple times during assembly, first when the resistive panels and strips are received
and after assembly into CPA units on the table. Coated parts that do not meet the minimum
surface resistivity requirement are replaced. This ensures that requirement SP-FD-17 is satisfied.
No discharges were observed in ProtoDUNE, so no additional cryogenic tests are planned for the
CPAs for DUNE.
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Figure 3.7: Completed 6m long ProtoDUNE-SP CPA panel on production table. A CPA plane is made
up of two panels side-by-side.
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Figure 3.8: A comparison of three cathode cross sections to illustrate the benefit of the FSS. Both
equipotential lines (horizontal) and E field lines (vertical) are shown. The amplitude of the E field
is shown as color contours. Each color contour is a 10% step of the nominal drift field. The gray
rectangles represent the frame and the resistive sheet in each case. Left: a conductive/resistive frame
similar to that of ICARUS or SBND; Middle: an insulating frame with the insulating surfaces charged to
an equilibrium state; Right: an insulating frame covered with FSS (purple) and biased at the optimum
potential.

3.4 Field Cage

The FC is introduced in Section 3.4. Its function, basic characteristics, and components are de-
scribed there. The FC is designed to meet the system specifications listed in Section 3.1.2. To
allow the system to reach the design E field uniformity (specification SP-FD-11), all components
other than the aluminum profiles, GPs, and electronic divider boards are made of insulating FRP
and FR-4 materials, and the end of each profile is covered with a UHMWPE end cap.

All voltage divider boards provide redundancy for establishing the profile-to-profile potential dif-
ferences with only minor distortions to the E field in case of failure of any individual part, and two
redundant boards provide the connection from the FCs modules to the CPA (specification SP-HV-
2). The aluminum profiles are attached to FRP pultruded structural elements, including I-beams
and box beams. Pultruded FRP material is non-conductive and strong enough to withstand the
FC loads in the temperature range of −150C and 23C, as certified by vendors. Testing of the FRP
joints were conducted at LN2 temperatures [26]. The material was stronger at these temperatures
than at room temperature, providing confidence in the material behavior at LAr temperature.
The FRP material meets class A standards for fire and smoke development established by the
International Building Code characterized by ASTM E84.5

The top and bottom FCs are supported by the CPA and APA arrays. The endwall FC modules,
1.5m tall by 3.5m long, are stacked eight units high (12m) and are supported by the installation
rails above the CPA and APA arrays.

5Standard Test Method for Surface Burning Characteristics of Building Materials, ASTM International, https:
//compass.astm.org/EDIT/html_annot.cgi?E84+18.
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3.4.1 Field Cage Profiles

The FC consists of modules of extruded aluminum field-shaping profiles, as listed in Table 3.3. The
shape of these profiles is chosen to minimize the strength of the E field between a given profile and
its neighbors and between a profile and other surrounding parts, including the GP. For example,
with a 30 cm separation between the FC and the GP, the maximum E field on the profiles surface
is under 10 kV · cm−1 over the straight sections of the profiles at −180 kV bias (Figure 3.9).

Figure 3.9: E field map (color) and equipotential contours of an array of the FC profiles biased up to
−180 kV and a ground clearance of 30 cm.

The profile ends have higher surface E field, especially those at the corners of the FC. To prevent
high voltage breakdown in the LAr, the ends of the profiles are encapsulated by custom UHMWPE
caps. These caps are designed and experimentally verified to withstand the full voltage across their
6mm thickness.

The profiles and their end caps have been carefully modeled to ensure the resulting E field does not
approach 30 kV/cm [28] (specification SP-FD-24). This design concept was validated in a small-
scale test setup at CERN before it was adapted for the SP module. These features are designed
to avoid sparking and thus to draw very small stable currents, which should produce a consistent
load on the power supply (specifications SP-FD-12, SP-FD-17, and SP-HV-1.

3.4.2 Ground Planes

For safe and stable operation of the LAr cryogenics system, the cryostat requires a small fraction
of its volume to be filled with gaseous argon. This small volume is commonly referred to as the
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ullage. To optimize use of the LAr in the cryostat, we will place the upper FC, which forms the
top boundary of the TPC, just below the liquid surface.

The ullage contains many grounded conducting components with sharp features, near which the E
field could easily exceed the breakdown strength of gaseous argon if directly exposed to the upper
FC. To shield the high E field from entering the gas ullage and thereby prevent such breakdowns,
ground planes (GPs), in the form of tiled, perforated stainless steel sheet panels, are mounted on
the outside surface of the top FC module with a 30 cm clearance. While critical over the region
near the cathode, the need for such shielding diminishes toward the APA end of the FC due to
the lower voltages on the FC profiles in that region. The 30 cm FC-GP distance represents a 50%
increase over the value used in ProtoDUNE-SP, to further reduce the maximum E field in the
TPC and thus the possibility of discharges. The 20 cm distance in ProtoDUNE-SP was due to an
early DUNE design, where 20 cm was the maximum possible distance that could maintain the GP
below the liquid level. With the current cryostat and SP module design, more space is available,
allowing an increase in the FC-to-GP distance.

In addition to the increase in FC to GP clearance, we are also eliminating most of the insulating
standoffs used in ProtoDUNE-SP that support GP tiles from the FC I-beams, in particular, those
near the CPA end of the FC. These standoffs are deemed at risk of aiding discharges by providing
a short path from FC to GP along corresponding straight edges. Figure 3.10 illustrates the new
configuration. Figure 3.11 shows a test stand built to demonstrate the coupling between FC and
GP, with the standoffs near the cathode end removed. Tests in Ash River are confirming that no
changes in the assembly or deploying procedures are needed and that the mechanical stability of
the full system is unaffected. An upcoming review will examine the design changes and related
tests and calculations. Final validation of the complete HV design for the SP module will be
performed in future ProtoDUNE running.

Figure 3.10: Comparison between the FD top FC module (top) and the ProtoDUNE-SP counterpart
(bottom). The changes to the CPA side standoffs in the FD version are highlighted in red circles. The
increase in the FC to GP separation is also shown here.

On the bottom of the cryostat a similar set of GPs will protect against breakdown in the liquid
near cryogenic pipings and other sensors with sharp features. The same clearance will be used. No
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Figure 3.11: Photos of a test module demonstrating the coupling between the FC and GP, with the
standoffs near the cathode end (towards the right) removed.

GPs are planned beyond the two endwall FCs since there is sufficient clearance in those regions.

3.4.3 Maximum Field Distortions

The FCs are designed to produce a uniform E field with understood characteristics. The largest
known E field distortion in the TPC occurs around a large gap in the FC between the endwall
module and its neighboring top and bottom modules. This gap is necessary to allow the top and
bottom modules to rotate past the endwall FC during deployment. Figure 3.12 illustrates the
extent of the distortion in this limiting scenario. In the SP module, a total LAr mass of 160 kg
along these four edges of the TPC suffers > 5 % E field distortions. If the non-uniformity is not
accounted for in reconstruction, this will result in uncertainties in dE/dx in these regions exceeding
1%.

3.4.4 Top and Bottom Field Cage Modules

The top FC and bottom FC module dimensions are listed in Table 3.3. The length, 3.5m, is set
by the length of the two 15.2 cm (6 in) FRP I-beams that form the primary support structure of
the modules. The I-beams are connected to each other by three 7.6 cm (3 in) FRP cross beams.
The connections between the longitudinal and cross I-beams are made with L-shaped FRP braces
that are attached to the I-beams with FRP spacer tubes, and secured with FRP threaded rods,
FRP hex-head nuts, and custom-machined FR-4 washer plates.

The 2.3m module width corresponds to the length of the aluminum profiles, including the UHMW
polyethylene end caps. Profiles are secured to the FRP frame using custom-machined double-holed
stainless steel slip nuts that are slid into and electrically in direct contact with the aluminum profiles
such that they straddle the webbing of the 15 cm I-beams, and are held in place with screws that
penetrate the I-beam flanges. The profile offset with respect to the FRP frame is different for
modules closest to the endwall FCs, and modules in the center of the active volume.

Five GPs are connected to the outside (i.e., the non-drift side) of each top FC and bottom FC
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Figure 3.12: E field at a corner between the bottom and endwall FC modules, showing effects of a 7 cm
gap. Left: the extent of 5% E field non-uniformity boundary (black surface, contains less than 10 kg
of LAr) and 10% non-uniformity boundary (white surface, contains ∼6 kg of LAr) inside the TPC’s
active volume. The inset is a view from the CAD model. Right: electron drift lines originating from
the cathode surface.

module. The GPs are positioned ∼30 cm away from the profiles, and begin at the CPA end of the
module, leaving the last 14 profiles (88 cm) on the APA end of the module exposed. Between the
GPs and the 15 cm I-beams standoffs made of short sections of 10.2 cm (4 in) FRP I-beams are
connected with FRP threaded rods and slip nuts. The electrical connection between the GPs is
made with copper strips.

The connections between the top and bottom modules and the CPAs are made with aluminum
hinges, 2.54 cm (1 in) in thickness, that allow the modules to be folded in on the CPA during instal-
lation. The hinges are electrically connected to the second profile from the CPA. The connections
to the APAs are made with stainless steel latches that are engaged once the top and bottom FC
modules are unfolded and fully extended toward the APA.

The voltage drop between adjacent profiles is established by voltage divider boards screwed into
the drift-volume side of the profiles. A custom-machined nut plate is inserted into the open slot of
each profile and twisted 90° to lock into position. Two additional boards to connect the modules
to the CPAs screw into the last profile on the CPA end of the module. This system is more fully
described in Section 3.5. A fully assembled module is pictured in Figure 3.13.

3.4.5 Endwall Field Cages (EWFC)

Each of the four drift volumes has two endwall FCs, one on each end. Each endwall FC is in turn
composed of eight endwall FC modules. The two endwalls are identical in construction, and are
installed with an 180◦ rotation front to back. Figure 3.14 illustrates the layout for the topmost
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Figure 3.13: A fully assembled top field cage (top FC) module with ground plane (GP) is shown.

and the other panels, respectively.

Each endwall FC module is constructed of two FRP box beams, each 3.5m long, as shown in 3.14.
The box beam design also incorporates cutouts on the outside face to minimize charge build up.
Box beams are connected using 1.27 cm (0.5 in) thick FRP plates. The plates are connected to the
box beams using a shear pin and bolt arrangement. The inside plates facing the active volume are
connected using special stainless steel slip nuts and stainless steel bolts. The field-shaping profiles
are connected to the top box beam using stainless steel slip nuts, an FRP angle, and two screws
each that pass through matching holes in the wings of the aluminum profiles. At the bottom box
beam, the profiles are pulled against another FRP angle with a single screw and a slip nut that is
held in place by friction.

3.4.6 Voltage Divider Boards

A resistive divider chain interconnects all the metal profiles of each FC module to provide a linear
voltage gradient between the cathode and anode planes.

The resistive divider chain is a chain of resistor divider boards each with eight resistive stages in
series. Each stage (corresponding to 6 cm gap between FC profiles) consists of two 5GW resistors
in parallel yielding a parallel resistance of 2.5GW per stage to hold a nominal voltage difference
of 3 kV. Each stage is protected against high voltage discharge transients by transient/surge ab-
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Figure 3.14: Top: Uppermost module of the endwall FC. The two G10 hanger plates connect the
endwall FC to the detector support system (DSS) beams above the APAs and CPAs. Bottom: regular
endwall FC module. Seven such modules stack vertically with the top module to form the 12m total
height.
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sorbers (varistors). To achieve the desired clamping voltage, three varistors (with 1.8 kV clamping
voltage) are wired in series and placed in parallel with the associated resistors. A schematic of the
resistor divider board is shown in Figure 3.15; an illustration of the resistor divider board used in
ProtoDUNE-SP is shown as well. These boards will be identical to the ones successfully mounted
in the ProtoDUNE-SP FC.

Figure 3.15: Left: A ProtoDUNE-SP resistor divider board. Right: Schematic diagram of resistor
divider board

The current drawn by each divider chain is about 1.2 µA at the nominal E field of 500V/cm. A
total of 132 resistive divider boards are connected in parallel to each CPA array for a total of
about 158 µA, well within the capability of the selected HV power supply.

There are about 30,000 resistors used on the FCs in an SP module. A resistor failure is a possible
risk to the TPC. An open resistor on the divider chain, the most common failure mode, would
approximately double the voltage across the remaining resistor to 6 kV. This larger voltage would
force the three varistors in parallel to that resistor into conduction mode, resulting in a voltage
drop of roughly 5 kV (1.7 kV × 3), while the rest of the divider chain remains linear, with a slightly
lower voltage gradient. Because the damage to the divider would be local to one module, its impact
to the TPC drift field is limited to region near this module, a benefit of the modular FC design.
An example of a simulated E field distortion that would be caused by a failed resistor is shown in
Figure 3.16.

The effect of the non-uniformity in resistor values can also be scaled from this study. A 2% change
in a resistor value (1% change from the 2R in parallel) would give about 1.5% of the distortion from
a broken resistor, i.e. less than 1mm of transverse distortion in track position, with no noticeable
drift field amplitude change inside the active volume.

3.5 Electrical Interconnections

Electrical interconnections are needed among the HV delivery system, CPA panels, FC modules,
and termination boards on the APA modules, as well as between resistive dividers and the field-
forming elements on the CPAs and FCs. Redundancy is needed to avoid single points of failure.
Some connections must be insulated in order to avoid creating a discharge path that might circum-
vent the discharge mitigation provided by the resistive CPA surface and FC partitioning. Certain
connections must be flexible in order to allow for FC deployment, thermal contraction, and motion
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Figure 3.16: Simulated E field distortion from one broken resistor in the middle of the voltage divider
chain on one bottom FC module.The benefit of the redundancy scheme is emphasized by the limited
extent of the E field distortions. Left: Extent of E field non-uniformity in the active volume of the
TPC. The green planes mark the boundaries of the active volume inside the FC. The partial contour
surfaces represent the volume boundaries where E field exceeds 5% (dark red, contains less than 100 kg
of LAr) and 10% (dark blue, contains less than 20 kg of LAr) of the nominal drift field. The units are
V ·m−1 in the legend. Right: electron drift lines connecting the CPA to APA in a bottom FC corner.
The maximum distortion to the field line is about 5 cm for electrons starting at mid-drift at the bottom
edge of the active volume.

between separately supported CPAs components. Figure 3.17 shows a high-level overview of the
interconnections between the HV, CPA, and FC modules.

High voltage feedthroughs connect to cups mounted on the CPA frame that attach to an HV bus
running through the CPAs. HV bus connections between CPA panels are made by flexible wires
through holes in the CPA frame. The HV bus is a loop that mitigates any risk of a single failure
point; the feedthrough at each end of each CPA panel mitigate risk of a double-break failure.
Voltage dividers on each CPA panel bias the FSS and the resistive dividers on the top and bottom
FCs. The CPA-to-FC connections are made using flexible wire to accommodate FC deployment.
To further increase redundancy, two CPA panels connect to each top or bottom field cage, and
two connections are also made to each endwall FC. Resistor divider boards attach directly to the
interior side of the FC profiles with screws. A redundant pair of flexible wires connects a circuit
board on the last profile of each FC to a bias-and-monitoring board mounted on the corresponding
APA.

Short sections of flexible wire at the ends of each HV bus segment attach to screws in brass tabs
on the CPA resistive panels (CPA RPs). Vertical HV bus segments on the outer ends of each CPA
plane connect the top and bottom HV buses to complete the loop. Solid wire is used to connect
resistive panels within a CPA panel.

Each FC module is as electrically independent as possible in order to mitigate discharge. However,
only the bottom module of each endwall can make connections to the HV bus and APA, so each
endwall module is connected to its upper neighbor at its first and last profile using metal strips.
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Figure 3.17: High-level topology of the HV interconnections for one CPA array and adjacent field cages.
Each pair of adjacent CPA panels is connected to two top field cage modules and two bottom field
cage modules. A high voltage bus supplies the CPA panels at the top and bottom, and also supplies
the endwall field cage modules. All field cages are terminated at the APAs (not shown).

Each FC divider chain connects to an FC termination board in parallel to a grounded fail-safe
circuit at the APA end. The FC termination boards are mounted on the top of the upper APAs
and bottom of lower APAs. Each board provides a default termination resistance, and an SHV
cable connection to the outside of the cryostat, via the CE signal feedthrough flange, through
which we can either supply a different termination voltage to the FC or monitor the current
flowing through the divider chain.

All flexible wires have ring or spade terminals and are secured by screws in brass tabs. Spring
washers are used with every electrical screw connection in order to maintain good electrical contact
with motion and changes of temperature.

Table 3.4 summarizes the interconnections required for the HV system.

The redundancy in electrical connections described above meets requirement SP-HV-2. The HV
bus and interconnections are all made in low field regions in order to meet requirement SP-FD-24
The HV bus cable is rated at the full cathode HV such that even in case of a rapid discharge of
the HV system no current can flow to the cathode or FC except at the intended contact points,
preserving the ability of the resistive cathode and FCs to meet requirement SP-FD-17.

3.6 ProtoDUNE-SP High Voltage Experience

ProtoDUNE-SP [6] is a prototype for an SP module. Approximately one twentieth the size of a
SP module, this detector implements an A-C-A configuration with one CPA array that bisects the
TPC and two APA arrays, one along each side. The CPA array consists of six CPA panels, each
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Table 3.4: HV system interconnections

Connection Method
HV cup to HV bus wire to screw in HV cup mount on CPA frame
HV bus between CPA panels wire between screws in brass tabs
HV bus to FSS wire to circuit board mounted on FSS
FSS to top FC and bottom FC wire to circuit board on first FC profile, two per FC module
HV bus to endwall FC wire to circuit board mounted on first FC profile, two per endwall
FC divider circuit boards directly attached to profiles using screws and SS slip nuts
FC to bias and monitoring termina-
tion

redundant wires from board mounted on last FC profile

HV bus to CPA panels brass tab on CPA resistive panel
CPA RP interconnections solid wire between screws in brass tabs
Endwall FC module interconnections metal strips, first and last profiles only

1.2m wide by 6.0m high (half-height relative to an SP module), and is positioned 359 cm away
from each APA array, matching the maximum drift distance of an SP module.

Six top and six bottom FC modules connect the horizontal edges of the CPA and APA arrays,
and four endwall FCs connect the vertical edges (two per drift volume). One of the drift volumes
is pictured in Figure 3.18. Each endwall FC comprises four endwall modules (half-height relative
to a SP module). A Heinzinger −300 kV 0.5mA HV power supply delivers voltage to the cathode.
Two HV filters in series between the power supply and HV feedthrough filter out high-frequency
fluctuations upstream of the cathode.

3.6.1 Summary of HV Construction

The ProtoDUNE-SP HV components underwent various levels of pre-assembly offsite prior to
transport and final assembly in the ProtoDUNE-SP cleanroom adjacent to the cryostat.

Parts for the top and bottom FC frames were procured and test fit at Stony Brook University before
being shipped to CERN for module assembly in a cleanroom about 5 km away from the detector
hall. Fully assembled modules were transported individually to the detector hall for storage until
installation. CERN provided the GPs for the top and bottom FCs as well as the field shaping
profiles for all FCs.

Louisiana State University (LSU) provided all the voltage divider boards, then procured and test
fit the endwall FC frame parts before shipping them fully assembled to CERN. These profiles and
the voltage divider boards were installed in the same CERN cleanroom facility as the other FC
components.

Argonne National Laboratory shipped the CPAmaterial to the detector hall as single pre-assembled
resistive panels held in a FR-4 frame; i.e., as CPA units (Table 3.2). In the cleanroom adjacent
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Figure 3.18: One of the two drift volumes of ProtoDUNE-SP. The FC modules shown enclose the drift
volume between the CPA array (at the center of the image) and the APA array (upper right). The
endwall FCs are oriented vertically; the top and bottom units are horizontal. The staggered printed
circuit boards connecting the endwall FC profiles are the voltage divider boards.

to the ProtoDUNE-SP cryostat, three CPA units were mechanically and electrically connected to
produce a CPA panel. The CPA panels (one of which is pictured in Figure 3.7) were first assembled
horizontally and then lifted and rotated to a vertical orientation where they were paired to make
a 6.0m× 2.3m CPA plane.

At this point, two top and two bottom FC modules were brought to the cleanroom to be lifted,
rotated to vertical, and attached to the CPA plane. To fit through the temporary construction
opening (TCO), the top FCs were suspended from their support at the top of the CPA plane to
hang vertically, and the bottom FCs were folded up and temporarily attached to their top FC
counterparts. The resulting CPA-FC assemblies were rolled onto the central bridge beam inside
the cryostat and deployed.

Also in the ProtoDUNE-SP cleanroom, sets of four pre-assembled endwall FCs were each assembled
into one endwall FC plane. Although not a component of the SP module design, the beam plug
was installed onto its corresponding module before the beam-right, upstream endwall FC was built.
An electric hoist lifted the top module to a height at which the next module could be wheeled
underneath and connected via FRP plates. The hoist then raised the pair, and the procedure
would continue in this way until the endwall FC was four modules tall. The load of the assembled
endwall was then transferred to a trolley on a transport beam, which allowed it to be pushed into
the cryostat onto the appropriate bridge beam.

The TPC components of ProtoDUNE-SP were installed first for the drift space to the right of
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the delivered beam (beam-right), and then for the beam-left drift space. The APAs and the
CPA array were locked into position along their respective bridge beams, and then the bridge
beams were locked into their positions along the drift direction. Next, the two endwall FCs were
moved and rotated into their upstream and downstream positions to bridge the gap between the
vertical edges of the corresponding APA and CPA. The endwall FCs loads were transferred onto
the APA and CPA bridge beams, which freed the intermediate bridge beam for top and bottom
FC deployment. Two mechanical hoists were used to lower (raise) the bottom (top) FC to bridge
the gap between the horizontal edges of the APAs and CPAs. Finally, the HV cup was connected
on the downstream CPA, and the HV feedthrough was lowered through the cryostat penetration
to make contact with the cup.

3.6.2 HV Commissioning and Beam Time Operation

During cool-down and LAr filling, a power supply was used to supply −1 kV to the cathode and
monitor the current draw of the system. As the system cooled from room temperature to LAr
temperature, the resistance increased by ∼10%, consistent with expectations. Once the LAr level
had exceeded the height of the top GPs, the voltage was ramped up to the nominal voltage.

The initial week of HV operations showed no signs of any anomalous instabilities. Over the
following weeks, the HV power supply showed signs of instabilities that affected the quality of the
HV provided to the cathode plane. Replacement of the power supply midway through the run
resulted in higher stability of the warm side of the HV system. The original power supply was sent
to Heinzinger for inspection. The malfunctioning was confirmed to be due to unexpected excessive
moisture that had accumulated in the HV cable socket.

In addition, two types of instabilities emerged in the cold side of the HV system. The first type
was the so-called current blips, during which the system draws a small excessive current that
persists for no more than a few seconds. The magnitude of the excess current during such events
increased over the subsequent three weeks from 1% to 20%. The second type of instability, labeled
“current streamers,” exhibited persistent excessive current draw from the HV power supply with
accompanying excessive current detected on a GP and on the beam plug. These two types of
instabilities were experienced periodically throughout the duration of the ProtoDUNE-SP beam
run. The frequency of both types increased over time after the system was powered on, until a
steady state of about ten current blips/day and one current streamer every four hours was reached.
These effects are consistent with a slow charging-up process of the insulating components of the
FCs supports, which then experience partial discharges that are recorded as HV instabilities. This
process appears to restart after every long HV-off period.

In addition, these processes seem to be enhanced by the LAr bulk high purity, which allows the
electric current to develop. At low purity electronegative impurities act as quenchers, blocking
the development of the leakage current. Despite the presence of two types of instabilities, the HV
system was able to consistently achieve >95% uptime during the beam runs. The downtime was
the result of short manual interventions to quench a current streamer (Figure 3.19).

In some cases, mostly outside of the beam run period, we turned off the HV system momentarily to
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allow the HV system components to discharge. This is reflected as larger dips in the uptime plot.
During moments when the rest of the subsystems (including the beam) were stable, the moving
12-hour HV uptime fluctuated between 96% and 98%.

Figure 3.19: The performance of the HV system across the test beam period, September-November
2018. The top panel shows the drift field delivered to the TPC, the middle panel indicates HV cuts
during periods when the system is not nominal (some periods not visible due to their short timescale),
and the bottom panel shows the moving 12-hour uptime of the HV system based on these HV cuts.

The up-time during the week starting October 11th (Oct 11 in Figure 3.19) is lower than the
subsequent three beam-on weeks because the current streamers were addressed differently in these
two periods. In the beginning, they were left to develop until they quenched themselves or until the
HV was manually ramped down. The HV was brought back up when the current draw returned
to nominal, according to the FC resistance value. Automated controls to quench the current
streamers were then successfully implemented in an auto-recovery mode. These helped significantly
to increase the up-time, by optimizing the ramping down and up of the HV power supply voltage,
which was performed in less than four minutes (Figure 3.20).

3.6.3 Post-beam Stability Runs with Cosmic Rays

During the 2018 beam run periods, priority was given to operating the ProtoDUNE-SP detector
with maximal up-time in order to collect as much beam data as possible at the nominal HV con-
ditions. Therefore, investigating the long-term behavior of the HV instabilities and understanding
their origin became goals of the long-term operation of ProtoDUNE-SP in 2019.

As mentioned above, it appears that the current streamer effect is a charging-up process with its
frequency increasing with time after a long HV-off period. This behavior has been repeatedly
observed and confirmed in 2019. The current streamer rate stabilized at 4-6 per day, and the
location was essentially always on the same single Ground Plane (GP#6) out of the 12 monitored
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Figure 3.20: Example of the HV automatic recovery procedure developed to detect and quench the
current streamers: whenever an excess sustained current from the HV PS is detected (obtained by
continuously monitoring the total detector resistance experienced by the PS), the HV delivered by the
PS is lowered in discrete steps. At each step the total resistance is checked again, and if it agrees with
the nominal detector resistance the HV is ramped up again to its nominal value; otherwise the HV is
lowered to the next step.

GPs. Their rate and location were approximately independent of the HV applied on the CPA in
the 90 kV to 180 kV range.

More recently, after a change of the LAr re-circulation pump (April 2019), the detector was op-
erated for several months in very stable cryogenic conditions and with very high and stable LAr
purity (as measured by purity monitors and cosmic rays). During this period, the HV system was
set and operated at the nominal value of 180 kV at the CPA for several weeks without interruption.
A significant evolution in the behavior of the HV system was observed.

To better understand the current streamers phenomenon, the HV system was operated for about
fifty days without the auto-recovery script, and the current streamers were left to evolve naturally.
They typically lasted 6 to 12 hours, exhibiting steady current and voltage drawn from the HV
power supply and they eventually self-quenched without any intervention. The repetition rate was
highly reduced to about one current streamer every 10-14 days; this rate can be compared to the
4-6 per day in the previous periods with auto-recovery on.

The auto-recovery script was then re-enabled and the current streamer rate stabilized at about one
in every 20 hours; in addition, the intensity of the current streamer on the GP was reduced with
respect to the previous periods. As in the previous runs, the current streamers occurred always
on the same GP (GP#6) with a small leakage current on the beam plug hose, which is close to
GP#6.

This behavior is a further indication that the current streamers are in fact a slow discharge process
of charged-up insulating materials present in the high-field region outside of the FC. The auto-
recovery mode does not allow a full discharge, so the charging up is faster, and the streamer
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repetition rate is shorter.

The LAr purity loss experienced at the end of July, 2019, was accompanied by the complete
disappearance of any HV instabilities. They gradually reappeared when the electron lifetime
again exceeded 200 microseconds, and their intensity constantly increased as purity improved.
This behavior replicated that observed after the initial filling, and supports the hypothesis that
the HV instabilities are enhanced by the absence of electronegative impurities in high-purity LAr.

The effects of the current streamers on the FE electronic noise and the photon detector (PD)
background rate have been investigated. We have not observed any effect of the current streamers
on the FE electronics. On the other hand, recent analysis of the data collected by the photon
detection system (PD system) during active current streamers has indicated a high single photon
rate on the upper upstream part of the TPC. This is consistent with the activities recorded on
GP#6, which is located exactly at this upper upstream area. The analysis of the photon detection
data is in progress with the main goal of narrowing down the position of current streamers and
the localization of it, if possible (Figure 3.21) Visual inspection of this location when the detector
is emptied will be required to further understand the HV instability issues.

Figure 3.21: Preliminary analysis of the single photon activity rate in coincidence with a current streamer
as a function of the position of the PDs in the APAs (beam right site). The rate clearly decreases
proportionally to the distance of the PD from the supposed location of the current streamer. More
refined analysis is ongoing (including the beam left PDs) to better locate the light source.

It is planned to continue monitoring the HV behavior, and in particular, before the end of the
run, we plan to increase the HV above the nominal value to possibly enhance anomalous effects
in the HV chain. Furthermore, the possible role of macroscopic impurities (metallic or insulating
dust) circulation within the LAr is still to be understood, and specific running conditions will be
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implemented in ProtoDUNE-SP to better investigate this issue as well.

Although we do not yet have precise knowledge of the origin of the current streamers, it is certainly
safe to state that, in a time scale of nearly one year, we did not observe any degradation of the
HV system performance. On the contrary, the up-time has constantly improved (now it is above
99%), and the instability rate and intensity have decreased.

3.6.4 Lessons from ProtoDUNE

The ProtoDUNE-SP HV experience was, in general, very encouraging, having demonstrated an
ability to operate the TPC with a drift field of 500V/cm. However, throughout the run, the
system experienced various instabilities, discussed above. Systematic study of these instabilities
continues.

3.6.4.1 Design

The success of ProtoDUNE-SP validated the general design of the DUNE HV system, but various
opportunities for improvement during its construction and operation appeared. In particular, we
chose the following:

• adopt a “pot-style” filter resistor design (with input and output cables on the same end) to
prevent leaks from causing interventions for refilling;

• raise the HV feedthrough cable insert to be above the cold insulation space, if space allows
(to allow removing the cable while preventing moisture from entering and freezing on the
walls, which could affect electrical contact);

• add toroid signals to the feedthrough; and
• improve stability by increasing the distance between the GPs and field-shaping profiles and

eliminating direct paths for potential surface currents.

The instrumented GPs on the top and bottom FCs proved invaluable for collecting information
during moments of instability. A dedicated data acquisition (DAQ) read out the signals from the
GP monitoring system, the beam plug current monitor, and the power supply at a rate of 20 kHz
on a trigger provided useful information for diagnosing the HV behavior inside the TPC. This
system was not operated continuously due to correspondingly large data disk storage requirements.
Toroid signals from the HV filters were also helpful in localizing sources of instability, specifically
for distinguishing issues on the warm side from issues inside the TPC.

3.6.4.2 Production, Handling and Quality Control

The production and handling of HV components must be approached with great care to avoid
scratching and potentially compromising the electrical components. Part production should be
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carried out to avoid introducing sharp edges wherever possible. The corners of the GP panels had
to be smoothed after some buckling was introduced during the pressing process, and a number of
support hinges and clevises had sharp features removed by polishing. The aluminum field-shaping
profiles are particularly prone to scratches and must be packaged and handled so as to avoid direct
contact with other profiles and materials. Kapton strips were used to separate the profiles from
the FRP of the FC frames as they were being inserted to protect against scratching or removal of
the profile coating. Any scratches found in the FRP beams were covered with epoxy to prevent
fibers from escaping into the LAr.

Quality control (QC) tests were conducted on HV modules and individual components at every
step: part procurement, production, integration, and installation. For example, checklist forms
were completed for component parts of detector modules as production proceeded. Also, during
the production process, documented procedures included QC steps with checklist forms. Printed
copies of the checklists completed in the procurement and production stages were included as
travelers in shipping crates. To ensure that nothing was compromised during transport, QC tests
were repeated on individual components and assembled pieces after shipping. Resistance between
steps on the voltage divider boards was measured and verified to be within specification both
after their production at LSU and after they were shipped to CERN. Once the voltage divider
boards were mounted onto an assembled FC module, the resistance between adjacent profiles was
measured to verify sound electrical connection. In a similar way, QC checks of connections between
CPA modules and between CPA and FC modules were performed after installation.

QC tests on the HV components of ProtoDUNE-SP required many measurements to be made with
several different test devices. Extrapolating these measurements to the scale of DUNE will require
development of dedicated tools so that the QC process can be made more efficient and optimal at
each step. For example, devices to measure the resistivity of CPA coated resistive panels and field
shaping strips will be provided to each of the designated production factories. Also, designing a rig
that can latch onto the FC modules in such a way to make contact with all electrodes and control
their voltages independently would allow for an automated loop across all steps. Such dedicated
equipment and automated procedures will be required en route to a full SP module.

3.6.4.3 Assembly and Installation

The ProtoDUNE-SP experience allowed for a realistic estimation of the time involved to produce
various HV components for an SP module. The time involved for ProtoDUNE-SP was approxi-
mately as follows:

• FC module assembly: 1.5 days/module with 2 workers,
• endwall FC module assembly: 1.5 days/module with 2 workers,
• CPA (2-panel) plane: 2 days/plane with 4 workers,
• CPA plane + FC integration: 1 day/assembly with 4 workers,
• endwall FC frame assembly: 7 days/module with 2 workers,
• endwall FC final assembly: 4 hours/wall with 4-6 workers.
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These estimates include time needed to perform the required QC tests at each stage of the assembly
and installation.

The ProtoDUNE-SP installation sequence had the beam-right drift volume deployed before the
beam-left. As anticipated from calculation and testing, asymmetries in the weight distribution be-
fore the beam-left drift was deployed produced temporary misalignments that propagated through-
out the entire detector until the final left drift deployment, which corrected them. The process of
connecting individual endwall modules to build an endwall exposed another alignment issue. The
first endwall was significantly bowed initially. A tool was built to adjust the angle between adja-
cent modules, which straightened out the wall. The tool was also used while connecting modules
for the remaining three endwalls, and no significant bowing was observed.

3.6.5 Future R&D

The present HV system design derives closely from the one in operation in ProtoDUNE-SP. Op-
eration of this detector in 2019 has allowed us to gain further confidence in depth concerning the
long term stability and reliability of the HV system under nominal conditions. The present R&D
program, which will not extend beyond early 2020, has the goal to further improve, if required,
the reliability of the system. In the R&D program we plan to

• evaluate the charge and discharge behavior of the UHMWPE caps on the end of the profiles
compared to metallic capped profiles. The goal is to check if the end caps contribute to HV
instability.

• compare the high voltage stability of a new version of end wall profiles to the ProtoDUNE
version. The new version bends the top and bottom of the end wall profiles 90 degrees towards
the ends of the top or bottom profiles, reducing the gap between field cage components at
the two detector module ends and lowering the E fields on the surfaces of the UHMWPE
caps and profiles near the profile ends.

• evaluate resistive versus metallic caps. If the UHMWPE caps are problematic, find an
alternative solution to maintain separated FC modules.

• study the surface-charging behavior of the FC insulation structures. Evaluation of general
insulator performance for LArTPCs, including charge-up effects and geometry, remains an
outstanding task. In this test, the goal is to find out if any geometrical feature or surface
treatment can reduce HV instability.

• evaluate higher-resistivity Kapton films. The goal is to check the feasibility of increasing the
surface resistivity of the cathode plane up to 1 GΩ/square. The task includes verifying the
lamination quality on FR-4 sheet and production availability.

• perform further simulation of HVS discharge behavior. Although modeling other FC designs
and DUNE itself will take considerable effort, understanding the source of instabilities or
exposing any design weaknesses would be worthwhile.
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3.7 Interfaces

The HVS has the largest surface area on the TPC and interfaces with many other systems. Ta-
ble 3.5 summarizes the interfaces with other consortia, highlights the key elements, and provides
the links to the existing interface documents.

The two most important mechanical interfaces are with the DSS and the APA. The entire weight
of the CPAs, endwall FC and half the weight of the top and bottom FC are supported by rails
provided by the DSS. The other half of the top and bottom FC weight is transferred to the APAs
through latches mounted on the APAs. All CPAs and most of the FC modules are also transported
along the DSS rails to their final positions. The DSS rails ultimately determine the final locations
of the CPAs and FCs on the TPC.

Electrically, since the APAs are at the detector ground, all HVS field cage termination and fail-safe
circuits are connected to the APAs. All cables used for the FC termination pass through the APA
frame, to connect to the safe high voltage (SHV) cables provided by the CE through the CE signal
flanges. The TPC electronics consortium also provides HVS the FC termination power supplies.

Table 3.5: HV system interface links

Interfacing System Description Linked Reference
DSS Support, positioning, and alignment of all CPA, FC

modules inside the cryostat both warm and cold
DocDB 16766 [29]

APA FC support (top, bottom, and end wall) on APA
frames; Mounting of FC termination filter boards
and FC fail-safe terminations;

DocDB 6673 [11]

CE FC termination wire connectors on CE feedthrough
flange, FC termination wires routed with CE cables

DocDB 6739 [30]

PD system Mounting of PD calibration flash diffusers and rout-
ing of their fibers to CPAs; Possible TPC coated
reflector foil on CPAs.

DocDB 6721 [31]

facility Locations and specifications of the HV feedthrough
ports; gas and LAr flow velocities and patterns.

DocDB 6985 [32]

calibration FC openings for the calibration laser heads DocDB 7066 [33]
cryogenic instrumentation
and slow controls (CISC)

HV vs. LAr level interlock, sensor locations in high
field regions, cold/warm camera coverage, HV signal
monitoring, etc.

DocDB 6787 [34]

South Dakota Warehouse
Facility (SDWF)

Storage buffer, inspections/tests, repackage for un-
derground delivery

DocDB 7039 [35]

physics Requirements: range of operating drift field, unifor-
mity of the drift field; Supply detector geometry and
E field map.

DocDB 7093 [36]
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3.8 Production and Assembly

3.8.1 Power Supplies and Feedthrough

We plan to buy commercial power supplies through, among other vendors, Heinzinger. The HV
cable is commercially available.

The power supply is tested extensively along with the controls and monitoring software. Features
to be included in the software are

• the ability to ramp, or change, the voltage, set the ramp rate, and pause the ramp. In
previous installations, the ramp rate was typically between 60V/s to 120V/s.

• an input for a user-defined current limit. This parameter is the electric current (I) value at
which the supply reduces the voltage output to stay below the current limit. The current-
limiting is done in hardware.

• an input for a trip threshold. At this current reading, the program would reduce the voltage
output through software. In previous experiments, the trip function in software would set
the output to 0 kV.

Additionally, the software must record the current and voltage read-back values with a user-defined
frequency, as well as any irregular current or voltage events.

The HV feedthrough and filters are custom devices. As for ProtoDUNE-SP, the feedthrough
designs are made by collaborators and fabricated by an external company or major laboratory.
Raw materials such as stainless steel, UHMWPE rods, and flanges are readily available and are
machined to make a feedthrough. Similarly, the resistors, steel or aluminum, and insulator material
for the filters are readily available. The feedthrough and filters require testing before being delivered
to the SDWF.

3.8.2 Cathode Plane Assembly

The component parts of the CPA array will be mainly produced by commercial companies except
for specific items that are more efficiently produced by university collaborators. Parts will be
packaged into kits, each to contain the parts for a single CPA panel (three CPA units). The parts
in each kit are

• manufactured FR-4 RP frames,
• carbon-impregnated Kapton-coated RPs and FSS,
• HV cable segments and wire jumpers making up the CPA HV bus and RP interconnects,
• resistor boards connecting the RPs to FSS (for raising the RP HV by 1.5 kV),
• machined brass tabs for connecting RPs, HV bus, and FSS, and
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• top, bottom, and exterior edge profiles and associated connection hardware.

The kits are sent to the production factories, the locations of which will be determined later. The
CPA construction unit for installation into the SP module at the Sanford Underground Research
Facility (SURF) is a pair of CPA panels called a CPA plane. The production factories thus ship
partially-assembled CPA panels to SURF where panel assembly is completed and two panels are
paired in the underground cleanroom to form a CPA plane. During production, some storage (up
to one month’s installation rate) of CPA shipping crates can occur at the SDWF while waiting for
movement into the SURF cleanroom. No unpacking of crates is needed at the SDWF; only visual
inspection will be done to determine if any damage occurred during shipping.

The most basic element of the CPA is an RP mounted in a machined slot in the top, bottom and
sides of FR-4 frames. There are three different RP types: an upper, which has as its top frame the
CPA mounting bracket and top FC hinge, a middle, and a lower, which has as its bottom frame a
bottom FC hinge. Pairs of RPs are bolted together and pinned to form CPA units of size 1.2m
× 4m for shipment. Three types of pairings are constructed to make a full six-RP, 12m tall CPA
panel: (1) an upper and a middle, (2) two middle, and (3) a middle and a lower.

The order in the shipping crate from top to bottom is: middle-and-lower, middle-and-middle, and
upper-and-middle. Two CPA panels are shipped together in one crate; they are paired at SURF
to form one CPA plane. The SP module requires 100 upper, 100 lower, and 400 middle RPs to
make up the 100 CPA panels (50 CPA planes) of the TPC.

In addition to the frames and RPs, FSS are mounted on the exposed sides of the FR-4 frames,
aluminum profiles are attached to the exterior edges of the upper and lower RPs, and cables are
attached to the RPs to form segments of the HV bus.

The CPA units are assembled horizontally on a smooth, flat, highly stable table to ensure flatness
and straightness of the entire panel before units are pinned together. There is one table per factory
with up to three factories making CPAs.

Figure 3.22 shows a 6m ProtoDUNE-SP CPA panel (rear) and a 12m ProtoDUNE-SP CPA panel
(foreground) at Ash River Laboratory in Minnesota, USA.

3.8.3 Field Cages

3.8.3.1 Top and Bottom Field Cages

Firms that specialize in the machining of fiberglass components for electrical applications will
produce the FRP and FR-4 components of the top and bottom FCs, as was successfully done
for ProtoDUNE-SP. All the machined edges except the small circular holes are to be coated with
translucent epoxy. The stainless steel and aluminum components will be produced in university
and commercial machine shops. University groups will likely fabricate the voltage divider boards
and FC and CPA connection boards.
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Figure 3.22: A 12m DUNE-SP CPA mock-up panel (foreground) and a half-height 6m ProtoDUNE-SP
panel mock-up (rear) at Ash River, Minnesota.
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The FRP frame assembly process consists primarily of fastening together FRP I-beams with FRP
threaded rods and hex nuts, and securing them with a limited and specified torque to avoid damage
to the threads. Detailed views of this procecure are shown in Figure 3.23.

Figure 3.23: The figure shows the procedure for connecting the cross beams to the main I-beams for
the top FC. Left: A display of the components of each connection, which (from top to bottom) are the
threaded rods, the spacer tubes, washer plates, the hexagonal nuts, and an L-shaped FRP brace. An
intermediate stage (middle) and final stage (right) of the assembly are also shown.

Prior to sliding each profile into the FRP frame, the holes are covered with Kapton tape to avoid
damage to the profile coating. An end cap is attached to each profile using plastic rivets, and then
the profiles are aligned against an alignment fixture running the length of the FC. After securing
each profile to the frame, the tension in the mounting screws is adjusted to remove any angular
deflection in the extended portion of the profile.

The GPs are attached to the 10 cm stand-off I-beam sections with threaded rods and a machined
plate. The copper strips are connected to adjacent modules at the same locations. Care must be
taken to avoid bending the corners of the GPs toward the profiles, particularly on the CPA side
of the module.

3.8.3.2 Endwall Field Cages

For the endwall FCs, all FRP plates are commercially cut to shape by water jet, as are the
cutouts in the FRP box beams. Holes that accommodate G10 bushings are reamed in a machine
shop. FRP frames are pre-assembled to ensure proper alignment of all FRP parts and holes (the
profiles are not inserted at this stage). The FRP modules are hung off of each other by means of
interconnecting FRP plates to ensure accurate alignment.

Next, parts are labeled, and the frames are taken apart. All components are cleaned by pressure
washing or ultrasonic bath. All cut FRP surfaces are then coated with polyurethane, which
contains the same main ingredient as the FRP resin, allowing it to bond well to the FRP fibers.
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Final panels are constructed from cleaned and inspected parts. Since assembly requires access to
both sides of a module, a dedicated assembly table has been manufactured that allows convenient
module rotation.

Figure 3.24 shows a partially assembled endwall FC FRP frame on the assembly table.

Figure 3.24: Assembly table with partially assembled endwall FC module. Box beams, cross beams,
and slots for mounting of aluminum profiles are visible.

The FRP box beams are sandwiched between 1.27 cm (0.5 in) thick FRP panels that are held on
one side by means of G10 bushings and rods with square nuts. On the other side M10 stainless
steel bolts, which are clearly visible in Figure 3.25, engage with large slip nuts that are inserted
into the aluminum profiles. The profiles are pulled towards a 2.5 cm thick FRP plate located on
the inside of the box beam.

Aluminum profiles are inserted into the cutouts of the box beams and attached with screws and
stainless steel slip nuts to L-shaped FRP brackets that are mounted on the FRP box beams. Small
changes in part sizes will help to simplify the assembly procedure with respect to the one used for
ProtoDUNE-SP. Currently, we expect that pre-assembly of the FC endwall frames will no longer
be required. The full modules will be assembled at the factory (LSU), and then complete endwall
FC panels will be shipped to the SDWF.
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Figure 3.25: Top and center endwall FC module frames hanging.
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3.8.4 Electrical Interconnections

All electrical fasteners and wires used on the CPA arrays and FC are produced to specification by
commercial vendors and packaged with the CPA or FC modules. As discussed in Sections 3.8.2
and 3.8.3), this includes. e.g., the HV cable segments, wire jumpers, and machined brass tabs.

University shops will produce and test circuit boards for HV interconnections according to the
same design used for ProtoDUNE-SP. The FC voltage dividers were produced for ProtoDUNE-SP
at LSU, and the boards for CPA frame bias and CPA-FC connections were produced at Kansas
State University (KSU). Both institutions have created custom test apparatuses for verifying proper
operation of the boards at full voltage and over-voltage conditions, keeping the boards free of solder
flux and flux-remover. These institutions may scale up production and testing by the required order
of magnitude for the SP module or share this work with other institutions, whichever best meets
the needs of the project.

3.8.5 Production Safety

Production of the FC panels and resistor-divider boards will involve collaboration technical, sci-
entific, and student labor and does not present unusual industrial hazards. The HVS consortium
will work closely with each production site to ensure that procedures meet both Fermilab and
institutional requirements for safe procedures, personnel protective equipment (PPE), environ-
mental protection, trained materials handling, and training. The vast majority of production part
fabrication will be carried out commercially and shipping will be contracted through approved
commercial shipping companies. Prior to approving a site as a production venue, it will be visited
and reviewed by an external safety panel to ensure best practices are in place and maintained.

Testing of the HV feedthrough will be done in a closed cryostat to avoid exposure to high voltage
and to assure the nominal voltage is functional. The power supply is grounded to the cryostat
as a further safety measure. Tests for the ProtoDUNE-SP HV feedthrough were done at CERN
after a safety electrical and cryogenic review mainly focusing on the grounding of the whole test
stand (power supply, cable, and cryostat where the feedthrough was tested) as well as interlocks.
A safety document (PPSPS) was created, reviewed, and approved for this test. Similar testing
and documentation will be done for the SP module.

3.9 Quality Control, Transport, and Installation

The HVS consortium has developed a comprehensive quality control (QC) plan for the production,
shipping, and installation of the SP module HV components. It is based partly on QC procedures
developed and implemented on ProtoDUNE-SP and on the NOvA experiment’s successful use of
barcode tagging for identifying and tracking detector components. Inventory tagging and tracking
each component is crucial. Documentation in the form of printed checklists is maintained [37].
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Travelers have been replaced by a system of tags with bar codes attached to the units, which key
to electronic QC data. The tags will be large and brightly colored enough to be seen from both
ends of the cryostat. A particularly suitable choice is to use bright yellow cattle tags, plastic tags
of about 10-12 square inches (∼ 70 cm2) on which a unique QR6 or bar code can be printed; they
can be purchased very inexpensively in quantities of hundreds or thousands.

Scanned tags are removed after completion of electronic checklist forms linked to the tag’s bar
code. At the end of TPC installation, all QC data for components at a particular location in the
detector are stored electronically and linked to that location.

3.9.1 Quality Control

Power supply devices used in an SP module will be tested before installation. Output voltages
and currents will be checked on a known load.

The feedthrough and filters will be tested at the same time, with the selected power supply. The
feedthrough must be verified to hold the required voltage in TPC-quality LAr (τ ≥1.6ms) for
several days. The ground tube submersion and E field environment of the test setup will be
comparable to the real FC setup or more challenging (e.g., the test liquid level can be lower than
that in the SP module but not higher). Additionally, the feedthrough must be leak-tight to satisfy
cryogenics requirements.

The QC tests concerning the voltage divider boards are as follows: All individual resistors and
varistors are submitted to a warm and cold (87 K) current-voltage measurement. This forms the
basis for selecting components that meet specifications: all electrical components must pass visual
inspection for mechanical damage; all measurement values (resistance, clamping voltage) must be
within 2 σ of the mean for entire sample both in warm and cold tests.

The QC process for mechanical components starts at the production factories by attaching a
cattle tag with a unique code to each production element. A file linked to each code contains
the individual measurements and properties contained in the QC checklists for that element. The
following is an example of how this system will be implemented for the CPA components:

1. During assembly, QC checklists are filled out electronically using a smart phone or tablet.
Once a CPA unit is completely assembled and all checklists are complete, a coded temporary
cattle tag is attached and scanned, linking the checklist information to the code on the tag.
(The CPA unit’s individual parts are not tagged separately.)

2. A shipping crate will contain six CPA units, each with its removable coded tag, plus any
included hardware packages, each with a coded sticker.

3. A coded label on the shipping crate (paper sticker) will identify the contents of the crate
(six codes + codes of hardware packages). The code on the label is used only for shipping

6Quick Response Code, The QR™ code system was invented in 1994 by the Japanese company Denso Wave. https:
//www.qrcode.com/en/index.html.
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purposes and for inventory purposes.

4. In the SURF cleanroom, the first CPA panel is assembled. A coded tag is attached to the
CPA panel and scanned. Then the three individual CPA unit tags are scanned and removed,
linking them to the CPA panel code.

5. The same procedure is followed for the second CPA panel from the crate. Each CPA panel
now has a single tag attached to it.

6. The CPA panels are then combined into a CPA plane, and a single coded tag is attached to
the CPA plane and scanned. The two individual CPA panel tags are then scanned, linking
their codes to the that of the CPA plane.

7. Top and bottom FC modules are attached to both sides of the CPA plane, and a single coded
tag is placed on this CPA/FC assembly identifying the codes of each of the four FC modules
and the code of the CPA planes; these five tags are removed after scanning.

8. When moving the panel into the cryostat the code of the position tag on the DSS is scanned
as well as the tag on the CPA/FC assembly, and then both tags are removed.

At this point, a sequence of linked codes associated with QC checklists identify which CPA and
FC modules are mounted in which DSS positions, and no tagging material remains in the cryostat.
A similar sequence is anticipated for the production of the top and bottom FC units up to step 6;
the endwalls are done separately but similarly. At the completion of installation in the cryostat
and before top and bottom FC deployment, visual inspection will confirm the absence of any tags.

3.9.2 Transport and Handling

The HVS consortium has studied options for transportation from HVS production sites to the
SDWF and packaging of the shipped elements. We found that using reusable underground crates
and returning them to the factories when empty is less expensive than using inexpensive, disposable
crates for shipment from the factories to the SDWF, even with the extra shipment costs.

We have identified a vendor that produces honeycombed PVC sheets of varying thicknesses that
can be formed into crates. These can be loaded at the production sites, shipped to the SDWF,
and sent underground at SURF. We will require 50 shipments of crates containing two CPA panels
each to complete the SP module. The reusable underground crate scheme requires only 20 crates
to make the 50 shipments. Similar reductions are obtained for the top and bottom FC modules.

Crates would be available at each factory at the start of production. As production proceeds,
individual assembly units are bagged and sealed inside them. When a full shipment of crates is
ready at a factory, crates are sent by flatbed truck from the factory to the SDWF. The full crates
are stored at the SDWF until they can be received at SURF. Some components may require QC
and/or minor assembly procedures to be done at the SDWF before shipping to SURF.
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At SURF, the crates are lowered into the staging area outside the cleanroom where they are
unpacked. The assembly units are removed from their bags and taken into the cleanroom for
installation. Only cleaned assembly units are allowed into the cleanroom; the crate is restricted
to the staging area only. The empty crate is returned to the SDWF and then sent back to a
production factory for reloading.

3.9.3 Safety during Handling

In the current installation scenario, no assembly activities are foreseen at the SDWF site for any
components of the HV system. Only visual inspection of the HVS modules crate condition will be
performed to verify the integrity after shipping. No disruption in installation should occur in the
event of shipping damage since there is a one-month storage period at the SDWF and two week’s
installation storage underground at SURF. The HVS consortium will coordinate procedures for
underground handling with technical coordination.

A detailed Gantt chart on the production and installation schedule for the HVS of the first SP
module is shown in Figure 3.26.

The installation activities are described in Chapter 9.

3.10 Organization and Management

3.10.1 Institutional Responsibilities

The HVS consortium includes all the institutions that have participated in the design, construction,
and assembly of the HV systems for both ProtoDUNE-SP and ProtoDUNE-DP. They are listed
in Table 3.6. The consortium currently comprises several USA institutions and CERN, the only
non-USA participant.

As it has been for ProtoDUNE, CERN is heavily committed to a significant role in the FD in terms
of funding, personnel, and the provision of infrastructure for R&D and detector optimization.
Moreover, CERN will be responsible for a significant fraction of subsystem deliverables; as such
CERN is actively in search of additional European institutions to attract into the consortium.

At present, in the HV current consortium organization, each institution is naturally assuming the
same responsibilities that it assumed for ProtoDUNE-SP and ProtoDUNE-DP. The consortium
organizational structure includes a scientific lead (from CERN), a technical lead (from BNL), and
an HVS design and integration lead (from Argonne National Laboratory (ANL)).

The successful experience gained with the ProtoDUNE-SP detector has demonstrated that the
present HVS consortium organization and the number of institutions are appropriate for the con-
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struction of the HV system of the SP module. Funding and the predominant participation of USA
institutions are presently open issues that would benefit from more international participation.

The consortium is organized into working groups (“WG” below) addressing the design and R&D
phases of development, and the hardware production and installation.

• WG1: Design optimization for SP module and DP module; assembly, system integration,
detector simulation, physics requirements for monitoring and calibrations;

• WG2: R&D activities, R&D facilities;
• WG3: SP-CPA: Procurement of resistive panels, frame strips, electrical connections of planes;

assembly, QC at all stages, and shipment of these parts;
• WG4: DP cathode and GP: material procurement; construction, assembly, shipment to

SDWF quality assurance (QA), QC;
• WG5: modules: SP-top/bottom-FC module, SP-endwall modules, DP-FC modules: pro-

curement of mechanical and electrical components, assembly and shipping to SDWF; and
• WG6: HV supply and filtering, HV power supply and cable procurement, R&D tests, filtering

and receptacle design and tests.

Taking advantage of identified synergies, some activities of the SP and DP working groups are
merged: HV feedthrough, voltage dividers, aluminum profiles, FRP beams, and assembly infras-
tructure.

Table 3.6: Institutions participating in the HVS consortium

Institution Country
CERN Switzerland
Argonne National Lab USA
Brookhaven National Lab USA
University of California Berkeley / LBNL USA
University of California Davis USA
Fermilab USA
University of Houston USA
Kansas State University USA
Louisiana State University USA
SUNY Stony Brook USA
University of Texas Arlington USA
Virginia Tech USA
College of William and Mary USA

3.10.2 Risks

Table 3.7 presents a summary of the risk items identified for the HV system of the FD SP module.
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Table 3.7: HV risks (P=probability, C=cost, S=schedule) The risk probability, after taking into account
the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%), or H (high
> 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule delay < 2
months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-HV-01 Open circuit on the

field cage divider chain
Component selection and cold tests.
Varistor protection.

L L L

RT-SP-HV-02 Damage to the resistive
Kapton film on CPA

Careful visual inspection of panel
surfaces. Replace panel if scratches
are deep and long

L L L

RT-SP-HV-03 Sole source for Kapton
resistive surface; and
may go out of produc-
tion

Another potential source of resistive
Kapton identified. Possible early
purchase if single source.

M L L

RT-SP-HV-04 Detector components
are damaged during
shipment to the far
site

Spare parts at LW. FC/CPAmodules
can be swapped and replaced from
factories in a few days.

L L L

RT-SP-HV-05 Damages (scratches,
bending) to aluminum
profiles of Field Cage
modules

Require sufficent spare profiles for
substitution. Alternate: local coat-
ing with epoxy resin.

L L L

RT-SP-HV-06 Electric field unifor-
mity is not adequate
for muon momentum
reconstruction

Redundant components; rigorous
screening. Structure based on CFD.
Calibration can map E-field.

L L L

RT-SP-HV-07 Electric field is below
goal during stable op-
erations

Improve the protoDUNE SP HVS de-
sign to reduce surface E-field and
eliminate exterior insulators.

M L L

RT-SP-HV-08 Damage to CE in event
of discharge

HVS was designed to reduce dis-
charge to a safe level. Higher resis-
tivity cathode could optimize.

L L L

RT-SP-HV-09 Free hanging frames
can swing in the fluid
flow

Designed for flow using fluid model;
Deformation can be calibrated by
lasers or cosmic rays.

L L L

RT-SP-HV-10 FRP/ Polyethene/
laminated Kapton
component lifetime is
less than expected

Positive experience in other detec-
tors. Gain experience with LAr
TPC’s; exchangeable feedthrough.

L L L

RT-SP-HV-11 International funding
level for SP HVS too
low

Cost reduction through design opti-
mization. Effort to increase interna-
tional collaboration.

M M M

RT-SP-HV-12 Underground installa-
tion is more labor in-
tensive or slower than
expected

SWF contingency, full-scale trial be-
fore installation. Estimates based on
ProtoDUNE experience.

L L L

The first five risks refer to the construction and operation phases; risks 6 through 12 apply to the
installation and/or detector operation phase.
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Most of the cited risks have already been addressed during the construction, commissioning, and
operation of ProtoDUNE-SP. None have caused significant problems, with the partial exception
of risk 9. Risk 9 requires an accurate analysis of collected muon data (this activity is in progress),
and the disentangling of space charge effects.

Given the much larger detector scale and the more complex underground installation environment,
the listed risks still apply to the detector modules. However, the positive experience gained with
ProtoDUNE justifies the low risk probabilities assigned to most of the items. To better justify these
statements, brief explanations are given below, together with the identified mitigation actions.

Risk 1: An open circuit on the FC could occur if a resistor in the conventional voltage dividers
were to fail in the open condition, which could result in HV discharges across the open circuit
gap. Mitigation: Perform stringent component selection and cryogenic testing. Use parallel resis-
tor chains to provide redundancy. Varistors, capable of withstanding several thousand amperes
of current impulses, have been added in parallel with the resistor chains to protect them from
large current surges. Check resistances several times during FC fabrication and assembly phases,
including once after the FC deployment.

Risk 2: Limited, local scratches could occur from accidental contacts during module assembly or
installation. No mitigation is required if a scratch is limited in size. For larger scratches that can
induce delamination, the mitigation is to replace the panel with a spare.

Risk 3: About 12 rolls of resistive Kapton are needed (4 ft wide, 300m per roll) for the CPA panels
of one SP module. The cost is 20k$ per roll from the only vendor available up to now. Mitigation:
Recently another source of resistive Kapton has become available and is being investigated. An
early purchase is also under consideration in case of a single source condition.

Risk 4: Poor shipping techniques could cause damage to delicate components (e.g., broken CPA
panels, bent or heavily scratched aluminum profiles) that would cause the modules to fail QC
tests. If significant repairs to detector components are needed, they may require replacements.
Mitigation: Plan for an adequate number of spare elements and implement a documented QA
program for shipment packing with detailed review of shipping procedures, shipping containers,
and testing in crates after arrival.

Risk 5: The surface of the aluminum profiles is very delicate and deep scratches could locally
increase the E field to close to the critical field of 30 kV/cm. The surface can be damaged during
transport or manipulation in the assembly area. In case of significant damage, it cannot be
repaired due to its conductive coating. For mitigation, ensure the availability of sufficient spare
profiles on-site to allow last-minute substitutions. Alternatively, use a local coating with epoxy
resin.

Risk 6: Unexpected changes in FC resistor values, cathode/FC non-planarity or movement, and
surface or space charge buildup can distort the E field. As a consequence, the momentum of
non-contained muons, measured by estimating the multiple scattering rate for the observed track
segments, could be incorrectly estimated, thereby degrading the momentum resolution for non-
contained muons. νµ disappearance analyses and three-flavor fits could be affected leading to feed-
down of high-energy neutrino backgrounds to low-energy reconstructed categories. Mitigation:
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Consider addition of a laser calibration if calibration with cosmic crossing muons is not sufficient.

Risk 7: In ProtoDUNE, HV instabilities appeared as current streams occurring at intervals of
several hours and localized on a specific FC module. These required a several-minute ramp-
down of the HV from the nominal −180 kV to a lower value, typically −140 kV; see Section 3.6.
Investigations are underway to characterize and mitigate this risk. Recently, understanding of this
risk has significantly progressed thanks to the long-term operation of ProtoDUNE-SP in 2019 while
exposed only to cosmic rays. There are strong hints that the instabilities are due to charging-up
processes on insulators. In addition, the current streamers are confirmed to have been localized
mainly on one GP (of 12). No degradation of the detector performance due to HV instabilities has
been observed. Moreover, these instabilities appear to decrease gradually in rate and intensity. At
present, the detector down-time due to these instabilities is less than 1%.

ProtoDUNE long-term operation is also indicating that LAr purity does not play a significant role
in the onset of the HV instability (for free electron lifetime above ∼ 1ms). The impact of the HV
instabilities on APA/CE and PDs is also under investigation and at the moment appears to be
negligible.

The mitigation for risk 7 involves improvement at the design level to increase as much as possible
the distance between the FC and GPs and to avoid high-field regions by smoothing all electrodes
exposed to HV. ProtoDUNE-DP, with a comparable design, will help determine the validity of
these improvements.

Risk 8: A sudden discharge on the HV system would inject charge to the FE ASICs, overwhelming
the protection circuits and causing permanent damage. Mitigation: Key aspects of the HVS design
were aimed at reducing the charge injection to a safe level for the CE, such as segmenting the FC
and making the cathode planes resistive. We are still searching for higher-resistivity material on
the cathode to increase the safety factor.

Risk 9: Each cathode is made of lightweight, non-porous material with an area of 58m× 12m that
could move under the convectional flow of the LAr. Mitigation: The CPA structure is designed
to withstand pressure from LAr flow based on fluid model predictions. Static deformation can be
calibrated by lasers or cosmic rays.

Risk 10: Aging of insulator components in LAr could pose a problem, but experience in ATLAS
(Kapton & PCB, 20+ years), ICARUS (G10, feedthrough 4+ years; feedthrough exchangeable) is
trending favorably. Mitigation: Continue to gain experience with LArTPCs. Make feedthrough
exchangeable.

Risk 11: Current costing suggests that international funding could be insufficient. Mitigation:
Implement cost reduction through design optimization and scaling. Make efforts to include more
international institutions.

Risk 12: Underground installation is more labor-intensive or slower than expected. Mitigation:
Add labor contingency. Carry out full-scale installation trials at the Ash River site prior to
installation. The estimates are based on ProtoDUNE experience. With the present knowledge,
the HV system is not on the critical path for installation.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 3: High Voltage 3–138

3.10.3 High-level Schedule

Table 3.8 lists the most high-level milestones for the design, testing, production, and installation of
the SP module HVS. Dates in this tentative schedule are based on the assumed start of installation
of the first SP module at SURF. The dates for the HVS production of a second SP module are
included as a reference.

The production scenario for the schedule presented in Table 3.8 assumes two factory sites for the
CPA construction, two for the top/bottom FC modules and one for endwall FC modules. Given the
present starting date for the first SP module installation, this assumption is fully compatible with
the time available after the operation of the ProtoDUNE-2 prototype. A more detailed schedule
for production and installation of the first SP module is found in Figure 3.26.

3.11 Appendix: Alternatives

3.11.1 Optical Reflectors on CPA

Since the PDs in the current TPC design are installed only on the APA side of the drift volume
and have low coverage, their responses to ionization inside the TPC are highly dependent on drift
distance and severely biased toward the APA. In order to improve the uniformity of response along
the drift direction, the PD consortium has proposed adding reflector foils coated with wavelength-
shifting (WLS) to convert the UV photons arriving at the cathode into visible photons and bounce
them back to the PDs inside the APAs. Simulations have shown that addition of the reflectors
significantly improves the uniformity of response.

Implementing this concept, however, could dramatically alter the current CPA characteristics
and design. The HVS consortium has developed several concepts to accommodate the reflectors
with minimal change to the CPA design. The main issue is the conductivity of the reflector foil
versus the highly resistive nature of the CPA. To improve the light output, it would be best to
cover as much of the cathode surfaces as possible, but large area coverage with conductive, (e.g.,
aluminum-coated) reflectors could short-circuit the resistive cathode and render it ineffective in
slowing down the energy transfer during a potential HV breakdown. On the other hand, reflector
foils made of insulating material would intercept the ionization charges drifting toward the cathode
and become charged. This would alter the drift field uniformity and, worst yet, could result in
random breakdown through the foil.

A design concept that is fairly simple to implement is depicted in Figure 3.27. A 3M Vikuiti7
reflector foil or equivalent is laminated onto a thin FR-4 backing sheet to maintain thermal expan-
sion compatibility with the resistive CPA panel, which also has an FR-4 core. The reflector foil
assembly is perforated at regular intervals to allow collection of electrons through the holes to the

7Vikuiti™is a light enhancement film produced by the 3M Company, http://multimedia.3m.com/mws/media/
419882O/vikuititm-rear-projection-displays-brochure.pdf.
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Table 3.8: High level Milestones and Schedule for the production of the HVS of the SP module

Milestone Date (Month YYYY)
Technology Decision
CPA/FC/Endwall 60% Design Review June 2019
CPA/FC/Endwall Mod 0 (for tests at Ash River) June 2019 - June 2020
Final Design Review June 2020
Start of module 0 component production for ProtoDUNE-2 June 2020
End of module 0 component production for ProtoDUNE-2 March 2021
Start of ProtoDUNE-2 installation March 2021
Start of ProtoDUNE-2 installation March 2022
South Dakota Logistics Warehouse available April 2022
Beneficial occupancy of cavern 1 and CUC October 2022
CUC counting room accessible April 2023
Top/Bottom FC production readiness review July 2023
Start of Top/Bottom FC production September 2023
CPA production readiness review October 2023
Start of CPA production December 2023
Top of detector module #1 cryostat accessible January 2024
Endwall FC production readiness review February 2024
Start of Endwall FC production April 2024
End of CPA production Detector #1 August 2024
End of Top/Bottom FC production Detector #1 August 2024
End of Endwall FC production Detector #1 August 2024
Start of detector module #1 TPC installation August 2024
Start of detector module #1 TPC installation August 2024
Top of detector module #2 accessible January 2025
End of detector module #1 TPC installation May 2025
Start of detector module #2 TPC installation August 2025
End of CPA production Detector #2 September 2025
End of Top/Bottom FC production Detector #2 October 2025
End of Endwall FC production Detector #2 January 2026
End of detector module #2 TPC installation May 2026
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					Install	EndWall	Row	0	
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										CPA/FC	into	cryostat	
					T/B	FC	Installation	
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DUNE	10	kt	SP	HVS	Production/Installation	Schedule	

Figure 3.26: Gantt chart providing a detailed view of the production and installation schedule for the
HVS for the first SP module.
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RP surface, minimizing the voltage build-up from charging of the non-perforated surfaces. Several
such foil assemblies are then tiled onto the existing RPs with screws.

In order to advance the CPA design while providing the option of adding the reflector foils at a later
time, the HVS consortium will design a hole pattern on the RPs that could be used for mounting of
reflector foils or panels, or left unused without negative consequences. In the meantime, HVS and
PD consortia are conducting joint R&D to evaluate a few design concepts and material choices.

Figure 3.27: A concept to attach reflector foils to a CPA panel. (Credit: BNL)

3.11.2 Calibration Laser Penetrations

The calibration consortium is developing requirements for calibrating the E field. One existing
technique is to use UV laser beams to ionize the LAr and generate straight tracks along known
trajectories. Because the FC surrounds the TPC active volume, we can either shoot through the
gaps between the FC profiles (as in MicroBooNE) or make openings in the FC for the laser heads
to pass through (as in SBND). Figure 3.28 shows the design of a corner of the SBND TPC with
a FC opening and a calibration laser head through the opening. Implementing such openings is
straightforward if the openings are at the FC module boundaries. Doing so through the interior
surface of a FC panel is more complicated but still simpler than the beam plug we designed for
ProtoDUNE-SP. There will be some minor drift field distortion around the openings. Preliminary
finite element analysis (FEA) studies have shown the field distortion to be negligible.
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Figure 3.28: SBND field cage opening to allow a calibration laser head to pass through. (Credit: BNL)
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Chapter 4

TPC Electronics

4.1 System Overview

The time projection chamber (TPC) electronics encompass the hardware systems necessary to
amplify, digitize, and transmit the TPC ionization charge signals out of a Deep Underground
Neutrino Experiment (DUNE) single-phase (SP) liquid argon time-projection chamber (LArTPC).
This includes the cryogenic front-end (FE) electronics (amplifiers, digitizers, digital controllers),
power and data cabling and their cryostat feedthroughs, external (non-cryogenic) digital control
electronics and power supplies, in addition to the system providing the bias voltage to the anode
plane assemblies (APAs). The TPC electronics as presented here does not include the electronics
associated with the detection and recording of liquid argon (LAr) scintillation photons, nor the
data acquisition (DAQ) computing systems needed to capture and record these data.

The main difference between the DUNE SP detector module and previous experiments or proto-
types using LAr technology is that for the first time all the signal processing for the readout of the
wires of the APAs takes place inside the LAr, in boards that are directly mounted on the APA.
This approach to the TPC readout was tested for the first time in the DUNE 35 ton prototype,
and extensively tested in the ProtoDUNE-SP prototype. It has also been adopted by the SBND
experiment. The TPC FE readout components immersed in the LAr are also referred to as the
cold electronics (CE).

The FE electronics are mounted inside the LAr to exploit the fact that charge carrier mobility in
silicon is higher, and thermal fluctuations are lower, at LAr temperature than at room temperature.
For CMOS electronics, this results in substantially higher gain and lower noise at LAr temperature
than at room temperature [38]. Mounting the FE electronics on the APA frames also minimizes
the input capacitance, which further contributes to the noise reduction. Furthermore, placing the
digitizing and multiplexing electronics inside the cryostat reduces the total number of penetrations
into the cryostat and minimizes the number of cables coming out of it.

As the full TPC electronics chain for the SP module includes many components on the warm side
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of the cryostat as well, the DUNE consortium designated to develop this system is formally called
the DUNE SP TPC electronics consortium.

This overview section starts with a review of the considerations that have led to the proposed design
for the DUNE SP detector, then discusses how the detector requirements follow from the physics
goals of the experiment. The reader will find a detailed description of all the TPC electronics
detector components in Section 4.2, including a discussion of how the lessons learned from the
construction, integration, installation and commissioning of ProtoDUNE-SP have informed the
design of the DUNE SP module and how the early data from ProtoDUNE-SP validate this design.
The description of the detector design is then followed by discussions of the quality assurance
(QA) program and the plans for production and assembly, and for integration, installation and
commissioning, in Sections 4.3–4.5. Section 4.6 discusses the interfaces with detector components
provided by other consortia, with technical coordination, and with the physics group. Sections 4.7–
4.9 conclude the chapter with plans for addressing safety issues and risks during the construction,
installation, and operation of the detector, and an outline of the organization of the TPC electronics
consortium, with a timeline for the detector module construction and an estimate of the resources
required.

4.1.1 Introduction

In the DUNE SP module a minimum ionizing particle (MIP) deposits on average between 20 ke−

and 30 ke− on each collection wire, assuming a drift E field of 500V/cm and an electron lifetime
of 6ms, as discussed in Chapter 1, and assuming full transparency during the electron transport
through the grid plane of the APA and its two planes of induction wires, as discussed in Chapter 2.
The larger of the two numbers is for MIPs close to the anode plane, and the smaller takes into
account the electron capture by electronegative impurities during the electron drift for tracks close
to the cathode plane.

The DUNE SP TPC is a unit-gain device where the electrical signal is produced by the drift of the
charges near the wires, in contrast to signal production in gaseous wire chambers, where the E field
is strong enough to provide additional ionization and signal multiplication. The signal induced
in the DUNE SP module wires is bipolar on the induction wires, negative when the electrons
drift toward the wires, and positive when they drift away from the wires. On the collection wires
signals are unipolar (negative). The signal duration is of the order of microseconds, and tends to
be narrower for the collection plane due to the enhancement of the weighting field for the collection
wires. Due to the lack of amplification of electrons inside LAr, low noise is essential for the CE to
reliably extract the ionization electron signal from both the collection and induction wire planes.

The reduction in noise level obtained with the CE greatly extends the reach of the DUNE physics
program. It allows measurement of smaller charge deposits, which mitigates the risks of inability
to reach the desired drift field or a lower electron lifetime than desired due to electronegative
impurities. For example, given an electron lifetime of 3ms and a drift E field of 0.25 kV/cm, the
charge deposited in the collection wires from a MIP close to the cathode plane is reduced to 10 ke−.
The exact minimal signal-to-noise (S/N) required for pattern recognition depends on the tracking
algorithms and the offline signal processing. We use the minimal requirement of a total equivalent

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–145

noise charge (ENC) less than 1000 e−, consistent with a S/N of at least 10 on the collection wires,
even in the pessimistic case where the electron lifetime and the E field just meet the required design
values discussed in Chapter 3. Considering the difference in signal amplitudes between collection
and induction wires and the bipolar shape of the signal on the latter, this requirement corresponds
to a S/N of at least 5 on the induction wires. This asymmetric requirement for the minimal S/N
on the collection and induction wires was first adopted by the SBND experiment [39].

The goal is to keep the total noise level as low as possible. For example, an increase in the S/N
above 15 allows the observation of MeV-scale photons, as recently demonstrated by ArgoNeuT [40].
This enables reconstruction of both photons released during de-excitation of the nucleus and part
of the energy transferred to final-state neutrons. Low noise is also crucial for the baseline oscillation
analysis described in Volume II, DUNE Physics, Chapter 5. The event classification is based on a
convolutional visual network (CVN) that uses as inputs three images of the neutrino interactions,
one for each of the three readout views, using the reconstructed hits on the individual wire planes.
This approach relies on low noise levels. Decreasing the noise level also increases the reach of low-
energy physics measurements like those associated with stellar core-collapse supernova neutrino
burst (SNB). Finally, a low noise level opens up the possibility of using 39Ar beta decays to calibrate
the DUNE SP module [41]. Instead of zero suppression, the DUNE DAQ system uses lossless data
compression, as discussed in Section 7.2.1, that becomes more efficient as the noise level is reduced.
Therefore, the noise level also affects the bandwidth requirements for the DAQ system, discussed
in Chapter 7; these bandwidth requirements can be a limiting factor for low-energy physics signals,
particularly those of astrophysical origin.

To retain maximum flexibility in optimizing reconstruction algorithms after the DUNE data is
collected, the TPC electronics are designed to produce a digital record representing the waveform
of the current produced by charge collection and induction on the anode wires. Each anode wire
signal is input to a charge-sensitive amplifier, followed by a pulse-shaping circuit and an analog-to-
digital converter (ADC). To minimize the number of cables and cryostat penetrations, the ADCs
as well as the amplifier/shapers are located in the LAr, and digitized data from many wires merge
onto a much smaller set of high-speed serial links. The TPC signal processing is implemented
in ASICs using CMOS technology. The TPC is continuously read out, resulting in a digitized
ADC sample from each APA channel (wire). The ASICs used for the readout of the 2560 wires of
each APA are mounted on front-end mother boards (FEMBs), as shown in Figure 4.1. These are
connected to warm interface boards (WIBs) located outside of the cryostat via the CE signal cable
flange located at the CE feedthrough at the top of the cryostat. The WIBs are installed, together
with power and timing cards (PTCs) that distribute the power and the clock and control signals,
in a warm interface electronics crate (WIEC) that is mounted on the signal flange. From the WIBs
the data is sent to the DAQ back-end on an optical fiber network, as discussed in Chapter 7.

4.1.2 Requirements and Specification

A number of specifications are imposed on the TPC electronics in addition to the noise requirement
(ENC < 1000 e−). Some of them, labeled as SP-FD in Table 4.1, are derived from DUNE’s overall
physics goals. The rest, labeled as SP-ELEC, are engineering specifications derived from the design
choices for the CE.
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Figure 4.1: The reference architecture for the TPC electronics. The basic unit is the 128-channel
front-end mother board (FEMB). The scheme includes also the silicon photomultipliers (SiPMs) used
for the readout of the photon detectors (PDs), as discussed in Chapter 5.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–147

Table 4.1: TPC electronics specifications

Label Description Specification
(Goal)

Rationale Validation

SP-FD-2
System noise < 1000 e− Provides >5:1 S/N on induc-

tion planes for pattern recog-
nition and two-track separa-
tion.

ProtoDUNE and
simulation

SP-FD-13
Front-end peaking
time

1 µs Vertex resolution; optimized
for 5mm wire spacing.

ProtoDUNE and
simulation

SP-FD-14 Signal saturation
level

500,000 e−

(Adjustable so as
to see saturation
in less than 10%
of beam-produced
events)

Maintain calorimetric perfor-
mance for multi-proton final
state.

Simulation

SP-FD-19
ADC sampling fre-
quency

∼ 2 MHz Match 1 µs shaping time. Nyquist require-
ment and design
choice

SP-FD-20
Number of ADC bits 12 bits ADC noise contribution neg-

ligible (low end); match sig-
nal saturation specification
(high end).

Engineering calcu-
lation and design
choice

SP-FD-21
Cold electronics
power consumption

< 50 mW/channel No bubbles in LAr to reduce
HV discharge risk.

Bench test

SP-FD-25
Non-FE noise contri-
butions

<< 1000 e− High S/N for high recon-
struction efficiency.

Engineering calcu-
lation and Proto-
DUNE

SP-FD-28
Dead channels < 1 % Minimize the degradation in

physics performance over the
> 20-year detector opera-
tion.

ProtoDUNE and
bench tests

SP-ELEC-1
Number of baselines
in the front-end am-
plifier

2 Use a single type of amplifier
for both induction and col-
lection wires

ProtoDUNE

SP-ELEC-2 Gain of the front-end
amplifier

∼ 20 mV/fC
(Adjustable in the
range 5mV/fC to
25mV/fC)

The gain of the FE amplifier
is obtained from the maxi-
mum charge to be observed
without saturation and from
the operating voltage of the
amplifier, that depends on
the technology choice.

SP-ELEC-3 System synchroniza-
tion

50 ns
(10 ns)

The dispersion of the sam-
pling times on different wires
of the APA should be much
smaller than the sampling
time (500 ns) and give a neg-
ligible contribution to the hit
resolution.

SP-ELEC-4
Number of channels
per front-end moth-
erboard

128 The total number of wires on
one side of an APA, 1,280,
must be an integer multiple
of the number of channels on
the FEMBs.

Design
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SP-ELEC-5 Number of links
between the FEMB
and the WIB

4 at 1.28Gbps
(2 at 2.56Gbps)

Balance between reducing
the number of links and relia-
bility and power issues when
increasing the data transmis-
sion speed.

ProtoDUNE, Lab-
oratory measure-
ments on bit error
rates

SP-ELEC-6
Number of FEMBs
per WIB

4 The total number of FEMB
per WIB is a balance be-
tween the complexity of the
boards, the mechanics in-
side the WIEC, and the re-
quired processing power of
the FPGA on the WIB.

ProtoDUNE, De-
sign

SP-ELEC-7
Data transmission
speed between the
WIB and the DAQ
backend

10Gbps Balance between cost and re-
duction of the number of op-
tical fiber links for eachWIB.

ProtoDUNE, Lab-
oratory measure-
ments on bit error
rates

SP-ELEC-8
Maximum diameter
of conduit enclosing
the cold cables while
they are routed
through the APA
frame

6.35 cm (2.5") Avoid the need for further
changes to the APA frame
and for routing the cables
along the cryostat walls

Tests on APA
frame prototypes

• SP-FD-13: The FE peaking time must be in the range 1 to 3 µs to match the time required
for the drifting charges to travel from one plane of anode wires to the next, which corresponds
to the typical duration of the signal observed on the wires. The planes of anode wires are
separated by 4.75mm (see Chapter 2), and the drift velocity for the E fields considered
for DUNE is in the range 1.2mm/µs to 1.6mm/µs (1.4mm/µs to 2.1mm/µs for the gaps
between the APA wire planes). A FE peaking time similar to the typical signal duration
improves the detector’s two-track resolution.

• SP-FD-14: The system must have a linear response up to an impulse input of at least
500,000 e−. This corresponds roughly to the largest ionization signals expected. These occur
in events where multiple protons are produced in the primary event vertex, in particular,
when the trajectories of one or more of the protons are parallel to the wire, leading to
collection of charge over a long path length within a short time.

• SP-FD-19: The ADC sampling frequency must be ∼2MHz, This value is chosen to match a
FE shaping time of 1 µs (approximate Nyquist condition) while minimizing the data rate.

• SP-FD-20: The ADC must digitize the charge deposited on the wires with 12 bits of precision.
The lower end of the ADC dynamic range is driven by the requirement that the digitization
not contribute to the total electronics noise, as defined by requirement SP-FD-25. The upper
end is defined by SP-FD-14. Combining this with SP-FD-02 on the total electronics noise
results in the need for 12 bits digitization.

• SP-FD-21: Preliminary studies indicate that the power dissipated by the electronics located
in the LAr should be less than 50mW/channel. Lower power dissipation is desirable because
the mass of the power cables scales with power. Ongoing studies focus on whether the amount
of power dissipated by the electronics should be minimized further because of potential
complications from argon boiling.

• SP-FD-25: The components of the readout chain, including the ADC and the bias voltage
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supplies, together must not contribute significantly to the overall noise. The ADC specifica-
tions for non-linearity and noise will depend on the gain of the FE. Like in the case of the
requirement on the noise caused by voltage ripples on the cathode (SP-FD-12) discussed in
Section 3.1.2 we are aiming to keep all sources of noise other than the FE amplifier below
100 e−.

• SP-FD-28: The fraction of non-functioning channels over DUNE’s nominal 20 years lifetime
must not exceed 1%. Ongoing studies will quantify the effect of failures in the TPC and
electronics, including single wire failures, and failures of groups of 16, 64, or 128 channels.

• SP-ELEC-1: The FE must have an adjustable baseline such that a single amplifier can
process both the bipolar signal from the induction wires and the mostly unipolar signal from
the collection wires.

• SP-ELEC-2: The FE must have a gain that allows using the entire voltage range provided by
the chosen chip fabrication technology and operating voltage without saturation for physics
signals up to those specified in SP-FD-14. Multiple gain settings could be made available to
allow for optimization of the detector performance.

• SP-ELEC-3: The dispersion of the sampling times on the different wires of all the APAs
in one DUNE SP detector module should be less than 50 ns. This value is much smaller
than the time difference between two subsequent samples on the same wire as defined by the
sampling frequency (SP-FD-19) such that it gives a negligible contribution to the single hit
resolution (assuming a drift velocity of 1.6mm/µs, the requirement of 50 ns corresponds to
a contribution to the single hit resolution of 80µm).

• SP-ELEC-4: The readout electronics for the APA wires must be organized into FEMBs
containing 128 channels. This number is a sub-multiple of the number of wires on an APA
and is determined by geometrical considerations, e.g., the number, size, and form factor of
the CR boards introduced in Section 4.2.2.

• SP-ELEC-5: The data from the FEMBs must be transmitted to the WIBs on a maximum
of four links per board, each with a maximum speed of 1.28Gbps, to minimize the number
of connections on the cryostat penetrations. This requires data transmission at high speeds,
which increases the power consumption inside the LAr. A reduction in the number of links
per FEMB to two (with a link speed of 2.56Gbps) will be investigated.

• SP-ELEC-6: Each WIB must read out four FEMBs. This number is chosen to balance the
complexity of the boards, the mechanics of the WIEC that houses the WIBs, and the required
processing power in the field programmable gate array (FPGA) inside the WIB.

• SP-ELEC-7: Each WIB must transmit data to the DAQ back end on optical links at a
speed of ∼10 Gbps. This speed is a compromise between the cost of optical transmitters and
receivers and the complexity of the readout fiber plant.

• SP-ELEC-8: All the cables required to provide the low-voltage power and the control and
readout for the FEMBs mounted on the bottom APA, plus the bias voltage cables for the
same APA, must fit inside two conduits with a diameter of 6.35 cm (2.5 inch) that are inserted
in the frame of the APA, as discussed in Section 4.6.1.
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4.1.3 Design

The reference design of the TPC electronics detector components is based on the specifications
presented in Section 4.1.2. Each individual APA has 2560 channels read out by 20 front-end mother
boards (FEMBs), with each FEMB enabling digitized wire readout from 128 channels. One cable
bundle connects each FEMB to the outside of the cryostat via a CE signal cable flange located
at the CE feedthrough at the top of the cryostat, where a single flange services each APA, as
shown in Figure 4.2. Two CE signal flanges are on each feedthrough and together account for all
electronics channels associated with a pair of APAs (upper and lower, vertically arranged). Each
cable bundle contains wires for low-voltage (LV) power, high-speed data readout, and clock or
digital-control signal distribution. Eight separate cables carry the TPC wire bias voltages from
the signal flange to the APA wire bias boards, in addition to the bias voltages for the field cage
termination electrodes and for the electron diverters. An additional flange on the top of each
feedthrough services the photon detection system (PD system) cables associated with the APA
pair. Low-voltage power supplies and bias-voltage power supplies are located on the top of the
cryostat.

The reference design for the CE calls for three types of custom ASICs inside the LAr:

• a 16-channel FE ASIC for amplification and pulse shaping (referred to as LArASIC);
• a 16-channel 12-bit ADC ASIC operating at ∼2MHz (referred to as ColdADC); and
• a 64-channel control and communications ASIC (referred to as COLDATA).

The TPC electronics detector components required for one APA are:

• FEMBs, on which the ASICs are mounted, and which are installed on the APAs;
• cables for the data, clock, and control signals; LV power; and wire bias voltages between the

APA and the signal flanges (cold cables);
• signal flanges with a CE feedthrough to pass the data, clock, and control signals; LV power;

and APA wire bias voltages between the inside and outside of the cryostat; and the corre-
sponding cryostat penetrations and spool pieces;

• WIECs mounted on the signal flanges containing the WIBs and a PTC for further processing
and distribution of the signals entering and exiting the cryostat; low voltage power and clock
and control signals are transmitted from the PTCs to the WIBs on the power and timing
backplane (PTB).

• cables for LV power and wire bias voltages between the signal flange and external power
supplies (warm cables); and

• LV power supplies for the CE and bias-voltage power supplies for the APAs.

The number of channels (wires) connected to each of these components is given in Table 4.2.

The electronics located inside the cryostat cannot be replaced or repaired after the cryostat has
been filled with LAr. Successful operation of the readout electronics in LAr for the 20 years of
DUNE operation imposes technological choices for the SP module ASICs, and specific constraints
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Figure 4.2: Connections between the signal flanges and APA. The lower APA shares the PD flange with
the upper APA but has a separate TPC readout flange.
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Table 4.2: TPC electronics components and quantities for a single APA of the DUNE SP module.

Element Quantity Channels per element
Front-end mother board (FEMB) 20 per APA 128
FE ASIC chip 8 per FEMB 16
ADC ASIC chip 8 per FEMB 16
COLDATA ASIC chip 2 per FEMB 64
Cold cable bundle 1 per FEMB 128
Signal flange 1 per APA 2560
CE feedthrough 1 per APA pair 5120
Warm interface board (WIB) 5 per APA 512
Warm interface electronics crate (WIEC) 1 per APA 2560
Power and timing card (PTC) 1 per APA 2560
Power and timing backplane (PTB) 1 per APA 2560

on commercial components that are installed inside the LAr. While the higher charge carrier
mobility [42] at LAr temperature than at room temperature is central to improving the performance
of the CE, it also leads to the hot-carrier effect [43], which limits the lifetime of ASICs. In n-type
CMOS transistors, the carriers (electrons) can acquire enough kinetic energy to ionize silicon in
the active channel. This charge can become trapped and lead to effects (including threshold shifts)
similar to those caused by radiation damage, which can cause CMOS circuits to age much more
quickly at LAr temperature, reducing performance and potentially causing failure. To mitigate
the hot carrier effect, the maximum E field in transistor channels must be lower than that which
could be used reliably at room temperature. The reduction of the maximum E field is achieved
by operating the ASICs at a reduced bias voltage and by increasing by ∼50% the length of the
transistors’ channels. Another drawback of integrated circuits operated at LAr temperature is
that the spread of the transistor properties becomes larger, making it more difficult to rely on
transistor matching for circuit design. We must carefully test any commercial circuits used in the
LAr to ensure they will perform well for the expected experiment lifetime. Reliability studies for
TPC electronics designs under consideration are discussed in Section 4.3.3.

4.2 System Design

In order to achieve the lowest possible overall noise in the readout of the APA wire planes, all
possible sources of noise need to be kept to a minimum. This requires minimizing the noise sources
in each of the components of the readout chain of the APA wires, such as the FE amplifier noise.
It also requires that all system aspects are taken into account, including avoiding channeling noise
inside the cryostat through ground connections and through the readout chain of other detector
components, like the PD system, the high voltage system (HVS), or the cryogenic instrumentation.

In this section we describe the overall system design of the TPC electronics, starting in Section 4.2.1
with a description of the grounding and shielding scheme adopted in the DUNE SP module to
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minimize the overall noise in the detector, followed in Section 4.2.2 by a discussion of the bias
voltage distribution system. Later, we describe in Section 4.2.3 the FEMBs, including the design of
the ASICs that are being considered for use in DUNE. In Section 4.2.4 we discuss the infrastructure
for the CE inside the cryostat, which includes the cold boxes that shield the FEMBs, the cold
cables, and the cable trays. Then in Sections 4.2.5-4.2.8 we discuss the infrastructure on the top of
the cryostat, including the feedthroughs, the WIECs, the timing distribution and synchronization
system, and the services that provide the low voltage power and the bias voltage to the TPC
electronics. The design presented here is very similar to the one used for ProtoDUNE-SP. The
results obtained with this detector are discussed in Section 4.2.9. Then in Section 4.2.10 we
discuss how the lessons learned from the construction, installation, commissioning, and operation
are informing the final design of the DUNE SP detector module. Later in Section 4.2.11 we conclude
with a discussion of the design maturity and of the remaining prototype activities that are required
prior to the beginning of the detector construction. Other aspects of system design pertaining to the
interfaces with other detector components, including their grounding, are discussed in Section 4.6.

4.2.1 Grounding and Shielding

The overall approach to minimizing the system noise in the SP module relies on enclosing the
sensitive wire planes in a nearly hermetic Faraday cage, and then carefully controlling currents
flowing into or out of that protected volume through the unavoidable penetrations needed to build
a working detector. Done carefully, this can result in avoiding all unwanted disturbances that
result in detector noise. Such disturbances could either be induced on the signal wires by changing
currents flowing inside the cryostat or even on the cryostat walls as, for instance, a temperature
sensing circuit that acts as a receiving antenna on the outside of the cryostat and a transmitting
antenna on the interior of the cryostat. In addition, unwanted signals might be injected into the
electronics either in the cold or just outside the cryostat by direct conduction along unavoidable
power or signal connections to other devices. This approach to minimizing the detector noise by
using appropriate grounding and shielding procedures is discussed in detail in [44]. It results in
the following set of requirements that need to be respected during the design and the construction
of the SP module:

• The APA frame shall be connected to the common of all the FE ASICs;
• All electrical connections (low voltage power, bias voltage, clock, control, and data readout)

from one APA shall lead to a single signal feedthrough (SFT);
• All APAs shall be insulated from each other;
• The common of the FE ASIC and the rest of the TPC readout electronics shall be connected

to the common plane of the FEMB;
• The return leads of the APA power line and any shield for the clock, control, and data

readout shall be connected to the common plane of the FEMB at one end and to the flange
of the SFT at the other end; this shall be the only connection of the APA frame to the
cryostat;

• The mechanical suspension from the frame of the APA to the cryostat shall be insulated;
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• The last stage of the sense wire and grid bias filters shall be connected to the common of all
the FE ASICs and therefore to the APA frame.

• Similarly the last element of the field cage (FC) divider chain shall be connected with an
appropriate termination to the APA frame, as discussed in Section 3.5.

These requirements have been followed already for the construction of the ProtoDUNE-SP proto-
type. As discussed in Section 4.2.9, the initial results from the online monitoring and the analysis
of ProtoDUNE-SP indicate that the system noise requirements for the DUNE SP module can be
met.

To minimize system noise, the TPC electronics cables for each APA enter the cryostat through
a single CE flange, as shown in Figure 4.2. This creates, for grounding purposes, an integrated
unit consisting of an APA frame, FEMB ground for all 20 CE modules, a TPC flange, and warm
interface electronics. The input amplifiers on the FE ASICs have their ground terminals connected
to the APA frame. All power-return leads and cable shields are connected to both the ground plane
of the FEMB and to the TPC signal flange.

The only location where this integrated unit makes electrical contact with the cryostat, which
defines the detector ground and acts as a Faraday cage, is at a single point on the CE feedthrough
board in the TPC signal flange where the cables exit the cryostat. Mechanical suspension of the
APAs is accomplished using insulated supports. To avoid structural ground loops, the APA frames
described in Chapter 2 are insulated from each other.

Filtering circuits for the APA wire-bias voltages are locally referenced to the ground plane of the
FEMBs through low-impedance electrical connections. This approach ensures a ground-return
path in close proximity to the bias-voltage and signal paths. The close proximity of the current
paths minimizes the size of potential loops to further suppress noise pickup.

Signals associated with the PD system, described in Chapter 5, are carried directly on shielded,
twisted-pair cables to the signal feedthrough. The cable shields are connected to the cryostat at
the PD flange shown in Figure 4.2, and to the PCB shield layer on the PDs. The cable shields
have no electrical connection to the APA frame or the TPC electronics.

Further aspects of the DUNE grounding scheme are discussed in Volume III, DUNE Far Detector
Technical Coordination, Chapter 5 and in [45].

4.2.2 Distribution of Bias Voltages

Each side of an APA includes four wire layers, as described in Section 2.2. Electrons passing
through the wire grid must drift unimpeded until they reach the X-plane collection layer. The
nominal bias voltages, chosen to result in this electrically transparent configuration, are given in
Section 2.2.

The filtering of wire bias voltages and the AC coupling of wire signals passing onto the charge
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amplifier circuits is done on CR boards that plug in between the APA wire-board stacks and
FEMBs. The CR boards have already been described in Section 2.2.5.3; here we focus on the
rationale for the choice of the resistance and capacitor values and their impact on the wire signals.
Each CR board includes single RC filters for the X- and U -plane wire bias voltages, while the V -
plane wires have a floating voltage. In addition, each board has 48 pairs of bias resistors and AC
coupling capacitors for X-plane wires, and 40 pairs for the U -plane wires. The coupling capacitors
block DC levels while passing AC signals to the FEMBs. On the FEMBs, clamping diodes limit
the input voltage received at the amplifier circuits to between 1.8 V + UD and 0 V − UD, where
UD is the threshold voltage of the diode, approximately 0.7V at LAr temperature. The amplifier
circuit has a 22 nF coupling capacitor at the input to avoid leakage current from the protection
clamping diodes. Tests of the protection mechanism have been performed by discharging 4.7 nF
capacitors holding a voltage of 1 kV (2.35mJ of stored energy). The diodes survived more than 250
discharges at LN2 temperature. A schematic diagram of the APA wire bias subsystem, identical
to the one used in ProtoDUNE-SP, appears in Figure 4.3.
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Figure 4.3: DUNE APA wire bias schematic diagram including the CR board.

Bias resistance values should be at least 20MW to maintain negligible noise contributions. The
higher value helps achieve a longer time constant for the high-pass coupling networks. Time
constants should be at least 25 times the electron drift time so that the undershoot in the digitized
waveform is small and easily correctable. As discussed in Section 2.2.5.3, the bias resistance value
is 51MW, while the DC-blocking capacitors on each wire have a value of 3.9 nF. This gives a time
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constant of 0.2 s that is much larger than the drift time for electrons from tracks passing near the
cathode (∼ 2.3 ms).

The bias-voltage filters are RC low-pass networks. Resistance values should be much smaller than
the bias resistances to control cross-talk between wires and limit the voltage drop if any of the
wires becomes shorted to the APA frame. As discussed in Section 2.2.5.3, these resistors have a
resistance of 5MW, while the bias filter capacitors have a capacitance of 39 nF.

4.2.3 Front-End Motherboard

Each APA is instrumented with 20 FEMBs. The FEMBs plug into the APA CR boards, making
the connections from the wires to the charge amplifier circuits as short as possible. Each FEMB
receives signals from 40 U wires, 40 V wires, and 48 X wires. The reference FEMB design contains
eight 16-channel LArASIC chips, eight 16-channel ColdADC ASICs, and two COLDATA control
and communication ASICs (see Figure 4.1). The FEMB also contains regulators that produce the
voltages required by the ASICs and filter those voltages, and a micro-electromechanical system
oscillator that provides a 40MHz reference to the COLDATA Phase-Locked Loop (PLL). The
LArASIC inputs are protected by an external series inductor and two diodes as well as the internal
diode protection in the chip.

The ProtoDUNE-SP version of the FEMB (which uses a single FPGA on a mezzanine card instead
of two COLDATA ASICs) is shown in Figure 4.4. In the rest of this section we describe the ASICs
that will be installed on the FEMBs and discuss the procedure that will be followed to choose
the ASIC design to implement in the SP module. In addition to describing LArASIC, ColdADC,
and COLDATA, we also discuss two alternative solutions, one based on a commercial off-the-shelf
(COTS) ADC, and one where the functionality of the three-ASIC is implemented in a single chip,
CRYO.

Figure 4.4: The complete FEMB assembly as used in the ProtoDUNE-SP detector. The cable shown
is the high-speed data, clock, and control cable.

The functionality of the FEMB for DUNE will be almost identical to that of the FEMB used in
ProtoDUNE-SP. The design will change slightly to accommodate the new ASICs, which will also
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entail changing the connections to the WIB, and changing the number of voltage regulators. In
addition, the connector for the control and data cold cables will be replaced to address an issue
observed in ProtoDUNE-SP that will be discussed in Section 4.2.10. The new design, shown in
Figure 4.5, adds wings to the PCB soldered to the cold cable, with standoffs to ensure the planarity
of the connector to the FEMB, and a cutout in the PCB to preclude any stresses introduced by
height variations.

Add two wings to the 
male connector PCB

A notch cutout in PCB

Standoffs with custom 
nuts press-fitted on PCB

Figure 4.5: Modified design of the cold data cable and of the FEMB PCB.

All the discrete components mounted on the FEMB have been characterized for operation in LAr.
In some cases (resistors, capacitors, diodes) the components used on the ProtoDUNE-SP FEMB
belong to the same family of components already used for other boards operating in cryogenic
environment, namely the boards used for the ATLAS accordion LAr calorimeter, providing relevant
information on the lifetime of these components, which is discussed later in Section 4.3.3. There
we also discuss procedures for the measurement of the lifetime of discrete components that have
been adopted in recent years to demonstrate that the TPC electronics can survive in LAr. These
types of measurements have been performed already for other neutrino experiments using the LAr
TPC technology, while for the micro-mechanical oscillator we rely on characterizations performed
by NASA [46].

In the case of custom ASICs, appropriate steps must be taken prior to starting the layout of the
chips. Both COLDATA and ColdADC are implemented in the TSMC 65nm CMOS process [47].
The designs were done using cold transistor models produced by Logix Consulting1. Logix made
measurements of TSMC 65nm transistors (supplied by Fermi National Accelerator Laboratory
(Fermilab)) at LN2 temperature and extracted and provided to the design teams SPICE [48]
models valid at LN2 temperature. These models were used in analog simulations of COLDATA
and ColdADC subcircuits. In order to eliminate the risk of accelerated aging due to the hot-carrier
effect [43], no transistor with a channel length less than 90 nm was used in either ASIC design. A

1Logix™ Consulting, http://www.lgx.com/.
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special library of standard cells using 90 nm channel-length transistors was developed by members
of the University of Pennsylvania and Fermilab groups. Timing parameters were developed for
this standard cell library using the Cadence Liberate tool2 and the Logix SPICE models. Most
of the digital logic used in ColdADC and COLDATA was synthesized from Verilog code using
this standard cell library and the Cadence Innovus tool3. Innovus was also used for the layout
of the synthesized logic. The design of the CRYO ASIC and of LArASIC are implemented in
the TSMC 130 nm and 180 nm CMOS process [49, 50], respectively. In the case of LArASIC, the
design uses models that were obtained by extrapolating the parameters of the models provided
by TSMC, which are generally valid in the 230K to 400K. In the case of the CRYO ASIC, cold
transistor models were based on data taken at SLAC National Accelerator Laboratory (SLAC)
with TSMC-produced 130 nm transistors.

4.2.3.1 Front-End ASIC

LArASIC [38] receives current signals from the TPC sense wires and provides a way to amplify and
shape the signals for downstream signal digitization. LArASIC has 16 channels and is implemented
using the TSMC 180 nm CMOS process [50]. It integrates a band-gap reference to generate all the
internal bias voltages and currents. This guarantees high stability of the operating point over a
wide range of temperatures, including cryogenic temperatures. The channel schematic of LArASIC
is shown in Figure 4.6.

Dual stage charge amplification 5th order semi-Gaussian filter (complex conjugate poles) 

calibration-test 

AC-DC

100pF 1MW

Figure 4.6: Channel schematic of LArASIC, which includes a dual-stage charge amplifier and a 5th order
semi-Gaussian shaper with complex conjugate poles. Circuits in red circles are programmable to allow
different gain and peaking time settings.

Each LArASIC channel has a dual-stage charge amplifier and a 5th order semi-Gaussian shaper
as an anti-aliasing filter for the TPC signals. It has programmable gain selectable from one of
4.7, 7.8, 14, and 25mV/fC (corresponding to full-scale charge of 1.9× 106, 1.1× 106, 625× 103,
and 350× 103 e−), programmable peaking time selectable from one of 0.5, 1, 2, and 3µs, and pro-
grammable baseline for operation with either the collection (∼200mV) or the induction (∼900mV)

2 Cadence Liberate™.
3 Cadence Innovus™.
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wires. All these parameters can be set only at the ASIC level, i.e., they affect the behavior of 16
readout channels. The design of LArASIC has been optimized for the capacitive loads expected in
the case of the DUNE detector (i.e., in the range 170 pF to 210 pF). Each channel has an option to
enable the output monitor to probe the analog signal, and an option to enable a high-performance
output driver that can be used to drive a long cable.

Each LArASIC channel has a built-in charge calibration capacitor that can be enabled or disabled
through a dedicated register. Measurements of the injection capacitance have been performed
using an external precisely calibrated capacitor. These measurements show that the calibration
capacitance is extremely stable against temperature variations, changing from 184 fF at room tem-
perature to 183 fF at 77K. This result and the measured stability of the peaking time demonstrate
the high stability of the passive components as a function of temperature. Channel-to-channel and
chip-to-chip variation in the calibration capacitor are typically less than 1%. The variations of the
calibration capacitors could be characterized prior to the beginning of DUNE data taking, using
the quality control (QC) process, discussed in Section 4.4.4.

Shared among the 16 channels in LArASIC are the digital interface, programming registers, a
temperature monitor, and a band-gap reference monitor. It is also possible to enable AC coupling
as mitigation of baseline variations induced by vibrations of the APA wire, a programmable input
bias current selectable from one of 0.1, 0.5, 1, or 5 nA, as well as a programmable pulse generator
with a 6-bit DAC for calibration. The possibility of configuring various parameters controlling the
FE amplifier (gain, peaking time, baseline) has allowed ProtoDUNE-SP to reduce the impact of
the saturation effect discussed in Section 4.2.10, at the cost of a reduction in dynamic range for
the collection wires.

The power dissipation of LArASIC is about 5.5mW per channel at 1.8V supply voltage when
the output buffer is disabled (the output buffer is required only for transmitting analog signals
over long distances; it is not needed when LArASIC is mounted close to the ADC on the FEMB).
The ASIC is packaged in a commercial, fully encapsulated plastic 80 pin QFP. Figure 4.7 shows
the response of LArASIC for all gains and peaking times and both baselines. Note that the gain
is independent of the peaking time; the same amount of charge, in the impulse approximation,
produces the same peak voltage signal regardless of the peaking time.

Prototype version P2 LArASIC chips have been evaluated and characterized at room temperature
and LN2 temperature (77K). 960 P2 chips, totaling 15.360 channels, have been used to instrument
six ProtoDUNE-SP APAs successfully. Excessive stress in the package of LArASIC at cryogenic
temperature causes FE channels to have a non-uniform baseline in collection mode, while the
baseline DC voltage in induction mode is uniform. A new prototype, version P3, was fabricated
in March 2018 to address this issue by making DC circuits for the collection mode similar to the
induction mode. At the same time, the default gain setting was changed to 14mV/fC. The layout
of P3 LArASIC is also shown in Figure 4.7, with modifications highlighted in yellow boxes. The
P3 LArASIC chips were received and evaluated in September 2018. We have verified that with the
new design the FE channels have a uniform baseline when operated in the collection mode, and
that 14mV/fC is the new default gain setting.

P3 LArASIC will be further evaluated on FEMBs in various integration test stands for performance
studies, including the 40% APA at Brookhaven National Laboratory (BNL), the ICEBERG R&D
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Figure 4.7: Response of LArASIC for four gains, four peaking times, and both baseline values (left; the
time distance between the positive and negative pulse for the induction wires has been exaggerated for
clarity reasons); layout of 16-channel LArASIC version P3, where revisions with reference to version P2
are highlighted in yellow boxes (right).

cryostat and electronics (ICEBERG) TPC at Fermilab and the seventh ProtoDUNE APA in the
cold box at European Organization for Nuclear Research (CERN). Analysis of the ProtoDUNE-SP
data has highlighted a saturation problem in the design of the P2 LArASIC that we have observed
also in bench tests of the P3 version. This problem, discussed in detail in Section 4.2.10, will
be addressed in the design of the next version of LArASIC, P4, for which we are also planning
to implement a single-ended-to-differential converter as an interface to the recently developed
ColdADC. The plan for solving the saturation problem in LArASIC is discussed in Section 4.2.11.

4.2.3.2 ColdADC ASIC

ColdADC is a low-noise ADC ASIC designed to digitize 16 input channels at a rate of ∼ 2 MHz, as
required for the DUNE SP module. ColdADC was designed to operate with an external 64MHz
clock and an external 2MHz digitization clock. The 2MHz clock is aligned on the rising edge of
one of the 64MHz transitions, as discussed in Section 4.2.3.3. For the remainder of this section
we assume that the main clock is operating at 64MHz, but in the DUNE SP module this external
clock will operate at 62.5MHz as discussed in Section 7.3.7, and the waveforms from the APAs will
be digitized every 512 ns. ColdADC is implemented in the TSMC 65nm CMOS technology and
has been designed by a team of engineers from Lawrence Berkeley National Laboratory (LBNL),
BNL, and Fermilab. The ASIC uses a conservative, industry-standard design including digital
calibration. Each ColdADC receives 16 voltage outputs from a single LArASIC chip. The voltages
are buffered, multiplexed by 8, and input to two 15-stage pipelined ADCs operating at 16MHz.
The 16MHz clock is generated internally in ColdADC and shares its rising edge with the 2MHz
clock. The ADC uses the well known pipelined architecture with redundancy [51]. Digital logic
is used to correct non-linearity introduced by non-ideal amplifier gain and offsets in each pipeline
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stage [52], and an automatic calibration procedure is implemented to determine the constants used
in this logic. The ADC produces 16-bit output which is expected to be truncated to 12 bits.

The ADC is highly programmable to optimize performance at different temperatures. Many circuit
blocks can be bypassed, allowing the performance of the core digitization engine to be evaluated
separately from the ancillary circuits. A block diagram of the chip is shown in Figure 4.8. Each
of the major blocks is described below.
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Figure 4.8: ColdADC block diagram.

All required reference voltages and currents are generated on-chip by programmable circuit blocks.
Independently adjustable bias voltage levels and currents are provided for the input buffers, sample-
and-hold amplifiers, ADCs, and ADC reference buffers. The most accurate reference voltage circuit
is a band-gap reference based on a PNP transistor. However, measurements made at BNL and
LBNL of a large PNP transistor indicate that the foundry-provided SPICE model does not ade-
quately describe the device operation at LAr temperature. Thus, a CMOS-based voltage reference
has also been included in ColdADC. As discussed below, bench tests of ColdADC prototypes show
that both reference blocks perform well and meet requirements.

ColdADC has four possible ways to interface with LArASIC. It can accept either single-ended
inputs (provided by existing LArASIC chips) or differential inputs (foreseen for the future LArASIC
P4 upgrade). In either case, it is also possible to bypass the input buffers and apply the inputs
directly to the sample-and-hold amplifiers. The role of the input buffers is to present a well defined
and easy-to-drive load to LArASIC. The sample-and-hold amplifiers are separated into two groups
of eight. They sample the waveform at the rising edge of the (2MHz) sampling clock. The 16MHz
clock is then used to clock an 8-to-1 multiplexer that presents eight samples in turn to one of the
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two ADC pipelines.
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Figure 4.9: Circuit blocks in each ADC pipeline stage. MUX selects one of three values as the digitized
output of the current stage and presents it to the ADD circuit, which adds it to the result calculated by
previous pipeline stages. SHA is a sample-and-hold amplifier, and ADSC and DASC are low resolution
1.5 bit analog-to-digital and digital-to-analog subconverters, respectively.

A block diagram of an ADC pipeline is shown in Figure 4.9. Each of the 15 stages contains a
low-resolution 1.5-bit analog-to-digital subconverter containing two comparators, a 1.5-bit digital-
to-analog subconverter that produces a voltage based on the two comparator outputs, an analog
subtractor, a sample-and-hold amplifier, and a gain stage (with a nominal gain of two). The
transfer function of each stage is identical and is shown in Figure 4.10 along with the nominal
“weights” (W0 and W2) that are added to form the output of the pipeline. Each pipeline stage
makes a three-level coarse decision based on the analog input voltage, selects one of three digital
weights to be added to the results of previous stages, and passes a voltage to the next stage that
is proportional to the difference between the input voltage and the voltage corresponding to the
digital output of the stage. Because the stages are weighted by a factor of two, but have three
possible digital results, there is redundancy between stages that makes the final result independent
of errors in the comparator thresholds (up to ±Vr/4 where the stage range is [−Vr, Vr]). An “error”
in the output of one stage is corrected in subsequent stages (usually the next stage). In order to
take advantage of this redundancy provided by the pipelined architecture it is necessary to include
at least one “extra” stage in the pipeline.

The calibration logic allows the correction of errors caused by imperfections in the voltage that
are passed from one stage to the next. These imperfections arise from errors in each stage corre-
sponding to ±Vr/2 from the resistive dividers and non-ideal effects in the gain and offset of the
interstage amplifiers. The calibration procedure relies on the fact that the required precision is
easily satisfied by the last stages of the pipeline. The number of stages to be calibrated (maximum
seven) is set by a programmable register. An iterative calibration procedure is used. Starting with
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Figure 4.10: 1.5-bit stage transfer function and digital output. The voltage range of the ADC as a
whole, and of each individual stage is [−Vr, Vr]. Note that the voltage passed to the subsequent stage
will not exceed the stage range even if a comparator threshold is wrong by up to Vr/4.

the least significant stage to be calibrated, the input to the stage is set to the threshold levels of
±Vr/4 and the normal comparator outputs are overridden and forced first to 1 and then to 0. The
lower stages of the ADC digitize the analog value output from the stage being calibrated and the
difference between the ADC output when the comparator is forced to 1 and the ADC output when
the comparator is forced to 0 is calculated. These two differences (W0 expressed as a negative
number and W2 expressed as a positive number) are stored and used as two of the three possible
digital outputs of the stage being calibrated (the third possible output being 0). This procedure
is then repeated for the next most significant pipeline stage until stage 15 has been calibrated.

The number of ADC bits that are useful depends on the effective noise of the various subcircuits
of the ADC. The noise of the first few pipeline stages (associated with the most significant bits)
contributes more heavily than subsequent stages. For this reason, the first stages are designed to
be larger, lower noise, and to require more power than later stages. The capacitance is reduced
by a factor of two, relative to that of the sample-and-hold amplifier, for each of the first three
stages, and then kept constant. The total effective noise expected is ∼130µV root mean square
(RMS). This is similar to the quantization error of an ideal 12-bit ADC with a voltage range of
1.5V (slightly larger than the output range of LArASIC, 0.2V to 1.6V) for which the bin width
is ∼366µV and the quantization error is ∼106µV.

In normal operation, each pipelined ADC passes a 16-bit result to the data formatter on the rising
edge of the 16MHz clock. The data formatter separates the two 16-bit words into eight 4-bit
nibbles and serializes the nibbles for output (most significant bit first) at 64MHz. An output clock
and a frame marker are also generated. The frame marker indicates the most significant bit in each
nibble of the first of eight channels digitized by one of the ADC pipelines in each 2MHz sample
period. The output data is generated on the falling edge of the output clock and is latched by the
COLDATA ASIC using the rising edge of the same clock.

A second mode of operation is included for debugging purposes. In this mode, 2-bit raw stage
results from each of the 15 stages of one of the two pipelines are formatted into the most significant
15 bits of two 16-bit words, broken into nibbles, and output in the same manner as normal data.
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Ten differential output drivers are used for the 64MHz output clock, frame marker, and ADC
data. The output drivers source and sink a current whose value can be digitally controlled. The
minimum current is 165µA, which corresponds to approximately 3mV peak-to-peak with 100Ω
termination. Seven additional levels spaced by 275µA can be selected. The maximum current is
2.07mA, about 2/3 of the LVDS standard of 3.5mA.

The operation of ColdADC is controlled by a number of 8-bit registers. These registers can be
written to and read back using either an Inter-Integrated Circuit (I2C) interface [53] or a Universal
Asynchrous Receiver/Transmitter (UART). COLDATA will use the I2C interface. The UART is
included in the first ColdADC prototype to facilitate chip testing and for risk mitigation.

ColdADC was received at the end of January 2019. Bench tests were performed at BNL, Fermilab,
and LBNL. These tests used ADC chips mounted directly on printed circuit boards, and were done
at both room temperature and cryogenic temperature. The tests concentrated first on functionality
and later on performance. A small number of problems were found during bench testing and will
be described below. These problems will not prevent system tests from being done with prototype
ColdADC chips.

Both control interfaces (I2C and UART) operate as designed. All of the digital control bits can
be written and read. The LVDS I/O operates as designed and the drive current of the LVDS can
be selected as designed. The ADC pipeline functions as designed, as does the data formatter.
The automatic calibration logic does not work, but the pipelines can be calibrated off-chip using
register-controlled debugging modes to force all of the steps of the calibration procedure. The
sample-and-hold amplifiers and the multiplexer that connects the sample-and-hold outputs to the
ADC pipelines operate correctly. Both the CMOS reference generation block and the band-gap
reference block operate as designed, although a minor error in a digital-to-analog converter in the
band-gap reference block means that it must operate with the (nominally 2.3V) analog voltage
set to 2.7V. Another error was discovered in the input buffer block. Level shifters intended to
translate control bits in the 1.2V domain to the 2.5V domain were omitted. As a result, the
1.2V digital supply must be set to 2.1V. All of these design errors (including the auto-calibration
failure) have been understood and are easily corrected. Bench tests have proven that the ColdADC
prototypes can be run at the required elevated voltage settings for many days without damage to
the chips.

Performance measurements of ColdADC have also been done. The performance of many of the
sub-circuits have been measured separately as well as the performance of the entire ADC. Here we
present two measurements made at LN2 temperature.

The static linearity of the pipeline ADC was measured using a filtered sine wave connected to
the test inputs of ColdADC. The measured histogram of ADC codes was fitted to the probability
density function for a sine wave. The calculation of the residuals to the fit yields the differential
non-linearity (DNL) as a function of ADC code; the integral of DNL is the integral non-linearity
(INL). These two distributions are shown in Figure 4.11, which was obtained using a sine wave
of amplitude of 1.4V peak-to-peak (matching the LArASIC dynamic range) and the nominal
reference voltage settings (corresponding to a 1.5V dynamic range).

Dynamic linearity was also measured using a filtered sine wave. In this case, ADC codes were
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Figure 4.11: DNL (top) and INL distributions as a function of ADC code for ColdADC.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–166

collected for an integer number of sine wave cycles and a FFT was performed on the data. The
signal to noise and distortion ratio (SNDR), effective number of bits (ENOB), spurious free dynamic
range (SFDR), and the total harmonic distortion (THD) were extracted from the FFT. An example
of the FFT is shown in Figure 4.12, which was obtained using a sine wave of amplitude 1.5V
(matching the full range of the ADC). The extracted ENOB is over 11, despite the non-linearity
evident in Figure 4.11, because the ADC noise is very low. The dominant source of non-linearity
has been demonstrated to be insufficient open-loop gain of the operational amplifier used in each
pipeline stage. The design has already been modified to address this deficiency.
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Figure 4.12: Fourier transform of ADC codes collected with a coherently sampled sine wave input to a
single-ended input buffer.

4.2.3.3 COLDATA ASIC

The COLDATA ASIC was designed by engineers from Fermilab and Southern Methodist Uni-
versity. It is responsible for all communications between the FEMBs and the electronics located
outside the cryostat. Each FEMB contains two COLDATA chips. COLDATA receives command-
and-control information from a WIB. Each COLDATA provides clocks to four ColdADCs and
relays commands to four LArASICs and four ColdADCs to set operating modes and initiate cali-
bration procedures. Each COLDATA receives data from four ColdADCs, merges the data streams,
provides 8b/10b encoding, serializes the data, and transmits the data to the warm electronics over
two 1.28Gbps links. These links are driven by line drivers with programmable pre-emphasis.
Figure 4.13 is a block diagram of COLDATA.
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Figure 4.13: COLDATA block diagram.
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The commands for the control of all the ASICs on a FEMB are sent from a WIB using an I2C-like
protocol [53]. The protocol used in COLDATA differs from the standard I2C one. Because of the
long cables required between the WIEC and the FEMBs, COLDATA uses LV differential pairs for
both the I2C clock and data. Separate point-to-point links are used for data sent from warm-to-
cold and for data sent from cold-to-warm. In order to reduce the number of cables required, only
one of the two COLDATA chips on an FEMB has its main I2C interface directly connected to a
WIB. That COLDATA chip relays I2C commands and data to the secondary COLDATA chip and
relays I2C responses from the secondary COLDATA to the WIB. Each COLDATA also relays I2C
commands and data sent from the WIB to one of the four ColdADC chips, and it relays data back
to the WIB from one of the four ColdADC chips. The links on the FEMB between COLDATA
chips and ColdADC chips use single-ended (2.25V) CMOS signals.

The controls intended for the LArASIC chips are interpreted inside COLDATA and transmitted to
the appropriate ASIC using a Serial Peripheral Interface (SPI)-like interface that uses single-ended
(1.8V) CMOS signals. The configuration registers in LArASIC are configured to be loaded as a
single-shift register. As data is shifted into LArASIC on the master out slave in (MOSI) line, bits
from the other end of the shift register are shifted out on the master in slave out (MISO) line. It is
thus only possible to read LArASIC configuration registers while writing new configuration data.

In addition to the configuration commands, COLDATA receives a master clock and a fast command
signal on a LV differential pair from the WIB. Currently the master clock is 64MHz, but it will be
changed to 62.5MHz to simplify the overall DUNE SP module synchronization, as already discussed
in the case of ColdADC. The clock used for sampling the ADC is created inside COLDATA by
dividing the master clock by 32. The relative phase of the 2 and the 64MHz clocks is set by
an appropriate fast command sent from the WIB. Both the master clock and the ADC sampling
clocks are passed from COLDATA to the four ColdADC chips that it controls. Depending on the
master clock frequency the ADC will convert input data every 500 or 512 ns, corresponding to a
frequency of 2 or 1.95MHz. Signals that must be executed at a known time use the fast command
line. COLDATA uses the falling edge of the master clock to sample fast command bits as shown
in Figure 4.14. All legal fast commands are DC balanced. An “alert” pattern is used to establish
the 8-bit fast-command word boundary. An “idle” pattern is used when no command is being
sent. Four commands are defined: “Edge,” which moves the rising edge of the ADC sampling
clock to coincide with the next rising edge of the master MHz clock; “Sync,” which zeros the 8-bit
timestamp that is incremented on the rising edge of each ADC sampling clock; “Reset,” which
resets COLDATA; and “Act,” the function of which is determined by an 8-bit register that is
programmed using the I2C interface.

Figure 4.14: Fast command timing: the leading edges of the fast command and of the master clock
are equal time when produced on the WIB. The fast-command bits are captured by COLDATA on the
falling edge of the master clock and shifted into a register on the next positive edge.

COLDATA receives digitized waveform data from four ColdADC ASICs. Each ADC presents its
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data on eight serial streams operating in parallel. Data from the ADCs is captured using the
ADC “dataClkOut” signal (one per ADC) and the start of a sample period is indicated by the
“frameStart signal” (one per ADC). Each ADC digitizes 16 channels of information and puts out
16 bits of data per channel. Information from two ADCs are merged by a Data Frame Formation
block. The Data Frame Formation circuitry converts the two groups of sixteen 16-bit words into
one of three types of data frame. For normal data taking, either a 12-bit format or a 14-bit
ADC format can be selected, discarding either the four or two lowest order bits. When the 12-bit
format is selected, a data frame consists of an 8b/10b command character (K28.2) and an 8-bit
time stamp, followed by 48 bytes of ADC data and two bytes of parity information. When the
14-bit format is selected, a data frame consists of an 8b/10b command character (K28.3) and an
8-bit time stamp, followed by 56 bytes of ADC data and two bytes of parity information. Two
debugging frame formats are also defined. When the “Frame-12 Test” format is selected, a data
frame consists of an 8b/10b command character (K28.0) and an 8-bit time stamp, followed by 48
bytes of predefined data and two bytes of parity information. The final format is used when the
ColdADCs are read out in debug mode. In this case, 30 bits of raw pipeline stage data are read
out from one of the two pipelined ADCs in each ColdADC ASIC and passed from ColdADC to
COLDATA using two 16-bit frames. When the “Frame-15” format is selected, a COLDATA output
data frame consists of an 8b/10b command character (K28.6) and an 8-bit time stamp, followed
by 60 bytes of ADC data (30 bytes from each ColdADC). No parity information is generated when
this format is selected. This is to ensure that at least one idle character (K28.1) will be sent
between each “Frame-15.” A series of 8b/10b command characters (K28.5) is sent at the end of
each frame of 12-bit or 14-bit data to ensure synchronization of the high-speed links.

The serializers and output drivers operate asynchronously in a separate clock domain that is
not related to the master clock signal received from the WIB. Instead they use clocks derived
from a 40MHz micro-electromechanical system oscillator on the FEMB. A single PLL generates
a 1.28GHz clock for both serializers and output drivers. The 10-bit serializers are implemented
using two 5:1 multiplexers (clocked at 128MHz) followed by a single 2:1 multiplexer (clocked at
640MHz). Each serializer derives the 640MHz and 128MHz clock from the 1.28GHz clock provided
by the PLL and provides its 128MHz clock to the Data Frame Formation block, which uses it
at the output stage of a clock-domain-crossing FIFO. A link synchronization sequence of 8b/10b
command characters (K28.5) is used when the link is reset to establish the boundary between 10-bit
“words.” Idle characters (K28.1) are inserted by the Data Frame Formation block when no data is
ready for serialization (between data frames). The 1.28Gbps output drivers include programmable
pre-emphasis. The pre-emphasis is achieved using a combination of a voltage mode circuit at the
input to the current mode driver and current mode pre-emphasis integrated into the driver circuit.
Measurements were made of the insertion loss (“S parameters”) as a function of frequency using
25m and 35m lengths of the twinax cable identical to the cable used in ProtoDUNE-SP, and the
output driver circuit including pre-emphasis was simulated using a SPICE model based on these
measurements. The PLL and serializer circuits used in COLDATA were included in the first partial
prototype (CDP1) test chip that was produced in fall 2017 and shown to work as designed. The
measured eye diagram after 25m of twinax cable immersed in LAr using a commercial equalizer on
the receiving end is shown in Figure 4.15. The pre-emphasis circuit has been added to the current
mode driver, which was verified in CDP1 and can be disabled if desired.

A conservative estimation of the power consumption of COLDATA, that is dominated by the power
required for the LVDS transmitters and receivers, amounts to 195mW for each 64-channel ASIC.
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Prototype COLDATA chips were received in July 2019 and the first round of room and LN2
temperature bench tests has been completed. All of the I2C control paths have been verified.
COLDATA registers can be written and read using either the LVDS interface or the CMOS in-
terface. ColdADC registers can be written and read using the I2C relay. Fast commands are
interpreted as designed; the 2 MHz clock phase can be controlled, and the various “Act” com-
mands are executed as intended. The PLL locks and the link speed is correct. Bench tests of
COLDATA were completed in December 2019. Data integrity was verified more completely using
test equipment capable of checking for link errors in test periods of days. The LArASIC control
path will also be more completely verified and later system tests with packaged ASICs will be
performed.

Figure 4.15: Eye diagram after 25m of ProtoDUNE-SP twinax at LN2 temperature for the COLDATA
1.28Gbps output link.

4.2.3.4 Alternative ASIC Solutions

4.2.3.4.1 Commercial Off-the-shelf ADC Option

The SBND collaboration has been exploring the COTS ADC option for the TPC readout electronics
development since spring 2017 [54]. After a market survey, a few candidate ADCs using the
SAR architecture were identified that would continue to operate correctly when immersed in LN2.
Starting in July 2017, a lifetime study plan was developed to evaluate a COTS ADC option
in two different phases: exploratory and validation. The lifetime study focused on the Analog
Devices AD72744, implemented in TSMC 350 nm CMOS technology, and has demonstrated better
performance in cryogenic operation compared to other candidates.

