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Abstract. The ROOT TTree data format encodes hundreds of petabytes of High
Energy and Nuclear Physics events. Its columnar layout drives rapid analyses,
as only those parts (“branches”) that are really used in a given analysis need to
be read from storage. Its unique feature is the seamless C++ integration, which
allows users to directly store their event classes without explicitly defining data
schemas. In this contribution, we present the status and plans of the future
ROOT 7 event I/O. Along with the ROOT 7 interface modernization, we aim
for robust, where possible compile-time safe C++ interfaces to read and write
event data. On the performance side, we show first benchmarks using ROOT’s
new experimental I/O subsystem that combines the best of TTrees with recent
advances in columnar data formats. A core ingredient is a strong separation
of the high-level logical data layout (C++ classes) from the low-level physical
data layout (storage backed nested vectors of simple types). We show how the
new, optimized physical data layout speeds up serialization and deserialization
and facilitates parallel, vectorized and bulk operations. This lets ROOT I/O
run optimally on the upcoming ultra-fast NVRAM storage devices, as well as
file-less storage systems such as object stores.

1 Introduction

The data describing a High Energy Physics (HEP) event is typically represented by a record
containing variable-length collections of sub records. An event can, for instance, contain a
collection of particles with certain scalar properties (pt, E, etc.), another collection of jets, a
collection of tracks, and so on. A typical physics analysis uses a large number of events but
processes only a subset of the available properties. Therefore, ROOT’s TTree storage format
support a columnar physical data layout for nested sub records and collections [1]. Values of
a single property of many events (e.g., pt for events 1 to 1000) are stored consecutively on
disk. Thus, only those parts that are required for an analysis need to be read. Similar values
are likely to be grouped together, which is beneficial for compression.

More than 1 EB of data is stored in the TTree format. For HEP use cases, the TTree
I/O speed and storage efficiency has shown to be significantly better than many industry
products [2]. Furthermore, ROOT provides the unique feature of seamless C++ and Python
integration where users do not need to write or generate a data schema. Yet, the TTree
implementation limits the optimal use of new storage systems and storage device classes,
such as object stores and flash memory, and it shows shortcomings when it comes to multi-
threaded and GPU supported analysis tasks and fail-safe APIs.
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In this contribution, we present the design and first benchmarks of the RNTuple set of
classes. The RNTuple classes provide a new, experimental columnar event I/O system that is
backwards-incompatible to TTree both on the file format level and on the API level. Break-
ing backwards compatibility allows us to use contemporary nomenclature and to design the
ROOT event I/O from the ground up for next-generation devices and the increased data rates
expected from HL-LHC.

2 Design of the RNTuple I/O subsystem

This section describes key design choices of the RNTuple data format and of class design and
the interfaces.

2.1 Data layout

Compared to the TTree binary data layout, the RNTuple data layout is modestly modern-
ized and borrows some ideas from Apache Arrow [3] (see Figure 1). Data is stored in
columns of fundamental types supporting arbitrarily deeply nested collections (TTree drops
the “columnar-ness” for deeply nested collections).1 Columns are partitioned in compressed
pages, of typically a few tens of kilobytes in size. Like in TTree, clusters are a set of pages
that contain all the data of a certain event range. They are typically a few tens of megabytes
in size and a natural unit of processing for a single thread or task.

. . . . . .

Header FooterPage

Cluster

Dataset / File

C++ collections become offset columns

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Approximate translation between TTree and RNTuple concepts:

Basket ≈ Page
Leaf ≈ Column
Cluster ≈ Cluster

Figure 1. Breakdown of the RNTuple data layout. Each scalar field of the event struct is stored in a
separate column.

A collection’s representation contains an offset column whose elements indicate the start
index within the columns that store the collection content; this allows for random-access of
individual events. The indexing is local to the cluster such that clusters can be written in
parallel and freely concatenated to a larger data set. This also allows for “fast merging”,
where several RNTuple files can be concatenated by only adjusting the header and footer. In
contrast to TTree, offset pages and value pages are always separated, which should improve
the compression ratio (to be confirmed). Integers and floating point numbers in columns are
stored in little-endian format (TTree: big-endian) in order to allow for memory mapping of
pages on most contemporary architectures. Boolean values, such as trigger bits, are stored as
bitmaps (TTree: byte arrays), which improves the compression.

