
Vectorization of random number generation and

reproducibility of concurrent particle transport

simulation

S Y Jun1, P Canal1, J Apostolakis2, A Gheata2, L Moneta2

1Fermi National Accelerator Laboratory†, MS234, P.O. Box 500, Batavia, IL, 60510, USA
2CERN, EP Department, Geneva, Switzerland

E-mail: syjun@fnal.gov, john.apostolakis@cern.ch

Abstract.
Efficient random number generation with high quality statistical properties and exact

reproducibility of Monte Carlo simulations are important requirements in many areas of
computational science. VecRNG is a package providing pseudo-random number generation
(pRNG) in the context of a new library VecMath. This library bundles up several general-
purpose mathematical utilities, data structures, and algorithms having both SIMD and SIMT
(GPUs) support based on VecCore. Several state-of-the-art RNG algorithms are implemented
as kernels supporting parallel generation of random numbers in scalar, vector, and Cuda
workflows. In this report, we will present design considerations, implementation details, and
computing performance of parallel pRNG engines on both CPU and GPU. Reproducibility
of propagating multiple particles in parallel for HEP event simulation is demonstrated, using
GeantV-based examples, for both sequential and fine-grain track-level concurrent simulation
workflows. Strategies for efficient uses of vectorized pRNG and non-overlapping streams of
random number sequences in concurrent computing environments is discussed as well.

1. Introduction
The stochastic nature of many physical systems is often well modeled by Monte Carlo techniques,
which require pseudorandom number generators (pRNGs) with good statistical properties and
generally the ability to create independent sub-sequences. Ever-increasing computing capacity
is being provided by systems with modern multi-core CPU processors and especially by HPC
systems equipped with GPUs or other accelerators. Owing to this, the precision and speed
of a large scale scientific simulation of complex systems have been improved significantly. To
enable these, new types of pRNGs with high statistical quality and a long period have been
recently developed [1, 2, 3]. The recent evolution of hardware architectures towards wider
vector pipelines, GPUs/accelerators and many-threads opens new opportunities for concurrent
simulation models taking advantage of both SIMD and SIMT (GPU). These require pRNGs
suitable for massively parallel and scalable computing [4].

Despite the fact that there are many parallel pRNGs developed for specific hardware
architectures, portable libraries of random number services which can be used across different
architectures and in hybrid computing models are not commonly available. It is pertinent to use
common pRNGs not only for the purpose of validation, but also for the full reproducibility of

FERMILAB-CONF-19-035-CD

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, 
Office of High Energy Physics.



simulation chains across different platforms, discussed in detail in Section 4. In this paper,
we report on design considerations and an initial implementation of a small set of pRNG
algorithms portable for SIMD and SIMT which rely on a common kernel. The reproducibility
of propagating multiple particles in parallel for high energy physics (HEP) event simulation is
also demonstrated.

2. Vectorization of pseudo random number generation
VecRNG is a part of VecMath which is a collection of vectorized math algorithms and utility
functions for HEP applications, based on the VecCore library [5]. It provides parallel pRNGs
implementations for both SIMD and SIMT workflows via architecture-independent common
kernels. In this section, we describe the design and implementation of vectorized algorithms in
the context of VecRNG.

2.1. Choice of Generators
We sought generators that meet strict quality requirements, belonging to families of generators
which have been examined in depth [6], or have evidence from ergodic theory of exceptional
decorrelation properties [3]. All must pass major crush-resistant tests such as DIEHARD [7]
and BigCrush of TestU01 [8]. In addition we took into consideration constraints in size of the
state and performance: 1) a very long period (≥ 2200), obtained from a small state (in memory),
2) fast implementations and repeatability in sequence on the same hardware configuration, 3)
efficient ways of splitting the sequence into long disjoint streams.

For the first phase of implementation, we selected the following representative generators
from major classes of pRNG: MRG32k3a [1], Random123 [2], and MIXMAX [3]. Table 1 shows
key properties of the generators selected for vectorization.

Table 1. The list of generators under VecMath and some of their properties.