During the exploratory phase, fresh samples of the COTS ADC AD7274 were stressed with higher
than nominal operation voltage, e.g. 5V, while power consumption (drawn current) was monitored
continuously. Periodically, the sample would be operated at nominal voltage (setting the power
supply input, VDD, at 2.5V, and the voltage reference input, VREF , at 1.8V) for a performance
characterization test, where both the DNL and INL were monitored and analyzed in addition to the
current. Stress test results were used to extrapolate the lifetime of the COTS ADC. The relation
between the CMOS transistor lifetime τ and the drain-source voltage Vds, log τ ∝ 1/Vds, is based

4AnalogDevices, AD7274™, https://www.analog.com/en/products/ad7274.html.
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on the creation of interface states by hot electrons and has been studies in the past extensively [55].
The linear extrapolation of log τ ∝ 1/Vds is also used in industry (e.g. IBM) for accelerated stress
testing. It was determined that a current drop of 1% on VDD would be used as the degradation
criterion for the lifetime study. Following the development of this criterion, more devices were
tested later to validate what was learned in the exploratory phase.

The lifetime projection of the AD7274 ADC from the stress test with VDD > 5V is shown in
Figure 4.16. With the AD7274 operating at 2.5V, which is lower than the nominal 3.6V for the
350 nm CMOS technology, the projected lifetime is more than than 1× 106 years.

IVDD drops 1% as degradation criteria

Nom. VDD for 350nm

ADC operating point

2.5V, 2.4E+06 years

3.6V, 1.1E+02 years

Figure 4.16: Lifetime projection of the COTS ADC AD7274 from the stress test with VDD > 5V. The
current drop of 1% on VDD is used as the degradation criterion. With nominal operation voltage of
3.6 V for the 350 nm CMOS technology, the lifetime is projected to be more than 100 years. For SBND
and the DUNE FD, the AD7274 will be operated at 2.5 V to add an additional margin; the expected
lifetime is more than 1× 106 years.

Based on the lifetime study of AD7274, a FEMB with the COTS ADC was developed and charac-
terized for the SBND experiment. The integration test was carried out with 40% APA at BNL and
showed satisfactory noise performance as seen in Figure 4.17. The noise measurements obtained
with the 40% APA at BNL indicate that the AD7274 gives a negligible contribution to the overall
system noise, as expected given that the ADC has an ENOB of 11.4. The COTS ADC AD7274
serves as a backup solution for the SP module TPC readout electronics system. The current plan
is to evaluate this ADC in the small TPC installed in ICEBERG at Fermilab. Ten FEMBs with
the COTS ADC have been fabricated and will be used to instrument the ICEBERG TPC for
system integration tests in spring 2020. The main drawback of the AD7274 ADC is that it is a
single-channel chip, complicating the assembly of the FEMBs.
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Figure 4.17: The noise measurement of FEMBs with COTS ADCs mounted on the 40% APA at BNL.
A picture of the FEMB is shown in the top left corner. The induction plane (4m wire length) has an
ENC level of ∼ 400 e− with 1µs peaking time, while the collection plane (2.8m wire length) has a noise
level of ∼ 330 e− with 1µs peaking time.

4.2.3.4.2 CRYO Option

The SLAC CRYO ASIC differs from the reference three-chip design by combining the functions of
an analog pre-amplifier, ADC, and data serialization along with transmission for 64 wire channels
into a single chip. It is based on a design developed for the Enriched Xenon Observatory (nEXO)
experiment [56] and differs from it only in the design of the pre-amplifier, which is modified for
the higher capacitance of the DUNE SP module wires compared to the short strips of nEXO.
The FEMBs constructed using this chip would use only two ASICs, compared to the 18 (eight
LArASICs, eight ColdADCs, and two COLDATAs) needed in the reference design. This drastic
reduction in part count may significantly improve FEMB reliability, reduce power (40mW per
channel), and reduce costs related to production and testing.

Figure 4.18 shows the overall architecture of the CRYO ASIC, which is implemented in 130 nm
CMOS. It comprises two identical 32-channel blocks (banks) and a common section providing
biasing voltages and currents, as well as the controls signals, the clocks generation, and the con-
figuration of the registers.

The current signal from each wire is amplified using a pre-amplifier with pole-zero cancellation [38]
and an anti-alias fifth-order Bessel filter (Figure 4.19). Provisions are also made for injection of
test pulses. Gain and peaking time are adjustable to values similar to those of the reference design.
The four programmable gain settings of 6X, 3X, 1.5X, and 1X correspond to full-scale signals of
3.2× 105 e−, 6.4× 105 e−, 1.28× 106 e−, and 1.92× 106 e−. A filter with a Bessel shape has been
chosen because of its flat group delay characteristic that minimizes waveform distortion as well as
provides noise shaping performance similar to more classic semi-Gaussian shaper implementations.
The four programmable peaking times of the filter are 0.6µs, 1.2µs, 2.4µs, and 3.6µs, correspond-
ing to filter bandwidths equivalent to the ones used in the reference solution. Similarly to the
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Figure 4.18: Overall architecture of the CRYO ASIC.

reference design with three ASICs, each channel can be configured, independently from the other
channels, to have a baseline for operation consistent with either the collection or the induction
wires. The outputs of the FE amplifiers can be connected, one-at-a-time, to an analog monitor to
probe the analog signal.
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Figure 4.19: CRYO front-end section architecture (left); typical response of the CRYO front-end (right).

Four input channels are multiplexed onto a single fully differential 12-bit 8MSPS ADC. Signals
from the four channels are concurrently sampled onto a sample-and-hold stage. An ADC driver
after the multiplexer performs the single-ended to differential conversion. The ADC has a pure
SAR architecture (Figure 4.20) with a split-cap DAC based on Vcm switching [57], and has the
option to be calibrated for offset compensation. External signals can be routed to the input of
each single ADC allowing standalone characterization.

The data serialization and transmission block uses a custom 12b/14b encoder, so 32 channels
of 12-bit 2MSPS data can be transmitted with a digital bandwidth of only 896Mbps, which is
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Figure 4.20: CRYO ADC architecture.

significantly lower than the required bandwidth of the reference design (1.28Gbps).

One key concern with mixed-signal ASICs is the possibility of interference from the digital side
causing noise on the very sensitive pre-amplifier. To avoid this interference, the CRYO design uses
well established techniques for isolating the substrate; these are described in the literature [58]
and have been successfully used in previous ASICs. Furthermore, power domains of the various
sections of the ASICs are isolated using multiple internal low-dropout regulators (LDOs).

For reliability purposes the analog section of the ASIC using thick oxide devices is biased at 2V
(20% less than nominal voltage) and does not use minimum length devices. The digital section of
the ASIC uses core devices biased at 1V (again 20% less than nominal voltage).

The infrastructure requirements for a CRYO ASIC-based system are similar to those of the refer-
ence option. However, in most cases, somewhat fewer resources are needed; for instance:

• A single voltage is needed for the power supply. This is used to generate the two supply
voltages using internal voltage regulators.

• The warm interface is different. CRYO operates synchronously with a 56MHz clock, does
not require a fast command, and uses the SACI protocol [59] for configuration rather than
I2C.

Simulation-based studies have been performed: using the 1.2µs peaking time and an input ca-
pacitance of 220 pF (close to that expected in the SP module), the noise level is approximately
500 e−, similar to that expected with the reference LArASIC design in LAr with the same input
capacitance.
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The first iteration of the CRYO ASIC design (see Figure 4.21) was submitted to MOSIS for
fabrication in November 2018. The first prototypes were delivered at the end of January 2019.

Figure 4.21: Photo of the prototype CRYO cold board (left); zoomed-in photo of CRYO ASICs (right).

The prototypes are under test in an existing test stand at SLAC using the CTS described in
Section 4.3.1. Subsequent system tests are planned using the facilities described in Section 4.3.2.

The first prototype of the ASIC is functional at both room temperature and LN2 temperature. In
particular, all the key blocks have been verified. Configuration of all the 64 channel registers (13
bits each) and the 17 (16-bit) global registers has been verified. Optimization of the register values
is ongoing at both room and cold temperature. Initialization procedures for the ASIC power-up
have been established. Operation of the on-chip LDOs has been verified and expected supply levels
are stable against changes in temperature. The analog monitor can be used to spy on the output
of the amplifier for injected pulses on the FE channels, prior to the digitization of these signals by
the internal ADCs, as shown in Figure 4.22.

Encoded data are transmitted and correctly decoded in the external FPGA. Figure 4.23 shows an
example of a pulse injected in a channel visible on both the analog monitor as well as in the data
acquired by the ASIC. Data are acquired at LN2 temperature at the nominal ∼2MSPS rate.

From the functional point of view, a single unexpected behavior has been identified in the digital
multiplexer that is used at the input of the encoders. The latches at the input of the multiplexer
show poor driving capability, resulting in the presence of a ghost from a previously multiplexed
channel. The effect is not present on the first 12 channels of each block which show expected
behavior. The effect has been replicated in simulation and a trivial fix has been implemented for
the next version of the ASIC.

Initial results on the performance of the ADC block of CRYO have been obtained by directly
injecting a linear voltage ramp (generated by an external 20-bit DAC) into the ADC. The distri-
butions of the DNL and INL obtained from these measurements are shown in Figure 4.24. The
maximum deviations of the DNL and INL from the reference signal are 0.74 and 1.27 ADC counts,
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Figure 4.22: CRYO ASIC front-end response at liquid nitrogen temperature, presented at the analog
monitor and acquired with an external 50MSPS ADC.

Figure 4.23: Example of a pulse injected in a CRYO ASIC channel, visible on both the analog monitor
and in the output data.
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respectively, within a usable dynamic range of ∼ 3000 ADC counts. From these distributions,
the values of 65.75 dB and of 10.63 are estimated for the SNDR and ENOB, respectively. These
results indicate that, from a static point of view, the ADC block of CRYO meets the required
performance for the DUNE TPC readout. Further work is ongoing to characterize the dynamic
response of the ADC and to determine the overall linearity and noise performance of the entire
readout chain including the FE amplifier.

Figure 4.24: Distribution of the DNL (left) and INL (right) for the ADC block of CRYO.

4.2.3.5 Procedure and Timeline for ASIC Selection

We are currently pursuing two different ASIC designs and planning on qualifying the COTS ADC
solution that will be used for the SBND experiment. We plan to continue developing both the
three-ASIC solution and the CRYO ASIC for at least a second iteration before deciding which
ASIC solution to implement in the DUNE SP module. This plan requires that multiple versions
of the FEMB are also designed and tested. The FEMBs populated with the first set of prototypes
of the two kinds of ASICs will be available in spring 2020 and are expected to perform similarly
to the boards used for ProtoDUNE-SP. We plan to review the results of the system tests and of
the component lifetimes discussed in Section 4.3 in early 2020. In that review, we will also decide
whether to change anything on the list of specifications for the ASICs and to further develop the
two custom ASIC solutions, including fixing any issues found during the tests of the first version of
the ASICs. We expect that the subsequent iteration of the design, fabrication, and testing of the
ASICs and FEMBs will take an additional twelve months. At the end of this process, when results
from standalone tests of the ASICs and system tests of the FEMBs are available, we will have
all the information required to select the ASIC solution to be used in DUNE. We are assuming
that the second design iteration of the ASICs design will meet all the DUNE requirements. The
schedule for the construction of the DUNE SP module currently has between eight and fourteen
months of float for the ASICs and FEMBs, which would allow for a third design iteration, if
needed, as discussed in Section 4.9.2. This does not apply for the second run of ProtoDUNE-SP
(discussed later in Section 4.3.2.1). Ideally, the ASICs from the engineering run would be used for
the second run of ProtoDUNE-SP, but this is not compatible with the currently planned date for
the installation of the FEMBs on the APAs. In order to meet the current goal for the starting date
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of the second run of ProtoDUNE-SP, ASICs from the second round of prototyping would have to
be used. In case a third round of prototypes is necessary, the second run of ProtoDUNE-SP would
have to be delayed by one year.

The selection of the ASIC(s) to be used for the construction of the SP detector module will be
based on performance, reliability, power density criteria, as well as consideration of the costs and
resources required during the construction and testing of the FEMBs. We have not yet decided
the weights to assign to these criteria. Reliability would in principle favor the single-ASIC solution
that requires FEMBs with fewer connections, while power density considerations could be less
favorable to CRYO option. We plan to charge a committee to draft a series of recommendations
on the ASIC selection in spring 2020, at least one year ahead of the expected decision date.
These recommendations could also inform the second cycle of design for ASICs and FEMBs.
Once the second cycle of design and testing is complete, these recommendations will be used by
the committee charged with the final design review to suggest a preferred option for the ASIC
solution. The committee’s recommendation will then be passed to the DUNE executive board
(EB), which is tasked with the final ASIC decision.

4.2.4 Infrastructure Inside the Cryostat

Each FEMB is enclosed in a mechanical CE box to provide support, cable strain relief, and control
of bubbles of gaseous argon generated by heat from an FEMB attached to the lower APA, which
could, in principle, lead to discharge of the high voltage (HV) system. The CE box, illustrated
in Figure 4.25, is designed to make the electrical connection between the FEMB and the APA
frame, as discussed in Section 4.2.1. Mounting hardware inside the CE box connects the ground
plane of the FEMB to the box casing. If argon bubbles form inside the CE box, they must get
channeled through the two side tubes of the APA’s frame, from where they would reach the top
of the cryostat. As already discussed in Section 4.1.2, a test setup has been prepared at BNL to
measure the maximum power that can be dissipated in LAr at a depth equivalent to that of the
FEMBs installed on the bottom APA. Initial measurements indicate that the ASICs mounted on
the FEMBs are not going to cause boiling of the LAr inside the CE boxes. We have measured
the power required to cause boiling at a pressure equivalent to that of 12m of LAr. We have also
observed that with the current ASIC designs and power dissipation we have a safety factor of 20
in terms of total power and of at least two in terms of power density. These measurements will be
repeated once prototype FEMBs with the three-ASIC and CRYO solutions become available.

The CE box casing is electrically connected to the APA frame via the metal mounting hardware
called the “Omega bracket” (not shown in Figure 4.25). The input amplifier circuits are connected
to the CR board and terminate to ground at the APA frame, as shown in Figure 4.3. As a backup
solution, the casing is also connected to the APA frame via a wire.

In addition to the CE box and mounting hardware, cable trays for support and routing the cold
cables will be installed in the cryostat. One set of cable trays, shown in Figure 4.26 (left column),
will be attached to the upper APAs to hold the CE and PD cables. A different cable tray design,
also shown in Figure 4.26 (right column), will support the CE cables underneath the lower hanging
APAs. A final set of cable trays will be installed inside the cryostat after the APAs are fixed in
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Figure 4.25: Prototype CE box used in ProtoDUNE-SP.

their final location to support the cables as they are routed to the CE and PD feedthroughs.

4.2.5 Cold Cables and Cold Electronics Feedthroughs

All cold cables originating inside the cryostat connect to the outside warm electronics through
PCB feedthroughs installed in the signal flanges that are located on the cryostat roof. The data
rate from each FEMB with four cables is sufficiently low (∼ 1 Gbps) that LVDS signals can easily
be driven over more than 22m of twin-axial transmission line. Additional transmission lines are
available to distribute LVDS clock and control signals, which are transmitted at a lower bit rate.
The connections between the WIBs on the signal flanges and the DAQ (see Chapter 7) and slow
control systems (see Chapter 8) are made using optical fibers.

The design of the signal flange includes a four-way cross spool piece, separate PCB feedthroughs
for the CE and PD system cables, and an attached crate for the TPC warm electronics, as shown in
Figure 4.27. The wire bias voltage cables connect to standard safe high voltage (SHV) connectors
machined directly into the CE feedthrough, ensuring no electrical connection between the wire
bias voltages and other signals passing through the signal flange. Each CE feedthrough serves the
bias voltage, power, and digital I/O needs of one APA.

Data and control cable bundles send system clock and control signals from the signal flange to the
FEMB and stream the ∼1Gbps high-speed data from the FEMB to the signal flange. Each FEMB
connects to a signal flange via one data cable bundle, leading to 20 bundles between one APA and
one flange. For the reference ASICs configuration, ten low-skew shielded twin-axial cables are
required to transmit the following differential signals between the WIB and the FEMB:

• four 1.28Gbps data lines (two from each COLDATA);
• two 64MHz clock signals (one input to each COLDATA);
• one fast command line (shared between the two COLDATA ASICs); and
• three I2C-like control lines (clock, data-in, and data-out, also shared between the two COL-

DATA ASICs).
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Figure 4.26: Side and end views of mechanical supports for the CE boxes on the upper (left column)
and lower (right column) APAs. Shown are the APA cable trays in green and pink, the CE boxes in
dark gray, and the Omega brackets and mounting hardware between the CE boxes and APA frame in
light gray. The CE cables are shown in blue; the PD cables are not shown.
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FT_InternalCableRoute

Figure 4.27: TPC CE feedthrough. The WIBs are seen edge-on in the left panel and in an oblique
side-view in the right panel, which also shows the warm crate for an SP module in a cutaway view.

As discussed later, this number of connections is compatible with routing the cables that bring
the power and transmit the data and controls for the lower APA through the APA frames. We
are making the assumption that the fast command line can be shared between the two COLDATA
ASICs, but will also consider other possibilities, like sharing the 64MHz clock between the two
ASICs or increasing the data transmission speed to 2.56Gbps, thereby reducing the number of
data transmission lines to two for each FEMB. This assumption will be tested as soon as the first
prototypes of COLDATA become available.

The LV power is passed from the signal flange to the FEMB by bundles of 20AWG twisted-pair
wires, with half of the wires serving as power feeds and the other half as returns. Using the
measured power consumption for LArASIC and ColdADC and the estimates for COLDATA, the
total power required to operate each FEMB is estimated as 6W (2.4A at 2.5V), including the
power dissipated in the linear voltage regulators. This assumes that linear voltage regulators are
used on the FEMB to reduce the 2.5V provided by the WIB down to the various voltages required
by the three ASICs:

• 1.8V for LArASIC, and
• 2.25V and 1.1V for ColdADC and COLDATA.

We currently assume that only 2.5V will be provided by the WIB, since the largest fraction of
the power required by the FEMB is at 2.25V. We are currently planning on using a total of eight
20AWG twisted-pair wires, seven of which will be used for bringing the 2.25V to the FEMB, with
the eighth one reserved for the 5V bias for the linear voltage regulators (this connection carries a
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very low current). With this cable plant, the resistance of the cable bundle is 41 mΩ for the upper
APAs (9m cable length) and 101 mΩ for the lower APAs (22m cable length). To account for the
voltage drop along the wires and the returns in the case of operation at room temperature, prior
to filling the cryostat, the WIB needs to provide 2.7V and 3.0V for the upper and lower APAs,
respectively. For one FEMB, the power dissipated in the cables is 0.5W and 1.2W for the upper
and lower APAs, respectively. The values for the power dissipated in the cables are reduced by a
factor of three for operation in LAr, which allows for a reduction of the voltage provided by the
WIB. The voltage drop and power dissipation values are summarized in Table 4.3. We will also
consider the possibility of using one pair of wires to deliver a separate voltage to LArASIC (2.0V
that will be reduced to the required 1.8V on the FEMB). This solution may provide a better
overall noise performance for the readout electronics, but will have a slightly larger voltage drop
on the cold cables. The size of the cable bundles planned for DUNE represents a small reduction
compared to that used for ProtoDUNE-SP, where bundles of nine 20AWG twisted-pair wires were
used. Overall, the total resistance of the power return wires are 2mW and 5mW for the upper and
lower APAs, respectively, numbers that are reduced by a factor of three for operation in LAr. For
each APA pair, the total power dissipated inside the power cables (∼11W at LAr temperature) is
small compared to the total power dissipated in the FEMBs, 240W.

Table 4.3: Voltage drop and power dissipation in the cables bringing power to the FEMBs at room
and at LAr temperature for the cable lengths corresponding to the upper (9m) and the lower (22m)
APAs. The FEMBs require 2.4 A at 2.5 V to operate. At room temperature, the resistances of the
seven 20AWG twisted-pair wires are 41 mΩ and 101 mΩ for the upper and the lower APAs, respectively.
These resistances are reduced to 14 mΩ and 34 mΩ inside the LAr.

Voltage Voltage drop Power dissipation
WIB output (room temperature) 2.7 V / 3.0 V 0.2V / 0.5 V 0.5W / 1.2W
WIB output (LAr temperature) 2.6 V / 2.7 V 0.1V / 0.2 V 0.25W / 0.5W

The cable plant for one APA in the LAr also includes the cables that provide the bias voltages
applied to the X-, U -, and G-plane wire layers, three FC terminations, and an electron diverter,
as shown in Figure 4.3. The voltages are supplied through eight SHV connectors mounted on the
signal flange. RG-316 coaxial cables carry the voltages from the signal flange to a patch panel
PCB mounted on the top of the APA that includes noise filtering. From there, wire bias voltages
are carried by single wires to various points on the APA frame, including the CR boards, a small
PCB mounted on or near the patch panel that houses a noise filter and termination circuits for
the FC voltages, and a small board mounted near the electron diverter that also houses the wire
bias voltage filter described in Section 4.2.2.

In Sections 2.4.3 and 4.6.1 we discuss the problem of routing the cold cables (data, control, power,
and bias voltages) for the bottom APAs through the frames of both the top and bottom APAs.
Routing tests were initially performed with the ProtoDUNE-SP cable bundles, and even after
increasing the cross section of the side tubes from 7.62 × 7.62 cm2 (3” × 3”) to 10.16 × 10.16 cm2

(4” × 4”), routing was difficult. After understanding that we could reduce the number of cables,
we ran a second set of tests with fewer sets of cables (nine rather than ten sets of 12 data and
control cables, nine rather than ten sets of nine twisted-pair wires for power, and eight bias voltage
cables as before). This insertion test was successful once a 6.35 cm (2.5”) diameter conduit was
inserted inside the APA frame to present a uniform cross section to the cables and the cables were
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restrained with a mesh. These tests have been successfully repeated in October 2019 at Ash River
using the setup with two stacked APA frames, described in Section 2.3.3.

The cable plant discussed above for the reference design with the three ASICs can be used also for
FEMBs populated with the CRYO ASIC. In that case, the power requirements are reduced (5W
at 2.5V), and the internal LDOs do not require an external bias line. Six of the eight 20AWG
twisted-pair wires could be used to bring the low-voltage power to the FEMB, while the remaining
two could be used to sense the voltage on the FEMB. This configuration would entail a small
increase (∼ 14%) of the total resistance seen on the return wires. The same number of low-skew
shielded twin-axial cables are required to transmit the following differential signals between the
WIB and the FEMB:

• four 896Mbps data lines (two from each CRYO ASIC);
• two 56MHz clock signals (one for each CRYO ASIC); and
• four shared SACI signals.

In the current design of CRYO ASIC a total of five SACI signals are required: three of them
are shared between the two ASICs on the FEMB, and two separate ones are required to send
commands to the two CRYO ASICs. We are planning to implement internal addresses in a future
version of CRYO, such that the two ASICs can share the command line.

The proposed cable plant is also compatible with the use of the COTS ADC. The current design
of the SBND FEMB uses 12 low-skew shielded twin-axial cables, instead of ten, but some of the
signals are not used. The low-voltage power is transmitted with a bundle of nine 20AWG twisted-
pair wires, but two of them are used for the bias of the linear voltage regulators, which require
very little current.

In all possible configurations of the FEMB, it is very likely that the cable plant required to bring
the low-voltage power and controls to the FEMBs and to read out the data from the FEMBs is
compatible with the option of routing the cables through the APA frames. This, however, does
not leave much room for building redundancy in the system. The cable connections need to be
extremely reliable because the loss of one connection could result in an entire FEMB becoming
unresponsive.

4.2.6 Warm Interface Electronics

The warm interface electronics provide an interface between the CE, DAQ, timing, and slow
control systems, including local power control at the flange and a real-time diagnostic readout.
They are housed in the WIECs attached directly to the CE flange. A WIEC, shown in Figure 4.28,
contains one PTC, five WIBs and a passive PTB that fans out clock signals and LV power from
the PTC to the WIBs. The WIEC must provide Faraday-shielded housing and robust ground
connections from the WIBs to the detector ground (Section 4.2.1). Only optical connections are
used for the communication to the DAQ and the slow controls, to avoid introducing noise in the
CE feedthrough.
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Figure 4.28: Exploded view of the CE signal flange for ProtoDUNE-SP. The design for the DUNE SP
module CE signal flange will be very similar (with two CE signal flanges per feedthrough).

The WIB receives the system clock and control signals from the timing system and provides
processing and further distribution of those signals to four FEMBs. It also receives high-speed
data signals from the same four FEMBs and transmits them to the DAQ system over optical fibers.
The data signals from the FEMBs are recovered on the WIB with commercial equalizers. The WIBs
are attached directly to the TPC CE feedthrough on the signal flange. The feedthrough board is a
PCB with connectors to the cold signal and LV power cables fitted between the compression plate
on the cold side and sockets for the WIB on the warm side. Cable strain relief for the cold cables
is provided from the back end of the feedthrough.

The PTC provides a bidirectional fiber interface to the timing system. The clock and data streams
are separately fanned out to the five WIBs as shown in Figure 4.29. A clock-data separator on
the WIB separates the signal received from the timing system into clock and data signals. Timing
endpoint firmware for receiving and transmitting the clock is integrated into the WIB FPGA. The
SP module timing system, described in Section 7.3.7, is a further development of the ProtoDUNE-
SP system and is expected to have nearly identical functionality at the WIB endpoint.

The PTC receives 48V LV power for all TPC electronics connected through the TPC signal flange:
one PTC, five WIBs, and 20 FEMBs. The LV power is then stepped down to 12V via a DC-DC
converter on the PTC. The output of the PTC converters is filtered with a common-mode choke
and fanned out on the PTB to each WIB, which provides the necessary 12V DC-DC conversions
and fans the LV power out to each of the FEMBs supplied by that WIB, as shown in Figure 4.30.
The output of the WIB converters is also filtered by a common-mode choke, and each voltage line
provided to the FEMBs is individually controlled, regulated, and monitored.
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Figure 4.29: PTC and timing distribution to the WIB and FEMBs used in ProtoDUNE-SP. A similar
design will be adopted for the DUNE SP module.

Figure 4.30: LV power distribution to the WIB and FEMBs for DUNE. In the current design, up to four
separate voltages can be provided from the WIB to each FEMB. Measurements with prototype FEMBs
will inform the final design of the power distribution, and the number of different voltages sent to the
WIB will be chosen to reduce the voltage drops along the cold cables and to minimize the readout
noise.
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Because the WIBs can provide local power to the FEMB and real-time diagnostic readout of all
channels, each TPC electronics system for each APA is a complete, stand-alone readout unit. The
FEMBs and cold cables are shielded inside the cryostat, and the WIBs and PTC are shielded inside
the Faraday cage of the WIEC, with only shielded power cables and optical fibers connecting to
external systems.

Figure 4.31: WIB block diagram including the fiber optic connections to the DAQ backend, slow
controls, and the timing system, as well as the data readout, clock, and control signals to the FEMBs.

As shown in Figure 4.31, the WIB can receive the encoded timing signal over bidirectional optical
fibers on the front panel; it can then process them using either the on-board FPGA or clock
synthesizer chip to provide the clock required by the TPC electronics. The reference ASIC design
currently uses 8b/10b encoding; if the SLAC CRYO ASIC is selected for the DUNE SP module,
12b/14b encoding will be used instead of 8b/10b.

The FPGA on the WIB will have transceivers that can drive the high-speed data to the DAQ
system up to 10Gbps per link, meaning that all data from two FEMBs (2×5 Gbps) could be
transmitted on a single link. The FPGA will have an additional transceiver I/O for an optical
1Gbps Ethernet connection, which provides real-time monitoring of the WIB status to the slow
control system.

For system tests, discussed later in Section 4.3.2, the WIEC, WIB, and PTC developed for
ProtoDUNE-SP are being used. A special version of the WIB has been developed for use with
FEMBs equipped with the CRYO ASIC, which require a different power and clock distribution
scheme. Plans are being put in place to redesign the WIB, and eventually make minor changes also

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–187

to the PTC and the WIEC, to use less expensive FPGAs and to be able to program independently
the voltage rails used to provide power to the FEMBs. While in the current WIB it is possible
to monitor and turn on and off these voltage rails independently, the redesign will include the
capability of setting independent voltage and current limits on each one of them. In addition, it
is planned to add the possibility of measuring the delay of the propagation of the clock signals
between the WIB and the FEMBs. With this feature, it will be possible to align the sampling
time of different FEMBs to a precision of a few ns in situ without relying on the measurement of
the cable lengths, which was necessary in ProtoDUNE-SP.

4.2.7 Timing Distribution and Synchronization

The charge deposited on each wire of the APAs installed in the DUNE SP module is digitized
at a frequency of 2 MHz, as discussed in Section 4.1.2. This requires that the TPC electronics
be synchronized to a level of the order of 10 ns, which is much smaller than the time difference
between two charge samples. This level of error in the synchronization between the sampling time
of different FEMBs contributes negligibly to the expected resolution of the reconstructed space
points measurement, both in the APA plane and along the drift distance. The timing distribution
and synchronization system for the SP module is described in Section 7.3.7. Each WIEC has a
bidirectional optical connection with the timing system in the PTC. Inside the PTC the optical
signal from the timing system is converted, as discussed in the previous section, to an electrical
signal and distributed via the backplane to the WIBs that constitute an endpoint for the timing
distribution system. Each WIB contains a standalone jitter-reducing PLL that forwards the clock
to all the FEMBs. The FPGA contained inside the WIB implements the protocol [60, 61] for
aligning the phase of the clock at the endpoint of the distribution tree.

The timing distribution and synchronization system ensures that all the WIBs are synchronized to
within 3 ns. One possible way of synchronizing the FEMBs is the one that was used in ProtoDUNE-
SP, which relies on the fact that all the cables connecting the WIBs to the FEMBs have approx-
imately the same length (a length difference of 0.5m corresponds to a difference in the sampling
time of 2.5 ns). The same approach could be used for the DUNE SP module, correcting for the
top-bottom APA cable length difference (corresponding to ∼ 65 ns) inside the FPGA of the WIB.
The exact correction factor could be obtained by measuring the time propagation difference for a
sample of short and long cables prior to the installation of the FEMBs on the APAs. Synchronizing
the CE with the PD system requires one additional time constants that correspond to the transit
time of the fast command sent from the WIB to COLDATA and from there to the ColdADC,
which includes the propagation time along the cables (45 ns for the 9m long cables to the top
APAs and 110 ns for the 22m long cables to the bottom APAs) plus the propagation time inside
the ASICs. This overall time constant can be obtained offline from the data, but it represents
at most a correction of O(150µm) on the position of a track along the drift distance. Instead of
relying on cable measurements, we are also considering the addition of a timer inside the WIB’s
FPGA to measure the transit time of a command sent to the FEMB and its corresponding return
message. This study will help us understand whether the relative phases of the FEMB and the
WIB can be aligned more precisely.

The communication between the WIB and the DAQ backend is asynchronous and the 64-bit time-
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stamp, which is used to indicate the time at which the signal waveform was sampled 7.3.7, is
inserted in the data frame in the WIB’s FPGA. For the three-ASIC solution, the communication
from the FEMB to the WIB is also asynchronous and a 8-bit time stamp is sent to count the
number of ADC samples (triggered by the FEMB with a fast command) from the last “Sync”
signal, as discussed in Section 4.2.3.3. This 8-bit time stamp is used only to ensure that the
FEMB and the WIB are still synchronized.

In contrast to the three-ASIC solution, in the CRYO solution the communication between the
FEMB and WIB is entirely synchronous, and instead uses a 56MHz clock. In order to properly
align the phase of the ADC sampling for the top and bottom APAs, appropriate delays must be
added to the sampling command in the WIB’s FPGA. The requirements listed above for synchro-
nizing the CE relative to the PD system remain valid for this case.

4.2.8 Services on Top of the Cryostat

Table 4.4 summarizes the power requirements of the FEMBs, WIBs, and WIECs, which were
discussed in Sections 4.2.5 and 4.2.6. As shown in Figure 4.30, each PTC receives 48V from a
power supply installed on the top of the cryostat; this voltage is stepped down via voltage regulators
to 12V, which is distributed to each WIB. Inside each WIB the 12V is further reduced to the
2.7 or 3.0V that is used to power the FEMBs, as discussed in Section 4.2.5. For these estimates,
an efficiency of 80% is assumed for each voltage regulation step, while the power requirements
for the FPGA and the optical components on the WIBs are based on the measurements from
ProtoDUNE-SP.

The overall power required for each WIEC is in the range 335W to 360W, corresponding to the
range 7A to 7.5A at 48V. The LV power is delivered to the PTC using a power mainframe that
can operate in the 30V to 60V range, providing a maximum of 13.5A and 650W to each APA.
Using a 10AWG cable, and assuming a distance of 20m between a LV power supply on the detector
mezzanine and the most distant cryostat penetration for a row of APAs, no voltage drop over 1V
should occur along the cable. At most ∼ 150 W is dissipated inside the cryostat, and another
∼ 200 W is dissipated inside the (air-cooled) WIEC; only a few watts are dissipated in the warm
cables located below the false flooring on top of the cryostat. Multiplying by the total number of
WIECs, less than 1 kW of power is dissipated in the cabling system over the entire surface of the
cryostat.

Four wires are used for each PTC module; two 10AWG, shielded, twisted-pair cables for the power
and return; and two 20AWG, shielded, twisted-pair cables for the sense. The primary protection
is the over-current protection circuit in the LV supply modules, which is set higher than the ∼ 8 A
current draw of the WIEC. Secondary sense line fusing is provided on the PTC. Tests are being
performed in ProtoDUNE-SP to check which is the best scheme for connecting the shields of the
power cables. In ProtoDUNE-SP the shield of the warm power cables is connected to ground on
both the power supply side and on the CE flange. Other shield connection schemes are being
investigated in ProtoDUNE-SP and the connection scheme yielding the lowest readout noise will
be used for DUNE.
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Table 4.4: Power requirements for the FEMBs, WIBs, and PTCs.

Component Current Power
FEMB (assume 80% efficiency in the 12V → 2.7/3.0 V conversion)

Lower APA 2.4A at 2.7 V 0.68A at 12V
Upper APA 2.4A at 3.0 V 0.75A at 12V

WIB (4 FEMB + FPGA, assume 80% efficiency in the 48V → 12V conversion)
4 FEMBs lower APA 2.7A at 12V
4 FEMBs upper APA 3.0A at 12V
FPGA and optical components 1.7 A at 12V
Total lower APA 4.4A at 12V 1.4A at 48V 67W
Total upper APA 4.7A at 12V 1.5A at 48V 72W

WIEC (5 WIBs + PTC)
Total lower APA 7A at 48V 335W
Total upper APA 7.5A at 48V 360W

Switching power supplies controlled by the slow controls system provide power to the heaters (12V)
and the fans (24V) that are installed on the CE flanges. Temperature sensors mounted on the
flanges, and power consumption and speed controls from the fans are connected to the interlock
system that is part of the DUNE detector safety system (DDSS), in addition to being monitored
by the slow controls system.

Bias voltages for the APA wire planes, the electron diverters, discussed in Section 2.2.6, and the
last FC electrodes are generated by supplies that are the responsibility of the TPC electronics
consortium. The current from each of these supplies should be very close to zero in normal
operation. However, the ripple voltage must be carefully controlled to avoid injecting noise into
the FE electronics. RG-58 coaxial cables connect the wire bias voltages from the bias voltage
supply to the standard SHV connectors that are machined directly into the CE feedthrough and
insulated from the low voltage and data connectors.

Optical fibers are used for all connections between the WIECs and the DAQ and slow control
systems. The WIB reports its temperature and the current draw from each FEMB to the slow
control system, while the current draw for each APA is monitored at the mainframe itself.

To support the electronics, fan, and heater power cables, as well as optical fibers on top of the
cryostat, cable trays are installed below the false flooring on top of the cryostat. These cable trays
run perpendicular to the main axis of the cryostat and connect the three cryostat penetrations for
one row of APAs to the detector mezzanine near the cryostat roof, as shown in Figure 4.32. All
the necessary LV supplies and the bias voltage supplies are installed in these racks. Patch panels
for the optical fiber plant used for the control and readout of the detector are also installed on the
detector mezzanine.
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Figure 4.32: Services on top of the cryostat. The racks for the LV power supplies are shown in blue.

4.2.9 ProtoDUNE-SP Results

The ProtoDUNE-SP detector features a LArTPC with 15,360 sense wires with a fiducial mass
of roughly 700 tons of LAr. The system was deployed in a hadrons and electrons beamline at
the CERN Neutrino Platform in 2018 and continues to take cosmic event data. The goal of
the ProtoDUNE-SP TPC readout was to validate the concept and the design of the integrated
APA+CE readout and measure the performance of the TPC electronics system with components
as close as possible in design to those in the final DUNE TPC readout. In the case of the TPC
electronics, most of the detector components used in ProtoDUNE-SP are prototypes of the DUNE
far detector (FD) ones discussed in the previous sections. The major difference is the FEMB (and
associated ASICs), where an early version of LArASIC (P2) is used for the FE ASIC, followed by
the first prototype (P1) of a different ADC, using the “domino” architecture and implemented in
the 180 nm technology, and finally by an FPGA that provided the data serialization functionality.

Each of the six ProtoDUNE-SP APA+CE readout units consists of 2,560 sense wires, of which 960
are 6m long collection wires and 1,600 are 7.4m long induction wires. Five of the six APAs were
tested in a full-scale cold box in cold gaseous nitrogen (GN2) with a complete TPC electronics
readout system, identical to the one deployed in ProtoDUNE-SP, before installation in the cryostat;
the sixth was installed without first going through the cold box testing. Figure 4.33 shows the
measured noise level, represented by the ENC in units of electrons, for the collection (X) plane and
the two induction (V , U) planes as well as the FEMB temperature in the cold box as a function
of the cold cycle time. At a stable temperature of 160K, the ENC for all three wire planes is less
than 500 e−.
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Figure 4.33: Left y axis: ENC (in electrons) for U , V , and X (red, blue, and green curves) sense wire
planes as a function of time (hours) for the APA 2 cold cycle in GN2 in the CERN cold box; right y
axis: temperature (orange curve) measured at the level of the FE electronics.

After the cryostat was filled with LAr and the drift and wire bias voltages were set to their nominal
values, 99.7% of the TPC readout channels were found to be functioning properly. A total of 42
channels were found to be unresponsive. Of these:

• 14 channels were identified based on tests performed prior to the insertion of the APA into the
cryostat as having no capacitive load on the FE electronics, suggesting an open connection
somewhere upstream of the CE system;

• 24 additional channels showed the same problem after the cryostat was filled with LAr (three
of these, all on the first APA, were already observed during testing in the cold box); and

• four channels were associated with the FE electronics not functioning properly: two of these
channels appeared in tests performed after the cathode high voltage was raised to 120 kV,
and two more appeared when the high voltage reached 160 kV.

As discussed in Section 2.3.2.1, the number of disconnected channels due to mechanical failures in
the connection between the APA wire and the FE electronics has changed with time, with some
channels becoming again active, and others becoming inactive. Only one additional dead channel is
caused by a permanent failure of the FE electronics. If these numbers are indicative of the normal
rate of channel loss, it would imply that over the 20 years of DUNE operations at most 0.5% of the
readout channels would fail. A similar upper limit can be obtained from the operational experience
of MicroBooNE, considering also an additional scale factor for the additional ASICs immersed in
LAr (in MicroBooNE only the FE amplifier is in the liquid). Further operation of ProtoDUNE-SP,
as well as operation of SBND in the coming years, will provide additional information on the long
term stability of the active electronics components immersed in LAr.
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With the detector operating under nominal conditions, the measured ENC by the online monitor-
ing program was approximately 550 e− on the collection wires and approximately 650 e− on the
induction wires, averaged over all operational channels. The noise increased relative to the tests
performed inside the cold box due to the larger dielectric constant of LAr relative to GN2. These
noise measurements are consistent with the ratio of the corresponding capacitances of the APA
wires. Figure 4.34 shows the ENC (in electrons) for all channels of one APA+CE readout unit.
The collection channels with ENC larger than 1500 e− had a problem in the P1-ADC ASIC; this
problem had already been identified prior to their installation on the FEMBs. The channels on
all three planes with ENC smaller than 300 e− have an open connection somewhere in front of the
CE system. Figure 4.35 summarizes ENC levels in the entire ProtoDUNE-SP detector both before
and after the application of a simple offline common-mode noise filter similar to the one used in
MicroBooNE [62]; an improvement of roughly 100 e− is seen on all planes.

Figure 4.34: ENC (in electrons) for all U , V , and X (red, blue, and green curves) sense wire planes for
one ProtoDUNE-SP APA under nominal operating conditions.

The overall performance of the CE system in ProtoDUNE-SP satisfies the CE noise specification for
the SP module listed in Section 4.1.2. A comparison of the raw data from a ProtoDUNE-SP event
(Figure 4.36) to that from a MicroBooNE event (Figure 4.37 [62]) demonstrates the improvements
achieved in LArTPC performance. The ProtoDUNE-SP event was collected very early in the data
taking period when the charge collection efficiency was still limited by the amount of impurities
in the LAr; it shows very little noise and appears to be of the same quality as the MicroBooNE
event display after offline noise removal.

The S/N has been evaluated using a selected cosmic muon sample, with tracks crossing the LAr
volume at shallow angle with respect to the anode plane and large angle with respect to the
direction of the wires in each plane considered for S/N characterization. The charge deposited
on each wire in a given plane is evaluated using the pulse height (peak) of the hit found in the
raw waveform. A correction taking into account different relative angle between track and wire
direction has been applied to normalize the hit response. The noise value is extracted from the
width of the Gaussian fitted on the pedestal distribution of the waveform baseline. The electric
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Figure 4.35: ENC levels (in electrons) for all channels of the ProtoDUNE-SP detector, both before and
after the application of a simple offline common-mode filter.

Figure 4.36: Display of the charge deposited on the collection wires (wire number on the x-axis) as a
function of the drift time (on the y-axis) for a ProtoDUNE-SP event that includes two electromagnetic
showers and a four tracks in the final state of the interaction. The color associated with each time
sample on the APA wires gives a measurement of the charge measured by the CE readout, with blue
representing the smallest charge values and red representing the largest charge values.
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MicroBooNE

MicroBooNE

Figure 4.37: MicroBooNE 2D event display of the V plane from run 3493 event 41075 showing the raw
signal (a) before and (b) after offline noise filtering. A clean event signature is recovered once all of
the identified noise sources are subtracted [62].
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Figure 4.38: Angle-corrected peak signal-to-noise ratio for reconstructed cosmic muon tracks in
ProtoDUNE-SP, both before and after noise filtering is applied [63].

field in the TPC volume was at the nominal level of 500V/cm, and the LAr purity for the runs
considered in this analysis was about 5.5ms as measured by the purity monitors, corresponding to
∼ 35% charge loss due to attachment for tracks close to the cathode. This measurement ignores
the effect of the space charge, which introduces distortions of the electric field in the TPC volume
that may locally change the recombination factor and therefore affect the S/N value. Finally, the
measurement is made both before and after the application of a simple offline common-mode noise
filter. The distribution of the S/N for all the wires in the sample of muon tracks considered is
shown in Figure 4.38 [63]. Looking before (after) the application of the common-mode noise filter,
for the collection plane the mean value of the S/N distribution is 38 (49), for the first induction
plane it is 16 (18), and for the second induction plane it is 19 (21).

4.2.10 ProtoDUNE-SP Lessons Learned

As discussed in Section 4.2.9, the initial data from ProtoDUNE-SP show that the SP module can
meet the noise specification. The experience with the TPC electronics in ProtoDUNE-SP nonethe-
less motivates several improvements to the TPC electronics system design, some of which have
already been implemented and discussed in the previous sections. A complete list of the lessons
learned from the construction, testing, integration, installation, commissioning of the TPC elec-
tronics detector components is available [64]. This reference also discusses the plans and timeline
for addressing the issues observed in ProtoDUNE-SP. This technical design report (TDR) section
and the following cover only the main issues and the plans for their resolution and implementation
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in the SP module.

During the commissioning of ProtoDUNE-SP, violations of the grounding rules described in Sec-
tion 4.2.1 have been observed with one of the readout boards for the PD system and with the
cameras immersed inside the LAr. The power supply used to provide the HV to the cathode plane
has also been observed to cause noise inside the detector and has been replaced. The overall success
of ProtoDUNE-SP owes much to the fact that the grounding rules were properly implemented and
that any violation was discovered and addressed during the detector commissioning.

The main problem with the ProtoDUNE-SP TPC electronics readout is the poor performance of
the P1-ADC ASICs. This problem was observed as early as 2017 while these ASICs were being
tested prior to their installation on the FEMBs. The “domino” architecture [65] used in this
design relies on excellent transistor matching, which unfortunately is worse at LAr temperature.
In ProtoDUNE-SP, this problem results in a fraction (about 3.2%) of the readout channels having
a fixed value for some of the ADC bits, independent of the input voltage. In a majority of the
cases an approximate value for the charge can be obtained via interpolation. For about 0.9% of
the channels, the problem is so severe that the only solution is to remove the channels from the
analysis, resulting in a loss of efficiency. This problem prompted us to abandon this design and to
develop the completely new ColdADC, to adapt the CRYO ASIC for use in DUNE, and to follow
the approach of the SBND collaboration and consider the COTS ADC option as well.

Initial analysis of the ProtoDUNE-SP data has uncovered a new problem with LArASIC that occurs
when more than 50 fC is collected over a period of 10µs to 50µs and the baseline configuration of
the amplifier for the collection wires is used. The feedback mechanism of the FE amplifier stops
working for several hundred µs. During this period, the readout does not function and signals
following the large charge deposited can be completely lost. A ledge is observed in the output
of the FE amplifier, followed by a slow decay and a sudden turn-on of the amplifier. Figure 4.39
shows an example of this behavior.

This problem has been reproduced in the laboratory and is being actively studied. It affects
all versions of LArASIC fabricated after the one used for the MicroBooNE experiment. The
problem occurs when the threshold on the injected charge is small and therefore affects with larger
probability the collection wires, where the 200mV baseline is used, compared to the induction
wires, which have a 900mV baseline. After the problem and this difference between the two
baselines were observed, the decision was taken to operate the CE in ProtoDUNE-SP using the
900mV baseline for the collection wires as well, sacrificing the dynamic range. Data from the
wires where the problem occurs can be masked in analysis, resulting in a loss of efficiency. This
problem affected a very small fraction of the events: with the 200mV baseline about 0.1% of the
waveforms were affected, and this number became almost completely negligible after switching to
the 900mV baseline. It should be noted that the problem occurs more often in ProtoDUNE-SP
than is expected in the DUNE SP module due to the presence of cosmic rays traveling parallel to the
APA wires. The problem could, however, affect the SP module’s ability to detect electromagnetic
showers – one of the main physics signals. Section 4.2.11 discusses the plans and timeline for
addressing this issue in a new LArASIC prototype.

During the integration of the FEMBs onto the APAs and the cold tests that preceded the APA
installation inside the ProtoDUNE-SP cryostat, multiple connectors detached from the FEMBs,

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–197

4000 4500 5000 5500 6000

Time Tick

500

1000

1500

2000

2500

3000

3500

4000

A
D

C
 V

al
ue

Primary Charge

Ledge

4600 4800 5000 5200 5400 5600 5800

880

890

900

910

920

930

Jump in Tail

Figure 4.39: Waveform of a channel showing a ledge following significant charge deposition on the wire,
followed by a discharge and a subsequent jump to the normal baseline ADC value.

Figure 4.40: Image of a connector for the cold readout and signal cables, which has been lifted from the
FEMB due to the presence of excess epoxy on the connection between the cold cables and the printed
circuit board that acts as the “male” part of the connector.
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causing a loss of communication. We replaced the FEMBs on all of the APAs that had been tested
in the cold box. One additional FEMB was replaced on the APA that had been installed without
undergoing the test in the cold box. This detachment may also be the cause of the loss of the
external clock signal on one of the FEMBs that was observed after cool-down. The problem with
the connector has been traced to a mechanical interference between the PCB of the FEMB and
the epoxy deposited as a protective measure on the small printed circuit board to which the cold
cables are soldered and which forms the male part of the connector. The height of the epoxy can
cause the female part of the connector to lift from the PCB, as shown in Figure 4.40. Section 4.2.3
discusses the redesign of the connection to address this problem.
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Figure 4.41: Spectrum of the noise on the first induction plane of the ProtoDUNE-SP APAs before and
after applying a simple offline common-mode filter and partially mitigating ADC issues in software [63].

Analysis of the ProtoDUNE-SP data has made significant progress throughout 2019, leading to
many insights on the detector behavior and on the interactions between its different components.
The level of noise mentioned in Section 4.2.9 (approximately 550 e− on the collection wires, and
approximately 650 e− on the induction wires) was measured with raw data, without any filtering
or selection applied to the pulses on the APA wires. A simple offline common-mode filter can
significantly reduce the noise, particularly at low frequencies, as shown in Figure 4.41, which com-
pares the noise spectrum of the first induction plane of the APA before and after the filtering [63].
The spectrum prior to the filtering shows a significant increase at frequencies smaller than 60 kHz
that in MicroBooNE had been associated with the low-voltage regulators that are installed on the
FEMBs [62]. This contribution to the noise has been significantly reduced compared to initial
observations at MicroBooNE by means of RC filters that have been added on the ProtoDUNE-SP
FEMBs. Further work is required to understand why these RC filters do not completely suppress
this specific noise source, as indicated by tests performed in other setups. The noise spectrum prior
to the filtering also shows spikes at multiple discrete frequencies, and in some cases the associated
noise sources have been identified: for example, the operation of cameras inside the cryostat con-
tributes to the peaks at 310 kHz and 630 kHz; malfunctioning bias voltage supplies also contribute
to the noise. Finally, the reduced level of white noise in the spectrum at higher frequencies is due to
the application of an algorithm to partially recover from the ADC problems described above [63].
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We expect that further data analysis and tests with ProtoDUNE-SP will result in improvements
to the TPC electronics design that already demonstrates excellent performance.

4.2.11 Remaining Design and Prototyping Tasks

ProtoDUNE-SP was built with multiple goals, one of which was to demonstrate that the speci-
fications for DUNE could be met with a design that would only require a simple scale up of the
detector size. The data collected with ProtoDUNE-SP in fall 2018 has demonstrated that noise
levels well below the target of 1000 e− can be achieved in LAr, validating the detector system
design approach planned for the DUNE SP module.

Still, additional design and prototyping work is required in several areas before the start of SP
module construction, with differing levels of risk and engineering work, as estimated in Table 4.5.

For example, changing the number and arrangement of cryostat penetrations to accommodate two
CE flanges in addition to the PD system flange can be considered a relatively minimal modifica-
tion. It may require some structural reinforcement and additional finite element analysis (FEA)
simulations to estimate the proper flow of argon in order to avoid any back-diffusion of oxygen
into the cryostat (in case of leaks on the flanges), as well as to ensure an acceptable temperature
gradient in the LAr.

On the other hand, changes in the design of the ASICs, with the development of ColdADC and
COLDATA, are more involved.

The area that requires most work is that of the ASICs that are mounted on the FEMBs. LArASIC
has already gone through eight design iterations, the last three directly targeted for DUNE, and
has already been used (in two of its earlier versions) for MicroBooNE and for ProtoDUNE-SP,
where it has reached the noise levels specified for the DUNE SP module. At least one additional
design iteration is required to address the issues observed during ProtoDUNE-SP operations and to
implement a single-ended to differential converter to improve the interface with the newly developed
ColdADC. To ensure the success of the next design iteration, we are investing in the development
of appropriate transistor models for the 180 nm CMOS technology for operation in LAr, such that
the saturation effect observed in ProtoDUNE-SP can be properly addressed first in simulation and
then with improvements in design. It should be noted that, so far, approximate models that were
originally developed for the same 180 nm technology (but with different design rules) have been
used for the LArASIC development, and therefore it should not be a surprise that LArASIC may
have limitations in certain cases. The circuitry for the single-ended to differential converter has
already been developed in the 65 nm technology and needs to be ported to the 180 nm technology
used for LArASIC. Various measures have been put in place to minimize the risk associated with
the need of a further prototyping iteration; nevertheless, in Section 4.8.1 we consider a generic risk
for a delay in the availability of ASICs and argue that this delay would not have an impact on the
beginning of DUNE FD operations.

It should be noted that even if the reference design for the SP module makes use of custom ASICs
for the ADC and the data serialization functionality, a solution based on commercial components
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Table 4.5: Status of the design of the different CE detector components as well as the expected amount
of engineering and prototyping required prior to construction.

Component Status Expected work
LArASIC Advanced Fix issues observed in ProtoDUNE-SP, port differ-

ential output from ColdADC design
COTS ADC Complete None
ColdADC See text for details
COLDATA See text for details
CRYO See text for details
FEMB Advanced Experience with multiple prototypes, final design will

follow the ASIC selection
Cold cables Very advanced Minor modifications, additional vendor qualification
Cryostat penetrations Advanced Add CE flange for bottom APA
WIEC Very advanced Add air filters and hardware interlock system
WIB Advanced Update design to use cheaper FPGA, modify FEMB

power, new firmware
PTC Very advanced Add interface to interlock system
Power supplies Very advanced Investigate possible additional vendors, rack ar-

rangement
Warm cables Very advanced Finalize cable layout, identify vendors
Readout and control fiber
plant

Very advanced Finalize plant layout
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is available and has been demonstrated to work by the SBND collaboration. This solution is based
on the use of a COTS ADC and an FPGA for the data serialization, and further validation is
planned for spring 2020. We consider this solution as a fall-back solution for DUNE. Custom
solutions for the ASICs are being developed to simplify the FEMB assembly and reduce the power
dissipated by the electronics in the LAr.

The reference solution for the ADC and the data serialization is based on two new ASICs, ColdADC
and COLDATA. The first iteration of the ColdADC was submitted for fabrication at the end of
October 2018, and the chips were delivered in January 2019. Initial results from the tests of
the ColdADC prototypes have been discussed in Section 4.2.3.2. The results obtained so far are
encouraging, despite the fact that some flaws have been identified in the design. Even if one
additional design iteration is required, we think that the status of ColdADC can be characterized
as having reached the “Advanced” status.

We are also considering an alternative solution for the readout, where the three ASICs are replaced
with a single one, the CRYO chip that has a development timeline similar to that of ColdADC.
Also in this case the chips from the first submission have been delivered in January 2019; initial
results from the tests of the CRYO prototypes have been discussed in Section 4.2.3.4.2. As in the
case of ColdADC, the results obtained so far are encouraging. As soon as the noise issue observed
in the first prototype is understood, CRYO should also be characterized as having reached the
“Advanced” status.

The first complete prototype of COLDATA was submitted in April 2019 and the chips have been
delivered in July. As discussed in Section 4.2.3.3, all test results for COLDATA have been positive,
and so in this case it can also be claimed that the design of the ASIC has reached the “Advanced”
design status.

There have already been multiple iterations of FEMBs that have been fabricated and tested and
used for data taking in MicroBooNE and in ProtoDUNE-SP. The SBND collaboration is starting
the production of FEMBs based on the COTS ADC and FPGA solution. The design of the FEMB
needs to be adapted for the different ASIC solutions that are being considered for DUNE. This
development is already ongoing, as system tests where the FEMBs are connected to an APA are
part of the qualification tests. The design status for the FEMB is already at the “Advanced” level,
and it will reach the “Very advanced” level at the time of the ASIC selection. At that point, only
minor modifications may be required.

The only other TPC electronics detector components that do not yet reach the “Very advanced”
level are the cryostat penetrations, as discussed above, and the WIB, where small design changes
will be done prior to production in order to use a more modern and cheaper FPGA. Additional
changes to the power distribution scheme will be required as the number of power lines (and the
corresponding voltages) will be reduced compared to ProtoDUNE-SP. The transition to a more
modern FPGA will allow more extensive data monitoring inside the WIB, but may also require
developing new software and porting the firmware from one family of FPGAs to another.

For all other detector components, the estimate of the design maturity is considered “Very ad-
vanced” based on the experience gained with commissioning and operation of ProtoDUNE-SP.
The cold signal cables will be modified to reduce the number of connections and to address the
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issues observed with the connector on the FEMB. The design of the WIEC needs to be modified
to include air filters to minimize the possible damage from dust and/or chemical residues from ex-
plosives during the lifetime of the experiment at Sanford Underground Research Facility (SURF).
The PTC is going to be modified to add an interface to the hardware interlocks of the detector
safety system. For cables and fibers on the top of the cryostat, the only work that remains to be
done is the design of the actual cable plant, which will then determine the length of the cables.
The arrangement of power supplies in the racks on top of the cryostat is the only other remaining
design task. For many components, the qualification of additional vendors could also be considered
as part of value engineering; this will reduce the risk of vendor lock-in and help minimize costs.

4.3 Quality Assurance

The TPC electronics consortium is developing a QA plan consistent with the principles discussed in
Volume III, DUNE Far Detector Technical Coordination, Chapter 9. The goal of the QA plan is to
maximize the number of functioning readout channels in the detector that achieve the performance
specifications for the detector discussed in Section 4.1.3, particularly on noise. Minimizing the noise
levels in the detector requires that all system aspects are considered starting from the design phase,
and in this respect, the experience gained with the ProtoDUNE-SP prototype is extremely valuable
as it informs necessary design changes in the detector components. The lessons learned during
the construction of ProtoDUNE-SP, the commissioning of the detector, and the initial data taking
period have already been discussed in Section 4.2. Further operation of ProtoDUNE-SP in 2019
has provided information on the long term stability of the detector components.

Apart from the number of channels, the most important difference between ProtoDUNE-SP and
DUNE is the projected lifetime of the detector. This is relevant because a significant fraction of the
detector components provided by the TPC electronics consortium are installed inside the cryostat
and cannot be accessed or repaired during the operational lifetime of the detector. The graded
approach to QA indicates that particular care must be used for the CE components that will be
installed inside the cryostat.

A complete QA plan starts with ensuring that the designs of all detector components fulfill the
specification criteria, considering also system aspects, i.e. how the various detector components
interact among themselves and with the detector components provided by other consortia. We
discuss validating the design in Section 4.3.1 and the facilities that we use to investigate the
interactions among different detector components in Section 4.3.2.

The other aspects of the QA plan involve documenting the assembly and testing processes, storing
and analyzing the information collected during the QC process, training and qualifying personnel
from the consortium, monitoring procurement of components from external vendors, and assessing
whether the QC procedures are applied uniformly across the various sites involved in detector
construction, integration, and installation. The TPC electronics consortium plan involves having
multiple sites using the same QC procedures, many of which will be developed as part of system
design tests during the QA phase, with the possibility of a significant turnover in the personnel
performing these tasks. To avoid problems during most of the production phase, we plan to
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emphasize training as well as documentation of the QA plan. Reference parts will be tested at
several sites to ensure consistent results. At a single site, some parts will be tested repeatedly to
ensure that the response of the apparatus does not change and that new personnel involved in
testing detector components are as proficient as more experienced personnel.

All data from the QC process will be stored in a common database, and the yields of the pro-
duction will be centrally monitored and compared among different sites. The procedures adopted
for detector construction will evolve from the experience gained with ProtoDUNE-SP. A first ver-
sion of the testing procedures will be put in place in 2020, while the final designs of the detector
components are completed and new prototypes are tested. The QC procedures will then be re-
viewed during the engineering design review that precedes pre-production. Lessons learned during
pre-production will be analyzed, and a final and improved QC process will be developed before
the production readiness review that triggers the beginning of production. During production,
the results of the QC process will be reviewed at regular intervals in production progress reviews.
In case of problems, production will be stopped and the problematic issues assessed, followed by
changes in the procedures if necessary.

4.3.1 Initial Design Validation

As described in Section 4.2, four ASIC designs are being developed for the DUNE FD single-phase
TPC readout (LArASIC, ColdADC, COLDATA, and CRYO). When a new prototype ASIC is pro-
duced, the groups responsible for the ASIC design will perform the first tests of ASIC functionality
and performance. These tests may use either packaged parts or dice mounted directly on a printed
circuit board and wire bonded to the board. The goal of these tests is to determine the extent to
which the ASIC functions as intended, both at room temperature and at LN2 temperature. For all
chips, these tests include exercising digital control logic and all modes of operation. Tests of FE
ASICs include measurements of noise levels as a function of input capacitance, baseline recovery
from large pulses, cross-talk, linearity, and dynamic range. Tests of ADCs include measurements of
the effective noise levels and of differential as well as integral non-linearity. Tests of the COLDATA
and CRYO ASICs include verification of both the control and high-speed data output links using
cables with lengths of 9m and 22m as required for the DUNE FD. After the initial functionality
tests by the groups that designed the ASICs, further tests will be performed by other independent
groups; then the ASICs will be mounted on FEMBs so noise measurements can be repeated with
real APAs attached to the readout chain.

Tests of ASICs and FEMBs in a cryogenic environment are performed in LN2 instead of LAr for
cost reasons, ignoring the small temperature difference. These tests can be performed immersing
the detector components in a dewar containing LN2 for the duration of the tests. Condensation
of water from air can interfere with the tests or damage the detector components or the test
equipment, particularly during their extraction from the LN2. A test dewar design developed
by Michigan State University, referred to as the CTS, has been developed to avoid this problem
and to automate the immersion and the retrieval of the components being tested. Several CTS
units were deployed at BNL during the ProtoDUNE-SP construction and used for the QC on
the ASICs and FEMBs for ProtoDUNE-SP. Later they were also used to perform similar tasks
during the construction of the electronics for SBND. Several other CTS units have been deployed
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to institutions involved in developing ASICs to test the first prototypes of ASICs and FEMBs for
the DUNE FD. Two CTS units in operation at BNL are shown in Figure 4.42.

Figure 4.42: Cryogenic Test System (CTS): an insulated box is mounted on top of a commercial LN2
dewar. Simple controls allow the box to be purged with nitrogen gas and LN2 to be moved from the
dewar to the box and back to the dewar.

4.3.2 Integrated Test Facilities

The investigation of the system issues that can arise from the interaction of different detector
components requires that a full system test of a slice of the entire detector is performed. These
tests are performed with FEMBs attached to APAs enclosed in a structure that provides the
same grounding environment planned for the final DUNE FD. Power, control, and signal readout
connections will be provided using cryostat penetrations similar to those planned for use in the
DUNE FD. Prototypes of the final DUNE FD DAQ will be used for readout and control of the
detector, and if possible the PD system will also be included. We have identified three such
system test stands that we can use for system tests: the ProtoDUNE-SP facility at dwordcern, the
ICEBERG facility at Fermilab, and the 40% APA at BNL. We discuss these three setups in this
section.

4.3.2.1 ProtoDUNE-SP and Cold Box at CERN

ProtoDUNE-SP is designed as a full slice of the DUNE SP module using components with a design
as close as possible to the one that will be used in production. It contains six full-size DUNE APAs
instrumented with 20 FEMBs each for a total readout channel count of 15,360 digitized sense wires.
Critically, the wires on each APA are read out via a full TPC electronics readout system, including
a CE flange and WIEC with five WIBs and one PTC. Each combined APA and CE readout unit
follows the grounding guidelines described in Section 4.2.1 to operate in a fully-isolated way with
respect to the rest of the detector.

ProtoDUNE-SP took beam data in the CERN Neutrino Platform in 2018 and will continue to
take cosmic data throughout spring 2020. As described in Section 4.2.9, the live channel count
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(99.7%) and average noise levels on the collection and induction wires (ENC ∼550 e− and ∼650 e−,
respectively) satisfy the DUNE-SP requirements described in Section 4.1.2. Several lessons learned
from the production and testing of the TPC electronics and the ProtoDUNE-SP beam data run
will be incorporated into the next iteration of the system design for the DUNE SP module, as
discussed in Section 4.2.10.

Five of the six APAs were tested in the ProtoDUNE-SP cold box before they were installed in
the cryostat. These tests were critical in identifying issues with CE components after installation
on the APA. Therefore, a very similar set of cold box tests are planned at SURF with the fully-
instrumented DUNE APAs. A seventh APA was delivered to CERN in March 2019 and will be first
equipped with ProtoDUNE-SP FEMBs. This APA was characterized in October 2019 in the cold
box like the APAs installed in ProtoDUNE-SP, establishing a reference point for further tests that
will be performed after replacing half of the FEMBs with new prototypes FEMBs (equipped with
prototypes of the new ASIC designs). Tests will be performed in early 2020 using FEMBs equipped
with the COTS ADC, FEMBs with the CRYO ASIC, and FEMBs with the new ColdADC and
COLDATA ASICs. The cold box will also be used to study the effect of low temperature on the
low-voltage power and bias-voltage power cables as they are routed through the APA frame.

The DUNE APAs and the readout electronics will differ from the ones used in ProtoDUNE-SP. For
this reason, we are planning to re-open the ProtoDUNE-SP cryostat and replace three of the six
APAs with final DUNE FD prototypes that also include the most recent prototypes of the FEMBs
built using the chosen ASIC solution. If possible, ASICs from the engineering run will be used to
populate the FEMBs instead of using prototypes from a multi-purpose wafer fabrication run. A
total of 60 FEMBs are required to populate the three final DUNE APA prototypes to be installed
in ProtoDUNE-SP. A second period of data taking with this new configuration of ProtoDUNE-SP
is planned for 2021-2022. This will also allow another opportunity to check for interference between
the readout of the APA wires and the PD system or other cryogenic instrumentation.

4.3.2.2 Small Test TPC (ICEBERG)

While the cold box test at CERN and ProtoDUNE-SP operations provide important validation
of the TPC electronics for DUNE, a new cryostat (ICEBERG) has been built to test multiple
CE prototypes in a LArTPC environment. ICEBERG will be used for LAr detector R&D and
for system tests of the CE prototypes. The ICEBERG cryostat allows for rapid turn-around
in testing new configurations of the CE. One cycle, including installing new FEMBs, filling the
cryostat, performing measurements, and finally emptying the cryostat, can be completed in less
than one month. While this is slower than the turn-around that can be achieved with the cold box
at CERN, the advantage of ICEBERG is that it houses a small TPC which allows measurements
with ionization tracks, which is not possible when performing tests in the cold box. In addition,
ICEBERG enables system-wide studies with new prototypes of the PD system because the scaled-
down APA is mechanically compatible with the new design of the PD system, which is not the
case for the seventh ProtoDUNE-SP APA.

The ICEBERG cryostat, shown in Figure 4.43, is installed at the Proton Assembly Building at
Fermilab. It has an inner diameter of 152 cm and can hold about 35,000 liters of LAr, sufficient
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to house a TPC with dimensions 115 cm × 100 cm × 60 cm. For DUNE purposes, this cryostat
will house a 1,280-channel TPC, shown in Figure 4.44, with an APA and two FCs that together
enclose two sensitive ionization drift volumes. Each drift volume has a maximum drift distance
of 30 cm. The APA has been built using wire boards and anchoring elements identical to those
of ProtoDUNE-SP, as described in Section 2.2.5. It has dimensions of 1/10th of a DUNE APA.
The APA mechanics are designed to accommodate two half-length ProtoDUNE-SP PDs with
dimensions and connectors that already include the design modifications planned for the DUNE
FD.

Figure 4.43: ICEBERG cryostat (left) and top plate spool piece (right).

Power, readout, and controls use equipment identical to those used for ProtoDUNE-SP. The
interface between the FEMBs and the APA wires uses the same CR boards used for ProtoDUNE-
SP and described in Section 2.2.5. The TPC is read out via a DAQ system (also shown in
Figure 4.44) identical to that of ProtoDUNE-SP. The power and signal cables for the detector are
routed through a spool piece installed on the center port of a movable flange on the top of the
cryostat, which is also used to support the TPC. The movable flange contains fourteen additional
ports that are available for different utilities, including HV, purity monitoring, cryogenic controls,
and visual inspection. A condenser as well as LAr fill and vacuum ports are on the side of the
cryostat, providing easy access to the detector.

The FC for the TPC is constructed using printed circuit boards and designed to provide up to
30 cm of drift length on both sides of the APA. The cathode plane is made of a printed circuit
board coated with copper and is powered with −15 kV DC power. A 1GΩ resistance between the
strips of the FC creates a gradient field changing from −15 kV at the cathode to −1 kV near the
APA. In the initial configuration, the sides of the FCs are terminated on the APA ground with
156MΩ resistors, which is different from that which has been planned for the DUNE FD, where
the last electrode of the FCs is also connected to a separate bias voltage supply.

The ICEBERG power system that provides power to the detector, electronics, DAQ, and cryogenics
controls was designed with extreme care to isolate the detector and building grounds, following
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Figure 4.44: ICEBERG TPC (left) and DAQ system (right).

the same principles adopted for ProtoDUNE-SP and including a new 480V transformer. The
impedance between the detector and building grounds is continuously monitored. The distribution
panel, which is at detector ground, provides both 208V and 120V lines for the TPC electronics
rack, providing both the low-voltage power to the TPC electronics components and the bias voltage
to the APA wire planes through theWIEC and SHV connectors located on the cryostat penetration.
A single WIENER MPOD provides −665V, −370V, 0V, and 820V to the G, U , V , and X planes
of the APA, respectively. It is also used to provide the −15 kV to the cathode plane. A WIENER
PL506 provides the low-voltage power to the PTC, to the fans, and to the heaters located on the
flange that is mounted on the spool piece at the top of the cryostat.

The DAQ for ICEBERG is a copy of the system used for the readout of five of the ProtoDUNE-
SP APAs at CERN. The core of the DAQ system consists of two Linux PCs that communicate
over 10 Gbps optical fibers with processing units called reconfigurable computing elements (RCEs),
which are FPGAs that are housed on industry-standard Advanced Telecommunications Computing
Architecture (ATCA) shelves on cluster on board (COB) motherboards. The RCEs can perform
data compression and zero suppression. They also buffer the data while waiting for a trigger and
then send it to the Linux PCs where the data can be analyzed using the artdaq framework. A pair
of scintillators at the top and bottom of the cryostat generates a cosmic trigger for the DAQ. The
system is modular and could be upgraded to follow the overall DUNE FD DAQ development.

The ICEBERG cryostat was filled for the first time with LAr in March 2018, with ProtoDUNE-
SP FEMBs installed on the TPC. The initial data taking run uncovered some issues with the
pressure regulation system of the cryostat and with the field cage. Once these problems were
addressed, a second data taking period started in June 2019, demonstrating stable operations of
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the cryostat and TPC. The baseline performance of the ICEBERG TPC has been established using
ProtoDUNE-SP FEMBs. As shown in Figure 4.45, noise levels of ∼ 300 e− have been measured
on the collection and induction wires, which are of similar length, in line with expectations given
the input capacitance to the FE electronics. A small number of channels have larger noise levels
as a result of the underperforming ADC electronics, as in the case of ProtoDUNE-SP. TPC noise
levels remained constant while the PD system was being operated, demonstrating that there is no
interference between that system and the TPC electronics. Moving forward, ICEBERG will be
used to test new FEMB prototypes, equipped with the new ASICs under development.
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Figure 4.45: ENC levels (in electrons) for all channels of the ICEBERG TPC, both before and after the
application of a simple offline common-mode noise filter.

4.3.2.3 40% APA at BNL

One additional facility where the FEMB prototypes can be connected to an APA inside a shielded
environment is the 40% APA test stand at BNL. The 40% APA at BNL is a 2.8m × 1.0m three-
plane APA with two layers of 576 wrapped (U and V ) wires and one layer of 448 straight (X)
wires. It is read out by up to eight FEMBs with the full length (7m) ProtoDUNE-SP data and
LV power cables. The readout uses the full TPC electronics system, including the CE flange and
WIEC, as shown in Figure 4.46. Detailed integration tests of the ProtoDUNE-SP CE readout
performance were done at the 40% APA. During these tests the DUNE grounding and shielding
guidelines were strictly followed. This system was also used for initial studies of the COTS ADC
option that is described in Section 4.2.3.4.1 and will be used again for new FEMB prototypes.

Each of the three setups (APA in the cold box at CERN, ICEBERG TPC at Fermilab, and 40%
APA test stand at BNL) that can be used for system tests has advantages and disadvantages.
Only the ICEBERG TPC can be used to perform measurements with tracks, but the APA is much
smaller than the DUNE FD APA (which is also an advantage because it allows us to determine
the ultimate performance of the electronics because the detector capacitance is reduced). The
ICEBERG TPC is for the moment the only setup compatible with the new PD system design.
Tests performed in the cold box at CERN and with the 40% APA at BNL are limited to noise
measurements. These tests are not performed at LAr temperature in the CERN setup. The
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Figure 4.46: Left: one side of the 40% APA with four FEMBs. Right: the full CE feedthrough and
flange.

advantage of of the cold box at CERN and of tests performed in ProtoDUNE-SP is that the APA
size is the one used in the DUNE FD, while the ICEBERG detector is much smaller. We plan
to continue using all these setups for testing during the development of new ASICs and FEMBs
designs.

4.3.3 Reliability Studies

The TPC CE system of the DUNE SP FD must meet stringent requirements, including a very
small number of failures (< 1% of the total number of channels) for components installed on
the detector inside the cryostat during the 20 years of detector operation. Initial studies of the
impact of dead channels indicate that there is minimal impact on physics measurements even for a
large (∼ 5%) number of channel failures randomly distributed in the detector, given the very high
granularity of the TPC. Further studies are ongoing to understand the impact of failures affecting
groups of neighboring channels, which could arise from the failure of ASICs (16-64 channels) or
FEMBs (128 channels). Reliability must be incorporated in the design of all components, and a
dedicated analysis of the physics impact of all possible failure modes, including a consideration
of the number of readout channels affected, is required before finalizing the design of all ASICs,
printed circuit boards, cables, connectors, and their supports, all of which are housed inside the
DUNE FD cryostat.

A few HEP detectors have operated without intervention for a prolonged period, with few readout
channel losses, in extreme conditions that are similar to those in the DUNE FD cryostats:

• The NA48/NA62 liquid krypton (LKr) calorimeter has 13,212 channels of JFET pre-amplifiers
installed on the detector. It has been kept at LKr temperature since 1998. The total fraction
of failed channels is < 0.2% in more than 20 years of operation.

• The ATLAS LAr accordion electromagnetic barrel calorimeter has approximately 110,000
readout signal channels, with up to seven connections and different circuit boards populated
with resistors and diodes inside the cryostat. This calorimeter has been cold since 2004, for
a total of 15 years of operation. So far, the number of readout channels that have failed is
approximately 0.02% of the total channel count.
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• The ATLAS LAr hadronic endcap calorimeter has approximately 35,000 GaAs pre-amplifers
summed into 5,600 readout channels that are mounted on cold pre-amplifier and summing
boards. The ATLAS LAr hadronic endcap calorimeter CE have been in cold since 2004, with
0.37% of the channels failing during 15 years of operation.

Since neither NA48/NA62 nor the ATLAS LAr hadronic endcap calorimeter use CMOS electronics,
the procedures used in the construction and QC of PCBs and for the selection and QC of connectors
and discrete components mounted on the PCBs represent the most relevant aspect for the DUNE
FD.

In addition, FERMI/GLAST is an example of a joint project between NASA and HEP groups
with a minimum mission requirement of five years, and is on its way to achieving a stretch goal
of ten years of operations in space. Although the requirements are somewhat different, examining
and understanding the various strategies for a space flight project can inform the DUNE project.

A preliminary list of reliability topics to be studied for the TPC electronics operated in LAr
environment are:

• The custom ASICs proposed for use in DUNE (LArASIC, ColdADC, COLDATA, and CRYO)
incorporate design rules intended to minimize the hot-carrier effect [55, 66], which is recog-
nized as the main failure mechanism for integrated circuits operating at LAr temperature.

• For COTS components, accelerated lifetime testing, a methodology developed by NASA [67]
will be used to verify the expected lifetime of operation at cryogenic temperatures. A COTS
ADC has undergone this procedure and has been qualified as a solution for the SBND
experiment [54].

• Printed circuit board assemblies are designed and fabricated to survive repeated immersions
in LN2.

• A study will be undertaken to give guidance on how much components (capacitors, resistors,
etc.) should be de-rated for power dissipation, operating voltage, etc. in order to achieve the
desired reliability.

• Similarly, connectors and cables, usually major sources of detector channel failures, will
require a separate study to identify optimal choices.

• In addition to the QA studies noted above, a very detailed and formal set of QC checks of
the production pieces will be required in order to ensure a reliable detector. The QC plans
for the TPC electronics detector components are discussed in Section 4.4.4.

The TPC electronics consortium has formed a working group tasked with studying the reliability
of these components, which is preparing recommendations for the choice of ASICs, the design of
printed circuit boards, and testing procedures. This working group will review the segmentation
of the CE to understand which failures will most affect data taking, revisit recommendations for
the ASIC design, beyond those aimed at minimizing the hot-carrier effect, revisit the industry and
NASA standards for the design and fabrication of printed circuit boards, connectors, and cables,
and recommend QC procedures to be adopted during fabrication of the CE components. The
working group will also review system aspects, to understand where it is desirable, necessary, and
feasible to implement redundancy in the system in order to minimize data losses due to single
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component failures.

4.4 Production and Assembly

In this section, we discuss the production and assembly plans, including the plans for the spares
required during the detector construction and for operations, for procurement, assembly, and
quality control.

4.4.1 Spares Plan

The APA consortium plans on building 152 APAs for the first SP detector. This means that at least
3,040 FEMBs with the corresponding bundles of cold cables will be required for the integration
(3,040 power cables, 3,040 data cables, and 1,216 bias voltage cables; half the cables will be long
enough for integration on the top APAs, while the other half will be compatible with the bottom
APAs). To have spare FEMBs, the TPC electronics consortium plans to build at least 3,200
FEMBs, 5% more than necessary. If more spares are needed during the QC process or during
integration, additional FEMBs can be produced quickly as long as any components that have long
lead times are on hand. For these components, we plan to keep on hand a larger number of spares.
The ASICs require a long lead time; a plan for those spares is discussed below. For other discrete
components (capacitors, resistors, connectors, voltage regulators, oscillators), plans will be put in
place once the final design of the FEMB is available and vendors contacted.

For the ASICs, the number of spare chips is driven by the fact that fabrication requires batches of
25 wafers at a time. Given the dimensions of the current prototype ASICs, the expected number
of chips per wafer is about 700 for LArASIC, 930 for ColdADC, 230 for COLDATA, and 220 for
CRYO. These numbers are based on the assumption that ColdADC and COLDATA are fabricated
on the same wafer. To estimate the number of usable chips for installation on the FEMBs, we
assume that 10% of the chips will fail during the QC process described later in this section, and
an additional 5% of the chips will fail during dicing and packaging. With these assumptions,
one would need at least 43 LArASIC wafers, 33 ColdADC and COLDATA wafers, and 35 CRYO
wafers for one SP FD module. Wafers must be ordered in batches of 25 which implies that we will
have a significant number of spares, meaning that additional batches of wafers would be needed
only if the overall yield of LArASIC falls below 75% or if the overall yield of the other ASICs falls
below 60%. The number of spare chips available can be reduced if wafers are purchased for two SP
detectors at a time; however, the wafers are relatively inexpensive and the chosen processes may
not be available after a few years so generous spares of these custom devices are likely advisable.

In general, for other components, we plan to procure between 5 and 10% additional components for
spares for the construction of the first SP FD module. We will need more spares for components
that have a larger risk of damage during integration and installation. For example, for cold
cables, we plan for 10% additional spare cables for the bottom APA because they must be routed
through the APA frames, but for the top APA, we foresee needing only 5% additional spare cables.
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Assuming we will have unused spares from the first detector, we will reduce the number of spares
for the second SP FD module.

The components on top of the cryostat (power supplies, bias voltage supplies, cables, WIECs
with their WIB and PTC boards) can be replaced while the detector is in operation. For these
components, additional spares may be required during the 20 years operation period of the DUNE
FD. The initial plan is to purchase 10% additional components for spares for the first SP FD module
and use them for the second SP FD as well (i.e. effectively having 5% additional components for
spares). Once the design of the WIBs is finalized, we will decide if extra spares should be purchased
for FPGAs and optical transmitters and receivers. These are commercial components that may
no longer be available after a certain number of years of operation, which could prevent the TPC
electronics consortium from fabricating additional spare WIBs if required. This risk is discussed in
Section 4.8.3, one that could be alleviated by placing commercial components on mezzanine cards
to minimize any necessary redesign of boards if these components are no longer available. We can
also stock additional components if market trends show that the components will become harder
or impossible to find in the future.

4.4.2 Procurement of Parts

The construction of the detector components for DUNE requires many large procurements that
must be carefully planned to avoid delays. For the ASICs, the choice of vendor(s) is made at
the time the technology used in designing the chips is chosen. For almost all other components,
several vendors will bid on the same package. Depending on the requirements of the funding
agency and of the responsible institution, this may require a lengthy selection process. The cold
cables used to transmit data from the FEMBs to the WIBs represent a critical case. In this case
a technical qualification, including tests of the entire cold chain (from the FEMB to the receiver
on the WIB) is required. Another problem is the large numbers of components required. In some
cases, the number of components of a given type (resistors, capacitors) may far exceed the number
of components that the usual resellers keep in stock. This will require careful planning to avoid
stopping the assembly chain for the FEMBs, for example, because one kind of component runs
short. Figures 4.47 and 4.48 show the flow of the TPC electronics detector components through
procurement, assembly, QC testing, and finally integration and installation at SURF using a color
code to indicate the activities that are performed by external vendors, those that take place at one
of the consortium institutions, and those that take place at SURF.

4.4.3 Assembly

The TPC electronics consortium plans to minimize the amount of assembly work at any one of
the participating institutions. When assembly work is required, it will be performed by external
companies; examples are the installation of surface mount components, ASICs, FPGAs on the
printed circuit boards for the FEMBs and the WIBs, and the assembly of the crossing tube cable
supports. One of the few exceptions is the assembly of the WIECs that involves mechanical and
electrical connections at the backplane and crate supports. Other activities that require work

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–213

ASIC fabrication

ASIC dicing and
packaging

ASIC QC testing

FEMB QC testing

FEMB PCB
inspection

Procurement of
FEMB components

FEMB assembly

FEMB shipping to
SDWF and SURF

QC testing of low
voltage bias cables

FEMB PCB
fabrication

Procurement of low
voltage bias cables

Installation on APAs
at SURF

Procurement of data
signal cables

QC testing of data
signal cables

Procurement of bias
voltage cables

QC testing of bias
voltage cables

Preparation of cold
cable bundles

Transport of cable
bundles to SDWF

and SURF

Purchase of cable
trays parts

Pre-assembly of
cable trays parts

Transport of cable
trays parts to SDWF

and SURF

External
procurements

Activities taking place
in consortium

institutions
Shipments to SDWF

and SURF
Activities taking place

at SURF

Figure 4.47: Parts flow for the TPC electronics detector components installed inside the cryostat.

performed at one of the consortium institutions are the assembly of the plugs attached to the
cold cables, which are used to protect the FEMBs from ESD damage, and the preparation of the
bundles of low-voltage power, clock signal, trigger, data readout, and bias voltage cables. During
the engineering phase and for components fabricated in small quantities, like boards used for
testing other components, the plan is to have one of the consortium’s institutions assemble the
components. After assembly and testing, discussed below in Section 4.4.4, all detector components
are shipped to the South Dakota Warehouse Facility (SDWF) and later to SURF, where the final
detector assembly takes place as discussed in Chapter 9.

4.4.4 Quality Control

Once the APAs are installed inside the cryostat, only limited access to the detector components will
be available to the TPC electronics consortium. After the temporary construction opening (TCO)
is closed, no access to detector components will be available; therefore, they should be constructed
to last the entire lifetime of the experiment (20 years). This puts very stringent requirements on
the reliability of these components, which has been already addressed in part through the QA
program discussed in Section 4.3. The next step is to carefully apply stringent QC procedures for
detector parts to be installed in the detector. All detector components installed inside the cryostat
will be tested and sorted before they are prepared for integration with other detector components
prior to installation. The full details of the QC plan have not been put in place yet, and the specific
selection criteria for the components will be defined only after the current design and prototyping
phase is completed. For each detector component, a preliminary version of the QC program will be
developed before the corresponding engineering design review. The program will then be used for
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qualification of components fabricated during pre-production. It will be modified as needed before
the production readiness review that triggers the start of production of detector components used
for assembling the detector. In most cases the QC program will be informed by the experience
gained with the tests of the corresponding parts fabricated for ProtoDUNE-SP. Yields from the
testing of LArASIC and of other discrete components mounted on the FEMBs are discussed below.

Some of the requirements for the QC plans can be laid out now based on the lessons learned from
constructing and commissioning the ProtoDUNE-SP detector. Experience with ProtoDUNE-SP
shows that a small fraction (roughly 4%) of the LArASIC chips that pass the qualification criteria
at room temperature fail the tests when immersed in LN2. Therefore, we plan to test all ASICs
in LN2 before they are mounted on the FEMBs; cryogenic testing of the FEMBs is also planned.
The goal of testing the ASICs in LN2 is to minimize the need to rework the FEMBs. This is
more important if the three ASICs solution is chosen for the FEMB. Since in this case there are
18 ASICs on the FEMB, an upper limit of 2% on the fraction of FEMBs that require reworking
translates into a requirement of less than 0.1% of the ASICs failing during immersion in LN2. If
the CRYO solution is chosen for the ASICs to be used on the FEMBs, the 2% requirement for the
number of FEMBs to be reworked changes to a maximum failure rate of 1%, given that there are
only two ASICs on the FEMBs. Based on experiences at ProtoDUNE-SPs, discrete components
like resistors and capacitors need not undergo cryogenic testing before they are installed on the
FEMBs. Capacitors and resistors are commonly sold in reels of a few thousand components,
which should be typically sufficient for the fabrication of ten FEMBs. For these components, we
are planning to perform cryogenic tests on samples of a few components from each reel prior to
using the reel in the assembly of FEMBs. Some other components installed on the FEMBs, like
voltage regulators and crystal oscillators, will have to be qualified like the ASICs in LN2 before
being mounted on the FEMBs. In the case of the voltage regulators, it was found that the number
of failures were negligible and that cryogenic testing was not necessary. One component used for
ProtoDUNE-SP that we are not planning to use for the DUNE FD FEMBs, the memory card used
to store the FPGA programming, had instead a very high failure rate (> 50%).

ASIC testing is performed with dedicated test boards that allow tests of the functionality of the
chips and are also used to determine the initial calibration constants that are stored in a database
for later use. The dedicated test boards reproduce the entire readout chain where the input to
the FE amplifier or to the ADC is replaced by an appropriate signal generator, and some parts of
the backend may be replaced by a simple FPGA that is directly connected to a computer. Tests
of the FEMBs can be performed by connecting them directly to a standalone WIB, as discussed
in Section 4.2.6. Given the large number of ASICs and FEMBs required for one DUNE FD
SP detector, we plan to distribute the corresponding QC activities among multiple institutions
belonging to the TPC electronics consortium. Up to six test sites are needed for the ASICs plus
an additional five sites for the FEMBs, with each test equipped with a cryogenic system such as
the CTS. All tests will be performed following a common set of instructions.

The choice of distributing the testing activities among multiple institutions has been made based
in part on the experience gained with ProtoDUNE-SP, where all associated testing activities were
concentrated at BNL. While this approach had some advantages, like the direct availability of the
engineers that had designed the components, a strict conformance to the testing rules, and a fast
turn-around time for repairs, it also required a very large commitment of personnel from a single
institution. Personnel from other institutions interested in the TPC electronics participated in the
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Figure 4.48: Parts flow for the TPC electronics detector components installed on top of the cryostat.

test activities but could not commit for long periods of time. For this reason, we are planning to
distribute the QC testing activities for ASICs and FEMBs among multiple institutions belonging
to the TPC electronics consortium. It should be noted that this approach is used in the LHC
experiments for detector components like the silicon tracker modules where both the assembly
and QC activities take place in parallel at multiple (of the order of ten) institutions. To ensure
that all sites produce similar results, we will emphasize training experienced personnel that will
overview the testing activities at each site, and we will have a reference set of ASICs and FEMBs
that will be initially used to cross-calibrate the test procedures among sites and then to check
the stability of the test equipment at each site. All testing activities for ASICs and FEMBs will
be monitored by a member of the management of the TPC electronics consortium who will also
have the responsibility of training the personnel at all sites and conducting site inspections to
ensure that all safety and testing rules and procedures are applied uniformly. Test results will be
stored in a database, and criteria will be developed for the acceptance of ASICs and FEMBs. The
acceptance rate will be monitored, and in case of problems, the failures will be analyzed and root
cause analyses will be performed. If necessary, the test program will be stopped at all sites while
issues are being investigated. In the case of CRYO, since each FEMB will only have two chips, it
may be possible to bypass chip-level testing altogether. If the chip-level failure rate is low enough,
it may be sufficient to simply test assembled FEMBs and reject or rework those that fail the tests.

For the large numbers of ASICs required for one DUNE FD SP detector (6,000 or 54,000 chips
depending on the ASIC solution chosen), manual testing of the chips requires excessive amounts
of resources and, based on the lessons learned from constructing ProtoDUNE-SP, would lead to
unacceptable rejection factors. Ideally, the entire testing process would be performed using a
robotic system, where a robotic arm picks up the ASIC from a tray, places it on a test board,
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and holds it in place while the test is performed, followed by sorting it into a second tray based
upon the test result. The requirement that the test be performed in LN2 prevents us from using
this scheme. Two of the biggest problems observed during the construction of ProtoDUNE-SP
were related to the QC of ASICs in LN2. The first one, related to condensation on the test
boards, has been addressed with the development of the CTS, discussed in Section 4.3.1. The
second one is related to placement of the chips into the sockets on the test boards, and leads to
test failures and in some cases damage to the chips and/or the sockets. To overcome problems
with the manual placement of the chips into the sockets, we plan to develop a robotic system to
perform this operation. Once the ASICs are placed on test boards, they will be moved manually
into upgraded versions of the current CTS that can house multiple test boards. At the end of the
testing procedure, the robotic system will then remove the chips from the test boards and sort
them according to the test results. Based on the experience with the tests of the ProtoDUNE-SP
ASICs, as well as from other experiments, we plan to have the sockets on the test boards cleaned
on a regular basis and then replaced after a certain number of testing cycles.

Before assembly, the printed circuit boards for the FEMBs will be tested by the production vendor
for electrical continuity and shorts. The usual approach for particle physics experiments is to
perform a visual inspection of the boards before installing the discrete components and the ASICs.
This inspection will be repeated after installation and before the functionality test, which for
DUNE will be performed in LN2. The specifications on vias and pads for the printed circuit
boards for the FEMBs are not outside the industrial vendors’ capabilities, and therefore we do
not expect these inspections to be absolutely necessary. We will perform visual inspections on a
sample of production units, with a higher rate of sampling at the beginning of the production. We
will also investigate the possibility of using other, possibly automatic, inspection methods for the
bulk of the production. After assembly, each FEMB will be tested in LN2 using the current CTS
design. Nine CTSs have already been fabricated and are being distributed among the institutions
in the consortium.

The test procedures are likely to be very similar to the ones adopted for ProtoDUNE-SP, with
the main difference that the tests will not be performed with the final cables to be used in the
experiment but with a set of temporary cables. The final cables will be tested separately as
described below. The tests of the FEMBs are performed using the CTS, which allows a turnaround
time of about one hour per FEMB. In the test, the FEMB is connected to a capacitive load that
simulates the presence of APA wires. This allows connectivity checks for each channel as well as
measurements of the waveform baseline and of the channel noise level. Calibration pulses will be
injected in the front-end amplifier, digitized, and read out. These injected pulses will also be used
to determine the calibration constants of the ADC. The test setup requires one WIB and a printed-
circuit board similar to those used on the cryostat penetration, allowing simultaneous testing of
four FEMBs. A standalone 12V power supply is required, and the readout of the WIB uses a direct
Gb Ethernet connection to a PC. The setup used for ASIC testing is similar. In both cases, the
data can be processed locally on the PC, and the results from the tests and calibrations are then
stored in a database. The plan is to have the capability to retrieve these test and calibration results
throughout the entire life of the experiment. As in the case of ASIC testing, we will monitor the
test results to ensure that all sites have similar test capabilities and yields and to identify possible
problems during production. Further tests will be performed on the FEMBs before and after their
installation on the APAs, as discussed in Section 9.4.
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The final component provided by the TPC electronics consortium and installed inside the cryostat
is the ensemble of cold cables: the cables carrying the bias voltage for the APA wires and the field
cage termination electrodes; the cables carrying the low-voltage power to the FEMBs; and the data
cables that carry the clock and control signals to the FEMBs that are also used for signal readout.
It is neither feasible nor necessary to test these cables in LN2 because they will usually perform
better at cold temperatures than room temperature. We will perform checks on all cables during
production at room temperature before they are installed and connected to the FEMBs. These
tests will involve continuity checks and resistance measurements on the low-voltage power and the
bias voltage cables, and also bit-error rate measurements on the clock/control and data readout
cables. Connectors will be visually inspected to ensure that they show no sign of damage. Further
tests will take place when the APAs are tested in the cold boxes at SURF prior to installation
inside the cryostat.

Stringent requirements must be applied to the cryostat penetrations in order to avoid argon leaks.
The cryostat penetrations have two parts: the first is the crossing tube with its spool pieces, and
the second one is the three flanges used for connecting the power, control, and readout electronics
with the CE and PD system components inside the cryostat. On each cryostat penetration there
are two flanges for the CE and one for the PD system. The crossing tubes with their spool pieces
are fabricated by industrial vendors and pressure-tested and tested for leaks by other vendors.
The flanges are assembled by institution that are members of the TPC electronics and PD system
consortia; the flanges must undergo both electrical and mechanical tests to ensure their function-
ality. Electrical tests comprise checking all of the signals and voltages to ensure they are passed
properly between the two sides of the flange and that there are no shorts. Mechanical tests involve
pressure-testing the flange itself, including checking for leaks. Further leak tests are performed
after the cryostat penetrations are installed on the cryostat and later after the TPC electronics and
PD system cables are attached to the flanges. These leak tests are performed by releasing helium
gas in the cryostat penetration and checking for the presence of helium on top of the cryostat.
Similar tests were performed during the ProtoDUNE-SP installation.

All other detector components that are a responsibility of the TPC electronics consortium can be
replaced, if necessary, even while the detector is in operation. Regardless, every component will
be tested before it is installed in SURF to ensure smooth commissioning of the detector. The
WIECs will be assembled and tested with all of the WIBs and PTC installed. Testing requires a
slice of the DAQ back-end, power supplies, and at least one FEMB to check all connections. All
cables between the bias voltage supplies and the end flange, as well as all of the cables between
the low-voltage power supplies and the PTCs will be tested for electrical continuity and for shorts.
All power supplies will undergo a period of burn-in with appropriate loads before being installed
in the cavern. Optical fibers will be tested by measuring the eye diagram for data transmission
at the required speed. All test equipment used for qualifying the components to be installed in
the detector will be either transported to SURF or duplicated at SURF in order to be used as
diagnostic tools during operations.

After the completion of the initial QC testing, all detector parts are transported first to the SDWF
and later to SURF, where all the integration activities will take place as discussed in Section 4.5
and in Chapter 9.
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4.4.5 Test Facilities

The QC plan described in the previous section requires multiple test stands that must be put
in place and used before the beginning of production. For the testing of ASICs, a setup similar
to the CTS (see Section 4.3.1) will be used. In this setup, several test boards housing up to 24
chips will be immersed in LN2 before running the electronics tests; the test boards will later be
warmed to room temperature in a nitrogen atmosphere to avoid condensation on the chips and
boards. As mentioned previously, placing the chips on the test boards will be performed using a
robotic system. The test setups, one for each kind of ASIC, will be an evolution of those used
initially for characterizing the ASIC and similar to the setups used for qualifying the chips used
in the ProtoDUNE-SP construction. The tests of the FEMBs will be performed with setups that
include using CTSs units for the cryogenic part but are otherwise simple modifications (with newer
WIBs) of the setups used to characterize the FEMBs for ProtoDUNE-SP. Cold and warm power
and bias voltage cables will be characterized with test stations using appropriate power supplies
and some cable testing equipment; these cables will most likely be COTS components. For the
test of the data cables, we will probably rely on a setup using waveform generators and a high end
oscilloscope that can handle 2.56 Gbps signals and measure eye diagrams. Burn-in stations, with
custom-designed loads, may be required for the commercial low-voltage power and bias voltage
supplies. A test setup to check WIECs with their WIBs and PTCs installed will require a minimal
DAQ back-end that the DAQ consortium should provide.

Given the delay between the beginning of the DUNE FD APAs production and the production
of the TPC electronics components, it is desirable to integrate the FEMBs on some of the APAs
and perform tests in cold boxes. For APAs fabricated in the UK, these tests will be performed at
CERN using the ProtoDUNE-SP cold box. A similar setup needs to be put in place in the US
(most probably at the University of Wisconsin) to perform these tests ahead of the shipment of
the APAs to SDWF and SURF. Both the setup at CERN and the one in the US will require a full
power, control, and readout system, similar to the one described in Section 9.4.2.

4.5 Integration, Installation, and Commissioning

Chapter 9 provides a complete discussion of the plans for integrating, installing, and commissioning
the detector. Here, we briefly discuss the responsibilities of the TPC electronics consortium for the
activities taking place at SURF, with the exception of the QC process that is discussed in detail
in Section 9.4.2. We also discuss the timeline and the resources for the integration and installation
activities. Finally, we conclude with a discussion of the commissioning of the TPC electronics
detector components that take place while the cryostat is being filled and immediately after the
fill is completed.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 4: TPC Electronics 4–219

4.5.1 Timeline and Resources

The current TPC electronics consortium plan is to receive all detector components at the SDWF,
where they are stored temporarily prior to being transported to SURF for integration and installa-
tion. Only the FEMBs will undergo a reception test, either in a laboratory on the surface at SURF
or in a nearby institution, prior to integration with the other DUNE SP detector components. All
other integration takes place at SURF in the clean room in front of the detector cryostat. After
a pair of APAs are connected and moved inside the clean room, the CE cables for the bottom
APA are routed through the APA frames. The cables are then connected to the FEMBs, and the
bundles of cables are placed in the trays at the top of the APA pair. At this point, the pair of
APAs is moved into one of the cold boxes, and the cables are connected to a patch panel inside
the cold box to save the time that would be required for routing the cables through the cryostat
penetration of the cold box and connecting them to the end flange. The CE is then tested at both
room temperature and at a temperature close to that of LN2, much like what was done for the
APAs installed in the ProtoDUNE-SP detector.

Later, the pair of APAs is moved to its final position inside the cryostat. The CE and PD system
cables are routed through the cryostat penetration and connected to the corresponding warm
flanges, and final leak tests are performed on the cryostat penetration. At this point, the WIEC is
attached to the warm flange and all of the cables and fibers required to provide power and control
signals to the TPC electronics and for data readout are connected. This permits additional testing
with the full DAQ readout chain and the final power and controls signals distribution system.
Once initial tests are completed successfully, more APAs can be installed, and the APAs and their
FEMBs can remain accessible until the FC are deployed.

This installation sequence assumes that all the TPC electronics detector components required for
readout of a pair of APAs on top of the cryostat are installed before APAs are inserted into the
cryostat. This includes the WIECs with their boards, the power supplies in the racks, and all
cables and fibers required to distribute power and control signals as well as for detector readout.
Installation should occur at least two weeks before the APAs are inserted into the cryostat to allow
time for final checks.

One exception is installing the cryostat penetrations with the warm flanges for both the CE and
the PD system. The cryostat penetrations should be installed, at the latest, at the same time
the detector support structure is installed inside the cryostat. This ensures the cryostat is almost
completely sealed to minimize the amount of dust entering the cryostat. During the routing of the
CE and PD system cables through the cryostat penetrations, dust entering the cryostat will be
minimized by having a small over-pressure inside the cryostat and by isolating each penetration
from the cavern using a tent mounted over the work area.

The schedule of activities at SURF is designed so all APAs can be installed in the cryostat on
a timescale of eight months, proceeding at a rate of one row of six APAs per week and allowing
for a ramp-up period at the beginning of the process. This requires that personnel from the
TPC electronics consortium be available for two 10-hours shifts per day at SURF at all times,
including weekends. A total of 30 FTEs/week will be needed to install and test the APAs, under
the assumption that there will be a maximum of four shifts per person per week.
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The installation of all other TPC electronics detector components takes place on the top of the
cryostat. The cryostat penetrations are installed ahead of the installation of the APAs inside the
cryostat, ideally as soon as the welding of the cold membrane is completed in part of the cryostat.
This activity requires at team of eight FTEs, split over two shifts per day, for a period of one
month. A similar amount of time and personnel is also required to install the power supplies in
the racks, attaching the WIECs to the CE flanges, and routing and connecting the warm cables.

4.5.2 Internal Calibration and Initial Commissioning

While the cryostat is being closed (and any time there is welding on the cryostat), the electronics
should be turned off and all cables between the detector racks, including the low-voltage power
and bias voltage, fans, and heater power, should be disconnected from the WIECs. Once the
cryostat is closed, the waveform baseline and noise level of all channels should be measured. Dead
electronics channels should be identified by measuring the response of all channels to the internal
electronics calibration pulser at a nominal setting, such as ±600 mV, which distinguishes between
induction and collection channels. The noise levels should be measured with the wire bias voltages
fully enabled on the G, U , and X planes of the APAs. It should also be measured with the cathode
high voltage on at a very low value, e.g. 50V. The non-responsive channels, identified as having
very low noise levels, and the channels that have noise levels that significantly exceed the average
value should be flagged and recorded. Sources of excess noise should be identified and, if possible,
fixed. Any warm electronics components with issues should be replaced with spares.

Once the cryostat is filled with gaseous argon, the waveform baseline and noise level of all of the
channels will be measured again, and any new non-responsive channels in the electronics should
be identified by injecting ±600 mV with the internal calibration pulser. As the cryostat is cooled
down, the temperature at the electronics and the noise level of all channels should be monitored
periodically. Any new non-responsive channels should be flagged and excess noise sources that are
exposed as the electronics cools down should be identified and, if possible, fixed.

Once the electronics is fully submerged in LAr, a full set of electronics diagnostic tests should be
run, including waveform baseline and noise level measurements as well as a full gain calibration on
all channels using the internal calibration pulser at settings up to the saturation of the FE inputs.
The shaping time should be measured on all channels by injecting the ±600 mV internal pulser
at each of the four settings and fitting the pulse shape. Any new non-responsive channels during
the pulser runs should be flagged. Any new disconnected channels should be flagged and excess
noise sources should be identified. These tests can be performed on the electronics installed on
the bottom APAs even while the corresponding wires are in the gaseous argon.

4.6 Interfaces

Table 4.6 contains a brief summary of all of the interfaces between the TPC electronics consortium
and other consortia or groups, with references to the current version of the interface documents.
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In some cases, the interface documents involve more than one consortium (one example is the bias
voltage distribution system where the interface involves both the APA and the HV consortia). In
such cases, the goal is to have all of the corresponding interface documents consistent. At this
stage, most of the interface documents are not yet complete; drawings of the mechanical interfaces
and diagrams of the electrical interfaces are still under development. The interface documents
should be further refined during the first half of 2020 before the engineering design reviews of
the detector. All interface documents specify the responsibilities of different consortia or groups
during all phases of the experiment, including design and prototyping, integration, installation,
and commissioning. In the remainder of this section, the most important interfaces, specifically
those with the APA, DAQ, and HV consortia, as well as the interface with technical coordination,
are discussed in detail. Finally, a brief overview of the remaining interfaces is also presented.

Table 4.6: TPC electronics system interfaces.

Interfacing System Description Linked Reference
APA Mechanical (cable trays, cable routing, connections

of CE boxes and frames) and electrical (bias voltage,
FEMB–CR boards connection, grounding scheme)

[9]

DAQ Data output from the WIB to the DAQ back-end,
clock signal distribution, controls and data monitor-
ing responsibilities

[68]

CISC Rack layout, controls and data monitoring [69]
HV Grounding, bias voltage distribution, installation

and testing
[30]

PD system Electrical (cable routing and installation), cold
flange

[70]

Facility Cable trays inside the cryostat, cryostat penetra-
tions, rack layout and power distribution on the de-
tector mezzanine, cable and optical fiber trays on
top of the cryostat

[71]

Installation Team Integration and installation activities at SURF,
equipment required for TPC electronics consortium
activities, cold boxes for APA tests, material han-
dling

[72]

Physics Responsibilities for simulation and reconstruction
software

[73]

Software & Computing Database needs for storing detector calibration and
configurations, computing needs for calibration and
monitoring

[74]

Calibration Access to low-level electronics calibration for high-
level physics calibration

[75]
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4.6.1 APA

The most important interface is between the TPC electronics and the APA consortia. The design
of the FEMBs and of the APAs are intertwined, both from the mechanical and electrical points
of view. The CE boxes, which house the FEMBs, are supported by the APA and are attached to
the CR boards of the APA through a connector that passes all signals from the wires to the FE
amplifiers. The cable trays that house both the CE and the PD system cold cables are initially
attached to the yoke of the upper APA. The CE cables for the lower APA must be routed through
the frames of both the bottom and top APAs. The TPC electronics consortium provides the bias
voltage for the APA wires as well as for the electron diverters and the FC termination electrodes
(the latter are a responsibility of the HV consortium) using the SHV boards mounted on the APAs.
The grounding requirements discussed in Section 4.2.1 inform the design of all mechanical and
electrical interfaces between the CE components and APAs as well as the design of the connections
between the top and bottom APAs and between the top APA and the detector support system
(DSS). All integration and installation activities at SURF must be carefully coordinated by the two
consortia and where appropriate also with the PD system consortium and technical coordination.

4.6.2 DAQ

The DAQ system receives the data produced by the TPC electronics detector components, further
processes this data to form trigger decisions, and finally transfers the data to permanent storage
for analysis. The DAQ system is also responsible for delivering the clock and control signals to
the WIECs. The interfaces are realized through optical fibers, ensuring that no electrical noise is
fed into the WIECs. One fiber per WIEC delivers the clock and control signals to the PTC, which
then rebroadcasts the information to the WIBs in that crate. Each WIB reads out the data from
four FEMBs and transmits the data through two 10Gbps links to the DAQ back-end.

The data signals from the WIECs to the DAQ system are carried on multi-mode optical fibers,
compatible with either the OM3 or OM4 standards. Individual fibers will be merged into bundles of
12 fibers with MTP connectors near the CE cryostat penetrations. These bundles will be merged
in trunks of 144 fibers on the detector mezzanine, which will then be fanned out to individual
optical fibers inside the central utility cavern (CUC). The feasibility of this data transmission
scheme using optical fibers with a length up to 300m has been demonstrated at BNL in summer
2018 using ProtoDUNE-SP components. The data format used for DUNE will be a modification
of the one adopted for ProtoDUNE-SP, taking into account the need for an extended address
space to accommodate the larger number of FEMBs in the detector. The DAQ consortium is also
responsible for providing the software environment used for downloading the detector configuration.

4.6.3 HV

The HV consortium interface is driven by the fact that the CE flange provides the return path for
the small current that flows from the high-voltage power supply through the cathode panels, the
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FC, and finally the termination electrodes. The hardware interface uses the SHV boards mounted
on the APAs, which are the responsibility of the APA consortium. The SHV boards also distribute
the bias voltage to the FC termination electrodes. The TPC electronics consortium is responsible
for bringing the bias voltage for the FC termination electrodes to the SHV boards. Appropriate
rules for avoiding ground loops are also included in the interface document.

4.6.4 Technical Coordination

In this section, we consider the interfaces with Long-Baseline Neutrino Facility (LBNF) and with
the DUNE technical coordination, including the interfaces with the Joint Project Office (JPO) that
oversees the integration and installation activities that take place at SURF. The TPC electronics
consortium has several interfaces with the facility, namely the cable trays inside the cryostat,
the cryostat penetrations used by the TPC electronics and PD system consortia, and the racks
and trays on top of the cryostat. The TPC electronics consortium is responsible for the design,
procurement, and installation of the cable trays inside the cryostat and the cryostat penetrations.
The DUNE technical coordination is responsible for providing the racks where the low-voltage
power supplies and the bias voltage supplies are installed, including their power, cooling, and
monitoring systems, as well as the hardware interlock system. Technical coordination is also
responsible for the trays connecting these racks to the corresponding WIEC and for the network
switches that connect the controls for the TPC electronics to the DAQ and slow controls back-
ends. Finally, technical coordination will provide the DDSS that will protect the TPC electronics
detector components. The TPC electronics consortium will work with technical coordination to
establish the action matrix for the DDSS and the hardware interlocks, and also to resolve any
electronics noise problems that may be caused by improper grounding of detector components.

The TPC electronics consortium will work with the teams responsible for the underground in-
tegration and installation in order to plan all activities that take place at SURF. This includes
developing plans to outline the responsibilities of the consortium and those of technical coordi-
nation personnel for the activities at SURF, including all shipments, transport, and logistics, as
well as all integration and installation. Cold boxes for testing the APAs after integration with the
FEMBs will be provided by technical coordination at SURF. All other testing equipment will be
provided either by the TPC electronics consortium or by other consortia. Equipment required to
minimize risk of ESD damage to the detector components will be provided by the TPC electronics
consortium.

4.6.5 Other Interfaces

The interface with the PD system consortium is relatively simple. The PD system detector compo-
nent should be isolated from the CE detector component other than sharing a common reference
voltage point (detector ground) at the chimneys. Inside the cryostat, the PD system and CE
cables will be housed together in cable trays that are the responsibility of the TPC electronics
consortium. The TPC electronics consortium will also assume the responsibility for routing the
PD system cables through the cryostat penetration and for connecting them to the PD system
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flange. The TPC electronics consortium will also connect the cables that run from the flange to the
mini-racks housing the PD system warm electronics. The flange itself will be designed and built
by the PD system consortium, but its integration on the spool piece of the cryostat penetration
will be the responsibility of the TPC electronics consortium.

The cryogenic instrumentation and slow controls (CISC) consortium provides the software infras-
tructure for the slow control and monitoring of the status of the TPC electronics components. The
CISC and TPC electronics consortia may also have hardware interfaces because they may share
the same racks on top of the cryostat. The most important aspect of the interface between these
two consortia is the requirement from the TPC electronics consortium to have all relevant parts
of the slow control and monitoring equipment functional at the beginning of the installation for
SURF.

The TPC electronics consortium is responsible for many parts of the DUNE simulation and re-
construction software, which constitute the interface with the Physics group. These include the
simulation of the material of the detector components (FEMBs, cables, and cable trays) inside the
LAr, the simulation of the response of the electronics, from the signal formation to its digitization,
and finally the methods for the deconvolution of the electronics response to be used in the event
reconstruction software (the latter responsibility is shared with the APA consortium). Many of
these software tools already exist and have been used for the simulation and the reconstruction of
ProtoDUNE-SP. In the coming years they will be updated to reflect the changes to the detector
design relative to ProtoDUNE-SP. Similarly, the TPC electronics consortium has an interface with
the Software and Computing consortium that covers mostly the need for data storage and data
access. This includes both database needs (for storing detector calibration constraints and detector
configurations) and disk space needs (for storing the data from special calibration runs that are
used to obtain the calibration data). The calibration data on the response shape of the electronics
and on its gain are also relevant to the Calibration consortium, which is tasked with obtaining
high-level calibrations of the detector response. When doing this, the most up-to-date electronics
calibrations, or in some cases special electronics calibrations, will be required.

4.7 Safety

Personnel safety during construction, testing, integration, and installation of the TPC electronics
components for the DUNE SP FD is crucial for the success of the project. The members of the TPC
electronics consortium will respect the safety rules of the institutions where the work is performed,
which may be one of the national laboratories, SURF, or one of the universities participating in the
project. A preliminary analysis of the risks involved in the design, construction, integration, and
installation of the detector components provided by the TPC electronics consortium has been per-
formed using the approach discussed in Volume III, DUNE Far Detector Technical Coordination,
Chapter 10.
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4.7.1 Personnel Safety during Construction

The main risks for consortium personnel are exposure to the LN2 used for cooling down com-
ponents during testing (risk HA-8 in Table 11.25 in Volume III, DUNE Far Detector Technical
Coordination, Chapter 11), falls from heights (risk HA-1), electrical shocks (risk HA-6), and oxy-
gen deficiency hazards, possibly caused by leaks of either LN2 or LAr from test setups (risk HA-8).
The leadership of the TPC electronics consortium will work with the LBNF and DUNE project
(LBNF/DUNE) environment, safety and health (ES&H) manager and other relevant responsible
personnel at the various institutions to ensure all the members of the consortium, including stu-
dents and postdocs, receive the appropriate training for the work they are performing and that
all preventive measures to minimize the risk of accidents are in place. Where appropriate, we
will adopt the strictest standard and requirements among those of different institutions. Hazard
analyses will be performed, and the level of personnel protective equipment (PPE) will be deter-
mined appropriately for each task. PPE includes appropriate gloves for handling LN2 dewars, fall
protection equipment for work at height, and steel-toed shoes and hard hats for integration work
with the APA. Oxygen monitors should be used in areas with large potential concentrations of
cryogenic gases.

ES&H plans for the activities to be performed in various locations, including all universities,
national laboratories, and SURF, will be discussed in the various reviews (Preliminary Design,
Engineering Design, Production Readiness, Production Progress) that will take place during the
construction of the detector. This will include inspections by a LBNF/DUNE ES&H representative
at all the sites where detector components will be assembled or tested to ensure conformance to
all of the safety rules.

4.7.2 Detector Safety during Construction

In addition to personnel safety during detector construction, including all testing, integration,
installation, and commissioning, we have also considered how to protect the detector components
and minimize any chances of damaging them during handling. We identified two main risks to the
safety of the detector during construction and one risk during operation. The most important risk
during construction is damage induced by ESD in the electronics components. The second risk is
mechanical damage to parts during transport and handling. For operation risks, we must consider
the risk of damage to the electronics caused by accumulated dust inside the components installed
on the top of the detector. In this section, we discuss these three risks and ways to minimize their
possible effect. In the following section, we discuss how to prevent damage during operation to the
TPC electronics components by using the interlocks of the detector safety system.

ESD can damage any of the electronics components mounted on the FEMBs, WIECs, the bias
voltage supplies, or the power supplies. If the damage occurs early in construction, the outcome is
a reduction of the yield for some of components, which must be addressed by keeping a sufficient
number of spares on hand to prevent schedule delays associated with procuring new parts. ESD
damage on the FEMBs after the APAs have been installed inside the cryostat could result in a
permanent reduction of the fraction of operating channels in the detector. Even if most compo-
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nents, including the custom ASICs designed for use in the FEMBs, contain some level of protection
against ESD, the possibility of this kind of damage cannot be ignored, and appropriate preventive
measures must be taken during assembly, testing, installation, and shipping of all of the detector
components provided by the TPC electronics consortium. These measures include using appro-
priate ESD-safe packing materials, appropriate clothing and gloves, wearing conducting wrist or
foot straps to prevent charges from accumulating on workers’ bodies, anti-static mats to conduct
harmful electric charges away from the work area, and humidity control. All laboratories with
detector components provided by the TPC electronics consortium will implement these measures,
including SURF.

Additional measures include using custom-made terminations for power, control, and readout cold
cables when these are being routed through the APA frames or through the cryostat penetrations.
Storage cabinets where ASICs and FEMBs are stored should have ESD mats on the shelves and
humidity control. Most importantly, all personnel must be trained to take the appropriate preven-
tive measures. We will require that all the personnel working on the TPC electronics consortium
components take a training class originally developed at Fermilab for handling the charge-coupled
devices of the Dark Energy Survey (DES) experiment (the material for this training class can also
be used at remote sites). The scientists in charge of the TPC electronics activities at each site
involved in the project will be responsible for monitoring the training of personnel at universities,
national laboratories, and SURF.

Most of the damage to detector components happens during transport among the various sites
where assembly, testing, integration, and installation take place. When appropriate, measures
to prevent ESD damage must also be taken for shipments. Appropriate packaging will be used
to ensure that parts are not damaged during transport. We will perform tests upon receiving
FEMBs as well as integration tests for cold cables as part of the quality control process discussed
in Section 4.4.4 in order to ensure the full functionality of these parts, which are very hard to
replace after detector integration and installation. For components on the top of the cryostat that
can be replaced if damaged during transport, we will perform integration tests after installation.

In addition to damage during shipping, we must also consider the possibility of damage caused by
handling of the detector parts. Additional precautions are being considered for operations where
the risk of damage to TPC electronics detector components is high. For testing ASICs and FEMBs
in LN2, this has resulted in developing the CTS discussed in Section 4.3.1 to prevent condensation
on components after they are extracted from the LN2 at the end of a test. For the cold cables,
this includes modifying the size of the tubes used for the APA frames, adding a conduit inside the
frames, and placing a mesh around the cables. Special tooling will be designed for arranging the
cold cables on the spools used when cables are routed through the APA frames. Similarly, tooling
will be developed to support the cold cables while they are being routed through the cryostat
penetrations. All cables and optical fibers will be installed in cable trays on top of the cryostat,
and for the fibers, additional protection in the form of sleeves or tubes may also be used.

To ensure that the DUNE detector will be operational for a long time, we also will attempt to
minimize damage that could happen to detector components inside the experimental cavern, which
can come from two sources: incorrect operation of the detector and environmental conditions. We
will discuss the former in the next section. Once the cryostat is filled with LAr, the environmental
conditions inside the cryostat are extremely stable. Experience from previous experiments using
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electronics inside LAr indicates that, apart from initial problems, little loss of readout channels
occurred over long periods.

Therefore, the main safety concern is related to the electronics installed on top of the cryostat.
The main problem in this case is dust accumulation on detector components. Over the long term,
dust could damage the cooling fans used in the WIECs and the TPC electronics racks, cause
break-down on the surface of diodes used in bias voltage supplies, and, if the dust contains any
chemical residue that may create deposits on printed circuit boards, create leakage paths between
traces on printed circuit boards. While the experimental cavern should be a very dry environment,
protections should still be in place to prevent water from dripping on the WIECs and on the racks
containing the TPC electronics power and bias voltage supplies. Appropriate filters will be added
to the air supply used to cool the WIECs and the TPC electronics power and bias voltage supplies,
thereby minimizing the accumulation of dust. The air humidity in the cavern will be controlled to
prevent condensation.

4.7.3 Detector Safety during Operation

In this section, we discuss where we will use the detector safety system described in Volume III,
DUNE Far Detector Technical Coordination, Chapter 10. To avoid unsafe conditions for the TPC
electronics detector during operations, hardware interlocks will be put in place in test setups at
SURF to prevent operating or even powering up detector components unless conditions are safe
both for the detector and for personnel. Interlocks will be used on all low-voltage power and
on bias voltage supplies, including inputs from environmental monitors both inside and outside
the cryostat. Examples of these interlocks include turning off the power to the WIECs if the
corresponding cooling fans are not operational or if the temperature inside the crates exceeds a
preset value. Similar interlocks will be used for low-voltage power and bias voltage supplies in
TPC electronics racks. Interlocks may be needed to connect the value of the bias voltage on the
FC termination electrodes to the high voltage applied on the TPC cathode. Interlocks will turn off
transmitters on the WIECs if the readout fibers’ bundles are cut. One problem we must address
is the connection between the PLC used by the detector safety system and the WIECs to avoid
introducing noise inside the detector. We can easily decouple the environmental sensors required
by the detector safety system inside the WIECs by following the appropriate grounding rules. The
connection used to provide the enable/disable signals from the PLC to the WIECs will require
optical fibers to avoid possible ground loops. Interlocks connected to the detector safety system
will also be used during tests of the APAs in the cold boxes at CERN, Fermilab, and SURF. The
CTS has its own interlock system to prevent condensation from forming on the FEMBs once they
have warmed to room temperature. We cannot exclude the possibility that for some of the smaller
test stands we will have to rely on software interlocks for detector safety, but this should be kept
to a minimum, and no software interlock should be used for the cold boxes at CERN, Fermilab,
and SURF.
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4.8 Risks

In this section, we discuss the risks that could be encountered during design and construction of
the DUNE SP FD, as well as the risks that can be encountered later during commissioning and
operation. For every risk, we will describe the mitigating actions being put in place even now at
the design stage of the experiment, and the possible responses that we will take should a specific
risk be realized. Table 4.7 contains a list of all risks that we are considering. For each risk, we
assess a probability for a risk to be realized (P), as well as cost (C) and schedule (S) impacts,
after the mitigation activities discussed in the text are put in place. It should be noted that in the
case of poor lifetime of the components installed inside the cryostat, there is no cost or schedule
impact, as they cannot be accessed and replaced. All of these risks are discussed in detail in the
remainder of this section.
Table 4.7: TPC electronics risks (P=probability, C=cost, S=schedule) The risk probability, after taking
into account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%),
or H (high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule
delay < 2 months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months,
respectively).

ID Risk Mitigation P C S
RT-SP-TPC-001 Cold ASIC(s) not

meeting specifications
Multiple designs, use of appropriate
design rules for operation in LAr

H M L

RT-SP-TPC-002 Delay in the avail-
ability of ASICs and
FEMBs

Increase pool of spares for long lead
items, multiple QC sites for ASICs,
appropriate measures against ESD,
monitoring of yields

M L L

RT-SP-TPC-003 Damage to the FEMBs
/ cold cables during or
after integration with
the APAs

Redesign of the FEMB/cable connec-
tion, use of CE boxes, ESD protec-
tions, early integration tests

M L L

RT-SP-TPC-004 Cold cables cannot be
run through the APAs
frames

Redesign of APA frames, integration
tests at Ash River and at CERN, fur-
ther reduction of cable plant

L L L

RT-SP-TPC-005 Delay and/or damage
to the TPC electronics
components on the top
of the cryostat

Sufficient spares, early production
and installation, ESD protection
measures

L L L

RT-SP-TPC-006 Interfaces between
TPC electronics and
other consortia not
adequately defined

Early integration tests, second run of
ProtoDUNE-SP with pre-production
components

M L L

RT-SP-TPC-007 Insufficient number of
spares

Early start of production, close moni-
toring of usage of components, larger
stocks of components with long lead
times

M L L

RT-SP-TPC-008 Loss of key personnel Distributed development of ASICs,
increase involved of university
groups, training of younger person-
nel

H L M
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RT-SP-TPC-009 Excessive noise ob-
served during detector
commissioning

Enforce grounding rules, early
integration tests, second run of
ProtoDUNE-SP with pre-production
components, cold box testing at
SURF

L L M

RT-SP-TPC-010 Lifetime of compo-
nents in the LAr

Design rules for cryogenic operation
of ASICs, measurement of lifetime of
components, reliability studies

L
n/a n/a

RT-SP-TPC-011 Lifetime of compo-
nents on the top of the
cryostat

Use of filters on power supplies,
stockpiling of components that may
become obsolete, design rules to min-
imize parts that need to be re-
designed / refabricated

L M L

4.8.1 Design and Construction Risks

Despite the successful operation of ProtoDUNE-SP, we cannot build and operate the DUNE SP
FD using the same ASICs; we are improving the design of the FE amplifier, redesigning the ADC,
and replacing the FPGA on the FEMB with a dedicated data serialization and transmission ASIC
(COLDATA). The project schedule has sufficient time for a second submission of all of these
ASICs in the current development cycle. We nevertheless must consider the risk (RT-SP-TPC-001
in Table 4.7) that, even after the second iteration, we may not have a set of ASICs that meets all
the DUNE requirements.

To reduce the probability of this happening, we are pursuing the development of the CRYO ASIC,
and we will also perform system tests of the COTS solution for the ADC that is planned for use
in the SBND experiment. Should this risk become reality, an additional development cycle would
be required, which would delay the availability of FEMBs for approximately 12 months. Based
on the current schedule, this would not be a problem for the detector integration and installation.
More importantly, such a delay would require that, during the first part of the APA production,
a sufficient number of FEMBs with non-final electronics be available for integration tests on the
APAs. These boards would then have to be replaced later by the final boards.

The second risk (RT-SP-TPC-002) is a general delay in the availability of the ASICs and/or
FEMBs, which would then not be available for integration on the APAs. This risk has several
possible triggers: a lower fabrication yield than expected for ASICs and FEMBs, significant down-
time at one of the QC sites, or losses during handling and transport, in addition to the issues with
the design already covered in the previous risk. Our planning includes several ways to mitigate
this risk. By procuring spares for the ASICs and the discrete components to be mounted on the
FEMBs, we can continue integration with the APAs; we are also splitting the QC process among
various sites. We will also emphasize, as discussed in Section 4.7.2, the use of appropriate mea-
sures that minimize the probability of any ESD damage. We will then monitor the use of spare
components and, if needed, fabricate additional parts. Appropriate monitoring of the production
yield and spares should minimize delays in APA integration. As in the case of the first risk, should
this second risk become reality, we do not expect to have delays in the installation of the detector
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inside the cryostat.

The third risk (RT-SP-TPC-003) is the possibility of damage to the FEMBs during or after integra-
tion with the APAs. This could happen while the FEMBs are being installed or, more likely, during
the installation of the cold cables, something that has already taken place during the installation
of ProtoDUNE-SP. This damage could also happen when the APAs are moved into the cryostat
or during the final cabling of the detector. The damage to the FEMBs and cold cables could be
either mechanical damage during handling or ESD damage. We are redesigning the connection
between the FEMBs and the cold cables to minimize the probability of the former and putting
procedures in place to minimize the probability of the latter. The risk of mechanical damage is
further reduced by housing the FEMBs inside the CE boxes and by having appropriate strain
relief on the cold cables. To minimize the possibility of ESD damage, we will follow all appropriate
procedures, and in addition, we will use plugs on all the cold cables while they are routed through
the APA frames and cryostat penetrations in order to avoid injecting charge on the FEMBs that
could cause ESD damage. Finally, we are planning for extensive testing of the CE several times
during integration and installation that would allow us to replace the FEMBs or the cold cables
if necessary. This includes significant time for testing the entire readout chain after the APAs are
placed in their final position inside the cryostat, when repairs are still possible.

We still consider risk (RT-SP-TPC-004) a possibility: that the cold cables cannot be routed through
the frames of the APAs. In that case, the cables for the FEMBs attached to the bottom APA
would have to be routed along the walls of the cryostat, requiring a significant redesign of the
entire detector. To minimize this risk, we have significantly redesigned the APA frame to use
larger tubes, and many studies have been performed in recent months. These studies are based on
the assumption that there can be a small reduction in the cable plant size compared to ProtoDUNE-
SP. The probability of this risk being realized has been significantly reduced following the cable
insertion tests performed at Ash River using a stacked pair of APAs, discussed in Sections 2.3.3
and 4.2.5. This risk has not yet been retired, since the expected reduction of the cable plant needs
to be demonstrated with the design and test of new FEMBs. Should this risk be realized, we will
consider other ways for reducing the cable plant, instead of the considering the option of routing
the cables along the walls of the cryostat. For example, the control signals could be shared between
multiple FEMBs.

The next risk (RT-SP-TPC-005) involves delays in the availability of or damage to the TPC
electronics components installed on top of the cryostat. As discussed in Section 4.5.1, we plan
to have all TPC electronics detector components on top of the cryostat, including those required
to power, control, and readout one pair of APAs, installed and available before inserting the
APAs into the cryostat. This allows extensive testing of APAs to mitigate the risk of damage to
the readout chain. To mitigate the risk associated with delays in installing the TPC electronics
components on top of the cryostat, we plan to have sufficient spares and to use appropriate ESD
prevention measures. If only a subset of all components is available, cables and fibers on the top of
the cryostat would have to be re-routed to allow integrating and installing the APAs to continue
without delays, and tests will have to be repeated when all the components become available and
are installed. The worst possible consequence is a delay in closing the cryostat and beginning
operation.