The RNTuple meta-data are stored in a header and a footer. The header contains the
schema of the RNTuple; the footer contains the locations of the pages. At a later point,

1In contrast to TTree, RNTuple currently does not support row-wise storage.



we will extend the meta-data with a regularly written checkpoint footer (e. g. every 100 MB)
in order to allow for data recovery in case of an application crash during data taking. We
will also extend the meta-data with a user-accessible, namespace-scoped map of key-value
pairs, such that the experiment data management systems can maintain relevant information
(checksums, replica locations, etc.) together with the data.

The pages, header and footer do not necessarily need to be written consecutively in a
single file. The container for pages, header and footer can be a ROOT file where data is
interleaved with other objects such as histograms. The container can also be an RNTuple
bare file or an object store. It is also conceivable to store header and footer in a different file
than the pages to avoid backward seeks.

2.2 Class design

The RNTuple class design comprises four layers (see Figure 2). The RNTuple classes make
use of templates, such that for simple types (e.g., vectors of floats) that are known at compile
time, the compiler can inline a fast path from the highest to the lowest layer without additional
value copies or virtual calls.

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . . )

grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> 7→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
Reading and writing in event loops and through RDataFrame

RNTupleDataSource, RNTupleView, RNTupleReader/Writer

Approximate translation between TTree and
RNTuple classes:

TTree ≈ RNTupleReader
RNTupleWriter

TTreeReader ≈ RNTupleView
TBranch ≈ RField
TBasket ≈ RPage
TTreeCache ≈ RClusterPool

Figure 2. Layers and key class of RNTuple and their approximate counterparts in TTree.

The event iteration layer provides the user-facing interfaces to read and write events,
either through RDataFrame [4] or as hand-written event loops. The user interface is presented
in more detail in Section 3.

The logical layer splits C++ objects into columns of fundamental types. Its central
class is the RField that provides a C++ template specialization for reading and writing
of an I/O supported type. Currently there is support for boolean, integer and floating
point, std::vector and std::array containers, std::string, std::variant, and user-
defined classes with a ROOT dictionary. In the future, we will provide support for addtional
types (e.g., std::map, std::chrono) and possibly for intra-event object references as a lim-
ited form of pointers. While RNTuple limits I/O support to an explicit subset of C++ types,
those types are fully composable (e.g., a user-defined class containing a vector of arrays of
another user-defined class).

The primitives layer governs the pool of uncompressed and deserialized pages in mem-
ory and the representation of fundamental types on disk. For most fundamental types, the
memory layout equals the RNTuple on-disk layout. In some circumstances, pages need to be
packed and unpacked, for instance in order to store booleans as bitmaps or in order to store
floating point values with reduced precision.

The storage layer provides access to the byte ranges containing a page on a physical or
virtual device. The storage layer manages compression and reads and writes to and from the



I/O device. It also allocates memory for pages in order to allow for direct page mappings.
Currently there is support for a storage layer that uses a ROOT file as an RNTuple data
container and a storage layer that uses a bare file for comparison and testing. We plan to add
another implementation that uses an object store. We will also add virtual storage layers that
combine RNTuple data sets similar to TTree’s chains and friend trees.

An RNTuple cluster pool provides I/O scheduling capabilities. The cluster pool spawns
an I/O thread that asynchronously preloads upcoming pages of active columns. The cluster
pool can linearize, merge and split requests to optimize the read pattern for the storage device
at hand (e. g. spinning disk, flash memory, remote server).

3 RNTuple user interfaces

The RNTuple user-facing API is supposed to be easy to use correctly as to minimize the
likelihood of application crashes and wrong results. To this end, RNTuple provides an
RDataFrame data source so that RDataFrame analyses code can be use unmodified with RN-
Tuple data.

The RNTuple interface for implementing hand-written event loops uses modern stan-
dard techniques, including smart pointers, event traversal by C++ iterators and compile-time
safety through templated interfaces (see Figure 3). For the type-unsafe interface, a runtime
check verifies that the the on-disk type and the in-memory type of fields match.

auto ntpl =
RNTupleReader::Open("Events", "f.root");

auto viewPt = ntpl->GetView<float>("pt");

for (auto i : ntpl->GetEntryRange()) {
hist.Fill(viewPt(i));

}

auto model = RNTupleModel::Create();
auto fldPt = model->MakeField<float>("pt");
// Note: there is also a void* based,
// runtime type-safe API

auto ntpl = RNTupleReader::Open(
std::move(model), "Events", "f.root");

for (auto entryId : *ntpl) {
ntuple->LoadEntry(entryId);
hist.Fill(*fldPt);

}

Figure 3. RNTuple interface sketch for reading data. Left-hand side: zero-copy interface where the
memory pointed to by views is managed by RNTuple. Right-hand side: interface that copies values into
generated or user-provided memory locations.

