
ROOT I/O compression improvements for HEP analysis

Oksana Shadura1,∗ Brian Paul Bockelman2,∗∗ Philippe Canal3,∗∗∗ Danilo Piparo4,∗∗∗∗ and
Zhe Zhang1,†

1University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States
2Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States
3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States
4CERN, Meyrin 1211, Geneve, Switzerland

Abstract. We overview recent changes in the ROOT I/O system, increasing per-
formance and enhancing it and improving its interaction with other data analy-
sis ecosystems. Both the newly introduced compression algorithms, the much
faster bulk I/O data path, and a few additional techniques have the potential to
significantly to improve experiment’s software performance.
The need for efficient lossless data compression has grown significantly as the
amount of HEP data collected, transmitted, and stored has dramatically in-
creased during the LHC era. While compression reduces storage space and,
potentially, I/O bandwidth usage, it should not be applied blindly: there are sig-
nificant trade-offs between the increased CPU cost for reading and writing files
and the reduce storage space.

1 Introduction

In the past years LHC experiments are commissioned and now manages about an exabyte of
storage for analysis purposes, approximately half of which is used for archival purposes, and
half is used for traditional disk storage. Meanwhile for HL-LHC storage requirements per
year are expected to be increased by factor 10 [1].

Looking at these predictions, we would like to state that storage will remain one of the
major cost drivers and at the same time the bottlenecks for HEP computing. It means that new
storage and data management techniques, as well as compression algorithms, are likely to be
required to remove a cost bottleneck together with storage and analysis computing costs to be
able to handle expected data ratios and data volumes needed to be processed by experiments
during HL-LHC[1].

Looking into innovative compression algorithms could help to resolve some problems,
such as improving user analysis, removing decompression speed bottleneck, while maintain-
ing the same or better compression data ratios. Zstandard [5] is a dictionary-type algorithm
(LZ77) with a large search window and fast implementations of entropy coding stage, using
either fast Finite State Entropy (tANS) or Huffman coding. Zstandard referred to as zstd,
∗e-mail: oksana.shadura@cern.ch
∗∗e-mail: bbockelman@morgridge.com
∗∗∗e-mail: pcanal@fnal.gov
∗∗∗∗e-mail: dpiparo@cern.ch
†e-mail: zhan0915@huskers.unl.edu

ar
X

iv
:2

00
4.

10
53

1v
1

 [c
s.O

H
]

8
A

pr
 2

02
0

FERMILAB-CONF-20-308-SCD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of
Energy, Office of Science, Office of High Energy Physics.

is a much more modern compressor comparing to Zlib, which was initially implemented in
1995, and which offers higher compression rates while using less CPU compared to other
compression algorithms. ZSTD is available as a ROOT supported compression algorithm,
starting from ROOT 6.20.00 release. [3]

2 Background

Three years ago, Facebook [7] open-sourced Zstandard, an innovative data compression so-
lution that offers a performance. It is largely supported by the community and continuously
supported as well as enhanced by ZSTD authors, who released a variety of advanced capa-
bilities, such as improved decompression speed and better compression ratios.

The initial promise of Zstandard was that it would allow users to replace their existing
data compression implementation, such as ZLIB, for one with significant improvements on
compression speed, compression ratio, and as well decompression speed. [6]

In addition to replacing ZLIB, ZSTD has taken over many of the tasks that traditionally
relied on fast compression alternatives. Fastest compression is still provided by LZ4 (for
the fastest compression settings), while ZSTD provides a twice size better compression ra-
tio. According to reports from the community, it is slowly replacing the strong compression
scenarios previously served by XZ (or LZMA) [2], with the benefit of 10 times faster de-
compression speed. According to reports from Facebook, with all these use cases combined,
ZSTD now is processing a significant amount of data every day at Facebook.

Zstandard can use a "dictionary" format to make compression of files of an already known
type in a more efficient way. Here a dictionary is a file that stores the compression settings
for small files. Compression dictionary is assembled from a group of typically small files
that contain similar information, preferably over 100 files. For the best efficiency, their com-
bined size should be about one hundred times the size of the dictionary produced from them.
In general, the smaller the file, the greater the improvement in compression. According to
the zstd manual page, a dictionary can only increase the compression of a 64KB file by 10
percent, compared with a 500 percent improvement for a file of less than 1KB [6].

3 Evaluation of simple ZSTD algorithm for LHC datatsets

In this section, we will try to focus on the evaluation of compression of most used analysis-
related formats in CMS, NanoAOD [9] and MiniAOD [8], as well as a simple case of analysis
file used by the LHCb experiment.

The MiniAOD is a new high-level CMS data file that was introduced in 2014 to serve the
needs of the mainstream physics analyses while keeping a small event size - only 30-50 KB
per event. It is not readable with bare ROOT and requires special CMSSW setup to be able
to read it. Meanwhile, NanoAOD format consists of a Ntuple like format, readable with bare
ROOT and containing the per-event information that is needed in most generic analyses. The
size per event of NanoAOD is the order of 1KB. NanoAODs are usually centrally produced
or even produced on-demand with different variations of features or columns required by
different physics analysis groups. Users can as well easily extend NanoAOD for their specific
studies making a private production when needed.

For CMS NanoAOD files, using ZSTD could be a better compromise between size of
file on a disk and decompression speed for a faster analysis as well as better compression
ratio and 2x faster decompression then ZLIB and 6x faster comparing to LZMA, while file
compressed with ZSTD is only 20 % bigger size (all results are shown on the Figure 2 and
1).

Figure 1. Comparison of compression ratio and decompression speed for ZLIB, LZMA and ZSTD
algorithms for NanoAOD 2019 file

For MiniAOD, measured time spend in decompressing on readback is 15x less comparing
to LZMA, while the size of the file with ZSTD is only 10% bigger.