Another risk (RT-SP-TPC-006) is that incompatibilities between various components of the DUNE
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FD go undetected until these components are integrated during prototyping, during integration at
the SURF, or during installation. These incompatibilities could result in reworking or redesigning
some of the components and therefore in delays of the project. This risk clearly diminishes as long
as integration tests, including mock-ups and prototypes, come early in design and construction.
The schedule for the design and construction of the TPC electronics detector components foresees
many integration tests to reduce this risk as much as possible. These tests include integration tests
with components provided by the APA, PD system, and DAQ consortia, as well as integration
tests of cable routing in the cable trays and through the cryostat penetrations. The second run
of ProtoDUNE-SP, using pre-production detector components, will further help in mitigating this
risk. At that point, any design change or any deviation from established procedures will need to go
through very extensive vetting to avoid the introduction of new incompatibilities between detector
components.

Another issue that can arise during the detector integration and installation is a delay caused by
the excessive usage of spare detector parts (RT-SP-TPC-007). For ASICs and FEMBs, this kind
of risk has already been considered (RT-SP-TPC-002). For the other TPC electronics detector
components, the risk should be considered separately, since the other components are needed at
an earlier point in time and have completely different fabrication and testing schedules. Some of
the actions required to mitigate this risk are similar, including an early start to the production,
careful monitoring of yields during the QC process, and a larger number of spares in the case of
long lead items.

The final risk we consider for the construction of the TPC electronics detector components is
the loss of key personnel (RT-SP-TPC-008). The number of scientists and engineers that have
become involved with the TPC electronics has significantly increased since the construction of
ProtoDUNE-SP, and in some sense this has already contributed to reducing significantly the
probability and possible impacts of this risk. In some areas, like ASIC design, the addition of large
teams of engineers involved in the design of the new ASICs means that the probability of this
risk is now negligible. There are areas where the experience from the construction and operation
of ProtoDUNE-SP resides with a few expert scientists and engineers, and areas where only a
single engineer is responsible for the design of a set of detector components. The mitigation of
this risk involves enlarging the team(s) that are responsible for the design and prototyping of the
detector components. This has already been done for the ASICs and plans are already in place to
involve university groups in the design of the FEMBs and of the WIEC. Succession plans for the
consortium leadership need to be put in place, including training younger personnel.

4.8.2 Risks during Commissioning

The biggest risk during the commissioning phase (RT-SP-TPC009 in Table 4.7) is excessive noise
caused by some detector component not respecting the DUNE grounding rules. This risk was
realized at least twice during the integration and commissioning of the ProtoDUNE-SP detector.
During the integration of the first APA, a source of noise was discovered in the electronics used for
the readout of the photon detector, which required a simple fix on all of the readout boards. Later,
a large noise source was discovered in the temperature monitors. The overall noise in ProtoDUNE-
SP was reduced compared to previous LAr experiments or prototypes, such as MicroBooNE or the
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35 ton prototype. Even if some unresolved source of noise is still apparent in the ProtoDUNE-SP
data, this should not preclude using the collected data for calibration and for physics analyses.
Further studies are planned for 2020 to investigate the remaining sources of noise.

The main problem in going from ProtoDUNE-SP to the DUNE FD is one of scale. Even if
the detector design addresses all possible noise sources, the simple fact that the detector is 25
times larger and has a correspondingly larger number of cryostat penetrations requires much more
attention to detail during installation and commissioning. Observations of excessive noise in DUNE
would result in a delay in commissioning and data taking until the source of the noise is found
and mitigated. To minimize excessive electronic noise, we plan to enforce the grounding rules
throughout the design phase, based on the lessons learned from the operation of the ProtoDUNE-
SP detector. We also plan to perform integrated tests to discover possible problems as early as
possible. This includes system tests at the ICEBERG test stand at Fermilab for each generation
of the FEMBs and photon detectors. We plan to perform noise measurements in the cold boxes
at SURF, and later during the insertion of the APAs inside the cryostat before the TCO closure,
including repeating the measurements directly before the LAr fill. We expect that the extensive
testing will allow a quick transition to detector operations, first with cosmics and later with beam,
as soon as the cryostat has been completely filled.

4.8.3 Risks during Operation

The expectation for the DUNE FD is that data taking will continue for at least two decades.
Assuming that the detector operates as designed after commissioning, two additional risks must
still be considered. These are related to the lifetime of the CE components installed inside (RT-
SP-TPC-010 in Table 4.7) and on top (RT-SP-TPC-011) of the cryostat. The components inside
the cryostat are not replaceable, and therefore any malfunction of a detector component will result
in a loss of sensitive volume. The components on top of the cryostat (with the exception of the
flange at the transition from the cold to the warm volume) can be replaced, and as long as we have
sufficient spares, this will not result in any loss beyond the amount of time required for replacing the
component. The risk of losing components installed inside the cryostat has been considered from
the earliest stage of the design of ASICs. As discussed in Section 4.3.3, we have formed a reliability
committee to ensure that all appropriate measures are considered in the design and that our QA
process includes the relevant tests of component lifetime. These lifetime measurements should
make sure that we will see only minimal losses of sensitivity in the detector during operations.

As discussed in Section 4.7.3, we are taking measures (like adding air filters to the WIECs and bias
voltage and low-voltage power supplies) to minimize damage from environmental conditions to the
detector components on top of the cryostat. We have discussed in Section 4.4.1 our plan for spare
detector components. We cannot exclude the possibility that we will not have enough spares, which
we plan to build during construction, for the lifetime of the experiment. In this case, it may become
necessary to fabricate new boards or procure new supplies during operations. One possible issue
related to this is the continued availability of certain components, in particular FPGAs and optical
transmitters and receivers, which may become obsolete and no longer be available when we need
to fabricate new parts. While it will always be possible to design new boards using more modern
components, we wish to keep the maintenance costs for the detector to a minimum, and this may
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involve following the technology evolution and stockpiling components that may become obsolete
and/or hard to procure. We are also considering placing the FPGAs and the optical components
on mezzanine cards to minimize redesign and procurement costs should these components become
unavailable during the lifetime of the experiment.

4.9 Organization and Management

In this section we first discuss the organization of the TPC electronics consortium that at the
moment consists entirely of US institutions: fifteen university groups plus groups from four DOE
national laboratories. Table 4.8 provides a list of the participating institutions. Later we discuss the
assumptions that have been made in developing the construction plan for the detector components
that will be provided by the TPC electronics consortium, including the responsibilities of the
different institutions that are part of the consortium. Finally, we present a schedule for the
construction, integration, and installation of the TPC electronics into the detector.

Table 4.8: Institutions participating in the TPC electronics consortium (all from the US).

Institution
Boston University
Brookhaven National Laboratory
University of Cincinnati
Colorado State University
University of California, Davis
Fermilab
University of Florida
University of Hawaii
Iowa State University
University of California, Irvine
Lawrence Berkeley National Laboratory
Louisiana State University
Michigan State University
University of Pennsylvania
University of Pittsburgh
SLAC National Accelerator Laboratory
Stony Brook University

4.9.1 Consortium Organization

The present consortium organization structure includes a consortium leader and a technical lead
(both currently from Fermilab), with personnel from BNL helping with system design. A working
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group structure has been recently provided with subgroups responsible for the detector components
inside the cryostat (ASICs, FEMBs, and cold cables), outside the cryostat (mostly the WIECs with
their boards), and all equipment used for testing the detector components. When appropriate, a
subgroup responsible for integration and installation activities at SURF will be formed (for now,
the technical lead oversees these activities). In addition, another subgroup will be in charge of
software and physics preparation activities, including calibrations and simulations. Mechanical
design activities span detector components both inside and outside the cryostat, requiring strong
contacts between technical coordination and other consortia (mainly the APA consortium). The
lead engineer (from BNL) on mechanical aspects of the cold electronics (mechanical interfaces
with the APAs, cabling, including cable trays, and cryostat penetrations) works directly with the
technical coordination team. The TPC electronics consortium will also have contact people for the
overall LBNF/DUNE management for ES&H and for QA/QC. For the moment, the technical lead
oversees these activities, although oversight will be transferred in part to each subgroup leader for
testing activities. The leadership positions in the consortium are listed in Table 4.9 and a diagram
of the organization of the consortium and of its relationships with other groups in the LBNF and
DUNE organizations is shown in Figure 4.49.

Table 4.9: Current leadership positions in the TPC electronics consortium.

Position
Consortium Leader
Technical Lead
System Aspects
Cold Components
Warm Components
Test Setups
Integration and Installation
Mechanical Design
Reliability Task Force
TDR Editor
ES&H contact
QA/QC contact

In addition to the working groups, task forces for specific issues will be formed as necessary. A
first example is the task force charged with studying reliability issues in the TPC electronics
components and preparing recommendations for the choice of ASICs, the design of printed circuit
boards, and testing; this was discussed in Section 4.3.3. Later on, this task force will help in
developing the QC program for the TPC electronics detector components in collaboration with
the testing group leadership, with the ProtoDUNE-SP experience as a starting point. Later, a
second task force, with possible personnel overlap with the first task force and possibly including
experts from outside of the DUNE Collaboration, will be tasked with establishing the criteria for
the ASIC selection. This task force will be also asked to propose a recommendation that will then
go to the DUNE Executive Board for the final approval, as discussed in Section 4.2.3.5.
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Executive Board Technical Board
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Figure 4.49: Organization chart of the TPC electronics consortium and relations to other groups in the
LBNF and DUNE organizations (shown in green).

4.9.2 Planning Assumptions

In Section 4.9.4, we describe the current schedule for the construction, integration, and installation
of the TPC electronics detector components for the first SP TPC FD module. This schedule, as
well as the costs associated with detector construction, are based on experience with constructing
and commissioning the ProtoDUNE-SP detector in addition to assumptions for the remaining
R&D program and the production planning discussed here. Section 4.4.1 details the number of
spare parts that we plan to fabricate in order to account for known yield issues during detector
construction and to address possible problems. Table 4.10 gives a summary of all fabricated
components required for the first SP FD module. To develop a schedule for detector construction,
we must consider the current state of development of the ASICs, FEMBs, and all other components
in order to estimate the time required for the final production.

A second detector module may be built using the SP technology, and in that case the construction
of the TPC electronics components for the second module would immediately follow construction
of the first one. The total number of components for the second module will be less than the
amount for the first detector, assuming that for components inside the cryostat the spare parts
from the first module can be used for the second. Similarly, for the components on the top of the
cryostat, the pool of spares from the first module should be sufficient to cover the second. Given
the timeline for the construction of the detector components and their integration on the APAs
or their installation at SURF, an insufficient number of spares presents a risk only for the second
detector module, as discussed in Section 4.8.1.

The critical path for the construction of the first SP TPC FD module is driven by the availability
of FEMBs, which in turn depends on completing the design of the ASICs. Thus, construction
of the APAs could start as early as spring 2020, while the decision on the ASICs to be used on
the FEMBs may come as late as January 2021. The schedule for this decision depends on the
TPC electronics consortium, which is planning a second design iteration on all ASICs followed by
system tests of various flavors of FEMBs. The first version of all ASICs underwent standalone
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tests in spring / summer 2019 and will go through the sequence of system tests (with the 40%
APA prototype at BNL, the seventh ProtoDUNE-SP APA in the cold box at CERN, and the TPC
in the ICEBERG cryostat at Fermilab) in early 2020. At the same time, lifetime tests will be
performed on all ASICs. Designs of the ASICs and FEMBs, including results from the system
test stands and from lifetime tests, will be reviewed in early 2020. This will trigger any further
design changes on the ASICs, to be followed by a second round of prototyping and testing. This
gets us to the January 2021 date for the final ASIC decision. Consequently, the initial tests of the
DUNE prototype APAs must be performed with preliminary versions of FEMBs, which will still
be using the first generation of ASICs (although the final mechanical and electrical connections to
the APAs will be available and used).

Table 4.10: Number of TPC electronics components required for a full SP module (accounting for
spares and yields during QC).

Detector component Number required
LArASIC 30,000 chips (at least 43 wafers)
ColdADC and COLDATA 30,000 and 7,500 chips (at least 33 wafers)
CRYO 7,500 chips (at least 35 wafers)
FEMB 3,200
Cold signal cables 1,650 and 1,575 (bottom and top APA)
Cold power cables 1,650 and 1,575 (bottom and top APA)
Cold bias voltage cables 660 and 630 (bottom and top APA)
Cryostat penetrations 80
CE flanges 160
WIEC 155
WIB 775
PTC 155
Warm power cables 165 (three different lengths)
Warm bias voltage cables 1,320 (three different lengths)
Wiener PL506 power box 30
Wiener MPOD crate 30
Wiener MPOD modules with 8 HV channels 180
Power supplies and cables for heaters and fans 30

After the January 2021 review, an additional six months may be required for a final iteration of
the FEMB design and a final round of system tests before beginning fabrication of the ASICs and
FEMBs. Engineering runs for the ASICs and FEMBs should then take place in the second half of
2021, with most production starting in spring 2022. Production and testing of all chips required
for constructing the first SP TPC FD module would be completed by August 2023. The first batch
of production FEMBs would then be available for installation on the APAs in February 2023, and
production would be completed in January 2024, roughly eight months before the beginning of the
integration of the FEMBs on the APAs at SURF. The final FEMBs for the first SP module are
expected to be available at the SDWF fourteen months ahead of their for installation on the last
APA to be installed inside the cryostat. There are therefore between eight and fourteen months of
float in the schedule for the ASICs and FEMBs, which would allow for a third iteration of design
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and prototyping if needed. It should be noted that, for the detector components to be installed
on the top of the cryostat, there are between ten and fourteen months of float.

The schedule presented above assumes that during the construction of the APAs, integration
tests will be performed using preliminary versions of the FEMBs that must then be replaced
with final versions at a later date. It also assumes that for the second run of ProtoDUNE-SP,
expected to take place in the second half of 2021, prototype FEMBs using the second iteration
of prototype ASICs will be used. Using the ASICs from the pre-production, fabricated using the
masks that will be used during the production phase, would require a delay of one year in the
second run of ProtoDUNE-SP. The difference in the masks used for the fabrication of the ASICs
(multipurpose wafer run instead of a dedicated run) does not negate the usefulness of the second
run of ProtoDUNE-SP as a final validation of the DUNE SP module design.

If a second SP TPC FD module is built, the critical path will transition from the FEMBs to the
APAs, assuming that construction of both APAs and FEMBs will continue without interruption
after construction of the first module. This is because constructing one APA requires more time
than constructing the corresponding FEMBs. Therefore, toward the end of the constructing this
possible second module, we expect that all required FEMBs will be at the SDWF waiting for the
delivery of the APAs before integration can take place.

All other detector components that are the responsibility of the TPC electronics consortium can
be produced relatively quickly in less than two years. The procurement, assembly, and testing
of these components can be scheduled so that we have sufficient time in the schedule to address
possible problems during production. Changes in all of these components, unlike those used in the
ProtoDUNE-SP detector, are less important than those affecting the ASICs and FEMBs. We are
assuming that final designs for the rest of the detector components will be available in the second
half of 2020 and that the corresponding production readiness reviews will occur, at the latest, six
months before the ASIC design choice. The first components to be installed on the detector are
the cryostat penetrations, which must be installed before the detector support structure inside the
cryostat is completed. In this way, the cryostat can be completely sealed, other than the manholes
used to feed clean air into the cryostat and the TCO that is used as an exhaust portal and as
an entry point for the detector components. The rest of the TPC electronics components, which
are installed on top of the cryostat (WIECs with all of their boards, supplies, cables, and fibers),
should be installed before installing the corresponding rows of APAs and properly connecting the
cables linking the APAs to power, control, and readout. The APAs should be tested as soon as
they are installed.

4.9.3 Institutional Responsibilities

Design and prototyping for the SP DUNE FD have been concentrated so far at the DOE na-
tional laboratories, mostly because the focus has been on designing the new generation of ASICs.
The design of the LArASIC was done at BNL, the CRYO chip was done at SLAC, and the new
ColdADC was a joint effort of BNL, Fermilab, and LBNL. The COLDATA ASIC was designed
at Fermilab, with some components provided by engineers from the Electrical Engineering De-
partment at Southern Methodist University (not a consortium member). The CTS was designed
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at Michigan State University. Most of the design and construction work for the ProtoDUNE-
SP detector was done at BNL, with other institutions contributing to testing, installation, and
commissioning. Given the extent of the project, particularly testing, additional institutions have
begun to contribute to all of the activities for constructing the DUNE SP FD, which began in the
middle of 2018. Almost all the engineering of detector components, except for the boards to be
installed on the WIECs and most boards and setups for testing, will remain a responsibility of the
DOE national laboratories. Testing of ASICs, FEMBs, cables, power and bias voltage supplies,
and WIECs with their boards will be done at various universities that are members of the con-
sortium. All institutions are expected to contribute to the integration and installation activities
at at SURF, which is very demanding in terms of personnel. A detailed list of the institutions
contributing to the development, production, and testing of the various detector components is
given in Figure 4.50.

4.9.4 High-Level Cost and Schedule

In Section 4.9.2, we discussed how the project will evolve from the current design and prototyping
phase to production for the ASICs and FEMBs by spring 2022. During the same period, the
engineering of all other detector components will be completed and prototypes fabricated. The
procurement and qualification of cold cables, cryostat penetrations, WIECs, and power and bias
voltage supplies can then begin in spring 2021. Integrating FEMBs on the APAs would then take
place over 18 months beginning in early 2023. At this moment, the installation and testing of APAs
in the cryostat and corresponding activities of the TPC electronics consortium, including installing
all detector components on top of the cryostat, are scheduled to take four months starting in April
2024. Table 4.11 shows a preliminary list of milestones, including the current plan to complete the
design, R&D, and engineering phases; and then later the production setup, production, integration,
and installation activities. The schedule for the completion of the design and prototyping, the pre-
production, the construction of the detector components (including the QC process), and their
integration and installation at SURF is displayed in Figure 4.51.
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Figure 4.50: Responsibilities of the institutions in the TPC electronics consortium, matched to the
organization chart of the consortium.
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Table 4.11: Milestones of the TPC electronics consortium.

Milestone Date
Complete the submission of the first generation of ASICs April 2019
Complete the standalone testing of the first generation of ASICs October 2019
Complete system and lifetime tests on the first generation of ASICs and
FEMBs

May 2020

Submission of second generation of ASICs June 2020
Complete the standalone testing of the second generation of ASICs September 2020
Complete system and lifetime tests on the second generation of ASICs and
FEMBs

January 2021

Decision on the ASIC(s) to be used for construction January 2021
Start of ProtoDUNE-SP-II installation March 2021
Complete characterization of final prototypes of ASICs and FEMBs including
system tests

July 2021

Complete Engineering Design Reviews and launch pre-production of detector
components

September 2021

Start of procurement of cold cables December 2021
Start of production of cryostat penetrations December 2021
Start of production of WIECs, WIBs, and PTCs December 2021
Start of procurement of power supplies and warm cables December 2021
Complete testing of pre-production of all ASICs January 2022
Complete testing of pre-production FEMBs April 2022
South Dakota Logistics Warehouse available April 2022
Complete testing of prototypes and Production Readiness Reviews May 2022
Start of ASICs production May 2022
Start of FEMBs production May 2022
Beneficial occupancy of cavern 1 and CUC October 2022
Completion of cryostat penetrations procurement February 2023
Completion of the procurement and QC of cold cables March 2023
CUC counting room accessible April 2023
Completion of the WIECs, WIBs, and PTCs production and QC May 2023
Completion of the procurement of power supplies and warm cables June 2023
Completion of ASICs production and QC August 2023
Completion of FEMBs production and QC January 2024
Begin installation of the TPC electronics components on top of the cryostat April 2024
Complete installation of the TPC electronics components on top of the cryo-
stat

July 2024

Start of detector module #1 TPC installation August 2024
Begin integration of the FEMBs on the APAs at SURF August 2024
Complete integration of the FEMBs on the APAs at SURF March 2025
End of detector module #1 TPC installation May 2025
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Figure 4.51: Schedule for the completion of the design and prototyping, the pre-production, the con-
struction of the TPC electronics detector components (including the QC process), and their integration
and installation at SURF.
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Chapter 5

Photon Detection System

5.1 Introduction

The Deep Underground Neutrino Experiment (DUNE) far detector (FD) consists of detector sys-
tems for charge and light produced by an ionization event in the liquid argon time-projection
chamber (LArTPC). The charge detection system permits both calorimetry and position deter-
mination, with two of the three spatial coordinates (y and z) established by the position of the
anode plane assembly (APA) wires receiving the charge and the third (x) by the arrival time of
the charge. Locating the x position requires independently determining the time of the ionization
event, a clock start time. Two systems provide this in DUNE: the Fermilab accelerator system for
neutrino beam related events and the photon detection system (PD system).

Neutrino charge-parity symmetry violation (CPV) and other elements of the DUNE long-baseline
neutrino program are possible without data from the PD system. The neutrino beam timing allows
full functionality of the APAs, and the deep underground location reduces the possibility of in-time
background events from cosmic rays and other sources to a negligible level. Similarly, DUNE can
detect supernova neutrino bursts (SNBs) originating within the galaxy without the PD system
because the presence of thousands of low-energy neutrino events, even if they consist only of few
millimeter long tracks, provides an unambiguous signal in the time projection chamber (TPC).
By contrast, DUNE’s nucleon decay physics cannot be executed without the PD system. The
inability to establish a clock start time (t0) makes it impossible to determine whether a candidate
proton decay event was fully contained in the detector volume or associated with objects entering
the detector from the outside. Determining t0 also allows the energy reconstructed by the TPC to
be corrected for charge lost due to electron capture and other transport effects in the TPC. This
physics sets the requirement on minimum light yield in the dimmest regions of the detector far
from the photon detectors and timing resolution, described further in Appendix Section 5.16.1.2.

While only absolutely required for proton decay searches, the PD system directly enhances physics
capabilities for all three DUNE physics drivers, opens up prospects for further physics explorations,
and contributes to a more robust set of operating points of the detector that help all physics. For
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SNB neutrino events, the PD system allows proper location of the event vertex, and improves
energy resolution by allowing position-dependent energy corrections and complementary direct
calorimetric measurements, improving energy resolution and possibly sensitivity to underlying
supernova dynamical models. The PD system also enables a complementary triggering scheme for
the burst itself, increasing reliability, reducing dead time, and extending the sensitivity further out
to nearby dwarf galaxies (see Appendix Section 5.16.1.3). Applications to supernova physics set
the average light yield requirement.

The PD system can also measure energy calorimetrically for all classes of events, working as a
crosscheck of the energy measured by the TPC or improving the resolution when both measure-
ments are used together (see Appendix Section 5.16.1.4). In the event that the DUNE TPC cannot
operate at its goal electric field of 500V/cm, the PD system energy measurements could compen-
sate for reduced charge detector performance because light production increases relative to the
free charge for lower E field.

The PD system could open new areas of investigation. The few-MeV scale solar neutrino inter-
actions occur as isolated events in time and space. Suppressing radiological and noise related
backgrounds to pull out a signal for these events likely requires redundant measurements with
charge and light. The PD system may also provide a means for identifying events with Michel
electrons produced from the decay of a stopped muon. Tagging these electrons can be used to
estimate the antineutrino content of the beam flux or further reduce nucleon decay backgrounds
(see Appendix Section 5.16.1.4).

Volume II, DUNE Physics, of this technical design report (TDR) describes the detailed physics
simulations of the main DUNE physics drivers. The PD system performance specifications have
been established and validated in part by simulation. Details of this simulation, which includes
non-uniformity in light yield due to the optical properties of the argon, electronics response, and
realistic reconstruction, are presented in Appendix Section 5.16.1.

5.2 Design Specifications and Scope

5.2.1 Specifications

Based on the physics drivers and additional simulation studies described in Appendix Section 5.16.1,
Table 5.1 summarizes the PD system specifications necessary to achieve the DUNE science objec-
tives. In the remainder of this chapter, we present a design that meets or exceeds the specifications.
Section 5.8 summarizes an extensive set of prototypes that validate the assumptions used in the
design.
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Table 5.1: PDS specifications

Label Description Specification
(Goal)

Rationale Validation

SP-FD-3
Light yield > 20 PE/MeV

(avg), >
0.5 PE/MeV (min)

Gives PDS energy resolution
comparable to that of the
TPC for 5-7 MeV SN νs, and
allows tagging of > 99 % of
nucleon decay backgrounds
with light at all points in de-
tector.

Supernova and nu-
cleon decay events
in the FD with full
simulation and re-
construction.

SP-FD-4 Time resolution < 1 µs
(< 100 ns)

Enables 1mm position reso-
lution for 10MeV SNB can-
didate events for instanta-
neous rate < 1 m−3ms−1.

SP-FD-15
LAr nitrogen con-
tamination

< 25 ppm Maintain 0.5PE/MeV PDS
sensitivity required for trig-
gering proton decay near
cathode.

In situ measure-
ment

SP-PDS-1
Clean assembly area Class 100,000 clean

assembly area
Demonstrated as satisfac-
tory in ProtoDUNE-SP, and
is the DUNE assembly area
standard.

ProtoDUNE-SP
and in Fermilab
materials test
stand

SP-PDS-2
Spatial localization
in y-z plane

< 2.5 m Enables accurate matching
of PD and TPC signals.

SNB neutrino and
NDK simulation
in the FD

SP-PDS-3
Environmental light
exposure

No exposure to sun-
light. All other
unfiltered sources:
< 30 minutes inte-
grated across all ex-
posures

Shown to prevent damage to
WLS coatings due to UV.

Studies in
ProtoDUNE-SP,
and at IU

SP-PDS-4
Environmental
humidity limit

< 50 % RH at 70 °F Demonstrated to prevent
damage to WLS coatings
due to humidity.

PD optical coating
studies

SP-PDS-5
Light-tight cryostat Cryostat light leaks

responsible for <
10 % of data trans-
ferred from PDS to
DAQ

Minimizing false triggers due
to cryostat light leaks helps
limit the data transfer rate to
DAQ.

ProtoDUNE-SP
and ICEBERG

SP-PDS-7
Mechanical deflec-
tion (static)

< 5 mm Minimize motion of PD mod-
ules inside the APA (due to
static and dynamic loads) to
avoid damaging APA.

PD FEA,
ProtoDUNE-SP,
ICEBERG; Ash
River integration
tests and CERN
pre-production
integration tests
pending
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SP-PDS-8
Clearance for instal-
lation through APA
side tubes

> 1 mm Maintain required clearance
to allow PD insertion into
APA following wire wrap-
ping.

PD FEA,
ProtoDUNE-SP,
ICEBERG; Ash
River integration
tests and CERN
pre-production
integration tests
pending

SP-PDS-9
No mechanical inter-
ference with APA,
SP-CE and SP-HV
detector elements
(clearance)

> 1 mm PD mounting and securing
element tolerances must pre-
vent interference with APA
and CE cable bundles.

ICEBERG, Ash
River integra-
tion tests, and
the CERN
pre-production
integration tests

SP-PDS-10
APA intrusion limit
for PD cable routing

< 6 mm PD modules must install into
APA frames following wire
wrapping. PD modules must
not occlude APA side tubes.

ICEBERG, Ash
River integra-
tion tests, and
the CERN
pre-production
integration tests

SP-PDS-11
PD cabling cannot
limit upper-lower
APA junction gap

0mm separa-
tion mechanically
allowed

PD cable connections must
not limit the minimum upper
and lower APA separation.

ICEBERG, Ash
River integra-
tion tests, and
the CERN
pre-production
integration tests

SP-PDS-12
Maintain PD-APA
clearance at LAr
temperature

> 0.5 mm PD mounting frame and ca-
ble harness must accommo-
date thermal contraction of
itself and APA frame.

Thermal mod-
eling, Proto-
DUNE, ICE-
BERG, CERN
pre-production
integration tests

SP-PDS-13
Data transfer rate
from SP-PD to DAQ

< 8 Gbps PD data transfer must not
exceed DAQ data through-
put capability.

Maximum band-
width out of the
PD electronics is
80Mbps

SP-PDS-14
Signal-to-noise in
SP-PD

> 4 Keep data rate within elec-
tronics bandwidth limits.

ProtoDUNE-SP,
ICEBERG and
ProtoDUNE-SP-2

SP-PDS-15
Dark noise rate in
SP-PD

< 1 kHz Keep data rate within elec-
tronics bandwidth limits.

Pre-production
photosensor test-
ing, ProtoDUNE-
SP, ICEBERG
and ProtoDUNE-
SP-2

SP-PDS-16
Dynamic Range in
SP-PD

< 20 % Keep the rate of saturating
channels low enough for ef-
fective mitigation.

Pre-production
photosensor test-
ing, ProtoDUNE-
SP, ICEBERG
and ProtoDUNE-
SP-2
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5.2.2 Scope

The scope of the single-phase (SP) PD system, provided by the SP photon detector (PD) con-
sortium, includes selecting and procuring materials for, and the fabrication, testing, delivery and
installation of light collectors (X-ARAPUCA), photosensors (silicon photomultipliers (SiPMs)),
electronics, and a calibration and monitoring system. This TDR chapter will describe the design,
validation, assembly, and quality assurance (QA)/quality control (QC) testing of the PD system
for a single 10 kt DUNE SP module. The baseline components for a SP module are listed in
Table 5.2.

Table 5.2: PD system baseline configuration

Component Description Quantity
Light collector X-ARAPUCA 10 modules per APA; 1500 total (1000 single-

sided; 500 double-sided)
Photosensor Hamamatsu MPPC 6mm×6mm 192 SiPMs per module; 288,000 total
SiPM signal
summing

6 passive × 8 active 4 circuits per module; 6000 total

Readout elec-
tronics

Based on commercial ultrasound
chip

4 channels/module; 6000 total

Calibration and
monitoring

Pulsed UV via cathode-mounted dif-
fusers

45 diffusers/CPA side; 180 diffusers for 4 CPA
sides

Although the configuration of the SP and DP modules led to significantly different solutions for
the PD system, a number of scientific and technical issues affect them in a similar way, and the
consortia for these two systems cooperate closely on these. See Volume V, The DUNE Far Detector
Dual-Phase Technology, Chapter 5.

5.3 Photon Detector System Overview

5.3.1 Principle of Operation

Liquid argon (LAr) is an abundant scintillator and emits about 40 photons/keV when excited by
minimum ionizing particles [76] in the absence of external E fields. An external E field suppresses
the electron recombination that leads to the excimers responsible for most of the VUV luminescence
in liquid argon (LAr) and hence reduces the photon yield; for the nominal DUNE SP module field
of 500V/cm, the yield is approximately 24 photons/keV [77]. As depicted in Figure 5.1, the
passage of ionizing radiation in LAr produces excitations and ionization of the argon atoms that
ultimately result in the formation of the excited dimer Ar∗

2. Photon emission proceeds through the
de-excitation of the lowest lying singlet and triplet excited states, 1Σ and 3Σ, to the dissociative
ground state. The de-excitation from the 1Σ state is very fast and has a characteristic time
of the order of τfast ' 6 ns. The de-excitation from the 3Σ, state is much slower because it is
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forbidden by the selection rules; it has a characteristic time of τslow ' 1.5µsec. In both decays,
photons are emitted in a 10 nm band centered around 127 nm, which is in the VUV region of the
electromagnetic spectrum [78]. The relative intensity of the fast versus the slow component is
related to the ionization density of LAr and depends on the ionizing particle: 0.3 for electrons,
1.3 for alpha particles and 3 for neutrons [79]. This phenomenon is the basis for the particle
discrimination capabilities of LAr exploited by experiments that can separate the two components,
but its utility in a large detector is effectively restricted to events with single charged particles.
This limits its effectiveness in DUNE, where most events in which such particle ID (PID) would
be beneficial are multi-particle, but it could be a powerful supplement to the charge measurement
in some cases.

Figure 5.1: Schematic of scintillation light production in argon.

5.3.2 Design Considerations

The principal task of the SP PD system is to measure the VUV scintillation light produced by
ionizing tracks in the TPC within the geometrical constraints of the APA structure. The modular
arrangement of the SP module calls for a configuration across the width of the cryostat start-
ing with an APA plane against one cryostat wall, and following with APAs and cathode plane
assembly (CPA)s in the order APA-CPA-APA-CPA-APA. The structure of the APA, along with
the imperative to maximize the active volume of LAr, precludes the use of traditional large area
photomultiplier tubes (PMTs).

A solution that reduces the impact of the PD system on the active volume to zero is to place the
light collector modules in the inactive space between the innermost wire planes of the APAs. To
satisfy APA fabrication constraints and mechanical integrity, we must install the modules through
slots in a (wound) APA frame (see Chapter 2). Individual PD modules are restricted to a profile
of dimensions 23mm×118mm×2097mm. There are ten PD modules per APA, equally-spaced by
592mm, for a total of 1500 per SP module. Of these, 500 are mounted in central APA frames and
must collect light from both directions (dual-face), and 1000 are mounted in frames near the vessel
walls and collect light from only one direction (single-face). Figure 5.2 illustrates the baseline
configuration of PD modules and APAs in an SP module.
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To detect scintillation light over a large area in a compact space requires a multi-step process. First,
the VUV scintillation photons are converted to longer wavelength by chemical wavelength shifters
1. These photons are then channeled as efficiently as possible toward much smaller photosensors
that produce an electrical signal. Because of the severe space constraints, these must be silicon
photosensors with dimensions of just a few millimeters, not a traditional photomultiplier. Another
requirement, distinct from most previous HEP applications of these devices, is that they must
operate reliably for many years at LAr temperatures.

An operational consideration for the PD system design is the presence in the LArTPC of the
long-lived cosmogenic radioisotope 39Ar, which has a specific activity in argon extracted from the
atmosphere of approximately 1Bq/kg [80]. The isotope undergoes beta decay at a mean beta
energy of 220 keV with an endpoint of 565 keV and makes up ∼70% of the radiological background
signal. In the 10 kt FD modules, this leads to a rate of more than 10MHz of very short (∼1mm)
tracks uniformly distributed throughout the module, each of which produces several thousand VUV
scintillation photons. This continuous background affects the data acquisition (DAQ), trigger, and
spatial granularity required of the PD system. Spatial granularity helps even more with rare but
more energetic radiological backgrounds that can produce multi-photon signals, but only a single
detector. Low energy neutrinos, on the other hand, will produce coincident signals on multiple
channels, allowing them to be easily identified.

5.3.3 Design Overview

The large-area light collectors are the core modular elements of the PD system. They convert inci-
dent 127 nm scintillation photons into photons in the visible range (>400 nm) that compact SiPM
photosensors, in turn, convert to an electrical signal. The light collector design must optimize
the costs of various components of the system while meeting the performance requirements. Even
though production cost and key performance parameters of SiPMs have improved significantly in
recent years, covering the light detector surfaces with enough of them to meet the physics require-
ments of the PD system would be cost-prohibitive. The light collector design should maximize the
active VUV-sensitive area of the PD system while minimizing the necessary photocathode (SiPM)
coverage. This is detailed in Section 5.4.

5.3.3.1 Light Collectors

DUNE investigated many PD light collector module options before forming the SP PD consortium;
we selected four for further development. Two designs, S-ARAPUCA2 and X-ARAPUCA, use a
relatively new scalable concept designed to provide significantly better performance than the other
approaches. Functionally, ARAPUCA is a light trap that captures wavelength-shifted photons
inside boxes with highly reflective internal surfaces until they are eventually detected by SiPMs

1The most widely used wavelength shifter for LAr detectors is 1,1,4,4-Tetraphenyl-1,3-butadiene (TPB), which absorbs
VUV photons and re-emits them with a spectrum centered around 420 nm, close to the wavelength of maximum quantum
efficiency for photo-conversion in most commercial photosensors.

2Arapuca is the name of a simple trap for catching birds originally used by the Guarani people of Brazil.
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PD	Mount	Rail	Assemblies	
(2	sets	per	APA	sec7on,	10	total)	

PD	Inser7on	Slots	
(5	per	APA	side,	10	total)	

Figure 5.2: End-on schematic view of the active argon volume showing the four drift regions and anode-
cathode plane ordering of the TPC inside the SP module (top). The three rows of APAs across the
width of the SP module are two frames high and 25 frames deep. Schematic of an APA frame (on its
side) showing the ten pairs of PD module support rails (almost vertical in figure) (bottom). Notice the
five slots on the frame’s side that the PD modules fit through (top of figure). The other five slots are
on the frame’s opposite side, at the bottom of the figure.
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or are lost. The two other designs are based on the use of wavelength-shifters and long plastic
light guides coupled to SiPMs at the ends. Their performance could meet the basic physics
requirements but with only a small safety margin, and their performance is not easily scalable
within the geometric constraints of the SP module.

The performance of the light collector is characterized by the collection efficiency of the device,
which is defined as the ratio of the number of detected photons and the number of 127 nm scintil-
lation photons incident on the light collector window. For the ARAPUCA, this depends on three
distinct aspects of the design:

• The efficiency of the conversion of incident VUV photons to photons trapped inside the
cavity. This depends primarily on the wavelength shifter(s) efficiency and the fraction of
converted photons that enter the cavity.

• The efficiency for the captured photons to eventually fall on the photosensor. This depends
primarily on the reflectivity of the surfaces of the cavity, the geometry of the cavity, and the
ratio of the photosensitive area to the light collector window area.

• The efficiency for the photosensor to convert incident photons to an electronic signal. This
depends on the energy of the converted photons in the cavity and properties of the commercial
sensor.

The effective area of a PD module is another useful figure-of-merit that is defined to be the photon
collection efficiency multiplied by the photon collecting area of a PD module.

S-ARAPUCA: In an S-ARAPUCA cell, enhanced photon trapping is attained when using the
wavelength–shifting plates and the technology of the dichroic short-pass optical filter. These
commercially available interference filters use multi-layer thin films highly transparent to photons
with a wavelength below a tunable cutoff, with transmission typically more than 95%, yet almost
perfectly reflective to photons with a wavelength above the cutoff. Such a filter forms the entrance
window to a cell whose internal surfaces are covered by highly reflective acrylic foils except for a
small fraction occupied by SiPMs.

For the collector to act as a photon trap, the external face of the dichroic filter is coated with a
wavelength shifting coating with an emission wavelength less than the cutoff wavelength of the
filter. The transmitted photons pass through the filter where they encounter a second wavelength-
shifter coated on either the inside surface of the filter plate or on the rear surface of the box. This
second wavelength-shifter has emission spectra which exceed the cutoff wavelength, thus trapping
the photon inside the box. Trapped photons reflect off the inner walls and the filter surface(s) (of
reflectivity typically greater than 98%) and have a high probability of impinging on a SiPM before
being lost to absorption.

Several iterations of the S-ARAPUCA design were tested in small cryostats (Section 5.8.2.1) and
ProtoDUNE-SP (Section 5.8.2.2), establishing the viability of the concept for DUNE.

X-ARAPUCA: The X-ARAPUCA, adopted as the baseline design and detailed in Section 5.4, is
an evolution of the first generation S-ARAPUCA. In the X-ARAPUCA, the secondary wavelength-
shifting (WLS) layer of the S-ARAPUCA (a vacuum-deposited layer of WLS applied to the inner
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surfaces of the cell) is replaced by a WLS plate with an emission wavelength higher than the filter
plate transmission frequency. Wavelength shifted photons from this plate have two mechanisms
for transport to the photosensors inside the cell: either they are transported along the WLS plate
to the photosensors via total internal reflection, or those escaping the plate are captured due to
reflection from the dichroic filter by the standard ARAPUCA effect. The concept is illustrated in
Figure 5.3. Validation of the X-ARAPUCA design is described in Sections 5.8.3.1 and 5.8.3.2.

PTP
Dichroic Filter

LAr

LAr

WLS plate

Charged particle

liquid argon 
scintillation 

light

127 nm

350 nm

430 nm

Si
PM

Not to scale.

Reflective surface

Figure 5.3: Schematic representation of a single-sided readout X-ARAPUCA operating principle. This
example assumes a filter cutoff of 400 nm. (Note: In the original ARAPUCA concept, the second
wavelength-shifter was coated on the inner surface of the filter and the WLS plate shown in the figure
was absent.)

While the S-ARAPUCA modules deployed in ProtoDUNE-SP collect light from only one direction,
the next generation X-ARAPUCA can be deployed as either single-face or dual-face readout by
using either an opaque reflector plate (single) or a second dichroic filter window (dual) on the
second face. Figure 5.4 shows how a light-collector module is incorporated into an APA. One
module spans the width of an APA. Figure 5.5 (left) shows a detail of the module where the 24
X-ARAPUCA cells are visible on either side of a signal summing and interface board that becomes
enclosed by the hollow central beam of the APA frame. Figure 5.5 (right) illustrates how a module
is inserted into an APA frame.

The X-ARAPUCA light collector design has the flexibility to accommodate greater demands, such
as might be desired for Short-Baseline Neutrino (SBN) physics, without major changes. One
example of this flexibility is the ability to increase the number of SiPMs to increase light yield,
which could be incorporated quite late in the final design stages because it would not involve
significant mechanical changes.

5.3.3.2 Silicon Photosensors

The SP PD system uses a multi-step approach to scintillation light detection with the final stage
of conversion into electrical charge performed by SiPMs. Robust photon conversion efficiency, low
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Figure 5.4: 3D model of PDs in the APA. The model on the left shows the full width of a one APA
deep slice of the TPC illustrating the APA-CPA-APA-CPA-APA system configuration. The figure on
the right shows a detail of the top far side of the TPC where three photon collector modules are visible.

Figure 5.5: Solid model of a PD module being inserted into an APA frame (wires not shown), which is
done after the APA assembly is completed.
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operating voltages, small size, and ruggedness make their use attractive in the SP design where
the PDs must fit inside the APA frames.

Based on extensive testing and experience with the vendor, we have selected a 6mm×6mm MPPC
produced by Hamamatsu3 (Japan) as the baseline SiPM device. We are also vigorously pursuing
an alternative based on the design of a device developed for operation in LAr by the DarkSide
experiment collaboration and Fondazione Bruno Kessler (FBK)4 (Italy).

The baseline PD system design has 192 MPPCs per PD module with groups of 48 MPPCs electri-
cally ganged into four electronics readout channels, which provides some spatial granularity within
a module and helps to reduce the impact of radiological noise. This configuration has a total of
288,000 MPPCs per SP module.

5.3.3.3 Readout Electronics

The PD system design requires an electronics readout system that collects and processes electric
signals from photosensors in LAr to (1) provide the interface to trigger and timing systems, and (2)
enable data transfer to an offline storage system for physics analysis. The quantitative requirements
for the system are driven by many FD level specifications that affect signal size sensitivity, signal-
to-noise (S/N), timing resolution, event size and data transfer limits from the DAQ, power needs
and dissipation limits, channel density and channel count, and cost.

As described in Section 5.3.3.2, each electronics signal from a PD module is formed from an
ensemble of 48 Hamamatsu MPPCs summed into a single channel by a combination of passive
and active ganging. A cold amplifier adjusts the MPPC output signal level before transmitting
the signal over ∼ 20m long5 twisted-pair cables to the input of front-end (FE) analog-to-digital
converters (ADCs) outside the cryostat. The twisted pair cable is impedance-matched to the
receiver amplifiers for the ADCs to optimize common-mode noise rejection at the input of the
front-end digitizer.

The digitizer is a low-cost solution based on commercial ultrasound ASIC chips rather than digi-
tizers based on flash ADCs used in ProtoDUNE-SP. Inspiration for this FE comes from the system
developed for the Mu2e experiment cosmic ray tagger (CRT) readout system as described in Sec-
tion 5.6.2.

The FE will continuously digitize the input signals for each channel and store waveforms alongside
event metadata that meet the trigger conditions. In an externally triggered waveform mode, the
configured waveform window at the time of the external trigger is also stored. These internally
or externally triggered waveforms are transmitted to the DAQ board reader processes for storage.
The DAQ system and data storage limitations impose constraints on the data bandwidth, readout
rates, and zero suppression.

3Hamamatsu™ Photonics K.K., http://www.hamamatsu.com/.
4Fondazione Bruno Kessler™, https://www.fbk.eu.
5Cable lengths are not uniform across all PDs, ranging from 15m at the shortest to 27.25m at the longest, averaging

20m.
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Single photoelectron signals from 39Ar and radiological backgrounds will dictate threshold level
adjustments. We will configure the photon readout to trigger on signals from the central trigger
and timing systems for a variety of configurable events, e.g., beam events, cosmic muons, periodic
triggering, random triggering, or any combination of these. A special trigger condition needed for
SNB observation will enable readout of all digitized data over predefined periods. The interface
design will define the power, grounding, and rack schemes.

5.3.4 Options to Improve Uniformity of Response

Because the PD modules are installed only in the APA, light collection is not uniform over the
entire active volume of the TPC. Though not necessary to meet the basic DUNE performance
specifications, improving the uniformity of the response would increase the trigger efficiency, sim-
plify the analysis for SNB neutrinos and increase the light yield of the detector, which could enable
enhanced calorimetric measurements based on light emitted by the ionizing particles.

The primary source of non-uniformity of response is that the Rayleigh scattering length for 127 nm
scintillation photons is relatively short compared to the size of the TPC active volume. In parallel
to the baseline design, we are pursuing two options that convert 127 nm scintillation photons to
longer wavelength photons that have a longer Rayleigh scattering length, significantly improving
light collection uniformity:

• Use of a wavelength–shifter–coated cathode plane; see Appendix Section 5.16.2.1.
• Use of trace amount of xenon in the LAr; see Appendix Section 5.16.2.2.

5.3.5 Overview Summary

As described in Sections 5.16.1.2 and 5.16.1.3, the performance required for the PD system to
achieve 99% for tagging nucleon decay events is a light yield of 0.5 PE/MeV at the furthest point
(near the CPA), while the requirement to enable a calorimetric energy measurement with the PD
system for low-energy events like SNBs is 20PE/MeV averaged over the active volume (FD-SP-3
in Table 5.1). The relationship between these two different light yields and the collection efficiency
of the PD system depends on the assumed Rayleigh scattering length. Conservatively assuming
that this length is 60 cm, the 0.5PE/MeV at the CPA corresponds to a collection efficiency of 1.3%
and the 20PE/MeV averaged over the active volume corresponds to an efficiency of 2.6%.

Although full validation of the SP PD system light collection system is still in progress, initial
results on the X-ARAPUCA prototype are very encouraging – the single cell prototype (Sec-
tion 5.8.3.1) has achieved a collection efficiency of 3.5 %. This is significantly higher than the
requirement.

A measured collection efficiency in excess of the specification ensures a safety margin against
degradation in performance of the optical components over time and failures of a fraction of
inaccessible active components during long term operation of the detector. It also opens broader
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opportunities for the photon detection system to extend the physics reach of the experiment,
perhaps in unanticipated ways.

5.4 Light Collectors

The X-ARAPUCA, adopted as the baseline design, is an evolution of the ARAPUCA concept
that further improves the collection efficiency, while retaining the same working principle, me-
chanical form factor and active photosensitive coverage. In the original ARAPUCA concept, two
wavelength-shifters were coated on either side of the dichroic filter window. In contrast, the X-
ARAPUCA replaces the inner surface coating with a wavelength-shifter-doped polystyrene light
guide6 occupying a portion of the cell volume, with the silicon photosensor readout mounted along
the narrow sides of the cell, as illustrated in Figure 5.6. The model shown is a single cell design
used for prototypes that allows for photons to enter from either face, however one window can be
replaced with an opaque reflecting surface for sensitivity through just one face.

Photons entering the light guide plate are absorbed and wavelength-shifted with high efficiency, and
some fraction (those incident on the plate surface at greater than the critical angle) are transported
to the readout via total internal reflection. The LAr gaps between the plate and the surfaces of
the cavity ensure the discontinuity of the refractive index that contributes to effective trapping of
the photons (nplate=1.58 and nLAr=1.24 for the wavelengths emitted by the plate). Those exiting
the plate reflect off the filter or other highly reflecting surfaces of the cell, with some fraction
eventually incident on a SiPM, as in a standard ARAPUCA cell. X-ARAPUCA is thus effectively
a hybrid solution between the S-ARAPUCA and the WLS light guide concepts implemented in
ProtoDUNE-SP.

This solution minimizes the number of reflections on the internal surfaces of the cell and thus
minimizes the probability of photon loss. We have performed a full numerical description of the
X-ARAPUCA using the Geant4 framework, following previous studies done for the S-ARAPUCA
device [81]. The comparison between the two kinds of devices is dependent on the value of absorp-
tion length of the bar, which was not known precisely, so the gain in efficiency for the X-ARAPUCA
with the dimensions tested at UNICAMP is estimated to be between 15 and 40% when compared
to the S-ARAPUCA with same dimensions and number of SiPMs. Results from prototype mea-
surements are presented in Sections 5.8.3.1 and 5.8.3.2 and are consistent with the simulations.

The PD module designed for the DUNE SP module, illustrated in Figure 5.7, consists of four
supercells, each containing a rectangular light guide inside the cell positioned behind an array of
six dichroic filters that form the entrance window. This design is easily configurable to detect light
from just one side, as required for the side APAs, or from both sides for the central APAs.

For dual-sided X-ARAPUCA modules, dichroic filters are placed on both sides of the cell facing
the drift volumes. In the case of the single-sided device, the back side of the cell has a layer of
highly reflective Vikuiti7 to act as a reflector. In both cases, the SiPM arrays are installed on two

6Eljen EJ-286™.
73M Vikuiti™ ESR - http://multimedia.3m.com/mws/media/193294O/vikuiti-tm-esr-application-guidelines.pdf
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Figure 5.6: Simplified conceptual model depicting a X-ARAPUCA cell design sensitive to light from
both sides: assembled cell (left), exploded view (right). The yellow plates represent the dichroic filters
(coated on their outside surfaces with p-terphenyl (PTP) WLS), the pale blue plate represents the
wavelength shifting plate, and the photosensors are visible on the right side of the cell. The size and
aspect ratio of the cells can be adjusted to match the spatial granularity required for a PD module. .

of the narrow sides of the cell perpendicular to the windows, parallel to and up against the light
guide thin ends. Half of the SiPM active detection area collects photons from the light guide, a
quarter of the area on either side of the guide is free to collect the fraction of photons reflected off
the cell walls and windows. This fraction of photosensor coverage for photons emerging from the
light guide ends is a result of using a standard 6×6mm2 SiPM placed symmetrically with respect
to the mid-plane of the bar. Simulation of two additional SiPM geometries with the same active
area (4×9mm2 and 3×12mm2) showed no substantial difference in the detection efficiency that
would justify a custom geometry for the SiPM.

The basic mechanical design of the X-ARAPUCA-based PD modules is similar to that of the two
prototypes produced for ProtoDUNE-SP. The prototype design was modified to include mechanical
changes to allow both single-sided and dual-sided readout; an increase in the light collection area
made possible by larger slots in the APA; and a modified cabling and connector plan necessary
to move the PD cables out of the APA side tubes while reducing cable requirements to one Cat-6
cable per PD module.

An X-ARAPUCA module is assembled in a bar-like configuration with external dimensions in-
side the APA frame of 2092mm×118mm×23mm, allowing insertion between the wire planes
through each of the ten slots (five on each side) in an APA. In addition, there is a header block
5mm(long)×135mm(wide) at the insertion side of the module used to fix the module inside the
APA frame, bringing the maximum length to 2097mm and the maximum width to 135mm. The
module contains four X-ARAPUCA supercells, each with six dichroic filter-based optical win-
dows (for the single-sided readout) or twelve windows (double-sided readout) with an exposed
area of 78mm×93mm. The total window area for each (single-sided) supercell X-ARAPUCA is
43,524mm2. The internal dimensions of a supercell are approximately 488mm×100mm×8mm.
A WLS plate (Eljen EJ-286) of dimensions 487mm×93mm×3.5mm is centered in the supercell
midway between the dichroic windows.
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Figure 5.7: X-ARAPUCA module overview. A module, which spans the width of an APA, includes 24
X-ARAPUCA cells, grouped into a set of four supercells of six cells each. In the center, active ganging
PCBs collect the signals and mechanically connect the supercells.
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The thickness of 3.5mm for the plate is chosen to allow the almost complete absorption of the
photons wavelength-shifted by the PTP and to ensure the nominal conversion efficiency. This
thickness allows a 2mm LAr gap on both sides of the plate, which prevents any physical contact
of the surfaces even considering the tolerances on material thicknesses and plate flatness.

Figure 5.8: Detailed exploded view of X-ARAPUCA supercell. Note that components are designed to
be cut from FR-4 G-10 sheets to simplify fabrication.

To reduce production costs and simplify fabrication, most of the PD components are designed to
be water-jet cut from sheets of FR-4 G-10 material, with minimal post-cutting machining required
(mostly the tapping of pre-cut holes). The current design contains many small fasteners; we will
investigate replacing some of the fasteners with epoxy lamination of cut sheets where appropriate
and cost effective.

The SiPMs are mounted to PCBs called “photosensor mounting boards” that are positioned on the
long sides of the supercell. Six SiPMs are mounted to a single photosensor mounting board. The
mounting boards incorporate spacers that position the face of the photosensors a nominal 0.5mm
from the face of the WLS plate. All six are electrically connected in parallel (“passively ganged”).

Before mounting the boards into the X-ARAPUCA module, the boards are tested at room and
LN2 temperatures. Each supercell uses eight photosensor mounting boards, each with six SiPMs
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(Figure 5.9 (top)), to accommodate the 48 SiPMs. The ganged signal outputs from these boards are
connected to traces in signal routing boards at the edge of the PD module. These signal routing
boards also act as mechanical elements in the design, mechanically joining the supercells and
providing for rigidity. The routing boards PCBs are four-layer boards, 1046mm×23mm×1.5mm.

Figure 5.9: Model of photosensor mounting board (top) and signal routing PCB (bottom) for X-
ARAPUCA module. Six Hamamatsu MPPCs are passively ganged and the ganged signals transmitted
along the routing board to the active ganging circuits in the center of the module.

The passively ganged signals are then routed through these boards to an active-ganging PCB
at the center of the module, where all eight passively ganged signals from a single supercell are
actively ganged into one output channel (Figure 5.9 (bottom)). This summed output from a single
supercell is then connected to a single twisted pair in the Cat-6 readout cable for the module. The
active ganging PCBs (one per supercell, four per module) are positioned in the module so that
they are located inside the central APA mechanical support tube when fully installed.

The internal surface on the lateral sides of the cell are lined with the Vikuiti™ adhesive-backed
dielectric mirror foil that has been laser cut with openings at the locations of the SiPMs (i.e.,
the PCB surfaces surrounding the SiPMs visible in Figure 5.9 will be highly-reflective). In the
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case of the single-sided readout, the dichroic filter windows on the non-active side of the cell are
replaced by a blank FR-4 G-10 sheet lined in the cell interior with a Vikuiti™ reflector foil. These
types of foils have been used extensively in the WArP8 and LArIAT9 experiments, where they
performed well optically; no issues were reported related to adhesion of the film or dissolution of
the wavelength shifter in LAr.

In DUNE, we have demonstrated that the foils adhere very strongly to FR-4 G10 surfaces cleaned
following the PD standard cleaning procedures. Tests by the PD group have demonstrated adhe-
sion is maintained through multiple cryogenic (LN2)/warm thermal cycles. The mechanical design
provides additional mechanical constraints on the Vikuiti™ sheets after module assembly, so the
foils will be held in place mechanically even if the adhesive fails. Samples of the adhesive have
been used in other experiments with no negative impact on the LAr purity observed. Samples
will be tested in the Fermilab materials test stand, and in ICEBERG R&D cryostat and electron-
ics (ICEBERG), SBND, and ProtoDUNE-SP-2 to confirm that the adhesive does not negatively
impact LAr purity or detector performance.

To allow for air to vent out of the cell and LAr to completely fill the cell during the detector fill,
holes are provided at the end of each supercell (four holes total, top and bottom of the cell when
mounted in the APAs).

The optical window(s) of each supercell are dichroic filters with a cut-off at 400 nm. While the fil-
ters used for the ProtoDUNE-SP prototypes have been acquired from Omega Optical Inc.10, Opto
Eletronica S.A.11 (in Brazil) is our current primary candidate vendor for DUNE production filters.
Opto is a well-established company with a long history of involvement in research optical com-
ponents for harsh environments and large thermal gradients (including camera optics for satellite
photography). We plan an extensive suite of testing of their filters at UNICAMP, in ICEBERG,
and in ProtoDUNE-SP-2. Other vendors are also being investigated12.

The filters are coated on the external side facing the LAr active volume with PTP13. The coatings
for the ProtoDUNE-SP modules have been made at the thin film facility facility at Fermilab using
a vacuum evaporator. Each coated filter was dipped in LN2 to check the stability of the evaporated
coating at cryogenic temperature.

For the FD, filter coatings will be done by the vacuum deposition facility at UNICAMP (see
Section 5.8.3.1).

8Wimp ARgon Program at Gran Sasso: http://warp.lngs.infn.it/
9Liquid Argon Time Projection Chamber at Fermi National Accelerator Laboratory (Fermilab): https://lariat.

fnal.gov/
10Omega Optical Inc., Brattleboro, VT USA: http://www.omegafilters.com/
11Opto Electronica S.A.: http://www.opto.com.br/
12ASHAI -Japan, Andover-USA, and Edmunds Optics-USA
13p-TerPhenyl, supplier: Sigma-Aldrich®.
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5.5 Silicon Photosensors

The physics goals, the design of the light collectors, and the trigger and DAQ system constraints
determine the suite of specifications for the silicon photosensors such as the number of devices,
spectral sensitivity, dynamic range, triggering threshold and rate, and zero-suppression thresh-
old. An initial survey of commercial products and a 12-month period of R&D indicated that
the performance characteristics of devices from several vendors effectively meet the PD system
needs. However, a key additional requirement is to ensure the mechanical and electrical integrity
of these devices in a cryogenic environment. Catalog devices for most vendors are certified for
operation only down to −40◦C and though one candidate device performed well initially, after an
unadvertised production process change a large fraction cracked when submerged in LAr14. This
highlighted the need to be in close communication with vendors in the SiPM design, fabrication,
and packaging certification stages to ensure robust and reliable long-term operation in a cryogenic
environment.

Nearly one thousand SiPMs, of several types, are used in ProtoDUNE-SP’s PD system15, providing
an excellent test bed for evaluation and monitoring of SiPM performance in a realistic environment
over a period of months. Results from ProtoDUNE-SP are summarized in Section 5.8.

The SP module baseline PD system design has 192 6×6mm2 MPPCs per PD module with groups
of 48 MPPCs electrically ganged into four electronics readout channels. This leads to a total of
288,000 MPPCs.

Two entities have expressed interest to engage with the consortium with an explicit intent to
provide a product specifically for cryogenic operation: (1) Hamamatsu Photonics K.K., a large
well-known commercial vendor in Japan, and (2) Fondazione Bruno Kessler (FBK)16 in Italy. FBK
is an experienced developer of solid state photosensors that typically licenses its technology; it is
partnering with the DarkSide17 collaboration to develop devices with specifications very similar to
DUNE’s. Table 5.3 summarizes the key characteristics of the baseline device, Hamamatsu S13360,
and two other devices from Hamamatsu and FBK that are under consideration.

While the devices from Hamamatsu have been tested extensively by the consortium, those from
FBK are relatively new to us. The technologies they have developed that are suitable for the needs
of DUNE are the NUV-HD-SF (standard field) and NUV-HD-LF (low field) [82]. In particular, the
LF technology (see Table 5.3) offers the lowest dark current rate and has been successfully employed
for the DarkSide experiment. NUV-HV-SF sensors developed by FBK specifically for DUNE have
been tested in Milano (Italy), CSU (CO, US), and NIU (IL, US). The sensors were characterized
both at room and cryogenic temperatures (77K) and underwent more than 50 thermal cycles.
The tests confirmed the nominal performance of the photosensors and proved the reliability of
the sensors at low temperature. Extensive thermal tests and characterization of sensors in the
NUV-HD-LF technology are in progress.

14SensL MicroFC-60035C-SMT
15ProtoDUNE-SP uses 516 SensL MicroFC-60035C-SMT, 288 Hamamatsu MPPC 13360-6050CQ-SMD with cryogenic

packaging, and 180 Hamamatsu MPPC 13360-6050VE.
16Hamamatsu Photonics K.K.: https://www.fbk.eu/en/
17Darkside project: http://darkside.lngs.infn.it/
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The milestone for photosensor selection for the first SP module is early 2021. Though a baseline
photosensor that meets the requirements has been identified, the addition of experienced INFN
groups to the PD system effort has enabled us to pursue the promising FBK option in a way that
was not possible previously. We are carrying out targeted investigations on the performance, cost,
and production capability to establish the viability of the alternatives for all or part of the sensors
required for either the first or subsequent SP modules. Two photosensor types (one from each
vendor) will be selected in early 2020 to be used in ProtoDUNE-SP-2.

As described in Section 5.4, the size and sensitivity of currently available SiPMs requires that
multiple devices are needed for each X-ARAPUCA cell. The spatial granularity of each device
is much smaller than required for DUNE so, along with limitations on the number of readout
channels, it is required that the signal output of the SiPMs must be electrically ganged. The
terminal capacitance of the sensors strongly affects the S/N when devices are ganged in parallel,
which led to a design that passively gangs several sets of SiPMs in parallel, which are then summed
with active components, as described in Section 5.6.1.

Table 5.3: Candidate Photosensors Characteristics.

Hamamatsu (Baseline) Hamamatsu-2 FBK
Series part # S13360 S14160 NUV-HD-LF
Vbr (typical) 50 V to 52 V 36 V to 38 V 31 V to 33 V
Vop (typical) Vbr+3V Vbr+2.5V Vbr+3V
Temperature dependence
of Vbr

54mV/K 35mV/K 25mV/K

Gain at Vop(typical) 1.7× 106 2.5× 106 0.75× 106

Pixel size 50 µm 50 µm 25 µm
Size 6 mm x 6 mm 6 mm x 6 mm 4 mm x 4 mm
Wavelength 320 to 900 nm 280 to 900 nm 280 to 700 nm
PDE peak wavelength 450 nm 450 nm 450 nm
PDE at peak 40% 50% 50%
DCR at 0 · 5PE < 50 kHz ·mm−2 < 100 kHz ·mm−2 < 25 kHz ·mm−2

Crosstalk < 3% < 7% < 3%
Terminal capacitance 35 pF ·mm−2 55 pF ·mm−2 50 pF ·mm−2

Lab experience Mu2e and DUNE proto-
types

Darkside

5.6 Electronics

The electronic readout system for the PD system must (1) collect and process electrical signals
from SiPMs reading out the light collected by the X-ARAPUCAs, (2) provide an interface with
the trigger and timing systems supporting data reduction and classification, and (3) transfer data
to offline storage for physics analysis. Figure 5.10 provides a simple overview of the signal path
and key elements.
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Figure 5.10: Overview of the PD system signal path.
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As specified in the requirements Table 5.1, the readout system must enable the t0 measurement
of non-beam events; this capability will also enhance beam physics by recording interaction time
of events within beam spill more precisely to help separate against potential cosmic background
interactions. A highly capable readout system was developed for use with ProtoDUNE-SP and
prototype development as described in Section 5.8.2.2. However, a more cost-effective waveform
digitization system developed for the Mu2e experiment has been identified and selected as the
baseline choice for the PD system.

5.6.1 SiPM Signal Ganging

The ganging of electrical signals from SiPM arrays is implemented to minimize the electronics
channel count while maintaining adequate redundancy and granularity, as well as to improve the
readout system performance. Technical factors that affect performance of the ganging system are
the characteristic capacitance of the SiPM and the number of SiPMs connected together, which
together dictate the S/N and affect the system performance and design considerations.

We have demonstrated a feasible purely passive summing scheme with twelve Hamamatsu MPPC
sensors now operational in ProtoDUNE-SP. For optimal performance in DUNE, we have shown
that an ensemble of 48 Hamamatsu 6mm×6mm MPPCs can be summed into a single channel
by a combination of passive and active ganging (see Section 5.8.1). In this scheme, an amplifier
is used to adjust the MPPC output signal level to the input of an ADC; the active summing is
realized with an OpAmp THS4131. This combination of passive and active ganging with cold
signal summing and amplification, illustrated in Figure 5.11, is the baseline for the PD system.

5.6.2 Front-end Electronics Baseline Design

The FE electronics for the development and prototype stages of the PD system, including ProtoDUNE-
SP, was provided by a custom-designed SiPM Signal Processor (SSP, see DocDB 3126 [83]). This
system was highly configurable and provided detailed information on the photosensor signal, which
allowed a thorough understanding of the photon system performance. For the much larger SP mod-
ule, a system is required that meets the performance requirements yet optimizes the cost. To this
end, we have developed a solution based on lower-sampling-rate commercial ultrasound ASIC chips
rather than digitizers based on flash ADCs used in the SSP. Inspiration for this cost-effective FE
comes from the system developed for the Mu2e experiment cosmic ray tagger readout system.
Both SSP and the new design are used in the PD validation process summarized in Section 5.8 to
allow direct comparison.

Development of the readout electronics to date has been primarily by US groups. However, since
fabrication of the DUNE readout electronics will be conducted by a collaboration of Latin American
institutions (including groups in Peru, Colombia, Paraguay, and Brazil), further development is
being performed by these groups, with support from the US groups. The engineers met and
worked together at Fermilab in summer 2019, and that collaboration is continuing. We expect
the first DAPHNE prototypes to be complete and tested in ICEBERG in April/May 2020. Pre-
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Figure 5.11: SiPM signal summing board circuit: 6 passive x 8 active, 48 SiPMs total.
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production Mu2e-based electronics readout will also be tested in the ProtoDUNE-SP-2 run at
European Organization for Nuclear Research (CERN) in 2021-2022.

5.6.2.1 Front-end Board and Controller

The readout and digitization of the signals from the active summing board described in Sec-
tion 5.6.1 will rely on a set of FE board (FEB) readout electronics boards and controller boards,
originally designed for the Mu2e experiment [7] at Fermilab. As discussed in Section 5.8.1, pre-
liminary results indicate that the active-summing board and Mu2e electronics FEB combination
will perform well together and, in general, meet the readout requirements for the experiment.
Figure 5.12 shows the 64 channel FEB design carried over from Mu2e. The board has a number of
notable features, discussed below. Most importantly, the board is designed to utilize commercial,
off-the-shelf parts only, and is therefore quite inexpensive compared to other designs. In particular,
the digitization implements the low-noise, high-gain, and high-dynamic-range commercial ADCs
used in ultrasonic transducers.

The FEB is the centerpiece of the baseline readout electronics system. The current 64 channel18

FEB relies on commercial ultrasound chips19, with programmable anti-alias filters and gain stages,
to read out the MPPC signals from the active ganging boards inside the PD modules. The board
currently takes HDMI inputs, with four channels per input. Each of the eight ultrasound chips
on an FEB handles eight channels (120mW per channel) of data using a low-noise preamplifier, a
programmable gain amplifier, and a programmable low-pass filter. The information is buffered with
a total of 1GB DDR SDRAM, divided in four places, and a set of Spartan 6™ field programmable
gate arrays (FPGAs) are used for parallelizing the serial ADC data, zero suppression, and timing.
Each of the four FPGAs on a board, corresponding to 16 channels, handles two ADC chips with
an available 256MB DDR SDRAM.

After digitization, the data from each FEB, in the form of pulses (time-stamp and pulse height), is
sent via Ethernet to a master controller that aggregates the signals from 24 FEBs, or 64×24 = 1536
channels. The 24 FEBs corresponding to a single controller will come in sets of 12, with each
set of 12 FEBs referenced to a single chassis as shown in Figure 5.13. A trigger decision (e.g.,
accelerator timing signal) can be produced and/or received by the controller and, depending on
the decision, each event’s digital information is sent to the controller and then to DAQ computers
for processing and storage. The controller-to-DAQ connection will rely on a fiber connection,
although an Ethernet-based controller output option is available.

5.6.2.2 Bandwidth, readout rates, and zero suppression

DAQ system and data storage limitations impose constraints on the data flow from the FE elec-
tronics system. For example, if it were necessary to read out a 5.5µs waveform in order to include

18This text assumes 64 channels/FEB when presenting the FEB and controller. However, we envision 40 channels/FEB
in the final design, corresponding to a single APA as described in Section 5.6.3.

19Texas Instruments™ 12 bit, 80 megasamples/s (MS/s); AFE5807.
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more of the longer time constant scintillation light component, the 80megasamples/s (MS/s), 12-
bit ADC device would produce a 5.3 kbit waveform. For an envisioned dark count (DC) rate of
250 Hz/channel, this corresponds to a data transfer rate of 53MB/s/APA (1 APA=40 channels)
or 6.6MB/s FEB-to-controller DC rate. This rate approaches the crucial bottleneck in the elec-
tronics readout system with a maximum rate of 10MB/s (per FEB). However, zero-suppression
techniques and multi-channel coincidence/threshold requirements at the FEB firmware level can
be used to significantly mitigate this issue, noting that each on-FEB FPGA handles 16 channels.

The design is flexible enough to accommodate modest changes in system requirements, such as
the suppression factor determined by parameters like the readout window length and limits on the
overall trigger rate. Firmware and zero-suppression technique development is in progress and can
easily adapt to the physics and calibration requirements of the PD. In addition to its bandwidth
and DC rate readout capabilities, the system can also manage a highly coincident event in which
a large number (or all) channels fire at once. For example, the controllers’ 24-board write speed of
150MB/s could handle even the unlikely all-detector event featuring 6000 channels firing at once
(corresponding to 4MB event size).

The baseline electronics readout system performance is consistent with the DAQ interface specifi-
cation of 8Gb/s per connection, given that each FEB signal corresponds to a maximum of 10MB/s
(240MB/s total).

5.6.2.3 Power, grounding, and rack schemes

Figure 5.14 shows the grounding, power, and data link schemes for the system. The FEBs are
powered via power-over-Ethernet (600mA, 48V supply) from the controller. One Cat-6 cable from
the controller to each FEB handles the signal and power simultaneously. The reference planes of
the controller and FEB are isolated on both sides. The grounding scheme calls for each set of
twelve FEBs referenced to a single chassis, with each chassis and corresponding controller on
detector ground and the DAQ, connected to each controller via fiber, on building ground.

The rack space and power consumption required by the system assume a total of 6000 channels
with 40 channels/FEB. This system requires 13 chassis (12 FEB/chassis) at 6U each and seven
controllers (controlling 24 FEB each) at 1U each; these can be accommodated in just over two
42U capacity racks. The power supply on a controller is 700W, with each FEB taking 20W.

5.6.3 Electronics Next Steps

The FEBs, developed for the Mu2e cosmic ray veto and proposed for use in DUNE, can read out
an array of MPPCs with an adequate S/N ration to be sensitive to single photons. However, we
want to optimize and further develop them by pursuing the following tasks:

1. To better match the 40 ProtoDUNE-SP channels per APA, the system presented here assumes
that only 40 out of the 64 channels on the existing Mu2e FEB are populated with active
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electronics. A prototype board will test this configuration and validate the associated cost
model.

2. The Mu2e warm readout electronics use last-generation (Xilinx™ Spartan-6) FPGAs and
other components that have since been superseded by newer devices. Design and prototyp-
ing work will incorporate newer FPGAs (Xilinx Spartan-7 or Artix-7) into the electronics,
improving their performance and maintainability over the lifetime of the DUNE experiment.
The Artix-7 FPGAs have been implemented in the SSP readout system used in ProtoDUNE-
SP, and therefore the expertise with these system components has been established.

3. Results from the ICEBERG test stand can determine whether there are sufficient logic re-
sources in the FPGAs to meet a broad range of possible DAQ requirements expected from
the warm readout electronics. To that end, the low-cost FE solution will be compared to
existing 14 bit, 150MS/s SSP readout. Straightforward zero suppression schemes that can
be implemented on the Mu2e board with the current Spartan-6 FPGA will be tested with
respect to potential DAQ data rate limitations. However, increases in the number of logic
cells can be accommodated by switching to more capable, but still pinout-compatible, devices
within the same Xilinx FPGA family as discussed above.

4. It may be desirable to increase the dynamic range of the ADCs used on the FEBs in order to
achieve desired physics goals related to the energy resolution of beam neutrino events. To this
end, we plan to investigate replacing the TI AFE5807 ultrasound chip with the TI AFE5808
ultrasound chip, which is pinout-compatible but incorporates a 14-bit ADC. Ultimately, a
prototype board will incorporate all relevant optimizations and improvements.

The final requirements for the system will be informed by analysis of the data from the read-
out system implemented in ProtoDUNE-SP and subsequent data from operating ICEBERG from
August 2019 through the end of the year.

Additional testing of the system will continue through ProtoDUNE-SP-2 operations. The spec-
ifications for the readout electronics system will be reconsidered based on that experience and
established before the PD final design review (see the high-level schedule in Section 5.15.1).
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5.7 Calibration and Monitoring

Calibration and monitoring is an essential component of the PD system. The primary system is a
pulsed UV-light source that will allow calibration of the PD gain, linearity, and timing resolution
and monitoring the stability of the photon response of the system over time. In many experiments,
a pulsed light system is a valuable well-defined, controllable light source for monitoring but for
(near) surface detectors, often a supplement to using tracked cosmic ray muons, which provide
a much closer replica of the signal from events of interest. However, at DUNE, the muon rate
per individual photon detector will be very low and insufficient to monitor changes in the system
response. In this situation, the pulsed system will play an essential role in achieving and main-
taining the PD performance required for neutrino calorimetry. This system will also be a valuable
detector commissioning tool prior to sealing the cryostat, in the cool-down phase, and during the
LAr fill. Other complementary calibration systems, such as radioactive sources, are described in
Chapter 6.

The system design is almost identical to that deployed in ProtoDUNE-SP, as described in Sec-
tion 5.8.5; the primary differences are the number of diffusers, the lengths of the optical fibers,
and the addition of a monitoring diode.

The system hardware consists of both warm and cold components but has no active components
within the cryostat. The active component consists of a 1U rack mount light calibration module
(LCM) located outside the cryostat. The LCM generates UV (245 nm to 280 nm) pulses that
propagate through a quartz fiber-optic cable to diffusers at the CPA that distribute the light
uniformly across the PDs mounted within the APA. It consists of an FPGA-based control logic
unit coupled to an internal LED pulser module (LPM) and an additional bulk power supply. The
LPM has multiple digital outputs from the control board to control the pulse amplitude, pulse
multiplicity, repetition rates, and pulse duration; programmable DACs control the LPM pulse
amplitude. ADC channels internal to the LCM are used to read out a reference photodiode used
for pulse-by-pulse monitoring of the LED light output. The output of the monitoring diode is
available for normalizing the response of the SiPMs in the detector to the monitoring pulse.

DUNE photon monitoring system

•  Side view of one DUNE CPA Panel
Ø  45 fibers per CPA side

~ 

•  Simulation and analyzed data show a single 
diffuser at CPA illuminates 4x4 m2 on APA

•  We would need overlap of photons from 
adjacent diffusers for cross calibration

•  This configuration offers that opportunity

Figure 5.15: Schematic of a complete SP cathode plane (60 m × 12 m) showing the locations of the
calibration and monitoring system diffusers. Each diffuser illuminates a region of about 4 m × 4 m
(indicated by the squares) on APAs 3.6m away.

Quartz fibers, 10m to 30m long, are used to transport light from the optical feedthrough (at the
cryostat top) through the field cage (FC) ground plane (GP), and through FC strips to the CPA
top frame. These fibers are then optically connected to diffusers located on the CPA panels using
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fibers that are 2m to 10m long. The diffusers, 2.5 cm in diameter, are mounted on the cathode
plane panels acting as light sources to illuminate PDs embedded in the APAs. There will be
45 diffusers uniformly distributed across each of the SP module cathode planes facing APAs, as
indicated in Figure 5.15. Each diffuser will illuminate an area of approximately 4 m× 4 m on the
APAs that are 3.6m away.

The diffusers reside at the CPA potential, so the high voltage (HV) system places a requirement on
the fiber electrical resistance to protect the cathode from experiencing electrical breakdown along
this path. This requirement is easily met by the fibers.

As demonstrated in ProtoDUNE-SP, the system performs the required calibration and monitoring
tasks with minimal impact on the TPC design and function.

5.8 Design Validation

This section summarizes the most important sets of measurements, completed, ongoing, and
planned, that validate the SP PD system design.

5.8.1 Photosensors and Active Ganging

As described in Section 5.6.1, the active ganging of SiPMs aims to increase the active photo-
detecting area while keeping the number of readout channels at a reasonable number. Several
active ganging detectors were designed and tested during 2017-2018. The systems were based on
an active summing node mounted near the photosensors in the LAr. Several incarnations of the cold
summing node were designed and tested using SensL and Hamamatsu SiPMs, as were several types
of operational amplifiers. Some of these designs were tested and validated in the S-ARAPUCA
prototype measurements. We describe here only the most recent design that demonstrated that 48
Hamamatsu MPPCs in the baseline design can be ganged together on a single differential output
with excellent signal performance, low noise, and low power dissipation.

Figure 5.16 (left) shows a matrix array of 72 MPPCs organized as 12 rows of six 13360-6050VE
MPPCs each. The six MPPCs per row are connected in parallel, giving a total output capacitance
of 7.8 nF. The 12 rows are connected to the summing node of an operational amplifier, THS4131,
as illustrated in Figure 5.16 (right). Since the DUNE baseline design is based on 48 MPPCs/X-
ARAPUCA module, only eight rows of six MPPCs were used for the tests. The performance
of the cold summing electronics was done by illuminating the MPPC array with an LED and
digitizing the output with a high-speed oscilloscope and with the SSP readout electronics (see
Section 5.8.2.2).

As shown in Figure 5.17 (left), the mean signal has a rise time of 60 ns and a recovery time of
660 ns, well within the DUNE PD specifications.
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Figure 5.16: Summing board with a total of 72 MPPCs used to demonstrate the optimal combination of
passive and active ganging with 48 Hamamatsu 6mm×6mm MPPCs (left). Schematic of the summing
circuit with a THS4131 operational amplifier (right).

Figure 5.17: Waveform signal from 48 MPPCs/ARAPUCA module, summed with the THS4131 opera-
tional amplifier and digitized with the SSP FEB (left); histogram of signals with a 47V bias illustrating
the first photoelectron peak well-separated from the pedestal with an S/N = 9.5 (right).
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Figure 5.17 (right) shows a histogram of light collection signals from the array for a bias voltage
equivalent to 2 volts above the mean breakdown voltage. Since there are 48 MPPCs in the array,
and a single common bias, there is a spread in the gains. Even when the Hamamatsu MPPCs have
a small spread in breakdown voltages, it is enough to smear the peaks in the histogram. It is worth
distinguishing the difference between noise and gain spread. The circuit noise can be measured
as full width at half maximum (FWHM) or root mean square (RMS) around the 0 photoelectron
signal (3.5ADC counts in the figure); the first photoelectron peak is at 33ADC counts, resulting
in an optimal signal to noise ratio of about ten.

Since the breakdown voltage of the MPPCs is provided by the manufacturer for each device, the
gain spread can be reduced by picking groups of 48 MPPCs with similar breakdown values for
each module. The differential output of the cold electronics (CE) impedance is matched to the
readout electronics and able to reject more than 60 dB of common mode noise. This is particularly
important since the MPPCs and output wiring are inside a high voltage TPC. The timing properties
of the 48 ganged electronics were also measured in LAr using a 241Am alpha source. Figure 5.18
shows the time walk for a constant discrimination threshold which, as expected, is not a linear
function of the signal height. The error distribution, which is not Gaussian, has a FWHM of 80 ns.
This value is well within the DUNE specification (Table 5.1).

Figure 5.18: Oscilloscope trace (left) and histogram (right) illustrating time walk from 48 ganged
MPPCs measured with the constant discrimination threshold on the SSP board.

FBK Sensors FBK has published detailed measurements on photosensors developed in collabo-
ration with the DarkSide cryogenic experiment [82]. Figure 5.19 (left) shows that the photon
detection efficiency of candidates devices as function of wavelength is very well matched to the
needs of the X-ARAPUCA.

An extensive program of evaluation of the key performance characteristics is underway by the
DUNE PD system team. In the first phase, a sample of (4mm×4mm, 40µm cell-pitch) devices has
been tested at INFN-Milano in a dedicated setup optimized for the measurement of very low dark
currents. The sensors were operated at 77K and can be biased from 21V (breakdown voltage) up to
31V (maximum overvoltage range at cryogenic temperature is +10V). The dark count rate at 4V
overvoltage is ∼0.2Hz/mm2, which meets the DUNE requirements (see Figure 5.19 (right)). These
devices have undergone numerous temperature cycles during the testing with no deterioration in
characteristics. Another sample at CSU has undergone more than 50 thermal cycles with no
evidence of mechanical failures.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 5: Photon Detection System 5–274

Figure 5.19: PDE measured at 293K for FBK NUV-HD-Cryo and NUV-HD SiPMs (left); dark count
rate for NUV-HD-SF SiPMs at 77K (right).

Mu2e Electronics The Mu2e electronics have undergone a series of end-to-end warm and cold
tests to demonstrate single-photon sensitivity in various parallel/series ganging and SiPM/MPPC
configurations. Here we summarize the results with the 72-MPPC active ganging array described
in Section 5.8.1 at LN2 temperatures. A balun20 is used to convert from the differential actively-
ganged MPPC array output to the single-ended FEB.

A trigger allowed data to be collected in time with an LED flasher, with samples taken every
12.5 ns for the length of the readout window (∼3 µs, in this case). Figure 5.20 shows the system
used and a histogram of the maximum ADC value during each trigger window. The first peak
above zero corresponds to the electronic noise and the second peak corresponds to a one-PE signal.
The signal to noise from these tests was measured to be 4, calculated from the ratio of the single
photon peak (20 ADC , after subtracting the noise peak) to the spread in the noise (σnoise =
5 ADC ); this is similar to the value found when using the SSPs for readout (S/N = 5).

5.8.2 Standard ARAPUCA (S-ARAPUCA)

5.8.2.1 Development Prototypes

As outlined in Section 5.3.3.1, the design for the S-ARAPUCA features a dichroic filter window
coated with a wavelength-shifter on the LAr active volume face and a second wavelength shifter
coated onto the dichroic filter on the surface inside the cell. The proof-of-concept measurements of
this design were performed on a small cell with internal dimensions of 3.5 cm × 2.5 cm × 0.6 cm,
with a window formed from a dichroic filter of dimensions 3.5 cm × 2.5 cm and a wavelength
cut-off at 400 nm. The external side was coated with PTP and the internal side was coated
with tetra-phenyl butadiene (TPB). The trapped light was detected by a single 6mm × 6mm
SensL MicroFC-60035C-SMT SiPM21. The cell was exposed to scintillation light produced in pure

20A transformer used to convert differential (BALanced) signals to single-ended (UNbalanced) ground referenced signal.
21SensL SiPM: http://sensl.com/products/c-series/
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Joel Mousseau

MPPC Tests

• Ran these tests in cold L N2, as well as a cyro cooler in Gustavo’s lab.
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Figure 5.20: The Mu2e electronics readout board was used to read out a 72-MPPC active ganging
array (Vb = 47.2V) (left). The maximum ADC results are shown, with the first and second peaks
representing 0 and 1 photoelectron signals (right).

LAr by an alpha source22 that emits three alpha lines with energies of 4.187MeV, 4.464MeV,
and 4.759MeV with relative abundances of 48.9%, 2.2%, and 48.9%. The observed spectrum
was fit using the predicted photon yield from the three alpha lines to extract the overall collection
efficiency for this configuration of 1.10% ± 0.15% [84] for this configuration, consistent with Monte
Carlo (MC) expectations [81]. This corresponds to a gain in the effective photosensors area of
approximately a factor of 3.7.

A series of subsequent prototypes with filters from different manufacturers, different reflectors, and
different dimensions were evaluated with similar results.

The final set of prototypes prior to ProtoDUNE-SP were tested in the TallBo facility using an
external set of cosmic ray counters as a readout trigger. These consisted of an array of eight
S-ARAPUCA cells each with a photon collection area of 80 cm2, but the SensL SiPMs used in
previous prototypes were replaced with four 6mm × 6mm Hamamatsu S13360-6050VE MPPCs.
Two double-shift light guide modules were also included in the test and served as a reference for
the S-ARAPUCA results.

The measured collection efficiency range for the eight ARAPUCA cells was 0.72% to 0.80%, with
an effective S-ARAPUCA gain of about 4.5 times the photosensor area. These tests demonstrate
that the effective area gain is maintained when the area for light collection of the cell is scaled up
by almost an order of magnitude.

22A 238U-Al alloy in the form of a metallic foil.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 5: Photon Detection System 5–276

5.8.2.2 ProtoDUNE-SP

The most comprehensive set of data on the S-ARAPUCA will come from the fully instrumented
modules in the ProtoDUNE-SP experiment [6] that completed first beam running in November
2018. Since ProtoDUNE-SP will remain filled with LAr for much of the CERN long shutdown, it
will provide a long-term cold test of full-scale PD modules for the first time, so it may be possible
to quantify any deterioration in their performance.

Three prototype photon collector designs are present in ProtoDUNE-SP: 29 double-shift guides,
29 dip-coated guides, and two S-ARAPUCA arrays. The TPC provides precise reconstruction
in 3D of the track of any ionizing event inside the active volume, and matching the track with
the associated light signal will enable an accurate comparison of the relative photon collection
efficiencies of the different PD modules. The large number of modules and independent channels
that record each event can be used to constrain the parameters of the LAr that regulate VUV light
propagation in the simulation and are poorly determined in the literature. In principle, absolute
calculations of of the relative and absolute detection efficiencies are possible using MC simulations.
The precision of this approach may be limited by the precision of the constraints on the parameters
but in any case will result in a consistent simulation constrained by measurements.

Figure 5.21: Event display from ProtoDUNE-SP showing the location of the PD modules on the beam
entry side of the TPC. Reconstructed TPC hits from a test beam electron are visible at approximately
the same height in the TPC as the S-ARAPUCA module mounted in APA 3.

Figure 5.21 shows an event display from ProtoDUNE-SP overlaid with colored bars indicating the
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Figure 5.22: Visible in the center of the photograph of APA 3 is the 16-cell S-ARAPUCA array installed
in ProtoDUNE-SP.

positions of PD modules that are on the beam entry side of the TPC. Of the two S-ARAPUCA
arrays in ProtoDUNE-SP, the first is installed in APA 3 in the fourth position from the top, near
the level at which the beam particles enter this drift volume. This module and the surrounding
light guide modules are illuminated with a significant amount of light from each beam particle
interaction. This module is visible near the center of the photograph of APA 3 in Figure 5.22. The
second is installed in APA 6, in the 6th position from the top, in the drift region on the opposite
side of the opaque cathode plane, which does not see entering beam particles; this module does
not see significant light from beam events (only from showering particles that pass through the
cathode), but it observes photons from a large collection of triggered cosmic rays.

Each ProtoDUNE-SP S-ARAPUCA module array is composed of sixteen cells, where each cell is
an S-ARAPUCA box with window dimensions of 7.8 cm × 9.8 cm; half of the cells have twelve
MPPCs installed on the bottom side of the cell and half have six MPPCs. The MPPCs used are
the Hamamatsu model 13360-6050CQ-SMD, which are functionally the same as the 13360-6050VE
used for the ganging tests (Section 5.8.1) and also on some of the light guide bars in ProtoDUNE-
SP, but this model incorporates a package specifically designed for cryogenic operation23. The
MPPCs have active dimensions 0.6 cm × 0.6 cm and account for 5.6% (12 MPPCs) or 2.8% (6
MPPCs) of the area of the window. The MPPCs are passively ganged together, so that only
one readout channel is needed for each S-ARAPUCA grouping of 12 MPPCs (the boxes with six
MPPCs are ganged together to form 12-MPPC units), so a total of 12 channels is required per
PD module. The total width of a module is 9.6 cm, while the active width of an S-ARAPUCA is
7.8 cm, the length is the same as the light guide modules (∼210 cm)24.

23A thin glass window mounted in front of uncoated silicon photosensitive surface, as opposed to the thin coating
directly on the silicon for the 13360-6050VE.

24Since ProtoDUNE-SP was constructed, the slot opening in the APA opening for PD module installation has been
enlarged allowing for a module with larger collection area.
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An S-ARAPUCA array during assembly is shown in Figure 5.23; the array installed in ProtoDUNE-
SP is shown in Figure 5.22. A simulation of the S-ARAPUCA cells, using code that was validated
by the earlier prototype measurements (Section 5.8.2), predicts a photon collection efficiency for
the module on the beam side of the cathode of 1.5%, and for the module on the non-beam side
with an optimized configuration, (12 SiPMs and PTP coated on the filter substrate), it could be
as high as 3.0%. A full S-ARAPUCA module with the optimized configuration would have an
effective area equivalent to a detector with 36 cm2 active area with 100% collection efficiency and
produce an average light yield across the TPC of 20PE/MeV.

Figure 5.23: ProtoDUNE-SP S-ARAPUCA module being assembled in a class 100,000 clean area. Front
face of assembled module (left) shows the 16 coated dichroic filter plates. Assembly photos show the
reflective rear side (top right) and inner coated surface (right bottom) of Vikuiti reflective foils. Note
the cutouts in foil for MPPC active area.

As described above, for the S-ARAPUCA modules, the SiPMs are passively summed in groups of
12 to produce 12 signal channels per module. The 58 light guide-style light collectors each have 12
SiPMs, which are passively summed in groups of three such that each light guide has four signal
channels. The unamplified summed analog signals from the SiPMs are transmitted directly to
outside the cryostat for processing and digitization by a SSP.

The SSP consists of 12 readout channels packaged in a self-contained 1U module, where each
channel contains a fully-differential voltage amplifier and a 14-bit, 150-MSPS ADC that digitizes
the SiPM signal waveforms. The SSP also provides a programmable bias voltage to the sensors.
The entire set of photon collector arrays are read out by 24 SSP units (a total of 288 channels).

ProtoDUNE-SP PD system Measurements

The ProtoDUNE-SP beam run provides several distinct sets of data for understanding PD system
performance: beam data sets with triggers determined by the beam instrumentation; cosmic ray
data sets from triggers randomly or in coincidence with the CRT modules; and calibration module
data sets, with triggers in coincidence or free running with a programmed light pulse. The single
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avalanche response and gain for all 256 readout channels has been extracted from ProtoDUNE-SP
data, including runs using the pulsed UV-light calibration system.

The analysis is ongoing, but here we summarize some initial results that illustrate the performance
and stability of the PD system:

• Figure 5.24 shows the response25 to tagged electrons (left) and muons (right) with a momen-
tum of 7GeV/c for each of the PD modules on the beam side of the cathode; the S-ARAPUCA
module is in position APA 3, PD module 4. The observed energy is mostly contained within
the first APA width of LAr for electrons but is distributed through the whole width of the
TPC for the minimum ionizing muons. Although a detailed simulation is not completed, the
ratio of the average signal (in photoelectrons) in the S-ARAPUCA module to the adjacent
double-shifter bars, is approximately a factor of five for both the electron and muon samples.
This is consistent with the detection efficiency ratio measured in earlier prototypes.

• Figure 5.25 provides two examples of the timing capability of the PD system. The left plot
shows the excellent correlation between the TPC and PD system track time. The TPC track
time is the track t0 time and the PD system time is the matched flash time for a 4500 track
sample. The right plot shows the measured time difference in the PD system response to two
consecutive flashes from the calibration system, demonstrating timing resolution of 14 ns,
well below the 0.1µs to 1µs physics requirement.

• Figure 5.26 shows the response26 of the S-ARAPUCA in APA 3 to the tagged electron beam
as a function of incident electron kinetic energy. The observed energy is mostly contained
within the first APA (APA 3) width of LAr. The observed number of photons have not
been corrected for geometry, attenuation, or scattering effects but nonetheless shows a linear
response over the 0.3GeV to 7.0GeV beam energy range.

• Figure 5.27 shows the stability of the measured light yield in the S-ARAPUCA on the non-
beam drift side of the TPC (APA 6) using the calibration system (left) and a triggered cosmic
ray muon sample (right). The left plot shows the response to the calibration flashes over
time period spanning November 2018 - June 2019 normalized to the average response over
the period; different colors correspond to different readout channels (error bars not shown
to increase visibility of points; average of the errors is 1.4% with a maximum of 4%). The
right plot shows the summed PD light yield (all modules of the same type) as a response
to cosmic-ray muon samples partitioned by collector and sensor technology over the same
period.
The S-ARAPUCA variation across the entire time period is less than 2%, but statistical
uncertainties are larger than those of the other technologies because there is only a single
S-ARAPUCA module with a much smaller light collection area than the combination of
approximately 15 times more similar-sized modules for each of the other technologies.

The ProtoDUNE-SP PD modules have been operated for more than six months. In this time,
no failures of SiPM readout channels have been detected beyond the few seen immediately after
installation; none of those failures were in the MPPC readout channels, which is the baseline
photosensor.

25In units of photoelectrons, not corrected for SiPM after-pulsing and crosstalk.
26In units of detected photons, corrected for SiPM after-pulsing and crosstalk.
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Figure 5.24: PD system response (in photoelectron) to 7GeV/c momentum electrons (left) and muons
(right) in ProtoDUNE-SP.
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Figure 5.25: PD system timing measurements: Correlation between the TPC and the PD system track
time (left); time difference between two consecutive calibration flashes, demonstrating a resolution of
14 ns (right).
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Figure 5.26: Mean number of collected photons as a function of incident electron kinetic energy (left);
photon counting resolution of the S-ARAPUCA array as response to test beam electrons (right).
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Figure 5.27: Stability of the S-ARAPUCA response in APA 6 measured with the UV-light calibration
system (left) and the stability measurements of all PD system channels in APAs 4-6 with cosmic-ray
muons tagged by the CRT (right).

5.8.3 Extended ARAPUCA (X-ARAPUCA)

The X-ARAPUCA is an evolution of the S-ARAPUCA concept that moves the second wavelength-
shifter from the inner surface of the dichroic filter to a wavelength-shifter-doped plate that acts
as a light guide. This design change was motivated by simulations that indicated a significant
increase in collection efficiency for this configuration.

This section describes in detail the first measurements that demonstrate the validity of the design,
followed by a description of ongoing efforts to validate the final design.

5.8.3.1 Single Cell X-ARAPUCA Measurements

The first tests of an X-ARAPUCA cell were made at UNICAMP, Brazil, at the end of November
2018. The structure of the cell allowed it to operate as either an S-ARAPUCA or an X-ARAPUCA,
with both single- or double-sided readout in both. This flexibility will allow relative and absolute
measurements of performance in the same cryostat and so provide a crucial step to validating the
baseline design.

Building on the experience with the ProtoDUNE-SP prototypes, the frames for the test cell were
fabricated from FR-4 G-10 in a configuration very similar to that planned for the SP module but
with some small modifications necessitated by the requirements for holding a single window. The
overall dimensions of the cell are 12.3 cm × 10.0 cm × 1.56 cm. Figure 5.28 shows an exploded
design drawing and the completed cell.

The dichroic windows for the prototype are the same size as one of the six windows in a FD-design
X-ARAPUCA supercell: 10.0 cm × 7.8 cm. The filter plate was coated with PTP by vacuum
evaporation (film thickness ∼ 400µg/cm2) using an in-house deposition system at UNICAMP (see
Figure 5.29). The thickness of the film needs to have a minimal value in order to ensure that the
VUV light is fully absorbed. This minimum value is in the range of 100µg/cm2 to 200µg/cm2.
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Figure 5.28: X-ARAPUCA test cell: Assembled cell (left); exploded model (right). Note that exploded
components can be duplicated on the back side (not shown) for double-sided test cell.

The 400µg/cm2 is chosen in order to ensure that the minimum thickness is reached everywhere on
the filter even in presence of exceptional fluctuations (measured RMS of the order of 30µg/cm2).
When the minimal thickness is reached the maximum conversion efficiency is obtained.

Adhesion was tested by submerging the coated filter in LN2 several times. The coating was visually
inspected after each submersion, and no visible effect was observed. At the end of the test, the
coated filter was weighed with a precision balance, and no loss of material was measured. The film
was also analyzed with an optical microscope, and no signs of degradation could be observed.

The wavelength shifting plate in the X-ARAPUCA configuration is made from Eljen EJ-286 blue
WLS plate, with dimensions 9.3 cm × 7.8 cm × 0.35 cm.

The WLS plate thickness of 0.35 cm was initially selected to optimize collection of light both by
total internal reflection within the WLS plate and light trapped between the filter plates and the
WLS plate. Simulation has demonstrated that the detection efficiency performance of the detector
reaches a shallow maximum at approximately this value.

The side walls of the test cell are lined with Vikuiti reflector, with cutouts at the positions of the
photosensors.

The photosensors in the test cell are of the baseline type: 0.6 cm × 0.6 cm Hamamatsu S13360-
6050VE MPPCs. The photosensors are arranged in the same configuration as in the baseline
design, with four MPPCs (passively ganged) mounted to two sides of the test cell, with positioning
relative to the WLS plates and dichroic filters identical to the baseline design. In a departure from
the baseline design, the two passively ganged groups of four MPPCs are read out separately; no
active ganging circuit is implemented for these tests.

The test cell is installed at the bottom of a vacuum-tight stainless-steel cylinder (height ∼30 cm)
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Figure 5.29: Coated dichroic filter plates (left) and UNICAMP thin film coating facility (right).

closed by two CF160 flanges and exposed to an alpha source27 placed at 3 cm from the center
of the dichroic window. Figure 5.30 shows photographs of the test cryostat and the test cell in
the support structure; the alpha source holder is visible through the windows. The stainless-steel
cylinder is deployed in a small open Dewar that is filled with commercial-grade LAr to act as a
thermal bath.

Figure 5.30: Test cryostat (left) and X-ARAPUCA test cell mounting structure (right). Note the alpha
test source in holder.

The spectrum of the detected number of photons is shown in Figure 5.31 with a black line. The
same fit procedure as in Section 5.8.2 allows an estimate of the number of detected photons for
each alpha line. The result of the fit is shown with a red line in Figure 5.31. Comparing the

27The same as used in the S-ARAPUCA proof-of-principle tests described in Section 5.8.2.
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number of detected photons with the number of photons impinging on the X-ARAPUCA provides
an estimate the global photon collection efficiency of the device as 3.5 ± 0.5%. This result includes
the correction for the crosstalk and after-pulsing of the two arrays of MPPC at their operating
voltage. The efficiency was stable for the duration of several days of this measurement.

The same test was repeated with the double-sided version of the X-ARAPUCA. Exactly the same
set-up and the same device were used with the exception that the back plane coated with Vikuiti
was replaced with a dichroic filter coated with PTP. The same testing and analysis procedures
were followed, and the global detection efficiency was found to be only 10% less than the single
sided version.

Figure 5.31: Spectrum of the total number of photoelectron collected with the alpha source (blue line)
fitted with the Monte Carlo prediction for the single-sided (left) and double-sided (right) X-ARAPUCA.
Higher background activity at low energy was found for the second case.

The measured global collection efficiencies translate into an equivalent surface area28 of 70 cm2

for a single sided X-ARAPUCA module and of 63 cm2 for the double-sided, which exceed the
specifications for our system by a substantial factor (Section 5.16.1).

5.8.3.2 ICEBERG Test Stand

The ICEBERG test-stand is a small-scale TPC, using smaller FD APA and cathode designs,
constructed primarily to provide a platform for DUNE CE testing at Fermilab. The test stand
consists of a 94.7 cm × 79.9 cm APA, with an approximately 30 cm drift length to a cathode plane
on each side (Figure 5.32). It can accommodate up to two almost 1/2-length PD modules29 in a
mounting structure nearly identical to the final DUNE FD configuration, allowing for testing of
PD prototype performance, electrical connections, and interfaces with the CE and APA systems
(Figure 5.33). In addition, the test stand will be used to allow comparisons between Mu2e-based

28The equivalent surface area is defined as the product of the physical acceptance window of the device multiplied by
its global collection efficiency.

29To enable the use of existing components for the APA frame, the PD modules are 50mm shorter than final modules,
which required a slight modification to the PD module design.
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warm electronics and ProtoDUNE-SP SSP system, as well as testing newer versions of photosensors
active ganging circuit designs.

The ICEBERG facility will enable the primary validation of the X-ARAPUCA design prior to a
full-scale test envisioned at a future ProtoDUNE-SP run in late 2021.

At least three test campaigns are planned for the ICEBERG TPC with PD modules:

1. The initial photon detector configuration consisted of one full-length S-ARAPUCA super-
cell and one full-length X-ARAPUCA supercell. Both of these supercells have single-side
windows to allow comparisons of measurements with S-ARAPUCA and X-ARAPUCA pro-
totypes in summer and fall 2018 ProtoDUNE-SP. The first test run occurred in February-
March 2019. This run demonstrated that both module prototypes and the cryogenic active
ganging circuitry were operational and saw signals from both modules using a Mu2e front
end electronics system modified for use by the DUNE PD (in a separate stream from the
TPC DAQ). Significantly, no crosstalk between the PD and CE readout electronics was ob-
served. Unfortunately, difficulties with the TPC CE and HV systems prevented readout of
ionization tracks required to allow direct comparisons between the PD modules and required
the test to end before significant progress was made.

2. A second campaign took place late July through December 2019. It used the same PD
modules as the first campaign. The data will facilitate comparisons of SSP and Mu2e readout
systems for similar events as indicated by hodoscope events. Two short runs (ICEBERG 2A
and 2B) occurred in August and September 2019, during which the DAPHNE and SSP were
commissioned and initial photosensor bias voltage studies were conducted. These runs were
cut short due to problems with the cryogenic filtering system for the ICEBERG cryostat.

3. A third campaign is planned for spring of 2020. This run (ICEBERG run 3) will incorporate
four X-ARAPUCA supercells, though it is partially occluded in the frame due to the limita-
tions in APA size mentioned above. Two supercells will be single-sided and two double-sided,
allowing for additional comparisons of PD technologies. This campaign will also demonstrate
readout of Mu2e electronics by the ICEBERG DAQ. In addition, we plan to incorporate a
prototype of the DUNE SP monitoring system.

The test stand will provide testing and validation of the PD system Mu2e-based electronics sys-
tem, including a side-by-side comparison with the ProtoDUNE-SP SSP electronics readout. In
addition, concurrent data taking with the TPC and light collection system will allow us to study
TPC-induced noise on the PD, PD-induced noise on the TPC, grounding scheme configuration,
controller-DAQ and controller-FEB interfaces, bandwidth and rates issues, online and offline PD-
TPC interfaces, zero-suppression techniques, firmware development, accepting and producing trig-
gers, and, in general, will inform possible upgrade paths for the system.

Delays in the ICEBERG commissioning schedule unrelated to the ProtoDUNE-SP system pre-
vented having significant results available in time for this TDR. However, test stand data are still
expected to provide critical input for the 60% design review scheduled for May of 2020. Additional
runs in 2020 will assist in preparing for the final design review and ProtoDUNE-SP-2 module
designs.
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Figure 5.32: Solid model of ICEBERG TPC (left), and assembled ICEBERG APA (right). Note the two
sets of PD module mounting rails, which are vertical in this image but horizontal during operation. The
centrally-mounted APA allows for testing of double-sided readout photon detector modules.

Figure 5.33: Software solid model of a single supercell ICEBERG PD module (left) and fabricated
components during assembly (right). The connector board (green) in the right photo is mounted to
the APA frame prior to wire wrapping.
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5.8.3.3 SBND

The baseline PD system for the SBND experiment includes three types of detector: TPB-coated
cryogenic photomultipliers, an array of dipped light-collector bars similar to those used in ProtoDUNE-
SP, and a small array of X-ARAPUCA modules. Eight modified X-ARAPUCA modules will pro-
vide an opportunity for a long-term system test of a significant number of key components prior
to the SBND PD system production readiness reviews. Each SBND X-ARAPUCA will consist of
two dichroic filter plates with dimensions 100mm × 78mm × 1.5mm that are coated with PTP
at the UNICAMP vacuum deposition facility. These filters will be produced by Opto Electronics
S.A. in Brazil, the leading vendor candidate for the DUNE PD modules. Also, each SBND module
will contain an Eljen WLS plate 200mm×78mm×4mm. FR-4 G-10 frame components will be
fabricated at local vendors, representing candidates for eventual DUNE fabrication. A software
solid model of the design is shown in Figure 5.34.

The eight SBND X-ARAPUCA modules will be assembled at UNICAMP using the DUNE PD
consortium assembly plan, which will provide valuable experience with fabrication of multiple
modules at that site.

In the summer of 2019, the SBND collaboration re-opened the question of the composition of their
light collection system, eliminating the dipped bar modules in favor of 200 additional X-ARAPUCA
modules. These modified modules will use WLS plates and coated filter plates identical to those
proposed for DUNE, and frame components very similar to those in the final DUNE PD system.
The modification to the SBND system will provide a larger scale, long-term test of critical PD
components and will significantly enhance the value of the test as a development run for the
UNICAMP facility.

We expect that module assembly for SBND will be complete with installation in the detector
beginning in spring of 2020. Filling with LAr and operation will occur in summer 2020, and we
expect initial results from the PD system in fall 2020. SBND will be the first large-scale operational
testing for X-ARAPUCA modules very similar to those to be used in DUNE. SBND will also use
coated reflector foils, which will provide additional valuable information on that DUNE PD system
option.

While not part of the DUNE project, and not part of the validation schedule for the ProtoDUNE-
SP, SBND results will inform our preparations for the final design review of these components and
the fabrication of modules for ProtoDUNE-SP-2.

5.8.3.4 ProtoDUNE-SP-2

Following completion of the initial run of ProtoDUNE-SP, a second test run called ProtoDUNE-
SP-2 is planned in the same cryostat. This test will serve as a final validation of all pre-production
SP module detector designs, verifying their performance and ensuring they perform in concert
with no interference. We intend to replace three complete APA assemblies with pre-production
modules to allow testing 40 final-design PD modules.
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Figure 5.34: Software solid model of two-cell X-ARAPUCA modules for SBND, exploded (left) and
assembled (right).

ProtoDUNE-SP-2 will allow for the first end-to-end test of the final PD system, with significantly
redesigned elements:

• full-size X-ARAPUCA modules read out in conjunction with a TPC;
• 48-channel photosensor active ganging;
• final design electrical connectors for PD modules mounted inside full-scale APAs;
• pre-installed cable harnesses inside APAs including final module supports;
• readout of full-scale X-ARAPUCA modules using modified Mu2e electronics, including inte-

grating TPC and PD event matching into the DAQ system.

Two candidate photosensors will be tested (20 modules built with each sensor type), and the
experience gained while fabricating ProtoDUNE-SP-2 will be an important factor for selecting
between the candidate sensors or deciding to incorporate both in the PD system final design.
All other components will be final design components, so at least half of the PD modules in
ProtoDUNE-SP-2 will represent the “Module 0” level of design.

While all of these elements will have been tested previously individually and/or at smaller scale,
ProtoDUNE-SP-2 will represent the final pre-production testing of all the final design components
as an integrated system.

The schedule for ProtoDUNE-SP-2 calls for PD modules to be installed into APA modules at
CERN at the end of summer 2021. However, some components, including module support rails,
electrical connectors, and cable harness components, must be mounted inside APA frames prior to
wire wrapping and so must be available by mid-2020. Re-filling of the ProtoDUNE-SP cryostat will
begin in the winter of 2022, with operations beginning in late 2023. Operation of ProtoDUNE-SP-2
will continue for at least one year. This schedule allows for initial operation of the complete system
prior to the PD production readiness review and the beginning of mass-production of SP modules
in summer 2022, although some components (including dichroic filter plates and photosensors)
will have begun procurement by that time. These components are physically smaller and more
amenable to testing in smaller cryostats, reducing the exposure due to this delay. These scheduling
issues will be addressed in more detail in 5.15.1.
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If the decision has been taken to proceed with our performance enhancement alternates (xenon
doping or CPA-mounted reflector foils, see Section5.16.2), they will be tested in ProtoDUNE-SP-2
as well.

5.8.3.5 Long Term Cryogenic Aging

It is difficult to accelerate aging effects due to long-term immersion of components in cryogenic
liquids. While mechanical aging due to thermal expansion/contraction can be readily accelerated
by cycling the components to be tested through multiple cycles, long term aging not related to
rapid thermal stresses are not amenable to easy acceleration. An example of such a process might
be dissolution of PTP coatings over time.

Mitigation of these risks involves some level of long-term exposure to liquid cryogen with extrap-
olation to the DUNE timescales. Several such tests are planned for the PD system:

• ProtoDUNE-SP will provide a long-term test of two S-ARAPUCA modules for a period of up
to one year at the time of draining in the Winter of 2020. The system will be continuously
monitored for gain and response of the detectors, and will provide information regarding
aging of FR-4 G-10 structures, photosensors, and coated filter plates. Other ProtoDUNE-SP
detectors (Double-shift bar designs) will give some indication of aging of similar WLS plates
to those used in the X-ARAPUCA modules.

• SBND will provide a multi-year test of many X-ARAPUCA components, such as coated
filter plates, WLS plates, and photosensors. SBND will run for at least three years, starting
in late 2020. As part of a running experiment, the system will be continuously monitored
for gain and response of the detectors and will provide information regarding aging of FR-4
G-10 structures, photosensors, and coated filter plates as well as WLS plates to be used in
the X-ARAPUCA modules.
In addition, TPB-coated reflector foils will be tested in SBND. While coated reflector foils are
not part of the baseline PD system, this will provide validation for the concept we currently
present as an option (Section 5.16.2.1).

• ProtoDUNE-SP-2 will provide a long term test of full-scale X-ARAPUCA modules in the
final DUNE configuration. While this test will begin shortly before DUNE PD module
production fabrication, it will provide long-term validation of all X-ARAPUCA components
during module production prior to integration into the APA frames, allowing for possible
insights and improvements into the X-ARAPUCA design.

5.8.4 Materials Selection, Testing and Validation

5.8.4.1 PD Module Mechanical Frame

The APA mechanical frame components are fabricated from FR-4 G-10 (Garolite®), a glass-
epoxy laminate commonly used in printed circuit boards and other mechanical applications where
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an electrically insulating component with low thermal expansion coefficient is required. G-10 is
widely used in cryogenic applications, including most of the other DUNE subsystems (See DocDB
10452 [37] for an extensive discussion in the context of the HV system cathode planes). FR-4 has
been certified at the Fermilab materials test stand as an acceptable material for use in DUNE from
the standpoint of LAr contamination.

Thermal contraction of FR-4 is similar to that of stainless steel, simplifying design of the module
interface with the APA frame. It allows us to use long printed circuit boards for routing photo-
sensor electrical signals along the detector sides without incurring thermal expansion issues. As
an excellent insulator, it simplifies electrically isolating the PD system from the APA frame, as
required by the DUNE grounding scheme. However, selecting FR-4 as our main module structural
material comes at the cost of some additional difficulty machining components.

All fasteners used in the PD are stainless steel alloy 304, widely used in cryogenic applications.
This alloy has also been certified at the Fermilab materials test stand as an acceptable material
for use in DUNE from the standpoint of LAr contamination.

5.8.4.2 PD Module-APA Frame Mechanical Support Structure

All PD mechanical supports (including rails, brackets and fasteners are to be manufactured from
stainless steel alloy 304. This has the benefit of matching thermal contraction coefficients with the
APA frame and being approved for use in LAr by the materials test stand.

5.8.4.3 Dichroic Filter/Filter coating

The dichroic filters used in X-ARAPUCA consist of a fused silica substrate, coated on one face to
provide the required dichroic properties and on the opposite face with a thin evaporated layer of
PTP. Fused silica was selected in part due to its excellent low-temperature properties. It is widely
used as an optical window in low temperature applications, due to its stability and low coefficient
of thermal contraction; fused silica dichroic filters have performed well in many S-ARAPUCA
validation tests.

Stability of the PTP coating is of greater concern. Initial validation of the S-ARAPUCA in TallBo,
ProtoDUNE-SP, and in repeated cryogenic immersion tests at Fermilab and other facilities has
demonstrated that while it is possible to generate highly-reliable PTP coatings on fused silica
substrates, careful surface preparation and deposition procedures are required to prevent failure
of the coating. Dissolution of similar wavelength-shifting coatings into LAr has been reported but
in a technology-dependent fashion [85], so continued investigation of the design specific to DUNE
is necessary to confirm robustness.

A test stand has been developed at Syracuse University to investigate the long-term stability of
X-ARAPUCA optical coatings in LAr that will subject coated materials to a continuous flow. This
will stress the adhesion of the coating to the plates to simulate the convective flow of LAr in the
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SP module.

The test stand consists of a 74 L LAr cryostat with a frame suspending coated filters beneath
an impeller driving a continuous flow of LAr across them. Filters will be inspected monthly
for degradation in their opacity, transparency, and wavelength-shifting response. A dark box
containing a visible-light and near-UV scanning bed will measure wavelength shifting performance
of the tested elements before and after suspension within the argon flow.

Testing began in late 2019, when coated filter plates become available, and is expected to run
through late 2022.

Figure 5.35: Two components of the PD coating test stand. (1) VUV monochromator (foreground)
and 2-axis scanning chamber (background) currently undergoing recommissioning (left); and (2) solid
model of 74 L LAr cryostat for quality control studies and future detector development (right).

5.8.4.4 WLS plates

The X-ARAPUCA wavelength shifting plates are fabricated by the same vendor as the light guide
bars utilized in the double-shift ProtoDUNE-SP modules. The plates are made with the same
transparent matrix material, but have a different wavelength shifting dopant chosen to provide a
better match to the spectral sensitivity of the PD SiPM (around 430 nm). It also has an emission
spectrum very similar to TPB, used in the S-ARAPUCA, which ensures the same performance of
the dichroic filter and of the reflective coatings.

While it is possible that the cryogenic properties of this modified WLS material may be altered by
the change in doping agent, it is expected that the tests done for the double-shift bar prototypes
are a valuable guide for their expected performance. As part of the design verification, samples
of these bars were manually thermocycled to verify they didn’t craze. In addition, we used a LAr
test stand with an alpha source behind a small sample of the WLS plate to scan the attenuation
length of a short sample. Finally, we built a darkbox with a ∼ 420 nm LED scanning down the
length of a full bar to verify the attenuation length and to compare the results to the LAr data.
(This formed the basis of the threshold requirements on in-air attenuation length measurement for
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the ProtoDUNE-SP batch.) This same sequence will be undertaken for the light guides selected
for X-ARAPUCA.

As with most other components, it is not possible to simulate long-term exposure to LAr of a
length similar to that expected in DUNE operation, but we will substitute continuous long term
exposure by running samples through repeated thermal cycling to maximize thermal stresses in
the material. Finally, samples of the WLS plates will be certified for use in DUNE in the materials
test stand at Fermilab.

5.8.5 Calibration and Monitoring

All major components of the SP module PD system calibration and monitoring system have been
designed, fabricated, tested, and operated in ProtoDUNE-SP. Figure 5.36 shows the hardware com-
ponents of the system. Although at a longer wavelength (245 nm to 280 nm) than LAr scintillation
light (127 nm), the UV light from the calibration system exercises the full chain of measurement
steps initiated by a physics event in the detector module, starting from the wavelength conversion,
photon capture in the S-ARAPUCA, photon detection, and the FE electronics readout.

A substantial ProtoDUNE-SP data set has been collected and the data analysis is underway. Goals
of the analysis are to verify that the CPA includes an optimal distribution of light diffusers for
the SP module; to demonstrate capability of the system evaluate gain and timing resolution; to
perform relative comparisons of photon channels; and to characterize and monitor stability of
the PD system over the duration of ProtoDUNE-SP. Here we present preliminary results that
demonstrate the timing performance of the system, the stability of the two types of SiPM, and
the photon detection rate over several months.

Figure 5.37 (left) shows a typical double waveform recorded by an ProtoDUNE-SP SSP module
as a response to calibration system light pulses illuminating an S-ARAPUCA channel; the figure
on the right demonstrates that the calibration system has the precision and stability to meet the
system requirements.

Figure 5.38 shows the SiPM gain (charge per photoelectron-induced avalanche) extracted from the
calibration data normalized to the average gain during the period. The left figure shows the results
over a period of three months for the MPPCs mounted on the S-ARAPUCA modules; the right
figure shows the results over a period of six months for the SensL SiPMs that are mounted on a
set of double-shift and dip-coated light collector bars. The colors correspond to different readout
channels for the left figure and to the average of the sensors in PD modules for the right figure.
All sensors are stable at the level of a few percent, with no significant systematic decline.

Figure 5.39 shows the measured signal (average number of photons, normalized to the average
signal over the three-month period) from the double-shift and dip-coated light collector bars in
APA 6 that are read out with MPPC SiPMs (left), and those in APA 4 that are read out with
SensL SiPMs (right), in response to the calibration flashes. The colors correspond to the average
of the sensors in PD modules. The measured signal is sensitive to stability in the intensity of the
calibration system light and the response of the light collectors (including effects such as changes
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Figure 5.36: The photographs show the hardware components of the ProtoDUNE-SP calibration and
monitoring system.

in wavelength shifter properties and SiPM response). The ratio is stable at the few percent level.

These results verify operation and performance of both the PD system and the UV-light calibration
system. This monitoring will continue for the duration of the ProtoDUNE-SP operation.

5.9 Production and Assembly

The SP PD system consortium is a geographically diverse group of institutions, collaborating
across three continents to fabricate a single integrated system. As such, careful planning and
control of component fabrication, assembly and testing must be maintained. This section describes
the planning for fabrication, assembly, and testing, focusing primarily on the PD light collector
modules, photosensors and photosensor modules, and electronics. It also covers planning for
calibration and monitoring.

This section first describes the fabrication procedure for each of the major PD system components.
It concludes (in Section 5.9.7), by outlining the work flow and responsible institutions for the
assembly plan.
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Figure 5.37: Double waveforms recorded by ProtoDUNE-SP SSP as a response to calibration system
light pulses collected by an S-ARAPUCA channel (left). Distribution of measured times of the first
light pulse in the two-pulse waveform for 1000 pulse pairs (right).
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Figure 5.38: Normalized gain measurements using the calibration system light pulses: MPPC SiPMs
on the S-ARAPUCA modules (left); SensL SiPMs on the dip-coated and double-shift bars in APA 3
(right). This demonstrates the stability of the gain for both types of device operating in LAr.
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Figure 5.39: Measurement of the signal from the calibration system using the dip-coated and double-
shift bars in APA 6 that have MPPC SiPMs (left) and in APA 4 that have SensL SiPMs. The signal is
normalized to the average response over the entire period.
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5.9.1 Light Collector Module Component Fabrication

The PD light collector modules were designed with ease of fabrication in mind. The module
components can be fabricated and QC tested at physically separated facilities, later to be collected
and assembled at one or more assembly facilities.

Each SP module detector requires the fabrication of 1500 photon detector modules, a significant
production effort. Many of the components for these modules are commercially available or rel-
atively easy to fabricate, but some, such as photosensors (288,000 required), filter plates (48,000
required), and WLS plates (6000 required), are specialized items requiring close interfaces with
industrial partners. These issues will be discussed in the relevant sub-sections below.

5.9.1.1 Dichroic Filter and Reflector Foils Fabrication and Coating

The baseline design for dichroic filters is a fused silica plate, 10 cm × 7.8 cm × 0.2 cm, commercially
coated (as described in Section 5.4) to provide the dichroic properties of the filter. The filter plates
will be purchased from a commercial vendor (certified by the vendor for performance), and the
performance of a representative sample will be tested at a collaboration institution as part of our
QC program.

Prior to coating, the filters are cleaned using the procedure outlined in Section 5.9.2.3. For PD
production, the evaporation process will be performed in Brazil, where a large vacuum evaporator
with an internal diameter of one meter is now available. The conversion efficiency of the film
deposited on the filters will be measured for a representative sample, with a dedicated set-up that
will use the 127 nm light produced by a VUV monochromator.

Vikuiti reflector foils required for the rear reflector surface of single-sided X-ARAPUCA supercells
and the sides of all modules will be purchased and laser-cut to the form factor required by a vendor.
Mechanical and optical QC tests will be performed on a representative sample upon receipt.

Coated filter plates and reflector foils represent one of the more challenging fabrication tasks for
the consortium. A total of 48,000 filter plates will be required, and fabrication will need to occur at
a rate of approximately 1200 per month. Dichroic filters will be purchased as part of the Brazilian
effort. A Brazilian candidate vendor for the filters (Opto Eletronica S.A30), has been selected for
the filter manufacturing. Preliminary contact has been made, a budgetary estimate received, and
initial discussions suggest that they will be capable of meeting our production schedule. Coating
of filter plates will be conducted at UNICAMP. Prototype studies suggest a coating cycle time of
less than two hours per 24 filter plates, which meets the needs of the project.

30www.opto.com.br
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5.9.1.2 Wavelength Shifting Plates

The baseline design for the wavelength-shifting plates are Eljen EJ-286 plates of dimensions 48.7 cm
× 9.3 cm × 0.35 cm. The edges of a plate will be simultaneously cut and polished with a diamond-
edged cutter to increase internal reflectivity, following a proprietary process developed by Eljen.
Plates will be delivered to the consortium institution responsible for this component, where QC
testing of a representative sample will be performed.

Eljen, Inc. has been involved in PD module development for many years and has proven a reliable
partner. We have a budgetary estimate for the plates, indicating a total production time of
approximately 18 months for all 6000 wavelength-shifting plates required.

5.9.1.3 Mechanical components

The mechanical components of the PD module frames are fabricated from FR-4 G-10. This ma-
terial will mitigate thermal expansion issues (see thermal expansion discussion in Section 5.9.3.2),
but is abrasive and somewhat difficult and expensive to work with using traditional machining
processes.

To mitigate these difficulties, most of the PDs frame components were designed so that they can be
fabricated using water-jet cutting technology. In some cases, post-cutting fabrication is required,
e.g., tapping of pre-cut holes, or (rarely) drilling and tapping holes into the sides of the components
where the water jet could not pre-cut pilot holes.

Water jet cutting of FR-4 G-10 components will be conducted in-house at UNICAMP to allow for
improved quality and schedule control. A dedicated water-jet cutting machine is being purchased
now, and fabrication processes will be validated during SBND and ProtoDUNE-SP-2 fabrication.
Secondary machining operations (hole tapping, etc.) will also be conducted at UNICAMP. QC
tests will be conducted on a representative sample of finished components.

5.9.2 Photon Detector Module Assembly

SP module PD module assembly will occur at a PD assembly facility at UNICAMP. Assembly pro-
cedures are described below. Final assembly planning for PD modules is guided by the experience
gained during the assembly of 60 ProtoDUNE-SP PD modules.

5.9.2.1 Incoming Materials Control

Each PD sub-component assembly site will have a quality control supervisor, who will be respon-
sible for overseeing all quality-related activities at that site, maintaining all production records
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and assembly travelers, and uploading them to the production database as appropriate. This local
supervisor will report directly to the PD consortium lead.

All materials for PD module assembly will be delivered to the UNICAMP module assembly facility
with a QC traveler (in the case of materials custom fabricated for DUNE) generated prior to arrival
at the assembly site or will have an incoming materials traveler generated immediately upon receipt
of the component (for commercial components). These travelers will be scanned (or uploaded if
in electronic format) upon receipt at the assembly facility, and the data stored in the DUNE
QC database. Materials will either arrive with a pre-existing DUNE inventory control batch/lot
number, or will have one assigned prior to entering the assembly area. Bar code labels attached to
storage containers for all components in the assembly area will facilitate traceability throughout
the assembly process.

Immediately upon receipt, all materials will undergo an incoming-materials inspection, including
confirmation of key dimensional tolerances as specified on their incoming materials documentation.
The results of these inspections will be included on the traveler for that batch/lot and entered into
the database.

In the case of deviations from specification noted in these inspections, the deviation from nominal
will be recorded in an exception section of the traveler, as will the resolution of the discrepancy.

5.9.2.2 Assembly Area Requirements

Assembly will occur in a class 100,000 or better clean assembly area (see specification SP-PDS-1
in Table 5.1).

Photosensitive components (e.g., TPB-coated surfaces) are sensitive to near-UV light exposure and
will be protected by blue-filtered light in the assembly area (>400 nm or better filters31); it has
been determined that this level of filtering is sufficient to protect coated surfaces during exposures
of up to several days. For exposures of weeks or months, such as in the ProtoDUNE-SP cryostat
assembly area, a higher cutoff yellow filter is used32.

Exposure of photosensitive components will be strictly controlled, per requirement SP-PDS-3 in
Table 5.1. Work flow restrictions will ensure no component exceeds a total exposure of 8 hours to
filtered assembly area lighting (including testing time).

5.9.2.3 Component Cleaning

All components will be cleaned following manufacturer’s specifications and DUNE materials test
stand recommendations. All incoming materials will have written cleaning procedures, and their

31For example, GAMTUBE T1510™ from GAM Products, Inc., http://www.gamonline.com/catalog/gamtube/
index.php.

32F007-010™ Amber with Adhesive - http://www.epakelectronics.com/uv_filter_materials_flexible.htm.
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travelers will document the completion of these procedures.

5.9.2.4 Assembly Procedures

As was done for ProtoDUNE-SP, detailed step-by-step written procedure documents will guide
the assembly for each PD module, with a QC traveler completed and recorded in the database.
Travelers will be based on those used for ProtoDUNE-SP, modified as need to capture additional
data needed for X-ARAPUCA module fabrication.

ProtoDUNE-SP experience suggests that a two-person assembly team is necessary. Our current
assembly plan envisions a pair of two-person assembly teams working simultaneously, with a fifth
person acting as shift leader. This labor force will allow for production of 20 PD modules per
week, meeting our production requirements.

The shift leader acts as a QC officer responsible primarily for ensuring the distribution of materials
to the assembly teams, documenting the batch and lot numbers for each PD on the travelers, and
ensuring that the teams follow the documented assembly procedures.

Assembly fixtures mounted to 2.4m long flat tables will support and align PD components during
assembly. All workers handling PD components will wear gloves, hair nets, shoe covers, and
clean-room disposable laboratory jackets at all times.

5.9.2.5 Post-Assembly Quality Control

Post-assembly QC planning is also based on ProtoDUNE-SP experience, modified as appropriate
for larger-scale production. Each PD module goes through a series of go/no-go gauges designed
to control tolerances of critical interface points. Following this, each module is inserted into a
test APA support model, representing the tightest slot allowed by APA mechanical tolerances.
It is then scanned at a fixed set of positions with 275 nm UV LEDs. The PD response at each
position is measured using PD readout electronics and the data compared to reference set of values.
Figure 5.40 shows the scanner used for ProtoDUNE-SP modules. These performance data will serve
as a baseline for the PD module, and will be compared against those taken in an identical scanner
shortly before installation into an APA in the SP module, as for ProtoDUNE-SP. All data collected
are recorded to the module traveler and to the DUNE QC database. Post-assembly immersion
into a LN2 cryostat followed by a repeat scan of each PD module (as in ProtoDUNE-SP) is under
consideration as a final QC check.