The RNTuple classes are thread-friendly, i. e. multiple threads can safely use their own
copy of RNTuple classes to read the same data concurrently. In the future, we envision
support for multi-threaded writing (one cluster per thread or task) as well as support for
multiple threads reading concurrently from the same range of clusters of an RNTuple. In
single-threaded analyses, available idle cores should be used for decompression. We believe
that these changes will require very little changes to the user-facing API.

Error handling, for instance in case of device faults or malformed input data, is an impor-
tant aspect of I/O interfaces. While it is often difficult to recover gracefully from I/O errors,
the I/O layer should reliably detect errors and produce an error report as close as possible to
the root cause. To this end, RNTuple throws C++ exceptions for I/O errors.

At a later point, we intend to add a limited C API for RNTuple in order to facilitate ROOT
data being transferred to 3rd party consumers, such as numpy arrays or machine learning
toolkits. To this end, most of RNTuple is implemented not to depend on core ROOT classes,



Table 1. Sample analyses for performance evaluation. Main differences are the data model (flat or
with collections) and the number of required branches (dense or sparse reading).

LHCb run 1 open data B2HHH H1 micro dst [×10] CMS nanoAOD June 2019
18/26 branches (>75 %) 16/152 branches (∼10 %) 6/1479 branches (<1 %)
fully flat data model event sub collections event sub collections
8.5 million events 2.8 million events 1.6 million events
24 k selected events 75 k selected events 141 k selected events

Table 2. Overview of the benchmarking hardware.

Hardware Machine 1 Machine 2
CPU Xeon Platinum 8260 @ 2.4 GHz Xeon E5-2630v3 @ 2.4 GHz
Memory DDR4 RDIMM 2933 MHz DDR4 RDIMM 2133 MHz
Optane (NVRAM) Optane DC 2666 MHz (ext4/DAX) —
SSD (flash) Intel DC P4510, PCIe 3.1 ×4 —
HDD (spinning) — 2× SAS 7200 RPM (RAID1)
Network — 1 GbE

such that a minimal, stand-alone RNTuple I/O library can be built. The functionality of this
library will initially be limited to reading simple numerical type fields and vectors thereof.

4 Performance evaluation

In this section, we analyze the RNTuple performance in terms of read throughput and file size
for typical, single threaded analysis tasks. We use three sample analyses for the benchmarks
(see Table 1). Each analysis requires a subset of the available event properties, uses some
properties to filter events, and calculates an invariant mass from the selected events. The
analyses were implemented using both TTree and RNTuple, each variant optimized for best
performance with hand-written event loops2. Basket/Page sizes and cluster sizes are compa-
rable between TTree and RNTuple files. The “LHCb” sample is derived from an LHCb Open
Data course [5]. The “H1” sample is derived from the ROOT “H1 analysis” tutorial with the
original data cloned ten times. The “CMS” sample is derived from the ROOT “dimuon” tuto-
rial using the 2019 nanoAOD format [6] with simulated data. Two dedicated physical nodes,
“machine 1” and “machine 2” are used for running the benchmarks (see Table 2). Both ma-
chines run CentOS 7 and have ROOT3 compiled with gcc 7.3. A third dedicated node runs
XRootD in version 4.10 and is configured to hold the data on a RAM disk.

4.1 Storage efficiency

Figure 4 shows the file format efficiency for the input data of the sample analysis. As ex-
pected, the TTree and RNTuple efficiency is very similar on the “LHCb” flat data model. For
“H1” and “CMS”, RNTuple shows significantly better efficiency due to the more efficient
storage of collections and boolean values. (Approximately half of the difference in file size
could be eliminated by using TTree’s experimental kGenerateOffsetMap I/O flag.) Space
savings of RNTuple remain even after compression.

2For the implementation, see https://github.com/jblomer/iotools/tree/ntuple-chep-2019
3ROOT branch https://github.com/jblomer/root/tree/ntuple-chep-2019

https://github.com/jblomer/iotools/tree/ntuple-chep-2019
https://github.com/jblomer/root/tree/ntuple-chep-2019
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Figure 4. File size comparison of the sample analysis input data in TTree and RNTuple format with
different compression algorithms.