Figure 2. Comparison of compression ratio and decompression speed for all compression algorithms
for NanoAOD 2019 file.

Figure 3. Comparison of compression ratio and decompression speed for all compression algorithms
for LHCb file.

In case of LHCb, for the very simple NTuples with a simple structure, the best choice
could be LZ4 compression algorithm, offering 10x time faster read speed (all results are
shown on the Figure 3).

In ROOT, the serialization of variable-sized data (containing C-style arrays) produces two
internal arrays: one contains the branch data for each of events while the other contains the
byte offset of each of events in the branch data. LZ4 compression algorithm achieves its per-
formance by looking for byte-aligned patterns (as opposed to ZLIB compression algorithm,
which works on individual bits) and lacks the Huffman encoding pass, this results in the off-
set array sequence being effectively incompressible using LZ4. ZSTD has no problems with
compression of data that contains the byte offset of each event in the branch data (vs LZ4)
(all results are shown on the Figure 4).

4 TTree::kOnlyFlushAtCluster option, offering faster
decompression

TTrees can be forced to create only the new baskets at event cluster boundaries, using a
TTree::kOnlyFlushAtCluster feature. It simplifies file layout and I/O at the cost of memory.
For example for the TTree::kOnlyFlushAtCluster feature tests shown in Figure 5, NanoAOD
2017 was bigger only by 3.6 % of size, while decompression speed is improved almost up to
200 MB/s [10].

TTree :: kOnlyFlushAtCluster is recommended for simple file formats such as ntuples
where it can show really interesting improvementsts, but not for more complex data types.

Figure 4. Comparison ratio comparison for custom analysis file with variable-sized data (containing
C-style arrays).

Figure 5. Comparison of decompression speed for two file samples NanoAOD 2017, with and without
TTree :: kOnlyFlushAtCluster option.

5 Limitations and Future work

Some time ago, Bitshuffle pre-conditioner was demonstrated as a possible pre-conditioner
for ROOT data with LZ4 for lossless compression. To improve the performance of LZ4
in this case, we investigated the combination of LZ4 with various “pre-conditioners”. Pre-
conditioners transform the sequence of input bytes according to a simple, deterministic algo-
rithm before applying the compression algorithm. The two algorithms investigated, inspired
by the Blosc library, are Shuffle and BitShuffle. Both pre-conditioners rearrange the input
array’s bytes by reading through the data using fixed strides. The resulting output of the pre-

conditioner often contains long sequences of repeated bytes, improving the compression ratio
for LZ4. One of the issues exposed was that it is difficult for ROOT to compress its buffers
now due to its 9-byte header [10].

The idea of using pre-conditioners could be easily expanded to be used with other algo-
rithms, such as ZSTD. The next goal of the project will be to validate the possibility to use
pre-conditioners in the ROOT compression layer used to compress both ROOT file formats
(TTree and RNTuple) for the fastest ROOT compression algorithms: LZ4, ZSTD.

Another interesting investigation could be to extend pre-conditioners to support new
BYTE_STREAM_SPLIT encoding that improves compression ratio and compression speed
for certain types of floating-point data where the upper-most bytes of values do not change
much. The existing compressors and encodings in ROOT do not perform well for such data
due to noise in the mantissa bytes. The new encoding improves results by extracting the
well compressible bytes into separate byte streams which can be afterward compressed by a
compressor like ZSTD [12].

6 Conclusions

ZSTD has been successfully evaluated and ready to be used for compression of data analysis
formats for future LHC Runs in experiments.

7 Acknowledgments

This work has been supported by U.S. National Science Foundation grants OAC-1450323.

References

[1] Elsen, Eckhard. "A Roadmap for HEP Software and Computing R&D for the 2020s."
(2019): 16.

[2] XZ Utils. https://tukaani.org/xz/. Accessed 6 Mar. 2020.
[3] R. Brun, F. Rademakers, ROOT - An Object Oriented Data Analysis Framework,

Nucl. Inst. & Meth. in Phys. Res. A 389 (Proceedings AIHENP’96 Workshop,1997).
[4] Facebook Github organization. GitHub, https://github.com/facebook. Accessed 22

Feb. 2020.
[5] Facebook/Zstd. 2015. Facebook, 2020. GitHub, https://github.com/facebook/zstd.
[6] Collet, Y., and M. Kucherawy. "Zstandard Compression and the application/zstd Me-

dia Type." RFC 8478 (2018).
[7] “Zstandard: How Facebook Increased Compression Speed.” Facebook Engineering,

19 Dec. 2018, https://engineering.fb.com/core-data/zstandard/.
[8] Petrucciani, Giovanni, Andrea Rizzi, and Carl Vuosalo. "Mini-AOD: A new analysis

data format for CMS." Journal of Physics: Conference Series. Vol. 664. No. 7. IOP
Publishing, 2015.

[9] Rizzi, Andrea, Giovanni Petrucciani, and Marco Peruzzi. "A further reduction in
CMS event data for analysis: the NANOAOD format." EPJ Web of Conferences.
Vol. 214. EDP Sciences, 2019.

[10] Shadura, Oksana, and Brian Paul Bockelman. "ROOT I/O compression algorithms
and their performance impact within Run 3." arXiv preprint arXiv:1906.04624
(2019).

[11] Canal, Philippe, Brian Bockelman, and René Brun. "ROOT I/O: The fast and furi-
ous." Journal of Physics: Conference Series. Vol. 331. No. 4. IOP Publishing, 2011.

http://arxiv.org/abs/1906.04624

[12] “Apache/Parquet-Format.” GitHub, https://github.com/apache/parquet-format. Ac-
cessed 6 Mar. 2020.