5.9.3 APA Frame Mounting Structure and Module Securing

PD modules are inserted into the APA frames through ten slots (five on each side) and are sup-
ported inside the frame by stainless steel guide channels. The slot dimensions for the SP module
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Figure 5.40: PD module scanner.

APA frames are 136.0mm × 25.0mm33 (see Figure 5.41 (left)). The guide channels are positioned
into the APA frame prior to application of the wire mesh, and are not accessible following wire
wrapping. Following insertion, the PD modules are fixed in place using two stainless steel captive
screws.

A

DETAIL A
SCALE 1 : 15

PD Rails 

Figure 5.41: PD mounting in APA frame: Fixed end of PD module inside transparent APA side tube
showing clearance for CE cables (left) and showing PD mounting rails in an APA frame (right).

5.9.3.1 Signal cable and connections

For the ProtoDUNE-SP, PD cables were run inside the APA side tubes, five cables per side. For the
SP module, however, this space will be filled by the cable harness for the lower APA cold electronics
(CE) cables. This change required a revised plan for placing the PD cables. In addition, it was
observed during ProtoDUNE-SP PD system installation that running the PD cables and making

33For ProtoDUNE-SP they were only 108.0mm × 19.2mm; the increase allows for larger PD modules and an increase
in light collection area of nearly 50% over the ProtoDUNE-SP design.
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electrical connections to the modules during PD integration was time-consuming and introduced
risk to the process.

For the SP module, the PD cables will be positioned in the APA frames prior to installing the mesh
and wire-wrapping the frame. An APA in the lower position will house the cables for only the PDs
in that lower APA whereas those in the top position will house the cables for the upper APA PDs
and the pass-through cables from the lower APA. The cabling thus requires two different styles of
APA frame. All cables terminate at the header of the top APA after assembly (see Figure 5.42).

The cable connections between the upper and lower APAs are made during APA installation into
the cryostat, while the APA stack is being assembled. The same in-line multi-pin connectors used
at the flange penetration in ProtoDUNE-SP34 are used for this connection. Superior-Essex 35

Category 6A U/FTP (STP) with FEP jacket (part no. 6S-220-xP) was validated in ProtoDUNE-
SP. Similar cable will be used in DUNE, but custom-fabricated by the same vendor with two
additional twisted pair contained within the external jacket for powering the photosensor active
ganging board.

The PD signal cables are expected to contract approximately 2% relative to the APA frame during
cool-down of the detector module to cryogenic temperatures. The design accounts for this by
leaving cable loops in place between the anchor points to the APA frame, allowing for the required
relative motion.

To remove interference with the CE cables, the electrical connections between the PD modules and
the PD cable harness are moved to the face of the central APA tube. Printed circuit boards with
spring-loaded electrical sockets are positioned on the inside face of the tube as part of the PD rail
installation as shown in Figure 5.43 (left). During PD integration into the APA frames, a PCB
with pin contacts mounted to the PD module (see Figure 5.9 right) engages into the PCB mounted
to the APA frame, automatically making the electrical connection as shown in Figure 5.43 (right).

Figure 5.42: PD cable routing in APA frames: bottom APA (left) and top APA (right).
34Hirose LF 10WBP-12S connectors https://www.hirose.com
35http://superioressexcommunications.com
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Figure 5.43: PD cable connectors in APA frames: PD connector plate mounted in APA frame (ICEBERG
model, left) and a computer model of the mated PD and connector assembly in an APA (right). Note
that active ganging PCBs are buried inside the central tube.

5.9.3.2 Thermal Contraction and Load Deformation

Thermal Contraction

During cool-down from room to LAr temperatures, significant relative shrinkage of module compo-
nents is possible. Mitigating these effects was a major consideration in the X-ARAPUCA module
design.

Thermal expansion coefficients (CTE) for the stainless steel APA frames and fused-silica filter
plates drove the materials selection for the X-ARAPUCA modules. As shown in Table 5.4, the
relative shrinkage of FR-4 G-10 and stainless steel are well-matched and fall between the fused
silica filter plates and the polystyrene WLS plates. The frame components are fabricated from
FR-4 G-10, resulting in a shrinkage of the stainless steel frame structure relative to the frame of
approximately 1.2mm along the long (∼2000mm) axis of the bar, minimizing the motion needed
to be accounted for in the electrical connectors to the wiring harness. The shrinkage of the frame
relative to the filter plate is < 0.2mm. Both these relative shrinkage factors are accounted for in
the dimensions and tolerances of the design.

The largest relative contraction of mechanical components is between the FR-4 frame and the
polystyrene WLS plates. The most critical relative shrinkage is between the face of the photosen-
sors and the WLS plate, where the 92mm width of the plate will shrink significantly more than
the PD module structure, resulting in more separation (approximately 1.3mm) between the sensor
face and the plate. Simulation indicates that X-ARAPUCA performance is not strongly affected
by this gap size (reducing the gap to zero, direct contact, would be beneficial but would introduce
unacceptable risk of damage). The WLS plate contracts relatively more along the long axis, by
5.8mm for the 487.0mm long plate, but this affects the performance of the detector less; the WLS
bar mounting structure addresses this issue.

Another important potential thermal contraction interference to track in the PD design is the
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relative contraction of the slots in the APA frame and the separation of the photon detector
support rails relative to the photon detector cross section. This requirement is listed in Table 5.1
as specification SP-PD-12, which requires that a minimum gap between the PD module and the
APA frame of 0.5mm be maintained after cool-down. Specification SP-PD-08 in the same table
that requires a minimum clearance of 1.0mm between the modules and the APA frame at room
temperature, together with the relative thermal contractions of the stainless steel APA frame and
G-10 PD frames ensures that this specification is met.

Table 5.4: Shrinkage of PD module materials for a 206◦C temperature drop

Material Shrinkage Factor (m/m)
Stainless Steel (304) 2.7× 10−3

FR-4 G-10 (In-plane) 2.1× 10−3

Fused Silica (Filter Plates) 1.1× 10−4

Polystyrene (WLS Bars) 1.4× 10−2

Mitigation of these contractions is detailed in Table 5.5.

Table 5.5: Relative Shrinkage of PD components and APA frame, and mitigations.

Interface Relative shrinkage Mitigation
PD Length to APA
width

PD expands 1.2mm
relative to APA
frame

PD affixed only at one end of APA frame, free to ex-
pand at other end. 3mm nominal clearance (beyond
tolerance allowance) for expansion in design.

Width of PD in APA
Guide Rails

PD expands 0.1mm
relative to slot width

PD not constrained in C-channels. C channels and
tolerances designed to contain module across ther-
mal contraction range.

Width of module
end mount board to
stainless steel frame

Stainless frame
shrinks 0.1mm more
than PCB

Diameter of shoulder screws and FR-4 board clear-
ance holes selected to allow for motion.

Length of WLS bar
relative to FR-4 PD
frame

WLS bar shrinks
5.8mm relative to
PD frame

Allowed for in WLS bar mount fixtures.

PD Mount frame deformation under static PD load

Finite element analysis (FEA) modeling of the PD support structure was conducted to study
static deflection prior to building ProtoDUNE-SP prototypes. Modeling was conducted in both the
vertical orientation (APA upright, as installed in cryostat) and also horizontal orientation. Basic
assumptions used were fully-supported fixed end conditions for the rails, with uniform loading of
3× PD mass (5 kg) along the rails. Figure 5.44 illustrates the rail deflection for the APA in the
horizontal (left) and vertical (right) orientations. Prototype testing confirmed these calculations.
Similar modeling of final-design DUNE PD modules will be completed prior to 60% design review.
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Figure 5.44: PD mechanical support analysis: Rail deflection for the APA in the horizontal (left) and
vertical (right) orientations.

5.9.4 Photosensors and Photosensor Modules

The use of SiPMs in noble liquids is relatively new but growing rapidly with experiments such
as GERDA, MEG II, DarkSide, and nEXO which are in various stages of preparation. The
collaborators of DUNE will learn from these experiments, but in principle, DUNE has a more
stringent accessibility and longevity constraints. Risk mitigation through reliability engineering,
process control, and vendor and collaboration testing will be a key feature of the DUNE SiPM
production process.

Reliability Engineering: The primary issue is the change in material properties and thermal stresses
induced in the packaging due to differential coefficients of thermal expansion (CTEs). This is espe-
cially critical for interfaces, in particular die to substrate, substrate to potting mold, potting mold
to encapsulation, and solder joints to everything else. Analysis of these interfaces and collaboration
with vendors to match CTEs as much as possible at these interfaces will contribute substantially
to the long-term reliability of the photosensors.

Process Control: Small and seemingly innocuous changes in the photosensor fabrication process
can have a big impact on the robustness of these devices at extreme temperatures. This is one of
the reasons why in space applications, for instance, same-day same-batch components are utilized.
Given the photosensor quantities involved, this is not feasible for the DUNE PD system, but it
will be important to establish a memorandum of understanding (MoU) with the vendor regarding
strict process control once the pre-production batch has been qualified.

Procurement: Potential vendors have verified that delivery of 100,000 devices per year is a rea-
sonable expectation so long as the purchase contract is initiated early enough. Vendor visits to
Hamamatsu and FBK in June-July 2019 will be used as an opportunity to confirm this guidance.

Quality Assurance: This will be an essential component in the photosensor risk mitigation strategy
consisting of restricting the number of production batches, clearly communicating desired device
and packaging parameters to the vendor, and vendor testing to guarantee device operation down
to liquid nitrogen temperatures. Before shipment to the consortium, the vendor must qualify a
randomly selected sample of devices from each production batch. The qualification would entail
thermally stressing the devices with visual and electrical measurements made before and after.
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Quality Control: The above strategies, while significantly lowering the risk, do not obviate the
need for a strict testing regimen. Every sensor will be tested multiple times, at various stages of
assembly, before installation in the SP module.

SiPMs are mounted in groups of six passively-ganged sensors to mounting boards, with eight
mounting boards per supercell. Passive ganging (sensors in parallel) is implemented with traces
on the SiPM mounting board (PD module), as was done for ProtoDUNE-SP. The SiPMs are
mounted using a pick-and-place machine and standard surface-mount device soldering procedures.
The outputs from these mounting boards are then routed to active ganging circuits in the center of
the PD module, where they are collected into a summing amplifier and reduced to a single output
channel.

The ganged analog signals exit via long cables (approximately 20m) for digitization outside the
cryostat. ProtoDUNE-SP has provided essential operational experience with a passive ganging
board and signal transport provided by Teflon Ethernet Cat-6 cables, as described in Section 5.9.3.

5.9.5 Electronics

The PD system consortium gained extensive experience in manufacturing processes for electronic
systems during the development of the ProtoDUNE-SP SSPs. A general description of the read-
out system of ProtoDUNE-SP can be seen in the Section 5.6. Compatibility between elements
designed by different institutions is guaranteed when standard procedures are followed, so the
circuit design must be done in accordance with mutually agreed-upon specification documents.
A sufficient number of units must be produced to allow for testing both locally and in the cen-
tral facility; for example, in ProtoDUNE-SP five 12-channel SSPs were produced and delivered to
CERN for integration testing. Twenty-four were fabricated for ProtoDUNE-SP operation. Similar
manufacturing test programs are envisioned for DUNE.

The readout electronics of the PD system will be designed and produced with similar tools and
protocols as for ProtoDUNE-SP. For example, PCB layout is performed in accordance with IPC36

specifications. Bare PCB manufacturing requirements are embedded within the Gerber file fabrica-
tion documents (e.g., layers, spacing, impedance, finish, testing, etc.). Components are assembled
on circuit boards either by trained PD consortium technical staff or by external assembly vendors,
based on volume, and in accordance with per-design assembly specification documents. Testing
occurs at collaboration institutions in accordance with a per-design test procedure that typically
includes a mix of manual, semi-automated and automated procedures in an engineering test bench
followed by overall characterization in a system or subsystem test stand. Other considerations and
practices relevant to readout electronics production and assembly are itemized here:

• Components: Schematic capture is done using appropriate tools (such as OrCAD 16.6.37 or
similar toolset) available within a design facility. Design is hierarchical with common FE
page referenced multiple times, such as for all input channels. The schematic contains the

36IPC™, Association Connecting Electronics Industries, http://www.ipc.org/.
37OrCAD™ schematic design tool for PCB design http://www.orcad.com
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complete bill of materials (BOM) including all mechanical parts. An electronics schematics
subversion repository or similar tool is typically used for version control and backup. Multiple
internal design reviews are held before the schematic is released for layout. The BOM, stored
directly within the schematic, is extracted to a spreadsheet when ordering parts. Every part
specifies both manufacturer and distributor information. Distributor information may be
overridden by a technician at order time due to price or availability. Standard search engines
such as Octopart38, ECIA39 and PartMiner40 are used to check price or availability across all
standard distributors. A parts-availability check is performed prior to handoff from schematic
to layout since obsolete or long lead-time parts may have been removed from the design and
replaced. BOM information includes dielectric, tolerance, temperature coefficient, voltage
rating, and size (footprint) to ensure that all parts are fully described.

• Boards: Standard tools (such as the Allegro41 toolset) are available for the PCB layout.
Conventional PCBs are controlled-impedance multi-layer boards with many sets of delay-
matched nets where necessary. In usual practice, multiple previously qualified vendors bid
competitively. The consortium electronics group provides the complete impedance and delay
characteristics within the layout tool, and the selected vendor cross-checks these values prior
to manufacture and performs full electrical and impedance testing. Multiple internal design
reviews are held prior to release of the design.

• Cable plant: The cabling designed will take into consideration the APA space and will be
done in close collaboration with the TPC CE consortium to avoid crosstalk effects. Be-
fore making a final decision on cable procurement, we are investigating the possibility of
cable manufacturing in a PD system consortium institution versus the cost of a commercial
solution.

• Manufacturer list: In addition to the general laboratory procedures for QA, the general prac-
tice will be to use only PCB manufacturers and external assembly vendors whose workman-
ship and facilities have been personally inspected by experienced production team members.
All external assemblers are required to quote in accordance with an assembly specifications
document describing the IPC class and specific solder chemistry requirements of the design.
The BOM document will show selected and alternate suppliers where available for every
component of the FE boards.

• FE electronics firmware: This will be specified and updated iteratively in collaboration with
other systems. The electronics working group will be responsible for responding to requests
for additional firmware development, including for example, modifications to timing interface,
modifications to trigger interface, and implemented sensitivity to in-spill versus not-in-spill
conditions. Documents describing firmware architecture for each major change will be written
and distributed to PD and DAQ working groups before implementation. An FE electronics
users manual containing all details of new firmware will be distributed with production units
when manufactured.

• Mechanical assembly: With the mechanical assembly of electronics readout boards, it is
common practice to use a 3D model generated by the layout software. All relevant dimensions
of the PCB including connector and indicator placement is extracted as a base DXF file
from which an overall exploded mechanical diagram of chassis and other mechanical parts

38Octopart https://octopart.com/
39 ECIA https://www.eciaauthorized.com
40PartMiner https://www.part-miner.com/
41Cadence Allegro®PCB design solution https://www.cadence.com
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is made. Mechanical items such as shield plates will also be provided. It is assumed that
external vendors will make the FE chassis (one for the chassis, one for front and back panels)
from drawings provided by the consortium.

5.9.6 Calibration and Monitoring

The consortium gained extensive experience in manufacturing, testing, and assembly processes
during the development of the calibration and monitoring system for ProtoDUNE-SP. A general
description of the proposed calibration and monitoring system can be seen in Section 5.7.

The design and production of the calibration modules including electronics circuitry, FPGA im-
plementation for light-source controls, optical timing/trigger and DAQ communication protocols,
and UV light sources, closely follows the process described in Section 5.9.5.

Design and selection of cold diffuser components and selection of cold and warm quartz fiber
components follows requirements derived from interface considerations with HV, CPA and cryostat
systems, and was tested in ProtoDUNE-SP. Installation, QA and QC of optical fibers is performed
during the CPA installation process, with diffusers and CPA fibers pre-installed on the CPAs.

Installation of fibers that connect CPAs to the optical feedthrough penetrations at the cryostat
will be defined with the detector support system (DSS) and cryostat teams, based on installation
experience in ProtoDUNE-SP.

5.9.7 Outline of PD System Assembly Plan

The SP PD consortium is composed of many institutions in North and South America and Europe
and fabrication of the system will occur at many locations. Here we present an outline of our
assembly plan. The schedule interfaces implicit in this assembly program will be detailed in the
overall project schedule.

• Photosensors, mounting and active ganging: Italian groups funded by INFN (and their
associated universities) will procure, test, and assemble the active ganging circuits for the
PD system. Photosensor mounting board assembly will likely be outsourced to a yet-to-be
selected external firm.
The groups most involved are Bologna, Genova, Milano, Milano-Bicocca, and Laboratori
Nazionali del Sud. Other Italian groups have also expressed interest in joining. We will
allocate tasks among the interested groups prior to the final design review.
Following assembly, these components and their associated QC documentation will be shipped
to UNICAMP for assembly into PD modules.

• Light collector modules: Light collector modules will be fabricated primarily in Brazil.
Dichroic filters and wavelength shifting plates will be procured and received by a combination
of CTI Campinas and the National Laboratory of Synchrotron Light (also in Campinas),
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where they will undergo reception QC testing.
Following testing, the dichroic filters will be delivered to UNICAMP for coating with PTP
in their in-house vacuum deposition system.
The module mechanical components are also the responsibility of UNICAMP. This includes
the FR-4 G-10 components (which will be fabricated in-house at UNICAMP), signal routing
circuit boards, module electrical connectors, and other miscellaneous components (purchased
externally) required to fabricate the modules.
Module assembly and initial QC testing will happen at UNICAMP.
Following assembly, the tested modules and all the associated QC documentation will be
shipped to a reception center in the USA, where they will be retested and stored in the
South Dakota Warehouse Facility (SDWF) until required for integration into the APAs un-
derground.

• APA support rails and electrical connectors: Stainless steel rails and associated hardware
for supporting the PD modules inside the APA will be fabricated by vendor in the USA.
Components for cable connection between the upper and lower APAs, and cable management
pieces, will be procured from vendors, assembled, and tested in the USA.
Following assembly and testing, these components will be shipped to APA frame assembly
sites for integration into the frames prior to wire wrapping.

• Readout electronics and DAQ interface: The FE electronics and DAQ interfaces will be built
by a collaboration of Latin American countries, particularly Colombia, Peru, and Paraguay,
with engineering support from Fermilab and the University of Michigan in the US.
The FE electronics, communications boards, and external cabling between them and the
DAQ will be designed by collaboration engineers, fabricated, or purchased from external
vendors, and tested at collaboration institutions. While the exact distribution of effort is
still being settled, interested institutions in Colombia include Universidad Antonio Nariño
(UAN) and Universidad EIA. In Peru, they include the Universidad Nacional de Ingeniería
de Peru.
DAQ/PD interface firmware development will be conducted by Paraguay, particularly the
Universidad National de Asuncion (FIUNA), in conjunction with UAN in Colombia.
Following assembly and testing, components will be shipped to a reception center in the US
for inspection then stored at the SDWF until needed.

• Cables: Materials for cables and connectors inside the APA frames will be purchased, as-
sembled and tested in the USA. Cables between the APA and the cryostat flange, as well as
those between the flange and the DAPHNE electronics, will be purchased by UNICAMP and
assembled and tested at their facilities. Following testing, the cables and their associated QC
documentation will be assembled into groups of 20 cable sets (one APA stack) and shipped
to the SDWF for storage until needed for installation. Cables intended to be routed inside
the APA frames will be shipped directly to the APA frame assembly facilities.

• Monitoring system: The monitoring system including LED drivers, optical fibers, and dif-
fusers will be designed, fabricated and tested in the US by the South Dakota School of Mines
and Technology and Argonne National Laboratory.
Following assembly and testing, the system will be stored at the SDWF until needed for
installation.
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5.10 System Interfaces

5.10.1 Overview

Table 5.6 contains a summary and brief description of all the interfaces between the SP module
PD system consortium and other consortia, working groups, and task forces, with references to the
current version of the interface documents describing those interfaces. Drawings of the mechanical
interfaces and diagrams of the electrical interfaces are included in the interface documents as
appropriate. It is expected that further refinements of the interface documents will take place
prior to the final production readiness review for the detector. The interface documents specify
the responsibility of different consortia or groups during all phases of the experiment including
design and prototyping, integration, installation, and commissioning.

Additional details describing the interface between the SP PD system and the other consortia,
task forces (TF) and subsystems are given below.

5.10.2 Anode Plane Assembly

The interface with the Anode Plane Assembly (APA) represents the most significant mechanical
interface for the PD system. Interfaces with the APA are involved in meeting specifications SP-
PDS-2, SP-PDS-7, SP-PDS-8, SP-PDS-9, SP-PDS-10, SP-PDS-11, and SP-PDS-12 (see Table 5.1).
The interface document will be written to monitor these specifications.

The APA frame is designed to provide:

• mechanical support and alignment for the PD modules, including access slots through the
side of the frame for insertion of modules after the APAs are wrapped in wire;

• mounting support for the PD electrical connections between the PD modules and the cable
harness mounted inside the APA frame;

• mechanical support and strain relief for PD cables located inside the completed APA frame;
and

• provision to connect the PD cables from the lower APA to the upper APA in an assembled
APA stack and to connect the cables from the top of the APA stack to the cryostat flange.

Work on the two-APA connection and inspection in the underground assembly area will be per-
formed by the APA group. Work on cabling prior to installation is performed by PD system and
TPC electronics groups under supervision of the APA installation group. Once the APAs are
moved inside the cryostat, the PD system and electronics consortia will be responsible for the
routing of the cables in the trays hanging from the top of the cryostat.

Careful interface control will be required to ensure a successful assembly, which will be guided by
the interface control document between the PD and APA consortia.
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Table 5.6: Single Phase PD system interface links.

Interfacing System Description Linked Reference
Detector Subsystems
APA Mechanical support for PDs, PD installation slots,

PD cabling support, access slots
DocDB 6667 [10]

CE Electrical signal interference, grounding, cable rout-
ing, cryostat flange, installation and testing

DocDB 6718 [70]

HV Mounting of PD monitoring system, possible reflec-
tor foil support, electrical discharge or corona effect
light contamination

DocDB 6721 [31]

DAQ Data format, data timing, trigger information, tim-
ing and synchronization

DocDB 6727 [86]

CISC Rack layout, flange heaters, power supply selection,
power and signal cable selection, monitoring cam-
eras and camera lighting, purity monitor lighting,
controls and data monitoring

DocDB 6730 [87]

Technical Coordination
Facility interfaces Cable trays inside the cryostat, cryostat penetra-

tions, rack layout and power distribution on the de-
tector mezzanine, cable and fiber trays on top of the
cryostat

DocDB 6970 [88]

Installation interfaces Sequence of integration and installation activities at
SURF, equipment required for PD consortium activ-
ities, environmental controls in the cryostat during
installation, post-installation testing

DocDB 6997 [89]

Calibration task force in-
terfaces

Interface of SP module dual-phase (DP) monitoring
system into calibration system.

DocDB 7051 [90]

Physics, Software and
Computing interfaces

Covers interfaces between the PD group and the
joint computing task force, including specifications
required for physics, data handling, and computing
and storage requirements.

DocDB 7105 [91]
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5.10.3 TPC Cold Electronics

Interfaces with the TPC CE are involved in meeting specifications SP-FD-2, SP-PDS-8, and SP-
PDS-10 (see Table 5.1). The interface between the PD and CE systems primarily consists of:

• ensuring no electrical cross-talk between the electronics and cabling harnesses of the PD and
CE systems;

• ensuring there be no electrical contact between the PD system and CE components except
for sharing a common reference voltage point (ground) at the feedthroughs;

• developing a common cable routing plan allowing the systems to share a common cable tray
system on top of the APA frame and routing the cables to the cryostat flanges; and

• managing the interface between the PD and CE flanges in the cryostat cabling tees.

The CE and PD use a common cable tray system but separate flanges for the cold-to-warm
transition, and each consortium is responsible for the design, procurement, testing, and installation,
of their flange on the feedthrough, together with Long-Baseline Neutrino Facility (LBNF), which
is responsible for the design of the cryostat. The installation of the racks on top of the cryostat is a
responsibility of the facility, but the exact arrangement of the various crates inside the racks will be
reached after common agreement between the CE, PD, cryogenic instrumentation and slow controls
(CISC), and possibly DAQ consortia. The PD and CE consortia will retain all responsibility for
selecting, procuring, testing, and installing their respective racks unless space and cost requires an
agreement on shared crates to house the low-voltage or high-bias voltage modules for both systems.

5.10.4 Cathode Plane Assembly and High Voltage System

Interfaces with the HV system should meet mechanical specification SP-PDS-9 (see Table 5.1). In
addition, light produced in electrical discharges in the HV system may increase the PD system
data volume and impact the DAQ system. Communication between the three systems has been
established on this issue.

The primary interface between the PD and HV systems is summarized as follows:

• providing an optical fiber routing path and strain relief system to the cryostat calibration
hatch;

• mounting the PD monitoring system light diffusers to the CPA faces; and
• minimizing background light due to electrical discharge (corona effects).

This interface has strong overlap with the calibration consortium; this is described in more detail
in Section 5.10.8.

If the light reflector foil option were to be implemented, production of the FR-4+resistive Kapton
CPA frames will be the responsibility of the HV consortium, together with design of the structure
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for mounting the PD reflector foils to the CPA structure. The HV consortium will also provide
mounting attachment points in the CPA frame structure. The reflector foils themselves, TPB
coating of the WLS foils, and any required hardware for mounting the foils will be the responsibility
of the PD consortium, with the understanding that all designs and procedures will be approved
by the HV consortium.

5.10.5 Data Acquisition

Interfaces with the DAQ system are involved in meeting specifications SP-PDS-5 and SP-PDS-13
(see Table 5.1). The PD system interfaces with the DAQ system are described in DocDB 6727 [86]
and include

• Data physical links: Data are passed from the PD to the DAQ on 25 optical links following
the 1000Base-SX standard. The links run from the PD readout system on the cryostat to
the DAQ system in the central utility cavern (CUC).

• Data format: Data are encoded using UDP/IP. The data format consists of a header contain-
ing the word count, event time stamp, and channel ID, followed by the digitized waveform
in 80MHz samples. The data format has also been specified to use compression (zero sup-
pression) and custom communication protocol.

• Data timing: The data must contain enough information to identify the time at which it was
taken.

• Trigger information: The PD may provide summary information useful for data selection. If
present, this will be passed to the DAQ on the same physical links as the remaining data.

• Timing and synchronization: Clock and synchronization messages will be propagated from
the DAQ to the PD using a backwards compatible development of the ProtoDUNE-SP timing
system protocol [60]. There will be at least one timing fiber available for each data link coming
from the PD system.

• Power-on initialization and start-of-run setup: The PDS may require initialization and setup
on power-on and start of run. Power on initialization should not require communication with
the DAQ. Start run/stop run and synchronization signals such as accelerator spill information
will be passed by the timing system interface.

The data format has been determined but it is possible to include additional summary information
to the header that depends on the outcome of triggering studies underway. This minor potential
modification can be accommodated easily.

Excessive PD data may be generated by background effects such as light leaks in the cryostat or
light generated due to sporadic short duration current discharge from the HV system (referred
to as “micro-discharges” or as “streamers” in ProtoDUNE-SP). The HV consortium is trying to
reduce the rate at which the discharges happen, but it is not expected to be completely eliminated.

In the case of light leaks, specification SP-PD-05 limits the acceptable data generated by these
leaks to less than 10% of the total data transfer rate from the PD to the DAQ. Light flashes due to
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HV micro-discharges may be harder to mitigate, but the experience of streamers producing light
in ProtoDUNE-SP informs what we are likely to experience in DUNE and indicates that there is
low risk that it will be a serious problem:

• They occur at a relatively low rate: once per few hours in ProtoDUNE-SP, likely much less
underground due to the much lower cosmic ray ray that generates charge in the TPC.

• When they occur, they produce a significant amount of light but in a localized region (this
was observed in the ProtoDUNE-SP PD system).

There is an automatic mitigation scheme in the HV system slow control that can identify when
micro-discharges occur and stop them, but the power supply data is read relatively slowly (a few
Hz) compared to the timescale of the PD/DAQ. Data corresponding to the PD response to the
light flash will have already been recorded by the DAQ before the HV system can respond, so the
mitigation will likely need to be a function of the DAQ.

In summary, since electrical discharges from the HV system are not under the control of the PD
system it is not directly a specification for the PD system. Following consultation with the DAQ
and HV consortia, we determined that it is also not appropriate as a specification on the HV
system but is better addressed in the DAQ/PD interface document.

5.10.6 Cryogenics Instrumentation and Slow Control

The primary interactions between the PD and the CISC include

• warm electronics rack controls, power supplies, rack safety equipment;
• warm cable and connector selection;
• cryogenic camera systems for detector monitoring, including lighting systems;
• purity monitor lighting requirements;
• cryostat flanges required for PD signal cable and monitoring systems; and
• PD slow control (including bias voltage) and data monitoring.

Additional interaction may occur in the case that the xenon doping performance enhancement is
selected for inclusion in the detector. This system requires pre-mixing xenon gas and argon gas to
introduce xenon doping into the LAr volume.

Any required hardware for this enhancement will be the responsibility of the PD consortium, with
the understanding that all designs and procedures will be approved in advance by the cryogenics
group.

A proposal is under consideration to mount CISC temperature sensors inside the APA frames,
sharing a readout cable routing inside the APA frames and upper-to-lower APA connection point
with the PD. This decision will be reached prior to the 60% design review. In case this plan is
adapted, all PD cables and connectors will be the responsibility of the PD consortium, and all
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CISC components, cables, and connectors will be the responsibility of the CISC consortium. Cable
routing plans, junction plates, and cable fixation will be the responsibility of the PD consortium.

5.10.7 Facility, Integration and Installation Interfaces

The interface document with the project interface and installation working group covers the in-
terface of the PD group with the technical coordination groups who oversee the integration of
the PD modules and electronics into the APA and DAQ. Interfaces with the facility, integration,
and installation group are involved in meeting specifications SP-PDS-1, SP-PDS-3, SP-PDS-4,
and SP-PDS-5 (see Table 5.1). The interfaces are distributed among the facility, integration, and
installation working groups and primarily consist of

• electrical racks, cable trays, and cryostat penetrations, and power distribution on the mez-
zanine;

• storage for arriving PD modules prior to their integration;
• planning of pre-integration tests of PD components at the integration area and required

equipment/tools;
• sequence of integration and installation activities at Sanford Underground Research Facility

(SURF) (including environmental controls);
• quality management testing of PD modules during integration and installation;
• equipment required for PD consortium activities; and
• environmental controls in the cryostat during installation, and post-installation testing.

The PD consortium retains responsibility for providing quality management tooling and test plans
at the integration area, as well as specialized labor and supervisory personnel for PD module
integration and installation. Distribution of these responsibilities is described in DocDB 6970 [88].

The installation is described in detail in Chapter 9.

5.10.8 Calibration and Monitoring

This subsection concentrates on the description of the interface between the SP-PD system, cali-
bration, and CISC consortia. Main interface items are

• cold components: light sources (diffusers and fibers) placed on the cathode planes to illumi-
nate the detectors;

• warm components: a controlled pulsed-UV source and warm optics; and
• the optical feedthrough: used to PD bring monitoring system fiber optics through the cali-

bration and monitoring flange. The flange itself is a shared interface between the PD system,
the calibration task force, and CISC.
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Hardware components required for PD monitoring and calibration systems will be designed and
fabricated by the SP-PD system consortium.

Cold components (diffusers and fibers) interface with HV and are described in a separate interface
document (DocDB 6721 [31]). Warm components interface the PD calibration and monitoring
subsystem with the CISC DocDB 6730 [87] and DAQ DocDB 6727 [86] subsystems.

A joint development effort with HV/CPA groups will define the optimization of materials and
location of the photon diffusers, fiber routes, connectors location and also the installation procedure
of the diffusers and fiber. The feedthrough ports/locations and fiber routing along DSS will be
determined jointly by SP-PD system and cryostat/DSS groups. The calibration and PD system
consortia will share rack spaces. Multi-purpose ports are planned to be shared between various
groups, calibration devices such as lasers and cameras will make use of them. SP-PD system,
calibration, and CISC will define the ports for deployment. An interlock system to avoid turning
on light sources when the PD system is in operation will be provided.

5.10.9 Physics, Software and Computing

Interfaces with physics, software, and computing are involved in meeting specifications SP-FD-3,
SP-FD-4, SP-PDS-2, SP-PDS-5, SP-PDS-14, SP-PDS-15, and SP-PDS-16 (see Table 5.1). The
physics topics covered by the SNB/low energy and nucleon decay (NDK)/HEP working groups
are the most closely connected to the SP PD system. The connection stems from the need for
self-triggering for DUNE non-beam physics addressed by these two groups. However, there are con-
nections to all physics working groups involving FD observables, as scintillation light information
will improve event reconstruction/classification beyond what is achievable by TPC information
only.

Below is a summary of interfaces between the SP PD system and FD and ProtoDUNE-SP simu-
lation and reconstruction groups:

• generating photon libraries, and the tools for doing so;
• simulating and evaluating performance of physics events;
• SP PD system reconstruction performance studies;
• algorithms for matching flashes to TPC tracks; and
• analyzing the light produced by various species of charged particles.

It is critical that the performance specifications for the PD system meet the needs of the physics
and reconstruction teams, both in terms of detector performance and background (including false
triggers from radiologicals and light contamination from cryostat light leaks, HV system corona
discharges, and calibration system effects such as purity monitors, laser flashers and cameras. These
interfaces will be captured here. Light contamination of any nature must be studied quantitatively
so that the impact on error budget due to misclassification of events can be calculated. Quantitative
indicators should be established using ProtoDUNE-SP data, which should also provide the basis
for identification algorithms of spurious signals caused by light leakage.
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The SP PD system shares interfaces with the DUNE core computing systems, primarily with
databases. The two databases that will have direct interfaces with the SP PD system are the
hardware/QC and calibration databases. All the off-line calibration values will be stored in the
DUNE calibration database. Additionally, the system will interface with the DUNE hardware
database. During all stages of production/procurement and QC evaluations of PD system com-
ponents, as well as integration and installation of the system, tracking of the hardware, and test
results will be stored in the DUNE hardware/QC database. The SP PD system consortium will
work with the database group to ensure that all schema, applications, and procedures for the
database interfaces are developed. As components of the system will originate at multiple institu-
tions, well defined procedures and management will be required to ensure that all data is archived
in the DUNE hardware/QC database.

5.11 Risks

Table 5.7 contains a list of all the risks that we are currently holding in the PD risk register. Each
line includes the official DUNE risk register identification number, a description of the risk, the
proposed mitigation for the risk, and finally three columns rating the post-mitigation (P)robability
that the risk described comes to pass, the degree of (C)ost risk for that line, and the degree of
(S)chedule risk. Risk levels are defined as (L)ow (<10% probability of occurring, <5% cost impact,
<2 month schedule impact), (M)edium (10 to 25% probability of occurring, 5% to 20% cost impact,
2 to 6 month schedule impact), or (H)igh (>25% probability of occurring, >20% cost impact, >6
month schedule impact). Most of these risks are reduced to a “Low” level following mitigation (as
shown in the table), although several of them currently hold a higher risk levels (pre-mitigation),
due to the early stage of development of the PD system relative to other systems.

In the following sections, we present a narrative description of each of the risks and the proposed
mitigation.

Table 5.7: PD system risks (P=probability, C=cost, S=schedule) The risk probability, after taking into
account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%), or H
(high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule delay < 2
months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-PD -01 Additional photosen-

sors and engineering
required to ensure PD
modules collect enough
light to meet system
physics performance
specifications.

Extensive validation of X-
ARAPUCA design to demonstrate
they meet specification.

L M L

RT-SP-PD-02 Improvements to ac-
tive ganging/front end
electronics required to
meet the specified 1 µs
time resolution.

Extensive validation of photosensor
ganging/front end electronics design
to demonstrate they meet specifica-
tion.

L L L
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RT-SP-PD-03 Evolutions in the de-
sign of the photon de-
tectors due to vali-
dation testing experi-
ence require modifica-
tions of the TPC ele-
ments at a late time.

Extensive validation of X-
ARAPUCA design to demonstrate
they meet specification and control
of PD/APA interface.

L L L

RT-SP-PD-04 Cabling for PD and CE
within the APA frame
or during the 2-APA
assembly/installation
procedure require
additional engineer-
ing/development/testing.

Validation of PD/APA/CE cable
routing in prototypes at Ash River.

L L L

RT-SP-PD-05 Experience with val-
idation prototypes
shows that the me-
chanical design of
the PD is not ade-
quate to meet system
specifications.

Early validation of X-ARAPUCA
prototypes and system interfaces to
catch problems ASAP.

L L L

RT-SP-PD-06 pTB WLS filter coat-
ing not sufficiently sta-
ble, contaminates LAr.

Mechanical acceleration of coating
wear. Long-term tests of coating sta-
bility.

L L L

RT-SP-PD-07 Photosensors fail due
to multiple cold cy-
cles or extended cryo-
gen exposure.

Execute testing program for cryo-
genic operation of photosensors in-
cluding mutiple cryogenic immersion
cycles.

L L L

RT-SP-PD-08 SiPM active ganging
cold amplifiers fail or
degrade detector per-
formance.

Validation testing if photosensor
ganging in multiple test beds.

L L L

RT-SP-PD-09 Previously undetected
electro-mechanical
interference discovered
during integration.

Validation of electromechanical de-
signin Ash River tests and at
ProtoDUNE-SP-2.

L L L

RT-SP-PD-10 Design weaknesses
manifest during mod-
ule logistics-handling.

Validation of shipping packaging and
handling prior to shipping. Inspec-
tion of modules shipped to site im-
mediately upon receipt.

L L L

RT-SP-PD-11 PD/CE signal
crosstalk.

Validation in ProtoDUNE-SP, ICE-
BERG and ProtoDUNE-SP-2.

L L L

RT-SP-PD-12 Lifetime of PD compo-
nents outside cryostat.

Specification of environmental con-
trols to mitigate detector aging.

L L L

5.11.1 Physics Performance Specification Risks

Risk RT-SP-PD-01 in the Table 5.7 addresses the performance specification that the PD system
detect 0.5 pe/MeV of deposited energy. The system as designed may not reach this requirement
during validation, necessitating additional engineering time and possibly additional system cost.
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Current design validation (Section 5.8) provides firm indication that this specification will be met
by the X-ARAPUCA. Mitigation of this risk is being achieved by allocating enough development
resources to the PD to continue developing improved light collection modules; increasing the APA
slot size to allow for larger modules; or increasing the number of photosensors per X-ARAPUCA
supercell. The cost risk is rated M because photosensors are a significant cost driver for the project
and increasing their number presents a significant medium level cost risk to the system.

Risk RT-SP-PD-02 addresses the performance specification that the PD system provide 1µs time
resolution. While the timing resolution specification has been met by the ProtoDUNE-SP SSP-
based S-ARAPUCA, cost-saving modifications to the readout electronics could degrade the per-
formance of the PD system below the 1µs requirement. In addition, the combination of active and
passive ganging of 48 photosensors could degrade timing performance. Current design validation
(Section 5.8) provides firm indication that this specification will be met by the X-ARAPUCA
and our baseline electronics, so a risk level of L is assigned to this risk. Mitigation of this risk
is being achieved by allocating enough engineering resources to proceed rapidly with the design
modifications of our reduced-cost baseline system; extensive testing of passive ganging prototypes,
including parallel development of two design options for the active ganging circuit; and testing of
timing performance in software simulation and multiple validation test stands.

5.11.2 Design Risks

Risk RT-SP-PD-03 addresses the interface of the APA and PD designs, and the possibility that
in order to meet detector performance or reliability specifications, the PD design may evolve in a
direction requiring modification of the APA. Our current design validation (Section 5.8) provides
firm indication that these specifications will be met by the X-ARAPUCA, but we have not yet
completed the validation process. While the design validation at this point is sufficient to reduce
the overall risk to low following validation, this remains one of the principle risks we consider due
primarily to the significant potential costs (financial and schedule) associated with such a change
following the TDR. Mitigation of this risk involves close interaction between the APA and PD
consortia and assigning significant resources to PD validation efforts.

Risk RT-SP-PD-04 covers the plans for running PD cables within the APA frames. Lessons
learned during the ProtoDUNE-SP led to the re-design of the PD cabling layout, moving the
cables inside the APA frame where they will be unreachable following installation of the APA wires.
Additionally, installation of the APAs into the cryostat will require making PD cable connections
between the upper and lower APAs underground. This risk addresses the concern that difficulties
with these APA/PD interfaces will require changes to the cabling plan. Mitigation consists of
extensive validation tests, including full-scale integration tests at the Ash River installation site.

Risk RT-SP-PD-05 concerns the possibility that continuing validation tests demonstrate that the
PD mechanical design is in some way not adequate to meet DUNE specifications. While validation
is ongoing and the possibility or a required design change remains, the impact and cost of such a
change is likely relatively low. Mitigation includes continued design validation testing and sufficient
engineering resources.
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Risk RT-SP-PD-06 concerns the possibility that continuing validation tests demonstrate that the
coatings required on the dichroic filter plates are not sufficiently robust in cryogenic applications
and flake or dissolve off the surface and contaminate the LAr, possibly impacting electron lifetime
or optical performance of the detector. Experience in ProtoDUNE-SP suggested that coatings of
the filters is a delicate operation, and the possibility exists to produce unstable coatings. Mitigation
includes continued validation testing of coated filters and sufficient engineering resources. This is
one of the more significant outstanding risks, due to the possibility of negatively impacting the
performance of the TPC.

Risk RT-SP-PD-07. One of the most significant lessons of the ProtoDUNE-SP for the PD system
was the failure of a significant number of photosensors during module assembly QC due to an
unannounced change in the manufacturer’s photosensor packaging procedures. Problems devel-
oped with initially reliable photosensors mid-way through fabrication, requiring rapid changes to
the PD design. This risk addresses the possibility of a re-occurrence of this or a similar prob-
lem. Mitigation includes (but is not limited to) extensive QA testing prior to selecting the final
photosensor candidate, careful coordination with photosensor vendor(s), and rigorous QC testing
procedures (including tracking wafer fabrication and packaging batch information from the vendor)
for photosensors. We are in close contact with both candidate photosensor candidates to develop
a QA/QC plan sufficient to address our concerns.

Risk RT-SP-PD-08 addresses the possibility of a degradation in PD performance or outright failure
due to the cold amplifiers required by the active ganging circuitry. In order to reach the base-
line design of 48 ganged photosensors per X-ARAPUCA supercell, a mix of active and passive
ganging is required. While initial validation testing is very promising, these circuits remain quite
new. Mitigation of this risk involves additional validation testing in bench-top testing and in the
ICEBERG test stand.

5.11.3 Risks During Integration

Risk RT-SP-PD-09 addresses the possibility that a previously undetected flaw in the PD module
design or the integration plan with the APAs manifests itself during the integration process. Steps
taken to mitigate this risk include close coordination between the PD, APA, CE, and the integration
task force coordinated by the project, including extensive full-scale testing at Ash River and at
other integration test sites.

Risk RT-SP-PD-10 covers risks associated with integration into DUNE detectors. Fabrication
and initial testing of PDs will occur in Brazil, follow-on testing will occur at the US reception
facility prior to storage at the SDWF, and additional logistics and handling will occur prior to
the modules arriving at the underground integration facility. This risk addresses the possibility
that previously undetected weaknesses will be discovered in QC testing following receipt of the
modules. Mitigation of this risk includes careful design engineering and testing of shipping and
handling procedures.
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5.11.4 Risks During Installation/Commissioning/Operations

The biggest risk that could be realized during the commissioning and operations phase is the
observation of excessive noise caused by failure to follow the DUNE grounding rules. Risk RT-
SP-PD-11 addresses the possibility of discovering such a failure during installation QC testing or
commissioning of the detector. The observation of excessive noise in DUNE would result in a delay
of the commissioning and of data taking until the source of the noise is found and remedial actions
are taken. In order to minimize the probability of observing excessive electronic noise, we plan to
enforce the grounding rules throughout the design phase, based on the lessons learned from the
operation of the ProtoDUNE-SP detector. In addition, testing at ICEBERG between PD and all
generations of CE electronics will minimize this risk.

Risk RT-SP-PD-12 addresses PD maintenance during operation. During operation, most PD
components are inaccessible due to being submerged in LAr. However, some components such as
the warm readout electronics remain accessible. It is valuable to assign a risk to the need of their
requiring spares beyond those planned for, or replacement due to a previously undetected flaw.
Mitigation steps include two aspects: (1) designing the warm systems to facilitate repair, and (2)
performing a careful mean time between failure analysis to predict failure rates over the lifetime
of the experiment that will allow the procurement of sufficient spares in the production phase.

5.12 Transport and Handling

A storage facility near or at the FD site (the SDWF) will be established to allow storage of materials
for detector assembly until needed. Transport of assembled and tested PD modules, electronics,
cabling, and monitoring hardware to the SDWF is the responsibility of the PD consortium.

Following assembly and quality management testing in Brazil, the PD modules will be packaged
and shipped to an intermediate testing facility in the US for post-shipping checkout. Following
this, the modules will be stored in their shipping containers in the SDWF. Cables, readout elec-
tronics, and monitoring hardware will be shipped directly to the SDWF and stored until needed
underground for integration.

Packaging plans are informed by the ProtoDUNE-SP experience. Each SP module will be in-
dividually sealed into a light-tight anti-static plastic bag. Bagged modules will be packaged in
groups of ten modules (matching the need for a single APA transported in a single shipping box),
approximately 20 cm × 20 cm × 250 cm long. These shipping boxes will be gathered into larger
crates to facilitate shipping. The optimal number per shipment is being considered.

Documentation and tracking of all components and PD modules will be required during the full
logistics process. Well defined procedures are in place to ensure that all components/modules
are tested and examined prior to, and after, shipping. Information coming from such testing and
examinations will be stored in the DUNE hardware database. Each PD module shipping bag
will be labeled with a text and barcode label, referencing the unique ID number for the module
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contained, and allowing linkage to the hardware database upon unpacking prior to integration into
the APAs underground.

Tests have been conducted and continue to validate environmental requirements for photon detector
handling and shipping. The environmental condition specifications for lighting (SP-PDS-3 in
Table 5.1), humidity (SP-PDS-4 in Table 5.1), and work area cleanliness (SP-PDS-1 in Table
5.1) apply for surface and underground transport, storage and handling, and any exposure during
installation and integration underground.

Details of PD integration into the APA and installation into the cryostat, including quality man-
agement testing equipment, tests, and documentation are included in Chapter 9.

5.13 Quality Assurance and Quality Control

The QA and QC programs for the FD are based on our experience with the ProtoDUNE-SP. Our
design-phase quality management system is based upon that experience. Following completion
of the 60-percent design review, we will develop a quality final assurance program focused on
final specifications and drawings, and developing a formal set of fabrication procedures along with
detailed QC and test plans.

During fabrication, integration into the detector, and detector installation into the cryostat, our
QC plan will be carefully followed, including incoming materials and other inspection reports,
fabrication travelers, and formal test result reports entered into the DUNE QA/QC database.

Particular steps in this process are detailed below.

5.13.1 Design Quality Assurance

PD design QA focuses on ensuring that the detector modules meet the following goals:

• physics goals as specified in the DUNE requirements document;
• interfaces with other detector subsystems as specified by the subsystem interface documents;

and
• materials selection and testing to ensure non-contamination of the LAr volume.

The PD system consortium will perform the design and fabrication of the components in accordance
with the applicable requirements of the LBNF-DUNE QA plan. If the institute (working under
the supervision of the consortium) performing the work has a documented QA program, the work
may be performed in accordance with their own program.

Upon completion of the PD system design and QA/QC plan, there will be a pre-production review
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process, with the reviewers charged to ensure that the design demonstrates compliance with the
goals above.

5.13.2 Production and Assembly Quality Assurance

The PD system will undergo a QA review for all components prior to completion of the design
and development phase of the project. The ProtoDUNE-SP test will represent the most significant
test of near-final PD components in a near-DUNE configuration, but additional tests will also be
performed. The QA plan will include, but not be limited to, the following areas:

• materials certification (in the Fermilab materials test stand and other facilities) to ensure
materials compliance with cleanliness requirements;

• cryogenic testing of all materials to be immersed in LAr, to ensure satisfactory performance
through repeated and long-term exposure to LAr. Special attention will be paid to cryogenic
behavior of fused silica and plastic materials (such as filter plates and wavelength-shifters),
SiPMs, cables and connectors. Testing will be conducted both on small-scale test assemblies
(such as the small test cryostat at CSU) and full-scale prototypes (such as the full-scale
CDDF cryostat at CSU).

• mechanical interface testing, beginning with simple mechanical go/no-go gauge tests, followed
by installation into the ProtoDUNE-SP-2 system, and finally full-scale interface testing of
the PD system into the final pre-production TPC system models; and

• full-system readout tests of the PD readout electronics, including trigger generation and
timing, including tests for electrical interference between the TPC and PD signals.

Prior to beginning construction, the PD system will undergo a final design review, where these
and other QA tests will be reviewed and the system declared ready to move to the pre-production
phase.

5.13.3 Production and Assembly Quality Control

Prior to the start of fabrication, a manufacturing and QC plan will be developed detailing the
key manufacturing, inspection, and test steps. The fabrication, inspection, and testing of the
components will be performed in accordance with documented procedures. This work will be
documented on travelers and applicable test or inspection reports. Records of the fabrication,
inspection and testing will be maintained. When a component has been identified as being in
noncompliance to the design, the nonconforming condition shall be documented, evaluated, and
dispositioned as: use-as-is (does not meet design but can meet functionality as it is), rework (bring
into compliance with design), repair (will be brought to meet functionality but will not meet
design), and scrap. For products with a disposition of accept, as is, or repair, the nonconformance
documentation shall be submitted to the design authority for approval.

All QC data (from assembly and pre- and post-installation into the APA) will be directly stored
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to the DUNE database for ready access of all QC data. Monthly summaries of key performance
metrics (to be defined) will be generated and inspected to check for quality trends.

Based on the ProtoDUNE-SP model, we expect to conduct the following production testing:

Prior to shipping from assembly site:

• dimensional checks of critical components and completed assemblies to insure satisfactory
system interfaces;

• post-assembly cryogenic checkouts of SiPM mounting PCBs (prior to assembly into PD
modules);

• module dimensional tolerances using go/no-go gauge set; and
• warm scan of complete module using motor-driven LED scanner (or UV LED array).

Following shipping to the US reception and checkout facility but prior to storage at SDWF:

• mechanical inspection;
• warm scan (using identical scanner to initial scan); and
• cryogenic testing of completed modules (in CSU CDDF or similar facility).

Following delivery to integration clean room underground, prior to and during integration and
installation:

• warm scan (using identical scanner to initial scan);
• complete visual inspection of module against a standard set of inspection points, with pho-

tographic records kept for each module;
• end-to-end cable continuity and short circuit tests of assembled cables; and
• an FE electronics functionality check.

5.13.4 Installation Quality Control

PD system pre-installation testing will follow the model established for ProtoDUNE-SP. Prior to
installation in the APA, the PD modules will undergo a warm scan in a scanner identical to the
one at the PD module assembly facility and the results compared. In addition, the module will
undergo a complete visual inspection for defects and a set of photographs of selected critical optical
surfaces taken and entered into the QC record database. Following installation into the APA and
cabling, an immediate check for electrical continuity to the SiPMs will be conducted.

Following the mounting of the TPC CE and the PDs, the entire APA will undergo a cold system
test in a gaseous argon cold box, similar to that performed during ProtoDUNE-SP. During this test,
the PD system system will undergo a final integrated system check prior to installation, checking
dark and LED-stimulated SiPM performance for all channels, checking for electrical interference
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with the cold electronics, and confirming compliance with the detector grounding scheme.

5.14 Safety

Safety management practices will be critical for all phases of the photon system assembly, and test-
ing. Planning for safety in all phases of the project, including fabrication, testing, and installation
will be part of the design process. The initial safety planning for all phases will be reviewed and
approved by safety experts as part of the initial design review. All component cleaning, assembly,
testing, and installation procedure documentation will include a section on safety concerns relevant
to that procedure and will be reviewed during the appropriate pre-production reviews.

Areas of particular importance to the PD system include

• Hazardous chemicals (particularly WLS chemicals such as PTP used in filter plate coating)
and cleaning compounds: All potentially hazardous chemicals used will be documented at
the consortium management level, with materials data safety sheets (MSDS) and approved
handling and disposal plans in place.

• Liquid and gaseous cryogens used in module testing: Full hazard analysis plans will be
in place at the consortium management level for all module or module component testing
involving cryogenic hazards, and these safety plans will be reviewed in the appropriate pre-
production and production reviews.

• High voltage safety: Some of the candidate SiPMs require bias voltages above 50VDC during
warm testing (although not during cryogenic operation), which may be a regulated voltage
as determined by specific laboratories and institutions. Fabrication and testing plans will
demonstrate compliance with local HV safety requirements at the particular institution or
laboratory where the testing or operation is performed, and this compliance will be reviewed
as part of the standard review process.

• UV and VUV light exposure: Some QA and QC procedures used for module testing and
qualification may require use of UV and/or VUV light sources, which can be hazardous
to unprotected operators. Full safety plans must be in place and reviewed by consortium
management prior to beginning such testing.

• Working at heights, underground: Some aspects of PD system module fabrication, testing
and installation may require working at heights or deep underground. Personnel safety will
be an important factor in the design and planning for these operations, all procedures will
be reviewed prior to implementation, and all applicable safety requirements at the relevant
institutions will be observed at all times.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 5: Photon Detection System 5–324

5.15 Organization and Management

The SP PD consortium benefits from the contributions of many institutions and facilities in Europe
and North and South America. Table 5.8 lists the member institutions.

Table 5.8: PDS consortium institutions

Member Institute Country
Federal University of ABC Brazil
State University of Feira de Santana Brazil
Federal University of Alfenas Poços de Caldas Brazil
Centro Brasileiro de Pesquisas Físicas Brazil
Federal University of Goiás Brazil
Brazilian Synchrotron Light Laboratory LNLS/CNPEM Brazil
University of Campinas Brazil
CTI Renato Archer Brazil
Federal Technological University of Paraná Brazil
Universidad del Atlantico Colombia
Universidad Sergia Ablada Colombia
University Antonio Nariño Colombia
Institute of Physics CAS Czech Republic
Czech Technical University in Prague Czech Republic
Universidad Nacional de Assuncion Paraguay
Pontificia Universidad Catolica Perú Perú
Universidad Nacional de Ingineria Perú
University of Warwick UK
University of Sussex UK
University of Manchester UK
Edinburgh University UK
Argonne National Laboratory USA
Brookhaven National Laboratory USA
California Institute of Technology USA
Colorado State University USA
Fermilab USA
Duke University USA
Idaho State University USA
Indiana University USA
University of Iowa USA
Louisiana State University USA
Massachusetts Institute of Technology USA
University of Michigan USA
Northern Illinois University USA
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South Dakota School of Mines and Technology USA
Syracuse University USA
University of Bologna and INFN Italy
University of Milano Bicocca and INFN Italy
University of Genova and INFN Italy
University of Catania and INFN Italy
Laboratori Nazionali del Sud Italy
University of Lecce and INFN Italy
INFN Milano Italy
INFN Padova Italy

The SP PD system consortium follows the typical organizational structure of DUNE consortia:

• A consortium lead provides overall leadership for the effort and attends meetings of the
DUNE Executive and Technical Boards.

• A technical lead provides technical support to the consortium lead, attends the Technical
Board and other project meetings, oversees the project schedule and work breakdown struc-
ture (WBS), and oversees the operation of the project working groups.

• A Project Management Board composed by the project leads from the participating countries,
the consortium leadership team and few ad hoc members, which maintains tight communi-
cation between the countries participating in the consortium construction activity.

Below the leadership, the consortium is divided up into six working groups, each led by two or
three working group conveners (see Table 5.9). Each working group is charged with one primary
area of responsibility within the consortium, and the conveners report directly to the Technical
Lead regarding those responsibilities.

Table 5.9: PD working groups and responsibilities

Working Group Responsibilities
Light Collector WG Mechanical design, materials selection for PD modules
Photosensors WG Selection, validation, procuring of photosensors, cold active ganging
Readout electronics WG Warm electronics, cable harness, DAQ interface
Integration and Installation WG Internal (inter-WG) and external (inter-consortia) interfaces
Physics and Simulation WG Physics and simulations studies to determine PD specifications
ProtoDUNE Analysis WG Validation of PD system in ProtoDUNE-SP and ProtoDUNE-SP-2

The working group conveners are appointed by the PD system consortium lead and technical lead;
the structure may evolve as the consortium matures and additional needs are identified.
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5.15.1 High-Level Schedule

Table 5.10 lists key milestones in the design, validation, construction, and installation of the SP
PD system. These milestones include external milestones indicating linkages to the main DUNE
schedule (highlighted in color in the table), as well as internal milestones such as design validation
and technical reviews.

In general, the flow of the schedule commences with a 60% design review based on module perfor-
mance testing at UNICAMP and at ICEBERG and integration testing at Ash River. Additional
similar design validation follows, leading to a final design review (FDR). Following the FDR, 30
modules and required electronics, cabling, and PD monitoring system components for ProtoDUNE-
SP-2 will be built, installed, and validated during a second ProtoDUNE run at CERN. Once the
data from this test have undergone initial analysis, production readiness reviews will be conducted
and module fabrication will begin.

Some parts of the PD system system, such as the support rails and electrical connectors required
in mid-2020 for APA assembly and photosensors and filter plates which have a long procurement
cycle, will require an abbreviated design review process as detailed in the narrative earlier in this
document and shown in the milestone table.

Table 5.10: PDS consortium schedule

Milestone Date
60 percent design validation testing complete May 2020
60 percent design review May 2020
production readiness review for PD rails, cables. connectors May 2020
Final design review for PD rails, cables, connectors July 2020
Fabrication of PD rails, cables, connectors begins August 2020
Final design validation testing complete September 2020
Down selection to two photosensor candidates September 2020
Final design review for remaining PD components September 2020
Start of module 0 component production for ProtoDUNE-SP-2 March 2021
Start of ProtoDUNE-SP-II installation March 2021
End of module 0 component production for ProtoDUNE-SP-2 August 2021
End of module 0 installation for ProtoDUNE-SP-2 August 2021
Start of PD installation in ProtoDUNE-SP-II September 2021
Begin procurement of filter plates October 2021
ProtoDUNE-SP-2 initial results available December 2021
production readiness review for photosensors March 2022
Begin procurement of production photosensors April 2022
production readiness review for remaining PD components May 2022
Begin fabrication/procurement of remaining module components June 2022
Begin assembly of PD monitoring system January 2022
Start of ProtoDUNE-DP-II installation March 2022
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Begin assembly of front-end electronics modules March 2022
SDWF available April 2022
Begin assembly of X-ARAPUCA modules July 2022
Beneficial occupancy of cavern 1 and CUC October 2022
Initial batch (80 PD modules) assembled March 2023
CUC counting room accessible April 2023
Initial batch (80 PD modules) arrive at US PD Reception Facility June 2023
Second batch (160 PD modules) assembled July 2023
Initial batch (80 PD modules) arrive at SDWF September 2023
Second batch (160 PD modules) arrive at US PD Reception Facility October 2023
PD monitoring system at SDWF October 2023
Third batch (320 PD modules) assembled November 2023
Second batch (160 PD modules) arrive at SDWF December 2023
Top of detector module #1 cryostat accessible January 2024
Third batch (320 PD modules) arrive at US PD Reception Facility January 2024
Front end electronics modules at SDWF February 2024
Fourth batch (320 PD modules) assembled February 2024
Third batch (320 PD modules) arrive at SDWF April 2024
Fourth batch (320 PD modules) arrive at US PD Reception Facility May 2024
Fifth batch (320 PD modules) assembled June 2024
Start of detector module #1 TPC installation August 2024
Fourth batch (320 PD modules) arrive at SDWF August 2024
Fifth batch (320 PD modules) arrive at US PD Reception Facility September 2024
Final batch (300 PD modules) assembled December 2024
Fifth batch (320 PD modules) arrive at SDWF December 2024
Final batch (300 PD modules) arrive at US PD Reception Facility February 2025
Final batch (300 PD modules) arrive at SDWF April 2025
End of detector module #1 TPC installation May 2025
Top of detector module #2 accessible January 2025
Start of detector module #2 TPC installation August 2025
End of detector module #2 TPC installation May 2026

5.15.2 High-Level Cost Narrative

In the fall of 2018, we completed an initial cost estimate for fabrication of PD modules for one
10 kt DUNE module and updated the estimate extensively in March/April of 2019. The estimates
are based on ProtoDUNE-SP costs, modified as necessary for an X-ARAPUCA design. Vendor
quotations or vendor estimates are used for all the major components. For fabrication costs, the
biggest uncertainties center around the photosensor fabrication; this constitutes approximately
half the total PD system cost. We have estimates from Hamamatsu for photosensors which would
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reduce this line by nearly a factor of two, significantly reducing the system cost. We also have
preliminary indications that similar cost savings may also be available from using FBK photosen-
sors. As noted earlier in this TDR, a major focus of our remaining development work is focused
on realizing these potential savings.

The dichroic filter procurement and coating represent the other major cost driver for the project.
The costing for the filter plates is based on initial contacts with a Brazilian filter firm. Initial
samples of filter substrates have been received at UNICAMP and have been successfully coated
and tested through multiple cryogenic cycles with no indication of failure. Extensive additional
validation of the Brazilian filters will occur during late 2019 as part of the SBND module fabrica-
tion.

These filter plates are significantly cheaper than the filters manufactured by Omega, Inc. that
were tested in our earlier validation studies. Until these tests are complete, the filter plates remain
a significant cost and schedule risk.

Extensive use of design-for-fabrication techniques throughout the module development phase, as
well as multiple rounds of prototype development, have allowed us to minimize the component cost
for the remaining components. In-house fabrication and assembly using university shop facilities
and student labor for assembly (particularly at UNICAMP) have also reduced costs.

Modification of an existing and well understood readout electronics system has very significantly
reduced initial cost estimates for that portion of the system.

5.16 Appendix

5.16.1 Simulation

The broad performance specifications for the PD system are determined by a series of physics
deliverables addressing the major physics goals of DUNE: nucleon decay searches, supernova burst
neutrinos, and beam neutrinos. Detailed subdetector specifications, such as light yield of the light
collectors, are determined using a full simulation, reconstruction, and analysis chain developed for
the Liquid Argon Software (LArSoft) framework.

5.16.1.1 Simulation and Reconstruction Steps

The first step in the simulation specific to the PD system is the simulation of the production of
light and its transport within the volume to the PDs. Argon is a strong scintillator, producing
24,000 γs/MeV at our nominal drift field. Even accounting for the efficiency of the PDs, it is
prohibitive to simulate every optical photon with Geant4 in every event. So, prior to the full event
simulation, the detector volume is voxelized and many photons are produced in each voxel. The
fraction of photons from each voxel reaching each photosensor is called the visibility, and these
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visibilities are recorded in a 4-dimensional library. This library includes Rayleigh scattering length
(λR = 60 cm [92]), absorption length (λA = 20m), and the measured collection efficiency versus
position of the double-shift light-guide bars. There is significant uncertainty on the scattering
length in the literature, so the value is conservatively chosen at the low end of those reported.
With these optical properties, there is a factor of 20 difference in total amount of light collected
between events right in front of the photon detectors and those on the far side of the drift volume
3.6m away.

When a particle trajectory is simulated, the amount of charge and light it produces is calculated
in small steps. The light produced in each step is distributed onto the various PDs using the
photon library as a look-up table, and the 30% early (6 ns) plus 70% late (1.5µs) scintillation time
constants are applied. Transport time of the light through the LAr is not currently simulated but
is under development. It is not expected to make a significant difference in the studies presented
here.

The second step is the simulation of the sensor and electronics response. For the studies shown here,
the SensL SiPM and SiPM signal processor (SSP) readout electronics used for PD development
and in ProtoDUNE-SP is assumed (see Section 5.6). However, a range of S/N and dark rates are
considered in order to set requirements on the needed performance of the electronics. Crosstalk
(where a second cell avalanches when a neighbor is struck by a photon generated internal to
the silicon) is introduced by adding a second photoelectron 16.5% of the time when an initial
photoelectron is added to the waveform. Additional uncorrelated random noise is added to the
waveform with an RMS of 0.1 photoelectron. The response of the SSP self-triggering algorithm,
based on a leading-edge discriminator, is then simulated to determine if and when a 7.8µs waveform
will be read out, or in the case of the simulation, stored and passed on for later processing.

The third step is reconstruction, which proceeds in three stages. The first is a “hit finding”
algorithm that searches for peaks on individual waveforms channel-by-channel, identifying the
time (based on the time of the first peak) and the total amount of light collected (based on the
integral until the hit goes back below threshold). The second step is a “flash finding” algorithm
that searches for coincident hits across multiple channels. All the coincident light is collected into
a single object that has an associated time (the earliest hit), an amount of light (summed from all
the hits), and a position on the plane of the APA (y-z) that is a weighted average of the positions
of the photon collectors with hits in the flash. The final step is to “match” the flash to the original
event by taking the largest flash within the allowed drift time that is within 240 cm in the y-z plane.
Since the TPC reconstruction is still in active development, especially for low-energy events, we
match to the true event vertex of the event in the analyses presented here. This is a reasonable
approximation since the position resolution of the TPC will be significantly better than that of
the PD system.

These tools (or subsets of them) are then used to evaluate how the performance of the PD system
affects the following set of physics deliverables.
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5.16.1.2 Nucleon Decay

Nucleon decays are rare events, so excluding backgrounds is of the utmost importance. Since some
backgrounds can be generated by cosmic rays passing outside the active detector area, setting a
fiducial volume to exclude such events is critically important.

Fiducialization with t0

The physics deliverable: the PDs must be able to determine t0 with approximately 1µs resolution
(SP-FD-4: time resolution) for events with visible energy greater than 200MeV throughout the
active volume and do so with > 99% efficiency (SP-FD-3: light yield), as described in Volume II,
DUNE Physics, Chapter 6, Section 6.1.4. This energy regime is relevant for nucleon decay and
atmospheric neutrinos. The time measurement is needed for event localization for optimal energy
resolution and rejection of entering backgrounds. This resolution is required for comparable spatial
resolution to the TPC along the drift direction.

Table 5.11: Efficiency for tagging nucleon decay events with the PD system at the CPA, the dimmest
region of the detector, which is 3.6m from the PDs, shown for range of light yields (LY) at that position.
Also shown is the total PD module collection efficiency required for that light yield with the simulated
scattering length, 60 cm.)

CPA Light yield (PE/MeV) Collection Efficiency (%) Efficiency at the CPA (%)
0.09 0.24 93.8± 0.4
0.28 0.75 97.7± 0.4
0.33 0.88 98.4± 0.2
0.50 1.3 98.9± 0.2

The physics here feeds down to a requirement on the minimum light yield (SP-FD-3: light yield),
determined by measuring how often the correct flash was not assigned to nucleon decay events42

in the dimmest region of the detector, near the CPA. A minimum light yield of 0.5 PE/MeV is
required to meet the requirement of 99% efficiency, as shown in Table 5.11.

A light collector with 1.3% collection efficiency (defined as the probability that a photon reaching
the surface of the light collector will be recorded as a photoelectron) achieves this light yield with
the simulated 60 cm scattering length. This efficiency is equivalent to having 23 cm2 of active area
per module with 100% efficiency. At this scattering length, there is a factor of 20 difference in light
yield between the brightest and dimmest regions of the detector, so techniques to improve light
yield uniformity (discussed in Appendix 5.16.2) would reduce the inefficiency still further and ease
understanding the detector systematic uncertainties.

42The most relevant sample is actually the background to nucleon decay events. However, efficiently simulating
background that can mimic nucleon decays is challenging since they can be quite rare topologies. It is therefore easier
to simulate the nucleon decay signal that should be representative of the background.
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5.16.1.3 Supernova Neutrinos

Supernova bursts are also rare events, though here the event is made up of many interactions
(spread over several seconds) instead of a single interaction. For distant supernovae (at the far side
of the Milky Way or in the Large Magellanic Cloud), the top priority is to ensure that the detector
can identify a burst when it happens and trigger the detector readout. For nearby supernovae,
triggering will not be a challenge, and instead the goal is to record as much information as possible
about the burst.

Burst Triggering

The physics deliverable: the PD system must be able to trigger on SNBs which produce 50 neutrino
interactions in a 10 kt volume43 with almost 100% efficiency with a false positive rate of less than one
per month. This deliverable is most important for distant supernovae where the most important
requirement is that we trigger and record the data. If both the PD system and TPC triggers
have good efficiency, they can provide redundancy against one another or be combined to increase
efficiency or lower the background rate. The once-per-month false positive rate is determined by
limits in data handling.

The PD system trigger performance was studied for a plausible but challenging signal: a supernova
burst in the Large Magellanic Cloud, which we conservatively assumed would produce only 10 signal
events in the far detector. The trigger efficiency was studied with variations in light yield, dark
rate, and signal-to-noise ratio, keeping the requirement from the DAQ that the fake rate be held to
less than one per month. The burst trigger efficiency for 10 supernova neutrino events in one 10 kt
module (a pessimistic prediction for a supernova in the LMC), was found to be approximately
80%, and it is relatively insensitive to all these parameters for average light yield >7PE/MeV
(equivalent to 0.9% collection efficiency with the simulated optical properties), dark rate <1 kHz,
and signal-to-noise > 3. The uncorrelated noise from dark rate and low signal-to-noise was easily
excluded from trigger primitives by the clustering scheme, and the increased light yield makes
both backgrounds and signal brighter together, so performance stays basically constant. Thus this
physics deliverable, while important, does not constrain any detector requirements.

TPC Energy Measurement and Time Resolution with t0

The physics deliverable: the PDs must be able to provide t0 determination with 1 µs resolution
(SP-FD-4: time resolution) for at least 60% of the neutrinos in a typical SNB energy spectrum. The
t0 measurements are used in concert with the TPC-reconstructed event in two ways: to correct for
the attenuation of the charge signal as a function of how far the charge drifts through the TPC and
to provide more precise absolute event times for resolving short time features in the SNB neutrino
event rate. This deliverable is important primarily for nearby supernovae where the number of
events is large enough that time and energy resolution will be the limiting factors in extracting
physics, as described in Volume II, DUNE Physics, Chapter 7.

The 60% t0 tagging requirement comes from two studies of a typical SNB neutrino spectrum under
varying PD performance assumptions: the resolution of the energy reconstructed with the TPC

43About the amount expected for a burst at the far side of our galaxy.
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Figure 5.45: The energy resolution for supernova neutrino events when reconstructed by the TPC with
the drift distance corrected using three assumptions on the performance of the PD system. The options
considered range from drift correction for no events (black), to 60% of events (blue), to 100% of events
(red).

and drift-corrected using the time from the PDs, and the observability of the in-fall ‘notch’ in
the SNB event time distribution. Both studies show significant improvement when going from no
PDs to a system that has a collection efficiency of at least 0.25% (equivalent to 0.5PE/MeV for
60% of the detector volume), but only marginal improvements past that point, as can be seen in
Figure 5.45. The light yield required here is sufficiently low that this deliverable does not set any
additional detector requirements.

Calorimetric Energy

Physics deliverable: the PD system should be able to provide a calorimetric energy measurement
for low-energy events, like SNBs, complementary to the TPC energy measurement. Improving the
energy resolution will enable us to extract the maximum physics from a SNB (see Volume II, DUNE
Physics, Chapter 7), and with the goal to achieve energy resolution comparable to the TPC, we can
take full advantage of the anti-correlation between the emission of light and charge signals imposed
by the conservation of energy. In addition, this requirement allows the photon detection system
to provide redundancy if a supernova occurs during adverse detector conditions. If the argon
purification system is offline, the photon signal is significantly less sensitive to electronegative
impurities, and if the drift field is low, the reduced charge signal can be partially recovered by
increased light.

The calorimetric energy performance was studied for supernova burst neutrino events simulated
in the far detector for a range of different detector performance assumptions. The energy recon-
struction was simple, correcting the total observed amount of photons for the average number of
photons expected per MeV as a function of position along the drift direction. Events were required
to be well away from the side walls to avoid any possible edge effects. The energy resolution vs.
true energy is shown in Figure 5.46. There is a significant benefit to achieving a photon detector
with an average light yield of 20PE/MeV, where the PD system and TPC have comparable reso-
lution for the lowest energy (<7MeV) supernova neutrinos. Past this light yield, the improvement
appears to plateau in this analysis. This physics deliverable thus sets a requirement, FD-SP-3:
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Figure 5.46: The energy resolution (determined from the distribution widths of the fraction of difference
between reconstructed and true to true neutrino energy for simulated events) for supernova neutrino
events when reconstructed directly through PD system calorimetry for a range of light yields, represented
by different colors. The red line labeled Physics shows the energy smearing inherent to the neutrino
interactions and thus serves as a theoretical minimum resolution. The black line shows the energy
resolution achieved by the TPC, defined in a similar way. The performance improves significantly
up until approximately 20 PE/MeV where the PD system and TPC give comparable resolution below
approximately 7MeV..

light yield, of 20PE/MeV averaged over the active volume.

While options that can improve the uniformity of the detector are not essential to achieve required
resolution, they are likely to improve the calorimetric energy reconstruction above and beyond
total light yield. A detector that is more uniform will be easier to calibrate, and the impact of
uncertainties on the optical parameters of the liquid argon will be reduced. This effect is potentially
important for supernova neutrinos, and certainly more important for the beam neutrino events
described in the next section. In addition, for Xe-doping specifically, speeding up the late light
will allow for flashes that are narrower in time, reducing the amount of radiological contamination
mixed in with the signal, which is of particular importance with these relatively small signals.

5.16.1.4 Beam Neutrinos

The PD system is not required for fiducializing beam neutrino events since the pulsed beam will
provide sufficient precision to place the interactions in space. However, the PDs can potentially
contribute to the energy measurement, and the better timing resolution can help identify Michel
electrons from muon and pion decay.

Calorimetric Energy

Physics deliverable: the PD system should be able to provide a calorimetric energy measurement
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for high-energy events, like neutrinos from the LBNF beam, complementary to the TPC energy
measurement. Neutrino energy is an observable critical to the success of the oscillation physics
program (see Volume II, DUNE Physics, Chapter 5), and a second independent measurement can
provide a cross-check that reduces systematic uncertainties or directly improves resolution for some
types of events.

In order to provide a meaningful cross-check, the resolution and uncertainty of the PD system
measurement must be comparable to the calorimetric resolution of the TPC. The limit on this
measurement will likely come from how well the efficiency of the detector and the optical properties
of the argon can be determined (both must be known to approximately 5% to have a comparable
measurement of electron shower energy), which define a program of measurements between now
and the operation of the detector rather than requirements on the system itself. The requirement
that does flow down from this is that the dynamic range of the system be sufficient to allow for
accurate measurement of the amount of light reaching the PD system.

Some amount of saturation is tolerable since it can be corrected for using the pulse shape or the
neighboring unsaturated channels. However, if the saturation is too large, and too many channels
are saturated, the corrections become difficult, so we require that no more than 20% of beam
neutrino events have saturating channels (SP-PDS-16: dynamic range), consistent with but looser
than the TPC requirement of 10%.

We studied the likelihood of channels saturating by simulating beam neutrino events in the far
detector. The likelihood of saturation depends on the digitization frequency, the dynamic range,
and the collection efficiency of the detector design. Assuming the baseline electronics, a 12-bit and
80MHz digitizer, we find the likelihood of saturation vs. average light yield shown in Table 5.12.

Table 5.12: The fraction of beam events which have saturating PD system channels for different light
yields, and the corresponding PD system collection efficiencies.

Avg. Light Yield (PE/MeV) Collection Efficiency (%) Saturation Fraction (%)
6 0.88 6
13 1.8 13
21 2.6 20
28 3.5 24

Michel Electron Tagging

Physics deliverable: the PD system should be able to identify events with Michel electrons from
muon and pion decays. The identification of Michel electrons can improve background rejection for
both beam neutrinos and nucleon decay searches. Some Michel electrons are difficult to identify
with the TPC since they appear simultaneous within the time resolution of the TPC and colinear
with their parent. However, because the PD system can observe the fine time structure of events in
the detector, it can identify Michel electrons that appear separated in time from the main event.
While DUNE-specific studies of Michel electron tagging have not been performed, the LArIAT
experiment has demonstrated that Michel electrons can be identified and studied using photon
signals.
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5.16.2 Options to Enhance Light Yield Uniformity

Due to a combination of geometric effects and the impact of Rayleigh scattering, the baseline SP
PD system design will result in non-uniformity of light collection along the drift direction. Light
emitted from interactions close to the APAs has an order of magnitude larger chance of being
detected compared to interactions close to the CPA.

Though the designs described in the previous sections will meet the PD performance requirements,
two options for enhancing both the light yield and light yield uniformity are under consideration.
Both approaches mitigate the impact of a short Rayleigh scattering length by converting 127 nm
scintillation photons to longer wavelength photons with a significantly longer Rayleigh scatter-
ing length. An increase in uniformity will enhance the ability to do calorimetric reconstruction
with scintillation light, thus enhancing the charge-based energy reconstruction and increasing the
efficiency of triggering on low energy signals.

These options will be pursued in parallel with the baseline design and may be implemented af-
ter appropriate review if resources are available and if they do not interfere with, or produce
unacceptable risk for, the baseline design schedule.

5.16.2.1 Coated Reflector Foils on the TPC Cathode

In this option, scintillation light falling on the cathode plane is converted into the visible wave-
lengths and reflected. Installing the foils on the cathode represents the option with the minimal
impact on the current design of the HV system (field cage and cathode) and ensures a good
uniformity of the light yield across the detector. This light could then be detected by the PDs
embedded in the APA, improving the overall collection efficiency. This option would require at
least a fraction of the light collectors be sensitive to visible light. This sensitivity to visible light
can be achieved in two ways: (1) by coating the X-ARAPUCA with TPB instead of PTP, which
results in the same WLS combination as the double shift bars (whose performance is measured
in ProtoDUNE-SP) and/or (2) by leaving some of the X-ARAPUCA detectors without a WLS
coating but with an appropriate dichroic filter. In the former case, the PDs are sensitive to both
the direct and reflected light, in the latter case only to the reflected light.

Figure 5.47 shows the simulated results of a configuration where 50% of the APA light collectors
can record both direct scintillation light and the reflected visible light from the CPA, and 50% are
left uncoated to maximize uniformity. This results in an enhancement of the total light collection
close to the cathode (black points).

Introducing the foils on the cathode may also enable drift position resolution using only scintillation
light. This requires the PDs to differentiate direct VUV light from re-emitted visible light (i.e.,
requires two types of PD) and sufficient timing of arrival of first light.

Coated reflector foils are manufactured through low-temperature evaporation of TPB on dielectric
reflectors e.g., 3M DM2000 or Vikuiti ESR. Foils prepared in this manner have been successfully
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used in dark matter detectors such as WArP [93]. Recently, they have been shown to work in
LArTPCs at neutrino energies, namely in the LArIAT test beam detector [94]. In LArIAT, they
have been installed on the field cage walls and, during the last run, on the cathode. An alternative
solution would be to use Polyethylene Naphthalate (PEN) instead of TPB. This wavelength-shifter
has a similar emission spectrum to TPB [95] but is provided in sheets, which could greatly simplify
the production and installation. The choice of using PEN depends on demonstrating that its
performance holds in LAr; these studies are ongoing. The method of foil installation is being
developed in collaboration with the DUNE HV consortium, with the objective of minimizing the
impact on the CPA design.

A run has been performed using the CERN FLIC 50 l prototype TPC, with the DUNE-like resistive
cathode covered with a non-perforated DM2000 foil evaporated with TPB. No obvious HV problems
were observed, but the data is still being analyzed to understand whether any field distortions were
present. A second run with the cathode coated with PEN was performed in March 2019. The
comparison of effects on the electric field between the two solutions is in progress. Preliminary
studies show that PEN seems to work as a wavelength-shifter at liquid argon temperatures but
may not be as efficient as TPB. A future run will involve running with a perforated TPB-coated
foil. The presence of the holes maintains the resistive character of the cathode and minimizes the
effect of electric field distortions.
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Figure 5.47: Predicted light yield in the PD system with WLS-coated reflector foils on the CPA. Blue
points represent direct VUV light impinging on the PDs assuming a 2.5% photon detection efficiency
and 70% wire mesh transmission and half of the detectors left uncoated; red stars - represent scintillation
light that has been wavelength-shifted and reflected on the CPA assuming the same photon detection
efficiency folded in with an 80% transmittance of the filters to visible light. Black points show the sum
of these two contributions.

5.16.2.2 Doping Liquid Argon with Trace Parts of Xenon

This option exploits the conversion of the LAr 127 nm light to 175 nm by doping the LAr volume
with 20-100 ppm of xenon. While there are indications that the absolute light yield in xenon-doped
argon may be higher than in pure argon, in the current estimates, we assume the yields are the
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same. In this case, the source of the improved performance described here is the much longer
Rayleigh scattering length for 175 nm light. The improvement is illustrated in Figure 5.48 from a
DUNE PD simulation, assuming an absorption length for the scintillation light of 20m. The gain
in average yield for events near the CPA is about a factor of five.

x position (cm)
0 100 200 300

A
ve

ra
ge

 V
is

ib
ili

ty

3−10

2−10
128 nm (Ar)

176 nm (Xe)

Figure 5.48: Simulation of visibility of 128 nm (LAr with xenon doping) and 176 nm (LAr scintillation)
light in a SP module.

Doping with xenon also affects the time structure of the scintillation light and in particular reduces
the fraction of late light. Having a light signal of shorter duration can bring advantages both in
physics, such as making it easier to tag Michel electrons from pions and electrons, and in the
electronics required. The longer wavelength of the scintillation light resulting from the Xe doping
allows the possibility of simplifying the design of the PD system light collectors (X-ARAPUCA)
by dispensing with the use of the outer layer of wavelength shifting material, thereby reducing
costs and simplifying the handling of the light collectors during storage and installation.

Doping the argon with xenon is facilitated by the fact that at the DUNE FD the argon is trans-
ported from the surface to underground as gas before it is re-condensed for delivery to the cryostats.
Xenon and argon can therefore be mixed in gas form before condensation; in consultation with
the cryogenic experts, we have identified locations where this mix could be achieved. Since the
operations take place at room temperature, the implementation is relatively straightforward.

Critical Issues and R&D Work

Xenon doping must not adversely affect the performance of the TPC, and while the doping is
expected to be neutral or even beneficial, its effects on charge yield, drift lifetime, and HV stability
need to be established. There is experience in xenon doping of argon both at CERN and Fermilab,
and tests for the TPC effects are being designed. More detailed R&D is needed to optimize the
xenon doping fraction and its interaction with the light-detection system. This can be conducted
on a time scale of about a year by a small number of dedicated investigators using resources that,
mostly, are expected to be available at Fermilab and CERN.
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Chapter 6

Calibration Hardware for Single-Phase

6.1 Introduction

A detailed understanding of the overall detector response is essential for achieving Deep Under-
ground Neutrino Experiment (DUNE) physics goals. The precision with which each calibration
parameter must be measured is spanned by the requirements on the systematic uncertainties for
the long-baseline (LBL) and supernova neutrino burst (SNB) physics programs at DUNE. The
calibration program must generally provide measurements at the few-percent-or-better level sta-
bly across an enormous volume and over a long period and provide sufficient redundancy. This
chapter focuses on describing the dedicated calibration hardware systems to be deployed for the
DUNE SP module that provide necessary information beyond the reach of external measurements
and existing sources and monitors.

A detailed description of the calibration strategy for the DUNE far detector (FD) is provided in
Volume II, DUNE Physics, Chapter 4 of this technical design report (TDR). In brief, the cali-
bration strategy uses existing sources of particles, external measurements, and dedicated external
calibration hardware systems. Existing calibration sources for DUNE include beam or atmospheric
neutrino-induced samples, cosmic rays, argon isotopes, and instrumentation devices such as liquid
argon (LAr) purity and temperature monitors. Dedicated calibration hardware systems consist of
laser and neutron source deployment systems. External measurements by ProtoDUNE-2 and Short-
Baseline Neutrino (SBN) experiments will validate techniques, tools, and the design of systems
applicable to the DUNE calibration program. These sources and systems provide measurements
of the detector response model parameters, or provide tests of the response model itself. Calibra-
tion measurements can also provide corrections to data, data-driven efficiencies, systematics, and
particle responses.

The dedicated calibration hardware systems for the SP module include an ionization laser system,
a photoelectron laser system, and a pulsed neutron source system. The possibility of deploying
a radioactive source system is also currently being explored. The responsibility of the calibra-
tion hardware systems falls under the joint single-phase (SP) and dual-phase (DP) calibration
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consortium, which was formed in November 2018.

Section 6.2 discusses general aspects driving the calibration program: scope, requirements and
data taking strategy. The baseline calibration hardware designs are described in Section 6.3 and
respective subsections.

Section 6.3.2 describes the baseline design for the ionization laser system that provides an indepen-
dent, fine-grained measurement of the electric field throughout the detector, which is an essential
parameter that affects the spatial and energy resolution of physics signals. Volume II, DUNE
Physics, of this TDR assumes that the fiducial volume (FV) is known to the 1% level. Through
measurements of the spatial distortions and drift velocity map, the laser calibration system mainly
helps define the detector FV, thus allowing for the correct prediction of the FD spectra. The
laser system also offers many secondary uses such as alignment checks, stability monitoring, and
diagnosing detector performance issues. Possible electron lifetime measurements are under study.
With the goal of knowing precisely the direction of the laser beam tracks, an independent laser
beam location system (LBLS) is also planned, and is described in Section 6.3.3. Alternative designs
for the ionization laser system that may improve the physics capability and/or reduce overall cost
are also under development and are described in Appendix, Section 6.7.1. Section 6.3.4 describes
the photoelectron laser system that can be used to rapidly diagnose electronics or time projection
chamber (TPC) response issues along with many other useful measurements such as integrated
field across drift, drift velocity, and electronics gain.

Section 6.3.5 describes the baseline design for the pulsed neutron source (PNS) system, which pro-
vides a triggered, well defined, energy deposition from neutron capture in Ar detectable throughout
the detector volume. Neutron capture is an important component of signal processes for SNB and
LBL physics, enabling direct testing of the detector response spatially and temporally for the
low-energy program and the efficiency of the detector in reconstructing the low-energy spectra.
A spatially fine-grained measurement of electron lifetime is also planned with this source. The
proposed radioactive source deployment system (RSDS) described in the Appendix, Section 6.7.3,
is in many ways complementary to the PNS system, and can provide at known locations inside the
detector a source of gamma rays in the same energy range of SNB and solar neutrino physics. The
RSDS is the only calibration system that could probe the detection capability for single isolated
solar neutrino events and study how well radiological backgrounds can be suppressed. In contrast,
the PNS is externally triggered and does not provide such a well defined source location for gamma
rays inside the detector. On the other hand, the PNS can probe the uniformity of the full detector,
while the RSDS could only scan the ends of the detector.

For all the calibration hardware systems, the goal is to deploy prototype designs and validate them
at ProtoDUNE-2 during the post long shutdown 2 (LS2) running at European Organization for
Nuclear Research (CERN). The validation plan for calibration systems at ProtoDUNE-2 and other
experiments is described in Section 6.3.6.

Section 6.4 describes interfaces calibration has with other DUNE consortia, especially with data
acquisition (DAQ) which are described in more detail in Section 6.4.1.

Sections 6.5 and 6.6 conclude the chapter with descriptions of the aspects related to construction
and installation of the systems, as well as organizational aspects, including schedule and milestones,
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discussed in Section 6.6.4.

6.2 Calibration Overview

This section focuses on the general aspects of calibrations in DUNE: the scope of the consortium
activities and planned systems; the physics and performance requirements driving the design; and
the overall strategy for usage of the systems, in combination with natural sources.

6.2.1 Scope

The scope of the calibration consortium includes a laser ionization system, a photoelectron laser
system, a laser beam location system, and a pulsed neutron source system. In addition, the
consortium is evaluating a radioactive source deployment system. The calibration consortium is
responsible for design through commissioning in the SP module for these calibration devices and
their associated feedthroughs. Validating the designs of calibration systems at ProtoDUNE-2 (and
other experiments as relevant) is also included under the scope of the consortium. Figure 6.1 shows
the subsystems included under the calibration consortium.

Chapters 3, 4, 5, and 8 of Volume IV, The DUNE Far Detector Single-Phase Technology, of
this TDR describe other hardware essential for calibration such as cold electronics (CE) external
charge injection systems, high voltage (HV) monitoring devices, photon detection system (PD
system) stability monitoring devices, and cryogenics instrumentation and detector monitoring
devices, respectively. The scope of these systems is described by their respective consortia, and the
calibration consortium has substantial interfaces with these consortia. The use of other calibration
sources such as external measurements and existing sources of particles (e.g., muons, pions) is
discussed in the calibration section of TDR Volume II, DUNE Physics, Chapter 4.

We are pursuing the effects of calibration on physics and related studies. Calibrations also require
simulations (e.g., E field) to identify desirable locations for calibration devices in the cryostat,
away from regions of high E field, so that their presence does not induce large field distortions.
The design of the calibration systems and understanding the related physics requires coordination
with other consortia and groups. This is discussed in Section 6.4.

6.2.2 Design Considerations and Requirements

Some common design considerations for calibration devices include stability, reliability, and longevity,
so calibration systems can be operated for the lifetime of the experiment (20 years). Such longevity
is uncommon for any device, so the overall design permits replacing devices where possible, namely
the parts that are external to the cryostat. The systems must also adhere to relevant global require-
ments of the DUNE detector. Table 6.1 shows the top-level overall requirements for calibration
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Figure 6.1: Calibration consortium subsystem chart. CTF stands for Calibration Task Force.

subsystems along with global DUNE requirements that are relevant for calibration. For example,
DUNE requires the E field on any instrumentation device inside the cryostat to be less than 30
kV/cm to minimize the risk of dielectric breakdown in LAr. Another consideration important
for event reconstruction is understanding the maximum tolerable level of noise on the readout
electronics due to calibration devices and implementing proper grounding schemes to minimize it.
ProtoDUNE-SP is evaluating this. In Table 6.1, two values are quoted for most of the parameters:
1) specification, which is the minimum requirement to guarantee baseline performance, and 2)
goal, an ideal requirement for achieving improved precision.

For the ionization laser system, the energy and position reconstruction requirements for physics
measurements lead to requirements for the necessary precision in measuring the TPC E field as
well as its spatial coverage and granularity. The precision of the E field measurement with the
laser system must be about 1% so that the effect from E field on the collected charge, via the
dependence of the recombination factor on E field, is well below 1%. This is also motivated
by consistency with the high level DUNE specification of 1% on field uniformity throughout the
volume for component alignment and the HV system. For laser coverage, to keep the E field
measurement at the ∼1% level, we are aiming for a coverage of 75% or more of the total FV. The
requirement on granularity for the laser is estimated based on the FV uncertainty requirements
(1%) and corresponding uncertainty requirements (1.5 cm) in each coordinate. A specification
is set for a voxel size of 30×30×30 cm3, that should be sufficient to satisfy the FV uncertainty
requirements. A goal is set for 10×10×10 cm3, which could allow for a refinement in precision in
some detector regions.

The laser beam location must also meet the level of reconstruction requirement in each coordinate,
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approximately 5mm. In order to reach that over distances of up to 20m, where the latter is
the maximum distance that any beam needs to travel to cover all detector voxels, this results
in a stringent alignment requirement of 0.015° (or 0.25mrad) on the pointing precision. The
laser beam location system is also designed to check the beam location with a precision of 5mm
over distances of up 20m. The data volume for the ionization laser system must be no more
than 184 TB/year/10 kt, assuming 800k laser pulses, 10×10×10 cm3 voxel sizes, a 100 µs zero
suppression window, and two dedicated calibration campaigns per year.

For the PNS system, the system must provide sufficient neutron event rate to make spatially
separated precision measurements across the detector of a comparable size to the voxels probed
by the laser (30×30×30 cm3) for most regions of the detector (75%). For the SNB program,
the sensitivity to distortions of the neutrino energy spectrum depends on the uncertainties in the
detection threshold and the reconstructed energy scale and resolution. Studies discussed in the
physics TDR present target ranges for the uncertainties in these parameters [96] as a function
of energy. The measurements with the PNS system aim to provide response corrections and
performance estimates, so those uncertainty targets are met throughout the whole volume. This
ensures that each voxel has sufficient neutron event rate (percent level statistical uncertainty).

In terms of data volume requirements, the PNS system requires at least 144 TB/year/10 kt assum-
ing 105 neutrons/pulse, 100 neutron captures/m3, and 130 observed neutron captures per pulse,
and two calibration runs per year.

Table 6.2 shows the full set of requirements related to all calibration subsystems. More details on
each of the requirements can be found under dedicated subsections.

Table 6.1: Calibration specifications

Label Description Specification
(Goal)

Rationale Validation

SP-FD-1 Minimum drift field > 250 V/cm
(> 500 V/cm)

Lessens impacts of e−-Ar re-
combination, e− lifetime, e−

diffusion and space charge.

ProtoDUNE

SP-FD-2
System noise < 1000 e− Provides >5:1 S/N on induc-

tion planes for pattern recog-
nition and two-track separa-
tion.

ProtoDUNE and
simulation

SP-FD-5 Liquid argon purity < 100 ppt
(< 30 ppt)

Provides >5:1 S/N on induc-
tion planes for pattern recog-
nition and two-track separa-
tion.

Purity monitors
and cosmic ray
tracks

SP-FD-7
Drift field uniformity
due to component
alignment

< 1% throughout
volume

Maintains APA, CPA, FC
orientation and shape.

ProtoDUNE

SP-FD-9
APA wire spacing 4.669mm for U,V;

4.790mm for X,G
Enables 100% efficient MIP
detection, 1.5 cm yz vertex
resolution.

Simulation

SP-FD-11
Drift field uniformity
due to HVS

< 1 % throughout
volume

High reconstruction effi-
ciency.

ProtoDUNE and
simulation

SP-FD-13
Front-end peaking
time

1 µs Vertex resolution; optimized
for 5mm wire spacing.

ProtoDUNE and
simulation
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SP-FD-22
Data rate to tape < 30 PB/year Cost. Bandwidth. ProtoDUNE

SP-FD-23
Supernova trigger > 95 % efficiency

for a SNB pro-
ducing at least 60
interactions with
a neutrino energy
>10 MeV in 12 kt
of active detector
mass during the
first 10 seconds of
the burst.

> 95% efficiency for SNB
within 20 kpc

Simulation and
bench tests

SP-FD-24
Local electric fields < 30 kV/cm Maximize live time; maintain

high S/N.
ProtoDUNE

SP-FD-25
Non-FE noise contri-
butions

<< 1000 e− High S/N for high recon-
struction efficiency.

Engineering calcu-
lation and Proto-
DUNE

SP-FD-26
LAr impurity contri-
butions from compo-
nents

<< 30 ppt Maintain HV operating
range for high live time
fraction.

ProtoDUNE

SP-FD-27
Introduced radioac-
tivity

less than that from
39Ar

Maintain low radiologi-
cal backgrounds for SNB
searches.

ProtoDUNE and
assays during con-
struction

SP-FD-29 Detector uptime > 98%
(> 99%)

Meet physics goals in timely
fashion.

ProtoDUNE

SP-FD-30 Individual detector
module uptime

> 90%
(> 95%)

Meet physics goals in timely
fashion.

ProtoDUNE

SP-CALIB-1
Ionization laser E
field measurement
precision

1 % E field affects energy and po-
sition measurements.

ProtoDUNE and
external experi-
ments.

SP-CALIB-2 Ionization laser E
field measurement
coverage

> 75 %
(100 %)

Allowable size of the uncov-
ered detector regions is set
by the highest reasonably ex-
pected field distortions, 4%.

ProtoDUNE

SP-CALIB-3 Ionization laser E
field measurement
granularity

30× 30× 30 cm3

(10× 10× 10 cm3)
Minimum measurable region
is set by the maximum ex-
pected distortion and posi-
tion reconstruction require-
ments.

ProtoDUNE

SP-CALIB-4 Laser beam location
precision

0.5 mrad
(< 0.5 mrad)

The necessary spatial pre-
cision does not need to be
smaller than the APA wire
gap.

ProtoDUNE

SP-CALIB-5 Neutron source cov-
erage

> 75 %
(100 %)

Set by the energy resolution
requirements at low energy.

Simulations

SP-CALIB-6 Ionization laser data
volume per year (per
10 kt)

> 184 TB/yr/10kt
(>
368 TB/yr/10kt)

The laser data volume must
allow the needed coverage
and granularity.

ProtoDUNE and
simulations

SP-CALIB-7 Neutron source data
volume per year (per
10 kt)

> 144 TB/yr/10kt
(>
288 TB/yr/10kt)

The pulsed neutron system
must allow the needed cov-
erage and granularity.

Simulations
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Table 6.2: Full list of Specifications for the Calibration Subsystems.

Quantity/Parameter Specification Goal
Noise from calibration devices � 1000 enc
Max. E field near calibration devices < 30 kV/cm <15 kV/cm
Direct Ionization Laser System
E field measurement precision 1% <1%
E field measurement coverage > 75% 100%
E field measurement granularity < 30x30x30 cm 10x10x10 cm
Top field cage penetrations (alternative design) to achieve desired laser

coverage
Data volume per 10 kton 184 TB/year 368 TB/year
Longevity, internal parts 20 years > 20 years
Longevity, external parts 5 years > 20 years
Laser Beam Location System
Laser beam location precision 0.5 mrad 0.5 mrad
Longevity 20 years > 20 years
Photoelectron Laser System
Longevity, internal parts 20 years > 20 years
Longevity, external parts 5 years > 20 years
Pulsed Neutron Source System
Coverage > 75% 100%
Data volume per 10 kton 144 TB/year 288 TB/year
Longevity 3 years > 20 years
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6.2.3 Strategy

Once the far detector is filled and at the desired high voltage, it immediately becomes live for all
non-beam physics signals, so it is important to tune the detector response model with calibration
data as early as possible. Moreover, since both beam and non-beam physics data will have a fairly
uniform rate, regular calibrations in order to monitor space and time dependencies are also needed.

Following those considerations, the strategy for calibration data taking will be organized around
three specific periods:

Commissioning As soon as the detector is full, with HV on and the DAQ operational, it is useful
to take laser calibration data. The main goal is to help identify problems in the anode plane
assembly (APA) wires or the electronics channels, or large cool-down distortions. Depending
on how long the ramp-up will take, it could be useful to take data before the HV reaches the
nominal level, because we can identify problems earlier and possibly learn about dependency
of various detector parameters with E field.

Early data During the early stages of data-taking, the goal is to do the fullest possible fine-grained
laser and neutron calibration (E field map, lifetime, low energy scale/resolution response) as
early as possible, so that all the physics can benefit from a calibrated detector from day 1.
These results should be combined at a later stage with detector-wide average measurements
with cosmics.

Stable data-taking The main goal of calibrations during stable data-taking is to track possible
variations of detector response parameters, and contribute to constraining the detector sys-
tematics. We expect to combine fine-grained, high statistics scans at regular time intervals
– twice a year for laser, six times for the pulsed neutron source – with more frequent coarse-
grained scans (e.g., photoelectron laser, large voxel ionization laser scan). These, combined
with analysis of cosmic ray and radiological backgrounds data, can alert to the need of
additional fine scans in particular regions.

6.3 Calibration Systems

DUNE plans to build two primary systems dedicated to calibrate the SP module – a laser system
and a pulsed neutron source system – both of which require interfaces with the cryostat, that are
described in Section 6.3.1.

The laser system is aimed at determining the essential detector model parameters with high spatial
and time granularity. The primary goal is to provide maps of the drift velocity and E field,
following a position-based technique already proven in other liquid argon time-projection chamber
(LArTPC) experiments. Two laser sub-systems are planned. With high intensity coherent laser
pulses, charge can be created in long straight tracks in the detector by direct ionization of LAr with
the laser beams. This is described in Section 6.3.2. An auxiliary system aimed at an independent
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measurement and cross-check of the laser track direction is described in Section 6.3.3. On the other
hand, laser excitation of targets placed on the cathode creates additional charge from well-defined
locations that can be used as a general TPC monitor and to measure the integrated drift time.
This is described in Section 6.3.4.

The PNS system provides a “standard candle” neutron capture signal (6.1MeV multi-gamma
cascade) across the entire DUNE volume that is directly relevant to the supernova physics signal
characterization thus validating the performance of the detector in the low energy regime. The
PNS system is described in detail in Section 6.3.5.

The physics motivation, requirements and design of these systems are described in the following
subsections. Alternative designs for the ionization laser system, pulsed neutron source system, as
well as the proposed radioactive source deployment system, are described in Sections 6.7.1, 6.7.2,
and 6.7.3 of the Appendix, respectively.

6.3.1 Cryostat Configuration for Calibration Systems

Figure 6.2 shows the current cryostat design for the SP module with penetrations for various
subsystems. The penetrations dedicated to calibration are the highlighted black circles.

In addition to these dedicated ports, there are plans to use the detector support system (DSS) and
cryogenics ports (orange and blue dots in Figure 6.2) as needed to route cables for other calibration
systems, e.g., fiber optic cables for the photon detector (PD) calibration system, which is described
in Chapter 5. DSS and cryogenics ports can be accommodated by feedthroughs with a CF63 side
flange for this purpose.

Figure 6.2: Top view of the SP detector module cryostat showing various penetrations. Circles high-
lighted in black are multi-purpose calibration penetrations. The green dots are TPC signal cable pen-
etrations. The blue ports are cryogenics ports. The orange ports are DSS penetrations. The larger
purple ports at the four corners of the cryostat are human access ports.

The current plan is to use the calibration ports for several different purposes, but their placement
is largely driven by requirements for the ionization track laser. The ports toward the center of
the cryostat are placed near the APAs, where the E field is small, to minimize any risks due to
HV discharge. HV is not an issue for the far east and west ports since they are located outside
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the field cage (FC) and the penetrations are located close to mid-drift (a location favorable for
possible source deployment). Implementing the baseline ionization track laser system as described
in Section 6.3.2 requires 12 feedthroughs, the three central ones in each of the four TPC drift
volumes; this arrangement allows lasers to be used for full volume calibration of the E field and
associated diagnostics (e.g., HV).

The distance between any two consecutive feedthrough columns shown in Figure 6.2 is approxi-
mately 15m. Since the MicroBooNE laser system has shown that tracks will propagate over that
detector’s full 10m length, this distance is considered reasonable. Assuming that the effects of
Rayleigh scattering and self-focusing (Kerr effect) do not limit the laser track length, this laser
arrangement could illuminate the full volume with crossing tracks in the central region, and single
tracks in the region closer to the end-walls. At this time, the maximum usable track length is
unknown, and it may be that the full 60m detector module length could be covered by the laser
system after optimization.

Throughout this chapter, the following convention for the coordinate axes will be used: x is parallel
to the drift direction, y is the vertical, and z is parallel to the beamline. This is illustrated in
Chapter 8 Figure 8.3.

6.3.2 Laser Calibration: Ionization System

Through its effect on drift velocity, recombination, and lifetime, the E field is a critical parameter
for physics signals as it ultimately affects the spatial resolution and energy response of the detector.
The primary purpose of a laser system is to provide an independent, fine-grained estimate of the
E field in space and time. It would be extremely valuable to achieve measurements of electron
lifetime with the laser system, but the feasibility of that is still under discussion. The R&D plan
in ProtoDUNE-2 will address the feasibility of carrying out charge-based measurements which,
if successful, would open up the possibility of using the laser to measure electron lifetime. So,
except where specifically indicated, the rest of this section will focus on drift velocity and E field
measurement.

6.3.2.1 Physics Motivation

Because it measures spatial distortions of straight tracks, the laser system actually measures the
local drift velocity field directly and helps define the detector FV, and this in itself is an important
input for the LBL analysis. However, it is still important to use information independent of the
charge in order to disentangle effects like lifetime and recombination from E field distortions.
The laser system can do this, by using the position information to derive the E field from the
local velocity map, taking into account the colinearity between both vectors, and the relatively
well studied relation between the magnitude of the drift velocity and the E field, considering a
temperature dependence (see [97] and references [29, 45-58] therein). A laser system also has the
intrinsic advantage of being immune to recombination effects, thus eliminating particle-dependent
effects.
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Several sources may distort the E field temporally and/or spatially in the detector. Current
simulation studies indicate that positive ion accumulation and drift (space charge) due to ionization
sources such as cosmic rays or 39Ar is small in the DUNE FD, causing E field distortions of at most
0.1% [98]. However, not enough is known yet about the fluid flow pattern in the FD to exclude
the possibility of stable eddies that may amplify the effect for both SP and DP modules. This
effect can be further amplified significantly in the DP module due to accumulation in the liquid
of ions created by the electron multiplication process in the gas phase. Additionally, other sources
in the detector (especially detector imperfections) can cause E field distortions. For example,
FC resistor failures, non-uniform resistivity in the voltage dividers, cathode plane assembly (CPA)
misalignment, CPA structural deformations, and APA and CPA offsets and deviations from flatness
can create localized E field distortions. These effects are presented in Figures 6.3 and 6.4, showing
the effect of a few % on the E field from 2 cm CPA position tilts and up to 4% from FC single
resistor failures.

Figure 6.3: Illustration of a possible distortion of the CPA position [99], assuming a 2 cm swing, and
its impact on E field (right).

In both SP and DP modules, a resistor failure will create significant, local E field distortions that
must be identified. In the DP module, four resistors would have to fail to cause a failure across
the FC gap, but even one failure in the SP module can have an effect; this may be partly, but not
completely, mitigated by modifying the HV. While the resistor failure will be detected temporally,
its location in space is not possible to determine from slow controls monitoring data. Misalignments
of detector objects or deformations may also create E field distortions; while individual effects may
be small, it is possible to have a combined, significant effect. Each individual E field distortion
may add in quadrature with other effects, and can aggregate up to 4% under certain conditions.
Understanding all these effects requires in situ measurement of E field for proper calibration.

Useful secondary uses of laser include alignment (especially modes that are weakly constrained
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Figure 6.4: Impact on E field magnitude distortions of a single FC resistor failure [100].

by cosmic rays), stability monitoring, and diagnosing detector performance issues (e.g., HV). Mis-
alignment may include physical deformation and/or rotations of objects within the detector. Given
the expected low rate of cosmic ray events (about 3500/day/10-kt, inclusive) at the underground
location, calibration with cosmic rays is not possible over short time scales. Even over long time
scales, certain alignment directions are difficult to assess with cosmic rays alone, such as distortions
of the detector that preserve the gap widths and do not shift the APAs in x near the gaps relative
to one another. These distortions include global shifts and rotations in the locations of all detector
elements, and crumpling modes where the edges of the APAs hold together but angles are slightly
different from nominal.

With respect to electron lifetime, the preliminary results from ProtoDUNE-SP purity monitors and
cosmic ray analyses indicate significant variations with time and space, both between monitors at
different vertical coordinates (see Chapter 8), and between the regions inside and outside the
TPC. The possibility of carrying out such measurements with the ionization laser is therefore
quite interesting. The ArgonTUBE experiment obtained lifetime measurements with laser [101]
compatible with the cosmic ray ones, but it is not clear yet if this is possible at very large scales,
since the modelling of the density of ionization charge created along the tracks presents challenges
related to the previously mentioned self-focusing. Therefore the characterization of the ionization
charge density from laser tracks will be an important goal of the development plan in ProtoDUNE-
2.

6.3.2.2 Requirements

The energy and position reconstruction requirements for physics measurements lead to require-
ments on the necessary precision of the laser E field measurement, its spatial coverage and gran-
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ularity. The next sections discuss the rationale behind each requirement, which we take as the
DUNE specification.

E field precision: In the LBL and high-energy range, Volume II, DUNE Physics, Chapter 5 of this
TDR states that the calibration information must provide approximately 1 to 2% understanding
of normalization, energy scale and resolution, and position resolution within the detector. Because
a smaller E field leads to higher electron-ion recombination and therefore a lower collected charge,
distortions of the E field can introduce energy scale bias. To connect this to a specification for
the necessary precision of the E field measurement, we note that, via recombination studies [98],
we expect a 1% distortion on E field to lead to a 0.3% bias on collected charge. Because other
effects will contribute to the lepton energy scale uncertainty budget, we consider a goal for the
laser system to measure the E field to a precision of ∼1% so that its effect on the collected charge
is well below 1%. This is also motivated by consistency with the high level DUNE specification on
field uniformity throughout the volume due to component alignment and HV system, that is set at
1%. Together with two other high-level DUNE specifications, the APA wire spacing (4.7mm) and
the front end peaking time (1µs), the effect of this E field precision requirement on engineering
parameters of the calibration laser system is discussed further in Section 6.3.2.3.1.

E field measurement coverage: In practice, measuring the E field throughout the whole volume
of the TPC will be difficult, so we must establish a goal for the coverage and granularity of the
measurement. Until a detailed study of the propagation of the coverage and granularity into a
resolution metric is available, a rough estimate of the necessary coverage can be made as follows.

Assuming 4% as the maximum E field distortion that is expected from a compounding of multiple
possible effects in the DUNE FD as described in the previous section, we can then ask what would
be the maximum acceptable size of the spatial region uncovered by the calibration system, if a
distortion of that magnitude (systematically biased in the same direction) were present in that
region. Our criterion of acceptability is to keep the overall E field distortion, averaged over the
whole detector, at the 1% level. To meet this requirement, the aforementioned spatial region
should be no larger than 25% of the total fiducial volume. Therefore, we aim to have a coverage
of 75% or more.

In addition, we need to consider that the method used to estimate E field distortions is based on
obtaining position displacement maps [102], and that the comparison between the reconstructed
and true direction of a single track does not unambiguously determine a specific displacement
map. Having tracks coming from different origins crossing in the same position is a direct way to
eliminate that ambiguity, since the displacement vector is given simply by the vector connecting
the intersections of the two reconstructed and the two true tracks. A joint iterative analysis of
several close-by tracks is the default method for all other positions, but the system design should
allow for the maximum possible number of positions for crossing tracks from different beams.

E field measurement granularity: Volume II (DUNE Physics) of this TDR states that a FV
uncertainty of 1% is required. This translates to a position uncertainty of 1.5 cm in each coordinate
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(see Chapter 2). In the y and z coordinates, position uncertainty is given mainly by the APA
wire pitch, and since this is about 4.7mm, the requirement is met. In the drift (x) direction,
the position is calculated from timing, and considering the electronics peaking time of 1 µs, the
uncertainty should be even smaller.

The position uncertainty, however, also depends on the E field, via the drift velocity. Because the
position distortions accumulate over the drift path of the electron, it is not enough to specify an
uncertainty on the field. We must accompany it by specifying the size of the spatial region of that
distortion. For example, a 10% distortion would not be relevant if it was confined to a 2 cm region
and if the rest of the drift region was at nominal field. Therefore, what matters is the product of
[size of region] × [distortion]. Moreover, one can distinguish distortions into two types:

1. Those affecting the magnitude of the field. Then the effect on the drift velocity v is also a
change of magnitude. According to the function provided in [103], close to 500V · cm−1, the
variation of the velocity with the field is such that a 4% variation in field E leads to a 1.5%
variation in v.

2. Those affecting the direction of the field. Nominally, the field E should be along x, so E = EL
(the longitudinal component). If we consider that the distortions introduce a new transverse
component ET , in this case, this translates directly into the same effect in the drift velocity,
which gains a vT component, vT = vLET/EL, i.e., a 4% transverse distortion on the field
leads to a 4% transverse distortion on the drift velocity.

Thus, a 1.5 cm shift comes about from a constant 1.5% distortion in the velocity field over a region
of 1m. In terms of E field, that could be from a 1.5% distortion in ET over 1m or a 4% distortion
in EL over the same distance.

E field distortions can be caused by space-charge effects due to accumulation of positive ions caused
by 39Ar decays (cosmic ray rate is low in FD), or detector defects, such as CPA misalignments
(Figure 6.3), FC resistor failures (Figure 6.4), resistivity non-uniformities, etc. These effects added
in quadrature can be as high as 4%. The space charge effects due to 39Ar [98] can be approximately
0.1% for the single-phase (SP), and 1% for the DP (dual-phase), so in practice these levels of
distortions must cover several meters to be relevant. Other effects due to CPA or FC imperfections
can be higher because of space charge, but they are also much more localized. If we assume there
are no foreseeable effects that would distort the field more than 4%, and considering the worst
case scenario (transverse distortions), then the smallest region that would produce a 1.5 cm shift
is 1.5 cm/0.04 = 37.5 cm. This provides a target for the granularity of the measurement of the E
field distortions in x to be smaller than approximately 30 cm, with, of course, a larger region if the
distortions are smaller. Given the above considerations, then a voxel size of 10×10×10 cm3 appears
to be enough to measure the E field with the granularity needed for a good position reconstruction
precision. In fact, because the effects that can likely cause bigger E field distortions are problems
or alignments in the CPA (or APA) or in the FC, it is conceivable to have different size voxels
for different regions, saving the highest granularity of the probing for the walls/edges of the drift
volume.
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6.3.2.3 Design

The design of the laser calibration system for DUNE is largely based on the design of the system
built for MicroBooNE [4], which in turn was based on several previous developments [104, 105,
106, 107]. A similar system was also built for CAPTAIN [108] and in the near future, will be built
for SBND [109]. Operation of the MicroBooNE system has already taken place. A preliminary
report was given in [110], and more details on the data analysis are available in [102].

Design overview Ionization of LAr by laser can occur via a multiphoton process in which two-
photon absorption [111] leads the atom to the excited states band, and a third photon subsequently
causes ionization. This can only occur with high photon fluxes, and so the lasers must provide
pulse energies of 60mJ or more within a few ns. Unlike muons, the laser beams do not suffer
multiple scattering and travel along straight lines determined by the steering mirror optics. The
basic measurement consists of generating laser ionization tracks in the TPC and comparing the
reconstructed tracks with the direction known from the steering hardware. An apparent curvature
of the measured track is attributed to drift velocity, and therefore E field, distortions (either in
direction or magnitude).

While the Rayleigh scattering length for 266 nm light is approximately 40m, additional optics
effects may limit the maximum practical range of laser beams of that wavelength to a distance
smaller than that. Those can include the Kerr effect due to the dependency of the refractive index
on the E field. In the presence of an intense field, such as that caused by the laser beam itself,
the change in refractive index can lead to lensing, or focusing, that distorts the coherence of the
beam1. Despite this, laser beams with lengths of 10m in LAr have been observed in MicroBooNE,
and beams with 20m lengths (possibly more) can be reasonably expected to obtain with a similar
system. This has determined the choice of locating five calibration ports in the cryostat roof at
15m intervals along each of the four drift volumes of the SP module, for a total of 20 ports. In
fact, there are four ports just outside each of the FC end-walls, and 12 ports located over the top
FC, close to the APA of each drift volume, as shown in Figure 6.2. As is discussed further below,
the number of ports currently assigned for the ionization laser system in the baseline design is
12, a compromise between having the maximum possible coverage with crossing tracks and cost
considerations.

Mechanical and optical design for a single port sub-system For each of the used calibration
ports, a laser sub-system can be schematically represented by Figure 6.5 (left) and consists of the
following elements:

• a laser box (see Figure 6.5, right) that provides
– a Nd:YAG laser, with the fourth harmonic option providing 266 nm in intense 60mJ

1The Kerr effect is so far believed to be the cause of non-homogeneity of the ionization along the laser beam observed
in MicroBooNE, which prevents the use of the charge information. Its effect on the position measurement and E field
uncertainty has been studied by MicroBooNE.
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pulses with about 5 ns width, with a divergence of 0.5mrad. The Surelite SL I-10 laser2

is a possible choice since it has been successfully used in the past in other experiments.
– an attenuator and a collimator to control the intensity and size of the beam;
– a photodiode that gives a TPC-independent trigger signal;
– a low-power red laser, aligned with the UV laser, to facilitate alignment operations; and
– a Faraday cage to shield the surrounding electronics from the accompanying electro-

magnetic pulse.
• a feedthrough (see Figure 6.6, left) into the cryostat that provides

– the optical coupling that allows the UV light to pass through into the cryostat directly
into the liquid phase, avoiding distortions due to the gas-liquid interface and the gas
itself;

– a rotational coupling that allows the whole structure to rotate while maintaining the
cryostat seal;

– a periscope structure (see Figure 6.6; Right) mounted under the rotating coupling that
supports a mirror within the LAr;

– the additional theta rotation of the mirror accomplished by a precision mechanism
coupled to an external linear actuator; and

– both the rotation and linear movements of the steering mechanism read out by precision
encoders.

Figure 6.5: Left: Schematics of the ionization laser system in one port [109]. Right: Schematics of the
laser box [4].

The goal of the mechanical design of the system is to achieve a precision close to that of the
2Amplitude Surelite™ https://amplitude-laser.com/wp-content/uploads/2019/01/Surelite-I-II-III.pdf
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Figure 6.6: CAD drawings of the MicroBooNE laser calibration system [4]. Left: calibration port
feedthrough. Right: laser beam periscope.

TPC position measurements, so that no single factor dominates the overall systematics. The TPC
precision of about 5mm in the y, z coordinates is given primarily by the wire spacing of 4.7mm
and 4.8mm. The precision of about 2mm on the x coordinate comes essentially from the 1µs
peaking time of the front-end electronics and the typical drift velocity (1.6mm/µs).

The starting point of the laser beams is given by the position of the mirror in the periscope, which
is known from construction drawings, warm surveys and cool down calculations. The angle of the
beam is given by the angles (θ, φ) of the mirror, which are set by the periscope motors and read out
by the encoders. For MicroBooNE, reference [110] quotes a very good 0.05mrad precision (0.5mm
at 10m) from the encoders alone, and an overall pointing precision of 2mm at 10m, driven mostly
by beam size and divergence. In fact, with a 0.5mrad divergence, we expect the beam to be 5mm
wide at 10m.

In DUNE, we aim to reach a similar precision. This will require a number of design and installation
considerations: having encoders of similar high accuracy, carrying out surveys in various reference
frames, and a capability to do location checks with a precision of about 5mm at 20m from the
beam origin. Therefore we aim to have a system that can locate the beam end point in few
positions and attached to different references, at least one per drift volume and laser beam. The
independent laser beam location system is described in Section 6.3.3.

Coverage estimations and top FC penetration A crucial aspect of the design of the full array
is the position of the periscope and the cold mirror with respect to the FC, since its profiles can
induce significant shadows and limit the beam’s coverage. In order to address this aspect and
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motivate the design choices, we carried out a set of shadowing calculation studies.

Given that the FC profiles are 4.6 cm wide with only a small 1.4 cm gap between them, the
shadows produced if the laser source is located outside the FC would be substantial. We estimate
that the maximum angle at which beams can go through is about 45°. Given the limitations of
the region above the FC (shown in Figure 6.7, left), especially the geometry of the ground plane,
it is likely that the mirror cannot be placed much higher up than 40 cm away from the FC. With
those assumptions, we have carried out a rough estimation of the fraction of voxels that would
be crossed by any unblocked track. For simplicity, we are considering only a single vertical plane,
so the coverage is actually overestimated since it does not consider the effect of the FC I-beams,
transverse to the FC profiles. Figure 6.7 (right) shows an example of those calculations. Assuming
10 cm voxels and no track directed at the APA, the coverage is at most 30%. Assuming 30 cm
voxels and allowing all tracks directed at the APA, the maximum coverage would be 58%.

Figure 6.7: View of the top field cage (left) and laser 2D voxel coverage estimation for one drift volume
(right).

Penetration of the FC would eliminate most of these shadows and allow for a practically unimpeded
coverage. Depending on the depth of the periscope within the TPC, some partial shadowing from
the field cage support I-beam would still remain. Figure 6.8 shows a possible way to accomplish
this for the top-of-TPC ports [112]. A CAD model of the SBND laser calibration system periscope
was used as reference design for DUNE. The SBND periscope, when rotating over its axis, requires
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a 12 cm diameter circular region free of impediments. In order to take into account a tolerance
for the estimated 0.3% shrinkage of the FC at cryogenic temperatures, we chose an opening of
three profiles, equivalent to 18 cm. Still, in order to minimize any risk associated with the presence
of material close to the FC, ongoing design studies will evaluate the feasibility of implementing
vertically retractable periscopes, with a travel range sufficient for them to clear the top of the FC.

Figure 6.8: CAD drawing of one way the periscope could penetrate the FC [112].

Simulations of the effect of FC penetrations on the E field were carried out [113], and are illustrated
in Figure 6.9. These have shown that the effect of a 12 cm× 12 cm opening (equivalent to two
profiles), located at 40 cm (along the x direction) from the APA, is small and tolerable, with
a maximum 10 kV · cm−1 E field caused by the opening and periscope. These simulations need
to be redone with a larger opening of 18 cm× 18 cm (i.e., three profiles). Still, if we were to
choose, conservatively, to discard from the physics data analysis the volume within the TPC
determined by the periscope lateral size, a vertical penetration of 10 cm, and the full drift length
(12 cm× 10 cm× 360 cm = 43 l for each of the 12 periscopes), it would represent only a very small
fraction of 5× 10−6 of the full detector volume.

Full array scope considerations As mentioned earlier (Section 6.3.2.2), the system should allow
for crossing laser beam tracks wherever possible. In order to collect them in the full SP module
volume, that would require using all the available 20 calibration ports. Since it is possible to use
an iterative method to obtain displacement maps in regions where no crossing tracks are available,
to minimize the overall cost of the system, the baseline design will use only the 12 central ports,
providing crossing tracks in essentially 50% of the detector volume. In addition, for the six most
central ports, close to the central APA, the distance between them is small enough that we can
consider having the same laser box serve two feedthroughs to reduce the costs associated with the
laser and its optics. In that case, the total number of lasers needed would be nine.

Usage of the end-wall ports, which are not on top of the TPC, is therefore not part of the baseline
design, and is considered only as an alternative in Section 6.7.1. A coverage calculation for possible
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Figure 6.9: Simulation of the effect on the E field of a laser periscope penetration of the FC. In this
case, an opening of only two profiles was considered.

end-wall periscopes, taking into account the shadowing of both the FC profiles and the support
beams, gives a maximum of 56% coverage for 30 cm voxels (allowing all tracks directed at the APA).
In this case the laser beams would enter the FC laterally and FC penetration would be harder to
consider, so an alternative mechanical design aimed at improving the coverage, is considered in
Section 6.7.1.

A scan of the full detector using 10×10×10 cm3 volume elements would require a number of tracks
approximately 8× 105 and can take about three days. Shorter runs could be done to investigate
specific regions. The sampling granularity, and therefore the amount of data taken, depends on
DAQ requirements. In fact, even to be able to record the desired 8× 105 tracks, a dedicated
data reduction algorithm must be devised, so that only a drift window of about 100µs of data is
recorded, and the position of that window depends on the beam position and direction and which
wires are being read out. More details on this are given in Section 6.4.1.

6.3.2.3.1 Measurement Program

This section describes the methods used to measure parameter maps and their expected precision,
given the design outlined above.

E field and drift velocity measurement The method for E field measurement is based on the
measurement of apparent position displacements of the straight laser tracks. The laser produces
straight tracks with a known starting position and direction. If, when reconstructed under the
assumption of uniform and homogeneous drift velocity, any deviations from that are observed,
they are attributed to E field distortions.

The first step in the analysis [102] is to obtain a field of position displacements by comparing
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the known and reconstructed tracks. If two crossing tracks are used, the displacement vector is
simply given by the vector connecting the point where the reconstructed tracks cross and the point
where the known tracks cross. However, since those displacements can vary both in direction and
magnitude, there will be ambiguity in that determination if only one track is used in a given
spatial region. An iterative procedure was developed by the MicroBooNE collaboration [110, 102]
to obtain a displacement map from a set of several non-crossing tracks from opposite directions.
Following this, a set of drift velocity field lines, which are the same as E field lines, can be obtained
from the displacement map, assuming that all charge deposits along a field line will be collected
in the same position. Using the relationship between E field and drift velocity [97, 103], we can
then also obtain the magnitude of the E field.

Since the observed position distortion in one location depends on E field distortions in many
locations along the drift path, this method of analysis clearly requires the acquisition of data from
many different tracks crossing each detector drift volume at many different angles.

As already indicated in the previous section (section 6.3.2.3), the pointing precision will be on
average 2mm (at average distances of 10m), and the TPC precision is 2mm in x and 5mm in y,
z. Conservatively taking those in quadrature, we get σx = 3mm and σyz = 5.4mm. If we would
use only one track per direction, in regions of size l = 300mm, we would therefore be sensitive to
drift velocity field distortions of σ/l, i.e., 1% in x and 1.8% in y, z.

In order to estimate the E field precision, we must distinguish between the x and y, z coordinates.
To first order, distortion in y, z do not affect the magnitude of the field, and so the relative
distortions on E field are equal to the relative distortions of the velocity. Along x, we must
consider the relation between the magnitudes of the drift velocity and E field. Using the formula
from [97, 103] we can see that, at 500V/cm, a 1% change in E field leads to a corresponding
change of 0.375% in drift velocity. We therefore reach the values of 2.7% (= 1./0.375) in x and
1.8% in y, z for a conservative estimate of E field precision using a single track per direction.

This is a conservative estimate because it does not take into account the fact that the centroid of
the beam should be known better than its full width, and because it is based on the assumption of
a single track per direction. As observed in MicroBooNE [102], using several tracks improves the
precision, and in most of the volume an accuracy of 1% was reached so the amount of statistics
needed to reach 1% will be an important question to address in the development plan.

On one side, this gives us an ultimate limit to the E field precision achievable with the laser system,
but on the other side, since these TPC precision considerations apply to physics events also, it
tells us that an E field precision much better than 1% should not have an effect on the physics.

Charge-based measurements Electron drift-lifetime [114, 115] is the parameter that governs
the dependence of the amount of collected charge on the drift time. A possible measurement of
electron drift-lifetime would therefore require a very good control over the charge profile of the
ionization laser tracks. This was achieved in a small scale experiment that measured lifetime with
laser beams [101], but is harder with longer distances. The charge produced by the laser tracks
along its path depends on distance because the light intensity is reduced due to beam divergence
and scattering, as well as non-linear effects such as the self-focusing, or Kerr effect. For this reason,
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the first steps in any laser-based charge measurement are a fine-tuning of the laser intensity in
order to reduce self-focusing to a minimum, and “charge profile calibration scan” which consists
of acquiring tracks parallel to the APA. In order to get good statistical precision, several tracks
could be acquired, in the same or different direction, but always parallel to the APA in order to
factorize out any effect from electron drift-lifetime. This set of data provides a calibrated laser
beam charge profile that can then be used to analyse and normalize the measured charge profile
from tracks that do have an angle with respect to the APA and therefore span different drift times.