4.2 Read performance

Figure 5 shows the event throughput for running the sample analyses. When reading from
warm file system buffers, the performance is dominated by deserialization and decompres-
sion. The data deserialization in RNTuple is significantly faster compared to TTree. With
stronger compression algorithms, the performance is more dominated by decompression than
by deserialization. Still, even for LZMA compressed data reading RNTuple data is faster for
the H1 and CMS samples.

When reading with cold file system buffers, as shown in the lower half of Figure 5, the
performance depends not only on the deserialization and decompression speed but also on
the I/O throughput of the device. The additional CPU time spent on strong compression can
be more than compensated by a smaller transfer volume. For RNTuple, there is a sweet spot
for the recent zstd compression algorithm, in particular if taking into account the smaller file
size as compared to zlib and lz4.

Figure 6 compares cold cache read performance for different, frequently used physical
data sources. For the slow devices HDD and 10 GbE, the performance is dominated by the
I/O scheduler, i. e. by TTreeCache resp. RClusterPool. The I/O scheduler linearizes requests,
merges nearby requests, and issues vector reads in order to minimize the overall number of
requests sent to a device and the total transfer volume. In these benchmarks the RNTuple’s
I/O scheduler shows a performance at least as good as the TTreeCache.

4.3 SSD optimizations

In contrast to spinning disks, SSDs are inherently parallel devices that benefit from a large
queue depth so that they can read from multiple flash cells concurrently. Figure 7 shows the
effect of reading with multiple concurrent streams. To this end, we extend the RNTuple I/O
scheduler to read with multiple threads (1 stream/thread). Where the read performance is lim-
ited by I/O and not by decompression and deserialization, increasing the number of streams
can yield another speed improvement of around a factor of 2.5. The gains max out at around
16 streams. The lower gains for uncompressed LHCb and CMS samples are due to a limita-
tion in the current RNTuple implementation that only preloads a single cluster. It therefore
does not provide enough concurrent requests to fill the parallel streams. With implementation
of multi-cluster read-ahead, this limitation is going to be removed. An interesting topic of
future work is investigating automatic ways of the I/O scheduler to adjust to the underlying
physical hardware.
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Figure 5. Read throughput in events per second on machine 1. Upper half shows the results for warm
file system buffers. Lower half shows the results for reading from SSD with a cold cache. See Figure 7
for further improvements for SSDs.

4.4 Optane DC NV-RAM evaluation

Figure 8 shows the performance when reading RNTuple data from Optane DC NV-RAMs.
The performance characteristics of NV-RAMs are in-between RAM and SSDs (here, we
are not exploiting the non-volatility). In the future, they might become a more widespread
additional cache layer or installed as a dedicated performance storage tier, e. g. in analysis
facilities.

The results show no significant difference between reading from warm file system caches
and reading from NV-RAM. As we also do not reach the peak throughput of the NV-RAM
modules, the results suggest a bottleneck in the I/O deserialization or plotting part of the
analysis run. Further optimizations of the RNTuple I/O path are subject of future work.

Due to the fact that the RNTuple on-disk layout matches the in-memory layout, we can
compare reading data explicitly with POSIX read() and implicitly by memory mapping. On
(byte-addressable) NV-RAM and warm file system buffers, both mechanisms yield compa-
rable results. When reading sparsely from SSDs, the RNTuple I/O scheduler optimizations
bring a significant performance gain. Further investigation reveals that the I/O scheduling
that underpins the memory mapping in Linux issues an order of magnitude more requests to
the device than the RNTuple scheduler.

5 Conclusion

In this contribution we presented the design and a first performance evaluation of RNTu-
ple, ROOT’s new experimental event I/O system. The RNTuple I/O system is a backwards-
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incompatible redesign of TTree, based on the many years of experience of the TTree de-
velopment. It is from the ground up designed to work well in concurrent environments and
to optimally support modern storage hardware and systems, such as SSDs, NV-RAM, and
object stores.

Our benchmarks suggest that compared to TTree RNTuple can yield read speed improve-
ments between a factor of 1.5 to 5 in realistic analysis scenarios, while at the same time
reducing data sizes by 10 % to 20 %. We will gradually move the RNTuple code from a pro-
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totype to a ROOT production component. The RNTuple classes are already available in the
ROOT::Experimental::RNTuple namespace if ROOT is compiled with the root7 cmake
option. Tutorials are available to demonstrate the RNTuple functionality. We consider these
developments and the associated future R&D topics essential building blocks for coping with
data rates at the HL-LHC.
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