As for electron-ion recombination, since the dE/dx for laser beams is much smaller than for charged
particles, the effect should also be much smaller. However, that small effect has been observed [111],
so a similar method than described above could be used to evaluate any dependence of the electron-
ion recombination factor on the angle φ between the track and the electric field, that is predicted
in some models [116]. This would entail taking data with tracks as parallel as possible to the E
field, in order to enhance the angular dependence term on the recombination expression (that goes
with 1/sinφ), and to compensate for the smaller dE/dx for laser beams.

6.3.3 Laser Calibration: Beam Location System

Because the precision of the E field measurement relies heavily on a precise knowledge of the
laser beam tracks, an independent measurement of their direction for some specific positions is
required. The laser beam location system (LBLS) addresses this requirement. While the direction
of the laser beam will be very well known based on the reading from the encoders on the laser
beam steering mechanism, residual uncertainty or unpredictable shift in the pointing direction will
remain. Keeping in mind the long length of the ionization track of more than 15m, even a small
offset in the pointing direction can lead to vastly different ionization track locations, especially
close to the end of the track. Such inaccuracies will directly affect our ability to precisely calibrate
any variations in the E field.

6.3.3.1 Design

The LBLS is designed to provide precise and accurate knowledge of the laser track coordinates.
Two complementary systems are planned, one based on PIN diodes and another based on mirrors.

PIN diode system for laser beam location The design for the system using PIN diodes is based
on the existing system that was built for the miniCAPTAIN experiment [108].

The LBLS consists of groups of 9 PIN diodes, operating in passive, photovoltaic mode. These are
GaP diodes with a sensitivity range extending down to 200 nm wavelength; thus, detecting 266 nm
light is straightforward. PIN diodes are placed at the bottom of the cryostat and receive direct
laser light3 passing through the gaps between the FC profiles to minimize interference with the

3This is a difference with respect to the miniCAPTAIN system, which does not observe direct light, but detects
fluorescence in the FR-4.
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FC. Drawings of one such group of PIN diodes are shown in Figure 6.10. With the group of 9
photodiodes, we can detect not only the beam but also crudely characterize its profile, giving a
more precise location of the central beam pulse axis.

Figure 6.10: (Left) LBLS cluster mounted on the opposite wall from the laser periscope to detect and
accurately determine the end point of the laser beam. (Right) Profile of the LBLS group mounted on
the PCB. GaP diodes come with pins that use pair of twisted wires to transport the signal.

There will be two LBLS pads per laser, with each pad visible by two different lasers, to maximize
precision and ensure sufficient redundancy in the system. There will be a total of 16 locations
(4 per volume) for a total of 32 pads. Pads will be placed on the central line of each of the four
volumes, in the middle between each pair of adjacent lasers, located under the FC. The locations of
the pads will be carefully surveyed after installation and prior to closing of the cryostat. The laser
should always send the first pulse in the direction of the LBLS before proceeding into a calibration
sequence. In this way, the absolute location of the initial laser track will be determined with high
accuracy. The location of the other laser tracks will also be determined with high accuracy with
respect to the initial track thanks to the high precision of the rotary encoders.

Mirror-based beam location system: In addition to the PIN diode system, we will also have
clusters of small mirrors that allow measuring the beam end position via its reflections.

Figure 6.11 shows a conceptual sketch with a cluster of 6 mirrors located close to each other, but
with different angles. When the beam hits one of the mirrors, it will be reflected back into the
TPC, and the reflection angle unambiguously identifies which mirror was actually hit. With small
mirrors, 5mm in diameter, the required positioning precision would be met if these mirrors are
placed at distances of more than 10m. The preferred location is, therefore, at the bottom FC.
Because the cluster can be small (a few cm), it can fit inside the FC profiles. For each drift volume
segment seen by two lasers, we plan to install at least two clusters, for redundancy, so the total
number of clusters would be 32.

The simplest solution would be to use polished aluminum as the reflecting surface, so that the
cluster could be a single block. Tests of the actual reflectivity of the (oxidized) surface will be part
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of the development plan. An alternative would be small dielectric mirrors.

Figure 6.11: View of the mirror cluster for the beam location system inserted in the FC profiles [112].

6.3.3.2 Development plan

Further optimization of the PIN diode assembly to reduce electronic noise and cross-talk is required.
Also, the size and shape of the cluster that would best collect the light coming through the field
cage gaps needs to be optimized. Another important aspect is durability of the system that
will require extensive running in the cryogenic conditions with a large number of cool-downs to
validate GaP for extended use in DUNE. Finally, alternatives to GaP diodes such as SiPMs are
under consideration. While SiPMs require power, their sensitivity to single photons makes them
a desirable candidate for low light signals and more accurate beam direction reconstruction.

As for the mirror-based system, the capability of the TPC to identify the reflected beam will depend
on how diffuse the reflectivity on the aluminum surfaces will be. A full test must be carried out at
ProtoDUNE-SP, including alternative options such as using mirrors. Small dielectric mirrors for
266 nm with 6.35mm diameter are commercially available.

6.3.4 Laser Calibration: Photoelectron System

Well localized electron sources represent excellent calibration tools for the study of electron trans-
port in the LArTPC. A photoelectron laser system can provide such sources at predetermined
locations on the cathode, leading to precise measurements of total drift time and integrated spa-
tial distortions when the charge is not collected in the expected wires. These are achieved by simply
measuring the time difference between the laser pulse trigger time and the time when the electron
cloud reaches the APA. Such measurement will result in an improved spatial characterization of
the E field, and consequent reduction of detector instrumentation systematic errors.

Being an operationally simpler system compared to the ionization laser system, the photoelectron
laser can be used as a “wake-up” system to quickly diagnose if the detector is alive, and to
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provide indications of detector regions that may require a fine-grained check with the ionization
system. This is especially important due to the low cosmic ray environment in the detector
underground. The photoelectric laser system will utilize the ionization laser for target illumination,
thus eliminating the additional cost associated with the laser purchase.

6.3.4.1 Design

In order to produce localized clouds of electrons using a photoelectric effect, small metal discs
will be placed on the cathode plane assembly and used as targets. Photoelectric laser systems
have been successfully used at T2K [117] and in the Brookhaven National Laboratory (BNL) LAr
test-stand [118] to generate well-localized electron clouds for E field calibration.

The baseline material choice for the metal targets is aluminum, while silver is being considered as
an alternative. At 266 nm (Nd:YAG quadrupled wavelength) the single photon energy of 4.66 eV is
sufficient to generate photoelectrons from aluminum and silver. However, aluminum and silver are
prone to oxidization. In the case of aluminum, a thick layer of aluminum oxide forms the surface,
but this does not increase the work function of the material. Table 6.3 lists the relevant features
of metals under consideration.

The main factor driving the electron yield from the photoelectric targets is the quantum efficiency
of the material. Although electrons will be released from the metal whenever photons hit the metal
surface, most of the ejected electrons carry forward momentum and therefore are never released
from the metal. Only a small fraction of released electrons back-scatters or knocks another electron
out of the surface. The quantum efficiency for various metals is typically between 10−5 and 10−6,
thus quite low. All material candidates will be studied in the lab to verify the electron yield, and
tested in ProtoDUNE-2 in order to verify the quantum efficiency for different materials.

Table 6.3: Work function and other features of candidate metal targets for laser photoelectron system.

Target Material Work function (eV) λmax (nm) λlaser Oxidizing Type of
required (nm) in air oxidization

Aluminum 4.06 305 266 Yes Surface layer
Silver 4.26-4.73 291 266 Yes Surface layer

(lattice dependent)

Disc targets will be fabricated with two different diameters: 5mm and 10mm to provide a test of
the vertex reconstruction precision. In addition to circular targets, metal strips 0.5 × 10 cm are
being considered to calibrate the rate of transverse diffusion in LAr. However, their impact on the
cathode field will be carefully studied before being incorporated into target list, to prevent any
disruptions to the cathode electric field.

The targets will be fastened to field shaping strips located on the rim around the resistive panel of
the cathode plane assembly. Figure 6.12 illustrates locating the photoelectric targets on the rim
around the resistive panel. The distance between the dots will be 10 cm with 5 targets at each
corner, while the strips will be fastened at the center of each long side of the resistive plane. The
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total number of disc targets per resistive panel is 20 and the total number of strips per resistive
panel is 2 as illustrated in Figure 6.13. Given that there are 600 resistive panels per SP module,
there will be a total of 12,000 disc targets and 1200 strip targets per module. The photoelectric dots
and strips layout will be further refined based on the calibration requirements and performance
simulation results. It will be essential to conduct a survey of the photocathode disc locations
on the cathode after installation and prior to detector closing. In this way, the absolute spatial
calibration of the E field will be achieved.

Figure 6.12: The best place to place the photo targets without being intrusive for the E field, is
the surface of the field shaping strips around the rim of the resistive panel. Circular targets will be
implemented, while the strip targets are still under consideration.

A few thousand electrons are required per spill from each dot to produce the signal above the
noise level on the wire and this number will be achieved with high intensity lasers (pulses of the
order of 100mJ). The laser beams used to illuminate the targets will be injected into the cryostat
via cryogenic optical fibers guided into mounting points in the APA, where they are coupled with
defocusing elements that will illuminate 10m diameter surface on the CPA with a single fiber.
Fibers will be fastened along the central line of the APA in the space between the top and bottom
APA, on the top of the upper APA and on the bottom of the lower APA. With the aid of the
defocusing elements, the entire single phase module can be illuminated with a total of 72 fibers,
corresponding to just 6 fibers along the central line along with 6 fibers on top and bottom for a
total of 18 fibers per each of the four drift volumes. Figure 6.14 shows the conceptual view of the
CPA illumination.

While the current plan aims for illumination of the entire CPA, the Kapton material that composes
the resistive panels undergoes photoelectric effect, albeit with three orders of magnitude lower
quantum efficiency at cryogenic temperatures when compared to phototargets at 266 nm. While
the noise produced is expected to be tolerable, in case the noise is higher than anticipated, the
solution is to illuminate only the areas where phototargets are placed reducing the resistive panel
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Figure 6.13: There are a total of 5 circular targets in each corner, for a total of 20 circular targets: 12
large and 8 small diameter targets total. In addition, 2 strips at the center along the long sides of the
resistive panels may be added if not disruptive to the high voltage on the cathode plane.

Figure 6.14: Conceptual view of the CPA illumination with fibers placed on the top and bottom of the
APA for better coverage and overlap.
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exposure. In this case, instead of defocusing elements, bare fibers will be utilized. The bare
fiber opening angle is 10° and 1.3m diameter exposure. Assuming parallel running of lasers,
photoelectron targets in 3 out of 4 volumes can be illuminated at once, assuming that laser firing
can be coordinated and calibrated with sufficient precision and that volumes 2 and 3 share lasers.
Lasers typically operate at 10 Hz frequency. If 10000 pulses per laser are assumed, about 15
minutes of running is needed per laser for a single calibration run as the photoelectron clouds
from different dots are very well localized. With the help of commercial multiplexers per each
volume, 1 hour per volume will be sufficient for a single calibration campaign. If the DAQ or lasers
themselves prevent parallel running, the entire calibration campaign will take between 15 minutes
or up to 1-5 hours. The calibration run duration will depend on the final calibration scheme.

The photoelectron system will use the same lasers used for argon ionization. Stability of the laser
pulses will be monitored with a power meter. Dielectric mirrors reflective to 266 nm light will
guide the laser light to injection points, but a fraction of the light will be transmitted instead of
reflected to the power meter behind the mirror. The laser will also send a forced trigger signal
to the DAQ based on the photodiode that will be triggered on the fraction of the light passing
through the dielectric mirror.

6.3.4.2 Development plan

The photoelectron system will require the following tasks to complete the design that can be done
in ProtoDUNE-2 or in the lab:

• test the mounting of the targets on the CPA;
• use different target materials to compare their performance;
• verify the potential of targets to generate several 1000 electron clouds and their ability to

diagnose electric field distortions and vertex reconstruction;
• allocate ports to insert laser fibers used for illumination;
• validate interface with ionization laser in order to inject UV photons into fibers;
• validate efficiency of laser light injection in the optical fiber;
• validate light attenuation in fibers;
• validate design interface with APA and optimized locations of fibers between top and bottom

APAs;
• validate diffuser design and light losses in the diffuser as well as its ability to illuminate large

areas of CPAs;
• validate bare fiber CPA illumination; and
• survey of the dots position to the required level of precision.
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6.3.4.3 Measurement Program

Photoelectron systems have been used in other experiments to diagnose electronics issues by using
the known time period between the triggered laser signal and read out times, and to perform rapid
checks of the readout of the TPC itself.

A photoelectron laser is an effective diagnostic and calibration tool, that can quickly and accurately
sample the electron drift velocity in the entire detector. In addition, it can be used to identify
electric field distortions due to space charge effects. Exact knowledge of the timing and position
of the generated electron clouds is useful for vertex calibration. In addition to electronics issues,
discrepancies between the measured and expected drift time can point to either distortions in the
position of the detector elements or to a different drift velocity magnitude.

Another planned measurement is the comparison between the expected and measured y, z position
of the collected charge, that can point to transverse distortions of the E field.

6.3.5 Pulsed Neutron Source System

The SNB signal includes low-energy electrons, gammas and neutrons, which capture on argon.
Each signal channel will have specific detector threshold effects, energy scale, and energy resolution.
As noted in Volume II, DUNE Physics, Chapter 7, the sensitivity to SNB physics depends on the
uncertainties of relevant detector response parameters, and so a calibration method to constrain
those uncertainties is needed. Local detector conditions may change with time due to a variety of
causes that include electronics noise, misalignments, fluid flow, LAr purity, electron lifetime and E
field. While these are intended to be characterized from other systems via inputs to the detector
model, “standard candles” provide a method to assess if our detector model is incomplete or
insufficient. An ideal standard candle matches one of the relevant signal processes and will provide
spatial and/or temporal information. The pulsed neutron source (PNS) system, as described below,
will provide a standard candle neutron capture signal (6.1MeV multi-gamma cascade) across the
entire DUNE volume that is directly relevant to the supernova physics signal characterization. The
PNS is also capable of providing a spatially fine-grained measurement of electron lifetime.

Liquid argon is near transparent to neutrons with an energy near or at 57 keV due to an anti-
resonance in the cross-section caused by the destructive interference between two high level states
of the 40Ar nucleus (see Figure 6.15). The cross-section at the anti-resonance “dip” is about 10 keV
wide, and at the bottom the cross section of 1.6× 10−4 b implies an elastic scattering length of
over 2000m. Natural argon has three major isotopes: 36Ar (0.3336%), 38Ar (0.0834%), and 40Ar
(99.6035%) each with a slightly different anti-resonance. The average elastic scattering length of
the 57 keV neutrons in natural liquid argon is about 30m.

The neutrons at the anti-resonance energy could be injected into liquid argon in the TPC, provided
no materials (e.g., hydrocarbons) block the path. Those that do scatter lose energy, leave the anti-
resonance, quickly slow down and are captured. Each capture releases exactly the binding energy
difference between 40Ar and 41Ar, about 6.1MeV in the form of γ rays. As will be described
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Figure 6.15: Illustration of interference anti-resonance dips in the cross section of 56Fe, 28Si, 32S, and
40Ar. Elastic scattering cross-section data is obtained from ENDF VIII.0 [?].

below, by using a DD Generator (where DD stands for “deuterium-deuterium”), a triggered
pulse of neutrons can be generated outside the TPC, then injected via a dedicated opening in
the insulation into the liquid argon, where it spreads through the 58m volume of the detector to
produce 6.1MeV energy depositions.

One important property of the neutron capture reaction 40Ar(n,γ)41Ar is that the deexcitation
of 41Ar nucleus produces a cascade of prompt γs. Because of the detector threshold effect, the
multiplicity and the total energy of the γs within the cascades could be effectively decreased to
below the expected values of the neutron capture process. As a consequence, the neutron capture
identification and the assessment of neutron tagging efficiency in liquid argon strongly depends
on a precise model of the full γ energy spectrum from thermal neutron capture reaction. The
neutron capture cross-section and the γ spectrum have been measured and characterized by the
Argon Capture Experiment at DANCE (ACED), where DANCE is the Detector for Advanced
Neutron Capture Experiments. Recently, the ACED collaboration performed a neutron capture
experiment using DANCE at the Los Alamos Neutron Science Center (LANSCE). The result
of neutron capture cross-section was published [119] and will be used to prepare a database for
the neutron capture studies. The data analysis of the energy spectrum of correlated γ cascades
from neutron captures is underway and will be published soon. The γ energy spectrum and the
branching ratios in the ENDF library will be updated with the ACED result.

Figure 6.16 shows an example of the energy spectra of individual γ clusters measured by ACED [119].
The most common γ cascade emitted from 41Ar decay has 167 keV, 1.2MeV and 4.7MeV γs. The
peak energy of these γs can be clearly seen in the background subtracted data in Ref. [119]. In
liquid argon detectors, the γs are detected through calorimetric measurement. Assuming the γ

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 6: Calibration Hardware for Single-Phase 6–368

cascade from a neutron capture is fully contained in the active volume, it is possible to detect the
individual γs from the neutron capture. The correlation of the measured γ is a strong indication of
neutron capture events. Low energy γ reconstruction algorithms are being investigated to identify
the neutron capture events that could be used for detector response calibration.

Figure 6.16: Energy spectra of individual γ clusters measured by ACED. Only events detected in the
0.02 eV to 0.04 eV neutron energy window are selected.

6.3.5.1 Design

The basic design concept of sources like the pulsed neutron source are based on successful boron
neutron capture therapy [120]. The design of the PNS system used for energy calibration is shown
in Figure 6.17. The system will consist of four main components: a DD generator, an energy
moderator reducing the energy of the DD neutrons down to the desired level, shielding materials,
and a neutron monitor to confirm neutron flux and safe operation.

DD generator source: DD generators are commercial devices that can be readily obtained from
several vendors at a cost of about $125k each, which includes all control electronics. The pulse
width is adjustable and can be delivered from about 10µs to 1000µs (which affects the total
neutron output).

Moderator: A feasible moderator has been designed using a layered moderator (Fe or Si)-filter (S)-
absorber (Li) configuration. The 2.5MeV neutrons from the DD generator are slowed to less than
1MeV by the energy moderator. Natural iron and silicon are found to be efficient moderators for
this purpose. Then an energy filter made of sulfur powder is used to further select the neutrons
with the desired anti-resonance energy. The neutron anti-resonance energy in 32S is 73 keV, right
above the 57 keV anti-resonance energy in 40Ar. The neutrons at this energy lose about 3.0 keV per
elastic scattering length. After a few elastic scattering interactions, most of the 73 keV neutrons
selected by the sulfur filter will fall into the 57 keV anti-resonance energy region in LAr. These
materials require no cooling or special handling. Finally, a thermal absorbing volume of lithium is
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Figure 6.17: Conceptual design of the pulsed neutron source. The whole device is placed outside the
TPC volume on top of the cryostat.

placed at the entry to the argon pool in order to capture any neutrons that may have fallen below
the 57 keV threshold. A reflecting volume is added around the DD generator and the neutron
moderator to increase downward neutron flux. Figure 6.18 shows the energy spectrum of the
neutrons moderated and injected into the TPC.

Shielding: The source will be encased in a shielding volume. The goal of the shield is to block
both scattered neutrons and gammas that are produced in the source. Lithium-polyethylene
(7.5%) is chosen to be the material for the neutron shield because it is rich in hydrogen and
lithium atoms which yield a high neutron absorption cross section. Lithium-polyethylene is also
light weight, commercially available, and relatively inexpensive. The energy spectrum entering
the shield has multiple peaks between 0.5MeV and 1.5MeV, and one major spike at 2.2MeV.
The shield can effectively block the lower energy peaks but can only degrade the intensity of the
2.2MeV because 2.2MeV gammas are a characteristic signature for neutron captures on hydrogen.
A safe thickness of the lithium-polyethylene shield must be found, one that can degrade the dose
of 2.2MeV gammas to safe levels. The dose of radiation from 2.2MeV gammas was calculated
assuming a person standing 1m away. Simulation indicates that a shield with 12 cm thick lithium-
polyethylene satisfies basic safety requirements4.

Neutron Monitor: The system will need a monitoring system to confirm that the source is op-
erating as expected. A neutron monitoring detector consisting of an Eljen EJ-420 coupled to an
ADIT L51B16S 2-inch photomultiplier tube (PMT) will be placed just outside of the moderating
material surrounding the DD generator and will be read out with a CAEN waveform digitizer with
neutron/γ pulse-shape discriminating firmware. The monitoring detector will provide relative flux
information to the calibration users and will ensure that the intensity of the source is constant,
thereby allowing a comparison of data taking at different times. A small collimator will be placed
in front of the neutron detector, and inside the shielding material of the DD source. The collimator

4These calculations will be redone assuming a 30 cm personnel safety distance and shielding thickness reestimated to
meet DUNE safety requirements.
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Figure 6.18: Energy of moderated neutrons produced by the pulsed neutron source. The total number
of initial DD generator neutrons is 1× 106.

dimensions and material specifications (likely a combination of iron, lead, and polyethylene) will
be optimized from Monte Carlo simulations.

Based on the general concept described above, Figure 6.19 shows a conceptual layout of the neutron
injection system. It is referred to as the “large format moderator” design. The neutron source is
about 0.8m wide and 1m high. It would sit above the cryostat insulator. Beneath the neutron
source, a cylindrical insulator volume with a diameter of more than 50 cm has to be removed to
allow the neutrons enter the cryostat. Such an interface is provided by the human access ports near
the endwalls of the detector. The top flange of the human access port is sealed, and the neutron
source sits on top, providing heat insulation. The neutron source weighs about 1.6 t and will be
supported by the I-beams. This design allows a permanent deployment of the neutron source.
GEANT4 simulation has shown that 0.13% of the neutrons generated by the DD generator are
expected to be captured inside the TPC. It is also possible to place the neutron source inside the
human access ports which would allow a factor of 6 increase of the neutron flux but will require a
modification of the interface flange. This is currently being investigated.

Simulation studies were done placing the PNS system on top of a cryostat with the same size as
the DUNE 10 kt TPC. Initial simulation results indicate that one PNS could cover 1/3 of the TPC
volume, so three identical neutron sources on top of the cryostat would illuminate the whole TPC
volume of the DUNE FD. However, this would require opening three additional neutron injection
ports which are not included in the current cryostat design5. The baseline configuration of the
PNS system consists of two large format neutron sources permanently located at the corner human
access ports at the opposite ends on top of the cryostat.

5Ideally, opening three identical neutron injection ports for each 10 kt TPC would make full use of the neutron source.
While this is not possible for the first FD module as the cryostat design is frozen, it informs the importance of these
ports for subsequent FD modules.
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Figure 6.19: Large format neutron source deployed above/inside the human access holes.

Figure 6.20 shows the position distribution of the neutron captures under baseline configuration.
The distribution shows that the baseline deployment can cover a large fraction of the TPC volume,
but, as evident from the figure, not many neutrons reach the central region of the TPC. Neutrons
with long scattering lengths can reach the center of the TPC but, much longer operation time
maybe needed to achieve the required statistics. Assuming a minimum number of 100 neutron
captures per m3 in order to carry out a localized energy calibration, and the typical DD generator
pulse intensity of 105 neutrons/pulse, the number of pulses needed to calibrate the high rate regions
is of the order of 1000, and at least 10 times that for the low rate regions. But given the 0.5Hz
DAQ limitation, this would mean calibration runs will increase from 40 minutes to about 7 hours
to cover the low rate regions. More details on this are given in Section 6.4.1. If the neutron capture
events at the center of the TPC are not sufficient, the detector response calibration would depend
on simulations and extrapolation using results from the regions with high neutron coverage. To
increase the low coverage at the center of the TPC, an alternative deployment strategy is proposed
using a small format neutron source design described in Section 6.7.2.

The system is expected to have a long lifetime of operation, as the PNS system sits on top of the
cryostat, with no opening to the LAr, so it is possible to replace the system in case of failure with
only crane support.

6.3.5.2 Measurement Program

The 6.1MeV γ cascade will provide a uniform signal for neutron capture, part of the supernova
signal. The source may also be used to determine the relative efficiency across the detector for
neutron capture, and provide measurements of energy resolution and energy scale spatially and
temporally. Simulation studies are currently underway.

The first goal of the simulation is to provide the expected distribution of signals, with a normal-
ization given by the pulse width of PNS operation, and neutrons energy and angular correlated
distribution, depending on the source filter and shield design. It is envisaged that the calibration
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Figure 6.20: Neutron capture positions inside a DUNE-sized TPC, assuming baseline configuration with
two large format neutron sources located at the corner human access ports at the opposite corners on
top of the cryostat. L=60m (along Z axis, horizontally parallel to the beam direction), W=14.5m
(along X axis, horizontally perpendicular to the beam direction), H=10m (along Y axis, vertically
perpendicular to the beam direction). 1.8× 107 DD generator neutrons with 2.5MeV energy were
simulated in each moderator and propagated inside the TPC. Top (left) and side (right) views of
neutron capture positions are shown.

can be done in two modes. First, a short PNS pulse can provide isolated neutron captures closer
to the entrance path; and then a longer pulse, for which the same region is saturated, but captures
happen in the full volume.

By using an external trigger coupled to the PNS operation and running the usual trigger algorithms
in parallel, the calibration will provide the efficiency of the trigger and DAQ systems as a function
of total fluxes. Changing the pulse width can result in higher or lower detector activity. The
source will be used for SNB calibration to test the capabilities of triggering for low energy signals,
but also to identify them in different pile-up conditions. The transmission of the global timing
from the external PNS trigger to the DAQ provides a strong constraint on the initial timing for
the TPC as the neutron capture times are of the order of 0.15ms, much lower than typical drift
time for the TPC. The PD system, with resolution of 100 ns, can discriminate between different
neutron captures. The calibration will measure the efficiency of the PD system response for low
energy events, depending on the distance due to Rayleigh scattering in LAr. We will then study
the usage of the PD system time information for improving the position reconstruction of TPC
signals. In the absence of the PD system system, the global timing from the PNS translates to an
uncertainty of around 10 cm.

Individual event positions can be translated into response maps of both the photon detectors and
the LArTPC to standard candles of 6.1MeV electromagnetic depositions. When the cascades
can be more precisely reconstructed, individual γs within the cascades can be identified, and
this provides a lower energy “standard candle” close to the solar electron-neutrino threshold.
Comparing the collected charge for equal energy signals at different distances from the TPC gives
a measurement of the electron lifetime, a key detector response parameter. High PNS flux runs
can generate momentary local space charge effects, in the upper regions of the detector, that will
need to be characterized; low flux runs should be taken before to ensure expected space charge
distributions. The global simulation will be tested in the (smaller scale) ProtoDUNE detectors.
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The neutron mean free path will be larger than the ProtoDUNE size, and so external events and
interactions with materials of the PD system, APA, and CPA systems will be more prominent.
These effects must be simulated.

Note that captures of external background neutrons, entering the active volume is a main back-
ground for low energy physics; a comparison of simulations of PNS events and external neutron
backgrounds will be interesting, as will a comparison of simulated supernova and solar neutrino
signals. For the high energy beam events, the number and energy distributions of neutrons depend
on the type of neutrino interaction and are significantly different for neutrinos and anti-neutrinos.
Measuring the number and distance of neutron captures around the main hadronic cascades can
thus help in identifying which extra proton scattering signals to associate to the hadronic cascades.
This can also help make a statistical correction to the energy reconstruction of the neutrino and
anti-neutrino events.

6.3.6 Validation of Calibration Systems

All calibration designs presented in the previous section require full system validation before being
deployed in the DUNE FD. Here, we describe the validation of a complete baseline design and
some of the alternative designs described in the Appendix, Section 6.7.

Although laser calibration systems are being operated in other LArTPC experiments (e.g., Micro-
BooNE, future SBND runs), they have stringent requirements in terms of mechanical and optical
precision , long-term reliability, laser track length, performance of the LBLS, DAQ interface, and
effect on E field, especially due to the FC penetration. All of these lead to corresponding goals
for a test installation and operation in ProtoDUNE-SP that could be done in the post-LS2 run.
As Figure 6.21 shows, ProtoDUNE-SP has ports of the same size as the DUNE FD that could be
used for these tests. If a pair of ports can be used, then one could even have crossing tracks within
a single drift volume. If one of the ports external to the TPC can be used, then we would test the
double-rotary alternative system described in Section 6.7.1 and aimed at improving the coverage
from the end-wall locations.

The goal for validation would be to test all aspects of the system design, installation, alignment,
operation, interfaces with DAQ, and analysis, among others. ProtoDUNE-SP, because it is located
at the surface, could measure the E field map with cosmic rays to compare with the one from
the laser system to improve the analysis methods or identify weak aspects in the design. An
important design parameter is the length of a laser track. Our design assumes that 20m is possible.
MicroBooNE has demonstrated only up to 10m, but the track could be longer, depending on laser
intensity. Measurements are limited by the size of the detector, but one way to gain information
on longer tracks is to make a scan with low laser intensities, so that the end of the track is visible,
and register how the maximum obtained track length scales with intensity. An extrapolation to
the DUNE FD laser intensity would tell us the maximum length possible. Such a measurement
could also be done at MicroBooNE or SBND.

An important aspect of the development plan, to be carried out at ProtoDUNE-SP-2, is the char-
acterization of the charge created by the laser beam ionization as a function of distance travelled in
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Figure 6.21: Top view of the ProtoDUNE-SP cryostat showing various penetrations. Ports marked in
red are free and could be used to test the calibration systems. The four largest ports have the same
diameter (250mm) as the calibration ports of DUNE FD, and are located over the TPC. The largest
ports at the right side corners of the cryostat are the human access ports.
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the LAr and the laser beam intensity. This dependence is thought to be affected by self-focusing
effects due to the high light intensity, but it can be studied by measuring the collected charge
distribution from a series of tracks close, and parallel, to the APAs in order to break any correla-
tions with the electron lifetime. This measured charge function could then be used with tracks in
different directions to obtain a measurement of electron lifetime, which would significantly increase
the capabilities of the laser system.

The pulsed neutron source is a new idea never used in other experiments, so a ProtoDUNE-SP-2
test is essential. The corner human access ports similar to the ones in the DUNE FD could be
used for this test.

In addition to dedicated hardware validation runs at ProtoDUNE-SP-2, other LAr experiments
provide ample opportunities to develop and validate calibration tools and techniques, especially
those relevant to the hardware being deployed. For example, the MicroBooNE experiment is cur-
rently leading the development of analysis methods using laser data to extract an E field map.
Energy calibration techniques and related software tools are also being developed at various exper-
iments (MicroBooNE, ICARUS, LArIAT, ProtoDUNE) that involve estimating and propagating
uncertainties like E field distortions, recombination, and other effects into physics signals. Other
calibration related developments include DAQ and calibration database design, all of which are
being improved at SBN and ProtoDUNE.

6.4 Interfaces with other Consortia

Interfaces between calibration and other consortia have been identified and appropriate documents
have been developed. The documents are currently maintained in the CERN Engineering and
Equipment Data Management Service (EDMS) database, with a TDR snapshot kept in the DUNE
document database (DocDB). DUNE document database (DocDB). A brief summary is provided
in this section. Table 6.4 lists the interfaces and corresponding DocDB document numbers. The
main systems calibration has interfaces with are HV, PD system, and DAQ, and the important
issues that must be considered are listed below.

HV Evaluate the effect of the calibration hardware on the E field due to laser system periscopes
and FC penetration. Evaluate the effect of the incident laser beam on the CPA material
(Kapton); Integrate the hardware of the photoelectron laser system (targets) and the LBLS
(diodes) within the HV system components. Ensure that the radioactive source deployment
is in a safe field region and cannot do mechanical harm to the FC.

PDS Evaluate long term effects of laser light, even if just diffuse or reflected, on the scintillating
components (tetra-phenyl butadiene (TPB) plates) of the PD system; establish a laser run
plan to avoid direct hits; evaluate the effect of laser light on alternative PD system ideas,
such as having reflectors on the cathode plane assemblies; validate light response model and
triggering for low energy signals.

DAQ Evaluate DAQ constraints on the total volume of calibration data that can be acquired;
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develop strategies to maximize the efficiency of data taking with data reduction methods;
study how to implement a way for the calibration systems to receive trigger signals from
DAQ to maximize supernova live time. More details on this are presented in Section 6.4.1.

Integrating and installing calibration devices will interfere with other devices, requiring coordina-
tion with the appropriate consortia as needed. Similarly, calibration will have significant interfaces
at several levels with cryostat and facilities in coordinating resources for assembly, integration,
installation, and commissioning (e.g., networking, cabling, safety). Rack space distribution and
interaction between calibration and systems from other consortia will be managed by technical
coordination in consultation with those consortia.

Table 6.4: Calibration Consortium Interface Links.

Interfacing
System

Description Reference

HV effect of calibration hardware (laser and
radioactive source) on E field and field
cage; laser light effect on CPA materi-
als, field cage penetrations; attachment
of positioning targets to HV supports

DocDB
7066 [33]

PD system effect of laser light on PD system, reflec-
tors on the CPAs (if any); validation of
light response and triggering for low en-
ergy signals

DocDB
7051 [90]

DAQ DAQ constraint on total volume of the
calibration data; receiving triggers from
DAQ

DocDB
7069 [121]

CISC multi-functional CISC/calibration ports;
space sharing around ports; fluid flow val-
idation; slow controls and monitoring for
calibration quantities

DocDB
7072 [122]

TPC Electron-
ics

Noise, electronics calibration DocDB
7054 [75]

APA APA alignment studies using laser and im-
pact on calibrations

DocDB
7048 [17]

Physics tools to study impact of calibrations on
physics

DocDB
6865 [123]

Software and
Computing

Calibration database design and mainte-
nance

DocDB
6868 [124]

TC Facility Significant interfaces at multiple levels DocDB
6829 [125]

TC Installa-
tion

Significant interfaces at multiple levels DocDB
6847 [126]
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6.4.1 Calibration Data Volume Estimates

The calibration systems must interface with the DUNE DAQ system, discussed in detail in Chap-
ter 7. Trigger decisions for physics events are made hierarchically: trigger primitives are generated
from TPC and PD system “hits”, and these trigger primitives are then used to create trigger
candidates which are collections of trigger primitives satisfying selection criteria such as exceed-
ing a threshold number of adjacent collection wire hits, or total collection wire charge recorded,
etc. These trigger candidates are passed on to a module level trigger (MLT) which then makes
decisions about whether a given trigger candidate is accepted as a detector-wide trigger. If so, the
MLT sends trigger commands to the data flow orchestrator (DFO) which in turn passes them to
an available event builder (EB) that then requests data from the front-end (FE) readout of the
DAQ (servers that host Front-End Link eXchange (FELIX) cards). The management of trigger
decisions—whether they are generated by candidates from the TPC, PD system, calibrations, or
other systems—is done in the MLT.

The trigger commands are in the form of absolute time stamps that are used to extract snapshots
of the data stored in the FE readout buffers. For physics triggers, all TPC information for a
snapshot of time (roughly twice the drift time, or 5.4ms) are read out, without any additional zero
suppression or localization. For calibration events, this approach would create an unmanageable
amount of data and, in any case, is unnecessary because calibration events create interactions or
tracks at known positions or times, or both.

To reduce data volume from calibrations, therefore, calibration systems that can be triggered
externally are desirable. Like the distribution of trigger commands to the FE readout buffers, the
external trigger for a calibration system will take the form of an absolute time stamp. The time
stamp is generated by the MLT, thus ensuring that (for example) a calibration event does not
occur during a candidate supernova burst. The distribution of these time stamps will be done
through the DAQ’s timing and synchronization system. Thus triggerable calibration systems (like
the laser or PNS) will have to be synchronized to the rest of the DAQ system and be capable of
accepting time stamps. There will be differences in the details of how different calibration systems
are handled, as discussed later in this section.

Table 6.5 shows the estimated data volume needs for various calibration systems assuming each
system is run twice per year. For the ionization laser system, as noted earlier, a scan of the full
detector can take about three days, resulting in a total of about six days or a week per year per
10 kt module. For the PNS system, as noted later in this section, a single run can take about seven
hours; doing that twice, or even four times, per year will result in a total of about one day per year
per 10 kt module. It is expected that once the detector launches into stable operations, the need
for full calibration campaign runs will reduce to one nominal run per year. We also expect some
shorter runs may be needed in smaller, targeted regions of the detector, or for detector diagnostic
issues.
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Table 6.5: Estimated data volume needs per year per 10 kt for various calibration systems.

System Data Volume
(TB/year)

Assumptions

Ionization Laser Sys-
tem

184 800k laser pulses, 10×10×10 cm3 voxel sizes, a
100 µs zero suppression window (lossy readout), and
2 times/year

Neutron Source Sys-
tem

144 105 neutrons/pulse, 100 neutron captures/m3, 130
observed neutron captures per pulse, 2 times/year

6.4.1.1 Laser System

The E field vector from ionization laser calibration is determined by looking at the deflection of
crossing laser tracks within detector voxels. Because any given laser track illuminates many such
voxels, one laser pulse can be used for several measurements; essentially, what matters is how
many voxels it takes to cover three walls of a given drift volume – CPA, bottom and end-wall FC,
taking into account that we divide that volume by 4 because of beam coverage.

Considering a small voxel size of 10×10×10 cm3, the total number of independent track directions
is estimated to be 800,000: about half the rate of cosmic rays and thus nominally a substantial
total data volume. However, with the specification voxel size of 30×30×30 cm3, that number would
be 27 times smaller, so that would allow a larger number of tracks per direction. Keeping to the
overall estimate of 800,000 tracks per scan, the choice of voxel granularity and track statistics per
direction can be made until the commissioning period.

Fortunately, unlike every other event type in the detector, the laser track has both a reasonably
well known position and time; thus the trigger command issued to the FE buffers can be much
narrower than the window used for physics triggers. A 100 µs zero suppression window should be
wide enough to avoid windowing problems in the induction plane wire deconvolution process. To
ensure that the interesting part of each waveform is recorded, the DAQ will need to know the
current position of the laser, which will be transmitted from the laser system to the MLT via the
DAQ control, configuration and monitoring subsystem (CCM).

From the standpoint of data volume, therefore, the total assuming the 100 µs zero-suppression
window is

800,000/scan/10 kt× 100 µs× 1.5Bytes/sample× 2 MHz× 384,000 channels = 92 TB/scan/10 kt.
(6.1)

If such a calibration scan were done twice a year, then the total annual data volume for the laser
is 184 TB/year/10 kt and four times a year would result in 368 TB/year/10 kt
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6.4.1.2 Pulsed Neutron Source

The pulsed neutron source (PNS) system creates a burst of neutrons that are captured throughout a
large fraction of the total cryostat volume. For triggering and data volume, this is very convenient:
the existing scheme of taking 5.4ms of data for each trigger means all these neutrons will be
collected in a single DUNE event. Thus, the data volume is simply 6.22 GB times the total
number of such pulses, but these are likely to be few: a single burst can produce thousands of
neutrons whose t0 is known up to the neutron capture time of 200µs or so.

To trigger the PNS, the MLT will provide a time stamp for the source to fire, and then send a
trigger command to the FE readout buffers (via the DFO and EB) that will look like a physics
trigger command. The MLT itself then tags that trigger command with the expected trigger type
(in this case, PNS).

Typically, a commercial DD neutron generator produces 105 - 108 neutrons/pulse, depending on
the adjustable pulse width. The current assumption for neutron yield from the DD generator is 105

neutrons per pulse6. With the current baseline deployment design in Figure 6.19, approximately
130 neutron captures per DD generator pulse should be observed inside a 10 kt module. As shown
in Figure 6.20, the deployment of two large format neutron sources at the corner human access
ports could approximately provide calibration for about half of the total TPC volume (30 kt).
As the suggested number for localized energy calibration is 100 neutron captures per m3, a total
number of 2300 pulses would be needed to calibrate regions under high neutron coverage. Assuming
two identical pulsed neutron sources operating in synchronization mode, 1150 triggers are needed
for each calibration run. Therefore, the total data volume per run would be

1150 Triggers× 1.5 Bytes× 2 MHz× 5.4 ms× 384,000 channels = 7.2 TB/run. (6.2)

The recommended trigger rate of the PNS system is 0.5Hz which is limited by the bandwidth of
the DAQ event builder. Assuming that the spatial distribution of the neutron capture is near-
uniform for the regions that are covered by the two large format neutrons sources, the operation
time per calibration run would be 40 minutes. Running the PNS calibration system twice a year
would result in a total data volume of 14.4TB per 10 kt per year. For realistic neutron capture
distribution that is non-uniform, we expect to operate the PNS system for a period of 10 times
longer than that under the ideal assumption (7.2 TB/run). As a consequence, the data size per
calibration run would be 72 TB/run and running the PNS calibration twice a year would result in
a total data size of 144 TB/year/10 kt and four times a year results in 288 TB/year/10 kt.

6Realistic assumption based on commercially available DD generators that produce the most neutron yield with a
pulse width less than 100 µs. DD generators with higher neutron yield are being developed in laboratories; commercial
devices may require further development to reach a higher level of performance.
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6.5 Construction and Installation

6.5.1 Quality Control

The manufacturer and the institutions in charge of devices will conduct a series of tests to ensure
the equipment can perform its intended function as part of quality control (QC). QC also includes
post-fabrication tests and tests run after shipping and installation. The overall strategy for the
calibration devices is to test the systems for correct and safe operation in dedicated test stands, then
at ProtoDUNE-SP-2, then as appropriate near Sanford Underground Research Facility (SURF) at
South Dakota School of Mines and Technology (SDSMT), and finally underground. Electronics
and racks associated to each full system will be tested before transporting them underground.

• Ionization Laser System: The first important test is design validation in ProtoDUNE-SP-2.
For assembly and operation of the laser and feedthrough interface, this will be carried out on a
mock-up flange for each of the full hardware sets (periscope, feedthrough, laser, power supply,
and electronics). All operational parts (UV laser, red alignment laser, trigger photodiode,
attenuator, diaphragm, movement motors, and encoders) will be tested for functionality
before being transported underground.

• Photoelectron Laser System: The most important test is to measure the light transmission
of all fibers at 266 nm. A suitable transmission acceptance threshold will be established based
on studies during the development phase. Studies to estimate the number of photoelectrons
emitted as a function of intensity (based on distance of fiber output to the metallic tab) will
also be undertaken.

• Laser Beam Location System: For the LBLS, the main test is checking that the PIN diodes
are all functional, and with a light detection efficiency within a specified range, to ensure
uniformity across all clusters. For the mirror-based system, the reflectivity of all mirrors will
also be tested prior to assembly.

• Pulsed Neutron Source System: The first test will be safe operation of the system in a
member institution radiation-safe facility. Then, the system will be validated at ProtoDUNE-
SP-2. The same procedure will be carried out for any subsequent devices before the devices
are transported to SURF and underground. System operation will be tested with shielding
assembled to confirm safe operating conditions and sufficient neutron yields using an external
dosimeter as well as with the installed neutron monitor. The entire system, once assembled,
can be brought down the Ross shaft.

6.5.2 Installation, Integration and Commissioning

This section describes the installation plans for calibration systems. Most of the hardware is
to be installed outside the cryostat so, space on mezzanine surrounding each calibration port is
important for powering and operating the calibration systems. However, some sub-systems have
internal components which will be installed following a specific installation sequence, coordinated
with other consortia.
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6.5.2.1 Ionization Laser System

Checking the alignment of the optical components is an essential step of the ionization laser
system installation. The system includes a low power visible laser that can be used for the several
mirror alignment operations, but before that use, both the UV and the visible lasers in the laser
box need to be aligned. Alignment of the visible and UV (Class 4) lasers requires special safety
precautions and must be carried out once for each periscope/laser system before installing further
TPC components. For that reason, the laser boxes must be installed on the cryostat roof as soon
at that area becomes accessible.

The periscopes are the only components of the ionization laser system that will be inside the
cryostat, but they will be installed from the top of the cryostat and not from the temporary
construction opening (TCO), including the alternative options. However, this installation should
be done very carefully in the presence of an operator inside the cryostat, to ensure there are
no collisions of the long laser periscopes with other detector components, especially FC elements
and CE cable trays. The periscopes should be installed after the relevant structural elements,
especially the top FC modules. Installation should proceed in sequence with the assembly of other
components, with the furthest from TCO assembled first.

The relevant QC is essentially an alignment test. The LBLS can be used to align the periscopes
as they are installed, so it is important that the LBLS is also installed in the same sequence as the
periscopes.

A support beam structure closest to the TCO temporarily blocks the calibration ports, but it is
removed after the last TPC component is installed. After that, the final calibration components
can be installed, including the periscopes on the TCO end wall.

6.5.2.2 Laser Beam Location System

This system has several parts that need to be installed inside the TCO, and some must be integrated
with the HV system during installation underground.

The PIN diode system uses a set of diodes that fire when the laser beam hits them. Because the
laser shoots from above and the diodes must be in a low voltage region, the plan is to place the
diodes below the bottom FC, facing upward, simply on a tray close to the cryostat membrane.

For the pointing measurement, the beams will pass through the FC electrodes and hit the diodes
below. There will be 32 of these diode clusters to be installed. The installation will consist of
positioning the cluster trays in pre-determined locations, and routing the cables to the respective
feedthroughs (work is still underway to decide how to route cables and which flanges to use).

The second laser beam location system consists of a set of 32 mirror clusters: a plastic or aluminum
piece holding four to six small mirrors 6mm in diameter, each at a different angle; the ionization
laser will point to these mirrors to obtain an absolute pointing reference. These clusters will be
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attached to the bottom FC profiles facing into the TPC. This attachment/assembly of the mirror
clusters on corresponding FC profiles will be done during FC assembly underground.

6.5.2.3 Photoelectron Laser System

A large number of photoelectric targets (about 4000) must be attached to the cathode. Experience
from other experiments indicates that targets can be glued to the cathode surface, which can be
done after cathode assembly but before the cathode is installed in the cryostat.

Once the cathode plane assemblies are in place, the photoelectric target locations will need a
high precision survey, which is necessary for the absolute calibration of the electric field with the
photoelectron laser.

The third part of the installation is quartz optical fibers on the APA, needed to illuminate the
photoelectric targets with light from the Nd:YAG laser. Fiber tips must be properly fastened and
oriented for effective illumination, and fiber bundle routing will bring the fiber bundles to the
outside of the cryostat where Nd:YAG laser injection points will be located.

6.5.2.4 Pulsed Neutron Source System

The PNS will be installed after the human access ports are closed because the source sits above the
cryostat. Installing the system should take place in two stages. In the first stage, the assembly of
the system would be independent of the TPC installation. The whole system will be assembled on
the ground outside the cryostat at a dedicated radiation safe area. Once assembled, the neutron
source will be lifted by crane and integrated with the cryostat structure. Final QC testing for the
system will be operating the source and measuring the flux with integrated monitor and dosimeter.

6.5.3 Safety

This section discusses risks to personnel safety. Detector safety and risks involving damage to
detector components are discussed in Section 6.6.3.

Human safety is of critical importance during all phases of the calibration work, including R&D,
laboratory testing, prototyping (including ProtoDUNE-SP deployment), and integration and com-
missioning at the DUNE FD site. DUNE environment, safety and health (ES&H) personnel review
and approve the work planning for all phases of work as part of the initial design review, as well as
before implementation. All documentation of component cleaning, assembly, testing, installation,
and operation will include hazard analysis and work planning documentation and will be reviewed
appropriately before production begins. In addition, in the case of planned ProtoDUNE-2 tests,
the consortium will interface with CERN safety system to ensure all requirements are met.

Several areas are of particular importance to calibration are
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• Underground laboratory safety: All personnel working underground or in other installation
facilities must follow appropriate safety training and be provided with the required personnel
protective equipment (PPE). Risks associated with installing and operating the calibration
devices include, among others, working at heights, confined space access, falling objects dur-
ing overhead operations, and electrical hazards. Appropriate safety procedures will include
aerial lift and fall protection training for working at heights. For falling objects, the cor-
responding safety procedures, including hard hats (brim facing down) and a well restricted
safety area, will be part of the safety plan. More details on PPE are provided in TDR
Volume III, DUNE Far Detector Technical Coordination, Chapter 10.

• Laser safety: The laser system requires operating a class IV laser [127, 128]. This requires an
interlock on the laser box enclosure for normal operation, with only trained and authorized
personnel present in the cavern for the one-time alignment of the laser upon installation in the
feedthroughs. The trained personnel will be required to wear appropriate laser protective eye
wear. A standard operating procedure will be required for the laser which will be reviewed
and approved by the Fermi National Accelerator Laboratory (Fermilab) laser safety officer.

• Radiation safety for PNS: A DD neutron generator will be used as a calibration device.
The design of safety systems for this system include key control, interlock, moderator, and
shielding. Lithium-polyethylene (7.5%) is chosen to be the material for the neutron shield
which is rich in hydrogen. The gammas from neutron capture on hydrogen in the shielding
material could cause potential radiation hazards. The design of the radiation safety systems
(custom shielding and moderator) will be designed to meet Fermilab Radiological Control
Manual (FRCM) safety requirements and will be reviewed and approved by Fermilab radi-
ological control organization. Material safety data sheets will be submitted to the DUNE
ES&H to understand other safety hazards such as fire. Before beginning any operations at
ProtoDUNE-SP, the entire system will be assembled in a neutron shielded room and tested
to confirm no leaking of neutrons will occur. The system will also have a neutron monitor
that can provide an interlock.

• High voltage safety: Some of the calibration devices will use high voltage. Fabrication and
testing plans will show compliance with local HV safety requirements at any institution or
laboratory that conducts testing or operation, and this compliance will be reviewed as part
of the design process.

• Hazardous chemicals: Hazardous chemicals (e.g., epoxy compounds used to attach compo-
nents of the system) and cleaning compounds will be documented at the consortium man-
agement level, with a material safety data sheet as well as approved handling and disposal
plans in place.

• Liquid and gaseous cryogens: Cryogens (e.g., liquid nitrogen and LAr) will most likely
be used in testing of calibration devices. Full hazard analysis plans will be in place at the
consortium management level for full module or module component testing that involves
cryogens. These safety plans will be reviewed appropriately by DUNE ES&H personnel
before and during production.
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6.6 Organization and Management

6.6.1 Consortium Organization

The calibration consortium was formed in November 2018 as a joint single and dual phase consor-
tium, with a consortium leader and a technical leader. Figure 6.22 shows the organization of the
consortium. The calibration consortium board currently comprises institutional representatives
from 11 institutions as shown in Table 6.6. The consortium leader is the spokesperson for the
consortium and responsible for the overall scientific program and management of the group. The
technical leader of the consortium is responsible for managing the project for the group.

The consortium’s initial mandate is the design and prototyping of a laser calibration system, a
neutron generator, and possibly a radioactive source system, so the consortium is organized into
three working groups, each dedicated to one system. Each group has a designated working group
leader.

Figure 6.22: Organizational chart for the calibration consortium.

In addition, Figure 6.22 shows several liaison roles currently being established to facilitate connec-
tions with other groups and activities:

• Detector integration and installation,
• Electrical and safety issues,
• DAQ,
• Computing,
• Cryogenic instrumentation and slow controls (CISC),
• Cold electronics,
• High voltage,
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Table 6.6: Current Calibration Consortium Board Institutional Members and Countries.

Member Institute Country
LIP Portugal
University of Bern (Bern) Switzerland
Los Alamos National Lab (LANL) USA
Michigan State University (MSU) USA
Colorado State University (CSU) USA
University of Iowa USA
University of Hawaii (Hawaii) USA
University of Pittsburgh (Pitt) USA
Boston University (BU) USA
University of California, Davis (UC Davis) USA
South Dakota School of Mines and Technology (SDSMT) USA

• Photon Detection System.

Currently, new institutions are added to the consortium following an expression of interest from
the interested institute and upon obtaining consensus from the current consortium board members.

6.6.2 Institutional Responsibilities

Calibrations will be a joint effort for SP and DP. Design validation, testing, calibration, and
performance of calibration devices will be evaluated using ProtoDUNE data.

Following the conceptual funding model for the consortium, various responsibilities have been
distributed across institutions within the consortium. Table 6.7 shows the current institutional
responsibilities for primary calibration subsystems. For physics and simulations studies and vali-
dation with ProtoDUNE, a number of institutions are interested.

6.6.3 Risks

Table 6.8 lists the possible risks identified by the calibration consortium along with corresponding
mitigation strategies and impact on probability, cost, and schedule post-mitigation. The table
shows all risks are medium or low level, mitigated with necessary steps and precautions. More
discussion on each risk is provided below.

• Risk 1: The ProtoDUNE-SP design tests being inadequate for the FD is an important one
because this requires early validation from ProtoDUNE data so we can perform R&D of al-
ternate designs and/or improvements on a reasonable time scale. In addition, the calibration
ports will be designed to be multipurpose to enable deployment of new systems if they are
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Table 6.7: Institutional responsibilities in the Calibration Consortium

Subsystem Institutional Responsibility
Ionization Laser System Bern, LIP, LANL, Hawaii
laser beam location sys-
tem

Hawaii, LIP

Photoelectron Laser Sys-
tem

LANL, Hawaii

Pulsed Neutron Source
System

BU, CSU, UC Davis, Iowa, LIP, MSU, LANL, SDSMT

Proposed Radioactive
Source System

SDSMT

Physics & Simulation BU, CSU, Hawaii, LANL, LIP, MSU, SDSMT, UC Davis, Pitts-
burgh, Iowa

developed. Therefore, in general, the calibration systems mitigate risk to the experiment as
the systems sit above the cryostat and/or use multipurpose ports and may be removed.

• Risk 2: This is a medium-level risk where the elements of the calibration system fail engi-
neering requirements, such as laser beam divergence and precision of the mechanical system,
in which case the as-built system will not meet the physics requirements. The mitigation
strategy for this involves testing the same designs envisioned for the FD in dedicated lab
tests and ProtoDUNE-SP-2, to identify any issues and address them. The pre-installation
QC will also allow us to reject parts that do not meet requirements.

• Risk 3: If the ionization laser beam directly hits the elements of the PD system system
for an extended time, the scintillation efficiency might be degraded. The mirror movement
controller of the laser system must avoid the beam directly hitting the PD system. An
automated system will block or turn off the laser beam in case of saturation at one of the
PD system channels. The laser electrical system must allow the later implementation of a
hardware interlock if that is found to be necessary.

• Risk 4: This is a low level risk, where the laser beam location system fails; this would reduce
the precision of the E field measurement but will not prevent the measurement from being
made. Pre-fill QC will be carried out to minimize this risk. Additionally, redundancy will
be built into the system, with alternative targets, including some passive ones. A possible
alternative way to obtain an absolute measurement is to use reflections off of the aluminum
FC profiles, with a very slow angular scan.

• Risk 5: This risk relates to the laser beam misalignment. If the laser beam becomes mis-
aligned with the mirror sequence, then that specific ionization laser module becomes unus-
able for calibration. To mitigate this, the ionization laser system includes a visible (red)
laser specifically for the purpose of alignment. If the misalignment is not just with the warm
mirrors, but also with the cold ones, cryostat cameras might be needed to check arrival of
red light to the TPC.

• Risk 6: If the effective attenuation length of 57 keV neutrons in LAr turns out to be signifi-
cantly smaller than 30m, then PNS system will not cover the whole detector, or additional
modules will be needed. This will be resolved in the next year by a measurement at the
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Los Alamos National Lab (LANL); the ProtoDUNE run will also provide a full end-to-end
demonstration.

• Risk 7: If the neutron flux from the DD generator of the PNS system is enough to activate
the moderator and cryostat insulation, then a new source of radiological backgrounds might
be created. This can be mitigated by neutron activation studies of insulation material, and
ProtoDUNE testing at neutron flux intensities and durations well above the run plan, as well
as simulation studies done in collaboration with the DUNE Background Task Force.

• Risk 8: If the neutron yield from the DD generator is not high enough to provide sufficient
neutron captures inside the TPC, then either the neutron calibration cannot be done or a
higher flux generator must be obtained, or additional sources must be used. Investigation
is being done on both commercially available and custom DD generators. Additionally,
operating the DD generator with wider pulse is under consideration, which would require
the PD system to provide the neutron capture time t0. Another possibility is to carry out
dedicated runs at higher pulse rate and, to ensure that the DAQ can handle it, one would
acquire only the data from the APAs farthest from the source. All of this will be tested
in the ProtoDUNE-2 run. Placing the neutron source closer to the TPC may increase the
neutron yield by a factor of 6. An alternative design (Figure 6.24) with neutron source inside
the calibration feedthrough ports (centrally located on the cryostat) is being studied. This
compact neutron source would be light enough to be moved across different feedthroughs
and will provide additional coverage.

• Risk Opportunity 9: The ionization laser system assumes that the laser beams will be suffi-
ciently narrow for a measurement up to 20m distances. However, as the Rayleigh scattering
is of the order 40m, it is possible the laser may travel further than 20m. This may reduce
the number of lasers needed and therefore the overall cost. The maximum laser distance will
be assessed in ProtoDUNE-2.

Table 6.8: Calibration risks (P=probability, C=cost, S=schedule) The risk probability, after taking into
account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%), or H
(high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule delay < 2
months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-CAL-01 Inadequate baseline

design
Early detection allows R&D of
alternative designs accommodated
through multipurpose ports

L M M

RT-SP-CAL-02 Inadequate engineering
or production quality

Dedicated small scale tests and full
prototyping at ProtoDUNE; pre-
installation QC

L M M

RT-SP-CAL-03 Laser impact on PDS Mirror movement control to avoid di-
rect hits; turn laser off in case of PDS
saturation

L L L

RT-SP-CAL-04 Laser beam location
system stops working

QC at installation time, redundancy
in available targets, including pas-
sive, alternative methods

L L L

RT-SP-CAL-05 Laser beam misaligned Additional (visible) laser for align-
ment purposes

M L L

RT-SP-CAL-06 The neutron anti-
resonance is much less
pronounced

Dedicated measurements at LANL
and test at ProtoDUNE

L L L
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RT-SP-CAL-07 Neutron activation of
the moderator and
cryostat

Neutron activation studies and simu-
lations

L L L

RT-SP-CAL-08 Neutron yield not high
enough

Simulations and tests at Proto-
DUNE; alternative, movable design

L M M

RO-SP-CAL-09 Laser beam is stable at
longer distances than
designed

tests at ProtoDUNE M H L

6.6.4 Schedule and Milestones

Table 6.9 shows the schedule and key milestones for the calibration consortium that lead to com-
missioning the first FD module. The demonstration of calibration systems design, operation, and
performance at the ProtoDUNE-SP-II running is a key part of calibration schedule; those mile-
stones are also listed in the table. The technology design decisions on calibration subsystems
should be made by January 2020 for the laser system and by March 2020 for the neutron source
system followed by technical design reviews. The production of design prototypes to be deployed
at ProtoDUNE-SP-II running should be finished by February 2021 followed by assembly and de-
ployment in ProtoDUNE-SP in March 2021. The radioactive source deployment system (RSDS)

design will follow a demonstration R&D program outlined in detail in Table 6.11 in the Appendix,
with major milestones highlighted in this section. The major steps for systems approval are the
design review in May 2020 and the deployment test at ProtoDUNE-SP-II in April 2022.

Production of calibration systems for the FD should start in March 2022, followed by assembly
of the systems underground once the detector cavern becomes available in early 2023. Installing
the laser system can begin as soon as the cryostat roof is accessible and conclude once the TPC is
ready to install. If it is approved, the RSDS guide system can begin installation just beforeTPC is
installed. The purge-boxes on top of the cryostat can be done later. Installing the main components
of the PNS will begin once the human access ports are no longer needed for TPC installation in
June 2025.
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Table 6.9: Key calibration construction schedule milestones leading to commissioning the first FD
module. (*) Schedule items related to the radioactive source deployment system (RSDS) are to be
considered pending system approval.

Milestone Date (Month YYYY)
Laser systems design decision (including ionization, beam location
and photoelectron systems)

January 2020

Laser systems design review February 2020
PNS design decision March 2020
PNS design review April 2020
RSDS design review May 2020
Start of module 0 component production for ProtoDUNE-II April 2020
End of module 0 component production for ProtoDUNE-II February 2021
Start of ProtoDUNE-SP-II installation March 2021
Start of ProtoDUNE-DP-II installation March 2022
production readiness review dates March 2022
South Dakota Logistics Warehouse available April 2022
RSDS demonstration test at ProtoDUNE-SP-II (*) April 2022
Start of Laser and PNS production May 2022
Beneficial occupancy of cavern 1 and central utility cavern (CUC) October 2022
End of PNS production March 2023
End of Laser system production July 2023
End of RSDS production (*) August 2023
CUC counting room accessible April 2023
Start assembly of calibration production units in the cavern May 2023
Top of detector module #1 cryostat accessible January 2024
Start installation and alignment of Laser boxes May 2024
Start of detector module #1 TPC installation August 2024
Start installation of Laser System periscopes August 2024
Start installation of RSDS guide system (*) August 2024
End of detector module #1 TPC installation May 2025
Installation of RSDS purge-boxes (*) May 2025
Installation of the PNS main components June 2025
Top of detector module #2 accessible January 2025
Start of detector module #2 TPC installation August 2025
End of detector module #2 TPC installation May 2026
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6.7 Appendix

6.7.1 Laser System Alternative Designs

6.7.1.1 End-wall coverage enhancement

The eight calibration ports closer to the end-walls (four on each side) are not positioned on top
of the TPC, but instead located about 40 cm away from the FC along the z (beamline) direction.
If positioned on top, FC penetration would be quite complicated, having to come from the sides.
Use of the periscope baseline design for the end-wall periscopes would severely limit the volume
coverage, similar to the coverage limitation mentioned in Section 6.3.2.3.

We describe here an alternative design for the end-wall ports that would improve the laser beam
coverage without requiring FC penetration.

The periscope is exactly the same as the baseline design but, at the top of the calibration port,
is mounted on a flange that has an additional rotation degree of freedom. Figure 6.23 presents
a preliminary drawing of the concept. The 250mm diameter calibration port has on top of it
the main rotary flange that, itself, has another smaller port off-centered by 40mm with respect
to the main one. On this smaller port, a secondary rotary flange is installed and it is this one
that holds the laser periscope, including the optical feedthrough and the linear stage for mirror
movement. When the main flange rotates, the periscope also moves along a circular (40mm
diameter) trajectory. Consequently, within the cryostat, the relative position between the beam
mirror and the FC profiles changes as well, and so the shadowed regions also change, by parallax.
Using different main rotary flange angles, it should be possible to locate the mirror in enough
different positions in order to cover all the previously shadowed angles.

Calculations similar to the ones showed earlier show that, using only 3 different positions (separated
by 90°), a coverage of 94% should be possible for 30 cm voxels and allowing all tracks directed at
the APA.

6.7.2 PNS System Alternative Designs

6.7.2.1 Small Format Moderator

An alternative method for delivering the neutrons is to use the existing calibration feedthroughs.
In the current cryostat design, 20 calibration feedthroughs with a 25 cm outer diameter will be
available on top of the cryostat. One can design the neutron source with an ultra-thinDD generator
that fits the size of the feedthrough as shown in Figure 6.24 (right). The problem is that there
will be no space in the feedthrough for the shielding materials to fit in, so additional shielding
will need to be placed around the feedthrough. The weight of this compact neutron source will be
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Figure 6.23: Exploded CAD drawing (preliminary) of the double rotary flange for the end-wall laser
calibration ports. The calibration port is shown in brown at the bottom; the primary and secondary
rotary flanges are shown in yellow, with the (black) motors next to them. The optical feedthrough is
shown in the center, in blue. On top, the mirror arrangement allows the laser beam to be aligned with
the optical feedthrough no matter the angle of each of the rotary flanges.
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about 140 kg, so minimal special mounting is needed. In addition, the source may be moved as
well, allowing further flexibility. The effective neutron flux is expected to be similar to that of the
baseline deployment.

Figure 6.24: (right) Small format neutron source deployed inside the calibration feedthrough ports.
(left) For comparison, large format neutron source deployed above/inside the human access ports is
shown on the left.

The volume coverage at the center of the detector can be significantly increased by using a small
format neutron source deployed on top at the center of the cryostat using the multi-purpose
feedthroughs. Figure 6.25 shows the position distribution of the neutron captures using two large
format sources at the corner human access ports and one additional small format source in the
middle of the cryostat. The small format source is important to complement the coverage at the
center of the TPC. The alternative small format neutron source is very compact and lightweight, so
further coverage improvement is possible by moving the source to different calibration feedthroughs.
The deployment of the small format source would require sharing of the feedthrough ports with
other calibration systems, which is currently under investigation.

In principle, for the baseline deployment plan as shown in Figure 6.20, we can run the neutron
source for a longer time to increase the coverage at the central region of the detector. However,
this would result in a huge data volume. So, the best way to complement the coverage at the
center of the detector is to use the alternate deployment as discussed here. This design would
require a total number of 4600 pulses to calibrate the entire 10 kt module. Assuming that three
neutron sources with identical neutron capture yield are operated in synchronization mode, 1500
triggers are needed for each calibration run. Therefore, the total data volume per run would be

1500 Triggers× 1.5 Bytes× 2 MHz× 5.4 ms× 384,000 channels = 9.5 TB/run. (6.3)

The recommended trigger rate of the PNS system is 0.5Hz which is limited by the bandwidth of
the DAQ event builder. Assuming that the spatial distribution of the neutron capture is uniform
across the whole detector volume, the operation time per calibration run would be 50 minutes.
Running the PNS calibration system twice a year would result in a total data volume of 19TB
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Figure 6.25: Neutron capture positions inside a DUNE-sized TPC, assuming alternative configuration
with two large format neutron sources located at the corner human access ports and one small format
neutron source located at the center of the cryostat, which compensates the missing volume coverage of
the two large format sources at the center of the detector. L=60m (along Z axis, horizontally parallel
to the beam direction), W=14.5m (along X axis, horizontally perpendicular to the beam direction),
H=10m (along Y axis, vertically perpendicular to the beam direction). 2.7× 107 DD generator
neutrons with 2.5MeV energy were simulated in each moderator and propagated inside the TPC. Top
(left) and side (right) views of neutron capture positions are shown.

per 10 kt per year. For realistic neutron capture distribution that is non-uniform, we expected to
operate the PNS system for a period of 10 times longer than that under the ideal assumption (9.5
TB/run). As a result, the data size per calibration run would be 95 TB/run and running the PNS
calibration twice a year would result in a total data size of 190 TB/year and four times a year
would result in 380 TB/year.

6.7.3 Proposed Radioactive Source Calibration System

Radioactive source deployment provides an in-situ source of physics signals at a known location
and with a known activity that can be chosen such that there is only one calibration event per
drift time window. The primary source design probes de-excitation products (γ-rays) which are
directly relevant for detection of supernova neutrinos and 8B/hep solar neutrinos. The radioactive
source deployment system (RSDS) is the only calibration system that could probe the detection
capability for single isolated solar neutrino events and study how well radiological backgrounds
can be suppressed. The trigger efficiency could be studied as a function of threshold.

Other measurements with the primary source include electro-magnetic (EM) shower characteriza-
tion for long-baseline νe CC events, electron lifetime and electric field as a function of detector
module vertical position, individual light detector response, and determination of radiative com-
ponents of the Michel electron energy spectrum from muon decays. Aside from the primary nickel
source that produces 9MeV γ-rays via the 58Ni(n,γ)59Ni reaction, other sources could be de-
ployed with the same multi-purpose system, for example an (α,γ) source, and 252Cf and/or AmBe
neutron sources that probe the impact of various radiological backgrounds, like radon (causing
(α, γ) events) or radiological neutrons, or simply measure the neutron tagging efficiency, useful
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for improved calorimetry of beam neutrino interactions. In contrast to the primary nickel source
with 9MeV gamma-rays, the (α,γ) source producing gamma-ray energies around 15MeV via the
40Ar(α,γ)44Ca reaction could even be deployed outside of the cryostat, to probe the upper visible
energy range and trigger efficiency for 8B/hep solar neutrinos.

Both the RSDS and the PNS systems are needed to address the integrated response of the detector
for low energy physics, especially SNB and 8B/hep solar neutrinos. The RSDS primarily probes
for trigger efficiency, the PNS tests mostly for uniformity. Response in argon may change rapidly
as a function of photon energy due to underlying nuclear physics mechanisms. A combination
of 6MeV (direct neutron capture response), 9MeV (from the nickel source), 15MeV (from the
(α,γ) source) is needed to map the low energy response. In terms of complementarity, radioactive
sources provide a known position, known-energy single photon events that could be triggered on,
while the pulsed neutron source provides a simple, potentially, non-invasive design with externally
triggered multi-photon energy signature which is visible across the entire detector with a known
time signature.

6.7.3.1 Design Considerations

A composite source can be used that consists of 252Cf, a strong neutron emitter, and 58Ni, which,
via the 58Ni(n,γ)59Ni process, converts one of the 252Cf fission neutrons, suitably moderated, to a
monoenergetic 9MeV photon [129]. The source is envisaged to be inside a cylindrical moderator
with mass of about 15 kg and a diameter of 20 cm such that it can be deployed via the multipurpose
instrumentation ports discussed in Section 6.3.1. The activity of the radioactive source is chosen
such that no more than one 9MeV capture γ-event occurs during a single drift period. This forms
the main requirement for this system as this allows one to use the arrival time of the measured light
as a t0 and then measure the average drift time of the corresponding charge signal(s). Table 6.10
lists the full set of requirements for the radioactive source deployment system.

The sources would be deployed outside the FC within the cryostat to avoid regions with a high
electric field, about 30 cm from the field cage. The γ-ray would need to travel about two attenuation
lengths (including the 10 cm radius of the source body). Such high γ-energies are typically only
achieved by thermal neutron capture, which invokes a neutron source surrounded by a large amount
of moderator, thus driving the size of the source.

Table 6.10: Full list of Specifications for radioactive source deployment system.

Quantity/Parameter Specification Goal
Distance of the source from the field cage 30 cm
Rate of 9MeV capture γ-events inside the
source (top-level requirement)

< 1Hz̨

Data volume per 10 kt 50TB · year−1 100TB · year−1

Longevity 20 years > 20 years

A gamma source based on the 58Ni(n,γ)59Ni reaction, and triggered by an AmBe neutron source,
has been successfully built [129], yielding high γ-energies of 9MeV. DUNE proposes to use a 252Cf
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(or AmLi as backup) neutron source with lower neutron energies, which requires less than half
of the surrounding moderator, and making the 58Ni (n, γ) source only 20 cm or less in diameter.
The multipurpose instrumentation feedthroughs at either end of the cryostat are sufficient for this,
and have an outer diameter of 25 cm. The moderator material chosen for DUNE is Delrin,7 which
has a large enough density to avoid flotation. Further, the end caps of the source body are round
to avoid distorting the electric field and to eliminate the risk of the source getting stuck during
deployment. Figure 6.26 depicts the primary source design of a cylindrical Delrin moderator with
a diameter of 20 cm, a height of 40 cm including half-spheres at either end with radius of 10 cm,
deployed at z=40 cm leaving a gap of 30 cm towards the FC and at a distance to the APA of
x=220 cm, which is slightly further than mid-drift.

Figure 6.26: Fish-line deployment scheme in DUNE for a radioactive source encapsulated inside a
cylindrical Delrin moderator body 20 cm in diameter and 40 cm high, including half-spheres with a
radius of 10 cm at either end. A 252Cf neutron source and a natural Ni target are sealed inside at the
center. The fish-line is deployed 40 cm outside of the FC and 220 cm away from the APA (red plane).

A successfully employed multipurpose fish-line calibration system for the Double Chooz reactor
neutrino experiment has become available after the decommissioning of Double Chooz in 2018.
The system can be easily refitted for use in DUNE. The system will be housed inside a purge-box
that is connected via a neck to a multipurpose calibration feedthrough with a closed gate valve
on top of the cryostat. Before deployments, the source will be gently cooled-down by blowing
liquid argon boil-off onto it inside a sealed purge-box. After the source has reached near-LAr
temperatures, the purge-box will be evacuated by a vacuum pump to remove any residual oxygen
and nitrogen which is monitored at the ppm level. Then, the entire purge-box interior is purged
with boil-off liquid argon, and the pressure equalized with the gas pressure inside the detector,
before the gate-valve is opened and deployments can commence. This procedure ensures that no
significant impurities are introduced into the detector during a deployment and that no significant
amount of liquid argon is boiled-off from the detector.

7DuPont™Delrin®, http://www.dupont.com/products-and-services/plastics-polymers-resins/
thermoplastics/brands/delrin-acetal-resin.html.
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Deployed near mid-drift (in each TPC module) the 9MeV γ-ray source can illuminate the full
drift length from APA to CPA. The sources are retrieved from the detector after each deployment
and stored outside the cryostat following approved safety protocols, and the gate-valves are kept
closed after deployments. More details on radiation safety and handling procedures are presented
in Section 6.7.3.9.

6.7.3.2 Development Plan

The major development plans for the radioactive source deployment system include the following.

• Continue development of relevant simulation tools including geometry representation of the
source deployment system and impact from various radiological contaminants on detector
response.

• Conduct studies to suppress radiological backgrounds for the calibration source.
• Conduct simulation studies to understand data and trigger rates.
• Study a baseline design source with Delrin moderator, 252Cf neutron source, and natural

nickel target, both sealed inside at the moderator’s center.
• Validate 9MeV capture γ-ray yield of source using spectroscopic measurements with the

‘RABBIT’ germanium detector at South Dakota School of Mines and Technology (SDSMT),
that has an assay chamber large enough to fit the bulky moderator.

• Validate with 3He based hodoscope at SDSMT to ensure that the flux of neutrons escaping
the moderator is not an issue; otherwise use lower energetic AmLi neutron source instead
and/or more moderator material, and/or different geometric configuration of nickel target.

• Test gentle GAr cooling of source and validate material integrity. Measure tensile strength of
braided SS-304 wire-rope at cryogenic temperatures and ensure a safety factor of one order
of magnitude by adjusting number of steel braids and their diameters. Validate cryogenic
shrinkage of sectional teflon sleeves, that enclose the braided steel wire-rope and electrically
insulate it towards the FC.

• Validate that anticipated fluid flow in LAr does not cause oscillations of the source; otherwise
design vertical guide wires to be pre-installed during detector installation which will keep
source in stable position during deployment along the vertical axis.

• Explore other radioactive sources beyond the primary 9MeV γ-ray nickel source, such as the
previously mentioned 15MeV γ-ray source based on the 40Ar(α, γ)44Ca process with 241Am
as the alpha emitter. This is currently being assembled at SDSMT. Furthermore, investigate
hybrid neutron sources (252Cf and AmBe) that emulate the kinetic neutron energy spectrum
of radiological neutrons and probe the neutron tagging efficiency.

A successful demonstration of the RSDS in ProtoDUNE-2 running is the main priority for this
system towards making a decision on deploying this system for the FD. A schedule with main steps
towards ProtoDUNE-2 deployment is shown in Table 6.11.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 6: Calibration Hardware for Single-Phase 6–397

Table 6.11: Key milestones towards commissioning the radioactive source deployment system in
ProtoDUNE-2.

Milestone Date (Month YYYY)
Baseline RSDS design validation January 2020
RSDS mock-up deployment test at SDSMT March 2020
RSDS Design review May 2020
RSDS Production readiness review (PRR) July 2020
Start of module 0 RSDS component production for ProtoDUNE-2 September 2020
End of module 0 RSDS component production for ProtoDUNE-2 February 2021
Start of ProtoDUNE-2 (SP) installation March 2021
Start of RSDS installation April 2021
RSDS demonstration test at ProtoDUNE-2 April 2022

6.7.3.3 Measurement Program

The proposed primary 9MeV single γ source may also be used to test the γ component of the SNB
and 8B/hep solar neutrino signal along the full drift but only in the endwall regions of the detector.
The source may also be used to determine the relative charge and light extraction efficiency in the
vertical direction for measurements of energy resolution and energy scale.

Figure 6.27 depicts in a top view of the detector the simulated charge extraction efficiency for the
9 MeV γ-ray source deployed 40 cm outside of the FC, near mid-drift i.e., 220 cm away from the
APA in the x direction, in the presence of expected background before (a) and after (b) applying
selection cuts. The selection cuts are based on the amplitude and location of wire hits, and require
a coincidence with a suitable signal in the PD system. Figure 6.27(b) shows that the selection cuts
can reject radiological backgrounds almost entirely, and that the RSDS should allow the study of
the trigger efficiency for isolated solar neutrino events, and its threshold dependence.

Figure 6.28 shows exemplary simulated RSDS measurements of the E field strength (a) and of
the electron lifetime (b), each for three different scenarios. The analysis is based on fitting the
measured distribution of drift-time, i.e., the time difference between the PD system signal and
the recorded hit times on collection wires, passing the selection cuts. Figure 6.28(a) illustrates
that with this method the E field strength could be measured at ∼ 1% precision at each vertical
deployment position at the endwalls. Likewise, Figure 6.28(b) illustrates that the electron lifetime
could be measured at about ∼ 10% precision (possibly better at higher lifetimes) at each vertical
deployment position at the endwalls.

Figure 6.28(c) illustrates that it is not convincingly possible to unambiguously measure both the
electron lifetime and the electric field strength with a recorded charge spectrum (after selection
cuts) alone, since both parameters simply shift the upper falling edge of the charge spectrum up or
down. However, when combined with the drift-time measurement, the charge measurement would
provide an additional constrain that could possibly break correlations.

Aside from the primary 9 MeV γ-ray nickel source, other sources could be deployed with the same
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multi-purpose system, for example a 40Ar(α, γ)44Ca gamma-ray source, a 252Cf and/or AmBe neu-
tron source that probe the impact of various radiological backgrounds, like radon (α, γ) or radio-
logical neutrons, or simply measure the neutron tagging efficiency, useful for improved calorimetry
of beam neutrino interactions. In contrast to the nickel source, the 15MeV (α, γ) could be deployed
outside of the cryostat.

An external ProtoDUNE-2 deployment can demonstrate the feasibility of the non-invasive 15MeV
40Ar(α, γ)44Ca γ-ray source despite the lack of overburden to shield cosmic rays. In contrast to
cosmic muons, 15MeV γ-ray induced hit clusters will start inside the detector volume, and are
not tracks that begin at the detector edges. Thus, the RSDS calibration events could therefore
be easily selected and the detected charge can be analyzed. The detected light, however, will be
obscured from the high light level in each drift period from cosmic muons hitting ProtoDUNE.

(a) (b)

Figure 6.27: Detected charge (a) without cuts and (b) with selection cuts for a simulated 9 MeV γ-ray
source deployed at z =−40 cm outside of the FC, x =220 cm away from the APA, and y =300 cm
half-height of an upper endwall APA with simulated expected radiological background, that gets almost
eliminated by selection cuts.
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Figure 6.28: Simulated measurements of (a) E field strength from drift-time distribution, (b) electron
lifetime from drift-time distribution, and (c) electron lifetime from charge distribution when electric field
is unambiguously known from drift-time distribution. All spectra were created with applied selection
cuts for a simulated 9MeV γ-ray source with radiological backgrounds deployed at z =−40 cm outside
of the FC, x =220 cm away from the APA, and y =300 cm half-height of an upper endwall APA. (Colors
of histograms are matching colors of corresponding labels in each histogram.)
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6.7.3.4 RSDS Design Validation

The cosmic induced background rate at ProtoDUNE is too high at the surface to detect responses to
the DUNE γ-ray source; a higher intensity source could be deployed to test the detector response
and analysis method. However, tests of functionality, reliability, and safety of the mechanical
deployment system are essential to show the source can be deployed and retrieved with no issues,
so these will be the main goals of the ProtoDUNE-2 deployment. As mentioned earlier, tests of
the source design itself, in terms of γ activity, will be done at SDSMT.

6.7.3.5 DAQ Requirements

Section 6.4.1 provides an overall discussion of the Calibration and DAQ interface. Here, the
DAQ requirements for the radioactive source deployment system are discussed. The radioactive
source will not be triggerable by the MLT. Rather, it will deliver a tag to the MLT and that tag
will include a time stamp that can be used by the MLT to issue a trigger command to the FE
readout. The trigger command will have a standard readout window size of 5.4ms, but to keep
data rates manageable, the command will only be send to FE readout buffers that are expected to
be illuminated by the source. The localization of trigger commands thus reduces the data volume
by 150, if only one APA is read out.

Nevertheless, if the rate of such a source is anywhere close to one per 5.4ms, the detector would be
running continuously in the current scheme. Therefore we assume that the interaction rate in the
detector is 10Hz or less. The tag from the source will likely be much higher than this, because not
all γs interact in the active TPC volume. Thus the radioactive source trigger will be a coincidence
in the Module-Level Trigger between a low-energy trigger candidate from the illuminated APA,
and a source tag with a relevant time stamp. With this rate, and with localization of events to
one APA, the total data volume would be

8 hours× 4 FTs× 10 Hz× 1.5 Bytes× 2 MHz× 5.4 ms× 2560 channels = 50 TB/scan. (6.4)

Running this calibration four times/year would yield 200TB of data in 10 kt per year. Table 6.12
summarizes the data volume requirements for RSDS.

Table 6.12: Estimated data volume per year per 10 kt for the radioactive source system.

System Data Volume
(TB · year−1)

Assumptions

Proposed Radioac-
tive Source System

200 Source rate < 10Hz; single APA readout, lossless
readout; 4 times/year

6.7.3.6 Risks

The risks associated with the radioactive source system are described in Table 6.13 along with
appropriate mitigation strategies and the impact (low, medium or high risk levels) on probability,
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cost, and schedule post-mitigation. There are three residual medium-level risks in the table, more
discussion on them is provided below:

• Radioactivity leak: If radioactivity leaks into the detector during a deployment, radiological
backgrounds in the detector might increase. Rigorous source certification under high pressure
and cryogenic temperatures mitigates this risk.

• Source stuck or lost: If the source gets stuck or is lost in the detector, then it becomes a
permanent localized radiological background source. Fish-line an order of magnitude stronger
than needed to hold the weight, round edges of the moderator and a torque limit of the stepper
motor will mitigate this risk.

• Oxygen and nitrogen contamination: If the purge-box has a small leak, oxygen and nitrogen
could get into the LAr. Leak checks before deployments will mitigate this risk.

Table 6.13: Radioactive source calibration system risks (P=probability, C=cost, S=schedule) The risk
probability, after taking into account the planned mitigation activities, is ranked as L (low < 10%), M
(medium 10% to 25%), or H (high > 25%). The cost and schedule impacts are ranked as L (cost
increase < 5%, schedule delay < 2 months), M (5% to 25% and 2–6 months, respectively) and H
(> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-CAL-10 Radioactive source

swings into detector
elements

Constrain the system with guide-
wires

L L L

RT-SP-CAL-11 Radioactivity leak Obtain rigorous source certification
under high pressure and cryogenic
temperatures

L L M

RT-SP-CAL-12 Source stuck or lost Safe engineering margins, stronger
fish-line and a torque limit in deploy-
ment system

L M L

RT-SP-CAL-13 Oxygen and nitrogen
contamination

Leak checks before deployments L M M

RT-SP-CAL-14 Light leak into the de-
tector through purge-
box

Light-tight purge box with an in-
frared camera for visual checks

L L L

RT-SP-CAL-15 Activation of the cryo-
stat insulation

Activation studies and simulations L L L

6.7.3.7 Installation, Integration, and Commissioning

The first elements of the radioactive source guide system are installed before the TPC elements on
the end wall farthest from the TCO and as the last system, concurrent and coordinated with the
alternative laser system (if any deployed), once the TPC is installed before closing the TCO. The
radioactive source deployment system is installed at the top of the cryostat and can be installed
when DUNE becomes operational.

The commissioning plan for the source deployment system will include a dummy source deployment
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(within 2 months of the commissioning) followed by first real source deployment (within 3 to
4 months of the commissioning) and a second real source deployment (within 6 months of the
commissioning). Assuming stable detector conditions, the radioactive source will be deployed
every half a year. Ideally, a deployment before and after a run period are desired so at least two
data points are available for calibration. This also provides a check if the state of the system has
changed before and after the physics data run. It is estimated that it will take a few hours (e.g.
8 hours) to deploy the system at one feedthrough location and a full radioactive source calibration
campaign might take a week.

6.7.3.8 Quality Control

A mechanical test of the Double Chooz fish-line deployment system with a LAr mock-up column
will be done in the high bay laboratory at SDSMT. The ultimate test of the system will be done
at ProtoDUNE. Safety checks will also be done for the source and for appropriate storage on the
surface and underground.

6.7.3.9 Safety

A composite source is used for the radioactive source system that consists of 252Cf, a strong neutron
emitter, and 58Ni, which, via the 58Ni(n,γ)59Ni process, converts one of the 252Cf fission neutrons,
suitably moderated, to a monoenergetic 9MeV gamma. This system also poses a radiation risk,
which will be mitigated with a purge-box for handling, and a shielded storage box and an area with
lockout-tagout procedures, also applied to the gate-valve on top of the cryostat. Material safety
data sheets will be submitted to DUNE ES&H and specific procedures will be developed for storage
and handling of sources to meet Fermilab Radiological Control Manual (FRCM) requirements.
These procedures will be reviewed and approved by SURF and Fermilab radiation safety officers.
Sources that get deployed will be checked monthly to ensure they are not leaking. A designated
shielded storage area will be assigned for sources and proper handling procedures will be reviewed
periodically. A custodian will be assigned to each shielded source.
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Chapter 7

Data Acquisition

7.1 Introduction

The far detector (FD) data acquisition (DAQ) system receives, processes, and records data from
the Deep Underground Neutrino Experiment (DUNE) FD. It provides timing and synchronization
for all detector modules and subdetectors; receives, synchronizes, compresses, and buffers data
streaming from the subdetectors; extracts information from the data at a local level to subsequently
make local, module, and cross-module data selection decisions; builds event records from selected
space-time data volumes and relays them to permanent storage; and carries out subsequent data
reduction and filtering as needed.

This chapter provides a description of the design of the DUNE FD DAQ system developed by
the DUNE FD DAQ consortium. This consortium brings together resources and expertise from
European Organization for Nuclear Research (CERN), Colombia, Czech Republic, France, Italy,
Japan, the Netherlands, the UK, and the USA. Its members bring considerable experience from
ICARUS, MicroBooNE, SBND, and the DUNE prototype liquid argon time-projection chambers
(LArTPCs), as well as from ATLAS at the LHC and other major HEP experiments across the
world.

The system is designed to service all FD detector module designs interchangeably. However,
some aspects of the DAQ design described in this chapter are tailored to meet the specific needs
of the single-phase (SP) detector module technology. Adaptations to detector technology are
implemented in the upstream part of the DAQ, leaving the remainder generic. The individual
detector modules are serviced by the DAQ independently and the two modules are only loosely
coupled through a cross-module triggering mechanism.

The chapter begins with an overview of the DAQ design (Section 7.2), including requirements that
the design must meet and specifications for interfaces between the DAQ and other DUNE FD
systems. Subsequently, Section 7.3, which comprises the bulk of this chapter, describes the design
of the FD DAQ in greater detail. Section 7.4 describes design validation efforts to date, as well as

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 7: Data Acquisition 7–404

future design development and validation plans. At the center of these efforts is the ProtoDUNE
DAQ system (described in Section 7.4.1), which has demonstrated several key aspects of the DUNE
FD DAQ design and continues to serve as a platform for further developing and validating the final
design. The chapter finishes with two sections (sections 7.5 and 7.6), which detail the management
of the DAQ project, including the schedule for completing the design, production, and installation
of the system, as well as safety considerations.

7.2 Design Overview

Figure 7.1 provides an overview of the DUNE FD DAQ system servicing a single FD detector
module. The system is physically located at the FD site, split between the underground DUNE
caverns and the surface level at Sanford Underground Research Facility (SURF). Specifically, DAQ
uses space and power both in the underground central utility cavern (CUC) and the above-ground
main communications room (MCR). The upstream part of the system, responsible for raw detector
data reception, buffering, and pre-processing, resides in the CUC. The DAQ back-end subsystem
(DAQ BE), which is responsible for event-building, run control, and monitoring, resides on the
surface. Data flows through the DAQ from upstream to the back-end parts of the DAQ and then
offline. Most raw data is processed and buffered underground, thus controlling consumption of
available data bandwidth to the surface.

A hierarchical DAQ data selection subsystem (DAQ DS) consumes minimally-processed informa-
tion from the upstream DAQ and, through further data processing, carries out a module-level
trigger decision leading to a trigger command. The command is subsequently executed by a data
flow orchestrator (DFO) residing in the DAQ BE by retrieving the required data from memory
buffers maintained by the upstream DAQ. The results are aggregated across the detector module
into a cohesive record and saved to non-volatile storage. During or after aggregation, an optional
down-selection of the data is possible via high level filtering. Finally, the data is transferred offsite
and archived by the DUNE offline group. All detector modules and their subcomponents are syn-
chronized and timed against a global, common clock, provided by the timing and synchronization
subsystem. Cross-module communication and communication to the outside world for data selec-
tion (trigger) purposes is facilitated through an external trigger interface (ETI), which is part of
the DAQ DS. The specifics of design implementation and data flow are described in Section 7.3.

7.2.1 Requirements and Specifications

The DUNE FD DAQ system is designed to meet the DUNE top-level as well as DAQ-level require-
ments summarized in Table 7.2. The DAQ-level requirements ensure that the system can record all
necessary information for offline analysis of data associated with on- and off-beam physics events,
as directed by the DUNE physics mission, with minimal compromise to DUNE’s physics sensitiv-
ity. The requirements must be met following the specifications provided in the same table. Those
specifications are associated with trigger functionality, readout, and operations and are described
further in the following subsections.
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Figure 7.1: DAQ conceptual design overview focusing on a single 10 kt module. Included are the
upstream DAQ subsystem in orange, the DAQ DS in blue, and the DAQ BE subsystem in yellow, which
includes the DFO, event builder (EB), and storage buffer. Also shown, in brown, is the subsystem for
timing and synchronization, in gray, and the subsystem for control, configuration, and management.
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7.2.1.1 How DUNE’s Physics Mission Drives the DAQ Design

The DUNE FD has three main physics drivers: measuring neutrino charge-parity symmetry vi-
olation (CPV) and related long baseline oscillation using the high intensity beam provided by
Fermilab; measuring off-beam atmospheric neutrinos and searches for rare processes such baryon-
number-violating decays; and detecting neutrinos from a nearby supernova neutrino burst (SNB).
The DUNE FD DAQ system must facilitate data readout to deliver on these main physics drivers
while keeping within physical (space, power) and resource constraints for the system. In particular,
the off-beam measurements require continuous readout of the detector, and the lack of external
triggers for such events requires real-time or online data processing and self-triggering capabilities.
Because the continuous raw data rate of the far detector module, as received by the DAQ system,
reaches multiple terabits per second, significant data buffering and processing resources are needed
as part of the design, as specified in later sections of this chapter.

The DUNE FD modules use two active detector components from which the DAQ system must
acquire data: the time projection chamber (TPC) and the photon detection system (PD system).
The two components access the physics by sensing and collecting signals associated with very
different sensing time scales.

Ionization charge measurement by the TPC for any given activity in the detector requires a nominal
recording of data over a time window of approximately 1ms to 10ms. This time scale is determined
by the ionization electron drift speed in liquid argon (LAr) and the detector dimension along the
drift direction, nominally set to 5.4ms, corresponding to 2.4×2.25ms. The latter (2.25ms) assumes
a drift electric field of 500V/cm. The 2.4 factor ensures capturing ionization information from at
least a full drift before and after the trigger time associated with the activity. Early commissioning
data will be used to evaluate and optimize this nominal readout time.

On the other hand, the PD system measures argon scintillation light emission, which occurs and
is detected over a timescale of multiple ns to µs for any given event and/or subsequent subevent
process. Unlike the TPC, the PD system data is zero-suppressed in the PD system electronics
(see Chapter 5). Although the PD system system readout sampling frequency is higher than the
TPC, the combination of zero-suppression and expected activity levels should have significantly
lower data rates than the TPC. Therefore, the total raw data volume received by the DAQ system
should be dominated by the TPC data, which is sent out from the TPC electronics as a continuous
stream.

Figure 7.2 provides the expected activity rates in a single far detector module as a function of
true energy associated with given types of signal. At low energy (<10MeV), activity is dominated
by radiological backgrounds intrinsic to the detector and low-energy solar neutrino interactions.
Supernova burst neutrinos, expected to arrive at a galactic SNB rate of once per century, would
span the 10MeV to 30MeV range. At higher energies (generally more than 100MeV), rates are
dominated by cosmic rays, beam neutrino interactions, and atmospheric neutrino interactions.
With the exception of supernova burst neutrinos, the activity associated with any of these physics
signals is localized in space and particularly in time. Supernova burst activity, on the other hand, is
characteristically distinct, because it can manifest as up to several thousands of low-energy neutrino
interactions arriving over multiple seconds. Supernova burst neutrinos are thus associated with
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activity that extends over the entirety of the detector and over a relatively long time.

The nature and rates of these signatures necessitate a data selection strategy that handles two
distinct cases: a localized high-energy activity trigger, prompting an event record readout for
activity associated with a minimum of 100MeV of deposited energy; and an extended low-energy
activity trigger, prompting an event record readout when multiple localized low-energy activity
candidates with low deposited energy each (approximately 10MeV) are found over a short (less
than 10 s) time and over the entirety of a 10 kt module. Because of the high granularity of the
detector readout elements, a hierarchical DAQ DS is used to provide data processing and triggering
and to facilitate optional data reduction and filtering.

The DAQ system must have >99% efficiency for particles depositing >100MeV of energy in the de-
tector for localized high-energy triggers. The system’s architecture must also provide a mechanism
for triggering on galactic supernova bursts with >95% efficiency for a supernova burst producing
at least 60 interactions with a neutrino energy >10MeV in 12 kt of active detector mass, during
the first 10 s of the burst, per DUNE requirements. This requirement ensures sensitivity to the
great majority of SNBs in our galaxy as well as some bursts in small nearby galaxies, as described
in this document’s SNB physics requirements section. The DAQ architecture must also provide a
mechanism for recording neutrino interactions associated with those bursts over a 30 s period, with
a goal of 100 s. During this period, the full raw data information must be stored. The rationale
for the latter is that most models of SNBs show structure in the neutrino flux for up to 30 s, and
there is potential for interesting measurements to be made up to 100 s.

Offline considerations require the DAQ to reduce the full FD data volume for offline permanent
storage to 30PB/year. An FD composed of four single-phase modules using a strategy by which
the entire FD is read out for 5.4ms, given the presence of a localized high energy trigger, will be
limited by this offline permanent storage constraint to an average readout rate of 0.3Hz. Strategies
will be developed and validated during commissioning and early running that will limit the readout
to some subset of the detector module, which should allow an increase in this rate limit by about
an order of magnitude. The instantaneous readout rate can be much higher, for example to
accommodate calibrations.

For planning, the DAQ will allot an average SNB trigger rate of one per month. Given current un-
derstanding of SNB rates and the >95% expected efficiency for a SNB with at least 60 interactions
each of minimum 10MeV in true neutrino energy, most such triggers will be due to fluctuations
of low energy radiological backgrounds and, potentially, excess noise. Such triggers will prompt
100 s of data from the entire module to be read out. At this average rate and if saved to offline
storage, the SNB triggers will produce 1.8PB/year uncompressed from one single-phase module.
There is, however, no requirement to permanently store SNB data that is deemed, after further
offline analysis, to be due to fake triggers.

The capability of recording data losslessly is built into the design as a conservative measure; a
particular concern is charge reconstruction efficiency and resolution in the case of zero suppression,
in particular for TPC induction wire readout channels. MicroBooNE is currently investigating the
effect of zero suppression on reconstruction efficiency and energy resolution for low-energy events
[130]. Expected data rates from physics signals of interest that fit the requirement of 30PB/year
sent to permanent storage are summarized in Table 7.1 and detailed in DocDB 9240 [131]. Potential
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bottlenecks are analyzed in DocDB 11461 [132].
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Figure 7.2: Expected physics-related activity rates in a single 10 kt module.

Self-triggering on SNB activity is a unique challenge for the DUNE FD, and an aspect of the design
that has never been demonstrated in a LArTPC. The challenge of SNB triggering is two-fold. First,
the activity of the individual SNB neutrino interactions should be relatively low energy (5MeV to
30MeV), often indistinguishable from pile up of radiological background activity in the detector.
Triggering on an ensemble of O(100) events expected on average in the case of a galactic supernova
burst is, therefore, advantageous; however, this ensemble of events will likely be rare over the entire
detector and over an extended period of O(10)s, so sufficient buffering capability must be designed
into the system to capture the corresponding signals. Furthermore, to ensure high efficiency in
collecting SNB interactions that, individually, are below low-energy activity threshold, data from
all channels in the detector will be recorded over an extended and contiguous period, which is
specified to 30 s to 100 s, around every SNB trigger. This time has been defined in consultation
with the DUNE physics groups.

Table 7.2: DAQ specifications

Label Description Specification
(Goal)

Rationale Validation

SP-FD-22
Data rate to tape < 30 PB/year Cost. Bandwidth. ProtoDUNE
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SP-FD-23
Supernova trigger > 95 % efficiency

for a SNB pro-
ducing at least 60
interactions with
a neutrino energy
>10 MeV in 12 kt
of active detector
mass during the
first 10 seconds of
the burst.

> 95% efficiency for SNB
within 20 kpc

Simulation and
bench tests

SP-DAQ-1
DAQ readout
throughput: The
DAQ shall be able
to accept the con-
tinuous data stream
from the TPC and
Photon detectors.

1.5 TB/s per sin-
gle phase detector
module

Specification from TPC and
PDS electronics

Modular test
on ProtoDUNE;
overall through-
put scales linearly
with number of
APAs

SP-DAQ-2
DAQ storage
throughput: The
DAQ shall be able
to store selected
data at an aver-
age throughput
of 10 Gb/s, with
temporary peak
throughput of 100
Gb/s.

10 Gb/s average
storage through-
put; 100 Gb/s
peak temporary
storage throughput
per single phase
detector module

Average throughput esti-
mated from physics and
calibration requirements;
peak throughput allowing
for fast storage of SNB data
(∼ 104 seconds to store 120
TB of data).

ProtoDUNE
demonstrated
steady storage
at ∼ 40 Gb/s
for a storage
volume of 700
TB. Laboratory
tests will allow
to demonstrate
the performance
reach.

SP-DAQ-3
DAQ readout win-
dow: The DAQ shall
support storing trig-
gered data of one or
more APAs with a
variable size readout
window, from few µs
(calibration) to 100 s
(SNB), with a typ-
ical readout window
for triggered interac-
tions of 5.4 ms.

10 µs < readout
window < 100 s

Storage of the complete
dataset for up to 100 s is re-
quired by the SNB physics
studies; the typical readout
window of 5.4 ms is defined
by the drift time in the de-
tector; calibration triggers
can be configured to readout
data much shorter time in-
tervals.

Implementation
techniques to be
validated on the
ProtoDUNE setup
and in test labs.
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SP-DAQ-4
Calibration trig-
ger: The DAQ
shall provide the
means to distribute
time-synchronous
commands to the
calibration systems,
in order to fire them,
at a configurable
rate and sequence
and at configurable
intervals in time.
Those commands
may be distributed
during physics data
taking or during
special calibration
data taking sessions.
The DAQ shall trig-
ger and acquire data
at a fixed, config-
urable interval after
the distribution of
the commands, in
order to capture the
response of the de-
tector to calibration
stimuli.

Calibration is essential to at-
tain required detector perfor-
mance comprehension.

Techniques for do-
ing this have been
run successfully in
MicroBooNE and
ProtoDUNE.

SP-DAQ-5
Data record: Cor-
responding to every
trigger, the DAQ
shall form a data
record to be trans-
ferred to offline
together with the
metadata necessary
for validation and
processing.

Needed for offline analysis. Common experi-
mental practice.

SP-DAQ-6
Data verification:
The DAQ shall
check integrity of
data at every data
transfer step. It
shall only delete
data from the lo-
cal storage after
confirmation that
data have been
correctly recorded to
permanent storage.

Data integrity checking is
fundamental to ensure data
quality.
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SP-DAQ-7
High-energy Trigger:
The DAQ shall
trigger and acquire
data on visible
energy deposition
>100 MeV. Data
acquisition may be
limited to the area
in which activity
was detected.

>100MeV Driven by DUNE physics
mission.

Physics TDR. 100
MeV is an achiev-
able parameter;
lower thresholds
are possible.

SP-DAQ-8
Low-energy Trigger:
The DAQ shall trig-
ger and acquire data
on visible energy de-
position > 10 MeV of
single neutrino inter-
actions. Those trig-
gers will normally be
fired using a pre-
scaling factor, in or-
der to limit the data
volume.

>10MeV Driven by DUNE physics
mission.

Physics TDR. 10
MeV is an achiev-
able parameter;
lower thresholds
are possible.

SP-DAQ-9
DAQ deadtime:
While taking data
within the agreed
conditions, the DAQ
shall be able to trig-
ger and acquire data
without introducing
any deadtime.

Driven by DUNE physics
mission.

Zero deadtime
is an achiev-
able inter-event
deadtime but
a small dead-
time would not
significantly com-
promise physics
sensitivity.

7.2.1.2 Considerations for Design

The DAQ system is designed as a single, scalable system that can service all FD modules. It is
also designed so the system can record and store full detector data with zero dead time, apply-
ing appropriate data reduction through data selection and compression. The system should be
evolutionary, taking advantage of the staged construction of the DUNE FD, thus beginning very
conservatively for the first DUNE FD module, but aggressively reducing the design conservatism
with further experience of detector operations. At the same time, the system is designed to be
able to add capacity as required. Most processing and buffering of raw detector data is done un-
derground, in the upstream DAQ and low level data selection parts of the system (see Figure 7.1),
with only event building and data storage on surface.

Power, cooling, and space are constrained both in the CUC and on the surface, limited to 500 kV·A
and 56 racks (out of 60 racks total) in the CUC, and 50 kV·A and 8 racks on the surface for DAQ
for all four FD modules. The underground computing required for the DAQ to service the SP
detector module should require less than a quarter of the total power and rack space provided
for all four detector modules. The hardware for upstream DAQ, low level data selection, various

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 7: Data Acquisition 7–412

Table 7.1: Summary of expected data volumes produced yearly for initial single-module running. The
numbers assume TPC only rates with no compression and are given for a single 10 kt module, assuming
the parameters listed in Table 7.3. (A 2-4x lossless compression factor is expected.) Trigger primitives
(see Section 7.3.3), fake SNB data as well as additional data recorded for detector performance studies
and debugging need not be stored offline permanently.

Source Annual
Data
Volume

Assumptions

Beam interactions 27TB 10MeV threshold in coincidence with beam time,
including cosmic coincidence; 5.4ms readout

Cosmics and atmospheric neu-
trinos

10PB 5.4ms readout

Radiological backgrounds < 2 PB < 1 per month fake rate for SNB trigger; 100 s
readout

Cold electronics calibration 4TB scaled from ProtoDUNE-SP experience
Radioactive source calibration 100TB < 10 Hz source rate; single APA readout; 5.4ms

readout
Laser calibration 200TB 106 total laser pulses; half the TPC channels

illuminated per pulse; lossy compression (zero-
suppression) on all channels

Random triggers 60TB 45 per day; 5.4ms readout
Trigger primitives and detector
performance studies

< 15 PB 39Ar dominated
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services, networking, and the timing system, including spares, all kept in the CUC, should consume
less than 63 kW and all fill less than 300U of rack space [133].

There are five key challenges for the DUNE FD DAQ system:

• First, the high overall experiment uptime goal requires DAQ to be stringently designed for
reliability, fault tolerance, and redundancy, criteria that aim to reduce overall downtime.
The DAQ system is fully configurable, controllable, and operable from remote locations, with
authentication and authorization implemented to allow exclusive control. The DAQ monitors
the quality of the detector data and of its own operational status, as well as automated error
detection and recovery capabilities.

• Second, the system must be able to evolve to accommodate newly commissioned sub-components
as they are installed into a detector module that is under construction. The DAQ must also
continue to service existing modules that are operational while simultaneously accommodat-
ing subsequent detector modules as they are installed and commissioned. To support this
ongoing variability, the DAQ will support operating as multiple independent instances or
partitions.
Partitioning will also be supported within a single detector module for special calibration
or debugging runs that are incompatible with physics data taking, while the rest of the
detector remains in physics data taking mode. Partitioning, i.e., allowing several instances
of the DAQ to operate independently with different configurations on different parts of the
detector, will also be important during the installation and commissioning, so experts can
work in parallel, e.g., for photon detectors (PDs) and TPC.

• Third, the SNB physics requirements require heavy buffering in the upstream DAQ.
Implementing a buffer element in the upstream DAQ allows the formation and capture of
delayed, data-driven data selection decisions: The trigger accumulates low energy signals
over an extended period while carrying out the trigger decision, thus identifying activity
compatible with SNB. The depth of this buffer is determined in consultation with physics
groups and driven primarily by the need to retain all unbiased data while processing up to
10 s of data for the trigger decision preceding a SNB trigger. Collecting data containing
information on other types of interactions and decays does not pose additional requirements
on the upstream DAQ buffer because the latency required for triggers should be well below
10 s.

• Fourth, the DAQ must support a very wide range of readout windows and trigger rates. This
includes acquiring localized events in both time and space up to the very large and rare SNB
detector-wide readouts over 100 s.

• Finally, the DAQ must reduce the volume of data to be permanently stored offline to a
maximum of 30PB/year. The DAQ system should be able to select interesting time windows
in which activity was detected, apply lossless compression to data records, and filter records
to remove unnecessary data regions.
A programmable trigger priority scheme ensures that the readout for the main physics triggers
is never or rarely inhibited, thus making it easy to determine the live-time of these triggers.

Table 7.3 summarizes the important parameters driving the DAQ design. These parameters set
the scale of data buffering, processing, and transferring resources that must be built into each FD
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module.

Table 7.3: Summary of important parameters driving the DAQ design. The PD system system param-
eters are under study, but the PD system raw data volume that must be handled by the DAQ should
be an order of magnitude smaller than the TPC raw data volume.

Parameter Value
TPC Channel Count per Module 384,000
TPC Collection Channel Count per Subdetector (APA) 960
TPC Induction Channel Count per Subdetector (APA) 1600
PDS Channel Count per Module 6000
PDS Channel Count per Subdetector (PDS per APA) 40
TPC analog-to-digital converter (ADC) Sampling Rate 2MHz
TPC ADC Dynamic Range 12 bits
PDS ADC Sampling Rate Under study
PDS ADC Dynamic Range Under study
PDS ADC Readout Length Under study
Localized Event Record Window 5.4ms
Extended Event Record Window 100 s
Full size of Localized Event Record per Module 6.5 GB
Full size of Extended Event Record per Module 120TB

7.2.2 Interfaces

The DAQ system scope begins at the optical fibers streaming raw digital data from the detector
active components (TPC and PD system) and ends at a wide-area network interface that distributes
the data from on site at SURF to offline centers off site. The DAQ also provides common computing
and network services for other DUNE systems, although slow control and safety functions fall
outside DAQ’s scope.

Consequently, the DUNE FD DAQ system interfaces with the TPC cold electronics (CE), PD
system readout, computing, cryogenic instrumentation and slow controls (CISC), and calibration
systems of the FD, as well as with facilities and underground installation. The interface agreements
with the FD systems are listed in Table 7.4 and described briefly in the following subsections.
Interface agreements with facilities and underground installation are described in Section 7.5.

TPC CE The DAQ and TPC CE interface is described in DocDB 6742 [68]. The physical in-
terface is in the CUC where optical links from the warm interface boards (WIBs) transfer
the raw TPC data to the DAQ front-end readout (Front-End Link eXchange (FELIX); see
Section 7.3.2). This ensures the DAQ is electrically decoupled from the detector cryostat.
Ten 10Gbit/s links are expected per anode plane assembly (APA) and have been specified
as 300m OM4 multi-mode fibers from small form-factor pluggable (SFP)+ at the WIB to
miniature parallel optical device (MiniPOD) on FELIX. (The optical fibers themselves are
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Table 7.4: Data Acquisition System Interface Links.

Interfacing System Description Reference
TPC CE Data rate and format, number

and type of links, timing, inher-
ent noise

DocDB 6742 [68]v6

PDS Readout Data rate and format, number
and type of links, timing

DocDB 6727 [86]v2

Computing Off-site data transfer rates,
methods, data file content,
disk buffer, software develop-
ment and maintenance

DocDB 7123 [134]

CISC Information exchange, hard-
ware and software for rack and
server monitoring

DocDB
6790 [135]v1

Calibration Constraint on total volume of
the calibration data; trigger
and timing distribution from
the DAQ

DocDB 7069 [121]

Timing and Synchronization Clients, clock frequency, proto-
cols, transports, accuracy, syn-
chronization precision, moni-
toring

DocDB 11224 [136]

Facilities Detector integration, coordina-
tion, cables, racks, safety, con-
ventional facilities, lack of im-
pact on cryo and DSS

DocDB
6988 [137]v1

Installation Prototyping, planning, trans-
port, underground equipment
and activity, safety

DocDB 7015 [138]
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the responsibility of the DAQ consortium.) The data format has been specified as a custom
communication protocol with no compression.

PD system readout The DAQ and PD system readout interface is described in DocDB 6727 [86].
It should require no more than 150 10Gbit/s OM4 fibers from one FD module. This is
similar to the interface to the TPC CE, except the overall data volume is lower by an order
of magnitude. The data format has been specified to use compression (zero suppression) and
a custom communication protocol.

Computing The DAQ and computing interface is described in DocDB 7123 [134]. The comput-
ing consortium is responsible for the online areas of WAN connection between SURF and
Fermilab providing 100Gbit/s bandwidth, while the DAQ consortium is responsible for disk
buffering to handle any temporary WAN disconnects and the infrastructure needed for real-
time data quality monitoring. The computing consortium is also responsible for the offline
development and operation of the tools for data transfers to Fermilab. The primary con-
straint in defining the DAQ and offline computing interface is the requirement to produce
less than 30PB/year into final storage at Fermilab. The DAQ and computing consortia
are jointly responsible for data format definition and data access libraries, as well as real-
time data quality monitoring software. The former is specified in the form of a data model
documented in DocDB 7123 [134].

CISC The DAQ and CISC interface is described in DocDB 6790 [135]. The DAQ provides a
network in the CUC for CISC, operation information and hardware monitoring information
to CISC, and power distribution and rack status units in DAQ racks. The information from
CISC feeds back into the DAQ for run control operations.

Calibration The DAQ and calibration interface is described in DocDB 7069 [121]. Two calibration
systems are envisioned for the FD: a laser calibration system and a neutron generator. Two-
way communication between the calibration system and the DAQ is needed. Specifically,
the calibration system must notify the data selection system, thus informing trigger decision
when activity has been induced in the detector. At the same time, the DAQ must provide
input to the calibration system, so it can avoid inducing activity in the detector during certain
periods such as SNB readout time or during a beam spill. This second communication will be
initiated by the data selection system and distributed via the ETI and subsequently through
the DAQ timing system.

Timing and Synchronization The timing system of the DUNE FD connects with almost all de-
tector systems and with the calibration system. It has a uniform interface to each of them.
A single interface document DocDB 11224 [136] describes all timing interfaces.

Accuracy of timestamps delivered to detector endpoints will be ±500 ns with respect to UTC.
Synchronization between any two endpoints in the detector will be less than 10 ns. Between
detector modules, synchronization will be less than 25 ns.
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7.3 Data Acquisition System Design

This section begins with an overview of the DAQ design followed by descriptions of the subsystem
designs and implementation specifics.

7.3.1 Overview

The DAQ system comprises five distinct subsystems: (1) upstream DAQ (Section 7.3.2), (2) DAQ
DS (Section 7.3.3), (3) DAQ BE (Section 7.3.4), (4) DAQ control, configuration and monitoring
subsystem (CCM) (Section 7.3.5), and (5) DAQ timing and synchronization subsystem (DAQ
TSS) (Section 7.3.7). Figure 7.1 shows the physical extent of the subsystems: the upstream DAQ
and DAQ TSS live underground in the CUC; DAQ DS occupies both underground and above-
ground spaces; DAQ BE is above-ground and includes data flow orchestration, event building, and
buffering before distribution of data to offline storage; and CCM extends throughout the entire
physical layout of the system, supported on a private network throughout the DAQ system. Each
of these subsystems is described in further detail in the following subsections.

Front-end readout is carried out by the upstream DAQ using custom data receiver and co-
processing field programmable gate array (FPGA) and commodity computing hardware, all of
which is hosted in 80-85 servers in the CUC. A corresponding number of additional servers exe-
cute subsequent software-based low-level processing of trigger primitives generated in the upstream
DAQ for the purposes of data selection. The trigger candidates constructed from trigger primitives
are propagated to a central server responsible for further processing and module-level triggering.
The module level trigger also interfaces to a second server that receives and propagates cross-
module and external trigger and timing information. The module level trigger considers trigger
candidates and external trigger inputs in issuing a trigger command to the DAQ BE subsystem.
The DAQ BE subsystem facilitates event building in a few servers and buffering for built events
on non-volatile storage. Upon receiving a trigger command, the DAQ BE queries data from the
upstream DAQ buffers and builds that into an event record, which is temporarily stored in (a
number of) files. Event records are optionally processed in a high-level filter/data reduction stage,
which is part of overall data selection, before event records are shipped to DUNE offline. Perva-
sively, the DAQ control, configuration and monitoring subsystem (CCM) orchestrates data taking
(Section 7.3.5), and the DAQ timing and synchronization subsystem (DAQ TSS) provides synchro-
nization and synchronous command distribution (Section 7.3.7). Figure 7.3 provides a conceptual
illustration of the overall DAQ system functionality.

Key to implementing the DAQ design is the requirement that the system can be partitioned.
Specifically, the system can operate in as multiple independent DAQ instances, each executed
across all DAQ subsystems and uniquely mapped among subsystem components. More specifically,
a given partition may span the entire detector module or some subset of it; its extent is configurable
at run start. This ensures continual readout of most of the detector in normal physics data-taking
run mode, while enabling simultaneous calibration or test runs of small portion of the detector
without interrupting normal data taking.
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Figure 7.3: Conceptual Overview of DAQ system functionality for a single 10 kt module

7.3.2 Upstream DAQ

The upstream DAQ provides the first link in the data flow chain of the DAQ system; it receives raw
data from detector electronics. The upstream DAQ implements a receiver, buffer, and a portion of
low-level data selection (trigger primitive generation; see Section 7.3.3) as detailed in Figure 7.4.
It is physically connected to the detector electronics via optical fiber(s) and buffers and serves data
to other DAQ subsystems, namely the DAQ DS and the DAQ BE.
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Trigger primitives
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Trigger 
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Trigger 
decisionBackend DAQ
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Figure 7.4: DUNE upstream DAQ subsystem and its connections.

The upstream DAQ system comprises many similar DAQ readout units (DAQ RUs), each con-
nected to a subset of electronics from a detector module and interfacing with the DAQ switched
network. In the case of the TPC, 75 functionally identical DAQ RU are each responsible for the
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Figure 7.5: DUNE upstream DAQ subsystem functional blocks.

readout of raw data from two APAs. In the case of the PD system, up to eight DAQ RU are each
responsible for the readout of raw data from a collection of PD system subdetectors. Each DAQ
RU consists of a DAQ front-end computer (DAQ FEC), commodity server that hosts a collection
of custom hardware, firmware, and software that collectively implement a set of functional blocks.

In the baseline design, used also for system costing, each DAQ RU is composed of

1. one dual socket multicore 2U server, with two 10Gbit/s and two 1Gbit/s ethernet ports for
redundant data transmission and control, with at least 256GB of DDR4 RAM, and sufficient
PCIe lanes to host 2TB of SSD disks;

2. two FELIX cards [139], each with a PCIe 3.0 x16 interface and supporting ten 9.6Gbit/s
bidirectional serial optical links;

3. only for the TPC readout, four custom-designed co-processor cards mounted onto the two
FELIX cards for additional processing power and data buffering.

The main functional blocks of the upstream DAQ are described below:

• The physical interface between the detector electronics and the DAQ are 9.6Gbit/s point-
to-point serial optical links running a simple (e.g., 8/10 bit encoded) protocol. Each APA
has ten such links connecting its WIBs to the DAQ. To reduce space and power consumption
in the CUC, high data aggregation is needed. In the baseline design, the 20 fibers from two
APAs are aggregated into one DAQ FEC with each APA connected to one FELIX FPGA
PCIe 3.0 board. If commodity computing technology advances sufficiently, a PCIe 4.0 version
of FELIX may be produced to increase the data aggregation, so each board would accept 20
links, and a total of 40 links per DAQ FEC would be accommodated. Tests were performed
to verify OM3 and OM4 fibers support 10Gbit/s links over a run of 300m. Higher-speed
fiberoptic links may be used to reduce the number of fibers if run lengths can be reduced.
The FELIX board and firmware were developed initially by and for the ATLAS experiment
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and is now proposed or already in use by several other experiments including ProtoDUNE.
• The upstream DAQ subsystem provides access to the DAQ DS and DAQ BE through a com-

modity switched network as illustrated in Figure 7.4. The network communication protocol
is described in Section 7.3.5.5. The data flow is handled by the DAQ RUs via software.
Dedicated hardware or firmware development is not required.

• The data processing functional block is tasked with identifying and forming trigger primitives
(see Section 7.3.3.1), after a stage of data reorganization and noise filtering for both the TPC
and PD system. Trigger primitives summarize time periods on a channel where the digitized
waveform is no longer consistent with noise. These regions of interest are then used as input
to the DAQ DS where they begin the process of forming a trigger decision.
In the baseline design, this functional block is implemented in FPGA. R&D studies are on-
going to evaluate alternative implementations (in GPUs or CPUs) that may have advantages
in flexibility or cost.

• In DUNE, the upstream DAQ system is in charge of buffering all detector data until the DAQ
DS has issued a trigger command (see Section 7.3.3) and until the DAQ BE (Section 7.3.4)
has requested and received the corresponding selected data. In addition, in the case of a SNB
trigger, data received after the issuing of the trigger must be buffered for longer to avoid loss
of data due to any possible downstream bottlenecks. Localized and extended trigger activity
are associated with two rather different time scales and data throughput metrics, and those
collectively dictate the temporary storage technology and scale.
A trigger decision based on localized activity should require buffering the full data stream for
no more than one second. Extended triggers present a far more challenging set of buffering
requirements; early activity from a SNB may occur at a rate near that of radiological activity.
Theoretical estimates indicate 10 s of integration time may be needed for the SNB interaction
rate to be deemed significantly enough above background rate to form a trigger decision. In
order to locate interactions in this low-rate period, the full data rate must be buffered until
an SNB trigger may be formed. The throughput and endurance required by this buffer is
satisfied by RAM technology like DDR4.
A second challenge in recording data during an SNB is to assure essentially 100% efficiency
for collecting the individual, low-energy interactions during any given SNB burst. To achieve
this, the full-stream of data is recorded for a time duration that should cover the time envelope
of the burst. Guided by SNB models, this duration is set to 100 s. This requires extracting
as much as 120TB from the TPC upstream DAQ across one single-phase detector module.
It is not cost effective to design the DAQ to extract such extended data record along the
same path as nominal readout, so additional buffering is needed.
The technology and scale of this additional buffering must satisfy several requirements. Each
DAQ RU must accept the full data rate of the portion of the detector module it services.
The media must have sufficient capacity and allow sufficient extraction throughput to make
it unlikely to ever be too full to accept another extended data record: 4Tbit/s guarantee
the ability to store two SNB events simultaneously. Furthermore, assuming that, on average,
an SNB trigger condition will be satisfied once per month, the optimal technology is solid-
state Non-volatile memory express (NVMe) devices, which, at the scale required to provide
suitable input bandwidth, can provide a capacity to write the data from several extended
activity triggers. The recorded data will be transferred to the DAQ BE system in less than
a day.
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For both types of activity, the buffering requirements may be reduced by using lossless com-
pression to the data before it enters the buffer. A factor of at least two to four compression is
expected, based on MicroBooNE [130] and ProtoDUNE experience using a modified Huffman
encoding of differential ADC values. Efforts are currently underway to understand the costs
and technology requirements in exploiting this benefit.

Figure 7.5 shows the flow diagram of data and control messages within the upstream DAQ as well
as the main interaction of the upstream DAQ with other subsystems.

7.3.3 Data Selection

The DAQ DS is a hierarchical, online, primarily software-based system. It is responsible for
immediate and continuous processing of a substantial fraction of the entire input data stream.
This includes data from TPC and PD system subdetectors. From that input, as well as external
inputs provided by the accelerator and detector calibration systems, the DAQ DS must form
a trigger decision, which in turn produces a trigger command. This command summarizes the
observed activity that led to the decision and provides addresses (in channel-time space) of the
data in the upstream DAQ buffers that capture raw data corresponding to the activity. This
command is sent to, then consumed, and executed by the DAQ back-end subsystem (DAQ BE)
as described in Section 7.3.4. It may also be propagated to an external trigger logic (ETL) stage,
and from there, it may be distributed to other detector modules or other detector systems (e.g.,
calibration) for further consideration.

To facilitate partitioning, the DAQ DS can be instantiated several times, and multiple instances
can operate in parallel. Within any given partition, the DAQ DS will also be informed and
aware of current detector configuration and conditions and apply certain masks and mapping on
subdetectors or their fragments in its decision making. This information is delivered to the DAQ
DS by the CCM system (Section 7.3.5).

Following DUNE FD and DAQ requirements, the DAQ DS must select, with sufficiently high
(>99%) efficiency, data associated with calibration signals, as well as beam interactions, atmo-
spheric neutrinos, rare baryon-number-violating events, and cosmic ray events that deposit visible
energy in excess of 100MeV. It must also select data associated with potential SNBs producing 60
neutrino interactions over a span of 10 s in 12 ktons of active liquid argon mass each with 10MeV
in neutrino energy, with >95% efficiency. Furthermore, to meet the requirement that the DUNE
FD maintain <30PB/year to permanent storage, the DAQ DS must make data selection decisions
in a way that allows the DAQ system to effectively reduce its input data by almost four orders of
magnitude, without compromising the above efficiencies.

To meet its requirements, the DAQ DS design follows a hierarchical data selection strategy, where
low-level decisions are fed forward into higher-level ones until a module-level trigger is activated.
The hierarchy is illustrated in Figure 7.6. At the lowest level, trigger primitives are formed on a
per-channel basis, and represent, for the baseline design, a hit on a wire/channel activity summary.
Trigger primitives are aggregated into trigger candidates, which represent information associated
with higher-level constructs derived from trigger primitives, for example “clusters of hits”. Trig-
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ger candidate information is subsequently used to inform a module-level trigger decision, which
generates a trigger command; this takes the form of either a localized high energy trigger or an
extended SNB trigger, and each prompts the corresponding readout of an event record. Details on
the exact algorithm implementation for trigger primitive, trigger candidate, and trigger command
generation can be found in DocDB 11215 [140] and DocDB 14522 [141] and references therein.
After event-building, further data selection is carried out in the form of down-selection of event
records through a high level filter. Details on a possible post-event-building filtering algorithm
implementation can be found in DocDB 11311 [142].

This data selection strategy is applicable to both the PD system and the TPC, operating in parallel
up to the module level trigger stage, where PD system and TPC information can be combined
to form a module level trigger decision. Data selection design efforts have taken the approach
of validating and demonstrating a TPC-based data selection. Nevertheless, the data selection
design by construction allows an additional PD system-based data selection component to be
accommodated within the same design, which will augment data selection capabilities, efficiency,
and robustness.

The DAQ DS subsystem structure is illustrated in Figure 7.7. The structure reflects the three stages
of data selection: (1) low level trigger, which consists of trigger primitive generation (facilitated
in upstream DAQ; see Section 7.3.2) and subsequent trigger candidate generation; (2) module
level trigger; and (3) high level filter. Each stage is described in further detail in subsequent
sections. An additional subsystem component is the ETI, which serves as a common interface for
the module level trigger of each of the FD detector modules and between the module level trigger
and other systems (calibration, accelerator, and timing system) within a single detector module.
An additional responsibility of the ETI is to send SNB triggers to global coincidence trigger
recipients like SuperNova Early Warning System (SNEWS) [143] after sufficient confirmation of
trigger quality.

The first stage of DUNE FD operations will trigger on two general classes of physics, each handled
differently at the trigger level:

High-energy interactions High-energy interactions include cosmic muons, neutrino beam interac-
tions, atmospheric neutrinos, and nucleon decays. The trigger efficiency for these interactions
must be >99% for any given particle type (electron, muon, photon, etc.) that has a local-
ized (confined to a limited number of neighboring channels) visible energy deposition above
100MeV. To achieve this requirement, algorithms for creating high-energy trigger candidates
target a trigger efficiency of 50% at 10MeV visible energy, thus ensuring >99% efficiency or
higher at 100MeV. This type of trigger is referred to as localized high energy trigger. Push-
ing the high-energy threshold down could enable detection of diffuse supernova neutrinos
and solar neutrinos if radiological and neutron backgrounds are low enough.

Low-energy interactions The primary physics target for low-energy interactions is a neutrino
burst from a nearby supernova. Low-energy trigger candidates (with thresholds at or be-
low 10MeV visible energy) are generated and are input to an extended low-energy trigger
data selection algorithm that looks for bursts inconsistent with fluctuations in low-energy
background events. The time window for detecting such bursts is tuned to ensure nearly
100% efficiency out to the galactic edge, and the pre-burst buffers are sized to handle the
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Figure 7.6: Data selection strategy and hierarchy.
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associated latency for detection.

Each trigger type prompts readout of the entire module but over significantly different time ranges:
localized triggers prompt readout of 5.4ms event records; extended triggers prompt readout of 100 s
event records.

Ultimately, each trigger decision culminates in a command sent to the DAQ BE subsystem. This
command contains all logical detector addresses and time ranges required, so an EB can properly
query the upstream DAQ buffers and finally collect and output the corresponding detector data
and the corresponding trigger data. The details for forming this command are described next,
while the operation of the DAQ BE is described in Section 7.3.4.

Viable data selection algorithms for the low level and module level triggers already exist, including
algorithms for a module level SNB trigger. Monte Carlo simulations have demonstrated that the
resulting SNB trigger efficiency reaches >99% for any SNBs occurring within our galaxy, and efforts
to extend this reach to the Large Magellanic Cloud using refined algorithms are currently under
way [140, 141]. At the same time, the pipelines of processing required for data selection can be
executed using different firmware and software implementations. Development is actively ongoing
to demonstrate and compare performance of different implementations. In satisfying the philosophy
and strategies of the DAQ design, there is built-in flexibility in defining whether each element of a
pipeline executes on FPGA, CPU, GPU, or, in principle, some other future hardware architecture.
A purely software implementation of data selection (including trigger primitive generation) is being
implemented for demonstration at ProtoDUNE; it will be then modified to match the baseline
design in which trigger primitives are generated in upstream DAQ FPGA.

7.3.3.1 Low Level Trigger: Trigger Primitive Generation

A trigger primitive is defined nominally on a per-channel basis. In the case of the SP module TPC,
it is identified as a collection-channel signal rising above a (configurable) noise-driven threshold for
a (configurable) minimum period of time (here called a hit). A trigger primitive takes the form of
an information packet that summarizes the above-threshold waveform information in terms of its
threshold crossing times and statistical measures of its ADC samples. In addition, these packets
carry a flag indicating the occurrence of any failures or other exceptional behavior during trigger
primitive processing.

Algorithms for generating trigger primitives are under development [144]. Trigger primitive gen-
eration proceeds by establishing a waveform baseline for a given channel, subtracting this baseline
from each sample, maintaining a measure of the noise level with respect to the baseline, and
searching for the waveform to cross a threshold defined in terms of the noise level. The trigger
primitive or hit is said to span the time period when the waveform is above the noise threshold.
Such algorithms ( e.g., [145]) have been validated using both Monte Carlo simulations and real
data from ProtoDUNE. Trigger primitive generation performance is summarized in Section 7.4.2.

The format and schema of trigger primitives are subject to further optimization because they
are further tightly coupled with the generation of trigger candidates, discussed in the following
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subsection. Nominally, each trigger primitive comprises the channel address (32 bit), hit start time
(64 bit), the time over threshold (16 bit), the integral ADC value (32 bit), an error flag (16 bit),
and possibly also the waveform peak (12 bit) associated with the hit. Thus, 20B to 22B provides
a generous data representation of trigger primitive information. The trigger primitive rate will be
dominated by the rate of decay of naturally occurring 39Ar, which is about 10MHz per module.
Radioactive isotopes of krypton may also contribute to the trigger primitive rate, but based on
results from dark matter experiments, this rate is much smaller than the intrinsic 39Ar rate. This
leads to a detector module trigger primitive aggregate rate of 200MB/s. The subsequent stage of
the data selection must continuously absorb and process this rate providing trigger candidates as
described next.

7.3.3.2 Low Level Trigger: Trigger Candidate Generation

At the trigger candidate generation stage of the low level trigger, trigger primitives from individual,
contiguous fragments of the detector module are cross-channel and time correlated, and further
selection criteria are applied. This may result in the output of trigger candidates. More specifically,
once activity is localized in time and channel space, we can apply a rough energy-based threshold
based on the combined metrics carried by the cross-correlated trigger primitives; satisfying this
criteria defines a trigger candidate.

A trigger candidate packet carries information about all the trigger primitives used in its formation.
In particular, the packet provides a measure of the total activity represented by these primitives,
as well as a measure of their collective time, channel location, and extent within the module. These
measures are used downstream by the module level trigger, as described more in the next section.

While the selection applied in the previous stage (trigger primitive generation) is driven by a
measure of noise, at the trigger candidate generation stage, before applying any thresholds, the
rate is driven by background activity. In particular, 39Ar decays would provide 50 kHz of trigger
candidates per APA face if the threshold was set very low, i.e., at 0.1MeV. Next, activity from
the 42Ar decay chain would be substantial for a threshold below 3.5MeV. Nominally, individual
candidates, or groups of candidates nearby in detector space and time, with measures of energy
higher than these two types of decays, will be passed to the module level trigger.

This stage of data selection is implemented 75 (TPC) plus eight (PD system) CPU servers, which
receive the trigger primitive stream from the upstream DAQ and distribute trigger candidates
to the module level trigger stage, described next, via the 10Gbit/s DAQ network. Studies are
underway to demonstrate CPU resource use and latency, as are efforts to demonstrate online trigger
candidate generation at ProtoDUNE. Trigger candidate generation performance is summarized in
Section 7.4.2.
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7.3.3.3 Module Level Trigger

Data selection is further facilitated as trigger candidates are consumed by the module level trigger
in order to form the ultimate trigger decision that prompts the readout of data records from buffers
kept by the upstream DAQ. The physical (channel and time) location, extent, and energy measure
of the candidates are used at this stage to categorize the activity in terms of a localized high
energy trigger or an extended low energy trigger. Specifically, a suitable number of isolated, low
energy candidates found in coincidence over the integration period of up to 10 s across the full
detector module indicate the latter; individual high energy candidates, found otherwise, indicate
the former.

When a particular condition in a category is satisfied, the trigger decision is made and a trigger
command is formed. The trigger command packet includes information about the candidates
(and primitives) that were used to form it. The decision also provides direction as to what set
of detector subcomponents should be read out and over what time period (localized or extended
as described above). The module level trigger publishes a stream of trigger commands and the
primary subscriber should be the DFO of the DAQ BE as described in Section 7.3.4.

The module level trigger is implemented in O(1) CPU server (with 100% redundancy), which
receives the trigger candidate stream from the low level trigger stage of the data selection and
distributes trigger commands to the DAQ BE via the 10Gbit/s DAQ network. Studies are un-
derway to demonstrate CPU resource use and latency, as are efforts to demonstrate online trigger
command generation at ProtoDUNE. Trigger command generation performance is summarized in
Section 7.4.2.

7.3.3.4 External Trigger Interface

The ETI provides a loose coupling between the module level triggers (MLTs), sources of external
information such as beam spill times and information to or from components of DUNE FD calibra-
tion systems. As an interface between MLTs, the ETI receives and distributes information about
module-level SNB trigger commands. This allows any detector module, which alone may not have
satisfied a SNB trigger requirement, to nonetheless perform an SNB readout. The ETI is also
responsible for forming a coincidence between module-level SNB trigger commands and publishing
the results, e.g., for consumption by the SNEWS.

The ETI also receives information about beam spill times from the accelerator. These times can
drive a model of the beam timeline to predict when beam spills, and consequently beam-related
interactions, should occur. These predictions can then be sent to the MLTs, so they can either alter
trigger decision criteria or merely include the information in contemporaneous trigger decisions.
The beam time information can also be distributed to components of the calibration system to
avoid producing activity in the detector that may interfere with activity from beam neutrinos.

The external trigger interface is implemented in O(1) CPU server (with 100% redundancy), with
10Gbit/s networking and interfacing hardware components (to White Rabbit (WR) and DUNE
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timing system) for timing and external trigger signal I/O.

7.3.3.5 High Level Filter

The last processing stage in the DAQ DS is the high level filter, which resides in the DAQ BE, and
physically, on the surface at SURF. The high level filter acts on triggered, read out, and aggregated
data. It therefore serves primarily to down-select and thus limit the total triggered data rate to
offline storage, thereby keeping efficiency high in collecting information on activities of interest,
while maintaining low selection and content bias, reducing the output data rate. It may do so
using further filtering, lossy data reduction, and/or further event classification. Because it benefits
from operating on relatively low-rate data, it can accommodate a higher level of sophistication in
algorithms for data selection decisions.

More specifically, the high level filter may further reduce the rate of data output to offline storage
by applying refined selection criteria that may otherwise be impossible to apply to the pre-trigger
data stream. For example, instrumentally-generated signals (e.g., correlated noise) may produce
trigger candidates that cannot be rejected by the module level trigger and, if left unmitigated,
may lead to an undesirably high output data rate. Post processing the triggered data may reduce
this unwanted contamination. Furthermore, the high level filter can also reduce the triggered
data set by further identifying and localizing interesting activity. A likely candidate hardware
implementation of this level of data selection is a GPU-based system residing on surface at SURF.

To fully understand how much and what type of data reduction may be beneficial, simulation
studies are ongoing [142], summarized in Section 7.4.2, and will must be validated with initial data
analysis after the first DUNE FD operation. Development efforts are also ongoing to determine
the scale of processing required by the FD.

7.3.4 Back-end DAQ

The DAQ BE moves data of interest identified by the data-selection system from the readout DAQ
buffers, serving them to the high level filter and storing the filtered data into the output buffer.
From there, data will be transferred to permanent storage off-site.

The DAQ BE system accepts trigger commands produced by the DAQ DS as described in Sec-
tion 7.3.3. It queries the upstream DAQ buffers and accepts returned data as described in Sec-
tion 7.3.2. Finally, it records trigger commands and the corresponding detector data to the output
storage buffer.

The principal components of the DAQ BE are the data flow orchestrator (DFO), event builder
(EB) and the output storage buffer (OB) in Figure 7.1.
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7.3.4.1 Data Flow Orchestration

The EB stage is implemented as a pool of redundant EB processes to maximize the system tolerance
to faults and to handle the readout of long SNB events in parallel to nominal readout requests.
This asynchronous, parallel readout will be coordinated by a DFO. Its operation is illustrated in
Figure 7.8 and is discussed here:
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Figure 7.8: Illustration of DUNE DAQ BE operation.

• DFO accepts a stream of trigger commands and dispatches each to an available EB process
as described in Section 7.3.4.2 for execution.

• In atypical situations in which there are insufficient event builder resources available to handle
the rate of triggers produced by the data selection subsystem, the DFO will alert the DS
subsystem that the rate of triggers needs to be reduced. When such reductions are requested,
the DAQ DS will update the calculation of the module-level DAQ livetime appropriately.

• The DFO will provide relevant data flow status and statistics information to the monitoring
processes that are described in Section 7.3.5.4. Given its central role and knowledge of the
state of available event builder buffers, it will be able to provide important information about
the health and performance of the system.

7.3.4.2 Event Builder

The DAQ BE will provide the instances of the event builder (EB) most likely as artdaq [146]
components of the same name. As described above, each EB instance will:
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• Receive a readout segment for execution. Execution entails interpreting the trigger command
segment and querying the appropriate upstream DAQ units to request data from the period
of time.

• Requests and their replies may be sent synchronously, and replies are expected even if data
has already been purged from the upstream DAQ units. (In that case, and empty fragment
will be generated with appropriate error flags set).

• The received data then processed and aggregated, is finally saved to one or more files on the
output storage system before it is transferred offline.

As part of this, the EB subsystem will provide book-keeping functionality for the raw data. This
will include the documenting of simple mappings, such as which trigger is stored in which raw data
file, as well as more sophisticated quality checks. For example, it will know which time windows
and geographic regions of the detector are requested for each trigger, and in the unlikely event
that some fraction of the requested detector data can not be stored in the event record, it will
document that mismatch.

7.3.4.3 Output Buffer

The output buffer system is composed by the physical hardware resource to host the incoming data
and by the software services handling the final processing stages through the High Level Filter and
the transfer off-site to permanent storage.

It has two primary purposes. First, it decouples the production of data from filtering and the trans-
fer of filtered data offline. It provides the elasticity needed by the DAQ to deal with perturbations
in the flow of data, therefore minimizing the impact of temporary loss in filtering performance
due to hardware or software issues. Second, it provides local storage sufficient for uninterrupted
DAQ operation in the unlikely event that the network connection between the FD and Fermilab
is lost. A capacity of at least a few PB is envisioned, sufficient to buffer the nominal output of
the entire FD for about one week even in the case of SNB events. Based on prior experience of
the consortium with unusual losses of connectivity at other far detector experiment sites, this is a
conservative storage capacity value.

The output buffer system will provide the relevant data flow status and statistics information to
the monitoring processes that are described in Section 7.3.5.4. The knowledge of the health and
performance of the of the buffer system will enable the monitoring system to promptly identify
and address developing faults before they can have an impact on data taking.

7.3.4.4 Data Network

Upstream DAQ, DAQ DS and DAQ BE DAQ are interconnected by a 10/100Gbit/s ethernet
network for data exchange. In particular the upstream DAQ and DAQ DS servers are connected
through redundant 10Gbit/s links to top-of-rack switches with 10Gbit/s uplinks. The EB and
Output buffer hardware will support 100Gbit/s directly. The DAQ data network is connected to
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the Fermilab network via a WAN interface.

7.3.4.5 Data Model

The data model for the DUNE far detector describes the format and characteristics of the triggered
data at each stage in the analysis chain, the grouping of the data into logical units such as runs,
and the characteristics of ancillary data such as detector configuration parameters and calibration
results.

The requirements that these place on the DAQ are primarily in the areas of flexibility and trace-
ability. The DAQ will have the flexibility to handle the readout of triggers that have a time window
that is on the order of a single TPC drift time (for example a trigger associated with a beam gate
window), triggers that have a time window of many seconds (such as for a supernova burst trig-
ger), and windows between those two extremes (for detector and electronics studies). In the area
of traceability, the DAQ system will provide the necessary level of detail regarding the conditions
that triggered each event, the expected and actual regions of the detector that contributed raw
data to each event, the conditions of the detector and electronics during data taking, the version
and configuration of the software components used in the DAQ chain, etc.

7.3.5 Control, Configuration, and Monitoring

The DAQ control, configuration and monitoring subsystem (CCM), illustrated in Figure 7.9, con-
sist of the software subsystems to control, configure, and monitor the DAQ system, as well as the
detector components participating to data taking. It provides a central access point for the highly
distributed DAQ components, allowing them to be treated and managed as a single, coherent
system, though their corresponding subsystem interfaces. It is responsible for error handling and
recovery, which is achieved by designing a robust and autonomous fault-tolerant control system.
The main goal is to maximize system up-time, data-taking efficiency and data quality when the
system faces programmatic (i.e. calibrations) and unforeseen (hardware failures or software faults)
change of data-taking conditions. The DAQ control, configuration and monitoring subsystem
(CCM) provides an access point, which is delegating user’s actions to the corresponding interfaces.
The detector components and infrastructure elements access the DAQ control, configuration and
monitoring subsystem (CCM) subsystems through their provided interfaces.

The following sections describe each DAQ control, configuration and monitoring subsystem (CCM)
subsystem, covering internal functions and dependencies between each other.

7.3.5.1 Access

Actions are defined as any kind of human interaction with the DAQ control, configuration and
monitoring subsystem (CCM). The access subsystem is responsible for the action delegation to in-
ternal function calls and procedures. Its implementation is driven by the control, configuration and
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Figure 7.9: Main interaction among the three CCM subsystems.

monitoring interface specifications, and protects the direct access to detector and infrastructural
resources. It also controls authentication and authorization, which locks different functionalities
to certain actor groups and subsystems. As an example, only the detector experts can modify
front-end configuration through the configuration interfaces, or only an expert user can exclude
an APA’s readout from data taking.

7.3.5.2 Control

The control subsystem consists of several components and utilities, and also has additional sub-
systems to carry out dedicated roles. It enforces the implementation of required interfaces and
actively manages DAQ process lifetimes. It operates in a distributed, fault-tolerant manner due
to protocols that will drive the FSM for state sharing.

It contains the following core components:

• Supervision System - It is responsible for manual and automated control and supervision
of DAQ components at any given time. In autonomous mode, the system makes attempts
for fault-recovery, failover to backup instances of subsystems, and isolation of problematic
regions of the control tree. This is carried out by a hierarchical rule-based planning or fuzzy
logic system.

• DAQ Application - The CCM provides interfaces in order to communicate with processes of
the DAQ, and the ability to control and communication with the CCM. The Inter Process
Communication (IPC) supports a mechanism to interact with all actors participating to data
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Figure 7.10: Roles and services that compose the DAQ control subsystem.

taking. The Finite State Machine (FSM) enforces the possible states and transitions that
are specific to the experiment’s components, and also describes them in a uniform way.

• Run Control - This part of the control subsystem coherently steers the data taking operations.
It interacts with all actors participating to data taking in a given partition. It consists of a
hierarchical control tree, which can subdivide the DAQ components into separated regions
that may be acted upon independently.

• Resource Management - It provides a global scope of available resources for the DAQ com-
ponents. This includes the mapping between the detector front-end readout units, processes,
servers where they are spawned and required resources for the processes.

• Process Management - It is responsible for managing process lifetime.

7.3.5.3 Configuration

The configuration subsystem provides several key elements for the configuration management of
DAQ components and detector front-end electronics. It provides a description of system configura-
tions, the ability to define and modify configurations, and graphical user interfaces for the human
user to access the data. Data access libraries will hide the technology used for the databases imple-
mentation. The subsystem is also responsible for the serialization, persistency, and bookkeeping
of configurations.

The main components of the configuration subsystem are the following:
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• Configuration Manager - It consists of the three main components of configuration man-
agement systems. The Identification Engine is a set of functionalities that are responsible
for the definition of DAQ components and their corresponding configuration specification.
The Change Manager is responsible for providing control over altering the configuration
specifications of components. The Status Engine is providing status and information about
configuration specifications of individual, or set of DAQ elements.

• Audit System - This important subsystem is supporting the experts and decision making sys-
tems to verify the consistency of configuration specifications against the DAQ and detector
components. It provides results on mis-configurations and potential problems on configura-
tion alignment and dependencies between components.

• Persistency Engine - This component provides a single and uniform serialization module,
which is strictly followed by every DAQ component. Also responsible for configuration
schema evolution and communication with the configuration database. The storage en-
gine privileges will be only read and write operations, not allowing updates and removal
of configurations. It also provides a redundant session layer for high-availability and load
distribution.

The configuration system will mainly consist of standard configuration management components,
with a high emphasis on the audit system, in order to verify that the global configuration of the
CCM complies with the detector, physics and operational requirements.

7.3.5.4 Monitoring
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Figure 7.12: Roles and services that compose the DAQ monitoring subsystem.

Highly-scalable and efficient operational monitoring is essential during data-taking periods. Any
malfunctioning component of the experiment must be identified and reported as soon as possible.
Therefore, the aim of the monitoring subsystem is probing and notifying the status of CCM com-
ponents, services, and resources. There is also a requirement of CCM infrastructure monitoring
and log aggregation. The types of monitoring information vary greatly depending on operational
complexity, which require flexibility from the monitoring infrastructure for seamless additions,
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modifications and aggregated view on service degradation. It consists of the following main com-
ponents, also shown in Figure 7.12:

• Metric Manager - It is responsible for the registration of metric data streams and correspond-
ing aggregator functions. This central element is the collection of features and services that
provides support for configurable operational monitoring of CCM services. CCM components
and services that are registered via the Metric Manager, are reporting monitoring data to
the State and the Storage Engines in a publish-subscribe fashion.

• State Engine - This engine is responsible for providing the global state of the system at the
current time. It subscribes to a set of registered metrics in the Metric Manager, and records
the actual global state of the set for decision making systems (supervision, notification, and
visualization).

• Storage Engine - Metrics may have different persistency requirements, for which the engine
is responsible for archiving the data with the settings of interval, smoothing, etc. It also
provides an implementation for the most common communication protocols for the database
back ends (SQL, REST, etc.).

• Notification System - It is a rule-based system of scheduled and aimed notifications that
occur in the case of state combinations. It defines soft and hard states of events and grace
periods of alarms.

• User Interfaces - Provides graphical and command line user interfaces for monitoring config-
uration management and visualization of metric data.

Monitoring being a key requirement in the industry for computer clusters and their applications,
the proposed solution is the adaptation of mature, robust, and open-source third party tools,
with the extension of DUNE CCM specific interface implementations and configurations of these
monitoring systems.

7.3.5.5 Inter-Process Communication

The DUNE FD DAQ is an asynchronous, parallel distributed data processing system. It is com-
posed of many independent processes which ingest and produce messages. The mechanisms of such
message passing are generally called inter-process communication (IPC). Referring to Figure 7.1,
IPC is used for both in-band detector data flow between upstream DAQ and back-end EBs and
for out-of-band messages as part of CCM. The IPC used by the DAQ DS spans both descriptions
as it passes derivations of a subset of detector data (trigger primitives, candidates) and culminates
in a source of out-of-band message (trigger commands) to direct the readout by EB and other
components of detector data that is held in the upstream DAQ buffers.

The ZeroMQ [147] smart socket library is the basis of a system being developed and evaluated
for parts of both in-band and out-of-band IPC. As part of the CCM, this includes the issuing of
control and reconfiguration commands to and receiving of monitoring messages from essentially all
DAQ components. As part of DAQ DS, this includes the transfer of trigger primitive, candidate
and command messages. In the upstream DAQ this includes the upstream DAQ buffer interface
(UBI) that provides access to the upstream DAQ primary buffers for queries by EB and other
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components. IPC must be implemented broadly across many DAQ systems and ZeroMQ allows
their problems to be solved in common, shared software. As CCM has the most complex IPC
needs, this work is organizationally considered part of this system.

As described in 7.3.4, artdaq [146] utilizes IPC between its back-end components. It has been well
tested with ProtoDUNE and other experiments. artdaq may be used for some portions of the IPC
described above. For example, if the UBI is implemented as an artdaq Board Reader it would
necessarily use artdaq IPC . This would limit the types of clients that could query for data in the
buffers to be artdaq modules. Understanding how to optimally select an IPC for such parts of the
DAQ connection graph is an area of ongoing R&D effort.

7.3.5.6 Hardware

The CCM software suite will run on approximately 15 servers interconnected by a 1Gbit/s ethernet
network to upstream DAQ, DAQ DS, DAQ BE as well as detector and calibration daq interface
elements. While this network has a lower throughput compared to the data network, it has many
more endpoints O(2000).

7.3.6 Data Quality Monitoring

While the CCM contains an element of monitoring (Section 7.3.5.4), here data quality monitoring
(DQM) refers to a subsystem that quickly analyzes the data in order to determine the general
quality of the detector and DAQ operation. This is in order to allow operators to promptly detect
and respond to any unexpected changes and assure high exposure times for later physics analyses.
A DAQ data quality monitoring (DQM) will be developed (including necessary infrastructure,
visualization, and algorithms), which will process a subset of detector data in order to provide
prompt feedback to the detector operators. This system will be designed to allow it to evolve as
the detector and its data is understood during commissioning and early operation and to cope
with any evolution of detector conditions.

7.3.7 Timing and Synchronization

The DAQ timing and synchronization subsystem (DAQ TSS) provides synchronous time services
to the DAQ and the detector electronics. All components of the FD use clocks derived from a single
Global Positioning System (GPS) disciplined source, and all module components are synchronized
to a common 62.5MHz clock. This rate is chosen in order for this common clock to satisfy the
requirements of the detector electronics of both the single-phase and the dual-phase far detector
modules. To make full use of the information from the PD system, the common clock must be
aligned within a single detector module with an accuracy of O(10 ns). For a common trigger
for a SNB between modules, the timing must have an accuracy of order 1ms. However, a tighter
constraint is the need to calibrate the common clock to universal time derived from GPS so the data
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selection algorithm can be adjusted inside an accelerator spill, which again requires an absolute
accuracy of order 1 µs. The design of the timing system allows for an order-of-magnitude better
synchronization precision than these requirements, allowing a substantial margin of safety and the
possibility for future upgrades to front-end electronics.

The DUNE FD uses a improved version of the ProtoDUNE timing system, where a design principle
is to transmit synchronization messages over a serial data stream with the clock embedded in the
data. The format is described in DocDB 1651 [60]. The timing system design is described in detail
in DocDB 11233 [61].

Central to the timing system are four types of signals:

• a 10MHz reference used to discipline a stable master clock,
• a one-pulse-per-second signal (1PPS signal) from the GPS,
• a Precision Time Protocol (PTP) signal providing an absolute time for each 1PPS signal,

and
• an inter-range instrumentation group (IRIG) time code signal used to set the timing system

64 bit time stamp.

The timing system synchronization codes are distributed to the DAQ readout components in the
central utility cavern (CUC) and the readout components on the cryostat via single mode fibers and
passive splitters/combiners. All custom electronic components of the timing system are contained
in two Micro Telecommunications Computing Architecture (µTCA) shelves; at any time, one is
active while the other serves as a hot spare. The 10MHz reference clock and the 1PPS signal
signal are received through a single-width advanced mezzanine card (AMC) at the center of the
µTCA shelf. This master timing AMC is a custom board and produces the timing system signals,
encoding them onto a serial data stream. This serial data stream is distributed over a backplane
to a number of fanout AMCs. The fanout AMC is an off-the-shelf board with two custom FPGA
mezzanine cards (FMCs). Each FMC has four SFP cages where fibers connect the timing system
to each detector component (e.g., APA) or where direct attach cables connect to other systems in
the CUC.

To provide redundancy, two independent GPS systems are used, one with an antenna at the surface
at the Ross shaft, and the other with an antenna at the surface at the Yates shaft. Signals from
either GPS are fed through single-mode optical fibers to the CUC, where either GPS signal can act
as a hot spare while the other is active. Differential delays between these two paths are resolved
by a second pair of fibers, one running back from the timing system to each antenna, allowing
closed-loop delay estimation.

7.4 Design Validation and Development Plans

The following strategy is being followed in order to validate and develop the DUNE FD DAQ:

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 7: Data Acquisition 7–439

• use ProtoDUNE and other test stands as a basis for prototyping, development and validation
of the DAQ design;

• use Monte Carlo simulations and emulations in order to augment actual hardware demon-
strations and validate triggering schemes in the FD environment; and

• benefit from experience in LArTPC data processing by other experiments.

The design and implementation of the DAQ is being carried out using an iterative prototyping
model, which is well suited for a system that largely relies on commercial off-the-shelf hardware
components, on communication and information technologies that are rapidly evolving, and that
mainly requires software and firmware development effort. The advantage of the prototyping model
is also that it facilitates the identification of and collaboration among experts from a large number
of institutions, through focussed efforts to achieve the short-term objectives established through
each prototyping iteration.

Once the identification of applicable technologies are completed and the overall system require-
ments are refined, the project will switch to an iterative incremental model, ensuring that, step-
by-step, functional and performance requirements will be met by each of the sub-components
individually, and by the DAQ system globally. The overall schedule, summarized in Section 7.6.2,
reflects the different development and production time scales that are envisioned for the various
DAQ components.

While DUNE data processing challenges are unique in both form and scale, other ongoing or
planned near-term LArTPC experiments, including MicroBooNE, SBND [148], and ICARUS, are
exercising a number of relevant data processing and data reduction techniques, and already provid-
ing valuable inputs to the DUNE FD DAQ design. For example, MicroBooNE has demonstrated
successful implementations of lossless Huffman compression and of continuous readout via use of
lossy compression (dynamic and fixed-baseline zero-suppression) [130]; this has provided guidance
and confidence on anticipated achievable data reduction factors and data compression impact on
physics performance.

The following subsections summarize past, ongoing, and planned development and validation stud-
ies and identify how anticipated outcomes will be used to finalize the DAQ design.

7.4.1 ProtoDUNE Test Beam

The FD DAQ consortium constructed and operated the DAQ system [149] for ProtoDUNE, which
included two parallel DAQ readout architectures, one based on FELIX, developed by ATLAS [139],
and the other on reconfigurable computing element (RCE), developed at SLAC. DAQ design and
construction for ProtoDUNE began in Q3 of 2016, and the system became operational at the start
of the beam data run in Q4 of 2018. The detector is continuing to run at the time of writing,
recording cosmic ray activity, and providing further input for DAQ development toward DUNE.

Figure 7.13 depicts the ProtoDUNE DAQ system. The DAQ is split between the FELIX and
reconfigurable computing element (RCE) [150] implementations. The two architectures share the
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same back end and timing and trigger systems. Neither of these tested architectures explicitly
represents the baseline design for the DUNE FD. Instead, each roughly maps onto one of two data
processing approaches: one in which the data is processed exclusively in custom-designed FPGA
firmware and carrier board, and the other in which the data is processed primarily with custom
software run in commodity servers. The baseline design presented here merges elements of the two
approaches. Specifically, it uses FELIX as the hardware platform for data receiving and handling,
and a co-processor FELIX daughter card (analogous to the RCE platform used at ProtoDUNE)
to provide additional, dedicated data processing resources.

Figure 7.13: The ProtoDUNE DAQ system.

Besides overall readout architecture, the ProtoDUNE and DUNE DAQ systems exhibit two key
differences. First, the ProtoDUNE DAQ is externally triggered (and at a trigger rate over an order
of magnitude higher than that anticipated for DUNE). Because of this, the ProtoDUNE DAQ
does not facilitate online data processing from the TPC or PD system for self-triggering. Second,
the ProtoDUNE system sits at the surface with a much higher data occupancy due to cosmic ray
activity. Overcoming the first key difference in order to demonstrate data selection capability for
the FD DAQ design is a main component of current and future DAQ development plans.

7.4.1.1 ProtoDUNE Outcomes

The ProtoDUNE-SP DAQ supported a test-beam experiment, and the requirements of the DUNE
DAQ are substantially different in scale and performance. However, the successful operation of
the ProtoDUNE-SP DAQ has provided several key demonstrations for final system, in particular
the data flow architecture, run configuration and control, and back-end functionality.
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Specifically, ProtoDUNE-SP has demonstrated:

• Upstream DAQ: front-end readout hardware and data flow functionality servicing two out
of the six APAs. The data from each APA was continuously streamed to a single FELIX
board hosted in a dedicated computer which then transferred it to two other computers for
buffering and readout. The baseline upstream DAQ for DUNE FD will retain one APA per
FELIX board but place two FELIX boards and the buffering and readout functionality all
together in a single DAQ FEC. In addition to data flow functionality, ProtoDUNE front-end
readout also demonstrates the interface to the front-end TPC electronics, and scalability to
DUNE. It also supports host server requirements and specifications. Finally, it serves as
platform for further development involving co-processor implementation and data selection
aspects.

• DAQ BE, CCM and software infrastructure: Successful DAQ BE implementation, including
event builder farm and disk buffering, as well as an initial implementation of CCM functions.
This has allowed the development and exercising of system partitioning, and provides a
basis for scalability to DUNE. ProtoDUNE also serves as a platform for further system
development, in particular in CCM and for the data flow orchestrator part of the DAQ BE.

• Data selection and timing: successful operation of the timing distribution system, and ex-
ternal trigger distribution to the front-end readout.

Besides demonstrating end-to-end data flow, an important outcome of ProtoDUNE has been the
delineation of cross-system interfaces, i.e. understanding the exact DAQ scope and the interfaces
to TPC, PD system, and offline computing. The use of commodity solutions where possible,
and leverage of professional support from CERN IT substantially expedited the development and
success of the project, as did the strong on-site presence of experts from within the consortium
during early installation and commissioning. Outcomes specific to ProtoDUNE subsystems are
discussed in greater detail in [151].

7.4.2 Ongoing Development

DAQ subsystem development is ongoing at ProtoDUNE at the time of writing. A detailed schedule
for 2019 is available in [152]. Major development plan milestones, a number of which have already
been achieved at the time of this writing, are:

• optimization and tuning of the front-end readout;
• optimization and tuning of the artdaq based dataflow software;
• enhancement of monitoring and troubleshooting capabilities;
• introduction of CPU-based hit finding (necessary for PD system readout);
• introduction of FPGA-based hit finding (for TPC readout);
• implementation of online software data selection beyond trigger primitive stage (introduction

of trigger candidate generation, trigger command generation), and tests on well identified
interaction topologies (e.g,. long horizontal tracks, or Michel electrons from muon decay);

• integration of online trigger command and modified data flow to event builder to facilitate
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self-triggering of detector;
• implementation of extended FPGA-based front-end functionality (e.g., compression); and
• prototyping of fake SNB data flow in front end and the back end.

Below, we focus on ongoing developments related to upstream DAQ, data selection, and CCM pro-
totyping, which is relevant to all DAQ subsystems. These are the key areas where new technologies,
beyond ProtoDUNE, remain to be designed and tested.

7.4.2.1 Upstream DAQ Development

The use of FELIX as the front-end readout technology for DUNE was successfully prototyped at
ProtoDUNE, initially for the readout of one APA. In ProtoDUNE, FELIX allows streaming of
data arriving o- multiple 10Gbit/s optical point-to-point links into commercial host memory and,
from there, storing, dispatching or processing of the data via software.

In ProtoDUNE, a single APA FELIX-based readout consists of two servers with a point-to-point
100Gbit/s network connection to the FELIX host computer. The FELIX I/O card interfaces
with its host PC through 16-lane PCIe 3.0 (theoretical bandwidth of 16GB/s). It transfers the
incoming WIB data directly into the host PC memory using continuous DMA transfer. The
FELIX host PC runs a software process that publishes the data to any client subscribing to it.
Subscriptions may identify from which input optical links the received data stream will be sourced.
The clients consuming these streams are “BoardReader” processes implemented in the artdaq data
acquisition toolkit. In order to sustain the data rate, modest modifications of the firmware and
software were carried out specifically for ProtoDUNE: each FELIX host receives and publishes data
at ∼75Gbit/s. The BoardReader hosts are equipped with embedded Intel QuickAssist (QAT) 1

technology for hardware accelerated data compression. The ProtoDUNE application of the FELIX
front-end readout is shown in Figure 7.14.

In DUNE only a very small fraction of the data received via the FELIX system will ever need to
leave the host: thus it is not required to implement very high speed networked data dispatching.
On the other hand it may be interesting to carry out data processing and buffering on the host.
While this is not the baseline design for DUNE, R&D is ongoing at ProtoDUNE-SP to evaluate the
feasibility of implementing hit finding, data buffering, and possibly even local trigger candidates
generation on the FELIX host.

The DAQ team is investing substantial effort into the introduction of a triggering chain based on
the TPC data into ProtoDUNE, which will allow to carry out pre-design prototyping studies of the
complete flow of data of the DUNE DAQ. The FELIX-based readout system will be adapted to
support the different studies, from co-processor based data handling in firmware (including trigger
primitive generation, compression, and buffering) to software-based processing, on a single server.
Benchmarking and optimization of the FELIX firmware and software will also continue, with the
aim of further compacting the readout by supporting two APAs on a single server.

1Intel®QuickAssist Technology, https://www.intel.com/content/www/us/en/
architecture-and-technology/intel-quick-assist-technology-overview.html.
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Figure 7.14: The topology of the FELIX-based upstream DAQ of ProtoDUNE (from [153]). The FELIX
host servers are publishing the data from the WIBs over 100Gb/s network interfaces. The BoardReader
hosts are carrying out trigger matching, data compression and forwarding of fragments to the event
builder.

7.4.2.2 Co-processor Development

Upstream DAQ development efforts at ProtoDUNE include a parallel test platform for trigger
primitive generation, compression, and buffering firmware validation for the FPGA co-processor
board. The platform for these tests will initially be a Xilinx ZCU102 development board. Passive
optical splitters will be inserted into the fiber path downstream of the WIBs, providing duplicate
data inputs for the test hardware, without disrupting the main readout path of ProtoDUNE. Tests
using the development board will first focus on generation of trigger primitives, which will be read
out over the network via IPBus[154]. The ZCU102 includes 512MBytes of DDR4 RAM connected
to the FPGA programmable logic, as well as a four lane PCIe Gen 2 socket which will host an NVMe
SSD on an adapter. This combination of hardware will allow tests of buffering and compression
of readout data, in parallel with trigger primitive generation. The ZCU102 will subsequently be
replaced with a “FELIX demonstrator” using a Xilinx Virtex-7 Ultrascale+ FPGA, connected to
a custom FPGA co-processor board via an FMC+ connector. These boards represent the first
prototypes for the final system hardware.

Tests using the development board will focus on functionality rather than data throughput. How-
ever, the tests will provide estimates of FPGA logic and memory resources that can be scaled up
to the full system. Tests using the FELIX Demonstrator and PBM at ProtoDUNE will focus on
scaling the functional tests performed using the ZCU102 to a full demonstration of trigger and
readout functionality for a full APA. In addition, this platform will facilitate integration with the
prototype DAQ DS and DAQ BE subsystems at ProtoDUNE.

7.4.2.3 Data Selection Development

During early stages of design, significant effort has been dedicated to trigger primitive generation
studies through simulations. Specifically, charge collection efficiency and fake rates due to noise
and radiologicals have been studied as a function of hit threshold, demonstrating that data rate
requirements can be met, given sufficiently low electronics noise levels and radiological rates [145].
Ongoing efforts within DUNE’s radiologicals task force aim to validate or provide more accurate
background predictions, against which this performance will be validated. In addition, offline
studies demonstrate the performance of trigger primitive generation algorithms as a function of
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CPU results
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Figure 7.15: CPU core-time (left) required to find primitives in simulated signal and noise data across
960 collection channels. In this test, the data has been pre-formatted to facilitate the use of SIMD
hardware accelerated functions (AVX2). Per thread CPU utilization (right) to process live data from
a ProtoDUNE APA. Processing includes data reformatting, trigger primitive generation, and output
message formation. Each thread, one per FELIX link, requires about 75% CPU core utilization to keep
up. Variation in utilization reflects the variations in levels of ionization and noise activity in the input
data and is due to output message formation. The peak usage at the start arises from input buffering
while the process is initializing. Once operational state is achieved, this brief backlog is processed.

the number of CPU cores used. The results are summarized in Figure 7.15 and show that four
cores are sufficient to keep up with 960 channels. The test does not include reformatting of the
data required to put it in a form that allows AVX2 hardware SIMD acceleration. In tests with live
ProtoDUNE data, it is found that ten cores at an average 65% usage were enough to handle both
reformatting and trigger primitive generation. Effort on understanding and removing contribution
from cosmics/cosmogenics and (known) noisy channels is ongoing. These results are summarized
in Figure 7.17 Additional details may be found in DocDB 14062 [155].

Trigger candidate generation, building on trigger primitives information and considering integral
ADC and trigger primitive proximity by channel and time (in 50µs) space, has also been studied
with Monte Carlo simulations [140]. Trigger candidates with sufficient total integral ADC can be
accepted to generate corresponding trigger commands for localized high energy activity, such as for
beam, atmospheric neutrinos, baryon number violating signatures, and cosmics. Simulation studies
demonstrate that this scheme meets efficiency requirements for localized high energy triggers.
Specifically, simulations demonstrate that > 99% efficiency is achievable for > 100 MeV visible
energy deposited by single particles (shown in Figure 7.18 for e−), and that the corresponding
effective threshold for localized triggers for the system is at ∼10MeV. This translates to all-
inclusive efficiencies for beam νe and νµ events in excess of 99% for visible energies above 100MeV,
as shown in Figure 7.19.

Low-energy trigger candidates furthermore can serve as input to the SNB trigger. Simulations
demonstrate that the trigger candidate efficiency for any individual SNB neutrino interaction is
on the order of 20-30%. However, a multiplicity-based SNB trigger decision that integrates low-
energy trigger candidates over an up to 10 s integration window yields high trigger efficiency out
to the galactic edge while keeping fake SNB trigger rates to one per month. An energy-weighted
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Figure 7.16: Example result of the trigger-primitive software (“hit finder”) applied to ADC waveform
data spanning 96 collection channels that are sensitive to activity in the drift volume of ProtoDUNE-SP.
At left, the figure shows the ADC sample values relative to pedestal which are input to the algorithm.
At right, these same data are shown with a green × marking each trigger primitive found. The inset
is a zoomed region showing in detail the alignment of the input waveforms and the derived trigger
primitives. In this test, the algorithm runs on the continuous stream of ADC waveforms prior to readout
while actual readout was prompted by an external trigger.
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Trigger primitive rate as a function of threshold
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Trigger primitive rate vs threshold, “bad” channels excluded
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Trigger primitive rate vs threshold: HV off
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Trigger primitive rate vs threshold: HV off, noisy channels excluded
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in rate at high threshold
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Figure 7.17: Trigger primitive rates in ProtoDUNE-SP as a function of threshold in four categories: all
data (top left), after removal of particularly noisy channels (top right), with HV off so no contribution
to signal (bottom left) and HV off and noisy channels excluded (bottom right).
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Figure 7.18: Efficiency for forming trigger candidates as input trigger primitives from two algorithms,
online (blue) and offline (red).
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Figure 7.19: All-inclusive efficiency for forming trigger candidates from ionization activity from beam νe
(left) and beam νµ (right) interactions at or above a given visible energy. At smaller energies, somewhat
more events with their visible energy dispersed in space and time fail the trigger candidate selection
criteria. High efficiency is obtained at 100MeV visible. The trigger candidate algorithm used is the
offline version, see Figure 7.18 for comparison with online version.

multiplicity count scheme can be applied to further increase efficiency and minimize background
[141]. This is illustrated in Figure 7.20, demonstrating nearly 100% efficiency out to the edge of
the galaxy, and 70% efficiency for a SNB at the Large Magellanic Cloud (or for any SNB creating
10 events). This performance is obtained by considering the sum ADC distribution of trigger
candidates over 10 s and comparing to a background-only vs. background plus SNB hypothesis.
The efficiency gain compared to a simpler, trigger candidate counting-based approach is quite
significant; using only counting information, the efficiency for a SNB at the Large Magellanic
Cloud is 6.5%. The DAQ consortium is working on further refining these algorithms to further
improve SNB trigger efficiency for more distant SNBs. For additional efficiency increase, the
design provides flexibility for a slightly higher fake SNB trigger rate to be handled by the DAQ
BE, combined with more aggressive data reduction applied at the high level trigger stage so as to
respect the data rate to offline storage requirement.

The dominant contributor to fake SNB triggers is radiological backgrounds from neutrons, followed
by radon. It is crucial to continue working closely with the radiological task force to validate
radiological the background assumptions.

In the case of the high level filter, the consortium is exploring the use of machine learning tech-
niques, specifically image classification with the use of convolutional neural networks (CNNs) on
GPUs, as a way to classify and down-select individual sections of TPC channel vs. time (“frames”),
with extent of one APA’s worth of collection plane channels by one drift length (2.25 ms, or, 4500
samples). CNNs have been trained on Monte Carlo (MC) simulations of frames with each of the
following off-beam event topologies: atmospheric neutrino interactions, baryon number violating
interactions (proton decay or neutron-antineutron oscillation), cosmic ray interactions, supernova
neutrino interactions, or no interactions at all – all with radiological and noise background in-
cluded in the simulations. Preliminary studies show that a CNN can be successfully trained
classify any given input frame as one of three categories: empty, containing a SNB neutrino inter-
action, or containing a high-energy (atmospheric neutrino, baryon number violating, or cosmic ray)
interaction. Specifically, empty frames can be rejected with an efficiency of >99%, while frames
containing or partially containing a supernova neutrino, an atmospheric/cosmic interaction, or a
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Figure 7.20: Top: SNB trigger efficiency as a function of the number of supernova neutrino interactions
in the 10 kt module, for a likelihood trigger approach that utilizes sum ADC shape information of trigger
candidates input into the trigger decision. Bottom: For a SNB at the Large Magellanic Cloud, where
10 neutrino interactions are expected, the efficiency gain over a counting-only trigger is significantly
improved.
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baryon number-violating interaction can be preferentially selected with efficiency >88%, >92%, or
>99%, respectively. Such a filter could potentially be applied to reduce the event record size by
more than two orders of magnitude. Details may be found in DocDB 11311 [142]. The speed at
which machine learning inference may be applied is under study [156].

7.4.2.4 Prototype Trigger Message Passing

A prototype trigger message passing (PTMP) system using elements of the IPC mechanism de-
scribed in Section 7.3.5.5 is currently under development and testing at ProtoDUNE. The primary
goals of this prototype is to add a self-triggering mechanism to the ProtoDUNE detector that
includes many of the features needed for the far detector DAQ. Throughput and latency of the
mechanism is being evaluated and optimized. Message schema and application level protocols have
been designed and are being improved. Future work will include prototyping CCM functionality
including discovery and presence.

PTMP has been successfully exercised to transfer trigger primitives from the software based hit
finder. The short-term goal will be to successfully aggregate information from across an APA and
feed the result to a trigger candidate finder which identifies horizontal muons. From this output a
trigger decision can be made.

7.4.3 Plan for Future Development

As mentioned in the introduction of this section, at present, the development model chosen for the
DAQ system is the one of iterative prototyping. This model is widely used in projects in which
requirements are still being refined and particularly for systems relying on rapidly evolving tech-
nologies, such as today’s information and computing sector. This model will be used throughout
2019, making use of the ProtoDUNE setup to explore architectural options, software solutions,
etc. At a later stage, the DAQ development will move to a more streamlined incremental model,
ensuring that careful design precedes the final implementation of individual components. Most
of the development will be carried out emulating the data inputs. On the other hand, the DAQ
will be validated regularly via test stand integration with detectors, such as ProtoDUNE or pre-
installation sites. The overall development schedule with the main DAQ milestones is shown in
Section 7.6.2.

7.5 Production, Assembly, Installation and Integration

The DAQ system relies largely on commercial off-the-shelf components, with the exception of the
timing system and the first stage of the upstream DAQ. Therefore, the production and assembly
aspects are simpler than for other systems, while of course the installation and integration stages
are very important and have to be planned carefully, due to the large number of interfaces of the
DAQ system with other parts of the experiment.
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7.5.1 Production and Assembly

7.5.1.1 Timing System

A prototype of the timing system already exists and has been used at ProtoDUNE-SP. The final
hardware prototype will be used in the second run of ProtoDUNE-SP in 2021 and production
is planned right afterwards, allowing detector communities to have an early integration with the
timing hardware and firmware.

7.5.1.2 Upstream DAQ

The upstream DAQ will have FPGA mezzanine cards connecting to the detector electronics read-
out fibres, and processing and storing data temporarily. Prototype cards implementing parts of
the required functionality exist already, but more prototypes are planned before the production
readiness review planned in December 2022. While the hardware design will be done at the insti-
tutions working in this area, the production of prototypes and final cards will be outsourced to
companies, allowing for early identification of those companies that can guarantee a high quality
cards production.

7.5.1.3 Racks, Servers, Storage and Network

While commercial devices do not need to be produced or assembled, enough time has to be planned,
once the proper devices are identified, for the tendering and procurement procedures. Racks and
fibers will be procured in order to be available early in 2023; servers and switches will be purchased
in two batches, one to be ready for supporting the installation and commissioning of the detector
components and DAQ infrastructure and one to reach nominal performance, in time for the start
of data taking.

7.5.2 Installation and Integration

The DAQ will be installed in an enclosure in the west end of the CUC (“Data Room” in Fig-
ure 9.22. Roughly half of this space will be office space (including control workstations) and the
other will be a computer room to hold the DAQ front-end computing and network equipment
(Figure 9.23). Further details of the interface of DAQ with underground facilities may be found
in DocDB 6988 [137], and the installation interface document for DAQ in DocDB 7015 [138].

Infrastructure in the CUC will be installed starting in Q4 2022 (Table 7.6). At that point, CF
will have handed the DAQ group an empty room with cooling water and power connections. Over
the next nine months, racks for the DAQ computing will be installed, plumbed into cooling water,
and connected to power and networking. The network connection from this data room to the fiber
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New TPC Installation Concept

Det#1

Det#2

Det#3

Det#4

CUCData
Room

N

Figure 7.21: Top view of the layout at the 4850L at SURF. Shown are the three large excavations and
the location of detectors in the north (upper) and south caverns. The CUC in the middle houses the
DUNE data room where the DAQ will be installed and the underground utilities.

trunks going up the shaft will also be made, as will preparations to receive the multi-mode fiber
connections from the WIB to the FELIX cards housed in servers in these racks. There is space for
60 racks racks, with four set aside for other consortia, 12 per module for upstream DAQ electronics,
and the remaining space for networking and other DAQ computing needs. An initial engineering
design of the computer room is shown in Figure 7.23, which meets all requirements for capacity,
cooling, safety and installation schedule.

Starting in Q3 2023, the data room will be ready for the installation of the DAQ servers servicing
the first module described in Section 7.2.1.2. This will proceed over the next year, with servers
being installed, cabled up, and tested. As much configuring and commissioning work as possible
will be done over the network from the surface (or home institutions), to limit the number of people
underground. Note that this data room is sized for all four modules of DAQ computing, so one
quarter will be installed at this point. If more computing power is needed for the commissioning
of the first module (for example, to deal with unexpected noise levels), space and power will be
borrowed from the provision for future modules until the problems are alleviated. Additional
space for eight racks will be on the surface in the Ross Dry Room. This will house the back-end
computers, high level filter servers, and associated network equipment.

Starting in Q3 2024, the DAQ will thus be ready to connect fibers to the WIBs on the detector
top as planes are installed, to allow their commissioning.

The underground installation phase of the DAQ system has the largest safety implications, which
are discussed in Section 7.6.3.
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Figure 7.22: Top: The overall layout of the DUNE spaces in the CUC. A110 is the DUNE data room,
which houses the underground computing, and A111 is a general-purpose work area (not a control
room, as labeled) that we call the experimental work area. Bottom: The first row of ten racks in the
data room is shown. The first two represent the conventional facilities (CF) interface racks. The images
were taken from the ARUP 90% design drawings U1-FD-A-108 and U1-FD-T-701 [157].
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Figure 7.23: Initial engineering design for the DAQ counting room in the CUC

7.6 Organization and Project Management

7.6.1 Consortium Organization

The DAQ consortium was formed in 2017 as a joint single and dual phase consortium, with a
consortium leader and a technical leader. The current organization of the consortium is shown in
Figure 7.24. The DAQ institution board currently comprises representatives from 34 institutions as
shown in Table 7.5. The consortium leader is the spokesperson for the consortium and responsible
for the overall scientific program and management of the group. The technical leader of the
consortium is responsible for managing the project for the group. The leadership is assisted in
its duties by the Project Office, populated by the Resource Manager, the Software and Firmware
coordinator and the Integration and Support Coordinator, providing support in the corresponding
areas. The consortium is organized into working groups addressing the design, R&D, integration,
and, in the future, construction, commissioning and installation of the key DAQ systems. The
Physics Performance and Facility working groups are not associated to a specific system but provide
oversight of the general DAQ performance in the physics context and the on the interface with the
facility infrastructure. The DAQ working group mandates are detailed in DocDB 14938 [158].

7.6.2 Schedule and Milestones

The high-level DAQ milestones are listed in Table 7.6, interleaved with the top-level DUNE project
milestones, and illustrated in Figure 7.25. Since the DAQ project is largely based on commercial
off-the-shelf components, it can be seen in the overall timeline that many of the components are
procured relatively late in the project schedule.
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Figure 7.24: Organizational chart for the DAQ Consortium
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Figure 7.25: DAQ schedule for first 10 kt module.
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Table 7.5: DAQ Consortium Board institutional members and countries.

Member Institute Country
CERN CERN
Universidad Sergio Arboleda (USA) Colombia
Czech Technical University Czech Republic
Lyon France
INFN Bologna Italy
Iwate Japan
KEK Japan
NIT Kure Japan
NIKHEF Netherlands
University of Birmingham UK
Bristol University UK
University of Edinburgh UK
Imperial College London UK
University College London (UCL) UK
University of Liverpool UK
Oxford University UK
Rutherford Appleton Lab (RAL) UK
University of Sussex UK
University of Warwick UK
Brookhaven National Lab (BNL) USA
Colorado State University (CSU) USA
Columbia University USA
University of California, Davis (UCD) USA
Duke University USA
University of California, Irvine (UCI) USA
Fermi National Accelerator Laboratory (Fermilab) USA
Iowa State University USA
University of Minnesota, Duluth (UMD) USA
University of Notre Dame USA
University of Pennsylvania (Penn) USA
South Dakota School of Mines and Technology (SDSMT) USA
Stanford Linear Accelerator Lab (SLAC) USA
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Table 7.6: DAQ Consortium Schedule

Milestone Date (Month YYYY)
Upstream DAQ Architecture Technology Decision June 2020
Engineering Design Review for Timing System June 2020
Start of ProtoDUNE-SP-II installation March 2021
Production Readiness Review for Timing System June 2021
Preliminary Software Design Review January 2022
Engineering Design Review for Hardware/Firmware March 2022
Start of ProtoDUNE-DP-II installation March 2022
South Dakota Logistics Warehouse available April 2022
Start of Racks Procurement July 2022
Start of DAQ Server Procurement (I) September 2022
Beneficial occupancy of cavern 1 and CUC October 2022
Production Readiness Review for Readout Hardware/Firmware December 2022
End of Racks Procurement March 2023
Start of DAQ Custom Hardware Production March 2023
CUC counting room accessible April 2023
End of DAQ Server Procurement (I) May 2023
Start of DAQ Installation May 2023
DAQ Software Final Design Review June 2023
End of DAQ Custom Hardware Production December 2023
Top of detector module #1 cryostat accessible January 2024
Start of detector module #1 TPC installation August 2024
Start of DAQ Server Procurement (II) September 2024
Top of detector module #2 accessible January 2025
End of DAQ Server Procurement (II) May 2025
End of DAQ installation May 2025
End of detector module #1 TPC installation May 2025
Start of detector module #2 TPC installation August 2025
End of DAQ Standalone Commissioning December 2025
End of detector module #2 TPC installation May 2026
DAQ Server Procurement (III) July 2026
End of DAQ Commissioning December 2026
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7.6.3 Safety and Risks

Personnel safety during design, construction, testing, installation, and commissioning of the system
is crucial for the success of the project. Detector safety during installation, commissioning and
operations is also key to project success. The consortium will strictly follow ES&H guidelines
for the project as well as follow the safety rules of the institutions where the work is performed,
including national laboratories, SURF, and participating universities.

Two overall safety plans will be followed by the FD DAQ. General work underground will comply
with all safety procedures in place for working in the detector caverns and in the CUC under-
ground at SURF. DAQ-specific procedures for working with racks full of electronics or computers,
as defined at Fermilab, will be followed, especially with respect to electrical safety and the fire
suppression system chosen for the counting room. For example, a glass wall between the server
room space and the other areas in the CUC will be necessary to prevent workers in the server room
from being unseen if they are in distress, and an adequate hearing protection regime must be put
in place.

There are no other special safety items for the DAQ system not already covered by the more
general safety plans. The long-term emphasis is on remote operations capability from around the
world, limiting the need for physical presence at SURF, and with underground access required
only for urgent interventions or hardware replacement.

A set of risks to the successful construction and operation of the DAQ system has been identified
by the consortium, and is provided, together with mitigation strategies and pre-mitigation risk
level, in Table 7.7. Post-mitigation risk levels are currently being re-evaluated. Risk is quantified
with respect to probability, cost impact, and schedule impact. High (H), medium (M), and low
(L) probability is identified as > 25%, 10− 25%, and < 10%, respectively; high (H), medium (M),
and low (L) cost impact is identified as > 20%, 5−20%, and < 5% cost increase, respectively; and
high (H), medium (M), and low (L) schedule impact is identified as > 6 months, 2 − 6 months,
and < 2 months delay, respectively.

Table 7.7: DAQ risks (P=probability, C=cost, S=schedule) The risk probability, after taking into
account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%), or H
(high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule delay < 2
months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-DAQ-01 Detector noise specs

not met
ProtoDUNE experience with noise
levels and provisions for data pro-
cessing redundancy in DAQ system;
ensure enough headroom of band-
width to FNAL.

L L L

RT-SP-DAQ-02 Externally-driven
schedule change

Provisions for standalone testing and
commissioning of production DAQ
components, and schedule adjust-
ment

L L L
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RT-SP-DAQ-03 Lack of expert person-
nel

Resource-loaded plan for DAQ
backed by institutional commit-
ments, and schedule adjustment
using float

L L H

RT-SP-DAQ-04 Power/space require-
ments exceed CUC
capacity

Sufficient bandwidth to surface and
move module 3/4 components to an
expanded surface facility

L L L

RT-SP-DAQ-05 Excess fake trigger rate
from instrumental ef-
fects

ProtoDUNE performance experi-
ence, and provisions for increase in
event builder and high level filter
capacity, as needed; headroom in
data link to FNAL.

L L L

RT-SP-DAQ-06 Calibration require-
ments exceed accept-
able data rate

Provisions for increase in event
builder and high level filter capacity,
as neeed; headroom in data link to
FNAL.

L L L

RT-SP-DAQ-07 Cost/performance of
hardware/computing
excessive

Have prototyping and pre-
production phases, reduce per-
formance using margin or identify
additional funds

L L L

RT-SP-DAQ-08 PDTS fails to scale for
DUNE requirements

Hardware upgrade L L L

RT-SP-DAQ-09 WAN network Extensive QA and development of
failure mode recovery and automa-
tion, improved network connectivity,
and personnel presence at SURF as
last resort.

L M M

RT-SP-DAQ-10 Infrastructure Design with redundancy, prior
to construction, and improve
power/cooling system.

M M L

RT-SP-DAQ-11 Custom electronics
manifacturing issues

Diversify the manifacturers used
for production; run an early pre-
production and apply stringent QA
criteria.

L M M

The following risks and mitigation strategies have been identified:

Detector noise specs not met Excessive noise will make it impossible for the DAQ DS to meet
physics goals while generating reasonable data volumes. Prior (to construction) mitigation
includes studying noise conditions at ProtoDUNE, and leaving provisions in the system for
additional front-end filtering (in the form of the upstream DAQ upgradable processing re-
sources) and/or post-event builder processing (in the form of the high level filter). Mitigation
(post-construction) includes augmenting filtering resources using a larger computing system
for the high level filter.

Externally-driven schedule change The DAQ has schedule links during testing, construction,
and installation phases with most other subsystems. Schedule slip elsewhere will potentially
cause delay to the DAQ. Prior mitigation includes making provisions for stand-alone testing
and commissioning of DAQ components, in the form of vertical and horizontal slice tests,
at ProtoDUNE or elsewhere. Mitigation includes adjusting schedule for stand-alone testing
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and commissioning phases.

Lack of expert personnel A significant number of experts in hardware, software, firmware are
needed, and must be sustained throughout the project. Lack of personnel will increase
technical risks and cause delay. Prior mitigation includes developing a full resource-loaded
plan for DAQ, backed by national and institutional commitments, and avoiding single points
of failure. Mitigation includes adaptation of the DAQ schedule, using schedule float.

Power/space requirements exceed CUC capacity The CUC has fixed space and power alloca-
tion for DAQ that cannot be exceeded. Prior mitigation includes allowing sufficient band-
width up the shafts to move the upstream DAQ components for subsequent DUNE far
detector modules (modules 3 and 4) to the surface, or moving some of the DAQ components
to the detector caverns, and carrying out a feasibility study for doing so. Mitigation includes
expending additional resources on an expanded surface facility.

Excess fake trigger rate from instrumental effects Instrumental effects (beyond excessive noise)
can cause fake triggers. Prior mitigation includes studying ProtoDUNE performance in de-
tail, and monitoring detector performance during installation. Mitigation includes substan-
tially increasing data volume, and increasing processing resources in the high level filter.

Calibration requirements exceed acceptable data rate Calibration schemes may require sub-
stantial data volumes, far in excess of triggered data volume, beyond currently envisioned;
e.g., due to offline analysis inefficiencies. Prior mitigation includes allowing for back-end
(EB) system expansion to cope with the increased data rate, and allowing for a high-level fil-
ter data selections stage to carry out online analysis and data reduction. Mitigation includes
increasing the back-end DAQ and high level filter system capacity.

Cost/performance of hardware/computing excessive Costs of system-as-designed may exceed
available budget, due to the IT technology (FPGA, servers, storage) market evolving in an
unfavorable way. Prior mitigation includes the planning of prototyping and pre-construction
phases to allow realistic appraisal of system costs, and applying sufficient margin in perfor-
mance estimates. Mitigation includes reducing performance or identifying additional funds.

ProtoDUNE timing system fails to scale for DUNE requirements The ProtoDUNE timing sys-
tem concept may not scale to DUNE in scale or performance. Prior mitigation includes
testing the system at realistic scale before the final design. Mitigation includes replacing the
system with upgraded hardware.

WAN network The network connectivity to the experiment from remote locations may be proven
unstable, making remote control and monitoring inefficient. Prior mitigation includes ensur-
ing that minimal human intervention is needed on the system for steady data taking and
that automated error recovery is well developed. Mitigation includes effort to further im-
prove automated data taking, and increased cost for improving network connectivity. In the
worst case, one would foresee presence of personnel at SURF.

Infrastructure The power/cooling systems on which the DAQ relies on cause more frequent than
expected downtime. Prior mitigation includes designing, wherever possible, independent and
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redundant systems. Mitigation includes adding more uninterruptible power supplies, and
improving the water cooling system to overcome otherwise degraded experiment uptime.

Custom electronics manufacturing issues Large-scale production of high-speed custom electron-
ics proves challenging, resulting in DAQ installation delays. Prior mitigation includes diver-
sifying manufacturers used for prototype production; assess manufacturer capability to meet
specifications. Mitigation includes running early pre-production with selected manufacturers,
applying stringent QA criteria to ensure compliance with specifications.
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Chapter 8

Cryogenics Instrumentation and Slow Con-
trols

8.1 Introduction

The cryogenic instrumentation and slow controls (CISC) consortium provides comprehensive mon-
itoring for all detector components and for liquid argon (LAr) quality and behavior as well as a
control system for many detector components. The single-phase (SP) and dual-phase (DP) mod-
ules both use the same control system and have nearly identical cryogenics instrumentation except
for differences in location due to the different time projection chamber (TPC) geometries and the
addition of dedicated instrumentation for monitoring temperature and pressure in the gas phase
for the DP module. Volume V, The DUNE Far Detector Dual-Phase Technology, Chapter 6 of
this technical design report (TDR) is virtually the same as this chapter apart from those few
differences.

The consortium responsibilities are split into two main branches: cryogenics instrumentation and
slow controls, as illustrated in Figure 8.1.

Each element of CISC contributes to the DUNE physics program primarily through the mainte-
nance of high detector live time. As described in Volume II, DUNE Physics, of this TDR, neutrino
charge-parity symmetry violation (CPV) and resolution of the neutrino mass hierarchy over the
full range of possible neutrino oscillation parameters will require at least a decade of running
the far detector (FD). Similar requirements apply to searches for nucleon decay and supernova
neutrino burst (SNB) events from within our galaxy. Throughout this long run-time the interior
of any DUNE cryostat remains completely inaccessible. No possibility exists for repairs to any
components that could be damaged within the TPC structure; hence environmental conditions
that present risks must be detected and reported quickly and reliably.

Detector damage risks peak during the initial fill of a module with LAr, as temperature gradients
take on their highest values during this phase. Thermal contractions outside of the range of design
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Figure 8.1: CISC subsystem chart
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expectations could result in broken anode plane assembly (APA) wires, silicon photomultipliers
(SiPMs) in photon detectors (PDs) that detach from the X-ARAPUCA light detectors, or poor
connections at the cathode high voltage (HV) feedthrough point that could lead to unstable E
fields. These considerations lead to the need for a robust temperature monitoring system for
the detector, supplemented with liquid level monitors, and a high-performance camera system to
enable visual inspection of the interior of the cryostat during the filling process. These systems
are fully described in Section 8.2.1 of this chapter.

Argon purity must be established as early as possible in the filling process, a period in which gas
analyzers are most useful, and must maintain an acceptable value, corresponding to a minimum
electron drift lifetime of 3ms, throughout the data-taking period. Dedicated purity monitors
(Section 8.2.2) provide precise lifetime measurements up to values of 10ms, the range over which
electron attenuation most affects signal-to-noise (S/N) in the TPC. The purity monitors and gas
analyzers remain important even after high lifetime has been achieved as periodic detector “top-off”
fills occur; the new LAr must be of very high quality as it is introduced into the cryostat.

The CISC system must recognize and prevent fault conditions that could develop in the detector
module over long periods of running. For example, the liquid level monitors must register any
drop in liquid level; a drop in the level could place top sections of the field cage (FC) or bias
HV points for the APAs close enough to the gas-liquid boundary to trigger sparking events. Very
slow-developing outgassing phenomena could conceivably occur, with associated bubble generation
creating another source of HV breakdown events. The cold camera system enables detection and
identification of bubbling sites, and the development of mitigation strategies such as lower HV
operation for some period of time. A more subtle possibility is the formation of quasi-stable eddies
in argon fluid flow that could prevent positive argon ions from being cleared from the TPC volume,
resulting in space charge build up that would not otherwise be expected at the depth of the FD.
The space charge could in turn produce distortions in the TPC drift field that degrade tracking
and calorimetry performance. The high-performance thermometry of the DUNE CISC system
creates input for well developed complex fluid flow models described in Section 8.1.3 that should
enable detection of conditions associated with these eddies.

Finally, a high detector live-time fraction over multi-year operation cannot be achieved without an
extensive system to monitor all aspects of detector performance, report this information in an intel-
ligent fashion to detector operators, and archive the data for deeper offline studies. Section 8.1.1.2
details the DUNE slow controls system designed for this task.

The baseline designs for all the CISC systems have been used in ProtoDUNE-SP, and most de-
sign parameters are extrapolated from these designs. The ProtoDUNE-SP data (and in some
cases ProtoDUNE-DP data) will therefore be used to validate the instrumentation designs and to
understand their performance.
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8.1.1 Scope

8.1.1.1 Cryogenics Instrumentation

Cryogenics instrumentation includes purity monitors, various types of temperature monitors, and
cameras with their associated light emitting systems. Also included are gas analyzers and LAr
level monitors that are directly related to the external cryogenics system, which have substantial
interfaces with the Long-Baseline Neutrino Facility (LBNF). LBNF provides the needed expertise
for these systems and is responsible for the design, installation, and commissioning, while the CISC
consortium provides the resources and supplements labor as needed.

A cryogenic instrumentation test facility (CITF) for the instrumentation devices is also part of
the cryogenics instrumentation. CISC is responsible for design through commissioning in the SP
module of LAr instrumentation devices: purity monitors, thermometers, capacitive level meters,
cameras, and light-emitting system, and their associated feedthroughs.

Cryogenics instrumentation requires significant engineering, physics, and simulation work, such as
E field simulations and cryogenics modeling studies using computational fluid dynamics (CFD).
E field simulations identify desirable locations for instrumentation devices in the cryostat, away
from regions of high E field, so that their presence does not induce large field distortions. CFD
simulations help identify expected temperature, impurity, and velocity flow distributions and guide
the placement and distribution of instrumentation devices inside the cryostat.

8.1.1.2 Slow Controls

The slow controls portion of CISC consists of three main components: hardware, infrastructure,
and software. The slow controls hardware and infrastructure comprises networking hardware,
signal processing hardware, computing hardware, and associated rack infrastructure. The slow
controls software provides, for every slow control quantity, the central slow controls processing
architecture, databases, alarms, archiving, and control room displays.

CISC provides software and infrastructure for controlling and monitoring all detector elements
that provide data on the health of the detector module or conditions important to the experiment,
as well as some related hardware.

Slow controls base software and databases are the central tools needed to develop control and
monitoring for various detector systems and interfaces. These include:

• base input/output software;
• alarms, archiving, display panels, and similar operator interface tools; and
• slow controls system documentation and operations guidelines.

Slow controls for external systems collect data from systems external to the detector module
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and provide status monitoring for operators and archiving. They collect data on beam status,
cryogenics status, data acquisition (DAQ) status, facilities systems status, interlock status bit
monitoring (but not the actual interlock mechanism), ground impedance monitoring, and possibly
building and detector hall monitoring, as needed.

The DUNE detector safety system (DDSS) can provide inputs to CISC on safety interlock status,
and CISC will monitor and make that information available to the experiment operators and
experts as needed. However, DDSS and CISC are separate monitors, and the slow controls portion
of CISC does not provide any inputs to DDSS. A related question is whether CISC can provide
software intervention before a hardware safety interlock. In principle such intervention can be
implemented in CISC, presumably by (or as specified by) the hardware experts. For example, at
ProtoDUNE-SP, the automatic lowering of HV to clear streamers was implemented in the software
for the HV control using CISC-level software.

Slow controls covers software interfaces for detector hardware devices, including:

• monitoring and control of all power supplies,
• full rack monitoring (rack fans, thermometers and rack protection system),
• instrumentation and calibration device monitoring (and control to the extent needed),
• power distribution unit and computer hardware monitoring,
• HV system monitoring through cold cameras, and
• detector components inspection using warm cameras.

CISC will develop, install, and commission any hardware related to rack monitoring and control.
Most power supplies may only need a cable from the device to an Ethernet switch, but some
power supplies might need special cables (e.g., GPIB or RS232) for communication. The CISC
consortium is responsible for providing these control cables.

CISC has additional activities outside the scope of the consortium that require coordination with
other groups. This is discussed in Section 8.4.4.

8.1.2 Design Considerations

Important design considerations for instrumentation devices include stability, reliability, and longevity,
so that devices can survive for at least 20 years. Such longevity is uncommon for any device, so the
overall design allows replacement of devices where possible. Some devices are critical for filling and
commissioning but less critical for later operations; for these devices we specify a minimum lifetime
of 18 months and 20 years as a desirable goal. DUNE requires the E field on any instrumentation
devices inside the cryostat to be less than 30 kV/cm to minimize the risk of dielectric breakdown
in LAr.

A consideration important for event reconstruction is the maximum noise level induced by instru-
mentation devices that the readout electronics can tolerate. ProtoDUNE-SP is evaluating this.
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Table 8.1 shows the top-level specifications that determine the requirements for CISC together
with selected high-level specifications for CISC subsystems. The physics-driven rationale for each
requirement and the proposed validation are also included in the table. Tables 8.2 and 8.3 show
the full set of specifications for the CISC subsystems. In all these tables two values are quoted
for most of the design parameters: (1) specification, which is the intended value or limits for the
parameter set by physics and engineering needs, and (2) goal, an improved value offering a benefit
which the collaboration aims to achieve where it is cost-effective to do so.

Data from purity monitors and different types of thermometers will be used to validate the LAr
fluid flow model. A number of requirements drive the design parameters for the precision and
granularity of monitor distribution across the cryostat. For example, the electron lifetime mea-
surement precision must be 1.4% to keep the bias on the charge readout in the TPC below 0.5%
at 3ms lifetime. For thermometers, the parameters are driven by the CFD simulations based on
ProtoDUNE-SP design. The temperature measurement resolution must be less than 2mK, and
the relative precision of those measurements must be less than 5mK. The resolution is defined
as the temperature root mean square (RMS) for individual measurements and is driven by the
electronics. The relative precision also includes the effect of reproducibility for successive immer-
sions in LAr. The relative precision is particularly important in order to characterize gradients
below 20mK. As will be described below, the laboratory calibration data and the recent analysis
of thermometer instrumentation data from ProtoDUNE-SP shows that a 2.5mK relative precision
is achievable.

The level meters must have a precision of 0.1% over 14m (i.e., 14mm) for measurement accuracy
during filling. This precision is also sufficient to ensure that the LAr level stays above the ground
planes (GPs) of a single-phase (SP) module. As shown in Table 8.3, several requirements drive
the design of cold and warm cameras and the associated light emitting system. The components
of the camera systems must not contaminate the LAr or produce bubbles so as to avoid increasing
the risk of HV discharge. Both cold and warm cameras must provide coverage of at least 80% of
the TPC volume with a resolution of 1 cm for cold cameras and 2mm for warm cameras on the
TPC.

For the CITF, a cryostat with a capacity of only 0.5 to approximately 3m3 will suffice and will
keep turn-around times and filling costs lower. For gas analyzers, the operating range must allow
establishment of useful electron lifetimes; details are in Table 8.2.

For slow controls, the system must be sufficiently robust to monitor a minimum of 150,000 variables
per detector module, and support a broad range of monitoring and archiving rates; the estimated
variable count, data rate, and archive storage needs are discussed in Section 8.3.4. The system
must also interface with a large number of detector subsystems and establish two-way communi-
cation with them for control and monitoring. For the alarm rate, 150 alarms/day is used as the
specification as it is the maximum to which humans can be expected to respond. The goal for the
alarm rate is less than 50 alarms/day. The alarm logic system will need to include features for
managing “alarm storms” using alarm group acknowledgment, summaries, delays, and other aids.

Table 8.1: CISC specifications

Label Description Specification
(Goal)

Rationale Validation

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 8: Cryogenics Instrumentation and Slow Controls 8–467

SP-FD-5 Liquid argon purity < 100 ppt
(< 30 ppt)

Provides >5:1 S/N on induc-
tion planes for pattern recog-
nition and two-track separa-
tion.

Purity monitors
and cosmic ray
tracks

SP-FD-15
LAr nitrogen con-
tamination

< 25 ppm Maintain 0.5PE/MeV PDS
sensitivity required for trig-
gering proton decay near
cathode.

In situ measure-
ment

SP-FD-18
Cryogenic monitor-
ing devices

Constrain uncertainties on
detection efficiency, fiducial
volume.

ProtoDUNE

SP-FD-25
Non-FE noise contri-
butions

<< 1000 e− High S/N for high recon-
struction efficiency.

Engineering calcu-
lation and Proto-
DUNE

SP-FD-29 Detector uptime > 98%
(> 99%)

Meet physics goals in timely
fashion.

ProtoDUNE

SP-FD-30 Individual detector
module uptime

> 90%
(> 95%)

Meet physics goals in timely
fashion.

ProtoDUNE

SP-CISC-1
Noise from Instru-
mentation devices

<< 1000 e− Max noise for 5:1 S/N for
a MIP passing near cathode;
per SBND and DUNE CE

ProtoDUNE

SP-CISC-2 Max. E field near
instrumentation de-
vices

< 30 kV/cm
(< 15 kV/cm)

Significantly lower than max
field of 30 kV/cm per DUNE
HV

3D electrostatic
simulation

SP-CISC-3 Precision in electron
lifetime

< 1.4%
(< 1%)

Required for accurate charge
reconstruction per DUNE-
FD Task Force report.

ProtoDUNE-SP
and CITF

SP-CISC-4
Range in electron
lifetime

0.04ms to 10ms in
cryostat, 0.04ms to
30ms inline

Slightly beyond best values
observed so far in other de-
tectors.

ProtoDUNE-SP
and CITF

SP-CISC-11 Precision: tempera-
ture reproducibility

< 5 mK
(2mK)

Enables validation of CFD
models, which predicts gra-
dients below 15 mK

ProtoDUNE-SP
and CITF

SP-CISC-14 Temperature stabil-
ity

< 2 mK at all
places and times
(Match precision
requirement at all
places, at all times)

Measure the temp map with
sufficient precision during
the entire duration

ProtoDUNE-SP

SP-CISC-27 Cold camera cover-
age

> 80% of HV sur-
faces
(100%)

Enable detailed inspection of
issues near HV surfaces.

Calculated from
location, validated
in prototypes.

SP-CISC-51 Slow control alarm
rate

< 150/day
(< 50/day)

Alarm rate low enough to al-
low response to every alarm.

Detector module;
depends on exper-
imental conditions

SP-CISC-52 Total No. of vari-
ables

> 150,000
(150,000 to
200,000)

Scaled from ProtoDUNE-SP ProtoDUNE-SP
and CITF

SP-CISC-54 Archiving rate 0.02Hz
(Broad range 1Hz
to 1 per few min.)

Archiving rate different for
each variable, optimized to
store important information

ProtoDUNE-SP
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Table 8.2: List of specifications for the different CISC subsystems (1).

Quantity/Parameter Specification Goal
Noise from Instrumentation devices � 1000 e−

Max. E field near instrumentation devices <30 kV/cm <15 kV/cm
Purity Monitors
Precision in electron lifetime <1.4% at 3 ms, <4% at

9 ms, relative differences
<2.5%

< 1%

Range in electron lifetime 0.04 - 10 ms (0.04 - 30 ms inline)
Longevity 20 years > 20 years
Stability Match precision require-

ment at all places/times
Reliability Daily Measurements Measurements as needed
Thermometers
Vertical density of sensors for T-gradient mon-
itors

> 2 sensor/m > 4 sensors/m

2D horizontal density for top/bottom individ-
ual sensors

1 sensor/5(10) m 1 sensor/3(5) m

Swinging/deflection of T-Gradient monitors < 5 cm < 2 cm
Resolution of temperature measurements < 2 mK <0.5 mK
Precision: temperature reproducibility < 5 mK 2 mK
Reliability 80% (in 18 months) 50% (during 20 years)
Longevity > 18 months > 20 years
Stability < 2mK at all places and

times
Match precision require-
ment at all places/times

Discrepancy between lab and in situ calibra-
tions for temperature sensors

< 5 mK < 3 mK

Discrepancy between measured temperature
map and CFD simulations in ProtoDUNE-SP

< 5 mK

Gas Analyzers
Operating Range O2 0.2 (air) to 0.1 ppt
Operating Range H2O Nom. air to sub-ppb;

contaminant-dependent
Operating Range N2 Nominally Air Nom. air

to sub-ppb; contaminant-
dependent

Precision: 1 sigma at zero per gas analyzer range
Detection limit: 3 sigma Different analyzer mod-

ules needed to cover en-
tire range

Stability <% of full scale range.
Longevity >10 years
Pressure Meters (GAr)
Relative precision (DUNE side) 0.1 mbar
Absolute precision (DUNE side) <5 mbarThe DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report
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Table 8.3: List of specifications for the different CISC subsystems (2)

Quantity/Parameter Specification Goal
Level Meters
Precision (LBNF scope) 0.1% over 14 m (14 mm)
Precision (capacitive level meters, Deep Under-
ground Neutrino Experiment (DUNE) scope)

1 cm <5 mm

Longevity (all) 20 years > 20 years
Cold cameras
Coverage 80% of the exterior of HV

surfaces
100%

Frames per second yet to be defined
Resolution 1 cm on the TPC yet to be defined
Duty cycle yet to be defined
longevity > 18 months > 20 years
Inspection cameras
Coverage 80% of the TPC yet to be defined
Frames per second yet to be defined
Resolution 2 mm on the TPC yet to be defined
heat transfer no generation of bubbles
longevity > 18 months > 20 years
Light emitting system
radiant flux > 10 mW/sr 100 mW/sr
power < 125 mW/LED
wavelength red/green IR/white
longevity > 18 months (for cold

cameras)
> 20 years

cryogenic instrumentation test facility
(CITF)
Dimensions 0.5 to 3 cubic meters
Temperature stability ±1K
Turn-Around time ∼ 9 days 9 days
LAr purity O2, H2O: low enough to

measure drifting electrons
of devices under test, ∼
0.5 ms. N2: ppm for scin-
tillation light tests.

>1.0 ms

Slow Controls
Alarm rate <150/day < 50/day
Total No. of variables per detector module 150,000 150,000 - 200,000
Server rack space 2 racks 3 racks
Archiving rate 0.02 Hz Broad range 1 Hz to 1 per

few min.
Near Detector Status Beam conditions and de-

tector status
Full beam and detector
status
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8.1.3 Fluid Dynamics Simulation

Proper placement of purity monitors, thermometers, and liquid level monitors within the detector
module requires knowing how LAr flows within the cryostat, given its fluid dynamics, heat and mass
transfer, and distribution of impurity concentrations. Fluid flow is also important in understanding
how the positive and negative ion excess created by various sources (e.g., ionization from cosmic
rays and 36Ar) is distributed across the detector as it affects E field uniformity. Finally, CFD
simulations are crucial to predict the purity of the argon in regions where experimental data is
unavailable. The overall goal of the CFD simulations is to better understand and predict the fluid
(in either liquid or vapor state) motions and the implications for detector performance.

Fluid motion within the cryostat is driven primarily by small changes in density caused by thermal
gradients within the fluid although pump flow rates and inlet and outlet locations also contribute.
Heat sources include exterior heat from the surroundings, interior heat from electronics, and heat
flow through the pump inlet. In principle, purity monitors can be placed throughout the cryostat
to determine if the argon is pure enough for experimentation. However, some areas inside the
cryostat are off limits for such monitors.

The fluid flow behavior can be determined by simulating LAr flow within a detector module
using Siemens Star-CCM+1, a commercially available CFD code. Such a model must properly
define the fluid characteristics, solid bodies, and fluid-solid interfaces, as well as provide a way to
measure contamination, while still maintaining reasonable computation times. In addition, these
fluid dynamics simulations can be compared to available experimental data to assess simulation
accuracy and credibility.

Although simulation of the detector module presents challenges, acceptable simplifications can
accurately represent the fluid, the interfacing solid bodies, and variations of contaminant concen-
trations. Because of the magnitude of thermal variation within the cryostat, modeling of the LAr is
simplified by using constant thermophysical properties, calculating buoyant force with the Boussi-
nesq Model (using a constant density for the fluid with application of a temperature-dependent
buoyant force), and a standard shear stress transport turbulence model. Solid bodies that touch
the LAr include the cryostat wall, cathode planes, anode planes, GP, and FC. As in previous CFD
models of the DUNE 35 ton prototype and ProtoDUNE-SP [159], the FC planes, anode planes,
and GP can be represented by porous bodies. Because impurity concentration and electron lifetime
do not affect fluid flow, these variables can be simulated as passive scalars, as is commonly done
for smoke released [160] in air or dyes released in liquids.

Discrepancies between real data and simulations may affect detector performance. Simulation
results contribute to decisions about where to place sensors and monitors, and to the definitions
of various calibration quantities. Methods of mitigating such risks include well established con-
vergence criteria, sensitivity studies, and comparison to results of previous CFD simulation work.
Moreover, the simulation will be improved with input from LAr temperature and purity measure-
ments and validation tests from ProtoDUNE-SP2.

1https://mdx.plm.automation.siemens.com/star-ccm-plus
2Because ProtoDUNE-DP was not instrumented with high-precision thermometers in the liquid phase and because

the cryogenics design is the same for SP and DP modules of the DUNE FD, ProtoDUNE-SP data will be used to validate
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Taking into account that the CFD model can predict both temperature and impurity levels, the
procedure for validating and tuning the CFD model will be the following: (1) use temperature
measurements in numerous locations in the cryostat to constrain temperature predictions and
improve the CFD model, (2) use the improved model to predict the LAr impurity level at the purity
monitor locations, and (3) compare the predictions to the actual purity monitor measurements to
further constrain the CFD model.

Figure 8.2 shows an example of the temperature distribution on a plane intersecting a LAr inlet and
at a plane halfway between an inlet and an outlet; the geometry used for this simulation is shown
in Figure 8.33. Note the plume of higher temperature LAr between the walls and the outer APA on
the inlet plane. The current placement of instrumentation in the cryostat as shown in Figure 8.5
was determined using temperature and impurity distributions from previous simulations.

Figure 8.2: Distribution of temperature on a plane intersecting an inlet (left) and halfway between an
inlet and an outlet (right), as predicted by previous CFD simulations (from [159]). (See Figure 8.3 for
geometry.)

The strategy for future CFD simulations begins with understanding the performance of the ProtoDUNE-
SP cryogenics system and modeling the detector modules to derive specifications for instrumen-
tation. We are pursuing a prioritized set of studies to help determine the requirements for other
systems. We plan to

• Review the DUNE FD cryogenics system design and verify the current implementation in
simulation to ensure that the simulation represents the actual design.

• Model the ProtoDUNE-SP liquid and gas regions with the same precision as the FD. Presently,
we have only the liquid model, which is needed to interpret the thermometer data. The gas
model is needed to see how to place thermometers in the ullage and verify the design of the
gaseous argon purge system.

the liquid CFD model.
3The inlet and outlet map has recently changed; it now consists of two rows of 64 inlets each at each longer side of

the cryostat and four outlets along the shorter sides (drift direction) of the cryostat.
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Figure 8.3: Layout of the SP module within the cryostat (top) and positions of LAr inlets and outlets
(bottom) as modeled in the CFD simulations [159]. The y axis is vertical and the x axis is parallel to
the TPC drift direction. Inlets are shown in green and outlets are shown in red.

• Verify the CFD model for the SP module in a simulation performed by LBNF; this defines
the requirements for instrumentation devices (e.g., thermometry).

8.1.3.1 Validation in ProtoDUNE

ProtoDUNE-SP has collected data to validate the CFD using:

• static and dynamic T-gradient thermometers,
• individual temperature sensors placed in the return LAr inlets,
• two 2D grids of individual temperature sensors installed below the bottom ground planes

and above the top ground planes,
• a string of three purity monitors vertically spaced from near the bottom of the cryostat to

just below the LAr surface,
• two pressure sensors (relative and absolute) in the argon gas,
• H2O, N2, and O2 gas analyzers,
• LAr level monitors, and
• standard cryogenic sensors including pressure transducers, individual temperature sensors

placed around the cryostat on the membrane walls, and recirculation flow rates transducers.

The data, which have been logged through the ProtoDUNE-SP slow control system [161], are
available for offline analysis.

In parallel, CISC has produced a ProtoDUNE-SP CFD model with input from ProtoDUNE-SP
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measurements (see Table 8.4). Streamlines4 from the current simulation (Figure 8.4) show the
flow paths from the four cryostat inlets to the outlet. The validation of this model consists of an
iterative process in which several versions of the CFD simulation, using different input parameters,
eventually converge to a reasonable agreement with data from instrumentation devices. Those
comparisons will be shown in Section 8.2.1.4.

Table 8.4: CFD input parameters for ProtoDUNE-SP

Parameter Value Comments
Cryostat height 7.878 m Measured with laser (1 cm error approx.)
LAr surface height 7.406 m Measured by capacitive level meter (< 1 cm error)
Ullage pressure 1.045 bar Measured by pressure gauges
LAr surface temperature 87.596 K Computed using ullage pressure and [162]
LAr inlet temperature bulk LAr + 0.2 K Estimated from pressure settings in cryo-system
LAr flow rate per pipe 0.417 kg/s Estimated from cryostat filling rate

Figure 8.4: Streamlines for LAr flow inside ProtoDUNE-SP

Once the ProtoDUNE-SP CFD model predicts the fluid temperature in the entire cryostat to a
reasonable level under different conditions, we will use it to produce maps of impurity levels in the
detector module. These can be easily converted into electron lifetime maps, which we will compare
to the ProtoDUNE-SP purity monitor data.

8.2 Cryogenics Instrumentation

Instrumentation inside the cryostat must accurately report the condition of the LAr so that we
can ensure that it is adequate to operate the TPC. This instrumentation includes purity monitors

4In fluid mechanics, a streamline is a line that is everywhere tangent to the local velocity vector. For steady flows, a
streamline also represents the path that a single particle of the fluid will take from inlet to exit.
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to check the level of impurity in the argon and to provide high-precision electron lifetime mea-
surements, as well as gas analyzers to verify that the levels of atmospheric contamination do not
rise above certain limits during the cryostat purging, cooling, and filling. Temperature sensors
deployed in vertical arrays and at the top and bottom of the detector module monitor the cryogen-
ics system operation, providing a detailed 3D temperature map that helps predict the LAr purity
across the entire cryostat. The cryogenics instrumentation also includes LAr level monitors and a
system of internal cameras to help find sparks in the cryostat and to monitor the overall cryostat
interior.

The proper placement of purity monitors, thermometers, and liquid-level monitors in the detector
module requires understanding the LAr fluid dynamics, heat and mass transfer, and the distri-
bution of impurity concentrations within the cryostat. Both this and coherent analysis of the
instrumentation data require CFD simulation results.

ProtoDUNE-SP is testing the performance of purity monitors, thermometers, level monitors and
cameras for the SP module, validating the baseline design.

8.2.1 Thermometers

As discussed in Section 8.1.3, a detailed 3D temperature map is important for monitoring the
cryogenics system for correct functioning and the LAr for uniformity. Given the complexity and
size of purity monitors, they can only be installed on the sides of the cryostat to provide a local
measurement of LAr purity. A direct measurement of the LAr purity across the entire cryostat
is not feasible, but a sufficiently detailed 3D temperature map based on CFD simulations can
predict it. The vertical coordinate is especially important because it will relate closely to the LAr
recirculation and uniformity.

The baseline sensor distribution and the cryostat ports used to extract cables (with indication of
number of cables per port) are shown in Figure 8.5. The baseline distribution will evolve as more
information becomes available (precise CFD simulations, better understanding of detector support
system (DSS) ports, installation interfaces with other groups), but the baseline suffices to establish
the overall strategy.

High-precision temperature sensors will be distributed near the TPC walls in two ways: (1) forming
high density (> 2 sensors/m) vertical arrays (called T-gradient monitors) and (2) in coarser (∼ 1
sensor/5m) 2D arrays (called individual sensors) at the top and bottom of the detector module,
where it is most crucial to know the temperature.

Expected temperature variations inside the cryostat are very small (0.02 K; see Figure 8.2), so
sensors must be cross-calibrated to better than 0.005 K. Most sensors will be calibrated in the
laboratory before installation (installation is described in Section 8.4.5.2). Calibration before
installation is the only option for sensors installed on the long sides of the detector and the top
and bottom of the cryostat, where space is limited. Given the precision required and the unknown
longevity of the sensors – possibly requiring another calibration after some time – an additional
method will be used for T-gradient monitors installed on the short ends of the detector in the space
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Figure 8.5: Distribution of temperature sensors inside the cryostat
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between the field cage end walls and the cryostat walls. There is sufficient space in this area for a
movable system, which can be used to cross calibrate the temperature sensors in situ, as described
in 8.2.1.1.

The baseline design for all thermometer systems have three elements in common: sensors, cables,
and readout system. We plan to use Lake Shore PT100-series5 platinum sensors with 100W resis-
tance because in the temperature range 83K to 92K they show high reproducibility of ∼ 5 mK and
absolute temperature accuracy of 100mK. Using a four-wire readout greatly reduces issues related
to lead resistance, any parasitic resistances, connections through the flange, and general electro-
magnetic noise pick-up. Lakeshore PT102 sensors (see Figure 8.13, right) were used in the 35 ton
prototype and ProtoDUNE-SP, giving excellent results. For the inner readout cables, a custom
cable made by Axon6 is the baseline. It consists of four teflon-jacketed copper wires (American
wire gauge (AWG) 28), forming two twisted pairs, with a metallic external shield and an outer
teflon jacket. The readout system is described in Section 8.2.1.5.

Another set of lower-precision sensors epoxied into the bottom membrane of the cryostat will
monitor the cryostat filling in the initial stage. Finally, the inner walls and roof of the cryostat
will have the same types of sensors to monitor the temperature during cool-down and filling (“W”
sensors in Figure 8.5).

8.2.1.1 Dynamic T-gradient monitors

To address concerns about potential differences in sensor readings prior to and after installation
in a detector module, and potential drifts over the lifetime of the module that may affect accuracy
of the vertical temperature gradient measurement, a dynamic temperature monitor allows cross-
calibration of sensor readings in situ. Namely, this T-gradient monitor is motorized, allowing
vertical motion of the temperature sensor array in the detector module, enabling precise cross-
calibration between the sensors, as illustrated in Figure 8.6.

The procedure for cross-calibrations is the following: in step 1, the temperature reading of all
sensors is taken at the home (lowest) position of the carrier rod. In step 2, the stepper motor
moves the carrier rod up 25 cm. Since the sensors along the entire carrier rod are positioned
25 cm apart, when the system is moved up 25 cm, each sensor is positioned at the height that
was occupied by another sensor in step 1. Then a second temperature reading is taken. In
this manner, except for the lowest position, two temperature measurements are taken at each
location with different sensors. Assuming that the temperature at each location is stable over
the few minutes required to make the measurements, any difference in the temperature readings
between the two different sensors is due to their relative measurement offset. This difference
is then calculated for all locations. In step 3, readout differences between pairs of sensors at
each location are linked to one another, expressing temperature measurements at all heights with
respect to a single sensor. In this way, temperature readings from all sensors are cross-calibrated
in situ, canceling all possible offsets due to electromagnetic noise or any parasitic resistances that
may have prevailed despite the four-point connection to the sensors that should cancel most of

5Lake Shore Cryotronics™ platinum RTD series, https://www.lakeshore.com/.
6Axon™ Cable, http://www.axon-cable.com.
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Figure 8.6: In step 1, sensor temperature measurements are taken with the T-gradient monitor in the
home position. In step 2, the entire system is moved up 25 cm and another set of temperature readings
is taken by all sensors. Then, the offsets between pairs of sensors are calculated for each position. In
step 3, offsets are linked together, providing cross-calibration of all sensors, to obtain the entire vertical
temperature gradient measurement with respect to a single sensor (number 1 in this case).
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the offsets. These measurements are taken with a very stable current source, which ensures high
precision of repeated temperature measurements over time. The motion of the dynamic T-monitor
is stepper-motor operated, delivering measurements with high spatial resolution.

A total of 72 sensors will be installed with 25 cm spacing, decreased to 10 cm spacing for the top
and bottom 1m of the carrier rod. The vertical displacement of the system is such that every
sensor can be moved to the nominal position of at least five other sensors, minimizing the risks
associated with sensor failure and allowing for several points of comparison. The total expected
motion range of the carrier rod is 1.35m.

This procedure was tested in ProtoDUNE-SP, where the system was successfully moved up by a
maximum of 51 cm, allowing cross-calibration of all sensors (22 sensors with 10.2 cm spacing at
top and bottom and 51 cm in the middle).

Figure 8.7 shows the temperature profile after calibration when the recirculation pumps are off.
Under these conditions the temperature should be very homogeneous except near the surface. This
is indeed what is observed in that figure, demonstrating the reliability of the method.

Figure 8.7: Temperature profile as measured by the dynamic T-gradient monitor after cross-calibration,
when the recirculation pumps are off. Temperature variation is of the order of 3mK except close to the
top and the gas phase interface, as expected.

A dynamic T-gradient monitor has three parts: a carrier rod on which sensors are mounted; an
enclosure above the cryostat housing space that allows the carrier rod to move vertically 1.5m over
its lowest location; and the motion mechanism. The motion mechanism consists of a stepper motor
connected through a ferrofluidic dynamic seal to a gear and pinion motion mechanism. The sensors
have two pins soldered to a PCB. Two wires are individually soldered to the common soldering
pad for each pin. A cutout in the PCB around the sensor allows free flow of argon for more
accurate temperature readings. Stepper motors typically have very fine steps that allow highly
precise positioning of the sensors. Figure 8.8 shows the overall design of the dynamic T-gradient
monitor. The enclosure has two parts connected by a six-cross flange. One side of this flange will
be used for signal wires, another will be used as a viewing window, and the two other ports will be
spares. Figure 8.9, left shows the PCB mounted on the carrier rod and the sensor mounted on the
PCB along with the four point connection to the signal readout wires. Figure 8.9, right shows the
stepper motor mounted on the side of the rod enclosure. The motor remains outside the enclosure,
at room temperature, as do its power and control cables.
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Figure 8.8: A schematic of the dynamic T-gradient monitor.

Figure 8.9: Left: Sensor mounted on a PCB board and PCB board mounted on the rod. Right: The
driving mechanism of the dynamic T-gradient monitor, consisting of a stepper motor driving the pinion
and gear linear motion mechanism.

8.2.1.2 Static T-gradient monitors

Several vertical arrays of high-precision temperature sensors cross-calibrated in the laboratory
will be installed behind the APAs. The baseline design assumes six arrays with 48 sensors each.
Spacing between sensors is 20 cm at the top and bottom and 40 cm in the middle area. This
configuration is similar to the one used in ProtoDUNE-SP but with nearly double the spacing.
As shown in Figure 8.10 a configuration with 48 sensors was appropriate in ProtoDUNE-SP, as it
should be in the SP module where the expected total gradient is no larger than in ProtoDUNE-SP
(see Figure 8.2).

Sensors will be cross-calibrated in the laboratory using a controlled environment and a high-
precision readout system, described in Section 8.2.1.5. The accuracy of the calibration for ProtoDUNE-
SP was estimated to be 2.6 mK, as shown in Figure 8.11. Preliminary results for the analysis of
ProtoDUNE-SP static T-gradient monitor data are shown in Figure 8.10. The temperature profile
has been computed using both the laboratory calibration and the so-called “in-situ pump-off cali-
bration,” which consists of estimating the offsets between sensors assuming the temperature of LAr
in the cryostat is homogeneous when the re-circulation pumps are off (the validity of this method
is demonstrated in Section 8.2.1.1). The RMS of the difference between both methods is 4.6 mK,
slightly larger than the value quoted above for the accuracy of the laboratory calibration, due to
the presence of few outliers (under investigation) and to the imperfect assumption of homogeneous
temperature when pumps are off (see Figure 8.7).

Figure 8.12 shows the baseline mechanical design of the static T-gradient monitor. Two strings
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Figure 8.10: Left: Temperature profile as measured by the static T-gradient monitor for two different
calibration methods. Right: Distribution of the difference between both methods.

Figure 8.11: Left: Temperature offset between two sensors as a function of time for four independent
immersions in LAr. The reproducibility of those sensors, defined as the RMS of the mean offset in
the flat region, is ∼ 1 mK, The resolution for individual measurements, defined as the RMS of one
offset in the flat region, is better than 0.5mK. Right: Difference between the mean offset obtained
with two independent calibration methods for the 51 calibrated sensors. The standard deviation of this
distribution is interpreted as precision of the calibration.
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Figure 8.12: Conceptual design of the static T-gradient monitor.

(stainless steel or carbon fibre) are anchored at the top and bottom corners of the cryostat using the
available M10 bolts (see Figure 8.13, left). One string routes the cables while the other supports
the temperature sensors. Given the height of the cryostat, an intermediate anchoring point to
reduce swinging is under consideration. A prototype is being built at IFIC, Spain, where the full
system will be mounted using two dummy cryostat corners.

Figure 8.13 (right) shows the baseline design of the (52× 15 mm2) PCB support for temperature
sensors with an IDC-4 male connector. A narrower connector (with two rows of two pins each)
is being studied. This alternative design would reduce the width of the PCB assembly and allow
more sensors to be calibrated simultaneously. Each four-wire cable from the sensor to the flange
will have an IDC-4 female connector on the sensor end; the flange end of the cable will be soldered
or crimped to the appropriate connector, whose type and number of pins depend on the final
design of the DSS ports that will be used to extract the cables. SUBD-25 connectors were used in
ProtoDUNE-SP.

8.2.1.3 Individual Temperature Sensors

T-gradient monitors will be complemented by a coarser 2D array (every 5m) of precision sensors at
the top and bottom of the detector module, as shown in Figure 8.5. Following the ProtoDUNE-SP
design, bottom sensors will use the cryogenic pipes as a support structure, while top sensors will
be anchored to the GPs. Although sensors at the top will have a similar distribution to those at
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Figure 8.13: Left: bolts at the bottom corner of the cryostat. Right: Lakeshore PT102 sensor mounted
on a PCB with an IDC-4 connector.

the bottom, suitable anchoring points at the top and bottom will differ.

As in ProtoDUNE-SP, another set of standard sensors will be evenly distributed and epoxied to
the bottom membrane. They will detect the presence of LAr when cryostat filling starts. Finally,
two vertical arrays of standard sensors will be epoxied to the lateral walls in two opposite vertical
corners, with a spacing of 102 cm (every three corrugations), to monitor the cryostat membrane
temperature during the cool-down and filling processes.

Whereas in ProtoDUNE-SP cables were routed individually (without touching neighboring cables
or any metallic elements) to prevent grounding loops in case the outer Teflon jacket broke, such a
failure has been proved to be very unlikely. Thus, in the detector modules, cables will be routed
in bundles, simplifying the design enormously. As Figure 8.5 shows, up to 20 sensors will use the
same DSS port, large enough for a cable bundle 16mm in diameter.

Cable bundles of several sizes will be configured using custom made Teflon pieces that will be
anchored to different cryostat and detector elements to route cables from sensors to DSS ports.
For sensors at the bottom (on pipes and floor), cables will be routed towards the cryostat bottom
horizontal corner using stainless steel split clamps anchored to pipes (successfully prototyped in
ProtoDUNE-SP), and from there, to the top of the cryostat using vertical strings (as with static T-
gradient monitors). For sensors on the top GPs, cables bundles will be routed to the corresponding
DSS port using Teflon supports attached to both the FR-4 threaded rods in the union between two
GP modules and to the DSS I-beams (both successfully prototyped in ProtoDUNE-SP). Sensors
on the walls will use bolts in the vertical corners for cable routing.

For all individual sensors, PCB sensor support, cables, and connection to the flanges will be the
same as for the T-gradient monitors.

8.2.1.4 Analysis of temperature data in ProtoDUNE-SP

Temperature data from ProtoDUNE-SP has been recorded since LAr filling in August 2018. The
analysis of this data and the comparison with CFD simulations is actively underway, but interesting
preliminary results are available and are described below. Figure 8.14 shows the distribution of
temperature sensors in the ProtoDUNE-SP cryostat.
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Figure 8.14: Distribution of temperature sensors in the ProtoDUNE-SP cryostat. Notice that four of
the bottom sensors are located right above the LAr inlets. Purity monitors and level meters are also
indicated.

All precision temperature sensors (for the static and dynamic T-gradient monitors, and the 2D
arrays at top and bottom) were calibrated in the laboratory prior to installation, as described in
Section 8.2.1.2. However, since the calibration method was still under development when those sen-
sors were installed, this calibration was only satisfactory (2.6mK precision) for the static T-gradient
monitor, for which the sensors were calibrated last and plugged in just few days prior to installa-
tion in the cryostat. In Section 8.2.1.2, an additional calibration method, the so-called “pumps-off
calibration,” is described and the agreement with the laboratory calibration was demonstrated (see
Figure 8.10). Since this is the only reliable calibration for individual sensors, this method is used
for the data analysis presented in this section, for all sensors except for the dynamic T-gradient
monitor, for which the calibration based on the movable system is more precise (see Section 8.2.1.1).

Figure 8.15 shows the vertical temperature profiles as measured by the dynamic and static T-
gradient monitors during a 10 minute period in May 2019. The stability of these profiles has been
carefully studied: the relative variation between any two sensors on the same profiler remained
below 3mK during the entire data taking period, demonstrating that the shape of the profiles is
nearly constant in time. In Figure 8.15 it is clear that the shapes of the two profiles are similar,
with a bump at 6.2m, but the magnitude of variation of the static profile almost doubles compared
to the dynamic profile. This effect is attributed to the fact that the dynamic T-gradient monitor is
in the path of the LAr flow, which makes the temperature more uniform, while the static profiler
is on the side.

We can use temperature measurements by the bottom sensor grid to connect the two different
regions covered by the T-gradient monitors. Figure 8.16 shows the temperature difference between
bottom sensors and the second sensor of the static T-gradient monitor, 40 cm from the floor, which
is used as a reference. Also shown in the figure is the dynamic T-gradient monitor’s third sensor,
located at a similar height. Three different periods are shown in the figure: two periods with
pumps-on and one period with pumps-off. It is observed that when the pumps are working, the
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Figure 8.15: Temperature profiles measured by the T-gradient monitors and comparison to the CFD
model with different boundary conditions. Left: dynamic T-gradient monitor; Right: Static T-gradient
monitor.

temperature decreases towards the LAr pump, and is higher in the sensors below the cathode. The
horizontal gradient observed in this situation is of the order of 20mK – larger than the vertical
gradient. When the pumps are off the horizontal gradient decreases, although a residual gradient
of 5mK is observed. This gradient is attributed to the inertia of the liquid once the pumps are
switched off: it takes more than one day to recover the horizontal homogeneity.

Figure 8.16: Temperature difference between bottom sensors at 40 cm from the floor and static T-
gradient sensor at same height. The third dynamic T-gradient sensor, at the same height, is also
shown. Two pumps-on periods (left and middle panels) and one pump-off period (right panel) are
shown.

CFD simulations have been produced using different inputs. We have identified two parameters as
potential drivers of the convection regime: (1) the incoming LAr flow rate, and (2) the incoming
LAr temperature. Figure 8.15 shows the result of varying these parameters. The CFD model
reasonably predicts the main features of the data, but some details still need to be understood,
in particular the bump at 6.2m and the lower measured temperature at the bottom. It is worth
noting that the simulation depends minimally on the LAr temperature while the flow rate has more
impact, especially in the regions where discrepancies are larger. All simulations use the nominal
LAr flow rate, 0.42 kg/s, except the one explicitly indicated in the plots that uses half that rate.
More simulations with other LAr flow rates are still in progress.

The CFD reassuringly predicts a reasonable response for more than one set of initial conditions. It
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is still important to measure the instrumentation response to help establish the validity of the CFD
model. We did not run tests with differing initial conditions during the beam run because even
controlled changes of the cryostat environment could have undesirable effects. However, recently
we ran dedicated tests to validate the CFD under various deliberate changes of the cryostat. These
additional tests included pump and recirculation manipulations (such as pump on-off, change of
pumping speed, and bypassing of filtration), and changing the cryostat pressure set point to a
higher (or lower) value7 to induce changes in the pressure for a specified time while monitoring
the instrumentation. Any change in pressure could change the temperatures everywhere in the
cryostat. Studying the rate of this change, as detected at various heights in the cryostat, might
provide interesting constraints on the CFD model.

8.2.1.4.1 Comparison of calibration methods

Three different calibration methods have been described above: a laboratory calibration prior to
installation, the “pumps off” calibration, and the movable system calibration. The underlying
assumption is that reliable temperature monitoring at the few mK level is desirable during the
entire lifetime of the experiment, both to guarantee the correct functioning of the cryogenics system
and to compute offline corrections based on temperature measurements and CFD simulations.
This is only possible if an in situ calibration method is available, since relative calibration between
sensors is expected to diverge with time. Two in situ methods have been used. The pumps-off
calibration method is very powerful since it is the only way of cross-calibrating all sensors in the
cryostat at any point in time. However, it relies on the assumption that the temperature is uniform
when the recirculation pumps are off. The validity of this assumption has to be bench-marked
with real data, and this is done in ProtoDUNE-SP using the calibration based on the movable
system (see Figure 8.7). The movable system calibration method is the most precise and the one
that sustains all other methods, providing a reliable reference during the entire lifetime of the
experiment. This method is even more crucial for the FD. Indeed, recirculation pumps will be
located on one side of the cryostat, very far (almost 60m) from some regions of the LAr volume,
where the inertia will be more pronounced and the homogeneous temperature assumption becomes
less valid.

8.2.1.5 Readout system for thermometers

A high-precision and very stable system is required to achieve a readout level of < 5 mK. The
proposed readout system was used in ProtoDUNE-SP and relies on a variant of an existing mass
PT100 temperature readout system developed at European Organization for Nuclear Research
(CERN) for an LHC experiment; it has already been tested and validated in ProtoDUNE-SP. The
system has an electronic circuit that includes

• a precise and accurate current source8 for the excitation of the temperature sensors measured
7The HV was ramped down for this exercise because dropping the pressure too fast might provoke boiling of the LAr

near the surface.
8The actual current delivered is monitored with high-precision resistors such that the effect of ambient temperature
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using the four-wires method,
• a multiplexing circuit connecting the temperature sensor signals and forwarding the selected

signal to a single line, and
• a readout system with a high-accuracy voltage signal readout module9 with 24 bit resolution

over a 1V range.

This readout system also drives the multiplexing circuit and calculates temperature values. The
CompactRIO device is connected to the detector Ethernet network, sending temperature values
to the DCS software through a standard OPC-UA driver.

The current mode of operation averages more than 2000 samples taken every second for each
sensor. Figure 8.11 shows the system has a resolution higher than 1mK, the RMS of one of the
offsets in the stable region.

8.2.2 Purity Monitors

A fundamental requirement of a liquid argon time-projection chamber (LArTPC) is that ionization
electrons drift over long distances in the liquid. Part of the charge is inevitably lost due to
electronegative impurities in the liquid. To keep this loss to a minimum, monitoring impurities
and purifying the LAr during operation is essential.

A purity monitor is a small ionization chamber used to infer independently the effective free electron
lifetime in the LArTPC. It illuminates a cathode with UV light to generate a known electron
current, then collects the drifted current at an anode a known distance away. Attenuation of the
current is related to the electron lifetime. Electron loss can be parameterized as N(t) = N(0)e−t/τ ,
where N(0) is the number of electrons generated by ionization, N(t) is the number of electrons
after drift time t, and τ is the electron lifetime.

For the SP module, the drift distance is 3.5m, and the E field is 500V · cm−1. Given the drift
velocity of approximately 1.5mm · µs−1 in this field, the time to go from cathode to anode is roughly
∼2.4ms [103]. The LArTPC signal attenuation, [N(0)−N(t)]/N(0), must remain less than 20%
over the entire drift distance [163]. The corresponding electron lifetime is 2.4 ms/[− ln(0.8)] '
11 ms.

Residual gas analyzers can be used to monitor the gas in the ullage of the tank and would be
an obvious choice for analyzing argon gas. Unfortunately, suitable and commercially available
mass spectrometers have a detection limit of ∼10 parts per billion (ppb), whereas DUNE requires
a sensitivity of parts per trillion (ppt). Therefore, specially constructed and distributed purity
monitors will measure LAr purity in all phases of operation. These measurements, along with an
accurate CFD model, enable the determination of purity at all positions throughout the detector
module.
can be disentangled.

9National Instrument CompactRIO™ device with a signal readout NI9238™ module.
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Purity monitors are placed inside the cryostat but outside of the TPC. They are also placed
within the recirculation system outside the cryostat, both in front of and behind the filtration
system. Continuous monitoring of the LAr supply lines to the detector module provides a strong
line of defense against contamination from sources both in the LAr volume and from components
in the recirculation system. Similarly, gas analyzers (described in Section 8.2.5) protect against
contaminated gas.

Furthermore, using several purity monitors to measure lifetime with high precision at carefully
chosen points provides key input, e.g., vertical gradients in impurity concentrations, for CFD
models of the detector module.

Purity monitors were deployed in previous LArTPC experiments, e.g., ICARUS, MicroBooNE,
and the 35 ton prototype. During the first run of the 35 ton prototype, two of the four purity
monitors stopped working during cool-down, and a third operated intermittently. We later found
that this was due to poor electrical contacts between the resistor chain and the purity monitor. A
new design was implemented and successfully tested in the second run.

ProtoDUNE-SP and ProtoDUNE-DP use purity monitors to measure electron lifetime at different
heights, and they use a similar design.

Figure 8.17 shows the assembly of the ProtoDUNE-SP purity monitors. The design reflects im-
provements to ensure electrical connectivity and improve signals. ProtoDUNE-SP uses a string of
purity monitors connected with stainless steel tubes to protect the optical fibers.

Figure 8.17: The ProtoDUNE-SP purity monitoring system

ProtoDUNE-SP implements three purity monitors. The purity monitors continuously monitored
LAr purity during all commissioning, beam test and operation periods of ProtoDUNE-SP. Fig-
ure 8.18 shows the ProtoDUNE-SP data taken using its three purity monitors from commissioning
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of ProtoDUNE-SP starting in September 2018, through the entire beam running period, to July
2019.

Figure 8.18: The electron lifetimes measured by three purity monitors in ProtoDUNE-SP as a function
of time, September 2018 through July 2019. The purity is low prior to start of circulation in October.
Reasons for later dips include recirculation studies and recirculation pump stoppages.

Although ProtoDUNE-SP receives ample cosmic ray data to perform electron lifetime measure-
ments, the purity monitor system was found to be essential for providing quick, reliable real-time
monitoring of purity in the detector and to catch purity-related changes in time due to LAr re-
circulation issues. Each purity monitor electron lifetime measurement is based on purity monitor
anode-to-cathode signal ratios from 200 UV flashes within 40 seconds at the same location. The
statistical error on this lifetime measurement is less than 0.03ms when the purity is 6ms.

The purity monitor system at ProtoDUNE-SP measured electron lifetime every hour during com-
missioning and daily during the beam test. During this time, it alerted the experiment to problems
several times. The first time was for filter saturation during LAr filling, and the others were for
recirculation pump stoppages, false alarms, and problems from the cryostat-level gauges. The dips
in Figure 8.18 show these sudden changes in purity caught by purity monitors. Given the high
sensitivity, the ProtoDUNE-SP purity monitors were immediately able to alert the experiment to
the purity drops, preventing situations which otherwise would have continued unnoticed for some
time, with potentially serious consequences for the ability to take any data.

During the commissioning and beam test of ProtoDUNE-SP, the purity monitors operated with
different high voltages to change electron drift time, ranging from 150 µs to 3ms. This allowed
the ProtoDUNE-SP purity monitors to measure electron lifetime from 35µs to about 10ms with
high precision, a dynamic range greater than 300. This measurement was also valuable for the
ProtoDUNE-SP lifetime calibration. Because purity monitors have much smaller drift volumes
than the TPC, they are less affected by the space charge caused by cosmic rays.

A similar operation plan is planned for the SP module, with modifications to accommodate the
relative positions of the instrumentation port and the purity monitor system, and the different
geometric relationships between the TPC and cryostat.
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8.2.2.1 Purity Monitor Design

The SP module baseline purity monitor design follows that of the ICARUS experiment (Fig-
ure 8.19)[164]. It consists of a double-gridded ion chamber immersed in the LAr volume with four
parallel, circular electrodes, a disk holding a photocathode, two grid rings (anode and cathode),
and an anode disk. The cathode grid is held at ground potential. The cathode, anode grid, and
anode each hold separate bias voltages and are electrically accessible via modified vacuum-grade
HV feedthroughs. The anode grid and the field-shaping rings are connected to the cathode grid
by an internal chain of 50MW resistors to ensure the uniformity of the E fields in the drift regions.
A stainless mesh cylinder is used as a Faraday cage to isolate the purity monitor from external
electrostatic background.

The purity monitor measures the electron drift lifetime between its anode and cathode. The
purity monitor’s UV-illuminated photocathode generates the electrons via the photoelectric effect.
Because the electron lifetime in LAr is inversely proportional to the electronegative impurity
concentration, the fraction of electrons generated at the cathode that arrives at the anode (QA/QC)
after the electron drift time t gives a measure of the electron lifetime τ : QA/QC ∼ e−t/τ .

Figure 8.19: Schematic diagram of the basic purity monitor design [164].

Once the electron lifetime becomes much larger than the drift time t the purity monitor reaches
its sensitivity limit. For τ >> t, the anode-to-cathode charge ratio becomes ∼1. Because the drift
time is inversely proportional to the E field, in principle, lowering the field should make it possible
to measure lifetimes of any length, regardless of the length of the purity monitor. On the other
hand, increasing the voltage will shorten the drift time, allowing measurement of a short lifetime
when purity is low.

The electron lifetime of the purest commercial LAr, after the first filtering and during the filling
process, is typically higher than 40µs. However, when the filter starts to saturate, the lifetime
decreases to less than 30µs. To reduce the energy loss due to impurities, the SP module requires
an electron lifetime greater than 3ms.

Varying the operational HV on the anode from 250V to 4000V in the ProtoDUNE-SP’s 24 cm (9.5
inch) long purity monitor allowed us to make the 35 µs to 10ms electron lifetime measurements.
Purity monitors with different lengths (drift distances) are needed to extend the measurable range
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to below 35µs and above 10ms.

The photocathode that produces the photoelectrons is an aluminum plate coated first with 50Å
of titanium followed by 1000Å of gold, and is attached to the cathode disk. A xenon flash lamp
is the light source in the baseline design, although a more reliable and possibly submersible light
source, perhaps LED-driven, could replace this in the future. The UV output of the lamp is quite
good, approximately λ = 225 nm, which corresponds closely to the work function of gold (4.9 eV
to 5.1 eV). Several UV quartz fibers carry the xenon UV light into the cryostat to illuminate the
photocathode. Another quartz fiber delivers the light into a properly biased photodiode outside
the cryostat to provide the trigger signal when the lamp flashes.

8.2.2.2 Electronics, DAQ, and Slow Controls Interfacing

The purity monitor electronics and DAQ system consist of front-end (FE) electronics, waveform
digitizers, and a DAQ PC. Figure 8.20 illustrates the system.
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Figure 8.20: Block diagram of the purity monitor system.

The baseline design of the FE electronics follows that used in the 35 ton prototype, Liquid Argon
Purity Demonstrator (LAPD), and MicroBooNE. The cathode and anode signals are fed into
two charge amplifiers contained within the purity monitor electronics module. This electronics
module includes a HV filter circuit and an amplifier circuit, both shielded by copper plates, to
allow the signal and HV to be carried on the same cable and decoupled inside the purity monitor
electronics module. A waveform digitizer that interfaces with a DAQ PC records the amplified
anode and cathode outputs. The signal and HV cable shields connect to the grounding points of the
cryostat and are separated from the electronic ground with a resistor and a capacitor connected in
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parallel, mitigating ground loops between the cryostat and the electronics racks. Amplified output
is transmitted to an AlazarTech ATS310 waveform digitizer10 containing two input channels, each
with 12 bit resolution. Each channel can sample a signal at a rate of 20MS · s−1 to 1 kS · s−1 and
store up to 8MS in memory. One digitizer is used for each purity monitor, and each digitizer
interfaces with the DAQ PC across the PCI bus.

A custom LabVIEW11 application running on the DAQ PC has two functions: it controls the
waveform digitizers and the power supplies, and it monitors the signals and key parameters. The
application configures the digitizers to set the sampling rate, the number of waveforms to be stored
in memory, the pre-trigger data, and a trigger mode. A signal from a photodiode triggered by the
xenon flash lamp is fed directly into the digitizer as an external trigger to initiate data acquisition.
LabVIEW automatically turns on the xenon flash lamp by powering a relay when data taking
begins and then turns it off when finished. The waveforms stored in the digitizers are transferred
to the DAQ PC and used to obtain averaged waveforms to reduce the electronic noise in them.

The baseline is estimated by averaging the waveform samples prior to the trigger. This baseline is
subtracted from the waveforms prior to calculating peak voltages of the cathode and anode signals.
The application performs these processes in real time. The application continuously displays the
waveforms and important parameters like measured electron lifetime, peak voltages, and drift time
in the purity monitors, and shows the variation in these parameters over time, thus pointing out
effects that might otherwise be missed. Instead of storing the measured parameters, the waveforms
and the digitizer configurations are recorded in binary form for offline analysis. HV modules12 in
a WIENER MPOD mini crate13 supply negative voltages to the cathode and positive voltages to
the anode. The LabVIEW application controls and monitors the HV systems through an Ethernet
interface.

The xenon flash lamp and the FE electronics are installed close to the purity monitor flange, to
reduce light loss through the optical fiber and prevent signal loss. Other pieces of equipment
that distribute power to these items and collect data from the electronics are mounted in a rack
separate from the cryostat. The slow control system communicates with the purity monitor DAQ
software and controls the HV and LV power supplies of the purity monitor system. The optical
fiber must be placed within 0.5mm of the photocathode for efficient photoelectron extraction, so
little interference with the photon detection system (PD system) is expected. The purity monitors
could induce noise in the TPC electronics, in particular via the current surge through a xenon
lamp when it is flashed. This source of noise can be controlled by placing the lamp inside its own
Faraday cage with proper grounding and shielding. At ProtoDUNE-SP, after careful checks of the
grounding, this noise has remained well below the noise generated by other sources.

In the SP module we can make use of triggering to prevent any potential noise from the purity
monitor’s flash lamp from affecting TPC and PD system signals. The LArTPC trigger rate is a
few hertz, and each trigger window is one or a few milliseconds. The pulse from a flash lamp is
very short (a microsecond or so, much shorter than the gaps between LArTPC trigger windows).
Thus, a LArTPC trigger signal may be sent to a programmable pulse generator, which generates

10AlazarTech ATS310™ - 12 bit, 20 MS/s, https://www.alazartech.com/Product/ATS310.
11National Instruments, LabVIEW™, http://www.ni.com/en-us.html
12iseg Spezialelektronik GmbH™ high voltage supply systems, https://iseg-hv.com/en.
13W-IE-NE-R MPOD™ Universal Low and High Voltage Power Supply System, http://www.wiener-d.com/.
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a trigger pulse that does not overlap with LArTPC trigger windows. This trigger pulse is then
sent to the external trigger port on the flash lamp HV controller so that the lamp flashes between
LArTPC trigger windows. In this way, the electronic and light noises from the flash lamp do not
affect data taking at all.

8.2.2.3 Production and Assembly

The CISC consortium will produce the individual purity monitors, test them in a test stand, and
confirm that each monitor operates at the required level before assembling them into the strings
of three monitors each that will be mounted in the SP module cryostat using support tubes. The
assembly process will follow the methodology developed for ProtoDUNE.

A short version of the string with all purity monitors will be tested at the CITF. The full string
will be assembled and shipped to South Dakota. A vacuum test in a long vacuum tube will be
performed on-site before inserting the full assembly into the SP module cryostat.

8.2.3 Liquid Level Meters

The goals for the LAr level monitoring system are basic level sensing when filling, and precise level
sensing during static operations.

Filling the cryostat with LAr will take several months. During this operation several systems
will be use to monitor the LAr level. The first 5.5m will be covered by cameras and by the
vertical arrays of resistance temperature detectors (RTDs) at known heights, since temperature
will change drastically when the cold liquid reaches each RTD. Once the liquid reaches the level of
the cryogenics pipes going out of the cryostat, the differential pressure between that point and the
bottom of the cryostat can be converted to depth using the known density of LAr. Fine tuning of
the final LAr level will be done using several capacitive level meters at the top of the cryostat.

During operation, liquid level monitoring has two purposes: the LBNF cryogenics system uses
monitoring to tune the LAr flow, and DUNE uses monitoring to guarantee that the top GPs are
always submerged at least 20 cm below the LAr surface to mitigate the risk of dielectric breakdown.
This was the value used for the HV interlock in ProtoDUNE-SP.

The LAr flow is tuned using two differential pressure level meters, installed as part of the cryogenics
system, one on each side of the detector module. They have a precision of 0.1%, which corresponds
to 14mm at thenominal LAr surface. Cryogenic pressure sensors will be purchased from commercial
sources. Installation methods and positions will be determined as part of the cryogenics internal
piping plan.

For HV integrity, multiple 4m long capacitive level sensors (with a precision of less than 5mm)
will be deployed along the top of the fluid for use during stable operations, and checked against
each other. One capacitive level sensor at each of the four corners of the cryostat will provide
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sufficient redundancy to ensure that no single point of failure compromises the measurement.

Figure 8.21 shows the evolution of the ProtoDUNE-SP LAr level over two months as measured by
the differential pressure and capacitive level meters.

Figure 8.21: Evolution of the ProtoDUNE-SP LAr level over two months. Left: Measured by the
capacitive level meter. Right: Measured by the differential pressure level meter. The units in the
vertical axis are percentages of the cryostat height (7878mm).

ProtoDUNE-SP uses the same design for differential pressure level meters as the SP module. In
the case of capacitive level meters, ProtoDUNE-SP is using commercially bought 1.5m long level
meters while ProtoDUNE-DP is using 4m long level meters that are custom-built by CERN. We
plan to use the longer capacitive level meters custom-built by CERN for both SP and DP modules.

8.2.4 Pressure Meters

The absolute temperature in the liquid varies with the pressure in the argon gas in the ullage
of the cryostat, therefore, precise measurements of pressure inside the cryostat allow for a better
understanding of temperature gradients and CFD simulations. In ProtoDUNE-SP, pressure values
were also used to understand the strain gauge signals installed in the cryostat frame.

Standard industrial pressure sensors can be used to measure the pressure of the argon gas. For
the DUNE FD, the plan is to follow the same design and configuration used in ProtoDUNE-SP.
ProtoDUNE uses two types of pressure sensors and a pressure switch,

• a relative pressure sensor (range: 0-400 mbar, precision: 0.01 mbar),
• an absolute pressure sensor (range: 0-1600 mbar, precision: 0.05 mbar), and
• a mechanical relative pressure switch adjustable from 50 to 250 mbar.

Both sensors and the pressure switch are installed in a dedicated flange as shown in Figure 8.22
and are connected directly to a slow controls system PLC circuit. Dedicated analog inputs are used
to read the current values (4mA to 20mA) which are then converted to pressure according to the
sensors range. Given the much larger size of the DUNE detector modules, the system described
above will be doubled for redundancy: two flanges in opposite cryostat sides will be instrumented
with three sensors each.

Further, relative and absolute pressure sensors (with comparatively lower precision) are installed
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Figure 8.22: Photograph of the pressure sensors installed on a flange in ProtoDUNE-SP.

by LBNF that are also recorded by the slow controls system. The availability of two types of
sensors from LBNF and CISC provides redundancy, independent measurements, and cross checks.

8.2.5 Gas Analyzers

Gas analyzers are commercially produced modules that measure trace quantities of specific gases
contained within a stream of carrier gas. The carrier gas for DUNE is argon, and the trace gases of
interest are oxygen (O2), water (H2O), and nitrogen (N2). O2 and H2O affect the electron lifetime
in LAr and must be kept below 0.1 ppb (O2 equivalent) while N2 affects the efficiency of scintillation
light production at levels higher than 1 ppm. The argon is sampled from either the argon vapor
in the ullage or from the LAr by using small diameter tubing run from the sampling point to the
gas analyzer. Typically, the tubing from the sampling points are connected to a switchyard valve
assembly used to route the sample points to the desired gas analyzers (see Figure 8.23).

The gas analyzer would be predominantly used during three periods:

1. Once the detector is installed and after the air atmosphere is eliminated from the cryostat
to levels low enough to begin cool-down. This purge and gas recirculation process is detailed
in Section 8.4.5.3. Figure 8.24 shows the evolution of the N2, O2, and H2O levels from gas
analyzer data taken during the purge and recirculation stages of the DUNE 35 ton prototype
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Figure 8.23: A gas analyzer switchyard that routes sample points to the different gas analyzers.
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phase 1 run.

2. Before other means of monitoring impurity levels (e.g., purity monitors, or TPC tracks) are
sensitive, to track trace O2 and H2O contaminants from tens of ppb to hundreds of ppt.
Figure 8.25 shows an example plot of O2 levels at the beginning of LAr purification from one
of the later 35 ton prototype HV runs.

3. During cryostat filling to monitor the tanker LAr delivery purity. This tracks the impu-
rity load on the filtration system and rejects any deliveries that do not meet specifications.
Specifications for the delivered LAr are in the 10 ppm range per contaminant.

Figure 8.24: Plot of the O2, H2O, and N2 levels during the piston purge and gas recirculation stages of
the 35 ton prototype Phase 1 run

Since any one gas analyzer covers only one contaminant species and a range of 3 to 4 orders of
magnitude, several units are needed both for the three contaminant gases and to cover the ranges
seen between cryostat closure and the beginning of TPC operations: 20% to . 100 ppt for O2,
80% to . 1 parts per million (ppm) for N2, and ∼ 1 % to . 1 ppb for H2O. Because the total
cost of these analyzers exceeds $100 k, we want to be able to sample more than a single location or
cryostat with the same gas analyzers. At the same time, the tubing run lengths from the sample
point should be as short as possible to maintain a timely response for the gas analyzer. This puts
some constraints on sharing devices because, for example, argon is delivered at the surface, so a
separate gas analyzer may be required there.

8.2.6 Cameras

Cameras provide direct visual information about the state of the detector module during critical
operations and when damage or unusual conditions are suspected. Cameras in the WA105 DP
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Figure 8.25: O2 as measured by a precision O2 analyzer just after the 35 ton prototype cryostat was
filled with LAr, continuing with the LAr pump start and beginning of LAr recirculation through the
filtration system. As the gas analyzer loses sensitivity, the purity monitor can pick up the impurity
measurement. Note that the purity monitor is sensitive to both O2 and H2O impurities giving rise to
its higher levels of impurity.

demonstrator showed spray from cool-down nozzles and the level and state of the LAr as it covered
the charge-readout plane (CRP) [165]. A camera was used in the LAPD cryostat[164] to study HV
discharges in LAr and in EXO-100 while a TPC was operating [166]. Warm cameras viewing LAr
from a distance have been used to observe HV discharges in LAr in fine detail [167]. Cameras are
commonly used during calibration source deployment in many experiments (e.g., the KamLAND
ultra-clean system [168]).

In DUNE, cameras will verify the stability, straightness, and alignment of the hanging TPC struc-
tures during cool-down and filling; ensure that no bubbling occurs near the GPs (SP) or CRPs
(DP); inspect the state of movable parts in the detector module (calibration devices, dynamic ther-
mometers); and closely inspect parts of the TPC after any seismic activity or other unanticipated
event. For these functions, a set of fixed cold cameras are used; they are permanently mounted at
fixed points in the cryostat for use during filling and commissioning, and a movable, replaceable
warm inspection camera can be deployed through any free instrumentation flange at any time
during the life of the experiment.

Eleven cameras were deployed in ProtoDUNE-SP at the locations shown in Figure 8.26. They
successfully provided views of the detector during filling and throughout its operation.

The following sections describe the design considerations for both cold and warm cameras and
the associated lighting system. ProtoDUNE-SP camera system designs and performance are also
discussed. The same basic designs can be used for both the SP module and the DP module.
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Figure 8.26: A 3D view showing the locations of the 11 cameras in ProtoDUNE-SP.

8.2.6.1 Cryogenic Cameras (Cold)

The fixed cameras monitor the following items during filling:

• positions of corners of APA, cathode plane assembly (CPA), FCs, GPs (1mm resolution);
• relative straightness and alignment of APA, CPA, and FC (. 1 mm);
• relative positions of profiles and endcaps (0.5mm resolution); and
• the LAr surface, specifically, the presence of bubbling or debris.

One design for the DUNE fixed cameras uses an enclosure similar to the successful EXO-100
design [166], which was also successfully used in the LAPD and ProtoDUNE-SP (see Figure 8.27).
Cameras 101, 102, 104, and 105, shown in Figure 8.26, use this enclosure. A thermocouple in
the enclosure allows temperature monitoring, and a heating element provides temperature control.
SUB-D connectors are used at the cryostat flanges and the camera enclosure for signal, power, and
control connections.

An alternative design uses an acrylic enclosure. This design was used successfully in ProtoDUNE-
SP (see Figure 8.27, bottom left). Cameras 001, 002, 004, and 005, shown in Figure 8.26, use
acrylic enclosures. All operate successfully, including those at the bottom of the cryostat. The FD
modules will be twice as deep as ProtoDUNE, and therefore cameras observing the lowest surfaces
of the FC must withstand twice the pressure.

Improved designs for the cold cameras will be tested in ProtoDUNE-DP and CITF for improved
imaging including focus adjustment, and in CITF for pressure resistance, during 2020.
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Figure 8.27: Top left: a CAD exploded view of a vacuum-tight camera enclosure suitable for cryogenic
applications [166]. (1) quartz window, (2 and 7) copper gasket, (3 and 6) flanges, (4) indium wires,
(5) body piece, (8) signal feedthrough. Top right: two of the ProtoDUNE-SP cameras using a stainless
steel enclosure. Bottom left: one of the ProtoDUNE-SP cameras using acrylic enclosure. Bottom
right: a portion of an image taken with ProtoDUNE-SP camera 105 showing a purity monitor mounted
outside the APA on the beam left side. This photo was taken with ProtoDUNE-SP completely filled.

8.2.6.2 Inspection Cameras (Warm)

The inspection cameras are intended to be as versatile as possible. The following inspections have
been identified as likely uses:

• status of HV feedthrough and cup,
• status of FC profiles, endcaps (0.5mm resolution),
• vertical deployment of calibration sources,
• status of thermometers, especially dynamic thermometers,
• HV discharge, corona, or streamers on HV feedthrough, cup, or FC,
• relative straightness and alignment of APA, CPA, and FC (1mm resolution),
• gaps between CPA frames (1mm resolution),
• relative position of profiles and endcaps (0.5mm resolution), and
• sense wires at the top of outer wire planes in SP APA (0.5mm resolution).

Unlike the fixed cameras, the inspection cameras must operate only as long as any inspection; the
cameras can be replaced in case of failure. It is also more practical to keep the cameras continuously
warmer than −150 ◦C during deployment; this allows use of commercial cameras, e.g., cameras of
the same model were used successfully to observe discharges in LAr from 120 cm away [167].

The inspection cameras use the same basic enclosure design as for cold cameras, but the cameras
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are mounted on a movable fork so that each camera can be inserted and removed from the cryostat,
using a design similar to the dynamic temperature probes: see Figure 8.28 (left) and Figure 8.9.
To avoid contaminating the LAr with air, the entire system is sealed, and the camera can only be
deployed through a feedthrough equipped with a gate valve and a purging system, similar to the
one used in the vertical axis calibration system at KamLAND [168]. The entire system is purged
with pure argon gas before the gate valve is opened.

250 Gate
Valve

Cryostat 
Crossing

Tube

Vacuum
Pump

Ar Purge

Camera
Mode-Lock

vessel

C
am

era
Figure 8.28: Left: An overview of the inspection camera design using a sealed deployment system
opening directly into the cryostat. Right: A photo of the ProtoDUNE-SP warm inspection camera
acrylic tube, immediately before installation; the acrylic tube is sealed with an acrylic dome at the
bottom and can be opened at the top.

Motors above the flange allow the fork to be rotated and moved vertically to position the camera.
A chain drive system with a motor mounted on the end of the fork allows the camera assembly to
tilt, creating a point-tilt mount that can be moved vertically. With the space above the cryostat
flanges and the thickness of the cryostat insulation, cameras can be moved vertically up to 1m
inside the cryostat. The motors for rotation and vertical motion are outside the sealed volume,
coupled mechanically using ferrofluidic seals, thus reducing any risk of contamination and allowing
manual rotation of the vertical drive if the motor fails.

An alternative design was demonstrated in ProtoDUNE-SP. In this design, the warm camera is
contained inside a gas-tight acrylic tube inserted into the feedthrough, so a gate valve or a gas-
tight rotatable stage is not needed, and the warm cameras can be removed for servicing or upgrade
at any time. Figure 8.28 (right) shows an acrylic tube enclosure and camera immediately before
deployment. These acrylic tube enclosures for removable cameras were deployed in ProtoDUNE-
SP at the positions marked 201, 202, and 203 in Figure 8.26; they operated successfully. Cameras
with fisheye lenses were used in these tubes during initial operation. One camera was removed
without any evidence of contamination of the LAr. We plan to use other cameras during post-beam
running.

Improved designs for the inspection cameras will be tested in the CITF and ProtoDUNE-SP during
2020 and 2021, focusing particularly on longevity, camera replaceability, and protection of the LAr.
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8.2.6.3 Light-emitting system

The light-emitting system uses LEDs to illuminate the parts of the detector module in the camera’s
field of view with selected wavelengths (IR and visible) that cameras can detect. Performance
criteria for the light-emission system include the efficiency with which the cameras can detect the
light and the need to avoid adding heat to the cryostat. Very high-efficiency LEDs help reduce heat
generation; one 750 nm LED [169] has a specification equivalent to 33% conversion of electrical
input power to light.

While data on how well LEDs perform at cryogenic temperatures is sparse, some studies of NASA
projects [170] indicate that LEDs are more efficient at low temperatures and that emitted wave-
lengths may change, particularly for blue LEDs. In ProtoDUNE-SP, amber LEDs were observed
to emit green light at LAr temperature (bottom right photo in Figure 8.27). To avoid degradation
of wavelength-shifting materials in the PD system, short wavelength LEDs are not used in the FD;
LEDs will be tested in LN2 to ensure their wavelength is long enough.

LEDs are placed in a ring around the outside of each camera, pointing in the same direction
as the lens, to illuminate nearby parts of the detector module within the camera’s field of view.
Commercially available LEDs exist with a range of angular spreads that can be matched to the
needs of the cameras without additional optics.

Additionally, chains of LEDs connected in series and driven with a constant-current circuit are
used for broad illumination, with each LED paired in parallel with an opposite polarity LED and
a resistor (see Figure 8.29). This allows two different wavelengths of illumination using a single
chain simply by changing the direction of the drive current, and allows continued use of an LED
chain even if individual LEDs fail.

Figure 8.29: Example schematic for LED chain, allowing failure tolerance and two LED illumination
spectra.

8.2.7 Cryogenics Instrumentation Test Facility

The CISC consortium plans to build a cryogenic instrumentation test facility (CITF) at Fermi
National Accelerator Laboratory (Fermilab) to facilitate testing of various cryogenics instrumenta-
tion devices and small-scale assemblies of CISC systems. In the past and recent times, various test
facilities at Fermilab have provided access to small (< 1 ton) to intermediate (∼ 1 ton) volumes
of purified TPC-grade LAr, required for any device intended for drifting electrons for millisecond
periods.
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The Proton Assembly Building (PAB) facility at Fermilab houses the ICEBERG R&D cryostat and
electronics (ICEBERG) 3000 liter cryostat, which enables fast turnaround testing for the DUNE
cold electronics (CE).

The PAB facility also includes TallBo (450 liter), Blanche (500 liter), and Luke (250 liter) cryostats.
In the recent past, Blanche has been used for HV studies, TallBo for PD studies, and Luke for the
material test stand work. These studies have contributed to the design and testing of ProtoDUNE-
SP components.

8.2.8 Validation in ProtoDUNE

Design validation and testing of many planned CISC systems for the SP module will be done using
the data from ProtoDUNE-SP and ProtoDUNE-DP as discussed below.

• Level Meters: The same differential pressure level meters which are already validated in
ProtoDUNE-SP will be used in the SP module. The same capacitive level meters currently
used in ProtoDUNE-DP will be used in the SP module. These will be validated in the
upcoming ProtoDUNE-DP run.

• Pressure Meters (GAr): The same high-precision pressure sensors that are already validated
in ProtoDUNE-SP will be used in SP FD.

• Gas Analyzers: The same gas analyzers currently used in ProtoDUNE-SP will be used in
the SP module, so they have already been validated.

• High-precision thermometer arrays in LAr: The static and dynamic T-gradient thermometers
discussed in the previous sections are validated using ProtoDUNE-SP data.

• Purity Monitors: The same purity monitor basic design used in ProtoDUNE-SP will be used
in the SP module. ProtoDUNE-2 at CERN provides opportunities to test any improvements
to the design.

• Cameras: various types of cameras are being actively developed in both ProtoDUNE-SP and
ProtoDUNE-DP so these detectors will perform validation of the designs. Future improve-
ments can be tested in ProtoDUNE-2 at CERN.

8.3 Slow Controls

The slow controls system collects, archives, and displays data from a broad variety of sources and
provides real-time status, alarms, and warnings for detector operators. The slow control system
also provides control for items such as HV systems, TPC electronics, and PD systems. Data is
acquired via network interfaces. Figure 8.30 shows connections between major parts of the slow
controls system and other systems.

The ProtoDUNE-SP detector control system[161] fully met its operational requirements. Sec-
tion 8.3.6 provides a short description of the ProtoDUNE-SP slow controls and its performance.
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Figure 8.30: Typical slow controls system connections and data flow

8.3.1 Slow Controls Hardware

Slow controls is expected to need a modest amount of dedicated hardware, largely for rack mon-
itoring, and a small amount of dedicated network and computing hardware. Slow controls also
relies on common infrastructure as described in Section 8.3.2.

8.3.1.1 Dedicated Monitoring Hardware

Every rack (including those in the central utility cavern (CUC)) should have dedicated hardware
to monitor rack parameters like rack protection system, rack fans, rack air temperatures, thermal
interlocks with power supplies, and any interlock bit status monitoring needed for the racks. For
the racks in the CUC server room, this functionality is built into the proposed water cooled racks,
as already in place at ProtoDUNE. For the racks on the detector itself, the current plan is to
design and install a custom-built 1U rack-mount enclosure containing a single-board computer
to control and monitor various rack parameters. Such a system has been successfully used in
MicroBooNE. The design is being improved for the SBND experiment (see Figure 8.31). Other
slow controls hardware includes interfacing cables like adapters for communication and debugging
and other specialized cables like GPIB or National Instruments cables. The cable requirements
must be determined in consultation with other groups once hardware choices for various systems
are finalized.

8.3.1.2 Slow Controls Network Hardware

The slow controls data originates from the cryogenics instrumentation and from other systems
as listed in Table 8.5. This data is collected by software running on servers (Section 8.3.1.3)
housed in the underground data room in the CUC, where data is archived in a central CISC
database. The instrumentation data is transported over conventional network hardware from any
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Figure 8.31: Rack monitoring box prototype in development for the SBND experiment based on the
original design from MicroBooNE.

sensors located in the cryogenics plant. However, the readouts that are in the racks on top of
the cryostats must be cautious about grounding and noise. Therefore, each rack on the cryostat
has a small network switch that sends any network traffic from that rack to the CUC via a fiber
transponder. This is the only network hardware specific to slow controls and will be provided by
Sanford Underground Research Facility (SURF)’s general computing infrastructure. The network
infrastructure requirements are described in Section 8.3.2.

8.3.1.3 Slow Controls Computing Hardware

Two servers (a primary server and a replicated backup) suitable for the relational database dis-
cussed in Section 8.3.3 are located in the CUC data room, with an additional two servers to
service the FE monitoring interface. These additional servers would cover assembling dynamic
CISC monitoring web pages from adjacent databases. Yet another server will be needed to run
back-end I/O. Any special purpose software, such as iFix used by the cryogenics experts, would
also run here. One or two additional servers should accommodate these programs. Replicating
this setup on a per-module basis would make commissioning and independent operation easier,
accommodate different module design (and the resulting differences in database tables), and ensure
sufficient capacity. These four sets of networking hardware would fit tightly into one rack or very
comfortably into two.

8.3.2 Slow Controls Infrastructure

The data rate will be in the range of tens of kilobytes per second, given the total number of
slow controls quantities and the update rate (see Section 8.3.4), placing minimal demands on local
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network infrastructure. Network traffic out of SURF to Fermilab will primarily be database calls to
the central CISC database, either from monitoring applications or from database replication to the
offline version of the CISC database. This traffic requires little bandwidth, so the proposed general
purpose links both out of the underground area at SURF and back to Fermilab can accommodate
the traffic.

Up to two racks of space and appropriate power and cooling are available in the CUC’s DAQ server
room for CISC use. This is ample space as described in Section 8.3.1.3.

8.3.3 Slow Controls Software

To provide complete monitoring and control of detector subsystems, the slow controls software
includes

• the control systems base for input and output operations and defining processing logic, scan
conditions, and alarm conditions;

• an alarm server to monitor all channels and send alarm messages to operators;
• a data archiver for automatic sampling and storing values for history tracking; and
• an integrated operator interface providing display panels for controls and monitoring.

In addition, the software must be able to interface indirectly with external systems (e.g., cryogenics
control system) and databases (e.g., beam database) to export data into slow controls process
variables (or channels) for archiving and status displays. This allows us to integrate displays
and warnings into one system for the experiment operators and provides integrated archiving for
sampled data in the archived database. As one possibility, an input output controller running
on a central DAQ server could provide soft channels for these data. Figure 8.30 shows a typical
workflow of a slow controls system.

The key features of the software require highly evolved software designed to manage real-time data
exchange, scalable to hundreds of thousands of channels sampled at intervals of hours to seconds as
needed. The software must be well documented, supported, and reliable. The base software must
also allow easy access to any channel by name. The archiver software must allow data storage in
a database with adjustable rates and thresholds so data for any channel can be easily retrieved
using channel name and time range. Among other key features, the alarm server software must
remember the state, support an arbitrary number of clients, and provide logic for delayed alarms
and acknowledging alarms. A standard naming convention for channels will be part of the software
to help handle large numbers of channels and subsystems.

The ProtoDUNE-SP detector control system software [161] provides a prototype for the FD slow
controls software. In ProtoDUNE-SP, the unified control system base is WinCC OA [171], a
commercial toolkit used extensively at CERN, with device interfaces supported using several stan-
dardized interface protocols. A more detailed description is in Section 8.3.6 below. WinCC OA is
our baseline for the FD slow control software. EPICS [172] is an alternative controls system which
also meets the specifications; it is used in other neutrino experiments including MicroBooNE [4]
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and NOvA [173].

8.3.4 Slow Controls Quantities

The final set of quantities to monitor will ultimately be determined by the subsystems being
monitored, documented in appropriate interface control documents (ICDs), and continually revised
based on operational experience. The total number of quantities to monitor has been roughly
estimated by taking the total number monitored in ProtoDUNE-SP[161], 7595 as of Nov. 19, 2018,
and scaling by the detector length and the number of planes, giving approximately 150,000 per
detector module. Quantities should update on average no more than once per minute. Transmitting
a single update for each channel at that rate translates to a few thousand updates per second,
or a few tens of thousands of bytes per second. While this is not a significant load on a network
with an efficient slow controls protocol, it would correspond to approximately 1TB per year per
detector module if every timestamp and value were stored. The actual data volume will be lower
because values are stored only if they vary from previous values by more than an amount that is
adjustable channel-by-channel. Database storage also allows data to be sparsified later. No slow
controls data is planned to be written to the DAQ stream. With careful management of archiving
thresholds for each quantity monitored and yearly reduction of stored sample time density, the
retained data volume can be reduced to a few TB over the life of the experiment.

The subsystems to be monitored include the cryogenics instrumentation described in this chapter,
the other detector systems, and relevant infrastructure and external devices. Table 8.5 lists the
quantities expected from each system.

8.3.5 Local Integration

The local integration of the slow controls consists entirely of software and network interfaces with
systems that are outside of the scope of the detector module. This includes the following:

• readings from the LBNF-managed external cryogenics systems, for status of pumps, flow
rates, inlet, and return temperature and pressure, which are implemented via OPC-UA or a
similar SCADA interface;

• beam status, such as protons-on-target, rate, target steering, and beam pulse timing, which
are retrieved via IFbeam; and

• near detector status, which can be retrieved from a common slow controls database.

Integration occurs after both the slow controls and non-detector systems are in place. The LBNF-
CISC interface is managed by the cryogenics systems working group in CISC (see Section 8.4),
which includes members from both CISC and LBNF. The IFbeam DB interface for slow controls is
an already well established method used in MicroBooNE, NOvA, and other Fermilab experiments.
An internal near detector (ND)/FD working group can be established to coordinate detector status
exchange between the near and far sites.
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Table 8.5: Slow controls quantities

System Quantities
Detector cryogenics instrumentation
Purity monitors anode and cathode charge, bias voltage and current, flash lamp

status, calculated electron lifetime
Thermometers temperature, position of dynamic thermometers
Liquid level liquid level
Gas analyzers purity level readings
Pressure meters pressure readings
Cameras camera voltage and current draw, temperature, heater current

and voltage, lighting current and voltage
Other detector systems
Cryogenic internal piping feedthrough gas purge flow and temperature
HV systems drift HV voltage and current, end-of-field cage current and

bias voltage, electron diverter bias, ground plane currents
TPC electronics voltage and current to electronics
PD voltage and current for photodetectors and electronics
DAQ warm electronics currents and voltages, run status, DAQ buffer

sizes, trigger rates, data rates, GPS status, computer and disk
health status, other health metrics as defined by DAQ group

CRP / APA bias voltages and currents
Infrastructure and external systems
Cryogenics (external) status of pumps, flow rates, inlet and return temperature and

pressure (via OPC or similar SCADA interface)
Beam status protons on target, rate, target steering, beam pulse timing (via

IFbeam)
Near detector near detector run status (through common slow controls

database)
Rack power and status power distribution unit current and voltage, air temperature,

fan status if applicable, interlock status
Detector calibration systems
Laser laser power, temperature, operation modes, other system sta-

tus as defined by calibration group
External neutron source safety interlock status, power supply monitoring, other system

status as defined by calibration group
External radioactive source system status as defined by calibration group
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8.3.6 Validation in ProtoDUNE

The ProtoDUNE-SP detector control system has met all requirements for operation of ProtoDUNE-
SP [161] and will be used for ProtoDUNE-DP. The requirements for ProtoDUNE are nearly identi-
cal to those for the SP module other than total channel count. Of particular note, the ProtoDUNE
slow control system unified a heterogenous set of devices and data sources through several proto-
cols into a single control system, as illustrated in Figure 8.32. In addition to what the figure shows,
data were also acquired from external cryogenics and beam systems. The topology and data flow
of the system matches the general shape shown in Figure 8.30.

In this control system, the unified control system base is WinCC-OA [171], a commercial SCADA
system for visualizing and operating of processes, production flows, machines, and plants, used
in many businesses. It was chosen at CERN as a basis for developing the control systems of
the LHC experiments, the accelerators and the laboratory infrastructure for its flexibility and
scalability, as well as for the openness of the architecture, allowing it to interface with many
different types of hardware devices and communication protocols. Additional software developed
at CERN is also used, including Joint COntrols Projects [174] and UNified Industrial COntrol
System (UNICOS) [175]. WinCC-OA and the additional software developed on top of it in the
past 20 years, have grown into a fairly complex ecosystem. While multiple collaboration members
have experience using the ProtoDUNE-SP control system, customizing and using WinCC-OA in
an effective way for developing the control system of DUNE requires proper training and a non-
negligible learning effort.

As noted in Sections 8.3.3 and 8.3.4, the slow control archiver will gradually accumulate terabytes
of data, requiring a sizable database to store the value history and allow efficient data retrieval.
Individually adjustable rates and thresholds for each channel are key to keeping this database
manageable. The ProtoDUNE-SP operations provided not only a test of these features as imple-
mented in the ProtoDUNE slow control system, but also insight into reasonable values for these
archiving parameters for each system.

8.4 Organization and Management

The organization of the CISC consortium is shown in Figure 8.33. The CISC consortium board
currently comprises institutional representatives from 19 institutes as shown in Table 8.6. The
consortium leader is the spokesperson for the consortium and responsible for the overall scien-
tific program and managing the group. The technical leader of the consortium is responsible for
managing the project for the group. Currently, the consortium has five working groups:

Cryogenics Systems gas analyzers and liquid level monitors; CFD simulations;

Argon Instrumentation purity monitors, thermometers, pressure meters, capacitive level meters,
cameras and light emitting system, and CITF, also feedthroughs, E field simulations, instru-
mentation precision studies, ProtoDUNE data analysis coordination and validation;
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Figure 8.32: Diagram of the ProtoDUNE-SP control system topology, from [161].
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Slow Controls Base Software and Databases base I/O software, alarms and archiving databases,
and monitoring tools, also variable naming conventions, and slow controls quantities;

Slow Controls Detector System Interfaces signal processing software and hardware interfaces
(e.g., power supplies), firmware, rack hardware and infrastructure

Slow Controls External Interfaces interfaces with external detector systems (e.g., cryogenics sys-
tem, beam, facilities, DAQ, and near detector status).

Figure 8.33: CISC Consortium organizational chart

Moreover, because the CISC consortium broadly interacts with other groups, liaisons have been
named as shown in Figure 8.33. A short-term task force was recently formed to explore the need for
cryogenics modeling for the consortium. A work plan for CFD simulations for both ProtoDUNE
and FD was developed based on input from the task force.

8.4.1 Institutional Responsibilities

The CISC consortium will be a joint effort for SP and DP. A single slow controls system will be
implemented to serve both the SP module and the DP module.

Design and installation of cryogenics systems (e.g., gas analyzers, liquid level monitoring) will be
coordinated with LBNF, with the consortium providing resources and effort, and expertise provided
by LBNF. ProtoDUNE designs for LAr instrumentation (e.g., purity monitors, thermometers,
cameras) will be the basis for detector module designs. Design validation, testing, calibration, and
performance will be evaluated through ProtoDUNE data.

Following the conceptual funding model envisioned for the consortium, various responsibilities
have been distributed across institutions within the consortium pending final funding decisions.
Table 8.7 shows the current institutional responsibilities for primary CISC subsystems. Only lead
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Table 8.6: Current CISC consortium board members and their institutional affiliations

Member Institute Country
CIEMAT Spain
Instituto de Fisica Corpuscular (IFIC) Spain
University of Warwick UK
University College London (UCL) UK
Argonne National Lab (ANL) USA
Brookhaven National Lab (BNL) USA
University of California, Irvine (UCI) USA
Drexel University USA
Fermi National Accelerator Lab (Fermilab) USA
University of Hawaii USA
University of Houston USA
Idaho State University (ISU) USA
Kansas State University (KSU) USA
University of Minnesota, Duluth (UMD) USA
Notre Dame University USA
South Dakota State University (SDSU) USA
University of Tennessee at Knoxville (UTK) USA
Virginia Tech (VT) USA
Boston University (BU) USA
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institutes are listed in the table for a given effort. For physics and simulations studies and for
validation using ProtoDUNE, a number of institutes are involved. A detailed list of tasks and
institutional responsibilities are presented in [176].

Table 8.7: Institutional responsibilities in the CISC consortium

CISC Sub-system Institutional Responsibility
Purity Monitors UCI, Houston
Static T-gradient monitors IFIC
Dynamic T-gradient monitors Hawaii
Individual Sensors IFIC
Readout System for Thermometers IFIC, Hawaii, CIEMAT
Pressure Meters UTK
Cold Cameras KSU, BNL
Warm Cameras KSU, BNL
Light-emitting System (for cameras) Drexel
Gas Analyzers FNAL, LBNF
Differential Pressure Level Meters LBNF
Capacitive Level Meters Notre Dame
CITF FNAL, ANL
CFD Simulations SDSU, ANL
Other Simulation & Validation Studies Number of Institutes
Slow Controls Hardware UMD, UTK, Drexel
Slow Controls Infrastructure UMD, UTK
Slow Controls Base Software KSU, UTK, BU, Drexel, Warwick, ANL, IFIC
Slow Controls Signal Processing A number of institutes
Slow Controls External Interfaces VT, UTK, UMD

8.4.2 Schedule

Table 8.8 shows key construction milestones for the CISC consortium leading to commissioning of
the first FD module. CISC construction milestones align with the overall construction milestones
of the first FD module (highlighted in orange in the table). The technology design decisions for
CISC systems should be made by April 2020 followed by final design reviews in June 2020. Design
decisions will largely be based on how a given system performed (technically and physics-wise) in
ProtoDUNE. This is currently actively ongoing with the ProtoDUNE-SP instrumentation data.
As noted in Section 8.2.8, the current plan is to deploy improved designs of static and dynamic T-
gradient thermometers, purity monitors, long (DP-style) level meters and cameras to be validated
in ProtoDUNE-2. The production of systems aimed for ProtoDUNE-2 SP should be finished by
January 2021 followed by assembly and deployment in March 2021.

Designs may need review based on performance in ProtoDUNE-2 and any modifications will be
incorporated into the final design before the start of production of CISC systems for the FD in
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Table 8.8: CISC construction schedule milestones leading to commissioning of the first FD module. Key
DUNE dates and milestones, defined for planning purposes in this TDR, are shown in orange. Dates
will be finalized following establishment of the international project baseline.

Milestone Date (Month YYYY)
Technology Decision Dates April 2020
Final Design Review Dates June 2020
Start of module 0 component production for ProtoDUNE-2 August 2020
End of module 0 component production for ProtoDUNE-2 January 2021
Start of ProtoDUNE-SP-II installation March 2021
Start of ProtoDUNE-DP-II installation March 2022
South Dakota Logistics Warehouse available April 2022
production readiness review dates September 2022
Beneficial occupancy of cavern 1 and CUC October 2022
Start procurement of CISC hardware December 2022
CUC counting room accessible April 2023
Start of production of CISC hardware April 2023
Top of detector module #1 cryostat accessible January 2024
End of CISC hardware production April 2024
Start integration of CISC hardware in the cavern July 2024
Start of detector module #1 TPC installation August 2024
Installation of gas analyzers and support structure for all instrumen-
tation devices

September 2024

Installation of individual sensors, static T-gradient thermometers,
and level meters

November 2024

Top of detector module #2 cryostat accessible January 2025
All slow controls hardware, infrastructure, & networking installed February 2025
Slow controls software for I/O, alarms, archiving, displays installed
on production systems

May 2025

End of detector module #1 TPC installation May 2025
Install dynamic T-gradient monitors, cameras, purity monitors, and
pressure meters

June 2025

Install all feedthroughs for instrumentation devices July 2025
Start of detector module #2 TPC installation August 2025
Install slow control expert interfaces for all systems in time for test-
ing

September 2025

End of detector module #2 TPC installation May 2026
Full slow controls systems commissioned and integrated into remote
operations

July 2026
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April 2023. This will be followed by assembly of the systems underground in the detector cavern
in July 2024. Installation of instrumentation devices will start in September 2024 following the
beneficial occupancy of the interior of the cryostat. Installing gas analyzers, level meters, individual
temperature sensors, static T-gradient thermometers, and support structure for all instrumentation
devices will be finished before installing TPC, but installation of dynamic T-gradient thermometers,
purity monitors, pressure meters and cameras will occur afterward. CISC will work closely with
LBNF to coordinate installation of the cryogenics systems and instrumentation devices. For slow
controls, the goal is to have the full slow controls system commissioned and integrated into remote
operations at least three months before the SP module is ready for operations.

8.4.3 Risks

Table 8.9 lists the possible risks identified by the CISC consortium along with corresponding
mitigation strategies. A more detailed list of risks with additional descriptions can be found in
[177]. The table shows 18 risks, all at medium or low level, mitigated with necessary steps and
precautions. More discussion on all medium-level risks are provided in the text below.

• Risk 01: The risk associated with ProtoDUNE-SP-based designs being inadequate for FD, is
important because this requires early validation from ProtoDUNE data so R&D of alternate
designs can be timely. With ProtoDUNE-SP data now available, the consortium is focused
on validating instrumentation designs.

• Risk 06: Temperature sensors in the dynamic T-gradient monitor are calibrated using two
methods: lab calibration to 0.002K (as in the static T-gradient monitor case) and in situ
cross-calibration moving the system vertically. Disagreement between the two methods can
occur. In order to mitigate this we need to investigate and improve both methods, specifically
the laboratory calibration since this is the only one possible for sensors behind APAs, and
top/bottom of the detector.

• Risk 10: This risk involves an inability to build a working prototype for cold cameras during
R&D phase that meets all the requirements & safety, e.g., that cold camera prototypes fail
longevity tests or show low performance (e.g. bad resolution). This risk originates from past
experience with cold cameras that became non-operational after a period of time in LAr or
showed low performance. In order to address this, we plan to pursue further R&D to improve
thermal insulation and heaters, develop alternative camera models, etc. If problems persist
one can use the cameras in the ullage (cold or inspection) with the appropriate field of view
and lighting such that elements inside LAr can be inspected during filling.

• Risk 12: Cameras are delicate devices and some of them located near HV devices can be
destroyed by HV discharges. This can be mitigated by ensuring that most important cold
cameras have enough redundancy such that the loss of one camera does not compromise the
overall performance. In the case of inspection cameras, we can simply replace them.

• Risk 17: The gas analyzers and level meters may fail as these are commercial devices pur-
chased at some point in their product cycle and cannot be required to last 20 years. Typical
warranties are ∼1 year from date of purchase. The active electronics parts of both gas ana-
lyzers and level meters are external to the cryostat so they can be replaced. To mitigate this,
provisions will be made for future replacement in case of failure or loss of sensitivity. Also,
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the risk is not high since we have purity monitors in the filtration system that can cover the
experiment during the time gas analyzers are being replaced or repaired.

Related to risks 12, 16 and 18, ageing is an important aspect for several monitors, especially
for those that are inaccessible. The ProtoDUNE tests demonstrate that the devices survive the
commissioning phase, and we continue to learn from ProtoDUNE experience. In addition to
ProtoDUNE, other tests are planned. For example, in the case of purity monitors, photocathodes
are expected to survive the first five years and if we prevent running them with high frequency at
low purity (lifetime < 3ms), ageing can be prevented for a longer time. To understand long-term
aeging, R&D is planned at CITF and at member institute sites for many of the devices. Systems
that are replaceable, such as inline purity monitors, gas analyzers, and inspection cameras, can be
replaced when failures occur and maintained for the lifetime of the experiment.

Table 8.9: CISC risks (P=probability, C=cost, S=schedule) The risk probability, after taking into
account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10% to 25%), or H
(high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%, schedule delay < 2
months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2 months, respectively).

ID Risk Mitigation P C S
RT-SP-CISC-01 Baseline design from

ProtoDUNEs for an
instrumentation device
is not adequate for
DUNE far detectors

Focus on early problem discovery in
ProtoDUNE so any needed redesigns
can start as soon as possible.

L M L

RT-SP-CISC-02 Swinging of long in-
strumentation devices
(T-gradient monitors
or PrM system)

Add additional intermediate con-
straints to prevent swinging.

L L L

RT-SP-CISC-03 High E-fields near in-
strumentation devices
cause dielectric break-
downs in LAr

CISC systems placed as far from
cathode and FC as possible.

L L L

RT-SP-CISC-04 Light pollution from
purity monitors and
camera light emitting
system

Use PrM lamp and camera lights out-
side PDS trigger window; cover PrM
cathode to reduce light leakage.

L L L

RT-SP-CISC-05 Temperature sensors
can induce noise in
cold electronics

Check for noise before filling and re-
mediate, repeat after filling. Filter or
ground noisy sensors.

L L L

RT-SP-CISC-06 Disagreement between
lab and in situ calibra-
tions for ProtoDUNE-
SP dynamic T-gradient
monitor

Investigate and improve both meth-
ods, particularly laboratory calibra-
tion.

M L L

RT-SP-CISC-07 Purity monitor elec-
tronics induce noise in
TPC and PDS elec-
tronics.

Operate lamp outside TPC+PDS
trigger window. Surround and
ground light source with Faraday
cage.

L L L
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RT-SP-CISC-08 Discrepancies between
measured temperature
map and CFD simula-
tions in ProtoDUNE-
SP

Improve simulations with additional
measurements inputs; use fraction of
sensors to predict others

L L L

RT-SP-CISC-09 Difficulty correlating
purity and tempera-
ture in ProtoDUNE-
SP impairs under-
standing cryo system.

Identify causes of discrepancy, mod-
ify design. Calibrate PrM differ-
ences, correlate with RTDs.

L L L

RT-SP-CISC-10 Cold camera R&D fails
to produce prototype
meeting specifications
& safety requirements

Improve insulation and heaters. Use
cameras in ullage or inspection cam-
eras instead.

M M L

RT-SP-CISC-11 HV discharge caused
by inspection cameras

Study E-field in and on housing and
anchoring system. Test in HV facil-
ity.

L L L

RT-SP-CISC-12 HV discharge destroy-
ing the cameras

Ensure sufficient redundancy of cold
cameras. Warm cameras are replace-
able.

L M L

RT-SP-CISC-13 Insufficient light for
cameras to acquire use-
ful images

Test cameras with illumination simi-
lar to actual detector.

L L L

RT-SP-CISC-14 Cameras may induce
noise in cold electron-
ics

Continued R&D work with ground-
ing and shielding in realistic condi-
tions.

L L L

RT-SP-CISC-15 Light attenuation in
long optic fibers for pu-
rity monitors

Test the max. length of usable fiber,
optimize the depth of bottom PrM,
number of fibers.

L L L

RT-SP-CISC-16 Longevity of purity
monitors

Optimize PrM operation to avoid
long running in low purity. Tech-
nique to protect/recover cathode.

L L L

RT-SP-CISC-17 Longevity: Gas ana-
lyzers and level meters
may fail.

Plan for future replacement in case
of failure or loss of sensitivity.

M M L

RT-SP-CISC-18 Problems in interfac-
ing hardware devices
(e.g. power supplies)
with slow controls

Involve slow control experts in
choice of hardware needing con-
trol/monitoring.

L L L

8.4.4 Interfaces

CISC subsystems interface with all other detector subsystems and potentially impact the work
of all detector consortia, as well as some working groups (e.g., physics, software and computing,
beam instrumentation), and technical coordination, requiring interactions with all of these entities.
We also interact heavily with LBNF beam and cryogenics groups. Detailed descriptions of CISC
interfaces are maintained in the DUNE DocDB. A brief summary is provided in this section.
Table 8.10 lists the IDs of the different DocDB documents as well as their highlights. Descriptions
of the interfaces and interactions that affect many systems are given below.
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CISC interacts with the detector consortia because CISC will provide status monitoring of all
important detector subsystems along with controls for some components of the detector. CISC
will also consult on selecting different power supplies to ensure monitoring and control can be es-
tablished with preferred types of communication. Rack space distribution and interaction between
slow controls and other modules from other consortia will be managed by technical coordination
in consultation with those consortia.

CISC will work with LBNF to determine whether heaters and RTDs are needed on flanges. If
so, CISC will specify the heaters and RTDs, and will provide the readout and control, while the
responsibility for the actual hardware will be discussed with the different groups.

Installing instrumentation devices will interfere with other devices and must be coordinated with
the appropriate consortia. On the software side, CISC must define, in coordination with other
consortia/groups, the quantities to be monitored/controlled by slow controls and the corresponding
alarms, archiving, and GUIs.

Table 8.10: CISC system interface links

Interfacing System Description Linked Reference
APA static T-gradient monitors, cameras, and lights DocDB 6679 [13]
PD system PrMs, light emitting system for cameras DocDB 6730 [87]
TPC Electronics noise, power supply monitoring DocDB 6745 [69]
HV Systems shielding, bubble generation by inspection camera, cold

camera locations, ground planes
DocDB 6787 [34]

DAQ description of CISC data storage, allowing bi-directional
communications between DAQ and CISC.

DocDB 6790 [135]

Calibration multifunctional CISC/CITF ports; space sharing around
ports

DocDB 7072 [122]

Physics indirect interfaces through calibration, tools to extract
data from the slow controls database

DocDB 7099 [178]

Software & Comput-
ing

slow controls database design and maintenance DocDB 7126 [179]

Cryogenics must be designed and implemented. purity monitors, gas
analyzers, interlock mechanisms to prevent contamina-
tion of LAr

-

Beam beam status -
TC Facility significant interfaces at multiple levels DocDB 6991 [180]
TC Installation significant interfaces at multiple levels DocDB 7018 [181]
TC Integration Fa-
cility

significant interfaces at multiple levels DocDB 7045 [182]
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8.4.5 Installation, Integration, and Commissioning

8.4.5.1 Purity Monitors

The purity monitor system will be built in modules, so it can be assembled outside the cryostat
leaving few steps to complete inside the cryostat. The assembly itself comes into the cryostat
with the individual purity monitors mounted to support tubes, with no HV cables or optical fibers
yet installed. The support tube at the top and bottom of the assembly is then mounted to the
brackets inside the cryostat, and the brackets attached to the cables trays and/or the detector
support structure. At much the same time, the FE electronics and light source can be installed on
the top of the cryostat, and the electronics and power supplies can be installed in the electronics
rack.

Integration begins by running the HV cables and optical fibers to the purity monitors, through
the top of the cryostat. These cables are attached to the HV feedthroughs with sufficient length
to reach each purity monitor inside the cryostat. The cables are run along cable trays through
the port reserved for the purity monitor system. Each purity monitor will have three HV cables
that connect it to the feedthrough and then further along to the FE electronics. The optical fibers
are then run through the special optical fiber feedthrough, into the cryostat, and guided to the
purity monitor system either using the cables trays or guide tubes, depending on which solution
is adopted. This should protect fibers from breaking accidentally as the rest of the detector and
instrumentation installation continues. The optical fibers are then run inside the purity monitor
support tube and to the appropriate purity monitor, terminating the fibers at the photocathode
of each monitor while protecting them from breaking near the purity monitor system itself.

Integration continues as the HV cables are connected through the feedthrough to the system
FE electronics; then optical fibers are connected to the light source. The cables connecting the
FE electronics and the light source to the electronics rack are also run and connected at this
time. This allows the system to be turned on and the software to begin testing the various
components and connections. Once all connections are confirmed successful, integration with the
slow controls system begins, first by establishing communication between the two systems and then
transferring data between them to ensure successful exchange of important system parameters and
measurements.

Commissioning the purity monitor system begins once the cryostat is purged and a gaseous argon
atmosphere is present. At this time, the HV for the purity monitors is ramped up without risk
of discharge through the air, and the light source turned on. Although the drift electron lifetime
in the gaseous argon would be very large and therefore not measurable with the purity monitors
themselves, the signal strength at both the cathode and anode will give a good indication of
how well the light source generates drift electrons from the photocathode. Comparing the signal
strengths at the anode and cathode will indicate whether the electrons successfully drift to the
anode. Although quality assurance (QA) and quality control (QC) should make it unlikely for a
purity monitor to fail this final test, if that does happen then the electric and optical connections
can be fixed before filling.
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8.4.5.2 Thermometers

Static T-gradient monitors must be installed before the outer APAs, ideally right after the pipes
are installed. The profilers are preassembled before they are delivered to SURF. Installation will
follow these steps:

1. anchor the stainless steel bottom plates to the four bolts on the bottom corner of the cryostat,

2. anchor the stainless steel support holding the two strings to the four bolts on the top corner
of the cryostat,

3. unroll the array with the help of the scissor lift,

4. anchor the strings to the bottom stainless steel support,

5. check and adjust tension and verticality,

6. review all cable and sensor supports,

7. route cable from the top anchoring point to the two DSS ports, and

8. plan to plug sensors into IDC-4 connectors later, just before moving the corresponding APA
into its final position.

Individual temperature sensors on pipes and cryostat floor are installed immediately after installing
the static T-gradient monitors. First, vertical stainless steel strings for cable routing are installed
following a procedure similar to the one described above for the static T-gradient monitors. Next,
we anchor all cable supports to pipes. Then each cable is routed individually starting from the
sensor end (with IDC-4 female connector but without the sensor) to the corresponding cryostat
port. Once all cables going through the same port have been routed, we cut the cables to the same
length, so they can be properly assembled into the corresponding connector(s). To avoid damaging
the sensors, they are installed later (by plugging the IDC-4 male connector on the sensor PCB to
the IDC-4 female connector on the cable end), just before unfolding the bottom GPs.

For the SP, individual sensors on the top GP must be integrated with the GPs. For each CPA
(with its corresponding four GP modules) going inside the cryostat, cable and sensor supports
will be anchored to the GP threaded rods as soon as possible. Once the CPA is moved into its
final position and its top GPs are ready to be unfolded, sensors on these GPs are installed. Once
unfolded, cables exceeding the GP limits can be routed to the corresponding cryostat port using
either neighboring GPs or DSS I-beams.

Dynamic T-gradient monitors are installed after the TPC components are in place. Figure 8.8
shows the design of the dynamic T-gradient monitor with its sensor carrier rod, enclosure above
the cryostat, and stepper motor and Figure 8.9 shows detailed views of key components. Each
monitor comes in several segments with sensors and cabling already in place. Additional slack
will be provided at segment joints to make installation easier. Segments of the sensor carrier rod
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with preattached sensors are fed into the flange one at a time. Each segment, as it is fed into the
cryostat, is held at the top with a pin that prevents the segment from sliding all the way in. The
next segment is connected at that time to the previous segment. Then the pin is removed, the first
segment is pushed down, and the next segment top is held with the pin at the flange. This process
is repeated for each segment until the entire sensor carrier rod is in place. Next, the enclosure
is installed on top of the flange, starting with the six-way cross at the bottom of the enclosure.
(See Figure 8.9, right.) Again, extra cable slack at the top will be provided to ease connection to
the D-sub flange and to allow the entire system to move vertically. The wires are connected to a
D-sub connector on the feedthrough on one side port of the cross. Finally, a crane positions the
remainder of the enclosure above the top of the cross. This enclosure includes the mechanism used
to move the sensor rod, which is preassembled with the motor in place on the side of the enclosure,
and the pinion and gear used to move the sensor inside the enclosure. The pinion gets connected
to the top of the rod. The enclosure is then connected to top part of the cross, which finishes the
installation of the dynamic T-gradient monitor.

Commissioning all thermometers will occur in several steps. In the first stage, only cables are
installed, so the readout performance and the noise level inside the cryostat is tested with precision
resistors. Once sensors are installed, the entire chain is checked again at room temperature.
Spare cables, connectors and sensors are available for replacement at SURF if needed. The final
commissioning phase takes place during and after cryostat filling.

8.4.5.3 Gas Analyzers

The gas analyzers are installed before the piston purge and gas recirculation phases of the cryostat
commissioning. They are installed near the tubing switchyard to minimize tubing run length
and for convenience when switching the sampling points and gas analyzers. Because each is a
standalone module, a single rack with shelves is adequate to house the modules.

For integration, the gas analyzers typically have an analog output (4mA to 20mA or 0V to 10V),
which maps to the input range of the analyzers. They also usually have several relays to indicate
the scale they are currently running. These outputs can be connected to the slow controls for
readout. However, using a digital readout is preferable because this gives a direct analyzer reading
at any scale. Currently, the digital output connections are RS-232, RS-485, USB, and Ethernet.
The preferred option is chosen at the time of purchase. The readout usually responds to a simple
set of text query commands. Because of the natural time scales of the gas analyzers and lags in gas
delivery times (which depend on the length of the tubing run), sampling every minute is adequate.
Our current plan is to record both analog and digital signals to have both outputs available.

The analyzers must be brought online and calibrated before beginning the gas phase of the cryo-
stat commissioning. Calibration varies by module because they are different, but calibration often
requires using argon gas with zero contaminants, and argon gas with a known level of the con-
taminant to check the scale. Contaminants are usually removed with a local inline filter for the
first gas sample. This gas phase usually begins with normal air, with the more sensitive analyzers
valved off at the switchyard to prevent overloading their inputs (and potentially saturating their
detectors). As the argon purge and gas recirculation progress, the various analyzers are valved
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back in when the contaminant levels reach the upper limits of the analyzer ranges.

8.4.5.4 Liquid Level Monitoring

Installing differential pressure level meters is the responsibility of LBNF, but the capacitive level
meters fall within CISC’s scope. The exact number of capacitive level meters must still be decided.
There will be at least four, located at the four corners of the cryostat. They will be attached to
the M10 bolts in the cryostat corners after the detector is installed. Cables will be routed to the
appropriate DSS port. If additional capacitive level meters are needed in the central part of the
cryostat, those will be installed before the nearby APAs.

8.4.5.5 Pressure Meters

Installing pressure meters is the responsibility of CISC. A total of six sensors will be mechanically
installed in two dedicated flanges (three sensors each) at opposite sides of the cryostat after the
detector is installed. Cables will be routed through the same dedicated port assigned for these
devices. The pressure signals (absolute and relative) are read and converted to standard 4–20 mA
current loop signals. A twisted pair shielded cable connects the sensors to the slow controls PLC
controller using software to convert electrical signals to pressure values.

8.4.5.6 Cameras and light emitting system

Installing fixed cameras is simple in principle, but involves a considerable number of interfaces. The
enclosure of each camera has exterior threaded holes to facilitate mounting on the cryostat wall,
cryogenic internal piping, or DSS. Each enclosure is attached to a gas line to maintain appropriate
underpressure in the fill gas, therefore an interface with cryogenic internal piping will be necessary.
Each camera has a cable (coaxial or optical) for the video signal and a multiconductor cable for
power and control. These get run through cable trays to flanges on assigned instrumentation
feedthroughs.

The inspection camera is designed to be inserted and removed on any instrumentation feedthrough
equipped with a gate valve at any time during operation. Installing the gate valves and purge
system for instrumentation feedthroughs falls under cryogenic internal piping.

Installing fixed lighting sources separate from the cameras requires mounting on cryostat wall,
cryogenic internal piping, or DSS, and multiconductor cables for power run through cable trays to
flanges on assigned instrumentation feedthroughs.
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8.4.5.7 Slow Controls Hardware

Slow controls hardware installation includes installing multiple servers, network cables, any special-
ized cables needed for device communication, and possibly some custom-built hardware to monitor
racks. The installation sequence will be planned with the facilities group and other consortia. The
network cables and rack monitoring hardware will be common across many racks and will be in-
stalled first as part of the basic rack installation, to be led by the facilities group. Specialized
cables needed for slow controls and servers are installed after the common rack hardware. The
selection and installation of these cables will be coordinated with other consortia, and servers will
be coordinated with the DAQ group.

8.4.5.8 Transport, Handling, and Storage

Most instrumentation devices will be shipped in pieces to SURF via the South Dakota Warehouse
Facility (SDWF) and mounted on-site. Instrumentation devices are in general small, except for
the support structures for purity monitors and dynamic T-gradient monitors, which will cover the
entire height of the cryostat. The load on those structures is relatively small (< 100 kg), so they
can be fabricated in sections of less than 3m, which can be easily transported to SURF, down
the shaft, and through the tunnels. All instrumention devices except the dynamic T-gradient
monitors can be moved into the cryostat without the crane. The dynamic T-gradient monitors,
which are introduced into the cryostat from above, require a crane for the installation of the
external enclosure (with preassembled motor, pinion and gear).

8.4.6 Quality Control

The manufacturer and the institution in charge of device assembly will conduct a series of tests
to ensure the equipment can perform its intended function as part of QC. QC also includes post-
fabrication tests and tests run after shipping and installation. For complex systems, the entire
system will be tested before shipping. Additional QC procedures can be performed underground
after installation.

The planned tests for each subsystem are described below.

8.4.6.1 Purity Monitors

The purity monitor system will undergo a series of tests to ensure the system performs as intended.
These tests include electronic tests with a pulse generator, mechanical and electrical connectivity
tests at cryogenic temperatures in a cryostat, and vacuum tests for short and full assemblies in a
dewar and in a long vacuum tube.

The QC tests for FD purity monitors begin with testing individual purity monitors in vacuum

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 8: Cryogenics Instrumentation and Slow Controls 8–523

after each is fabricated and assembled. This test checks the amplitude of the signal generated by
the drift electrons at the cathode and the anode to ensure the photocathode can provide sufficient
numbers of photoelectrons to measure the signal attenuation with the required precision, and that
the field gradient resistors all work properly to maintain the drift field. A smaller version of the
assembly with all purity monitors installed will be tested at the CITF to ensure the full system
performs as expected in LAr.

Next, the entire system is assembled on the full-length mounting tubes to check the connections
along the way. Ensuring that all electric and optical connections are operating properly during
this test reduces the risk of problems once the full system is assembled and ready for the final test
in vacuum. The fully assembled system is placed in the shipping tube, which serves as a vacuum
chamber, and tested at SURF before the system is inserted into the cryostat. During insertion,
electrical connections are tested continuously with multimeters and electrometers.

8.4.6.2 Thermometers

Static T-gradient thermometers Static T-gradient monitors undergo three type of tests at the
production site before shipment to SURF: a mechanical rigidity test, a calibration of all sensors,
and a test of all electrical cables and connectors. The mechanical rigidity is tested by mounting the
static T-gradient monitor between two dummy cryostat corners mounted 15m apart. The tension
of the strings is set to match the tension that would occur in a vertical deployment in LAr, and
the deflection of the sensor and electrical cable strings is measured and compared to the expected
value; this is to ensure any swinging or deflection of the deployed static T-gradient monitor will
be < 5 cm, mitigating any risk of touching the anode plane assemblies. The laboratory calibration
of sensors will be performed as explained in Section 8.2.1. The main concern is reproducibility of
results because sensors could change resistance and hence their temperature scale when undergoing
successive immersions in LAr. In this case, the calibration procedure itself provides QC because
each set of sensors goes through five independent measurements. Sensors with RMS variation
outside the requirement (2mK for ProtoDUNE-SP) are discarded. This calibration also serves as
QC for the readout system (similar to the final one) and of the PCB-sensor-connector assembly.
Finally, the cable-connector assemblies are tested; sensors must measure the expected values with
no additional noise introduced by either cable or connector.

An integrated system test is conducted at a LAr test facility at the production site, which has
sufficient linear dimension (>2m) to test a good portion of the system. This ensures that the
system operates in LAr at the required level of performance. The laboratory sensor calibration
is compared with the in situ calibration of the dynamic T-gradient monitors by operating both
dynamic and static T-gradient monitors simultaneously.

The last phase of QC takes place after installation. The verticality of each array is checked, and
the tensions in the stainless steel strings adjusted as necessary. Before closing the flange, the entire
readout chain is tested. This allows a test of the sensor-connector assembly, the cable-connector
assemblies at both ends, and the noise level inside the cryostat. If any sensor presents a problem,
it is replaced. If the problem persists, the cable is checked and replaced as needed.
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Dynamic T-gradient thermometers The dynamic T-gradient monitor consists of an array of
high-precision temperature sensors mounted on a vertical rod. The rod can move vertically to
cross-calibrate the temperature sensors in situ. We will use the following tests to ensure that the
dynamic T-gradient monitor delivers vertical temperature gradient measurements with a precision
of a few mK.

• Before installation, temperature sensors are tested in LN2 to verify correct operation and to
set the baseline calibration for each sensor with respect to the absolutely calibrated reference
sensor.

• Warm and cold temperature readings are taken with each sensor after it is mounted on the
PCB and the readout cables are soldered.

• The sensor readout is taken for all sensors after the cold cables are connected to electric
feedthroughs on the flange and the warm cables outside of the cryostat are connected to the
temperature readout system.

• The stepper motor is tested before and after connecting to the gear and pinion system.
• The fully assembled rod is connected to the pinion and gear and moved with the stepper motor

on a high platform many times to verify repeatability, possible offsets, and any uncertainty
in the positioning. Finally, repeating this test so many times will verify the sturdiness of the
system.

• The full system is tested after it is installed in the cryostat; both motion and sensor operation
are tested by checking sensor readout and vertical motion of the system.

Individual Sensors To address the quality of individual precision sensors, the same method as for
the static T-gradient monitors is used. The QC of the sensors is part of the laboratory calibration.
After mounting six sensors with their corresponding cables, a SUBD-25 connector is added, and
the six sensors tested at room temperature. All sensors must give values within specifications. If
any of the sensors present problems, they are replaced. If the problem persists, the cable is checked
and replaced as needed.

For standard RTDs to be installed on the cryostat walls, floor, and roof, calibration is not an issue.
Any QC required for associated cables and connectors is performed following the same procedure
as for precision sensors.

8.4.6.3 Gas Analyzers

The gas analyzers will be guaranteed by the manufacturer. However, once received, the gas analyzer
modules are checked for both zero and the span values using a gas-mixing instrument and two gas
cylinders, one having a zero level of the gas analyzer contaminant species and the other cylinder
with a known percentage of the contaminant gas. This verifies the proper operation of the gas
analyzers. When they are installed at SURF, this process is repeated before commissioning the
cryostat. Calibrations will need to be repeated per manufacturer recommendations over the gas
analyzer lifetime.
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8.4.6.4 Liquid Level Monitoring

The manufacturer will provide the QC for the differential pressure level meters; further QC during
and after installation is the responsibility of LBNF.

The capacitive sensors will be tested with a modest sample of LAr in the laboratory before they
are installed. After installation, they are tested in situ using a suitable dielectric in contact with
the sensor.

8.4.6.5 Pressure Meters

The manufacturer will provide the QC for the pressure meters; further QC during and after
installation is the responsibility of CISC.

The pressure sensors will be tested with a modest sample of gaseous argon in the laboratory before
they are installed. After installation, they are tested in situ at atmospheric pressure. The whole
pressure readout chain, (including slow controls PLC and software protocol) will also be tested
and cross-checked with LBNF pressure sensors.

8.4.6.6 Cameras

Before transport to SURF, each cryogenic camera unit (comprising the enclosure, camera, and
internal thermal control and monitoring) is checked for correct operation of all features, for recovery
from 87K non-operating mode, for leakage, and for physical defects. Lighting systems are similarly
checked. Operations tests will verify correct current draw, image quality, and temperature readback
and control. The movable inspection camera apparatus are inspected for physical defects and
checked for proper mechanical operation before shipping. A checklist is created for each unit, filed
electronically in the DUNE logbook, and a hard copy sent with each unit.

Before installation, each fixed cryogenic camera unit is inspected for physical damage or defects and
checked at the CITF for correct operation of all features, for recovery from 87K non-operating
mode, and for contamination of the LAr. Lighting systems are similarly checked. Operations
tests verify correct current draw, image quality, and temperature readback and control. After
installation and connection of wiring, fixed cameras and lighting are again checked for operation.
The movable inspection camera apparatus is inspected for physical defects and, after integration
with a camera unit, tested in the facility for proper mechanical and electronic operation and
cleanliness before being installed or stored. A checklist will be completed for each QC check and
filed electronically in the DUNE logbook.
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8.4.6.7 Light-emitting System

The entire light-emitting system is checked before installation to ensure functionality of light
emission. Initial testing of the system (see Figure 8.29) begins with measuring the current when
low voltage (1V) is applied, to check that the resistive LED failover path is correct. Next, the
forward voltage is measured using nominal forward current to check that it is within 10% of the
nominal forward voltage drop of the LED, that all of the LEDs are illuminated, and that each LED
is visible over the nominal angular range. If the LEDs are infrared, a video camera with the IR filter
removed is used for a visual check. This procedure is then duplicated with the current reversed
for LEDs oriented in the opposite direction. Initial tests are performed at room temperature and
then repeated in LN2. Color shifts in the LEDs are expected and will be noted. A checklist is
completed for each QC check and filed electronically in the DUNE logbook.

Room temperature tests are repeated during and immediately after installation to ensure that the
system has not been damaged during transportation or installation. Functionality checks of the
LEDs are repeated after the cameras are installed in the cryostat.

8.4.6.8 Slow Controls Hardware

Networking and computing systems will be purchased commercially, requiring manufacturer’s QA.
However, the new servers are tested after delivery to confirm they suffered no damage during
shipping. The new system is allowed to burn in overnight or for a few days, running a diagnostics
suite on a loop in order to validate the manufacturer’s QA process.

The system is shipped directly to SURF where an on-site expert boots the systems and does basic
configuration. Specific configuration information is pulled over the network, after which others
may log in remotely to do the final setup, minimizing the number of people underground.

8.4.7 Safety

Safety is of critical importance during all phases of the CISC project, including R&D, laboratory
calibration and testing, mounting tests, and installation. Safety experts review and approve the
initial safety planning for all phases as part of the initial design review, as well as before implemen-
tation. All documentation of component cleaning, assembly, testing, and installation will include a
section on relevant safety concerns and will be reviewed during appropriate pre-production reviews.

Several areas are of particular importance to CISC.

• Hazardous chemicals (e.g., epoxy compounds used to attach sensors to cryostat inner mem-
brane) and cleaning compounds: All chemicals used will be documented at the consortium
management level, with a material safety data sheet and approved handling and disposal
plans in place.
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• Liquid and gaseous cryogens used in calibrating and testing: LN2 and LAr are used to
calibrate and test instrumentation devices. Full hazard analysis plans will be in place at
the consortium management level for full module or module component testing that involves
cryogens. These safety plans will be reviewed in appropriate pre-production and production
reviews.

• High voltage safety: Purity monitors have a voltage of ∼ 2 kV. Fabrication and testing plans
will show compliance with local HV safety requirements at any institution or laboratory that
conducts testing or operation, and this compliance will be reviewed as part of the standard
review process.

• Working at heights: Some fabrication, testing, and installation of CISC devices require
working at heights. Both T-gradient monitors and purity monitors, which span the height of
the detector, require working at heights exceeding 10m. Temperature sensors installed near
the top cryostat membrane and cable routing for all instrumentation devices also require
working at heights. The appropriate safety procedures including lift and harness training
will be designed and reviewed.

• Falling objects: all work involving heights have associated risks of falling objects. The
corresponding safety procedures, including proper helmet use and a well restricted safety
area, will be included in the safety plan.
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Chapter 9

Detector Installation

9.1 Introduction

This chapter covers all the work and infrastructure required to install the SP module.

We first provide a reminder of the scale of the task, beginning with the two facts that drive all
others: A Deep Underground Neutrino Experiment (DUNE) far detector (FD) module is enormous,
with outer cryostat dimensions of 65.8m(L)× 18.9m(W)× 17.8m(H); and every piece of a detector
module must descend 1500m down the Ross Shaft to the 4850L of Sanford Underground Research
Facility (SURF) and be transported to a detector cavern.

The SP module’s 150 anode plane assemblies (APAs), each 6.0 m high and 2.3 m wide, and
weighing 600 kg with 3500 strung sense and shielding wires, must be taken down the shaft as
special “slung loads” and moved to the area just outside the DUNE cryostat. The APAs are
moved into a 30m× 19m clean room (a portion of which is 17m high) where they are outfitted
with photon detector (PD) units and passed through a series of qualification tests. Here, two
APAs are linked into a vertical 12m high double unit and connected to readout electronics. They
receive a cold-test in place, then move into the cryostat to be connected at the proper location
on the previously installed detector support system (DSS), and have their cabling connected to
feedthroughs. Additional systems are installed in parallel with the APAs, e.g., the field cage
(FC) and their high voltage (HV) connections, elements of the cryogenic instrumentation and slow
controls (CISC), and detector calibration systems. The cathode plane, FC, and APA together
define the time projection chamber (TPC) active volume.

After twelve months of detector component installation, which follows twelve months of detec-
tor infrastructure installation, the cryostat closes (with the last installation steps occurring in a
confined space accessed through a narrow human-access port). Following leak checks, final elec-
trical connection tests, and installation of the neutron calibration source, the process of filling the
cryostat with 17,000,000 kg of liquid argon (LAr) begins.
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The installation requires meticulous planning and execution of thousands of tasks by well trained
teams of technicians, riggers, and detector specialists. High-level requirements for these tasks are
spelled out in Table 9.1 1 and the text that follows it. In all the planning and future work, the pre-
eminent requirement in the installation process is safety. DUNE’s goal is zero accidents resulting
in personal injury, damage to detector components, or harm to the environment.

Table 9.1: Installation specifications

Label Description Specification
(Goal)

Rationale Validation

SP-INST-1
Compliance with
the SURF Material
Handling Spec-
ification for all
material transported
underground

SURF Material
Handling Specifica-
tion

Loads must fit in the shaft be
lifted safely.

Visual and docu-
mentation check

SP-INST-2
Coordination of
shipments with
CMGC; DUNE to
schedule use of Ross
Shaft

2 wk notice to
CMGC

Both DUNE and CMGC
need to use Ross Shaft

Deliveries will be
rejected

SP-INST-3
Maintain materials
buffer at logistics fa-
cility in SD

> 1 month Prevent schedule delays in
case of shipping or customs
delays

Documentatation
and progress
reporting

SP-INST-4
APA stroage at lo-
gistics facility in SD

700 m2 Store APAs during lag be-
tween production and instal-
lation

Agree upon space
needs

SP-INST-5
Installation clean-
room Specificaiton

ISO 8 Reduce dust (contains
U/Th) to prevent induced
radiological background in
detector

Monitor air purity

SP-INST-6
UV filter in installa-
tion cleanrooms for
PDS sensor protec-
tion

filter < 400 nm for
> 2 wk exp; <
520 nm all else

Prevent damage to PD coat-
ings

Visual or spectro-
graphic inspection

Installation of the SP module presents hazards that include manipulation of heavy loads in the
tight spaces at the 4850L and in the detector module, working at considerable heights above the
floor, repeated utilization of large volumes of cryogens, multiple tests with HV, commissioning of
a Class IV laser system, and deployment of a high-activity neutron source. Mitigation of these
hazards begins with the strong professional on-site environment, safety and health (ES&H) teams
of the Fermilab South Dakota Services Division (SDSD) and SURF.

All installation team members, both at the surface and underground, will undergo rigorous formal
safety training. Daily safety meetings will ensure that all workers are aware of the scope of the
planned underground work and any related safety considerations. Any team member can stop
work at any time for safety purposes. The overall DUNE safety plan is described in Volume III,
DUNE Far Detector Technical Coordination, Chapter 10 of this technical design report (TDR).

1APAs are produced well in advance of their installation date. They are shipped to the storage facility immediately
after fabrication and testing in order to control the risk of damage in shipping.
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Individual sections within this chapter provide details on the evolving safety plan for installation.
This plan has been informed by the successful safety experience of SURF with other underground
experiments (e.g., LUX, Majorana Demonstrator, LZ), DUNE members in executing projects
at other underground locations (e.g., MINOS at Soudan, Minnesota, USA), at other locations
remote from major international laboratories (e.g., Daya Bay, China and the NOvA far detector
(Ash River, Minnesota, USA), and at the home laboratories of both Fermi National Accelerator
Laboratory (Fermilab) and European Organization for Nuclear Research (CERN)).

As part of the DUNE design process the detector components and the TPC have been prototyped
at various stages. ProtoDUNE-SP, which was assembled from full-scale components has been
completed and has taken data. This process has been extremely important in planning the SP
module installation and a detailed list of lessons learned from ProtoDUNE-SP construction and
installation was compiled[183]. These lessons and other experience from the team planning the
installation were used to develop a list of risks for the SP module installation and to formulate
mitigation strategies to reduce the risks. The highest-impact risks – those requiring a mitigation
strategy – are listed in Table 9.2. These mitigation strategies and all the lessons learned from
ProtoDUNE-SP will be factored into the detailed installation plan. A description of each of the
high level risks follows.

Table 9.2: SP module installation risks (P=probability, C=cost, S=schedule) The risk probability, after
taking into account the planned mitigation activities, is ranked as L (low < 10%), M (medium 10%
to 25%), or H (high > 25%). The cost and schedule impacts are ranked as L (cost increase < 5%,
schedule delay < 2 months), M (5% to 25% and 2–6 months, respectively) and H (> 20% and > 2
months, respectively).

ID Risk Mitigation P C S
RT-INST-01 Personnel injury Follow established safety plans. M L H
RT-INST-02 Shipping delays Plan one month buffer to store ma-

terials locally. Provide logistics man-
ual.

H L L

RT-INST-03 Missing components
cause delays

Use detailed inventory system to ver-
ify availability of necessary compo-
nents.

H L L

RT-INST-04 Import, export, visa is-
sues

Dedicated Fermilab SDSDdivision
will expedite import/export and
visa-related issues.

H M M

RT-INST-05 Lack of available labor Hire early and use Ash River setup
to train JPO crew.

L L L

RT-INST-06 Parts do not fit to-
gether

Generate 3D model, create interface
drawings, and prototype detector as-
sembly.

H L L

RT-INST-07 Cryostat damage Use cryostat false floor and tempo-
rary protection.

L L M

RT-INST-08 Weather closes SURF Plan for SURF weather closures H L L
RT-INST-09 Detector failure during

cool-down
Cold test individual components
then cold test APA assemblies imme-
diately before installation.

L H H

Personal Injury: The installation of the detector module requires on the order of fifty person-years
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of effort. Substantial work at heights, rigging of heavy equipment, use of custom tooling, and some
work in confined spaces is necessary. It is critical that all safety measures be implemented and
proper oversight be in place. DUNE will follow the Fermilab safety program, and if any additional
measures are needed to comply with the SURF program, they will be adopted. However, even with
an excellent safety program, given the large number of hours, the risk of injury remains significant
for a project of this scale and needs to be accounted for in the project risk evaluation.

Shipping Delays: Delays in shipping and availability of components presented problems at ProtoDUNE-
SP, and in fact the delays, not technical limitations, ended up driving the installation plan To avoid
this for the SP module installation, a one-month buffer of equipment is required from the consortia.
The one month period was determined by the maximum delay in customs from a shipment for
ProtoDUNE-SP, which was three weeks. In addition, a detailed shipping manual will be prepared
to provide guidance to collaborators and the LBNF/DUNE logistics manager will be available to
provide direct assistance. The residual risk that components are delayed is still considered high,
but the total schedule impact is expected to be on the few-week scale.

Missing components cause delay: Often during ProtoDUNE-SP installation, parts would arrive at
CERN with small pieces missing, e.g., brackets or hardware. For the SP module, detailed interface
drawings will define the interfaces clearly and the work packages will list all parts. A part-
breakdown structure will be defined to clarify the ownership of each part and track the location of
all hardware. With these systems in place we expect to minimize the number of instances of pieces
missing when they are needed. The residual risk is considered highly likely, but with minimal
impact.

Import export and VISA issues: Fermilab has established a new SDSD to expedite customs and
visa issues. This risk will need re-evaluation after the new division has had time to evaluate the
issues.

Lack of available labor: Unemployment in the Lead area remains low. At the time work is ramping
up it may be difficult to find local people with the requisite skills. To mitigate the risk, we plan
to hire the core team early and train them at SURF and Ash River. In addition, a longer hiring
period will be planned (6-12 months) so there will be ample time to hire and train the crew. The
residual risk is considered low.

Parts do not fit together: Integration is a critical component of any complex project. DUNE has
implemented a process to generate a complete 3D model of the detector module that can be used
to detect conflicts. Interface drawings are being generated to clearly define the interfaces between
components. Beyond this, an installation prototype of the full assembly is being planned at the
NOvA far detector building in Ash River. This installation prototype will test the installation of
the detector components using full-scale mechanical mockups. For ProtoDUNE-SP, the Ash River
test was critical for finding mismatches between components and identifying installation difficulties
due to limited space. After all the installation steps have been tested it is expected the residual
risk will be low. It is highly likely that some small conflict will be found but the impact on the
overall schedule will be low.

Cryostat Damage: The cryostat membrane is a 1.2mm thick stainless steel membrane. A screw
driver dropped from 12m, for example, would likely cause damage, and much larger pieces of
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equipment than that will be used. Equipment must also move within the cryostat. To protect
the cryostat, a false floor will be constructed. When the false floor is removed, measures will be
taken to prevent items from dropping on the membrane. Where possible, all bolts, brackets, and
components will be attached to nearby structures so they cannot be dropped. The residual risk
of damaging the cryostat is considered small, but in the unlikely event it occurs, it would have a
moderate schedule impact.

Weather closes SURF: Weather events in South Dakota that lead to closing SURF for one or two
days occur several times each winter. This risk is accepted, and the average number of snow days
is added to the project schedule.

Detector failure during cool-down: As the detector module cools, thermal stresses will develop
that the design must be sufficiently robust to withstand. Risk of breakage due to these stresses
is particularly critical as it occurs after all components are installed. This risk is minimized by
thoroughly testing each component individually in the cold, then cold testing each APA-PD-CE
assembly just prior to moving it into the cryostat. This test of the final assembled components is
considered critical in reducing the risk of failure during cool down. The residual risk is classed as
low probability, but would have a high impact if it should occur.

The remainder of this chapter is divided into three main sections. The first section describes how
material will be delivered to the South Dakota region and forwarded to the Ross Headframe on
the SURF site. The second section describes the infrastructure needed to install and operate the
SP module. This includes a cleanroom and its contents, as well as electronics racks, cable trays,
storage facilities, and machining facilities. The third section describes the installation process itself,
which is divided into three phases: the central utility cavern (CUC) setup phase, the installation
setup phase, and the detector installation phase. These are summarized in Section 9.4.

9.2 Logistics

Access to the underground installation area for DUNE, Long-Baseline Neutrino Facility (LBNF),
and Joint Project Office (JPO) personnel, as well as for LBNF and DUNE materials and equipment,
will be provided solely by the 1500m-deep Ross Shaft. Coordinating transport and ensuring on-
time delivery of all items are therefore among the more challenging aspects of the LBNF and DUNE
endeavor. The JPO (see Volume III, DUNE Far Detector Technical Coordination, Chapter 4 of
this TDR) oversees the South Dakota Warehouse Facility (SDWF) where deliveries are received
before transport to the Ross Headframe.

Due to the enormous cost of the LBNF-conventional facilities (CF) contracts and the risk of
increased construction costs due to delays in delivery of materials, the shaft scheduling must be
tightly controlled by LBNF-CF during construction. The shaft is outfitted with hoists that control
the cage and two skips. The cage is used to transport people, equipment and materials, and
the skips to bring up muck and transport over-sized equipment and materials. The LBNF-CF
construction manager/general contractor (CMGC) will coordinate overall usage of the Ross Shaft
during this period, until the end of the excavation work. At that time the JPO will take over the
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management of the shaft usage.

To facilitate the flow of non-CF LBNF and DUNE materials and equipment to the Ross Headframe,
the JPO will lease a warehouse facility within a maximum one-day roundtrip2 from SURF by truck.
It is expected that the lease of this facility, referred to as the SDWF, will include warehouse space,
personnel, and a warehouse management system (WMS) to inventory all incoming materials and
equipment. A facility has not yet been selected.

Most materials and equipment will be shipped to the SDWF; CF material, and likely cryogenics
equipment, are exceptions and will ship directly to SURF. The SDSD logistics organization will
(1) receive and inventory all goods shipped to the SDWF, (2) coordinate with the CF-CMGC
to transport this material to the Ross Headframe in a just-in-time manner, and (3) transport it
underground and into the cavern. Figure 9.1 shows a high-level overview of the material flow to
the Ross Headframe.
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Figure 9.1: Material flow diagram for LBNF and DUNE.
2For purposes of warehouse selection “one-day roundtrip” is considered three hours of transportation each way and

two hours of unloading and loading at the Ross Headframe.
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9.2.1 Logistics Planning

The JPO/SDSD logistics team oversees transportation of the cryostat (steel, foam, and membrane),
the cryogenics system, the DUNE detector components, and all related infrastructure not provided
by the CF. LBNF specifically oversees the cryostat and cryogenics system, which LBNF will discuss
in its TDR. Because LBNF materials dominate the logistics, we present a summary of them here,
along with an overview of the DUNE materials. The steel structure for a single DUNE cryostat
requires roughly 1,800 individual steel pieces, some of which weigh up to 7.5 t, as well as 125 t
of bolts to assemble the steel frame. The internal structure for the cryostat, which includes the
foam insulation and the thin stainless steel membrane, requires transporting roughly 4,000 boxes of
approximate size 1.5m× 3.5m× 1.2m. The current plan calls for warehousing all these boxes at
the SDWF before installation begins. The logistics operation will require roughly 5000 m2 of area
available approximately two years before installation of the first detector module begins, to stage
construction of the cryostat, cryogenics system, and detector. By the time detector components
start arriving, most of the cryostat boxes will have been delivered to SURF, leaving ample space
for the detector and the cryogenics components. Additional warehouse space may be required if
the boxes for the second cryostat arrive before detector module #1 installation is complete; a few
buildings of the required size are available in the general area around SURF.

Ross Cage Specifications
Inside height 3.6 m
Inside depth 3.7 m
Inside width 1.38 m
Weight limit 5,897 kg
Round trip
time

17 min
(incl. unloading)

Figure 9.2: Simplified Ross Cage model and specifications.

The SURF Facility Access Specification [184] defines the limitations on dimensions and weights
for all materials to be transported underground, the most stringent of which are set by the Ross
Shaft and Cage. It is possible to bring material down the shaft underneath the cage or in the skip
compartment as a slung load, but this is a much slower process and requires careful planning and
review of detailed procedures for each trip. The APAs, for example, require this special handling
because they are too tall to fit in the cage.

Most material will be brought underground inside the cage. Figure 9.2 illustrates the new Ross
Cage and summarizes its parameters. The roundtrip travel time for the Ross Cage is 17 minutes
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(actual travel time is 3.6 minutes each way), dominated by loading and unloading time. Slung
loads will require more than an hour round trip.

The Ross Headframe has no loading dock so careful planning of material loading and unloading
of shipments is required. All materials must arrive at SURF on a flatbed or curtain-sided chassis,
and a forklift will be available for unloading. All deliveries, either from the SDWF or direct to the
Ross Headframe, require (1) coordination with the logistics organization, and (2) minimum two
weeks prior notice, per an advance delivery plan.

Logistics will provide to DUNE institutions a shipping manual that specifies guidelines on required
shipping data and cargo consignment. Adherence to the guidelines will enable the logistics organi-
zation to monitor shipping progress and ensure that no delays occur due to incomplete or missing
documentation.

In ProtoDUNE-SP’s experiences with trans-oceanic international shipping highlighted the need
to increase delivery schedule duration beyond the shipper-quoted average, which was sometimes
exceeded by as much as three weeks. For LBNF/DUNE materials, we will plan shipping and
transport so that items arrive in South Dakota a minimum of four weeks before they are expected
underground. This buffer will allow sufficient advanced planning for the underground work, with
confidence that the installation plan can be maintained.

Sufficient space must be made available at the SDWF and in the underground area to house this
material. The SDWF staff will deconsolidate or consolidate arriving cargo into appropriately sized
boxes and crates, as needed, for delivery to SURF, to make the most efficient use of available
trucks and the Ross Shaft.

To determine the storage space requirements and how much hoist time must be dedicated to
DUNE, a detailed inventory of all DUNE detector equipment and infrastructure is needed. A
complete list of materials has been solicited from all consortia and technical coordination. The
entries in the inventory spreadsheet are organized as “loads” for the Ross Shaft where a load is a
crate or set of boxes that will be transported underground in one trip, either in the cage or as a
slung load [185]. Information captured in the load spreadsheet includes the number of trips, type
of trip (slung load or cage), package dimensions, weight, and type of package (crate, pallet, box,
or carton).

The load list at present predicts 1,600 hoist trips and approximately two months of cage time, most
of which is spread over one year. Detector installation (see Figure 9.21) for the SP module will
span two years, so we divide the logistics planning into three phases (summarized in Section 9.4:
(1) the CUC setup phase, (2) the installation setup phase, and (3) the detector installation phase.
For each phase, a 3D model was generated to show how much material can be stored underground
outside the work area and how much material must be stored at the SDWF, thus setting the
surface space requirements. The phase with the largest amount of material to transport is the
installation setup phase. Figure 9.3 shows the model of the underground area and the required
boxes for surface storage for the first month of this phase. The crates outside the cavern were used
to estimate DUNE’s storage needs in the surface storage facility. Roughly 1000m2 of warehouse
space will be needed at this time to buffer DUNE installation equipment. The SDWF will also
need space to store up to 150 APAs, adding another 700m2. The remaining 3300m2 is available
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Figure 9.3: CAD image showing the empty half of the north cavern as used during the installation setup
phase of the first detector module. The entire cavern is 145m long, 20m wide, and 28m high; the
half shown is therefore approximately 73m long. Half of this empty space will be used for the cryostat
work and half for storage of the detector infrastructure. The material shown outside the cavern must
be stored in the SDWF.
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for LBNF storage. The amount of warehouse space actually leased can be adjusted to match
LBNF/DUNE needs, and after the second cryostat construction is complete it will be reduced.

Managing the hoist and planning all the transport of materials underground is one of the primary
responsibilities of the CMGC. This task will be challenging and the installation plan with warehouse
space on the surface and storage space underground will give critical flexibility in the timing of the
delivery of materials. With month-long buffers above and below ground, and a two-week advanced
notification of the installation needs, the CMGC has freedom to schedule deliveries around the
needs of other contractors.

9.2.2 Logistics Quality Control

The ProtoDUNE-SP experience offers a couple of significant lessons regarding logistics.

1. A central inventory system is essential for tracking shipments.

2. It is important to apply realistic shipping durations based on experience into the overall
planning so that work can proceed on a predictable schedule.

The central inventory system implemented at the SDWF and minimum one-month material buffer
are the plans we have in place to prevent repetition of the ProtoDUNE-SP schedule problems. The
full list of lessons learned from ProtoDUNE-SP is in [183].

Component testing at the SDWF is presently not planned, however a DUNE quality control (QC)
procedure will be followed to detect any damage incurred during transportation and determine
remedial action. Any request from the consortia to perform work in the SDWF will be addressed
on a case-by-case basis.

In critical cases where the shipping dimensions approach the shaft dimensions, a test transportation
using a dummy component will be done. At present the APA shipping/transport box is planned
to be tested in this fashion.

The logistics organization in coordination with the SDWF will inventory all received shipments
and ensure that all materials fit in the Ross Cage, or if a slung load is needed, that the necessary
procedures are in place and approved before any material is transported to the Ross Headframe.
JPO representatives will verify that no obvious damage occurred in transport.

The contribution-in-kind model of this project complicates logistics oversight and inventory control,
since components will be delivered from many institutions and from different countries. Similarly,
during production and testing, QC information must be gathered from and made accessible to
all collaborators. Because of the complexity of the project and the different requirements for QC
and logistics oversight, two different databases will be used. A commercial WMS will control
the inventory process at both the SDWF (items both received and shipped) and at SURF (items
received at the Ross Headframe). A separate database, the DUNE construction database (DCDB),
will store test and other QC data, e.g., shipping reports and any reported damage. The WMS will
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need to provide location and QC information to the DCDB, which will ultimately archive both
sets of data. The DCDB has not yet been designed.

Until materials arrive at the SDWF (or SURF if directly shipped), the contributors’ freight for-
warding system will control the logistics supply chain, which will depend on the contractual cir-
cumstances and the contributor’s choice. However, assuming the shipment is consigned as outlined
in the shipping manual (so that the logistics organization has access to the shipping data), the
logistics manager will monitor the cargo progress and step in if a problem arises. The QC and
shipping data flow is shown in Figure 9.4.

The JPO installation management team will provide a shipping (supply) report to the SDSD
logistics organization and SDWF for scheduling delivery of parts and equipment two weeks in
advance of the required delivery date. All deliveries will be inventoried upon receipt at the Ross
Headframe in the WMS.

9.2.3 Logistics Safety

The SDWF will be managed and operated by an independent contractor under the supervision of
the DUNE logistics manager.

The facility will be operated under the contractor’s ES&H program, which must conform to federal
regulations and will be reviewed by Fermilab’s ES&H management prior to entering a contractual
relationship.

9.3 Detector Infrastructure

The JPO will provide the infrastructure needed to install the SP module. The major items, de-
scribed below, include the detector support system (DSS), the electronics mezzanine on the cryo-
stat roof (including racks), cable trays, an underground cleanroom with appropriate installation
equipment, piping inside the cryostat, and cold boxes with associated cryogenics supply.

Other items, not described here but also in the JPO scope, include a small machine shop, scis-
sor lifts, rigging equipment, hand tools, diagnostic equipment (including oscilloscopes, network
analyzers, and leak detectors), local storage with some critical supplies, and personnel protective
equipment (PPE).

9.3.1 Detector Support System

The DSS provides the structural support for the detector inside the cryostat. It also provides
the necessary infrastructure inside the cryostat to move the detector elements into place during
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assembly. The DSS is a new design, quite different from the ProtoDUNE-SP DSS. The detector
elements supported by the DSS include the endwall field cages (endwall FCs), the APAs, and the
cathode plane assemblies (CPAs) with top and bottom FC panels. The nominal load of the detector
elements both dry (in air) and wet (in LAr)3 are shown in Table 9.3. The weights listed are the
current design weights. The DSS, however, is designed to accommodate significant design changes
— even if the detector weight were to double the DSS still meets the design code requirements.
The feedthroughs can be adjusted to compensate for deflections due to load.

Table 9.3: The expected dry and wet static loads for the DSS.

Weight before fill (Dry)
Unit Weight Total Weight

Detector Component # Units (kg) (lbs) (kg) (lbs)
DSS 1 NA NA 12318 27100
APA (Installed APA pair, no cables) 75 1184 2604 88768 195290
CPA 100 233 513 23331 51327
Top or Bottom FC module (FC TB) 400 149 328 59679 131294
TPC Electronics and Cables 3000 4.9 10.8 14700 32400
endwall FC 8 904 1989 7234 15914
Total 206,000 454,000

Weight after fill (Wet)
DSS (not in liquid) 1 NA NA 12318 27100
APA (Installed APA pair/No cables) 75 850 1874 64000 140000
CPA 100 45 99 4520 9943
Top or Bottom FC module (FC TB) 400 68 150 27359 60191
TPC Electronics and Cables 3000 2.9 6.4 8700 19200
endwall FC 8 283 622 2263 4978
Total 110,000 242,000

The DSS shown in Figure 9.5 consists of five rows of I-beams inside the detector that support the
five rows of APAs and CPAs. The I-beams themselves are supported from the cryostat outer steel
structure through a series of vertical supports or mechanical feedthroughs, also shown in Figure 9.5.
The DSS constrains the location of the detector inside the cryostat and also accommodates the
detector elements’ movement and contraction during cooling. The layout of the DSS sets, in turn,
the overall layout of the detector module since the module’s elements become a unified mechanical
structure only after they are mounted to the DSS and internally connected.

During installation the detector components are moved along the I-beams using both simple and
motorized trolleys. The end of the DSS nearest the temporary construction opening (TCO) is also
designed as a switchyard. An additional set of north-south beams allow a short section of the I-
beam rail to be shifted between the five rows of DSS beams that correspond to the five alternating
rows of detector elements (APA-CPA-APA-CPA-APA). With this the 12m tall detector elements

3The “wet” load takes into account the buoyancy of the liquid argon. As G10 is almost neutral buoyant the difference
is substantial for some sub-systems.
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can enter the cryostat on an I-beam through the TCO, be loaded on the short switchyard beam,
moved to the required row of DSS and then be pushed into position.

Figure 9.5: 3D model of the DSS showing the entire structure on the left along with one APA row and
one CPA-FC row at each end. The right panel is a zoomed image showing the connections between
the vertical supports and the horizontal I-beams.

The DSS is designed to meet the following requirements:

• support the weight of the detector;
• accommodate cryostat roof movement during filling, testing, and operation;
• accommodate variation in feedthrough locations and variation in the flange angles due to

installation tolerances and loading on the warm structure;
• accommodate shrinkage of the detector and DSS from ambient temperature to LAr temper-

ature;
• define the positions of the detector components relative to each other;
• provide electrical connection to the cryostat ground and remain electrically isolated from the

detector;
• allow support penetrations to be purged with gaseous argon to prevent contaminants from

diffusing back into the liquid;
• ensure that the instrumentation cabling does not interfere with the DSS;
• consist entirely of components that can be installed through the TCO;
• meet AISC-360 codes;
• meet seismic requirements one mile underground at SURF;
• consist entirely of materials compatible with operation in ultrapure LAr;
• ensure that the DSS beams either sit completely submerged in LAr or sit completely in gas

while leaving a 4−5% ullage at the top of the cryostat;
• maintain the centerline of the APA near the cryostat at 400mm from the membrane flat

surface;
• ensure that the supports do not interfere with the cryostat I-beam structures;
• ensure that the detector’s lower ground plane (GP) lies over the cryogenic piping; and
• include the infrastructure necessary to move the APA and CPA-FC assemblies from outside

the cryostat through the TCO to the correct position.
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Each row of the DSS consists of a series of ten 6.4m long W10×26 stainless steel I-beam sections,
for a total of 50 I-beam segments for the five rows. The length of the beam segments was chosen to
be a multiple of the 1.6m pitch of the major cryostat beams, which allows the regular placement
of the support feedthrough across the cryostat roof. With a W10×26 I-beam and 6.4m between
the supports, the beam deflections due to the loads can be kept below 5mm. Each I-beam is
suspended on both ends by the mechanical feedthroughs that penetrate the cryostat roof. During
cool-down each I-beam shrinks while the mechanical supports outside the cryostat remain fixed,
causing gaps to form between APAs that are adjacent but supported on separate beams. APAs
that are supported on the same beam will not have gaps develop because both the beam and APA
frames are stainless steel and will shrink together. The gap between two adjacent DSS beams after
cool-down will be 17mm; this is considered acceptable. Increasing the beam length beyond 6.4m
was not considered because the deformation of the I-beam under load would increase, as would
the gap between APAs on adjacent beams and the difficulty of installing the beams.

The DSS I-beams are supported on both ends from a vertical support feedthrough shown in
Figure 9.6. A 25mm solid stainless steel rod, which is threaded at both ends, runs down the center
of the feedthrough and carries the detector load. The support rod connects on the bottom end to
a clevis which is then pinned to the DSS beams shown in Figure 9.7. At the top the rod bolts to an
X-Y table sitting on the top Conflat flange that allows a lateral adjustment of ±2.5 cm (1 in). A
swivel washer is used in the bolted connection to the X-Y table to allow the support rod to swing
freely. The bolted connection also allows the DSS I-beams to be adjusted vertically. The vacuum
seal is established at the top with a bellows between the rod and the top flange. The top flange
of the DSS support feedthrough is a Conflat flange that connects to the cryostat crossing tube’s
mating flange. The crossing tube is welded to the cryostat roof and the top flange is mechanically
supported from the cryostat’s 1.1m tall support I-beams. The cryostat crossing tubes are shown
in Figure 9.12.

During installation the detector components will be pushed along the DSS I-beams, placing a
lateral load on the DSS. A 15.2 cm (6 in) outer diameter (OD) tube is welded to the top flange of
the DSS feedthrough. This lateral support tube extends through the cryostat insulation and has
a clamping collar at the bottom that is used to fix the I-beam support clevises in position during
installation. The bottom of the lateral support tube is seen in Figure 9.7. The long bolts press on
the flat sides of the clevis to fix the support rod’s location. There is a nominal 10mm gap between
the OD of the support tube and the inner diameter (ID) of the clearance tube in the cryostat. The
clevis can be positioned anywhere inside the 15.2 cm tube.

After the detector has been installed all restraints on the clevis are released to allow motion as
the detector contracts during cool-down. The two support rods that support each DSS beam will
contract and move toward each other by 13.1mm along the axis of the detector. The drift distance
will shrink by 7.4mm caused by the contraction of the field cage. The detector is symmetric in the
drift direction around the center APA. The drifts on either side of the center APA will shrink toward
the center while the center APA remains unmoved. This results in the CPAs moving 7.4mm toward
the center and the outer APAs moving 14.8mm (2×7.4mm) toward the center. The hanging rod is
designed to have a range of motion of 15mm in the drift direction to accommodate this shrinkage.

Detector components are installed using a shuttle beam system as illustrated in Figure 9.8. The
last two columns of feedthroughs (western-most) support temporary beams that run north-south,
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Figure 9.6: Drawing of the DSS vertical support feedthrough. The detector load is carried by the
25mm inner support rod. The outer lateral support tube prevents swinging during installation. The
feedthrough mounts to the cryostat crossing tube, which is an integral part of the cryostat.
Note: A few of the DSS vertical support feedthroughs have a short vacuum chamber with side ports
inserted between the DSS support flange and the cryostat crossing tube. These chambers are used to
bring the CISC cables out of the cryostat and are shown in the CISC section in Figure 9.28.
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Figure 9.7: Left panel shows how the central support rod is locked in position during detector installation.
The outer 15.2 cm (6 in) tube is used to fix the support clevis in position. The right panel shows the
system as it is connected to the I-Beam.

perpendicular to the main DSS beams. A shuttle beam has trolleys mounted to it and traverses
north-south until it aligns with the required row of DSS beams. The last APA or CPA in a row is
supported by the shuttle beam, which is bolted directly to the feedthroughs once it is in place. As
the last CPA or APA in each row is installed, the north-south beams are removed. This system
will be thoroughly tested as part of the Ash River testing program described in 9.4.2.

Figure 9.8: 3D models of the shuttle beam end of the DSS. The figures show how an APA is translated
into position using the north-south beams until it lines up with the correct row of I-beams.

The shuttle beam and each detector component are moved using a motorized trolley as seen
in Figure 9.9. A commercially available motorized trolley will be modified as needed for the
installation. A mechanical stop will prevent the trolley from passing the end of the shuttle beam
unless the beam is aligned with a corresponding DSS beam. A detailed engineering design report
for the DSS is available [186] and the preliminary design review is complete.
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Figure 9.9: Prototype of the motorized DSS trolley that will push the APA and CPA along the I-beams
and through the switchyard.

A mock-up of the shuttle system will be constructed to test the mechanical interlock and drive
systems for the shuttle beam for each detector module. Tests will be conducted to evaluate the
level of misalignment between beams that can be tolerated and the amount of positional control
that can be achieved with the motorized trolley. We plan to construct a full scale prototype of a
section of the switchyard and perform tests at floor level. Later, the test program will be expanded
at Ash River, where a full-scale installation test will be performed; see Section 9.4.2.

9.3.2 Cryostat Roof Infrastructure

The top image in Figure 9.10 shows the DUNE electronics mezzanine with the 42U tall racks
placed on top. During the initial design steps, it became clear that the constraints placed on
the rack location by the many DSS support feedthroughs, the electronics feedthrough, and the I-
beams themselves make distributing the racks on the roof very challenging. By constructing a fixed
mezzanine for the electronics above the cryostat at the same height as the cryogenic mezzanine, the
electronics feedthroughs are kept clear. This configuration also makes working on the electronics
much easier because there are no local obstacles and all the racks are in one place.

Since the electronics modules in the racks are connected to the detector readout electronics, they
are by definition at detector ground. The mezzanine must therefore also be connected to detector
ground, which is accomplished by bolting the mezzanine to the cryostat I-beams.

Figure 9.10 (top) shows 16 groups of five racks each on the mezzanine for a total of 80 racks.
The electronics inside the detector racks will be air-cooled and the heat exhausted into the cavern
air. The HVAC system for the detector cavern has a 400 kW capacity, which is sufficient for the
first detector module. Note that as the majority of the heat is generated by the cold electronics
(CE) and PD electronics located near the cryostat feedthroughs distributed across the cryostat
roof, a water-cooling scheme would be difficult to engineer. CF will provide sufficient chilled water
capacity at the entrance to the north cavern to accommodate the maximum heat load for two
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Figure 9.10: The electronics racks sit on the DUNE electronics mezzanine. The top image is a view
from above the detector looking at the racks from the side. In this view the cavern and cryogenics
mezzanine are hidden. The bottom view is from the end of the cryostat looking over the roof. The
access stairs to the mezzanine are shown.
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Cold Electronics 24U Photon Rack 20U CISC, Calibration 29U

Figure 9.11: The nominal contents of the electronics racks on the mezzanine is shown. Each rack is
configured to consume less than 3.5 kW.
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detector modules. When detector #3 is selected and the heat loads are known, the added cooling
for this module will be designed.

Of the 80 racks, CE LV power requires 25, and another 25 will be made available collectively
for APA wire bias voltage, PD power, and miscellaneous additional CE, photon detection system
(PD system), and APA electronics modules. The remaining 30 will be available for slow control,
calibration, and other electrical equipment. Small 12U-high mini-racks will be placed near the
electronics feedthroughs for the PD readout electronics and optical patch panels. If this is not
enough, additional racks can be placed on the cryostat roof. The present rack configuration for
this layout is shown in Figure 9.11. The electronics modules inside the racks are distributed to keep
the AC power requirement for each rack below 3.5 kW. The racks are 42U high, which provides
significant extra rack space [187].

The 12U-high mini-racks near the feedthrough flanges will be relatively empty because the PD
readout should need only approximately 2U in height while the CE patch panel needs less than
1U. The mini-racks are shown in the lower panel of Figure 9.10; they are the gray rectangles near
the electronics crosses.

The north-south cable trays (transverse to the beam) that run from the electronics mezzanine
to the electronics feedthrough are routed under the floor of the cryostat roof (shown in gray in
Figure 9.10) next to the I-beams. This keeps the roof reasonably clear, allowing equipment to be
transported across it. The gap between the web of the I-beams is 1.2m so a 200mm to 300mm
wide cable tray installed along the beams leaves enough space for people to work on the electronics
crates while standing directly on the cryostat’s outer steel skin (Figure 9.25). The cable trays
between the CUC and the electronics mezzanine will run along the west end of the cryostat under
the floor of the cryostat roof. We estimate that only half of the 1.6m space is needed, so the cable
tray quantity could in principal be doubled, if necessary.

The flooring material for the top of the SP module will be similar to the 25mm thick plywood
used at ProtoDUNE-SP. It is important that it be easy to cut so that it can be fit around many
obstacles and pipes on the roof. It must be light enough to lift up to allow access under the floor,
and it must support the load of a person and a small cart. We will investigate fire-retardant options
available in the USA and other possible materials, with input from the Fermilab fire life-safety
group.

Air filters for the cleanroom and inside the cryostat will also be placed on the cryostat roof. The
present plan is to place fan filter units near the access holes on the east end of the cryostat. Initial
calculations indicate sufficient airflow is possible to support one air exchange per hour inside the
cryostat. The air handling system has yet to be designed in detail.

The cryostat crossing tubes are among the most critical components of the roof infrastructure since
they penetrate the cryostat roof and connect to the cold cryostat membrane. The top flange of
the crossing tube supports either the electronics feedthrough or the detector support feedthrough
and must be directly tied to the cryostat’s steel I-beams for support. Accurate placement and
true vertical installation of the crossing tubes is important to ensure proper interfacing to the
cryostat membrane. A draft assembly drawing of the crossing tube is shown in Figure 9.12. The
crossing tube consists of a 464mm long stainless steel pipe with a 1 cm thick wall. One end of the
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Figure 9.12: Draft drawing of the cryostat crossing tubes. The hatched region is the cryostat insulation.
Units are mm. Points labeled “u” and “v” are welds.

thick-walled section is welded to a 800mm long 250mm diameter thin-walled tube which is also
welded to the cryostat membrane. A custom Conflat flange at the top end of the crossing tube
connects to the feedthrough. The thick tube section is also welded to the steel roof plates (the
thin cross-hatched segments in Figure 9.12).

Each of the 250 crossing tubes has a small side port that connects to the cryogenic gas-handling
system through a network of pipes on the cryostat roof. During the initial purge gaseous argon
(GAr) is withdrawn from each port and analyzed to assess progress and determine when the
system is ready to be cooled down. Five GAr streams, each collecting gas from 50 crossing tubes,
are connected independently to the gas analyzers. This provides some redundancy and position-
dependant information on the contamination level of the gas at the top of the cryostat during the
purge.

During filling and normal operation the collection and analysis of the gas from the crossing tubes
will continue in order to monitor impurities (mainly water, oxygen and nitrogen) produced by
outgassing from the cables in the feedthroughs and the warmer metal surfaces in the ullage. These
impurities can be removed from the GAr by the cryogenics system. If the gas analyzers find
no significant nitrogen contamination, the GAr from all or a subset of ports can be sent to the
condenser, re-condensed, and purified along with the rest of the LAr. Simple O2 sensors monitor
the return gas for traces of oxygen, which would indicate development of a leak in the room-
temperature feedthroughs.

A 500 kVA transformer provides power to each detector module and the total power budget avail-
able for use by detector electronics is derated to 400 kW at the power distribution panels. The CE
is the SP module’s largest power consumer, dissipating 306W per APA. The LV power supplies’
controller needs about 35W per APA and has an efficiency of approximately 85%. This leads to
a load of approximately 400W per APA, or a total load of 60 kW per detector module. The APA
wire-bias power supplies have a maximum load of 465W per set of six APAs, for a total budget of
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about 12 kW. Cooling fans and heaters near the feedthroughs will use a nominal amount of power,
so the overall power budget for the CE and APAs is expected to be less than 75 kW.

The PD system electronics is based on the Mu2e cosmic ray veto electronics, which reports a
power load of approximately 6 kW. DUNE plans a power budget of 8 kW because of cable drops
and power supply inefficiencies.

Each of the approximately 80 detector racks will have fan units, Ethernet switches, rack protection,
and slow controls modules, adding a load of about 500W per rack, for a total of 40 kW.

Twenty-five racks are reserved for cryogenics instrumentation with a per-rack load conservatively
estimated at 2 kW, for a total of 50 kW.

The detector module will thus use an estimated 173 kW of power. These numbers provide a safety
factor of about two on our power estimates relative to available power.

9.3.3 Cryostat Internal Infrastructure

The internal cryogenics comprises three sets of pipe distribution networks and two sets of sprayers.
All pipes enter the cryostat from the top; some go all the way down to the floor, and others remain
in the ceiling. On the floor are:

• Argon gas distribution: a set of pipes for GAr. These pipes are used only prior to filling
to remove air in the cryostat. They will all have either a longitudinal slit or calibrated holes
to distribute GAr uniformly along the length of the cryostat. We have run computational
fluid dynamics (CFD) simulations showing that air will be removed from the system as long
as GAr is flowing in at the right speed, calculated and experimentally verified as 1.2m/hr
(vertical meters in the cryostat).

• LAr distribution: two sets of pipes are required for flowing LAr over a broad range of
flow rates. These pipes are used to fill the cryostat and, during steady state operations, to
return the LAr from the purification system. The pipes have calibrated holes to return the
LAr uniformly throughout the length of the cryostat which is very important to maintain
uniform purity. Four pumps circulate the LAr inside the cryostat all of which operate initially
to achieve purity. Once the target purity is achieved only one or two pumps remain in service.
Individual pumps can be isolated for routine maintenance.

On the ceiling are:

• Cool down sprayers: Two sets of cool down sprayers are distributed along the long sides
of each cryostat. One set distributes LAr using liquid sprayers that generate a conical profile
of small droplets of liquid. The other set of sprayers distributes GAr to move the LAr
droplets within the interior and thus cool down the detector and cryostat uniformly. These
sprayers are being tested in ProtoDUNE-DP. They are a variation of those implemented in
ProtoDUNE-SP.
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Figure 9.13 shows the current layout of the internal cryogenics. The GAr pipes are in red, the LAr
pipes in blue.

Figure 9.13: Endview of the inside of the cryostat after the cryogenic piping has been installed. The
GAr pipes used during the piston purge are in red and the pipes which return the purified LAr to the
cryostat are in blue.

Infrastructure inside the cryostat includes the cryostat false floor, the UV-filtered lighting, and
the battery-operated scissor lifts. The floor must support the load of the scissor lift used to work
on the electronic cabling on the inside of the cryostat near the ceiling and allow the scissor lift to
get close enough to the APAs to work comfortably at the top. The floor must be laid out so that
the panels can be removed in sections as equipment is installed. This is especially important for
the APAs since inadequate room exists between the bottom of the APAs and the floor to allow
removal of panels after installation.
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The cryostat lighting, using UV-filtered4 LED lamps, is expected to be fairly simple. Options for
the lighting will be developed during tests at the Ash River facility. Floor-mounted lights with
task lighting will be investigated. If needed, lighting can also be mounted to the DSS and removed
as the detector is installed.

We plan to use a commercially available battery-operated scissor lift with a 12m reach. Tests at
Ash River will verify the stability of the lift at height. If the lift is determined to be suitable, then
the remaining issue to resolve is how to install and remove it from the cryostat. Commercially
available scissor lifts are too wide to fit easily through the TCO opening where one of the large
cryostat support I-beams protrudes above the TCO floor level, so custom lifting equipment will
be needed to insert the lifts into the cryostat from above. At the end of the installation process,
the last lift may require dismantling before it can be removed from the cryostat.

9.3.4 Cleanroom and Cleanroom Infrastructure

Since the 12m tall full anode plane assemblies would be too large and fragile to be brought down
the Ross Shaft, they will be assembled in front of the cryostat itself, where there is ample vertical
space. A cleanroom meeting the ISO-8 cleanroom standard (3.5M particles per m3 or 0.1M
per ft3) is required for any work on the detector components in order that the accumulated U/Th
contamination due to dust in the detector produce a background rate lower than the (unavoidable)
Ar39 decay background. We therefore plan to construct a large ISO-8 cleanroom in the assembly
area (Figure 9.14) to meet the DUNE cleanliness requirements.

Upon arrival in the cavern, the detector elements first pass through a materials airlock (Figure 9.14)
before entering the cleanroom. This airlock has large entry doors of dimensions 3m wide and 8m
tall, large enough to allow the tallest item – an APA transport box (2.6m by 6.6m) – to enter
in a vertical orientation while bolted to a custom pallet and be moved with electric pallet jacks.
The airlock itself is 7m wide, 9m deep, and 9m tall. All materials must be brought through
the material airlock and cleaned prior to entering the cleanroom proper. The materials airlock,
cleanroom, and inside the cryostat will be outfitted with UV-filtered lights to protect the PDs.
Personnel must enter the cleanroom through a changing room. The changing room on the 4910
level is 13 m wide and 4 m deep, large enough to allow 50 people to gown up for the cleanroom
within a reasonable time (roughly 15 people can change at a time). A smaller changing room on
the 4850L allows easier access to the elevated work platform.

The cleanroom infrastructure consists of the cleanroom itself, the cold boxes and cryogenics plant
for testing the assembled APAs, the assembly towers, rails and a switchyard to allow the APAs to
move inside the cleanroom, and the PD integration infrastructure.

A combination of contractors, the lead worker, and rigger teams will set up the infrastructure;
they will also assist in detector assembly. The attire requirements for work in an ISO-8 cleanroom
are a cleanroom lab coat, clean shoes, and nets for hair and beards. This basic cleanroom attire
will be augmented with a clean hard hat and gloves, for safety reasons.

4Light is filtered according to the requirement SP-INST-6
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Figure 9.14: Two views of the installation cleanroom. The top view shows the cleanroom in position in
the north cavern. The location of the material airlock and the changing room are indicated. The lower
image is a closer view showing the equipment in the cleanroom. The 17.8m tall cryostat is shown in
red.
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To keep the cleanroom at least at ISO-8, air is first filtered then forced into the cryostat’s east end.
From there it flows through the cryostat and into and through the cleanroom and the airlocks.

The size of the installation cleanroom depends on the work performed inside it and the required
equipment. The dimensions have been defined and are described below, but optimization will
continue through fall of 2019. After the tests at Ash River modifications may be necessary. Figure
9.14 illustrates the conceptual design. The top figure shows the cleanroom situated in the cavern
next to the cryostat; the materials airlock and the changing room are on the west end. The bottom
image is a closer view showing some of the equipment in the cleanroom.

The cleanroom proper can be divided into several work areas as follows:

• materials and personnel airlocks,
• PD integration area,
• four APA assembly lines, where the lower rails are for wire tension measurements and the

upper rails are for APA assembly and cabling,
• the switchyard area used to move the assembled APAs around the cleanroom and into the

cryostat,
• the cold box area where the APAs are cold tested, and
• the HV assembly area.

The PDs are integrated into the APAs and the initial quality assurance (QA) tests upon receipt
are performed in the 10m high PD integration area at the west end of the cleanroom.

Because APA preparation is time-consuming, four assembly lines will operate in the cleanroom
to keep up with the cold tests and installation. Three lines will be in continuous usage and the
fourth will remain available for repairs or contingency. Each assembly line has a lower and upper
set of rails for moving the APAs. The wire tension is measured and the lower CE front-end mother
boards (FEMBs) are installed at the lower rail section. The PD integration area and the lower
rail section of the assembly lines measure 19.5m wide by 18m deep, with a 9m ceiling. A design
for this area similar to that used for the ProtoDUNE-SP cleanroom is under consideration, as the
height is similar. If needed, the rail system inside the integration work area can be used to support
the roof.

The APA assembly and cabling area in the cleanroom is where the top and bottom APAs are
connected together to form the 12m doublets, and the CE cables are inserted and connected to
the FEMBs.

The ceiling in this area is 17.8m, placing the ceiling at the same level as the bridge and the roof of
the cryostat. A 9.5m by 19.5m area next to the bridge is sufficient to house the two large assembly
towers needed to support the assembly lines. Above the towers, I-beams running north-south, i.e.,
transverse to the neutrino beam, are needed to support work platforms that allow access to both
faces of the APAs. These beams can be used to support the cleanroom roof, which can be a light-
weight frame with a fire-retardant fabric attached. The outer towers’ steel structure provides a
strong surface to which to attach a polymer sheet intended to serve as the vertical wall connecting
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the 17.8m area to the 10m tall area.

The switchyard area is the region under the north-south bridge where a bridge crane is mounted.
It is used to move the APA from the assembly lines to the cold boxes and into the cryostat, and
is similar to the shuttle beam system in the DSS shown in Figure 9.8. The cold boxes and the HV
assembly area are between the bridge and the cryostat.

The cleanroom spans the width of the cavern excavation. The side walls of the cleanroom will
be constructed by hanging reinforced fire-retardant plastic sheets against the walls, providing a
low-cost, easy-to-install solution.

Changing Room

Material
Airlock

PD Integration

 Assembly Rails

Figure 9.15: Two pairs of rails are used to prepare the APA for assembly. Each rail holds three APAs.
This is where the wire tension measurements are performed and the CE FEMBs are installed on the
lower APAs. The lower CE is easily reachable from the floor in this arrangement. This view is from the
assembly towers looking west along the assembly lines.

Given the substantial size and the significant occupancy of the cleanroom, it will require electrical
outlets, Wi-Fi, and fire protection. Monitoring for oxygen deficiency hazard (ODH) will be installed
as required by the safety analysis of the cold box cryogenics system.

Equipment in the integration work area adjacent to the materials airlock will consist of a station
for integrating the PDs into the APA, two pairs of rails for preparing the APA for assembly, and
several scissor lifts for working around the APAs. In the PD integration area an APA transport
box will be positioned between two fixed lifts that will be raised until the PD paddles can easily
be inserted into the side of the APA. Figure 9.15 illustrates the rail setup in the integration work
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area. The APAs are removed from their transport box and mounted to the rails at the far end of
the assembly rails near the PD integration area and material airlock. They then move along the
rails using simple trolleys running on the I-beams. The rails are long enough to hold three APAs
at a time. This setup is conceptual and the engineering design of the rail supports has not yet
started. Cross-bracing of the vertical posts will be added during the design stage.

Figure 9.16: Isomtetric view of the APA assembly and cabling tower. The steel outer structure is shown
in red. The inner scaffolding in gray permits work at different heights. The tower is designed to be two
APAs wide to allow work on two of them side-by-side simultaneously. Both the north and south faces
are equipped with assembly rails so that a single tower can support two assembly lines.

In the 17m tall APA assembly and cabling area of the cleanroom two large work towers (shown in
Figure 9.16) support the four assembly lines. These towers are designed to be wide enough to hold
two APAs side-by-side with enough space between them to walk through or work. The tower is
seven stories tall with work areas at each landing. Rails at mid-height and at the top of the towers
are used to move the APAs to the different locations along the tower. The towers also provides
support for the tooling needed to hold the upper and lower APA during assembly and to bring the
two modules together so they can be connected. This tooling is called the APA assembly fixture
and is provided by the APA consortium.
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The tower is conceived as a steel outer frame that supports the APAs and the rails. Inside the
steel frame is standard scaffolding that allows workers to access the APAs at different heights. The
scaffolding is wide enough for people to work simultaneously on both sides and it accommodates
a stairway in the middle that meets OSHA standards. North-south beams spanning the width
of the cavern will be placed on top of the towers to support the cleanroom roof and the work
platforms shown in Figure 9.17. The image shown in Figure 9.16 is a modified model based on a
single-wide APA tower that has passed all safety reviews and has already been constructed at Ash
River. The double-wide tower will need to be re-engineered to ensure that all the beam dimensions
and bracing are appropriate for the larger spans and loads. It will then go through the full safety
review and an initial prototype will be fabricated for use at Ash River. The size and the layout of
the top level of the tower will be optimized based on input from the Ash River tests.

Installation
Workdeck

Assembly 
Tower &

Scaffolding

Assembly
Rails

APA

North-South
Shuttle Beam

3 Cold Boxes 

Switchyard
Area

HV Assembly
Area

Figure 9.17: Installation workdeck, assembly towers and rails, switchyard, cold boxs and HV assembly
area in the installation cleanroom. Plan view.

Because the cables can only be inserted through the APA frames after the top and bottom APAs
have been assembled, quite a bit of work must be performed at the 14.8m height of the TCO
beam.

The commercial scaffolding inside the APA assembly towers provide a solid, safe work platform
for working on the side of the APA facing the tower. However, access to both faces of the APA
is required to connect the cables to the FEMB and to properly bundle the cable into the cable
trays in a way that allows the cables to be installed easily once the assembly is in the cryostat.
Given the large number of person-hours needed for work at height, all measures will be taken to
ensure that this work is safe. For this reason a large stable workdeck will be constructed as shown
in Figure 9.17. By running north-south I-beams from the cavern walls across the assembly towers,
strong rigid support points are provided. Vertical posts down from these beams can then support
the fixed workdeck as needed. Access to the workdeck is provided by a walkway along the west end
of the platform that connects to both the assembly towers. A second means of egress is provided
by a connection to the permanent stairs.
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Once a top-bottom APA pair is assembled it can be moved onto the switchyard under the bridge.
This switchyard, illustrated schematically in Figure 9.17, is essentially a bridge crane running
under the north-south bridge in the cavern. Several bridge beams (called shuttle beams) driven by
electric trolleys move on the runway beams of the crane. A rail at the bottom of the crane mates
with the fixed beams from the assembly lines, the cold boxes, the TCO beams and the HV assembly
area. By aligning the bridge beams with a set of fixed beams supported from the cleanroom roof,
the APAs and CPAs can be transferred from the fixed beams to the bridge crane and moved to
different locations in the cleanroom. The 12m tall CPA panels will be assembled directly under
the bridge crane and transferred directly from the assembly fixture to the switchyard crane.

The division of responsibilities between the installation and the consortia deliverables are defined
in interface documents, but they are governed by a simple concept. Any part which bolts, pins or
connects to a consortia deliverable is the responsibility of the consortia. General infrastructure,
hoists, and cranes are the responsibility of the installation team. Thus, for example, the installation
towers are installation’s responsibility, while the fixtures that bolt to the towers and to the APAs
are the responsibility of the APA consortium.

9.3.5 Cryogenics and Cold boxes

After an APA pair is fully assembled and cabled but before installation in the detector cryostat,
it is thermally cycled in a tall narrow test cryostat, called a cold box, shown in Figure 9.18). To
test APAs at a rate necessary to keep up with the installation plan, we will use three identical
cold boxes in the cleanroom. The cold boxes require a dedicated cryogenics system that uses a
fine mist of cold nitrogen to cool down close to LAr temperature. This system is designed so that
no liquid nitrogen will accumulate.

A cold box has external dimensions of 14.0 m by 3.2 m by 1.3 m (H×L×W). With three layers
of 100mm thick foam insulation, the internal dimensions are 13.4 m by 2.6 m by 0.7 m. A rail
section similar to those used elsewhere in the cleanroom will be mounted inside each cold box to
allow the cleanroom switchyard and trolleys to push an APA into a cold box. The cold boxes will
be light-tight when closed to support PD testing. A support base under the cold boxes will adjust
the height to mate with the cleanroom switchyard.

The cold box electronics feedthroughs will be similar to what is used on the top of the DUNE
cryostat, except that short cables will be run from the warm interface electronics crate (WIEC)
to a patch panel inside the cold box. This will allow the cable on the APA to connect directly to
the test readout without having to remove any cabling. The cold box design is nearly the same
as the successful ProtoDUNE-SP cold box. The outer shell is similarly constructed of a stainless
steel plate with reinforcing ribs welded on. The height is of course doubled, and a hinged door
is planned. Unbolting the door and lifting it off the ProtoDUNE-SP cold box required significant
effort, and lacking full crane coverage in this case, doors that can be opened and closed using a
scissor lift are necessary. The DUNE cold boxes will collectively need about 11 t of stainless steel,
according to initial estimates. The finished boxes are too big to fit down the Ross Shaft. As
the design continues, we will investigate whether the boxes can be brought underground partially
assembled, or if they must be fully assembled in place.
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The cold boxes and associated cryogenics system are the responsibility of the JPO and the design of
the cold boxes will be provided by the CERN team, which designed the ProtoDUNE test cryostats.
The cryogenics system will be designed by the LBNF cryogenics team.

Figure 9.18: Cold boxes used to thermally cycle the fully assembled APA pairs.

The cold boxes will be used to test the APAs underground prior to installation. The cryogenics
supporting the cold boxes must ensure their reliable and safe operation; to that end, the system
must

• support three cold boxes operating in parallel: one in cool-down mode, two either in steady-
state or warm-up modes;

• allow personnel in the cleanroom during all phases of the purge, cool-down, operation, and
warm-up modes;

• test the detector modules at near LAr temperature;
• operate 24 hours a day;
• allow remote operations; and
• be located in the vicinity of the TCO, as space is available on top of the cryogenics mezzanine

on the roof of the cryostat.

It must operate in the following modes:

• purge: During this mode, air is removed from the system (cold box and cryogenics system)
and replaced with dry nitrogen. The concentration of moisture is monitored, and when it no
longer decreases, the cool-down can commence.
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• cool-down: Cold nitrogen is introduced into the system to cool the inside of the cold box and
the APA inside it. This should take 24 hours, during which time the temperature decreases
from room temperature to about 90K.

• steady-state operations: After reaching approximately 90K, the detector is turned on
and fully tested. This takes about 2 shifts.

• warm-up: After completing the test, the system is warmed up to room temperature over a
period of 24 hours.

Table 9.4: Table of parameters for the cold box cryogenics system

Parameter Value
Dual APA thermal mass 1,600 kg
Temperature uniformity +60 K / −0 K
Electronics load 300 W
Cold box insulation thickness 0.3 m
Target cool-down temperature 90K
Target cool-down duration 24 hr
Target steady-state duration 24 hr
Target warm-up duration 24 hr
Maximum cooling power 13 kW
Maximum liquid nitrogen consumption 300 l/hr

The evaporation of liquid nitrogen provides the cooling power for the system. Warm nitrogen and
a heater provide the heating power. At peak consumption, the expected maximum heat load is
8.5 kW. Assuming a 50% margin on the refrigeration load, the cryogenics system requires 13 kW of
net cooling power at peak consumption, which equals about 300 l/hr of evaporating liquid nitrogen.

Two layouts are currently under consideration: (1) a closed-loop with mechanical refrigeration,
in which liquid nitrogen is generated in situ, circulated, and the spent nitrogen recondensed be-
fore being put back into the system; and (2) open-loop, in which liquid nitrogen is transported
underground by means of portable dewars, circulated, and the spent nitrogen vented away. For
the closed-loop, we would need a mechanical refrigeration capable of supplying 13 kW of cooling.
For the open-loop, it is possible to use a 2000 l dewar, which is commercially available and trans-
portable up and down the Ross Shaft inside the cage. To supply the required amount of nitrogen,
four trips per day are needed over the two-year period of detector installation.

The current versions of the closed-loop and open-loop systems are presented in Figures 9.19
and 9.20, respectively. Both options are viable and a decision will be taken on which to adapt
after the analysis is complete.

A full ODH analysis will be performed once the design has progressed to the point where the
process flow and pipe dimensions are fixed (These are a necessary input to the analysis). Since no
liquid is accumulated and the room volume is large, our initial assessment is that standard ODH
safety measures will be adequate.
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Figure 9.19: Layout of the cryogenics supporting the APA test facility with mechanical refrigeration
(closed-loop).
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Figure 9.20: Layout of the cryogenics supporting the APA test facility with open-loop refrigeration
(open-loop).
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9.3.6 Prototyping and Testing (QA/QC)

Installing all this new equipment underground during the installation setup phase involves many
new techniques and unique work. While most of the procedures will have been tested during the
trial assembly at Ash River, everything must be properly approved. The main APA and CPA
towers will already be structurally approved, but all lifting fixtures, shuttle beams, crane tower
connections, and cold box connections must undergo load tests.

The load test program for the lifting fixtures, shuttle beams, crane tower connections, and cold
box connections will be documented in test procedures in accordance with the LBNF DUNE QA
program. These test procedures will (1) list prerequisites for testing, (2) identify fixtures and
test equipment, and (3) provide step-by-step instructions, acceptance criteria, and documentation
requirements. They will be in place prior to the start of testing. The test results will be documented
and approved by the systems engineering team prior to use of the lifting fixtures, shuttle beams,
and crane tower connections.

The cold boxes and cryogenics system will also be tested, which may require restricting access to
the cleanroom for several days for system checks. The cold boxes and the associated cryogenic
system test program will be similar to the test program that was instituted for ProtoDUNE-SP.
This test program will also be documented in procedures in accordance with the LBNF DUNE QA
program. These test procedures will (1) list prerequisites for testing, (2) identify test equipment,
and (3) provide step-by-step instructions, acceptance criteria, and documentation requirements.
The test results will be documented and approved by the systems engineering team prior to use of
the cold box and cryogenics system.

9.4 Detector Installation

As mentioned in Section 9.2, the DUNE detector installation will proceed in three phases: CUC
set up, installation set up, and the detector installation. The schedule in Figure 9.21 shows the
major underground activities and gives an idea of what work occurs in each phase.

The first phase, CUC set up, begins when the underground area for the north cavern and CUC
become available to LBNF and DUNE. At this time, the LBNF cryostat construction begins in the
north cavern, and DUNE equipment installation begins in the CUC, specifically, infrastructure in
the DUNE data room. Figure 9.22 shows a top view of the underground areas and the location of
the dataroom at the west end of the CUC.

The detector installation setup phase (referred to as Infrastructure Det#1 in the table in Fig-
ure 9.21) begins during the cryostat membrane installation period. In this phase, the equipment
needed for detector installation is erected in the north cavern. This includes the bridge across
the cavern, the cleanroom, lifting equipment and work platforms, the cold boxes and cryogenics
system for APA testing, and the DSS and switchyard. The detector itself is installed in the third
phase of the installation.
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Figure 9.21: Overview schedule showing the main activities underground.
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New TPC Installation Concept

Det#1

Det#2

Det#3

Det#4
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Figure 9.22: Top view of the layout at the 4850L at SURF. Shown are the three large excavations and
the location of detectors in the north (upper) and south caverns. The detector caverns (north and
south) are 145m long, 20m wide, and 28m high. The CUC in the middle houses the DUNE data room
where the DAQ will be installed and the underground utilities. The north, middle and south caverns
are also referred to as cavern#1, cavern#2 and cavern#3 in Figure 9.21.

9.4.1 Installation Process Description

9.4.1.1 CUC Installation Phase

Once the LBNF CF outfitting of the north cavern and the CUC is complete, LBNF begins the first
cryostat installation in the north cavern and DUNE can begin to install equipment in the data
room and work area room in the CUC. See Figure 9.23. DUNE will not have access to the north
cavern due to the heavy steel work for the cryostat. At this point LBNF CF will have installed
redundant single-mode fiber up the shafts to provide external connectivity, and in the empty data
room, an 18 in false floor, a 500 kVA power disconnect, and connections for sufficient chilled water
to cool the racks. The data room, like the adjacent CF electronics room, will be outfitted with a
dry fire-extinguishing system.

The water-cooled racks, cable trays, power distribution, and water distribution in the data room
are the responsibility of DUNE and will be installed once the space becomes available. Installation
of the racks must be coordinated with CF since the first two racks are for CF use and must be in
place before the first phase of work underground is complete. Some small overlap will be needed
between CF and DUNE at this time. The general-purpose network will be installed by Fermilab’s
SDSD and connected to the Ross Shaft fiber optics. This is required for most subsequent work in
the underground area. The data acquisition (DAQ) fiber trunk between the detector cavern and
the CUC data room will be installed after the cable trays, electronics mezzanine, and racks are
available in the north cavern.

Data from the detector electronics will be transmitted over a multimode fiber trunk from the
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Figure 9.23: Top: The overall layout of the DUNE spaces in the CUC. A110 is the DUNE data room,
which houses the underground computing, and A111 is a general-purpose work area (not a control
room, as labeled) that we call the experimental work area. Bottom: The first row of ten racks in the
data room is shown. The first two represent the CF interface racks. The images were taken from the
ARUP 90% design drawings U1-FD-A-108 and U1-FD-T-701 [157].
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warm interface boards (WIBs) on top the SP module to the DAQ data room in the CUC, shown in
Figure 9.23. The data room will contain 60 water-cooled racks, two of which are reserved for CF
use, two for CISC servers, and the rest for DAQ servers and networking. Racks for all four modules
will be installed at the beginning of the CUC commissioning phase because they must be plumbed
into the cooling water below the data room’s drop floor and wired into power distribution from the
ceiling. DAQ equipment will populate the racks as needed for servicing the detector commissioning.
For the first detector module, details of this configuration will be informed by DAQ vertical slice
tests done at other institutions.

At the same time, the eight above-ground DAQ racks that receive data from the underground data
room and transmit the data to Fermilab will be installed, connected to the network, and connected
to the single-mode fiber in the Ross and Yates Shafts. With this infrastructure in place, the DAQ
group can begin constructing and testing the final DUNE DAQ, starting with the timing system.
Enough DAQ back-end servers to support the first APAs will be operational before the APAs are
installed. The remainder of the DAQ will grow in parallel with APA installation.

The underground experimental work area (shown as “CONTROL ROOM” in Figure 9.23) must
serve a variety of purposes during the DUNE installation. Initially, the area will be outfitted with
office equipment for the installation team, workstations for DAQ, and a basic conference area for
meetings. The room is 17m wide with portions that are 5.5m and 8m deep.

During this early installation stage, the machine shop and DUNE storage area will be set up in
the detector excavation area and shared with the cryostat team.

9.4.1.2 Installation Setup Phase

Once the steel structure of the cryostat is complete, the remaining work by the LBNF cryostat team
will be focused inside the cryostat, installing the insulation and membrane. LBNF activity outside
the cryostat will consist mainly of transporting the 4,000 crates of foam and other materials from
the cavern to inside the cryostat. Since the cryostat outer steel structure will be in position, DUNE
can begin installing the infrastructure needed outside the cryostat to support detector installation.
Figure 9.24 shows the major pieces of infrastructure supporting the detector installation. The first
piece of equipment is the bridge between the north and south drifts. This will allow the cryogenics
equipment to travel from the north drift to the CUC and will provide part of the structure for the
cleanroom. It also provides an additional means of egress in an emergency.

As part of the bridge construction, the crane under the bridge will be mounted. This will be
used to lift crates off the floor and bring them into the cryostat, freeing the cavern crane for work
elsewhere. The decking on top of the cryostat is also installed in this early stage to provide a safe
work surface.

The largest and most time-consuming pieces of equipment to construct in this phase are the three
cold boxes and their associated cryogenics system. The cold boxes, visible in Figures 9.18 and
9.24, will likely need to be constructed in place due to their size (see Section 9.3.5) and fabrication
will begin as early as possible. If it is possible to bring them down the shaft partially assembled,
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Figure 9.24: Top view of the installation area highlighting the infrastructure. The 18.9m wide cryostat
is on the right. The cleanroom roof and cavern walls are removed in this view.

then once the first detector module is complete, we can break them down to their pre-assembled
parts and move them to the second detector module area.

After the bridge crane under the north-south bridge is in place the APA assembly and cabling
towers are installed. The two towers have enough space between them, as described in Section 9.3.4,
to walk through or perform work. With the towers in place, the north-south support beams and
the fixed platforms can be installed. This work is done at height so it will only cause temporary
interruptions to the material transport along the floor to the cryostat; the lower set of rails and
the CPA assembly equipment can be installed at the convenience of the cryostat installation crew.

When the cryostat membrane work is complete the cryogenic piping inside the cryostat can be
installed, the cryostat cleaned, and the false floor installed. After the cryostat is cleaned the HEPA
filters will be installed in air handling units for the cryostat and purified air will begin flowing.
A curtain over the TCO can be used to prevent dust from the cavern from entering the cryostat
until the cleanroom walls are constructed.

In parallel to the installation of the cryogenic piping, the walls of the cleanroom can be assembled
and AC power and fire suppression installed. Finally, the floor is painted and cleaned, making the
cleanroom ready for operation.

On the cryostat roof the installation of the cryostat crossing tubes proceeds in parallel with the
cryostat membrane assembly sequence. The crossing tubes are welded to the 1 cm thick steel
cryostat roof and cross braced to the large I-beams. The thin-walled tubes that penetrate the
foam insulation are welded to the cryostat inner membrane.
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Figure 9.25: Installation of the crosses to which the TPC electronics warm readout and the PD cables
are connected. In this figure the cryostat roof decking is not shown. During the cross installation a
section of decking will be removed so people can access the required flanges and work at a comfortable
height.

Once the crossing tubes are installed and leak-checked, we connect the TPC electronics crosses
and mount the feedthrough flanges for the CE and PDs onto the crosses. The height of the crosses
was chosen to allow a person to work comfortably on the WIECs and PD flanges while standing
on the cryostat roof. A fully assembled cross is shown on the left of Figure 9.25, and a cross with
a WIEC extracted in “assembly position” is shown on the right. The present plan is to install
the crosses shortly after the cryostat crossing tubes are installed. This allows us to seal the large
openings in the cryostat roof to prevent dust from entering. For this stage, temporary rubber seals
are used for the flanges; they must be removed during the cabling process later in the installation.
When the WIEC installation is complete the TPC electronics is ready for the installation of power
and fiber optics for readout.

The DSS support feedthroughs can be installed in parallel to the TPC electronics crosses. This
is the first step in the DSS installation. A gantry crane on top of the cryostat picks up the
feedthroughs and lowers them into the cryostat crossing tubes as shown in Figure 9.26. There are
20 feedthroughs per row and five rows, for a total of 100 feedthroughs. A fixture with a tooling
ball is attached to the clevis of each feedthrough. The horizontal XY and the vertical Z positions
of this tooling ball are defined, a survey is performed to determine the location of each tooling ball
center, and adjustments are made to get the tooling ball centers to within ±3mm of the nominal
position. The 6.4m long I-beams are then raised and pinned to the clevis. Each beam weighs
roughly 160 kg (350 lbs). A lifting tripod is placed over each feedthrough’s supporting beam, and
a 0.64 cm (0.25 in) cable is fed through the top flange of the feedthrough down 14m to the cryostat
floor where it is attached to the I-beam. The cable access port and lifting cable are shown in
Figure 9.27. The winches on each tripod raise the beam in unison to position it at the correct
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Figure 9.26: The DSS support feedthroughs are installed using a gantry crane running along the roof
of the cryostat. The cryostat decking is not shown. The gantry can move freely on the cryostat roof
decking. The gantry crane is selected to fit under the mezzanine as shown in the right panel.

height for pinning to the feedthrough clevis. Once the beams are mounted, a final survey of the
beams ensures proper placement and alignment.

Figure 9.27: A cable access port is included in the DSS flange. This is used to feed a cable from the
roof through the flange and attach it to the I-beams during DSS installation.

Next it is time to install the mezzanines for the cryogenics system and the detector electronics
racks, followed by the cable trays, piping, lighting, and cryostat roof flooring. At this point, the
cryostat roof is ready for DAQ and cryogenics system installations to begin; this will proceed in
parallel with the detector installation.

9.4.1.3 Detector Installation Phase

At the start of the detector installation phase, the cleanroom and all equipment inside are opera-
tional, the DSS is installed, and the cryostat is clean and ready for installation. Figure 9.24 shows
the layout (plan view with the roof removed) of the cleanroom during the detector installation
phase; the cryostat is on the right and the open cavern on the left. In the north-east corner of
the figure (upper right corner), the access (permanent) stairway is shown. This stairway is inside
the cleanroom and allows people easy access to both the work platforms and the cleanroom floor.
The doors to the stairway will never be locked; the stairway is considered a means of egress in
emergency, as it leads to an exit through the mucking drift. A second stairway and an industrial
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elevator at the west entrance to the cavern provide access to the cavern floor for personnel and
equipment. The primary changing room is in the southwest corner of the cleanroom and a smaller
changing room (shown in Figure 9.14) will be situated near the stairs at the 4850L for people
accessing the work platforms.

In the north-west corner of the cleanroom is the material airlock where all materials enter through
tall doors. Outfitting the airlock with a removable roof is under consideration. It would allow
entry of equipment via the cavern crane, which could facilitate the process.

Labor for the detector installation phase is split between the JPO and the DUNE consortia.

The detector installation team includes the detector installation manager, one installation shift
supervisor per shift, the JPO technical support team, and DUNE consortia scientific and technical
personnel. (See Figure 4.5 in Volume III, DUNE Far Detector Technical Coordination, Chapter 4.)
The detector installation manager is responsible for communicating with the underground cavern
coordinator for all logistics, shipping, and inventory issues. They organize the daily underground
detector installation tasks and lead the detector installation part of the shift-change meeting.
The detector installation team is divided into several work crews operating in the cleanroom and
cryostat. They are responsible for moving all detector components into the materials airlock,
cleanroom, cold box (if needed), and cryostat. Additional activities in the cleanroom include
linking the APAs together, installing PDs, installing and cabling the electronics, and removing APA
protective covers. Inside the cryostat, the detector installation team installs the TPC components.

Each of the DUNE FD consortia has specific tasks related to its subsystem. The installation
activities are planned estimating both the JPO and consortia labor contributions.

The first detector equipment to be installed are CISC T-gradient thermometers, an array of purity
monitors, and cameras, all at the east end of the cryostat. This equipment will be used to monitor
the cool-down, filling, and commissioning of the detector. Some equipment for the laser calibration
system is also installed at this time, including some positioning diodes and possibly an optical
mirror-based switching system. The signals exit the cryostat via electrical feedthroughs distributed
across the cryostat roof and integrated with the DSS support structure, as shown in Figure 9.28.
Because all these components are small, they can be installed using a scissor lift with 12m reach.
At present, this is the tallest battery operated (thus cleanroom compatible) scissor lift rated for
use in the USA that we have identified.

Cabling for the remaining static T-gradient monitors is also installed before the start of TPC
installation. The thermometer cables and mechanical supports are anchored to the cryostat using
the bolts running along the cryostat’s top and bottom edges and can be installed once the cryostat
is clean. To avoid damaging the small and fragile thermometers, they are not plugged into the
small IDC-4 connectors until just before the corresponding APA is moved into its final position.
Cables and supports for the thermometers on the pipes below the detector and on the cryostat
floor are installed immediately after installing the static T-gradient monitors on the walls. Again,
the thermal sensors themselves are installed later, just before unfolding the bottom GPs, to avoid
damage.

Individual sensors on the top GP must be integrated with the other GPs. For each CPA (with its
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GAr Purge 

CISC signal
Feedthru

Figure 9.28: Design of the instrumentation feedthroughs. The signal feedthrough is integrated with the
DSS support feedthroughs. A side port on a short spool piece in the DSS support structure allows the
instrumentation cables to be fed through the cryostat walls where needed.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 9: Detector Installation 9–573

corresponding four GP modules), cable and sensor supports will be anchored to the GP threaded
rods. Once the CPA is moved into its final position and its top GPs are ready to be unfolded,
sensors on these GPs are installed.

Installing fixed cameras is, in principle, simple but involves a large number of interfaces. The
enclosure for each camera has exterior threaded holes to facilitate its mounting on the cryostat
wall, the cryogenic internal piping, or the DSS. Each enclosure is attached to a gas line to maintain
appropriate underpressure in the fill gas, requiring an interface with cryogenic internal piping.
Camera cables are run through cable trays to flanges on assigned instrumentation feedthroughs.

A summary of all the cryogenics instrumentation provided by the CISC consortium is shown in
Figure 9.29.

At this point the quartz optical fibers required for the PD monitoring system are run from the
optical flange locations (still being finalized) to locations on the CPA support beams of the DSS,
to be connected later to the diffusers mounted on the CPAs.

The residual gas analyzers that monitor impurities in the GAr system must be installed before
the piston purge and gas recirculation phases of cryostat commissioning. However the actual
installation time depends on the schedule for outfitting the mezzanine and installing the GAr
purge piping. These instruments are installed near the tubing switchyard to minimize tubing run
length and for convenience when switching the sampling points and gas analyzers.
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Figure 9.29: Distribution of various CISC devices inside the cryostat.
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Next the east endwall FC is installed. The endwall planes are brought underground in custom
crates. Each of the eight crates holds four endwall modules. Eight modules are needed to build
one complete 12m tall plane. First a custom hoist is installed on the end of the DSS beam for
lifting and assembling the modules in place, as shown in Figure 9.30. The endwall FC transport
crates are then brought to the material airlock using a forklift where they are cleaned. Once clean,
the crates are moved into the cleanroom and placed next to the TCO. Then a hoist running on
the rails through the TCO lifts the endwall modules onto the transport cart, which is then rolled
into the cryostat. Figure 9.31 shows an endwall module being transferred to the transport cart.
The top endwall module is then attached to the installation hoist and lifted out of the cart. When
the module is free of the cart, the cart is re-positioned so the second module can be attached to
the first, and the pair is then lifted. This process is repeated until the full 12m endwall FC plane
is assembled and can be attached to the DSS. Figure 9.30 shows an endwall plane being lifted into
position. All the HV connections inside the plane can now be tested. The process is then repeated
for the remaining three endwall planes comprising the east endwall FC.

Figure 9.30: Image showing the hoisting equipment used to lift the endwall into position. The field
shaping strips are removed in this image. This shows one of the 3.5m endwall planes in place and a
second being positioned.

The installation of an APA and CPA with top and bottom FC modules is the most labor-intensive
part of the detector installation. Figure 9.32 represents one of the 25 rows of TPC. DUNE aims
to perform work in parallel to the extent possible and finish installing one row every week. This
requires that several separate teams work in the cleanroom, inside the cryostat, and on the cryostat
roof simultaneously – positioning the equipment, integrating PD into the APA, mounting the CE
FEMB on the APA connecting the cables, cold testing APA, installing APA in the cryostat, assem-
bling and installing CPA-FC, and deploying the FCs. Figure 9.33 shows the labor breakdown and
activities in the airlock, cleanroom, and cryostat for the APA installation. These labor estimates
will be refined during time and motion studies at Ash River. This complicated installation process
will be described in steps: first the APA assembly work in the cleanroom, followed by the CPA
assembly, and finally the installation process inside the cryostat.

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 9: Detector Installation 9–576

Figure 9.31: The endwalls are lifted out of the transport crates using the one of the hoists on the
installation switchyard. Each module is placed on a custom cart that is rolled into the cleanroom. The
pedestal in front of the TCO is at the height of the cryostat floor so carts can be used to bring material
into the cryostat. The guard rails are not shown.

While the APAs, CPA, and FC are installed, the area outside the cleanroom in the north cavern is
available for storage; this area has sufficient capacity to store one full month’s worth of equipment.
As it is called for, equipment will be brought into the cleanroom’s materials airlock through a
roll-up or curtain door in the west wall using either an electric forklift or electric pallet jacks.

Figure 9.32: One row of the APA and CPA with associated FCs. The FCs are shown deployed in the
final orientation. The equipment in the figure represents 1/25 of the total TPC.

An APA transport crate that holds two APAs is first rotated to the vertical orientation and bolted
to a custom-weighted skid or cart used for moving the crate in the cleanroom. Battery powered
pallet jacks move the crate into the materials airlock where the outer covers are removed and the
outer frame cleaned. After the air purity has recovered, the transport box can be brought into the
cleanroom proper.

The APAs are first moved to the PD integration area where the PDs are inserted into the sides of
the APAs. The layout of the PD integration area is seen in Figure 9.34. The APA transport boxes
and APA protective covers are designed to keep the slots in the sides for the PDs clear so the PD
modules can be inserted in the sides of the APAs without removing them from the transport box.
The APA transport box is placed between two fixed scissor lifts so that two-person teams in the
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APA 

Task APA CE Shift HV Riggers Location 6:00 11:00 16:00 21:00 6:00 11:00 16:00 21:00 6:00 11:00 16:00 21:00 6:00 11:00 16:00 21:00

APA Pair #1 # FTE # FTE # FTE # FTE # FTE 3A-3R

1 Move APA Pair into  SAS 3 3 SAS 6

2 Install Bot APA PD/Test 3 3 SAS 6 6

3 Install Bot APA PD/Test 3 3 SAS 6 6 3A-3R

4 Move APA to Work Station 3 3 SAS 6

5 Cable work/Test 4 WS-1 4 4 4 4 CE

6 Cable management/CB Cable 4 WS-1 4 2A-2R

7 Remove Protective panels 2 2 WS-1 4

8 Photogrammtry/survey 2 WS-1 2 2

9 Close up Cold Box/Warm test 1 1 2 CB-1 2 2 4 4 4 4

10 Cool Down 2 CB-1 2 2 2 2

11 Cold Tests 2 CB-1 2 2

12 Warm Up 2 CB-1 2 2 2 2

13 Open Cold Box -Remove 1 1 2 CB-1 4 4

14 Move to cryostat-Position 4 Cryo

15 Final Cable-Cryostat-in & out 4 Cryo

16 DAQ Test 4 Cryo

17 Deploy 4 Cryo

18 Final Test 4 Cryo

Week 1

Shift 2 Shift 1

3 APA, 3 Rig

3 APA, 3 Rig

CE Consortia

Day 3 Day 4

Shift 2Shift 1 Shift 2 Shift 1

2-Surveyor

2-Surveyor APA,CE,2Rig APA,CE,2Rig

Shift 2 Shift 1

Day 1 Day 2

Shifters

APA Pair #4

Shifters

Shifters

APA,CE,2Rig

Figure 9.33: Typical APA schedule for SP module. As described in Section 9.6, two 10 hour shifts are
planned Monday to Thursday and a smaller shift Friday to Sunday for cryogenic and other tests.

lifts can easily hold a PD module on the side of the lift. The lift is raised to align the paddle with
one of the five slots in the side of the APA. The paddle can then slide into the side of the APA.
The guides inside the APA frame ensure that the electrical connectors in the middle of the APA
mate easily. The PDs are locked into position with two captured screws. After each PD is installed
it can be tested electrically by accessing the connectors at the top using a scissor lift. Once the
ten PD paddles are installed on the first APA, the transport crate is shifted slightly and the PDs
can be inserted into the second APA and tested. The APA transport crate may need to come out
from between the lifts to install the lower PD modules.

Figure 9.34: Area where the PDs are integrated into the APA modules. Floor-mounted scissor lifts are
used to access the sides of the APA.

After the PD integration and testing is complete the transport box with the two APAs is moved
to the start of one of the four assembly lines (Figure 9.35 A). The initial time-and-motion studies
indicate that three lines are sufficient to keep up with the cold testing and installation in the
cryostat; we add a fourth as a spare that can also be used for any needed repair.
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Figure 9.35: Initial APA testing and assembly into pairs. Follow row by row from top-left.
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First a top APA is removed from the transport box and mounted to trolleys on the assembly line
rails (Figure 9.35 B). The APA is shifted over to the top APA tension measuring station, the
protective covers are removed, and a visual inspection performed. The bottom of this APA cannot
support the load of the lower APA, so heavy-duty rods are inserted into the sides of the APA and
bolted to the side tubes using the bolts designed for the linkage connecting the APA pair. The
lower APA can then be hoisted out of the transport box and connected to the rail. Either the
trolleys can be mounted directly to the rods or a crossbar can be placed between the support rods
to hold them. Then the lower APA is shifted to its tension-measuring location where it is locked
in position and its protective covers are removed (Figure 9.35 C). Wire tension data is collected
according to the QA plan, similarly to ProtoDUNE-SP. The protective covers are re-installed after
the tension measurements to protect the wires during the subsequent assembly steps. The top
APA is moved to the first station on the APA assembly tower and attached to a rail section that
can be hoisted to the upper level (Figure 9.35 D).

The two short sections of the I-beam rail can be removed to the right and left of the beam segment
now supporting the top APA and the (6m) cable conduits, needed to install the CE cables, are
installed (Figure 9.35 E). Once the conduit is in place, the I-beam segment supporting the APA
is attached to a hoist, lifted to the upper rails, and attached. Locking pins in the APA assembly
fixture then hold the top APA rigidly in position. The lower APA is then moved into position to
be connected to the assembly fixtures. At this point the lower APA is supported from the bottom,
and guides connected to the sides of the APA provide mechanical stability while allowing jacks
integrated into the lower support to lift the APA and the trolleys and rails it was riding on can be
removed.

The cable conduit is installed by freeing the top APA and shifting it slightly to allow its insertion
from the top through the foot tube, after which the APA is moved back into position and again
locked to the APA assembly fixture (Figure 9.35 H). We then test the lower APA PD paddles to
ensure that everything is working. At this point, the upper APA is supported by the trolleys that
move the APAs along the upper transport rails, and it is stabilized using the APA assembly frame.
There is a 300mm to 500mm gap between the upper and lower APA, and the PD cables between
upper and lower APA can now be connected. The connection from the top connectors to the silicon
photomultipliers (SiPMs) can also be checked. To connect the two APA modules mechanically, a
metal linkage with electrical insulators is inserted into the upper APA and bolted into place. Then
the lower APA is raised until the linkage can be bolted to the lower APA. At this point the APA
pair can be released from the assembly tower supports and jacks; it is now supported from the top,
where the upper APA connects to the transport rail system. The CE boxes can be installed at the
top and bottom of the APA pair and a simple test of the electronics is performed. The APAs can
now be shifted over to the second station on the assembly tower where the cabling is done.

The next assembly step is to install and test the electronics cabling. The left image in Figure 9.36
shows the APA cabling area on the APA assembly tower. The electronics cables are delivered to
the cleanroom on reels, pre-bundled and tested. The switchyard crane lifts the lower APA cable
reels to the top of the assembly tower, and a cable is spooled over to a motorized deployment
spool. The cable guide is then attached and fed through a guide sheave and into the conduit on
the side of the APA. The cable bundle is carefully fed through the conduit and anchored in place
using a cryogenic-compatible cable grip. The cable is connected to the electronics at the bottom
and is laid into the cable trays on top. This process is repeated for the second lower APA cable
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Figure 9.36: Left: APA pair moving on the cleanroom switchyard and cables being inserted on the
tower. Right: the APAs being inserted into the cold box.

bundle. Finally, the upper CE and PD cables can be installed and prepared for transport.

At this time, the functionality of all the electronics is checked. After the APA electrical test,
the APA pair is moved onto the switchyard where the protective covers are removed and the
assembly is surveyed using photogrammetry. The APA pair is then transported to a cold box
where it undergoes a thermal cycle and complete systems test. (The cold boxes were described in
Section 9.3.5.) The right image in Figure 9.36 shows the APA being inserted into the cold box.
The cold box is also a Faraday cage, so noise levels can be measured and the PD system checked
for photon sensitivity. After the cold test is complete, an APA will either move back to a cabling
station (if a repair is needed), or into the cryostat for installation. Recall that three assembly
lines are needed to keep up with the cold testing but four assembly lines are available. The fourth
line will be used for repair and eventually dis-assembly if required. Possible repairs would include
repairing electrical connections, replacing electronics modules, replacing photon modules, removing
damaged APA wires.

The CPA and top FC modules are assembled in parallel to the APA assembly. Figure 9.37 shows
the assembly sequence. The CPA units are delivered to the airlock in crates that hold six 4m long
1.15m wide units. After cleaning, the crates are brought into the cleanroom and opened. The
CPA units inside are bagged to provide additional dust protection. They are lifted out of the crate
and placed on the assembly frame using the cleanroom switchyard hoist. The first two of the 4m
tall units are assembled together vertically, followed by third one. The 12m tall CPA panel is then
lifted, connected to the installation switchyard, and moved to the TCO beam. The second 12m
tall panel is then assembled like the first from the three remaining CPA units in the crate. The
two 1.15m wide panels are then connected to make the 2.3m wide cathode plane. A complete set
of QC measurements is taken of all electrical connections between units and panels. The cathode
plane is then moved to a location in the switchyard where the diffuser fibers and top FC modules
are then attached. Finally, the CPA-FC assembly is moved into the cryostat. In Figure 9.37, the
completed assembly is shown outside the cryostat with the lower FC modules also attached. This
is an option, but present planning is to install the lower FC modules once it is inside the cryostat.

PD monitoring system optical diffusers and short optical fibers must be connected to the CPA
panels before the panels are installed in the cryostat. Discussions are underway about the optimal
site for this installation: at the CPA assembly facility before shipping to the site, or as part of
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Figure 9.37: The CPA assembly steps are shown. Top row from left: CPAs are delivered to the
CPA assembly fixture in the cleanroom. The 3m sub-panels are lifted onto the assembly frame and
connected. The CPA sub-panel is moved in front of the TCO. Bottom row from left: A second sub-panel
is assembled. The two sub-panels are combined to make a CPA panel. The FC modules are attached
to the top. The assembly is then moved into the cryostat through the TCO.

the assembly of CPA stacks in the underground cleanroom. Whichever solution is adopted, quartz
optical fibers must be routed from the diffuser to the top of the CPA assembly to be connected
later to the pre-installed fibers in the cryostat; this connection will occur upon final positioning of
the CPA.

Work inside the cryostat proceeds in parallel with the work in the cleanroom. It is critical that
the cryostat function as a Faraday cage which shields the TPC from external noise sources. A
permanent ground monitor will be connected to the cryostat immediately after the construction
is complete to monitor if any connections are made between the detector ground and the cavern
ground. An acoustical alarm will sound if forbidden connections are detected. This system was
used quite successfully at ProtoDUNE.

The large detector components like APA pairs and CPA modules enter the cryostat using the TCO
rails that connect to the DSS switchyard. Inside the cryostat, the modules are pushed onto one
of the switchyard shuttle beams shown in Figure 9.8. The DSS shuttle beam is then moved to
the appropriate row of the DSS, and the module is pushed down the length of the cryostat into
position. The position of the DSS beams are well defined and accurately surveyed so that the APA
and CPA modules can be accurately located by precisely positioning them along the DSS beams.
A small correction in the height of the modules may be needed to accommodate deflections in the
DSS due to load. Figure 9.38 shows the typical situation during the APA installation and CE
cabling.
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Figure 9.38: The installation of the APA and cabling of the cold electronics. The left panel shows the
APA installation process. One row of APA and HV equipment is installed, and a second APA is ready
for electrical cabling. The top right image shows the cable trays that will hold the CE cables; one worker
is in the scissor lift. The left bottom image shows the work space with the geometry of the APA, the
cryostat roof, and the cable feedthrough.
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After the APA is moved into position, the permanent support rod is connected to the DSS beam,
and the trolleys are removed. The crawler used to push the APA along the rails is then moved
back through the shuttle area and can be used for the next module. After the APA is locked
into position, the cable tray feedthrough to the CE is installed, after which CE cabling can start.
Even when a CPA module is in position, more than 3m of space remains free between the APA
and CPA, and a scissor lift can easily be positioned in front of the APA. The two right images
in Figure 9.38 show the situation at the top of the cryostat during cabling. The cables are not
shown, so the cable trays and their support infrastructure can be seen.

When cabling begins, all the cables are in the cable trays. Two people are in the scissor lift in
front of the APA, and another two people are on top of the cryostat. The CE cables from the
bottom APA emerge from the APA side-tube and are split into two bundles in the cable tray for
a total of four cable bundles. The top APA also has CE cables organized into four bundles. The
photon cables from both the top and bottom APAs are bundled into two cable bundles. During
the cabling process, each bundle is partly removed from the cable tray and fed up through the
cryostat crossing tube. At the top and bottom of the crossing tube the cables are strain relieved.
This is repeated for each of the ten cable bundles needed for the APA pair. When all cables are
installed through the cryostat crossing tube, any excess length is returned to the cable tray at the
top of the APA. On the roof, the short individual cables are connected to the feedthrough flange,
and all electronics and electrical connections are checked. At this point the flange connecting the
WIEC can be sealed to the cryostat feedthrough flange, and the cable installation is complete.

Similarly, the PD warm cables are connected to the readout module, and the flange sealed after
testing. Once testing is complete, the support for the tray holding the excess cabling is transferred
to the DSS beam. This minimizes any uneven load on the APA pair, so they hang more vertically.
The electronics for each APA is continuously monitored after installation.

Placement and routing of the cables is complex. Figure 9.39 shows the working 3D model of the
cable routing, showing how the cables will be bundled and placed in the trays. A mock up the
cabling configuration is planned at Brookhaven National Laboratory (BNL), and the installation
of the cables will be tested as part of the Ash River testing program.

The cathode FC assemblies are brought into the cryostat like the APA pairs, using the overhead
rails through the TCO. Inside the cryostat, they are moved into position using the DSS switchyard
and DSS I-beams. Once in position, the load is transferred directly to the DSS beam, and the
trolleys are removed. The CPA will wait in position until its APA pairs are fully tested, after
which the FC modules could be deployed. The deployment sequence of the FC has not yet been
fixed. If the FC modules are immediately deployed then the APA and FC can be tested in the
final position. If we wait to deploy them, the CE can undergo a longer burn-in test and we have
an opportunity to clean the cryostat near the end of the installation. The decision on the best
time to deploy the FC will be made during final design.

Figure 9.40 shows the equipment for deploying the FCs. The top FC modules are raised by
connecting a cable to the module and then using a pulley-winch assembly to lift the module, which
latches to the APA mounts. A scissor lift is used to connect the cable to the module and also to
control the winch. Once the FC are latched at the APA ends and the FC termination connections
are made and verified on the APAs.
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Figure 9.39: Working model of the cable trays and routing of the PD cables in the trays. The scale is
set by the 2.3m APA width.

After the module is in place, the deployment tool is moved to the next APA and CPA sets. The
lower FC is deployed using a custom frame that can be wheeled into position. The cable from
a small hoist is then attached to the FC module, and the module can be lowered. The hoist is
on a linear slide, so the cable is always directly over the connection point, keeping the CPA from
swinging due to an induced moment. When the module is down, it latches to the APA frame
much like the upper FC. The electrical connections to the HV bus are tested, and deployment is
complete.

In principle, the CPA-FC assemblies can be constructed faster than the APAs and the CPA-FC
assembly process could start later than the start of APA assembly if the deployment is postponed.
The sequence will be baselined prior to completion of preliminary design.

Weekly during the TPC installation the TCO will be optically closed and the cryostat made dark
to allow testing of the PDs and noise measurements of the TPC electronics. These tests will be
performed on the weekend shift.

The periscopes for the laser calibration system on the top of the TPC can be installed after the
nearby FC elements are deployed. The lasers are immediately aligned with the alignment laser
system. Once for each periscope/laser system, prior to the installation of further TPC components,
the cavern will need to be cleared for the optical alignment as both UV (Class 4) and visible lasers
are used. This will require special safety precautions, outlined in Volume III, DUNE Far Detector
Technical Coordination, Chapter 10 of this TDR. It may be possible to align all lasers at roughly
the same time, to minimize the disruption.

The last row of detector elements is installed much like previous rows except that the north-south
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Figure 9.40: The top FC assemblies are deployed using a custom tool that mounts to the DSS beams
as seen in the top-left panel. The FC is lifted using the electric winch controlled by an operator in the
nearby scissor lift. The lower FC is lowered using a hoist mounted on a wheeled frame. The hoist is on
a linear slide to keep it aligned above the connection point.
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Figure 9.41: Detector installation as the last row of detector components is installed. At this time, the
switchyard runway beams are removed, and the temporary hoists for the endwall FCs are installed.
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runway beams in the switchyard need to be removed to allow the last row of the detector to
contract as it cools down. Figure 9.41 shows the top of the detector as this last row is installed.
When the shuttle beam with the detector component is aligned to the correct APA or CPA row,
it is bolted to a short I-beam section of the runway beam which is in turn permanently fixed to
the DSS support feedthrough. When the shuttle beams at both ends of a runway beam section
are fixed in position, a section of the runway beam is removed and the endwall FC insertion hoist
mounted. The last FC modules could then deployed but they are kept in the folded state to give
space for the endwall FC.

Figure 9.42: Installation of the final endwall FC before closing the TCO

The west endwall FCs are installed like the first endwall FCs except there is now only 2m of space
in which to work. Figure 9.42 is an image showing the inside of the cryostat at the time the endwall
FCs is installed. The crates holding the endwall FCs panels will take much of the available space,
but there is room for a person to connect the hoist cables to the endwall FCs and the hoist can
be operated from the scissor lift. After the north and south endwall FCs panels are installed the
center APA is rolled into the cryostat, the shuttle beam is bolted to the DSS, and the runway
beams are removed. The two center drift volumes FCs are then deployed. The last two endwall
FCs are constructed, and the TPC is effectively finished.

At this point, a frame supported by the shuttle beams is covered with flame-retardant plastic
and installed to create a work area for the TCO closure. A scaffold for egress to the access holes
through the roof must be in place before the TCO is closed. The scissor lift must be removed at
this time since the TCO beams are required to lift it over a piece of the cryostat’s structural steel
support. The TCO is closed working from the scaffolding inside. Once access through the TCO
is blocked, the cryostat is classed as a confined space and the corresponding safety measures are
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required. The east end of the cryostat is then cleaned and the plastic sheeting is removed.

The dynamic T-gradient monitor is installed after the TCO is closed. The monitor comes in
several segments with pre-attached sensors and cabling already in place. Each segment is fed into
the crossing tube flange one at a time until the entire sensor carrier rod is in place. The remainder
of the system (the motor system that moves the sensor rod and the sensors) that goes on top of
the flange is installed using the bridge crane.

The purity monitor system will be built in modules so that it can be assembled outside the cryostat,
leaving only a few steps to complete inside the cryostat. The assembly itself comes into the cryostat
with the three individual purity monitors mounted to support tubes that are then mounted to the
brackets inside the cryostat. The brackets get attached to the appropriate elements (cables trays,
DSS, and bolts in the cryostat corner are under consideration). Also at this time, the remaining
level monitors are installed.

The periscopes at the end of the detector are installed and aligned.

Once all this work is completed, the scaffolding is taken apart and hoisted out the access holes
along with all remaining flooring sections. The area is cleaned, and the last two workers in the
cryostat are hoisted out.

The warm inspection cameras and other possible calibration instruments can be installed from
the roof while the TCO is being closed. At this point, the cryostat is classified as a confined
space and the corresponding safety measures are required. (These measures include a search of
the area before closure, confined-space training for workers, and controlled access into and out of
the cryostat. ) After the TCO is closed the four access holes (two for ventilation and two for
personnel access) can be closed and the pulsed neutron source can be placed in position above two
of the access holes. The east end of the cryostat is then cleaned and the plastic sheeting is removed
The pulsed neutron source can be tested to confirm neutron yields with integrated monitors and
dosimeters in dedicated runs.

9.4.2 Installation Prototyping and Testing (QA/QC)

This section describes the planned QA process for developing the installation process and qualifying
the installation equipment; the QC testing planned during the detector installation follows.

9.4.2.1 Detector Installation Quality Assurance

An extensive prototyping program designed to develop and test the ProtoDUNE-SP installation
process was executed in the NOvA assembly area at Ash River prior to the final design of the
ProtoDUNE detector. The NOvA Far Detector Laboratory at Ash River is owned and operated
by the University of Minnesota using grants from the DOE and Fermilab. A mechanical mock-up
of one sixth of the detector was fabricated from test components where the interface infrastructure
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was considered final. Here all the mounting points, external dimensions, loads, latches and hinges
were expected to be exactly as planned for the final ProtoDUNE-SP detector. A mock-up cryostat
roof and wall were constructed to understand how some tasks could be performed physically
in the space available. Initially, all the components failed the installation test and had to be
modified. A series of hands-on working group meetings with the different consortia were held
to resolve installation issues and revise the detector design. In some cases, two iterations were
required before the components could be assembled together in the space available, and dedicated
tooling had to be developed. Having the mock-up of the cryostat roof and walls was critical in
developing the installation procedures and eventually assembling ProtoDUNE-SP on schedule; only
when handling these objects in the space available did all the constraints become obvious. The
experience gained during the ProtoDUNE Ash River trial assembly was critical for both verifying
the mechanical design and interface, and also for developing the tools and procedures needed for
the installation.

The DUNE TPC will have half the available work space, both above and below the TPC inside the
cryostat, compared to ProtoDUNE-SP. We learned from ProtoDUNE-SP that access at the top
and bottom of the detector was already difficult, as was properly connecting the bottom latches
between the FC and the APA during the FC deployment.

The process of test-installing the detector mock-up allowed refinement of the hazard analysis and
development of the detailed procedure documentation for the assembly process. Having com-
plete, well developed procedures prior to the delivery of the components at CERN allowed the
safety approval process to begin early. Along with the test installation, this created a safe work
environment.

Mechanical tests at the DUNE trial assembly at Ash River will be key to developing the installation
process. We will also perform the time-and-motion studies that are required to develop a reliable
schedule. Other important prototyping tasks performed at universities, national laboratories, and
CERN will contribute to the installation plan. For example, Argonne National Laboratory (ANL)
is testing the APA shuttle beam drive system and the CPA assembly tower connections before
they are shipped to Ash River, and BNL is planning a test setup to develop the cable management
process on top of the detector. The ProtoDUNE-SP experience has led to many small improvements
in in the assembly process, and the SP module prototyping effort will help us develop it further.

Full-scale mechanical testing of the assembly and installation of all the TPC components, including
the DSS, will be critical for the success of the SP module. A prototype of the installation equipment
for the SP module will be constructed at the NOvA neutrino experiment FD site in Ash River, and
the installation process tested with full-scale mechanical models detector elements. This assembly
area at Ash River, shown in Figure 9.43, meets the requirements of both space and available
equipment, and experienced technicians that helped construct the ProtoDUNE-SP detector are
available. It has both the elevation and floor space available to do a full-scale test of both the
component assembly outside the cryostat and a test installation of the TPC components inside
the cryostat. Also available are a 75 ft×100 ft loading dock and ramp access, two 10 t cranes, a
machine shop, and a wide assortment of tools.

While the University of Minnesota has jurisdiction over the safety program at Ash River, the
facility also follows the Fermilab Safety Program and works together with Fermilab to ensure a safe
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Figure 9.43: Top Panel shows the NOvA Assembly Area and the bottom panel shows the 3D model of
the installation prototype.
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working environment. A key deliverable of the ProtoDUNE-SP work was a set of documentation
including e.g., component design, hazard analysis, and final assembly procedures, for approval
by the CERN Health Safety and Environment division. For Ash River and DUNE, this is all
part of the operational readiness clearance (ORC) review process. Documentation for both the
trial assembly process at Ash River and for DUNE will be stored on the engineering document
management system (EDMS) at CERN. Though many of the TPC components are mechanically
similar to the ProtoDUNE-SP components, the access equipment will be different and the need to
work at 14m height will make construction of the SP module much more challenging.

The DUNE FD trial assembly program at Ash River has the following goals:

1. Validate the APA design.

2. Test all full-scale TPC components during both the initial assembly stages in the cleanroom
outside the cryostat and the deployment stages inside the cryostat:

• APA assembly: manipulation of APA shipping frames, joining an APA pair together,
CE cabling, removal and re-installation of the APA protection covers, movement on
shuttle beam, cryostat cabling, and final deployment in cryostat.

• Integration and installation testing of PD components: cable harness routing and cryo-
genic cable strain relief, module integration into APA frames, and electrical connections
between upper and lower APAs. Mounting of PD monitoring system components and
optical fiber routing on the CPA.

• DSS and shuttle beam system, including final detector configuration.
• Assembly of HV system: construction of an endwall FC, CPA pairs, movement on

shuttle beam, and final deployment in cryostat.

3. Write full set of hazard analyses and assembly procedure documents; gather all component
documentation.

4. Test access equipment (scaffold, scissor lifts, work platforms) and lifting fixtures.

5. Study assembly time and motion, including labor estimates.

6. Train lead workers as DUNE begins set up (in the installation setup phase).

7. Test mechanical modifications.

8. Train the installation team prior to the start of DUNE installation (in the installation phase).

9. Possibly (in future) run assembly tests of the DP module components.

We have developed a staged testing program to meet the above goals. The initial phase is dedicated
to qualifying the APA and FC designs. The main difference (other than the number of units)
between ProtoDUNE-SP and the DUNE SP module is that one APA will hang beneath another,
doubling the height. The cables from the lower APA will need to be routed through the upper
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APA, thus requiring a redesign.

To date, an APA pair has never been assembled and cabled. It is critical to complete tests of
these operations before finalizing the APA design. The initial phase of the installation testing is
focused on this; it is time critical in order that APA production can begin in 2020. The assembly
and deployment of the CPAs can be tested in parallel since they will not require large amounts of
additional infrastructure.

The second phase of the prototyping program is focused on developing the installation plan and
verifying all the detector interfaces. We will construct a full-scale model of the major installation
equipment in the cleanroom and the inside of the cryostat, and conduct a dry run of the assembly,
component transport and deployment in the cryostat. This is especially important because the
space in the SP module cryostat above and below the detector is only half that of ProtoDUNE-SP,
where some of the installation steps were already challenging.

The final prototyping stage includes a mock-up of the top of the cryostat to test the final cabling
steps at height and perform accurate time-and-motion studies to benchmark the installation sched-
ule. Detailed procedures will be drafted and in place before the start of actual installation. The
installation team will train to work underground at this time.

Testing the installation process early allows identification of hazards and remediation measures
– without the time pressure associated with the actual installation. This is critical for reducing
risks. Detector installation is by definition on the critical path, making it vital that the work be
performed efficiently and with the lowest possible risk.

This prototyping program is summarized in Table 9.5 and the 3D model representing the final
layout is shown in Figure 9.43.

QC activities during the integration of the CE, APAs and PDs underground are intended to
ensure that the detector is fully functional once the cryostat is filled with LAr. The testing of all
detector components will continue throughout the installation of all the elements of the TPC, until
the cryostat is ready to be filled with LAr. All these consortium-provided detector components
that arrive underground will have gone through a qualification process to ensure that they are
fully functional and that they meet the DUNE specifications. Additional tests and checks will be
performed during installation to ensure that the components have not been damaged during the
transport or during the installation itself, and most importantly that all the parts are properly
connected.

The individual consortia will retain responsibility for providing quality management, tooling, and
test plans at the integration area, as well as specialized labor and supervisory personnel for com-
ponent integration and installation.

Following the mounting of the TPC CE and the PDs, the entire APA will undergo a cold system test
in a gaseous argon cold box, similar to that performed during ProtoDUNE-SP. During this test, the
system will undergo a final integrated system check prior to installation, checking dark and LED-
stimulated SiPM performance for all channels, checking for electrical interference with the CE, and
confirming compliance with the detector grounding scheme. The QC process will be documented
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Table 9.5: Summary of the tests at Ash River

Testing phase Deliverables
FY-19 20 Phase 0

Build an APA cabling tower for full scale APA pair assembly
Check vertical cabling with a pair of APA side tubes
Test APA shipping frame and underground handling
Build a CPA assembly stand and test assembly process
Test FC deployment and ground plane installation

FY-20 21 Phase 1
Build support structure for DSS shuttle, 3 sections of DSS beam
Test movement of CPA and APA from cleanroom to final destination
Test APA, CPA, endwall and FC deployment in one drift section
Test assembly sequence of final section of TPC
Removal of DSS shuttle beam runway rails
Final deployment after TCO is closed up

FY-21 22 Phase 2
Include the top of the cryostat (no warm structure) with feedthrough
Test DSS installation
Test CE cable installation using feedthrough
Design feedthrough to support Dual Phase installation test
Test shipping and construction using first factory TPC components
Train lead workers for underground at SURF

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 9: Detector Installation 9–593

through the development of procedures which will define the integration and installation tests
required including the appropriate acceptance criteria. The integration and installation process
will be documented on travelers or manufacturing and inspection plan documents. Test results
will either appear on these documents or we will have individual test reports including the test
data. All documents will be retained in the EDMS.

9.4.2.2 DAQ QC Testing

Testing is required at several stages of DAQ installation. The first is the installation of the data
room infrastructure, where, upon installation, professional data center building contractors will
test rack airflow, power distribution, and check for cooling-water leaks.

The distance between the detector and the data room is not negligible for multimode fibers and
10Gb/s transmission. In order to avoid any issue with signal integrity, path of the detector-to-
data room fiber runs will be minimized, high quality multimode OM4 fibers will be purchased,
installed professionally and carefully tested in place. Covered cable trays will protect them after
installation. As APAs and servers are commissioned, pre-tested fibers will be connected to the
newly installed hardware.

The DAQ servers in the CUC data room will be initially received and integrated off site. Upon
installation in the CUC, only a simple functionality test is needed. Sufficient spare capacity will
be installed, and the main commissioning work will be software-related, which can be done over
the network from the surface or remotely.

9.4.2.3 APA QC Testing

After the APA transport boxes are brought into the material airlock the outer covers are removed
and a visual inspection can be performed. Next the APAs are moved to the PD integration area,
tests here are described in the PD section.

When the PD integration is complete the APA transport box is moved to one of the APA assembly
lines. Individual APAs are removed from the transport frame, mounted to the assembly line rails,
and the protective covers are removed. A second detailed visual inspection is performed now that
the wires are visible. A spot check of the wire tensions will be done to verify that no change has
occurred since the APA left the factory.

In the current plan, the tension measurements are performed using a laser focused on individual
wires, the same method used at the production site. The wire is plucked to induce a vibration,
and a photodiode under the wire records the frequency of vibration, which directly translates
into the tension value. The measured values are stored in the wire DCDB database. While this
method is robust and has been extensively used by liquid argon time-projection chamber (LArTPC)
experiments, it is very time consuming and thus prohibits measuring every wire. Two people over
three shifts will be able to measure approximately 350 wires, 10% of the total. In ProtoDUNE-SP

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 9: Detector Installation 9–594

10% of the wires were measured prior to cold testing and no wires were found to be out of tolerance.

An alternative method, using electrical signals, is currently under development and could replace
the laser method, potentially allowing measurement of all the wires. With this electrical method,
where adjacent wires under certain voltages induce the middle wire to vibrate, the resonance
frequency vibration of the measured wire correlates directly to the wire tension.

The current requirement for tension values are 6±1 N, however this tolerance is currently under
study with ProtoDUNE data. If wires are found in DUNE that are outside the tolerance specifi-
cation then the wire will be removed and a more detailed study of the APA performed. No more
than 25 missing wires will be permitted. APA wires are also tested for continuity, to make sure
they are intact and properly connected to the readout boards. This test is done as part of the TPC
electronics testing below. Photogrammetry is used to measure the final assembled dimensions of
the APA, either while the wire tension is being measured or immediately before entering the cold
box. A measurement of the wire-plane spacing is also performed using a scanning laser combined
to a Faro arm (a portable coordinate measuring machine). The exact wire-plane spacing values
will be stored in the wire DCDB database. In the case of any deviations from the required toler-
ance of 0.5mm, different bias voltage values may be used to make corrections to the wire plane
transparency.

Once the APAs have been installed, the TPC electronics will be continuously read out; this will
directly inform wire continuity and the full function of the channels.

9.4.2.4 TPC Electronics QC Testing

Many of the activities of the CE consortium at SURF aim to ensure the full functionality of
the TPC once the cryostat is filled with LAr. All the detector components provided by the CE
consortium that arrive at SURF will have gone through a qualification process to ensure that they
are fully functional and that they meet the DUNE specifications. Additional tests and checks are
performed at SURF to ensure that the components have not been damaged during the transport
or during the installation itself, and most importantly that all the parts are properly connected.

FEMBs are tested multiple times during this process, first after they are received and then after
installation on the APAs. Further tests are performed before and after the APAs are installed in
the cryostat, using the final cables to connect the FEMBs and the detector flanges. Results of
these tests at SURF are compared with the results of the tests performed during the qualification
of ASICs and FEMBs to detect possible deviations that could signal damage in the boards or
problems in the connections. All test results will be stored in the same database system used for
results obtained during the qualification of components.

The post-installation APA tests, performed at room temperature, involve connecting up to four
FEMBs to a WIB that is connected directly to a laptop computer for readout over 1 Gbps Ethernet,
with power provided by a portable 12V supply. For the reception test, the FEMBs are attached
to a capacitive load to simulate the presence of wires, which allows a test of connectivity, and
measurement of the baseline and root mean square (RMS) of the noise for each channel. Dead
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channels are identified using the calibration pulse internal to the front-end (FE) ASIC as well as
the measured noise level relative to that associated with the temporary capacitive load. Overall,
the reception test and the test performed after attaching the FEMBs to the APAs each require
approximately half an hour per FEMBs, including the time for connecting and disconnecting test
cables. The CE consortium plans to have a cryogenic test stand available in a laboratory on the
surface at SURF or at a nearby institution to perform checks at LN2 temperature of FEMBs that
fail the QC procedures at SURF, and eventually for sample checks on the FEMBs as they are
received at SURF.

Once the pair of APAs is in the cold box an initial test of the readout is performed at room
temperature, to ensure the final cables are properly connected to the FEMBs. This test is done
using elements of the final DAQ system. Fast Fourier transforms of the noise measurements made
in the closed cold box will be inspected for indications of coherent noise. All FE gain and shaping
time settings will be exercised, and the gain will be measured using the integrated pulser circuit
in the FE ASIC and/or the WIB. The connectivity and noise measurements, as well as the check
for dead channels, are repeated later after the APA pair cools down to a temperature close to that
of LN2 in the cold box. The bias voltage connections and the PD system are also checked at this
time.

Results of all these tests will be compared with results obtained in earlier QC tests. If problems
are found, it will be possible to fix them by re-seating cables or replacing individual FEMBs. Noise
levels are also monitored during the cool-down and warm-up operations of the cold boxes. These
tests also ensure that the power, control, and readout cables are properly connected on the FEMB
side and that this connection will withstand temperature cycles. Although the connection between
the cables and the FEMB has been redesigned to address a problem seen in ProtoDUNE-SP,
repeating these tests during integration and installation of the TPC is important because a single
connection problem would result in the loss of one entire FEMB. In addition, the tests performed in
the cold box at SURF will demonstrate that the power, control, and readout cables for the bottom
APAs are not damaged when they are routed through the APA frames. The FEMBs are tested
immediately after installation, after the cables are installed, and during and after thermal cycling.
This ensures that the connections are robust before the APA enters the cryostat. Testing at LN2
temperature, done with the final cables attached, indicates clearly the capacitance of the wires
and it verifies that the connections to the FEMBs and the cables is maintained during thermal
cycling. After installation in the cryostat the FEMBs are monitored continuously. Additional
measurements of the noise level inside the cryostat will be performed regularly by closing the TCO
temporarily with an radio frequency (RF) shield electrically connected to the cryostat steel.

All readout tests are repeated after the APAs are put in their final positions inside the cryostat
and after the power, control, and readout cables are connected to the warm flange attached to the
cryostat penetration. At this point, the connection between the cables and the flange is validated,
and the entire power, control, and readout chain, including the final DAQ back-end subsystem
(DAQ BE) used during normal operations, are exercised. The installation plan for the TPC
components inside the cryostat (APAs, cathode plane assemblies, and deployment of the FCs)
allows for minor repairs on some FEMBs without extracting the APAs from the cryostat. The
testing of all components will continue throughout the installation of the TPC, until the cryostat
is ready to be filled with LAr. When the APAs are in their final position, replacing FEMBs or
cold cables will be more difficult and may require extracting the APAs from the cryostat. This
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operation will be performed only if major problems occur with the FEMBs.

In addition to measurements on the APA readout, the CE consortium will also test the bias voltage
system together with the APA and HV consortia. These tests should show that the cables providing
the bias voltage to the APA wires, the FC termination electrodes, and the electron diverters are
connected properly with no short circuits. These tests will commence as soon as the first APA pair
is in its final position, but after connecting the bias voltage cables to the safe high voltage (SHV)
boards on the APA. The connection will use a resistive load for the FC termination electrodes and
the electron diverters. This ensures the continuity of the bias voltage distribution system from the
bias voltage supplies to the APAs. The test must be repeated for the FC termination electrodes
and the electron diverters after the FC modules are deployed.

Additional tests will be performed on the other components provided by the TPC electronics
consortium prior to insertion into the APAs. After the cryostat penetrations are put in place,
helium leak checks will be performed. These tests will be repeated after all cables have been
routed through the cryostat penetration. As soon as the bias voltage and the power supplies
are installed on the cryostat mezzanine and cables are put in place between the corresponding
racks and cryostat penetrations, tests will be performed to ensure that the proper power and bias
voltage can be delivered to the WIECs before installing them. Even before connecting the WIECs
to the warm flanges, tests will be performed to ensure that they can be properly powered up,
controlled, and read out by the DUNE DAQ. Tests will be performed on the readout fiber plant
to ensure that all fiber connections are functional and properly mapped. Additional tests will
be performed on the slow control system and on the detector safety system several times during
the installation of the detector. These tests will take place before the corresponding APAs are
installed, after their installation, after all the corresponding cables and fibers are connected, and
finally during the integrated tests that take place before the TCO is closed and the cryostat is
filled. Negative results in any of these tests will halt integration, installation, and commissioning
activities. The results will then be used in reviews that must take place before the closure of the
TCO is authorized, the LAr filling operation takes place, and the detector is commissioned.

9.4.2.5 HV QC Testing

The endwall FCs are assembled in eight panel units, four on each end of the TPC. As each of the
eight panels is removed from the shipping crate and placed on the installation cart, the endwall
panel checklist is filled out [37]. This checklist includes a visual inspection of the frames, profiles,
and connections, as well as continuity and resistance measurements of the divider boards and
their connections. After completing an eight-panel endwall in the cryostat, the complete endwall
checklist is filled out. This includes hanging position, straightness measurements, and continuity
checks between panels.

The CPA panels are assembled from a set of three units removed from the shipping crates. After
each unit is removed from its bag, a visual inspection confirms structural integrity and the connec-
tions between FSSs, HV bus pieces, and profiles, if present. After inspection, the unit is positioned
on the CPA assembly tower. After all three units are connected on the tower, the CPA panel
checklist is filled out. This includes inspecting all mechanical connections, continuity checks of the
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FSS, resistive panel (RP), profile, and HV bus connections, and resistance measurements of the
four mini-resistor board connections from the RP to the FSS. This is repeated for the second panel
in a CPA plane. Then the two panels are paired, each hanging from trolleys on the transport beam.
Visual inspection of the alignment and hanging straightness is made, and HV bus connections at
the top and bottom are made and checked for continuity (CPA plane checklist).

The FC top and bottom units are removed from their crates. The FC unit checklist is filled out
with a visual inspection of the frames, profiles, and connections, as well as continuity and resistance
measurements of the divider boards and their connections. After hanging the top FC units on the
CPA plane, the four jumpers from the first FC profile on each side of the CPA and the CPA FSS
is connected, and the resistance is measured, completing the CPA-FC top assembly checklist. The
FC bottom units are not attached to the CPA but are taken into the cryostat independently after
filling out the FC unit checklist.

The CPA-FC top assembly is moved into its position in the cryostat. After deploying the FC top
units, the resistor board/jumper between the FC and the CPA FSS are visually inspected. Also,
the latch connecting the FC to the APA is visually inspected. After deploying the FC bottoms,
visual inspection verifies the resistor board/jumper connection from the FC to the CPA. Also,
the latch connecting the FC bottom to the APA is visually inspected. These are included in the
CPA-FC cryostat checklist.

9.4.2.6 CISC QC Testing

Cryogenics instrumentation systems must undergo a series of tests to guarantee they will perform
as expected:

• Purity monitors: Each of the fully assembled purity monitor arrays is placed in its shipping
tube, which serves as a vacuum chamber to test all electric and optical connections at SURF
before the system is inserted into the cryostat. During insertion, electrical connections are
tested continuously with multimeters and electrometers.

• Static T-gradient thermometers: Right after each sensor array is installed, its verticality is
checked, and the tensions in the stainless steel strings adjusted as necessary. Once cables
are routed to the corresponding DSS ports, the entire readout chain is tested. This allows
a test of the sensor, the sensor-connector assembly, the cable-connector assemblies at both
ends, and the noise level inside the cryostat. If any sensor presents a problem, it is replaced.
If the problem persists, the cable is checked and replaced as needed.

• Dynamic T-gradient thermometers: The full system is tested after it is installed in the
cryostat. Two aspects are particularly important: the vertical motion of the system using
the step motor, which is controlled through the slow controls system, and the full readout
chain, which is tested mainly for failures in sensors, cables, and connectors inside the cryostat.

• Individual sensors: To address the quality of individual precision sensors, the same method
is used as for the static T-gradient monitors. For standard resistance temperature detectors
(RTDs) to be installed on the cryostat walls, floor, and roof, calibration is not an issue. Any
QC required for associated cables and connectors is performed following the same procedure

The DUNE Far Detector Single-Phase Technology The DUNE Technical Design Report



Chapter 9: Detector Installation 9–598

as for precision sensors.
• Gas analyzers: Once the gas analyzer modules are installed at SURF and before the cryo-

stat is commissioned, the analyzers are checked for both zero and the span values using
a gas-mixing instrument and two gas cylinders, one with a zero level of the gas analyzer
contaminant species and the other with a known percentage of the contaminant gas. This
verifies that the gas analyzers are operating properly.

• Liquid level monitoring: Once installed in the four cryostat corners, the capacitive level
meters are tested in situ using a suitable dielectric in contact with the sensors.

• Cameras: After installing and connecting the wiring, fixed cameras, movable inspection
cameras, and the light-emitting system are checked for operation at room temperature. Good
quality images should be obtained of all cryostat and detector areas chosen from the system’s
design.

9.4.2.7 Photon Detector QC Testing

PD modules will arrive underground in custom crates. Each crate will contain the ten modules
required for one APA, each individually packaged in a static-resistant sealed plastic bag filled with
clean dry nitrogen. Each PD module is initially removed from its shipping bag, inspected visually,
then (if it passes inspection) loaded into the optical scanner for operational testing shown in Figure
9.44.

The optical scanner tests the operation of the photosensor readout chain to ensure all electrical
connections are operational, and measures light-collection performance at several positions along
the length of the module. Identical optical scanners are used at the module assembly facility, to test
the module just before shipping so the underground test will detect any changes in performance
due to shipping or storage. This technique was used successfully in ProtoDUNE-SP.

The optical scanner consists of a light-tight aluminum box, approximately 2.5m long, with a
0.75m2 cross section. The box acts as a Faraday cage to minimize electrical interference with
measurements. In the DUNE test configuration, two PD modules are inserted through slots on
the face of the box, guided by support rails of the type used for the APAs, which provides a final
mechanical check of the PD module dimensions. The insertion slots are closed and optically sealed.

The PD module uses an electrical connector identical to the ones in the APA frames, and that
important interface is also checked in the scanner. Once the scan begins, DUNE PD readout
electronics is used to bias and read out the photosensors, while a UV LED is scanned along the
length of the modules via an automated stepper-motor-driven translation stage. Measurements
are made at 16 positions along the length (on two sides for double-sided PD modules), checking
the performance of each dichroic filter. The response is compared to that measured earlier at the
assembly facility. Figure 9.44 shows the scanner used to test the ProtoDUNE-SP PDs.

Access to the PDs inside the APAs is severely limited once the CE cable conduit is in place,
so identifying problems early in the process is necessary to minimize schedule issues caused by
required PD maintenance or repair due to problems detected during installation.
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Figure 9.44: Picture of the 2.5m long scanner used for operational tests of the ProtoDUNE-SP PD
modules prior to insertion into an APA.

Following the optical scan, the PD modules are inserted into an APA at the PD integration area
in the cleanroom. The connection to the cable harness, which is pre-installed in the APA before
wire wrapping, is automatic. An electrical continuity check follows insertion to verify continuity
between the PD module and the PD cable end connector at the end of the APA.

As the upper and lower APAs are joined on the assembly tower, PD cables from the upper to the
lower APA will be connected, and at that time, continuity checks will be made.

Once the upper and lower APAs are joined, the assembled unit will be moved into a cold box
in front of the cryostat for final testing. This is an opportunity to make a final low-temperature
check of the complete PD CE and cabling chain before installation into the cryostat. PD FE
electronics boards will be used to read out the photon system during the cold test, and results will
be compared to previous QA test results.

The APA stack is rolled into position in the cryostat following the cold box test, and the PD and
CE cables connected to the cryostat flange. At this point, a final continuity check is made from
the flange bulkhead to the PD module.

Discussions are underway with the installation team to arrange for a one-shift dark test of the
installed PDs in the cryostat following final installation, verifying end-to-end system operation.
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9.4.2.8 Calibration System Testing

The laser system is aligned and tested as the lasers are installed. This requires an initial alignment
with the alignment laser followed by testing with the UV laser under controlled conditions. Details
of the testing procedures have not yet been developed. The pulsed neutron source will be calibrated
offline to verify the shielding design and neutron flux. The source will be operated in test mode
in situ to verify the functionality.

9.5 Detector Commissioning

Once the SP module is installed in the cryostat and the TCO is closed, a warm commissioning
phase can begin in order to test the fully assembled detector. After completion of the cryogenics
installation, cold commissioning of both the cryogenics system and the detector can commence.
Cold commissioning of the cryogenics steps through specific operating modes: purge, cool-down,
fill, and circulate. During these steps DUNE conducts its own cold commissioning procedures.

Before the purging starts, a series of tests is performed to verify that the detector is operating
nominally.

1. A pedestal and RMS characterization of all CE channels verifies that all APA FE boards are
responding and no dead channel or new noise sources arose following the TCO closing.

2. A noise scan of all PD channels is performed as a last check.

3. Each APA wireplane is checked to verify it is isolated from the APA frame and properly
connected to its HV power supply through the following steps:

• The SHV connector of each wire plane bias channel gets unplugged at the power sup-
ply, and both the resistance and capacitance between inner conductor and ground is
measured. The resistance should show that the wireplane is electrically isolated from
the ground, while the capacitance value should match that of the cold HV cable and
the capacitance of the circuit on the APA top frame.

• 50V is applied to each wireplane and the drawn current is checked against the expected
value.

• Nominal voltages are applied to each wireplane, and the drawn current is checked against
the expected value.

4. A low HV (i.e., 1 kV to 2 kV) is applied to the cathode, and the drawn current is checked
against the expected value to ensure the integrity of the HV line.

Cryogenics plant commissioning begins after installation is complete and the cryogenics system,
including cryogenics controls and safety ODH systems, are approved for operation. The system
first purges the air inside the cryostat by injecting pure GAr at the bottom at a rate that fills the
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cryostat volume uniformly, but faster than the diffusion rate. This “piston purge” process produces
a column of GAr that rises through the volume and pushes the air up and out through the GAr
purge lines and the GAr venting lines. When the piston purge is complete, misting nozzles inject
a liquid-gas mix into the cryostat that cools the detector components at a controlled rate.

Once the detector is cold, the filling process begins. LAr stored at the surface is vaporized, brought
down the shaft in gaseous form, and re-condensed underground. The LAr then flows through filters
to remove any H2O and O2 before entering the cryostat. Given the volume of the cryostat and the
limited cooling power for recondensing, 12 months will be required to fill the first detector module.
The detector readout electronics will monitor the status of the detector during the filling period.

A number of the following tests (and likely others) will take place during the cool-down and fill
phases:

1. Each APA wireplane isolation and proper connection to its HV power supply will be checked
at regular time intervals as was done before sealing the cryostat.

2. 1 kV to 2 kV will be held on the cathode, and the drawn current will be monitored constantly
to observe the trend in temperature of the total resistance.

3. CE noise figures (pedestal, RMS) will be measured at regular intervals and their trends with
temperature recorded.

4. PD system noise (pedestal, RMS) will be measured at regular intervals and its trend with
temperature recorded.

5. Values of the temperature sensors deployed in several parts of the cryostat will be monitored
constantly to watch the progress of the cool-down phase and to relate the temperature to
the behavior of the other SP module subsystems.

Regular monitoring of CE and PD noise, as well as checks of wire plane isolation and proper
connections to the bias supply system will continue throughout the fill period, recording noise
variations as a function of the progressively reduced temperature. In addition,

1. as each purity monitor is submerged in liquid, it will be turned on every eight hours to check
LAr purity.

2. as soon as top GPs are submerged, HV on the cathode will be raised up to 10V-50V to
check that the current drawn by the system agrees with expectations.

Once the detector module is full, the drift HV will be carefully ramped up following these steps:

1. Evaluate need for a filter regeneration before starting any operation.

2. Once filter regeneration is completed (if needed), examine the LAr surface using cameras to
verify that the surface is flat, with no bubbles or turbulence;
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3. Start LAr recirculation while monitoring the LAr surface again to see if activating the recir-
culation system introduced any turbulence into the liquid.

4. Wait one day after beginning recirculation to stabilize the LAr flow inside the detector
module, then start the HV ramp up.

Ramping up of the cathode HV represents the final step in the detector commissioning period;
the full operating design parameters of the TPC detector can be accessed only after the cathode
is at full voltage. We raise the cathode voltage in steps over three days. On the first day, cathode
voltage is first raised to 60 kV, then to 90 kV after waiting two hours, and finally to 120 kV after
waiting another two hours. It is left at this value overnight. On the second day, cathode voltage is
first raised to 140 kV, then to 160 kV after waiting four hours, and left at this value overnight. On
the third day, cathode voltage is first raised to 170 kV and then to the nominal operating voltage
of 180 kV after waiting four hours. During each HV ramp up, all CE current draws are monitored,
and the procedure is stopped if any of the current draws go out of the allowed range. During each
waiting period, regular DAQ runs monitor CE and PD noise and response, while cathode HV and
current draw stability are constantly monitored.

In ProtoDUNE-SP, this process took three days, after which the system was ready for data-taking.
With a detector twenty times larger, the process will take longer, but the turn on time should still
be relatively short.

9.6 Schedule

The detector installation planning hinges on the date that the JPO is permitted to begin work
underground. According to the DUNE CF schedule, the JPO receives the acceptance for use and
possession (AUP) for the north cavern and CUC in October 2022. The SDWF will be in place
approximately six months before the warm structure installation begins, i.e., in spring 2022. Build-
ing the schedule for the detector module #1 installation after AUP is complicated and depends
on many entities including CF, LBNF, and South Dakota Science and Technology Authority (SD-
STA). The maximum number of people allowed underground is 144, which is based a one-hour time
limit to evacuate all the underground personnel using all available paths. As a backup, the un-
derground refuge must have capacity to accommodate this number of people. This number places
a hard bound on how much work can be performed underground at any time and is particularly
critical during the excavation of the third cavern when CF is still active. Figure 9.45 shows the
main activities for the detector module #1 installation and the high-level milestones are shown in
Table 9.6.

The cost, schedule, and labor estimates are based on two 10 hour shifts per day, four days a week
(Monday through Thursday). Work efficiency should be a maximum of 70%. The cage ride, shift
meetings, lunch, coffee breaks, and cleanroom gowning takes up to three hours per day. Some low
level of effort is planned on Friday, Saturday, and Sunday to monitor the cold boxes and take data.

We have defined three schedule phases for installation of the first SP module:
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Table 9.6: single-phase (SP) installation, integration, and commissioning schedule

Milestone Date (Month YYYY)
Ash River phase 0 complete March 2020
Start of ProtoDUNE-SP-II installation March 2021
Ash River phase 1 complete June 2021
Installation Preliminary Design Review August 2021
Start of ProtoDUNE-DP-II installation March 2022
South Dakota Logistics Warehouse available April 2022
Ash River phase 2 complete July 2022
Installation production readiness review August 2022
Start production of installation infrastructure for module #1 August 2022
Installation Final Design Review September 2022
Beneficial occupancy of cavern 1 and CUC October 2022
Start construction warm structure cryostat #1 October 2022
Start outfitting of CUC October 2022
CUC counting room accessible April 2023
Start installation of cold structure cryostat #1 August 2023
Start installing Detector#1 infrastructure August 2023
Top of detector module #1 cryostat accessible January 2024
Start installation of detector module #1 June 2024
Start of detector module #1 TPC installation August 2024
Complete installation of east FC endwall & first APA for module
#1

September 2024

Complete installation of APA #75 for detector module #1 January 2025
Top of detector module #2 accessible January 2025
Complete installation of APA #150 (last) for detector module #1 April 2025
End of detector module #1 TPC installation May 2025
TCO of detector module #1 closed July 2025
Start of cryogenic operation for detector module #1 August 2025
Start of detector module #2 TPC installation August 2025
End of detector module #2 TPC installation May 2026
Start of detector module #1 commissioning January 2027
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Figure 9.45: Schedule Overview of the SP detector module #1
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• CUC Installation Phase: This period,described in detail in Section 9.4.1.1, starts once AUP
has been received for the north cavern and the CUC. This is the same time that excavation
of the south cavern and installation of the warm structure by LBNF begins. Since the FTEs
underground is limited to 144 at a time, access will be minimal for DUNE personnel and
their work will only take place inside the CUC and surface dataroom. Installing the basic
rack infrastructure in the dataroom will take an estimated three months. Installation and
testing of the DAQ (required at the start of detector installation) will continue over the next
12 month period. Ten DAQ workers are planned on each shift in this period.

• Installation Setup Phase: Described in detail in Section 9.4.1.2, this period includes instal-
lation of the majority of the infrastructure. The setup phase is a critical training period, so
getting lead workers, riggers, and equipment operators familiar with the tasks is a priority,
as is adjusting the crews to ensure balanced teams. The training process will have begun
already at Ash River. There are many parallel underground activities planned in this phase
making it a difficult phase to schedule, and frequent schedule adjustments may be required.
Immediately after the cryostat warm structure is complete the north-south bridge is con-
structed. Following this the bridge crane under the bridge can be installed. A few months
after the cryostat warm structure is complete the CF work will also complete. Eighty of the
144 underground workers will become available to the JPO, and the underground installa-
tion team (UIT) team doubles in size. The JPO will start two 10 hour shifts per day. Due
to space constraints, peripheral work only on the cleanroom structure and assembly towers
can begin. Once the cryostat cold structure is approximately six months into its installation
schedule, most of the foam will have been installed and floor space becomes available in the
north cavern. The cold box construction must begin immediately at this point because the
welding takes approximately six months. In parallel, the machine shop area can be set up.
As the membrane installation nears completion, the walls of the cleanroom can be installed
as can the remaining equipment.
Installation of the DSS could begin during the final installation stages of the cryostat cold
structure because they both require full-height scaffolding for the welding on the top of the
cryostat. The ProtoDUNE-SP DSS was installed this way. This requires a crew on top of
the cryostat installing the DSS support feedthroughs from the top, as shown in Figure 9.26.
The details have not yet been worked out with the contractor, and work may be done in
stages.

• Detector Installation Phase: The final detector installation phase begins with an opera-
tional readiness review to check that all documentation and procedures are in place. After
the east endwall FCs are installed, a start-up period of 1.5 months begins for the first two
rows of TPC components. To meet this schedule, three assembly lines, three cold boxes, and
separate crews in the cryostat, all working in parallel, are needed. It will take 5.5 months
to install rows 3 through 24 and about one month for row 25. Closing the TCO will take
approximately two months for the cryostat cold structure contractor; during this time, there
is no access to the cryostat. Once this is completed, we can complete the final instrumen-
tation, and the purge can begin. During this period, up to 50 people will be working in the
cleanroom and cryostat.

The total time to install the detector including the time for the setup phase is two years. Coinci-
dentally, this was roughly the time needed to install MINOS and NOvA.
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9.7 Environmental, Safety, and Health (ES&H)

Volume III, DUNE Far Detector Technical Coordination, Chapter 10 of the DUNE TDR outlines
the requirements and regulations that DUNE work must comply with, whether (1) at Fermilab,
(2) in areas leased by Fermilab or the DOE, (3) in leased space at SURF, or (4) at collaborating
institutions.

9.7.1 Documentation Approval Process

DUNE implements an engineering review and approval process for all required documentation,
including structural calculations, assembly drawings, load tests, hazard analysiss (HAs), and pro-
cedural documents for a comprehensive set of identified individual tasks. As for ProtoDUNE-SP,
all these documents are stored in EDMS. For the larger operations and systems like TPC com-
ponent factories, the DSS, cleanroom, and assembly infrastructure, DUNE safety also reviews the
documentation then visits the site to conduct an operational readiness review, which includes
a demonstration of the final operations. The operational readiness reviews are listed in project
schedule.

Structural calculations, assembly drawings and proper documentation of load tests, hazard anal-
yses, and procedures for various items and activities will require review and approval before oper-
ational readiness is granted.

9.7.2 Support and Responsibilities

The ES&H coordinator for each shift, who will report to the DUNE project ES&H manager, has
overall ES&H oversight responsibility for the DUNE activities at the SDWF and on the SURF
site. This person coordinates any ES&H activities and facilitates the resolution of any issues
that are subject to the requirements of the DOE Workers Safety and Health Program, Title 10,
Code Federal Regulations (CRF) Part 851 (10 CFR 851) (see Volume III). The on-site ES&H
coordinator facilitates training and runs weekly safety meetings. This person is also responsible for
managing ES&H-related documentation, including training records, HA documents, weekly safety
reports, records on materials-handling equipment, near-miss and accident reports, and equipment
inspections.

If the ES&H coordinator is absent, the shift supervisor acts in this capacity.

All workers have work stop authority in support of a safe working environment.
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9.7.3 Safety Program

The on-site ES&H coordinators will guide the FD installation safety program, using the following:

1. the Fermilab Environment, Safety and Health Manual (FESHM);

2. the DUNE Installation ES&H Plan, which includes the fire evacuation plan, fire safety plan,
lockdown plans, and the site plan;

3. work planning and controls documentation which includes both hazard analysis and proce-
dures;

4. Safety Data Sheets (SDS);

5. the respiratory plan, as required for chemical or ODH hazards; and

6. the training program, which covers required certifications and training records.

During the installation setup phase, as new equipment is being installed and tested, new employees
and collaborators will be trained to access the facility and use the equipment. At the end of this
phase, we will require two shifts per day.

The cold box and cryogenics system will not be tested during the trial assembly work at Ash River.
While the new cold box design is very similar to ProtoDUNE-SP’s, it will be operated under DOE
and FESHM regulations. Procedures for operating the cold box will be written according to the
established requirements.

The DUNE installation team will develop an ES&H plan for detector installation that defines the
ES&H requirements and responsibilities for personnel during assembly, installation, and construc-
tion of equipment at SURF. It will cover at least the following areas:

Work Planning and HA: The goal of the work planning and HA process is to initiate thought
about the hazards associated with work activities and plan how to perform the work. Work
planning ensures the scope of the job is understood, appropriate materials and tools are available,
all hazards are identified, mitigation efforts are established, and all affected employees understand
what is expected of them. The work planning and HA program is documented in Chapter 2060 in
the FESHM.

The shift supervisor and the ES&H coordinator will lead a work planning meeting at the start of
each shift to (1) coordinate the work activities, (2) notify the workers of potential safety issues,
constraints, and hazard mitigations, (3) ensure that employees have the necessary ES&H training
and PPE, and (4) answer any questions.

Access and training: All DUNE workers requiring access to the SURF site must (1) register through
the Fermilab Users Office to receive the necessary user training and a Fermilab identification
number, and (2) they must apply for a SURF identification badge. The workers will be required to
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complete SURF surface and underground orientation classes. Workers accessing the underground
must also complete 4850L and 4910L specific unescorted access training, and obtain a trip action
plan (TAP) for each trip to the underground area; this is required as part of SURF’s Site Access
Control Program. A properly trained guide will be stationed on all working levels.

PPE: The host laboratory is responsible for supplying appropriate PPE to all workers.

ERT: The SDSTA will maintain an emergency response incident command system and an ERT.
The guides on each underground level will be trained as first responders to help in a medical
emergency.

Guides: The shift supervisor and lead workers will be trained as guides.

House cleaning: All workers are responsible for keeping a clean organized work area. This is
particularly important underground. Flammable items must be in proper storage cabinets, and
items like empty shipping crates and boxes must be removed and transported back to the surface
to make space.

Equipment operation: All overhead cranes, gantry cranes, fork lifts, motorized equipment, e.g.,
trains and carts, will be operated only by trained operators. Other equipment, e.g., scissor lifts,
pallet jacks, hand tools, and shop equipment, will be operated only by people trained and certified
for the particular piece of equipment. All installation equipment will be electrically powered.
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Glossary

Micro Telecommunications Computing Architecture (µTCA) The computer architecture spec-
ification followed by the crates that house charge and light readout electronics in the DP
module. 438

S/N signal-to-noise ratio. 192, 195

one-pulse-per-second signal (1PPS signal) An electrical signal with a fast rise time and that
arrives in real time with a precise period of one second. 8, 17, 438

35 ton prototype A prototype cryostat and single-phase (SP) detector built at Fermilab before
the ProtoDUNE detectors. 100, 101, 143, 231, 470, 476, 487, 490, 494, 496, 497

4850L The depth in feet (1480 m) of the top of the cryostats underground at SURF; used more
generally to refer to the DUNE underground area. Called the “4850 level” or “4850L”. 72,
75, 451, 528, 529, 552, 565, 571, 608

AC capacitive coupling. 154, 155, 159

analog-to-digital converter (ADC) A sampling of a voltage resulting in a discrete integer count
corresponding in some way to the input. 14, 15, 56, 145, 148–150, 152, 156, 159–166, 168–
177, 183, 188, 190, 192, 196–201, 203, 205, 208, 210, 215, 216, 229, 253, 264, 266, 267, 269,
270, 273–275, 278, 414, 421, 425, 444

advanced mezzanine card (AMC) Holds digitizing electronics and lives in Micro Telecommuni-
cations Computing Architecture (µTCA) crates. 438

Argonne National Laboratory (ANL) US national laboratory in Lemont, IL. 133, 588

anode plane assembly (APA) A unit of the SP detector module containing the elements sensitive
to ionization in the LAr. It contains two faces each of three planes of wires, and interfaces to
the cold electronics and photon detection system. 6, 8–10, 12–16, 18, 21–24, 26–64, 66–73,
75–88, 93, 94, 96, 97, 104, 106, 108, 110–116, 119, 123, 137, 138, 143–145, 148–156, 159,
160, 171, 177–183, 186–193, 196, 198, 200, 201, 203–209, 211, 213, 216–227, 229–231, 233,
235–238, 240, 242, 246, 247, 249, 251–257, 259, 260, 266, 267, 270, 271, 276, 277, 279, 281,
284–290, 292, 294, 298–303, 305, 307–310, 312, 313, 317–322, 326, 329, 335, 345, 346, 348–
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352, 355–357, 359, 361, 363–365, 373, 375, 382, 387, 390, 395–400, 414, 419, 426, 438, 440,
442–444, 447, 463, 471, 479, 498, 499, 507, 514, 517, 519, 521, 523, 528, 529, 534, 535, 537,
540–542, 544, 545, 548–552, 554–563, 567, 568, 571, 575–584, 586, 588, 590, 591, 593–601,
603

ARAPUCA A photon detection system (PD system) design that consists of a light trap that
captures wavelength-shifted photons inside boxes with highly reflective internal surfaces until
they are eventually detected by silicon photomultiplier (SiPM) detectors or are lost. 248,
250, 251, 255, 275

ArgoNeuT The ArgoNeuT test-beam experiment and liquid argon time-projection chamber (LArTPC)
prototype at Fermi National Accelerator Laboratory (Fermilab). 4, 145

artdaq A data acquisition toolkit for data transfer, aggregation and processing. 207, 429, 437,
441, 442

Ash River The Ash River, Minnesota, USA NOvA experiment far site, used as an assembly test
site for Deep Underground Neutrino Experiment (DUNE). 18, 54, 55, 77, 79, 81, 83, 86, 106,
125, 126, 137, 183, 531, 552, 554, 557, 563, 575, 583, 587, 588, 590, 605, 607

ASIC application-specific integrated circuit. 8, 10, 15, 42, 50, 56, 96, 137, 145, 150, 152–154,
156–160, 163, 166, 168–170, 172–179, 181, 183, 186–188, 190–192, 196, 199–201, 203–205,
208–212, 214–218, 225, 226, 229–235, 237, 238, 240, 253, 264, 594, 595

Advanced Telecommunications Computing Architecture (ATCA) An advanced computer ar-
chitecture specification developed for the telecommunications, military, and aerospace in-
dustries that incorporates the latest trends in high-speed interconnect technologies, next-
generation processors, and improved reliability, availability and serviceability. 207

ATLAS One of two general-purpose detectors at the LHC. It investigates a wide range of physics,
from the search for the Higgs boson to extra dimensions and particles that could make up
dark matter (DM). 137, 157, 403, 419

acceptance for use and possession (AUP) Required for beneficial occupancy of the underground
areas at SURF for LBNF and DUNE. 602, 605

American wire gauge (AWG) U.S. standard set of non-ferrous wire conductor sizes. 476

Brookhaven National Laboratory (BNL) US national laboratory in Upton, NY. 77, 102, 159–
161, 164, 171, 172, 178, 203, 204, 208, 215, 222, 233, 235, 238, 583, 588

bottom field cage (bottom FC) The horizontal portions of the SP field cage (FC) on the bottom
of the time projection chamber (TPC). 89, 93, 94, 96, 101, 107, 112, 114, 125

CAPTAIN Experimental program sited at Los Alamos National Laboratory (LANL) that is de-
signed to make measurements of scientific importance to long-baseline (LBL) neutrino physics
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and physics topics that will be explored by large underground detectors. 352, 359

charged current (CC) Refers to an interaction between elementary particles where a charged
weak force carrier (W+ or W−) is exchanged. 3, 28

DAQ control, configuration and monitoring subsystem (CCM) A system for controlling, con-
figuring and monitoring other systems in particular those that make up the data acquisition
(DAQ) where the CCM encompasses run control (RC). 378, 417, 421, 431, 432, 434–437,
441, 442, 449

cold electronics (CE) Analog and digital readout electronics that operate at cryogenic tempera-
tures. 8, 13–15, 18, 21, 23, 24, 26, 34–36, 38, 44, 48, 54–57, 59, 70, 75, 80, 82, 84, 90, 92, 113,
123, 137, 143–145, 150, 152–154, 178–181, 183, 184, 187–193, 196, 199, 200, 202, 204, 205,
208–210, 217, 219, 221–223, 229, 232, 236, 273, 284, 285, 299, 300, 305, 309, 310, 318, 319,
322, 340, 381, 414, 416, 502, 545, 548–550, 554, 555, 569, 575, 579–583, 590, 591, 594–596,
598–602

European Organization for Nuclear Research (CERN) The leading particle physics laboratory
in Europe and home to the ProtoDUNEs. (In French, the Organisation Européenne pour
la Recherche Nucléaire, derived from Conseil Européen pour la Recherche Nucléaire. 8, 16,
23–25, 34, 44, 45, 47, 48, 54, 56, 82, 83, 98, 105, 114, 121, 130, 133, 134, 160, 204, 205, 207,
208, 218, 227, 235, 266, 276, 288, 304, 326, 336, 337, 339, 375, 382, 403, 485, 493, 502, 505,
508, 530, 531, 559, 588, 590

conventional facilities (CF) Pertaining to construction and operation of buildings and conven-
tional infrastructure, and for LBNF and DUNE project (LBNF/DUNE), CF includes the
excavation caverns. 452, 532–534, 545, 565–567, 602, 605

computational fluid dynamics (CFD) High performance computer-assisted modeling of fluid dy-
namical systems. 464, 466, 470–474, 482, 484–487, 493, 508, 510, 550

cryogenic instrumentation and slow controls (CISC) Includes equipment to monitor all detec-
tor components and liquid argon (LAr) quality and behavior, and provides a control system
for many of the detector components. 123, 223, 224, 310, 312–314, 414, 416, 461–466, 472,
492, 494, 501–506, 508, 510–514, 516, 517, 521, 525–528, 543, 567, 571, 573, 574

cryogenic instrumentation test facility (CITF) A facility at Fermilab with small (< 1 ton) to
intermediate (∼ 1 ton) volumes of instrumented, purified TPC-grade LAr, used for testing
devices intended for use in DUNE. 464, 466, 469, 492, 498, 500, 501, 508, 515, 517, 523, 525

construction manager/general contractor (CMGC) The organizational unit responsible for man-
agement of the construction of conventional facilities at the underground area at the SURF
site. 532, 533, 537

CMOS Complementary metal-oxide-semiconductor. 143, 145, 152, 157, 158, 160, 161, 164, 168,
170–172, 199, 210
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convolutional neural network (CNN) A deep learning technique most commonly applied to an-
alyzing visual imagery. 447

cluster on board (COB) An ATCA motherboard housing four RCEs. 207

ColdADC A newly developed 16-channels ASIC providing analog to digital conversion. 150, 156–
158, 160, 161, 164–166, 168–170, 172, 181, 187, 196, 199–201, 203, 205, 210, 211, 236, 238

COLDATA A 64-channel control and communications ASIC. 15, 150, 152, 156–158, 163, 164,
166–170, 172, 179, 181, 187, 199–201, 203, 205, 210, 211, 229, 236, 238

commercial off-the-shelf (COTS) Items, typically hardware such as computers, that may be
purchased whole, without any custom design or fabrication and thus at normal consumer
prices and availability. 156, 170–172, 177, 183, 196, 200, 201, 205, 208, 210, 218, 229

charge parity (CP) Product of charge and parity transformations. 3, 89

cathode plane assembly (CPA) The component of the SP detector module that provides the
drift HV cathode. 6, 9, 11, 18, 87–89, 92–94, 96, 98, 99, 101–104, 106–108, 110–116, 118,
121, 123–127, 130–132, 134, 136–138, 141, 247, 254, 270, 271, 289, 292, 306, 310, 311, 314,
330, 335–337, 348, 351, 363–365, 373, 375, 378, 382, 396, 498, 499, 540–542, 544, 545, 558,
563, 568, 571, 573, 575, 576, 580, 581, 583, 584, 586, 588, 590, 591, 595–597

CPA/FC A pair of cathode plane assembly (CPA) panels and the top and bottom FC portions
that attach to the pair; an intermediate assembly for installation into the SP module. 132

charge-parity symmetry violation (CPV) Lack of symmetry in a system before and after charge
and parity transformations are applied. For CP symmetry to hold, a particle turns into
its corresponding antiparticle under a charge transformation, and a parity transformation
inverts its space coordinates, i.e., produces the mirror image. 21, 28, 89, 242, 406, 461

CR Capacitance-Resistance. 24, 35, 38, 48, 56, 66, 70, 149, 155, 156, 178, 182, 206, 221

charge-readout plane (CRP) In the dual-phase (DP) technology, a collection of electrodes in a
planar arrangement placed at a particular voltage relative to some applied E field such that
drifting electrons may be collected and their number and time may be measured. 497, 507

cosmic ray tagger (CRT) Detector external to the TPC designed to tag TPC-traversing cosmic
ray particles. 253, 278, 281

CRYO Integrated ASIC including front-end (FE) circuitry providing signal amplification and pulse
shaping, analog to digital conversion, and control and communication functionalities for 64
channels. 156, 158, 172–178, 183, 186, 188, 196, 200, 201, 203, 205, 210, 211, 214, 215, 229,
236, 238

CTE coefficient of thermal expansion. 35, 37, 38, 96, 303
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CTS Cryogenic Test System. 175, 203, 204, 215, 216, 218, 226, 227, 238

central utility cavern (CUC) The utility cavern at the 4850L of Sanford Underground Research
Facility (SURF) located between the two detector caverns. It contains utilities such as central
cryogenics and other systems, and the underground data center and control room. 6–8, 16,
19, 20, 81, 222, 240, 311, 327, 389, 404, 411, 413, 414, 416, 417, 419, 438, 450–452, 456, 457,
503–505, 513, 532, 535, 548, 563, 565–567, 593, 602, 603, 605

convolutional visual network (CVN) An algorithm for identifying neutrino interactions based on
their topology and without the need for detailed reconstruction algorithms. 145

DAC digital-to-analog converter. 159, 173, 175, 270

DAPHNE Detector electronics for Acquiring PHotons from NEutrinos is a custom-developed
warm front-end waveform digitizing electronics module derived from the readout system
developed at Fermilab for the Mu2e experiment. 264, 285, 307

data acquisition (DAQ) The data acquisition system accepts data from the detector FE electron-
ics, buffers the data, performs a trigger decision, builds events from the selected data and
delivers the result to the offline secondary DAQ buffer. 6–9, 16, 17, 19, 120, 143, 145, 149,
179, 183, 184, 186, 187, 189, 204, 206, 207, 217–219, 221–223, 230, 248, 253, 261, 266, 267,
269, 285, 288, 305–307, 309–314, 331, 339, 345, 357, 365, 371–373, 375–378, 384, 387, 400,
403–407, 411, 413–422, 424–433, 435–443, 447, 449–451, 453, 454, 456–460, 465, 490, 491,
505–507, 510, 517, 522, 565, 567, 570, 593, 595, 596, 602, 605

DAQ back-end subsystem (DAQ BE) The portion of the DAQ that is generally toward its out-
put end. It is responsible for accepting and executing trigger commands and marshaling
the data they address to output storage buffers. 16, 17, 404, 405, 417, 418, 420, 421, 425,
427–430, 437, 441, 443, 447, 595

DAQ data selection subsystem (DAQ DS) The subsystem of the DAQ responsible for forming
a trigger decision based on a portion of the input data stream. The majority subset of the
DAQ trigger subsystem (DAQ TS). 404, 405, 407, 417, 418, 420–422, 424, 428–430, 436, 437,
443, 458

DAQ front-end computer (DAQ FEC) The portion of one DAQ partition that hosts the DAQ
data receiver (DDR), DAQ primary buffer and data selector. It hosts the DAQ front-end
readout (FER) and corresponding portion of the DAQ primary buffer. 419, 441

DAQ readout unit (DAQ RU) The first element in the data flow of the DAQ. 16, 418–420

DAQ timing and synchronization subsystem (DAQ TSS) The portion of the DAQ that pro-
vides for timing and synchronization to various components. 417, 437

data selection The process of forming a trigger decision for selecting a subset of detector data for
output by the DAQ from the content of the detector data itself. Not to be confused with
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data selector. 407, 417, 421, 422, 425, 426, 428, 437, 440

Daya Bay a neutrino-oscillation experiment in Daya Bay, China, designed to measure the mixing
angle Θ13 using antineutrinos produced by the reactors of the Daya Bay and Ling Ao nuclear
power plants. 530

DC direct coupling. 155, 159, 168, 184

DUNE construction database (DCDB) Database used by DUNE to track the history and testing
of all parts of each detector module. 537, 538, 593, 594

DCS Distributed Communications System. 486

DUNE detector safety system (DDSS) The system used to manage key aspects of detector
safety. 19, 189, 223, 465

detector module The entire DUNE far detector is segmented into four modules, each with a
nominal 10 kt fiducial mass. 22, 24, 64, 67, 69, 81, 82, 88, 89, 93, 94, 136, 143, 144, 178,
240, 292, 300, 327, 389, 393, 403, 404, 417, 421, 422, 427, 456, 463, 464, 466, 469–471, 473,
474, 476, 481, 482, 486, 487, 492, 493, 496, 497, 501, 506, 510, 513, 528–532, 534, 536, 545,
548–550, 567, 568, 601–604

data flow orchestrator (DFO) The process by which trigger commands are executed in parallel
and asynchronous manner by the back-end output subsystem of the DAQ. 377, 379, 404,
405, 427–429

discovery and presence As used in the context of the inter-process communication (IPC), a sys-
tem that provides mechanisms for a node on a communication network to learn of the ex-
istence of peers and their identity (discovery) as well as determine if they are currently
operational or have become unresponsive (presence). 449

dark matter (DM) The term given to the unknown matter or force that explains measurements
of galaxy motion that are otherwise inconsistent with the amount of mass associated with
the observed amount of photon production. 21

differential non-linearity (DNL) A commonly used measure of performance in analog-to-digital
converters (ADCs). The DNL error is defined as the difference between an actual step width
and the ideal value of one least significant bit (LSB). 164, 170, 175, 177

DOE U.S. Department of Energy. 587, 606, 607

dual-phase (DP) Distinguishes one of the DUNE far detector technologies by the fact that it
operates using argon in both gas and liquid phases. 89, 134, 309, 338, 461, 470, 493, 510

DP module dual-phase DUNE far detector (FD) module. 134, 246, 348, 461, 497, 510, 590

data quality monitoring (DQM) Analysis of the raw data to monitor the integrity of the data
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and the performance of the detectors and their electronics. This type of monitoring may be
performed in real time, within the DAQ system, or in later stages of processing, using disk
files as input. 437

detector support system (DSS) The system used to support a SP detector module within its
cryostat. 18, 41, 55, 110, 123, 132, 222, 306, 314, 346, 474, 481, 482, 519, 521, 528, 538,
540–545, 552, 555, 563, 569–573, 575, 581, 583, 585–588, 590, 597, 605, 606

Deep Underground Neutrino Experiment (DUNE) A leading-edge, international experiment for
neutrino science and proton decay studies. 2–6, 10, 16–19, 21–24, 26–29, 31, 32, 42, 44, 45,
55, 59, 64, 66, 69, 70, 72, 77, 79, 81, 87, 90, 91, 143–145, 148–150, 152–156, 159, 160, 168,
171, 172, 177, 178, 182, 184–188, 190, 191, 196, 199, 201–210, 212, 214–216, 218, 222–227,
229–232, 234, 235, 237, 238, 242, 243, 246–248, 250, 254, 255, 260–262, 264, 267, 269–271,
273, 284, 285, 287, 289, 290, 292, 297, 298, 300, 302–304, 312, 314, 315, 317–322, 325–328,
334, 336–341, 345, 346, 348, 350, 352, 354, 355, 366, 369, 370, 372, 373, 375, 379, 382, 383,
387, 393, 395, 400, 401, 403, 404, 406–408, 411, 413, 414, 416–422, 424, 427–429, 438–441,
451, 452, 469–471, 486, 493, 494, 497, 498, 502, 508, 516, 525, 526, 528–535, 537–539, 545,
546, 550, 552, 558, 563, 565–567, 571, 575, 588, 590, 591, 594, 596, 598, 600, 602, 605–607

event builder (EB) A software agent that executes trigger commands for one detector module by
reading out the requested data. 377, 379, 405, 425, 428–430, 436, 459

executive board (EB) The highest level DUNE decision-making body for the collaboration. 178

engineering document management system (EDMS) A computerized document management
system developed and supported at European Organization for Nuclear Research (CERN)
in which some DUNE documents, drawings and engineering models are managed. 590, 593,
606

equivalent noise charge (ENC) The equivalent noise charge is the input charge that corresponds
to a S/N = 1. 144, 145, 172, 190–193, 208

endwall field cage (endwall FC) The vertical portions of the SP FC near the wall. 89, 93, 94,
96, 101, 102, 104, 107–110, 113–116, 121, 123, 127–129, 138, 540, 575, 585, 586, 590, 596,
605

effective number of bits (ENOB) The effective number of bits is a measure of the dynamic range
of an ADC and its associated circuitry. The resolution of an ADC is specified by the number
of bits used to represent the analog value, in principle giving 2N signal levels for an N-bit
signal. However, all real ADC circuits introduce noise and distortion. ENOB specifies the
resolution of an ideal ADC circuit that would have the same resolution as the circuit under
consideration. 166, 171, 177

ERT emergency response team. 608

environment, safety and health (ES&H) A discipline and specialty that studies and implements
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practical aspects of environmental protection and safety at work. 77, 98, 224, 225, 233, 234,
382, 383, 529, 538, 606, 607

ESD electrostatic discharge. 96, 212, 223, 225, 226, 229, 230

external trigger interface (ETI) Interface between module trigger logics (MTLs) and external
source and sinks of relevant trigger information. 404, 416, 422, 427

external trigger logic (ETL) Trigger processing that consumes detector module level trigger no-
tification information and other global sources of trigger input and emits trigger command
information back to the MTLs. 421

Fondazione Bruno Kessler (FBK) FBK is a research non-profit entity in Trento, Italy that part-
ners in the development of technology with applications in various fields including High
Energy Physics. 261, 262, 273, 274, 303, 328

field cage (FC) The component of a LArTPC that contains and shapes the applied E field. 5, 6,
11, 12, 18, 19, 22, 23, 55, 87–89, 92–96, 98, 100–102, 104–109, 111–118, 120–123, 125, 127,
128, 130–132, 134, 136–138, 141, 154, 182, 189, 206, 219, 221, 222, 227, 270, 347–349, 351,
352, 354–357, 359–361, 373, 375, 378, 381, 382, 386, 390, 394–399, 463, 470, 498, 499, 528,
540, 541, 575, 576, 580, 581, 583–586, 588, 590, 595–597

far detector (FD) The 70 kt total (40 kt fiducial) mass LArTPC DUNE detector, composed of
four 17.5 kt total (10 kt fiducial) mass modules, to be installed at the far site at SURF in
Lead, SD, USA. 2, 5–8, 12, 17–19, 22, 28, 29, 31, 85, 89, 98, 101, 106, 133, 134, 190, 199,
203–212, 214, 215, 218, 224, 227, 229–232, 235, 237, 238, 242, 248, 253, 260, 281, 284, 314,
319, 320, 337–339, 348, 350, 351, 370, 373–375, 382, 385, 386, 388, 389, 396, 403, 404, 406–
408, 411, 413, 414, 416, 421, 422, 427, 428, 430, 437–440, 461, 463, 470, 471, 485, 493, 498,
501, 502, 505, 506, 510, 512, 514, 522, 528, 571, 588, 590, 607

front-end (FE) The front-end refers a point that is “upstream” of the data flow for a particular
subsystem. For example the SP front-end electronics is where the cold electronics meet the
sense wires of the TPC and the front-end DAQ is where the DAQ meets the output of the
electronics. 8, 23, 56, 72, 90, 94, 96, 119, 137, 143, 148–150, 152–154, 159, 173, 175, 177, 189–
191, 196, 203, 208, 215, 220, 221, 229, 253, 264, 266, 268, 269, 292, 304–307, 322, 377–379,
400, 490, 491, 504, 518, 595, 599, 600

finite element analysis (FEA) Simulation of a physical phenomenon using the numerical tech-
nique called Finite Element Method (FEM), a numerical method for solving problems of
engineering and mathematical physics. 43, 141, 199, 302

FEB front-end board. 266–269, 272, 274, 285

Front-End Link eXchange (FELIX) A high-throughput interface between FE and trigger elec-
tronics and the standard PCIe computer bus. 8, 16, 377, 414, 419, 439–444, 451
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front-end mother board (FEMB) Refers a unit of the SP cold electronics (CE) that contains the
FE amplifier and ADC ASICs covering 128 channels. 15, 16, 28, 48, 56, 145, 146, 149, 150,
152–157, 159, 166, 168, 169, 171, 172, 177–179, 181–190, 192, 196–209, 211, 212, 214–219,
221–227, 229–231, 233, 235–238, 240, 554, 555, 557, 575, 594–596

Fermi National Accelerator Laboratory (Fermilab) U.S. national laboratory in Batavia, IL. It
is the laboratory that hosts DUNE and serves as its near site. 6, 77, 98, 130, 134, 157, 158,
160, 164, 166, 171, 204, 205, 208, 226, 227, 231, 233, 235, 238, 260, 264, 266, 284, 290, 292,
307, 321, 337, 383, 501, 502, 505, 506, 530, 531, 538, 548, 565, 567, 587, 588, 606, 607

Fermilab Environment, Safety and Health Manual (FESHM) The document that contains Fer-
milab’s policies and procedures designed to manage environment, safety, and health in all its
programs. 607

FFT fast Fourier transform. 166

FIFO First-In-First-Out. 169

FPGA mezzanine card (FMC) Boards holding field programmable gate arrays (FPGAs) and
other integrated circuitry that attach to a motherboard. 438

field programmable gate array (FPGA) An integrated circuit technology that allows the hard-
ware to be reconfigured to execute different algorithms after its manufacture and deployment.
70, 71, 149, 156, 175, 184, 186–188, 190, 201, 207, 212, 214, 215, 229, 232, 266, 267, 269,
270, 306, 417, 420, 425, 439, 441, 443

FRP fiber-reinforced plastic. 93, 96, 104, 107–109, 115, 121, 125, 127, 128, 134

FSS field shaping strips. 102, 104, 113, 114, 124, 125, 596, 597

FTE full-time equivalent. A unit of labor for the project. One year of work from one person. 605

fiducial volume (FV) The detector volume within the TPC that is selected for physics analysis
through cuts on reconstructed event position. 22, 90, 339, 341, 347, 350

full width at half maximum (FWHM) Width of a distribution measured between those points
at which the distribution is equal to half of its maximum amplitude. 273

gaseous argon (GAr) argon in its gas phase. 549–551, 573, 600, 601

Geant4 A software toolkit for the simulation of the passage of particles through matter using
Monte Carlo (MC) methods. 328

ground plane (GP) An electrode held electrically neutral relative to Earth ground voltage; it is
mounted on the FC in a SP module to protect the cryostat wall. 26, 88, 89, 92–95, 98, 101,
104–109, 114, 116, 118, 120, 121, 127, 134, 137, 270, 466, 470, 481, 482, 492, 497, 498, 519,
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541, 571, 573, 601

GPIB general purpose interface bus. 503

Global Positioning System (GPS) A satellite-based system that provides a highly accurate one-
pulse-per-second signal (1PPS signal) that may be used to synchronize clocks and determine
location. 8, 17, 437

hazard analysis (HA) A first step in a process to assess risk; the result of hazard analysis is the
identification of the hazards present for a task or process. 77, 606, 607

HEP high energy physics. 209, 210, 314, 403

high voltage (HV) Generally describes a voltage applied to drive the motion of free electrons
through some media, e.g., LAr. 11, 22, 49, 53–55, 87, 89–94, 96–102, 106, 111–114, 116–125,
130, 133, 134, 136–138, 178, 196, 206, 220–222, 271, 285, 290, 306, 309–312, 314, 323, 335–
337, 340, 341, 345–350, 375, 381, 383, 463, 465, 466, 489–492, 496, 497, 499, 502, 507, 514,
517, 518, 527–529, 554, 555, 558, 575, 582, 584, 590, 596, 597, 600–602

high voltage system (HVS) The detector subsystem that provides the TPC drift field. 87, 96,
98, 122, 123, 130, 132–134, 137–141, 152

Inter-Integrated Circuit (I2C) I2C or I2C is a synchronous, multi-master, multi-slave, packet
switched, single-ended, serial computer bus widely used for attaching lower-speed peripheral
ICs to processors and microcontrollers in short-distance, intra-board communication. 164,
168, 170, 174, 179

ICARUS A neutrino experiment that was located at the Laboratori Nazionali del Gran Sasso
(LNGS) in Italy, then refurbished at CERN for re-use in the same neutrino beam from
Fermilab used by the MiniBooNE, MicroBooNE and SBND experiments. The ICARUS
detector is being reassembled at Fermilab. 90, 92, 94, 99, 104, 137, 403, 439, 487, 489

ICEBERG R&D cryostat and electronics (ICEBERG) Integrated Cryostat and Electronics Built
for Experimental Research Goals: a new double-walled cryostat built and installed at Fermi-
lab for liquid argon detector R&D and for testing of DUNE detector components. 159, 171,
204–209, 231, 235, 260, 264, 269, 284–286, 318, 319, 326, 502

inner diameter (ID) Inner diameter of a tube. 542

IFbeam Database that stores beamline information indexed by timestamp. 506, 507

IFIC Instituto de Fisica Corpuscular (in Valencia, Spain). 481

integral non-linearity (INL) A commonly used measure of performance in ADCs. It is the devi-
ation between the ideal input threshold value and the measured threshold level of a certain
output code. 164, 170, 175, 177
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inter-process communication (IPC) A system for software elements to exchange information be-
tween threads, local processes or across a data network. An IPC system is typically specified
in terms of protocols composed of message types and their associated data schema. 436, 437,
449

inter-range instrumentation group (IRIG) A standards body that defined a time-code standard
for transferring timing information. 438

Joint Project Office (JPO) The framework through which team members from the LBNF project
office, integration office, and DUNE technical coordination work together to provide coher-
ence in project support functions across the global enterprise. Its functions include global
project configuration and integration, installation planning and coordination, scheduling,
safety assurance, technical review planning and oversight, development of partner agree-
ments, and financial reporting. 223, 532–534, 537, 538, 559, 571, 602, 605

LabVIEW Laboratory Virtual Instrument Engineering Workbench is a system-design platform and
development environment for a visual programming language from National Instruments. 491

Liquid Argon Purity Demonstrator (LAPD) Cryostat at Fermilab for long-term studies requir-
ing a large volume of argon. 490, 497, 498

liquid argon (LAr) Argon in its liquid phase; it is a cryogenic liquid with a boiling point of −90 ◦C
(87K) and density of 1.4 g/ml. 3, 4, 8, 9, 15, 17, 19, 21, 23, 38, 45, 55, 71, 89–92, 96, 101,
102, 104–108, 112, 116, 118, 119, 121, 123, 131, 137, 141, 143–145, 148–150, 152, 155, 157,
169, 174, 178, 182, 191, 192, 195, 196, 203, 205–210, 220, 224, 226, 231, 232, 246–248,
253–255, 258, 260, 261, 270, 271, 273, 274, 276, 279, 283, 287, 290–292, 294, 301, 318–321,
336–338, 341, 345, 352, 353, 362, 366, 368, 371, 375, 383, 386, 395, 396, 401, 402, 406, 461,
463–466, 470–474, 479, 480, 482–489, 492–494, 496–502, 510, 514, 523, 525, 527, 528, 540,
541, 549–551, 558, 559, 591, 594–596, 601, 602

LArASIC A 16-channel FE ASIC that provides signal amplification and pulse shaping. 150, 156,
158–161, 163, 164, 166, 168, 170, 172, 174, 181, 182, 190, 196, 199, 200, 203, 210, 211, 214,
236, 238

LArIAT The repurposed ArgoNeuT LArTPC, modified for use in a charged particle beam, dedi-
cated to the calibration and precise characterization of the output response of these detectors.
4, 260, 334, 336, 375

Liquid Argon Software (LArSoft) A shared base of physics software across LArTPC experi-
ments. 328

liquid argon time-projection chamber (LArTPC) A TPC filled with liquid argon; the basis for
the DUNE FD modules. 2–5, 17, 19, 21, 87, 89, 90, 94, 99, 122, 137, 143, 190, 192, 205, 242,
248, 336, 345, 372, 373, 403, 408, 439, 486, 487, 491, 492, 593

long-baseline (LBL) Refers to the distance between the neutrino source and the FD. It can also
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refer to the distance between the near and far detectors. The “long” designation is an ap-
proximate and relative distinction. For DUNE, this distance (between Fermilab and SURF)
is approximately 1300 km. 18, 338, 339, 347, 350

laser beam location system (LBLS) Auxiliary calibration system providing an independent lo-
cation measurement of the ionization laser beams direction. 339, 359, 360, 373, 375, 380,
381

Long-Baseline Neutrino Facility (LBNF) The organizational entity responsible for developing
the neutrino beam, the cryostats and cryogenics systems, and the conventional facilities for
DUNE. 3, 6, 17, 18, 223, 225, 233, 234, 310, 334, 464, 492, 494, 506, 510, 514, 516, 517, 521,
525, 532–535, 537, 539, 559, 563, 565, 567, 602, 605

LBNF and DUNE project (LBNF/DUNE) The overall global project, including Long-Baseline
Neutrino Facility (LBNF) and DUNE. 75, 77, 224, 233

Lawrence Berkeley National Laboratory (LBNL) US national laboratory in Berkeley, CA. 160,
161, 164, 238

LCM light calibration module. 270

low-dropout regulator (LDO) A low-dropout or LDO regulator is a DC linear voltage regulator
that can regulate the output voltage even when the supply voltage is very close to the output
voltage. 174, 175, 183

LED Light-emitting diode. 270, 271, 274, 291, 298, 307, 322, 490, 501, 526, 552, 591, 598

LHC Large Hadron Collider. 215, 403, 485, 508

LN2 liquid nitrogen. 69, 102, 104, 155, 157, 159, 164, 170, 175, 258, 260, 274, 282, 298, 501, 524,
526, 527, 595

LPM light pulser module. 270

LUX Large Underground Xenon (LUX) dark matter detector at SURF. 530

LV low voltage. 56, 150, 168, 181, 183–185, 188–190, 208, 491, 548, 549

LVDS low-voltage differential signaling. 164, 169, 170, 179

LZ Experiment sited at SURF that seeks to detect faint interactions between galactic dark matter
and regular matter. 530

Majorana Demonstrator Experiment sited at SURF that seeks to determine whether neutrinos
are their own antiparticles. 530
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Monte Carlo (MC) Refers to a method of numerical integration that entails the statistical sam-
pling of the integrand function. Forms the basis for some types of detector and physics
simulations. 275, 276, 447

main communications room (MCR) Space at the FD site for cyber infrastructure. 404

mass hierarchy (MH) Describes the separation between the mass squared differences related to
the solar and atmospheric neutrino problems. 89

MicroBooNE The LArTPC-based MicroBooNE neutrino oscillation experiment at Fermilab. 4,
11, 90, 94, 99, 141, 191, 192, 194, 196, 198, 199, 201, 231, 347, 352, 354, 358, 373, 375, 403,
407, 421, 439, 487, 490, 503, 505, 506

miniature parallel optical device (MiniPOD) a family of types of multi-channel optical transceivers.
414

MINOS A long-baseline neutrino experiment, with a near detector at Fermilab and a far detector
in the Soudan mine in Minnesota, designed to observe the phenomena of neutrino oscillations
(ended data runs in 2012). 530, 605

minimum ionizing particle (MIP) Refers to a particle traversing some medium such that the
particle’s mean energy loss is near the minimum. 21, 26, 28, 144

master in slave out (MISO) The Master In Slave Out is a logic signal on the Serial Peripheral
Interface (SPI) bus on which the data from the slave are transmitted once a request from
the master is received. 168

module level trigger (MLT) The DAQ component responsible for producing a trigger decision
that will be used to command the readout of a detector module. 377–379, 400, 427

master out slave in (MOSI) The Master Out Slave In is a logic signal on the SPI bus on which
the data from the master is transmitted. 168

memorandum of understanding (MoU) A document summarizing an agreement between two or
more parties. 303

MPPC 6mm×6mm Multi-Pixel Photon Counters produced by Hamamatsu™ Photonics K.K.
246, 253, 259, 261, 264, 266, 267, 271–275, 277–279, 282, 284, 292, 294

Mu2e An experiment sited at Fermilab that searches for charged-lepton flavor violation and seeks
to discover physics beyond the standard model (SM). 253, 264, 266, 267, 269, 274, 275, 284,
285, 288, 550

NASA U.S. National Aereonautics and Space Administration. 157, 210

neutral current (NC) Refers to an interaction between elementary particles where a neutrally
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charged weak force carrier (Z0) is exchanged. 28

near detector (ND) Refers to the detector(s) installed close to the neutrino source at Fermilab.
89, 506

nucleon decay (NDK) The hypothetical, baryon number violating decay of a proton or a bound
neutron into lighter particles. 21, 314

Enriched Xenon Observatory (nEXO) Experiment at Lawrence Livermore National Laboratory
(U.S. national lab in Livermore, CA)searching for new physics with neutrinoless double-beta
decay. 172

NOvA The NOvA off-axis neutrino oscillation experiment at Fermilab. 18, 130, 505, 506, 530,
531, 587–589, 605

Non-volatile memory express (NVMe) A specification for an interface to storage media attached
via PCIe. 420, 443

outer diameter (OD) Outer diameter of a tube. 542

oxygen deficiency hazard (ODH) a hazard that occurs when inert gases such as nitrogen, helium,
or argon displace room air and thus reduce the percentage of oxygen below the level required
for human life. 555, 560, 600, 607

OM3 Type of multi-mode fiber optic cable, typically capable of 10Gbps data transmission at
lengths up to 300m. 222, 419

OM4 Type of multi-mode fiber optic cable, typically capable of 10Gbps data transmission at
lengths up to 550m. 222, 419

OPC-UA OPC Unified Architecture is a machine to machine communication protocol for indus-
trial automation developed by the OPC Foundation. OPC stands for Object Linking and
Embedding for Process Control. 486, 506

operational readiness review A project management device by which the operational readiness
is reviewed. 605, 606

operational readiness clearance (ORC) Final safety approval prior to the start of operation. 590

OSHA Occupational Safety and Health Administration (USA Department of Labor) formed by
the Occupational Safety and Health Act of 1970. 557

Proton Assembly Building (PAB) Home of several LAr facilities at Fermilab. 502

PCB printed circuit board. 38, 154, 157, 179, 182, 184, 198, 210, 257–259, 300, 301, 304, 305,
322, 478, 479, 481, 482, 519, 523, 524
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PCI Peripheral Component Interconnect. 491

photon detector (PD) The detector elements involved in measurement of the number and arrival
times of optical photons produced in a detector module. 5, 8–10, 14, 16, 18, 23, 24, 31, 44,
50, 57, 58, 60, 72, 119, 137, 138, 141, 146, 151, 154, 178–180, 206, 246–250, 252–256, 258–261,
264, 266, 267, 269–271, 276, 277, 279, 284–293, 295–322, 324–333, 335–337, 346, 413, 463,
502, 507, 528, 545, 548, 552, 554–556, 558, 569, 571, 573, 575–577, 579, 580, 583, 584, 590,
591, 593, 598–602

photon detection system (PD system) The detector subsystem sensitive to light produced in
the LAr. 31, 54, 55, 57, 59, 60, 75, 82, 84, 119, 123, 150, 152, 154, 179, 187, 188, 196, 199,
204, 205, 208, 217, 219, 221–223, 230, 242, 243, 246–248, 251, 253, 254, 261–264, 268, 270,
271, 273, 278–281, 285, 287–290, 292, 293, 299, 303–306, 308–315, 317, 320–323, 325–337,
340, 372, 373, 375–377, 386, 387, 397, 406, 414, 416, 419–422, 426, 437, 440, 441, 491, 501,
517, 548, 550, 580, 595

particle ID (PID) Particle identification. 247

PLC programmable logic controller. 227, 493, 521, 525

Phase-Locked Loop (PLL) A control system that generates an output signal whose phase is
related to the phase of an input signal. 156, 169, 170, 187

photomultiplier tube (PMT) A device that makes use of the photoelectric effect to produce an
electrical signal from the arrival of optical photons. 247, 369

PNP Type of bipolar junction transistor consistning of a layer of N-doped semiconductor sand-
wiched between two layers of P-doped material. 161

pulsed neutron source (PNS) Calibration system based on neutron capture gamma showers spread
out in the whole detector. 339, 342, 346, 366, 368, 370–373, 377, 379, 382, 383, 386–389,
392–394

parts per billion (ppb) A concentration equal to one part in 10−9. 486, 496

personnel protective equipment (PPE) Equipment worn to minimize exposure to hazards that
cause serious workplace injuries and illnesses. 77, 130, 225, 383, 538, 607, 608

parts per million (ppm) A concentration equal to one part in 10−6. 496

parts per trillion (ppt) A concentration equal to one part in 10−12. 486, 496

production readiness review A project management device by which the production readiness is
reviewed. 20, 287, 288, 308, 326, 389, 513, 603

ProtoDUNE Either of the two DUNE prototype detectors constructed at CERN. One prototype
implements SP technology and the other DP. 4, 9, 11, 13, 17–19, 91, 96, 102, 106, 122, 133,
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136, 137, 160, 326, 372, 373, 375, 385, 387, 398, 400, 402, 404, 420, 421, 425–427, 437–444,
449, 458, 459, 473, 492, 493, 498, 503, 508, 510, 512, 514, 515, 559, 581, 587, 588, 594

ProtoDUNE-2 The second run of a ProtoDUNE detector. 138, 338–340, 347, 349, 362, 365, 382,
387, 396–398, 400, 502, 512, 513

ProtoDUNE-DP The DP ProtoDUNE detector at CERN. 133, 137, 326, 389, 456, 463, 470, 487,
493, 498, 502, 508, 513, 550, 603

ProtoDUNE-SP The SP ProtoDUNE detector at CERN. 22–24, 29, 31, 34, 35, 38, 41, 42, 44–
56, 58, 59, 61–64, 66, 67, 69, 71, 75, 77, 79, 81, 85, 90–92, 96, 98–100, 102, 103, 106, 111,
113–117, 120–122, 124–126, 128, 130, 133, 136, 137, 141, 143, 144, 153–157, 159, 160, 169,
170, 177–179, 182, 184–188, 190–193, 195, 196, 198–208, 213–219, 222, 224, 229–231, 234,
235, 237, 238, 240, 250, 251, 253, 255, 256, 260, 261, 264, 267, 269–271, 275–281, 284, 285,
287–294, 296–300, 302, 304, 306, 311, 312, 314, 317–322, 326, 327, 329, 335, 341, 349, 361,
373, 374, 382, 383, 385, 388, 389, 412, 440, 442, 445, 446, 450, 456, 463, 465, 466, 468, 470–
474, 476, 478, 479, 481–483, 485, 487–489, 491–494, 497–502, 505, 506, 508, 509, 512–514,
523, 530, 531, 535, 537, 540, 548, 550, 554, 558, 563, 579, 587, 588, 590, 591, 593, 595, 598,
599, 602, 603, 605–607

ProtoDUNE-SP-2 A second test run in the singe-phase ProtoDUNE test stand at CERN, acting
as a validation of the final single-phase detector design. 82, 260, 262, 266, 269, 285, 287–289,
296, 321, 326, 373, 375, 380, 386

power and timing backplane (PTB) Backplane used to connect the warm interface board (WIB)s
and the power and timing card (PTC)s on the warm interface electronics crate (WIEC). Also
connects the CE flange on the cryostat penetration. 15, 150, 152, 183, 184

power and timing card (PTC) Cards that provide further processing and distribution of the sig-
nals entering and exiting the SP cryostat. 15, 145, 150, 152, 183–189, 200, 202, 204, 207,
212, 217, 218, 222, 236, 240

Precision Time Protocol (PTP) A networking protocol that allows synchronizing of clocks to
within a few µs of a time standard on a local network. 438

p-terphenyl (PTP) A wavelength-shifting (WLS) material. 256, 258, 260, 274, 278, 281, 284,
287, 289, 290, 307, 323, 335

quality assurance (QA) The set of actions taken to provide confidence that quality requirements
are fulfilled, and to detect and correct poor results. 19, 67, 84, 134, 136, 144, 202, 203, 210,
213, 232–234, 246, 305, 306, 318, 320, 321, 323, 518, 526, 554, 563, 579, 587, 599

quality control (QC) An aggregate of activities (such as design analysis and inspection for de-
fects) performed to ensure adequate quality in manufactured products. 19, 44, 59, 63, 67,
69, 72, 121, 122, 130–132, 134, 136, 159, 202, 203, 210–215, 217, 218, 229, 231, 233, 234, 236,
238, 240, 241, 246, 295–298, 306, 307, 315, 318–323, 380–382, 386, 518, 522–526, 537–539,
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580, 587, 591, 595, 597

QFP Quad Flat Package. 159

RC resistive-capacitive (circuit). 90, 96, 155, 156, 198

reconfigurable computing element (RCE) Data processor located outside of the cryostat on a
cluster on board (COB) that contains FPGA, RAM and solid-state disk (SSD) resources,
responsible for buffering data, producing trigger primitives, responding to triggered requests
for data and synching supernova neutrino burst (SNB) dumps. 207, 439, 440

radio frequency (RF) Electromagnetic emissions that are within the (radio) frequency band of
sensitivity of the detector electronics. 595

root mean square (RMS) The square root of the arithmetic mean of the squares of a set of
values, used as a measure of the typical magnitude of a set of numbers, regardless of their
sign. 163, 273, 282, 329, 466, 479, 486, 594, 600, 601

resistive panel (RP) Resistive panels form the constant potential surfaces for a SP module CPA;
they are composed of a thin layer of carbon-impregnated Kapton and laminated to both sides
of a FR-4 sheet. 92, 93, 101, 102, 113, 114, 124, 125, 138, 141, 597

radioactive source deployment system (RSDS) Proposed calibration system based on the de-
ployment of radioactive sources inside the DUNE cryostat. 339, 388, 389, 394, 396–398,
400

resistance temperature detector (RTD) A temperature sensor consisting of a material with an
accurate and reproducible resistance/temperature relationship. 492, 517, 524, 597

S-ARAPUCA Standard ARAPUCA design with different WLS coatings on both faces of the
dichroic filter window(s) of the cell. 248, 250, 251, 255, 271, 274–281, 283, 285, 289–292, 294,
317

signal-to-noise (S/N) signal-to-noise ratio. 5, 9, 11, 14, 22, 89–91, 144, 145, 253, 262, 264, 267,
272, 274, 329, 463

SACI SLAC National Accelerator Laboratory (SLAC) ASIC Control Interface. 174, 183

SAR successive approximation register. 170, 173

Short-Baseline Neutrino (SBN) A Fermilab program consisting of three collaborations, Micro-
BooNE, SBND, and ICARUS, to perform sensitive searches for νe appearance and νµ disap-
pearance in the Booster Neutrino Beam. 251, 338, 375

SBND The Short-Baseline Near Detector experiment at Fermilab. 104, 141, 143, 145, 170, 171,
177, 183, 191, 196, 201, 203, 229, 260, 287–289, 296, 328, 352, 355, 373, 403, 439, 503
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SCADA supervisory control and data acquisition. 506, 508

Fermilab South Dakota Services Division (SDSD) A Fermilab division responsible providing
host laboratory functions at SURF in South Dakota. 529, 531, 533, 534, 538, 565

South Dakota Science and Technology Authority (SDSTA) The legal entity that manages SURF,
in Lead, S.D. 602, 608

South Dakota Warehouse Facility (SDWF) Warehousing operations in South Dakota respon-
sible for receiving LBNF and DUNE goods and coordinating shipments to the Ross shaft
at SURF. 71–73, 75, 123–125, 128, 132–134, 213, 217, 218, 237, 307, 318, 319, 322, 522,
532–538, 602, 606

spurious free dynamic range (SFDR) Spurious free dynamic range is the ratio of the root mean
square (RMS) value of the signal to the RMS value of the worst spurious signal regardless of
where it falls in the frequency spectrum. The worst spur may or may not be a harmonic of
the original signal. 166

small form-factor pluggable (SFP) a particular standard for optical transceivers. 414, 438

signal feedthrough (SFT) A cryostat penetration allowing for the passage of cables or other
extended parts. 153

safe high voltage (SHV) Type of bayonet mount connector used on coaxial cables that has ad-
ditional insulation compared to standard BNC and MHV connectors that makes it safer for
handling high voltage (HV) by preventing accidental contact with the live wire connector in
an unmated connector or plug. 35, 54, 123, 179, 182, 189, 207, 222, 596, 600

silicon photomultiplier (SiPM) A solid-state avalanche photodiode sensitive to single photoelec-
tron signals. 9, 10, 146, 246, 248, 250, 251, 253, 255, 256, 258, 259, 261, 262, 264, 265, 270,
271, 274, 275, 278, 279, 291–294, 303, 304, 321–323, 329, 463, 579, 591

SLAC National Accelerator Laboratory (SLAC) US national laboratory in Menlo Park, CA.
158, 172, 175, 186, 238

supernova neutrino burst (SNB) A prompt increase in the flux of low-energy neutrinos emitted
in the first few seconds of a core-collapse supernova. It can also refer to a trigger command
type that may be due to this phenomenon, or detector conditions that mimic its interaction
signature. 3, 9, 16–18, 21, 90, 145, 242, 243, 254, 314, 331, 332, 338, 339, 342, 366, 372, 394,
397, 406–408, 412, 413, 416, 420–422, 425, 427, 437, 441, 444, 447, 448, 461

signal to noise and distortion ratio (SNDR) Also known as SINAD. Ratio of the RMS signal
amplitude to the mean value of the root-sum-square of all other spectral components, in-
cluding harmonics, but excluding DC levels. It is a good indication of the overall dynamic
performance of an ADC because it includes all components which make up noise and distor-
tion. 166, 177
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SuperNova Early Warning System (SNEWS) A global supernova neutrino burst trigger formed
by a coincidence of SNB triggers collected from participating experiments. 422, 427

single-phase (SP) Distinguishes one of the DUNE far detector technologies by the fact that it
operates using argon in its liquid phase only. 3–5, 18, 19, 21, 22, 57, 67, 81, 87, 89, 134, 143,
144, 149, 153, 178, 205, 209, 211, 212, 215, 218, 224, 227, 229, 235, 237, 238, 246–248, 251,
253, 254, 271, 285, 288, 306, 308, 313–315, 319, 324, 326, 335, 338, 403, 411, 461, 466, 470,
493, 502, 510, 519, 603, 604

SP module single-phase DUNE FD module. 5, 21–23, 26, 27, 30, 31, 35, 39, 51, 59, 63, 77, 87,
88, 90, 92, 93, 98, 99, 105–107, 111, 113–115, 121, 125, 130–134, 136, 138–140, 143–145, 150,
152–154, 156, 160, 168, 171, 172, 174, 177, 181, 184–187, 192, 195, 196, 199, 204, 205, 236,
237, 246, 247, 249, 250, 253, 255, 261, 262, 264, 271, 281, 287, 291, 292, 295, 296, 298–300,
304, 308, 309, 337, 338, 340, 345, 346, 348, 352, 356, 425, 464, 472, 474, 479, 486, 488,
489, 491–493, 497, 502, 508, 510, 514, 528–532, 535, 538, 548, 549, 567, 577, 588, 590, 591,
600–602

Serial Peripheral Interface (SPI) The Serial Peripheral Interface is a synchronous serial commu-
nication interface specification used for short distance communication, primarily in embedded
systems. 168

SPICE SPICE (“Simulation Program with Integrated Circuit Emphasis”) is a general-purpose,
open-source analog electronic circuit simulator. It is a program used in integrated circuit
and board-level design to check the integrity of circuit designs and to predict circuit behavior.
157, 158, 161, 169

SSP SiPM signal processor. 264, 269, 271, 272, 274, 278, 284, 285, 292, 294, 304, 317, 329

Sanford Underground Research Facility (SURF) The laboratory in South Dakota where the
LBNF far site conventional facilities (FSCF) will be constructed and the DUNE FD will
be installed and operated. 6, 7, 16, 19, 27, 71–73, 75, 82, 86, 125, 132, 133, 138, 202, 205,
212, 213, 217–219, 222–227, 230, 231, 233, 235, 237, 238, 240, 241, 313, 380, 402, 404, 414,
416, 428, 451, 504, 505, 519, 520, 522–526, 528–535, 537, 538, 541, 565, 594, 595, 597, 598,
606–608

TallBo A cylindrical cryostat at Fermilab primarily used for developing scintillation light collection
technologies for LArTPC detectors. 275, 290, 502

trip action plan (TAP) A document required for any trip by a worker to the underground area
at SURF, per that site’s access control program; it describes the work to be accomplished
during the trip. 608

temporary construction opening (TCO) An opening in the side of a cryostat through which
detector elements are brought into the cryostat; utilized during construction and installation.
18, 19, 115, 213, 231, 237, 381, 401, 540, 541, 552, 557–559, 568, 575, 580, 581, 583, 584,
586, 587, 592, 595, 596, 600, 603, 605
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technical design report (TDR) A formal project document that describes the experiment at a
technical level. 2, 19, 21, 90, 195, 243, 246, 285, 317, 328, 338–340, 342, 350, 375, 383, 461,
529, 532, 534, 584, 606

technical coordination The DUNE organization responsible for overall integration of the detector
elements and successful execution of the detector construction project; areas of responsibility
include general project oversight, systems engineering, quality assurance (QA) and safety.
133, 144, 222, 223, 233, 376, 517

total harmonic distortion (THD) Total harmonic distortion is the ratio of the RMS value of the
fundamental signal to the mean value of the root-sum-square of its harmonics. 166

top field cage (top FC) The horizontal portions of the SP FC on the top of the TPC. 89, 93,
94, 96, 101, 106, 107, 109, 114, 125, 127

tetra-phenyl butadiene (TPB) A WLS material. 274, 287, 291, 297, 311, 335, 336, 375

time projection chamber (TPC) A type of particle detector that uses an E field together with
a sensitive volume of gas or liquid, e.g., LAr, to perform a 3D reconstruction of a particle
trajectory or interaction. The activity is recorded by digitizing the waveforms of current
induced on the anode as the distribution of ionization charge passes by or is collected on the
electrode. 6, 10–12, 16–19, 21, 23, 24, 26–29, 31, 35, 39, 51, 55–57, 72, 87, 89, 90, 95, 96,
102, 106–108, 111, 112, 114, 116, 117, 119, 120, 123, 125, 131, 138, 141, 143–146, 149, 150,
152–154, 157, 158, 160, 170, 171, 177, 179, 184, 186, 187, 189–191, 195, 196, 199, 201–213,
215–227, 230–235, 237–243, 247, 249, 252, 254, 273, 276–280, 284–286, 288, 308, 310, 312,
314, 318, 321, 322, 329–334, 336, 337, 339, 341, 346, 347, 349, 350, 352–356, 358, 360, 361,
366, 367, 369–374, 377, 379, 381, 382, 386–388, 390, 393, 400, 401, 406, 407, 412–414, 416,
418–422, 425, 426, 440, 441, 443, 447, 461, 463, 466, 469, 472–474, 488, 491, 497, 501, 502,
507, 513, 514, 517, 519, 528, 530, 540, 569, 571, 575, 576, 581, 584, 586, 588, 590, 591,
594–596, 602, 605, 606

trigger candidate Summary information derived from the full data stream and representing a
contribution toward forming a trigger decision. 377, 421, 422, 425–428, 442, 444, 447, 448

trigger command Information derived from one or more trigger candidates that directs elements
of the detector module to read out a portion of the data stream. 404, 417, 420–422, 427–429,
436, 441, 444

trigger decision The process by which trigger candidates are converted into trigger commands.
377, 404, 413, 416, 420–422, 425–427, 444, 449

trigger primitive Information derived by the DAQ FE hardware that describes a region of space
(e.g., one or several neighboring channels) and time (e.g., a contiguous set of ADC sample
ticks) associated with some activity. 377, 420–422, 425, 426, 436

TSMC Taiwan Semiconductor Manufacturing Company. 157, 158, 160, 170
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Universal Asynchrous Receiver/Transmitter (UART) A universal asynchronous receiver-transmitter
is a computer hardware device for asynchronous serial communication in which the data for-
mat and transmission speeds are configurable. 164

upstream DAQ buffer interface (UBI) The process which provides read-only access to data re-
siding in the upstream DAQ buffers to processes on the network. 436, 437

UHMWPE ultra-high molecular weight polyethylene. 100, 104, 105, 122, 124

underground installation team (UIT) An organizational unit responsible for installation in the
underground area at the SURF site. 605

UNICAMP University of Campinas, Sao Paulo, Brazil. 255, 260, 281, 283, 287, 295–297, 306,
307, 326, 328

VUV vacuum ultra-violet. 4, 9, 246–248, 250, 276, 281, 295, 323, 335, 336

WA105 DP demonstrator The 3× 1× 1m3 WA105 DP prototype detector at CERN. 496

work breakdown structure (WBS) An organizational project management tool by which the
tasks to be performed are partitioned in a hierarchical manner. 325

warm interface board (WIB) Digital electronics situated just outside the SP cryostat that re-
ceives digital data from the front-end mother boards (FEMBs) over cold copper connections
and sends it to the reconfigurable computing element (RCE) FE readout hardware. 15, 145,
149, 150, 152, 157, 166, 168, 169, 179, 181–189, 200, 201, 204, 212, 215–218, 221, 222, 236,
240, 414, 419, 442, 451, 567, 594, 595

warm interface electronics crate (WIEC) Crates mounted on the signal flanges that contain the
WIBs. 15, 145, 149, 150, 152, 153, 168, 183, 186–189, 200, 202, 204, 207, 208, 211, 212, 217–
220, 222, 223, 225–227, 231–233, 236–238, 240, 558, 569, 583, 596

wavelength-shifting (WLS) A material or process by which incident photons are absorbed by a
material and photons are emitted at a different, typically longer, wavelength. 10, 138, 250,
251, 255, 256, 258, 282, 287, 289, 291, 292, 295, 301, 311, 323, 335, 336

warehouse management system (WMS) Commercial software package used to track shipments
and interface to freight forwarders. This includes a database for shipping. 533, 537, 538

White Rabbit (WR) A component of the timing system that forwards clock signal and time-of-
day reference data to the master timing unit. 427

X-ARAPUCA Extended ARAPUCA design with WLS coating on only the external face of the
dichroic filter window(s) but with a WLS doped plate inside the cell. 10, 246, 248, 250, 251,
254–259, 262, 271, 273, 281–285, 287–292, 295, 298, 301, 317, 318, 327, 335, 337, 463
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