Generator class Scalar State Memory Period Stream
MRG32k3a Algorithm-based 6 doubles 48 bytes 2191 264

Threefry(4x32) Cryptographic-based 12 32-bit int 48 bytes 2256 2128

Philox(4x32) Cryptographic-based 10 32-bit int 40 bytes 2192 264

MIXMAX(N=17) Anosov C-system 17 64-bit int 68 bytes 10294 10250

2.2. Design Consideration
VecRNG is designed to support concurrent computing models as well as SIMD and SIMT
(GPU) with common kernels using backends provided by VecCore. The primary purpose of
the use of backends is to provide access to the full performance of vector hardware, while hiding
both hardware-specific details (i.e. width of vector registers) and the complexity of low-level
instruction sets behind abstraction layers. In this way, generic kernels are highly portable across
different hardware architectures or dependencies to external libraries. Today a vector backend
can use either the Vc library [9] or UME::SIMD [10] for explicit SIMD vectorization. The
CUDA and scalar backends share standard types; in addition there are cuda-specific extensions.
Detailed descriptions of VecCore and its backends can be found elsewhere [11, 12].

Another design choice was the exclusive use of static polymorphism, motivated by
performance considerations. Every concrete generator inherits through the CRTP (curiously
recurring template pattern) from the VecRNG base class, which defines mandatory methods
and common interfaces.



Last but not least, the implementation of VecRNG is header only and provides a minimal set
of member methods. This approach allows more flexibility to higher level interfaces for specific
computing applications, but minimizes the overhead compilation time.

2.3. Implementation Details
VecRNG is the base class for the static polymorphism and has only one protected data member
(State t *fState) where State t is defined in each concrete generator and provided through
RNG traits. An example for MRG32k3a is:

template <typename Backend>

struct RNG_traits<MRG32k3a<Backend> > {

struct State { typename Backend::Double_v fCg[MRG::vsize]; };

using State_t = State;

};

The essential components of VecRNG interfaces are Uniform<Backend>() and
Uniform<Backend>(State t& s) which generate the backend type of double precision u.i.i.d
(uniformly independent and identically distributed) in [0,1), and update the internal fState and
the given state s, respectively. The latter shown below is originally introduced for GPU, but
also is useful for reproducibility which will be discussed in the next section.

template <typename Backend>

VECCORE_ATT_HOST_DEVICE

typename Backend::Double_v Uniform(State_t& state) {

return static_cast<DerivedT *>(this)->template Kernel<Backend>(state);

};

Each derived pRNG class is only responsible for implementing the generic Kernel method and
its own auxiliary member functions,

One of associated requirements for each generator in VecRNG is to provide an efficient skip-
ahead algorithm, sn+p = fp(sn) (i.e., advancing a state, sn, by p-sequences where p is the unit
of the stream length or an arbitrary number) in order to assign disjointed multiple streams
for different tasks. For an example, the mandatory method, Initialize(long n), moves the
random state at the beginning of the given nth stream. Each generator supports both scalar and
vector backends with a common kernel. Random123 has an extremely efficient stream assignment
without any additional cost since the key serves as the stream index while MRG32k3a uses
transition matrices (A) which recursively evaluate (As mod m) using the binary decomposition
of s. The vector backend uses N(=SIMD length) consecutive substreams and also supports the
scalar return-type which corresponds to the first lane of the vector return-type.

For SIMT (GPU) applications, multiple independent streams are assigned to threads of all
blocks with Initialize(State t *states, unsigned int n), where n is the multiplication of
the number of blocks times the number of threads per block and state is a pre-allocated array
of State t of which the size is n. Then the state is used for each thread of a block to generate
a random number and update its state using Uniform<Scalar>(state[tid]) where tid is the
thread index in CUDA kernel (i.e, tid = threadIdx.x + blockIdx.x * blockDim.x). This
approach can be also used for applications on the host side which require statistically disjointed
streams for n-parallel tasks.

Besides the Uniform method, some commonly used random variates are also provided.
Implementation details of probability distribution functions are discussed separately [13].

3. Performance
Three important metrics to evaluate performance of pRNGs are speed (CPU), memory
requirement, and the quality of random numbers. As pRNGs selected for this report are already



satisfactory for two latter criteria, we concentrate on the relative performance between different
backends. To have a minimal validation check for quality, the fluctuation of the sum within each

sample is required to meet the condition |
∑N/nv u −N/2| <

√
N/12 where u is the vector of

random numbers and nv is the size of vector lanes for double (e.g., 4 for AVX).
Table 2 shows preliminary performance results of implemented pRNGs on Intel R© Xeon(R)

E5-2620 CPU (12 cores @ 2.00GHz). Performance and quality of the Intel MKL/VSL [14]
random number generation depend on the size of output array (N) - we used N = 32 for this
comparison.

Table 2. Performance of generators implemented in VecRNG on Intel R© Xeon(R) E5-2620 CPU
(Sandy Bridge) is compared to std::rand() and the Intel MKL/VSL library. The time [ms] to
generate N = 107 output doubles was averaged over 200 measurements.

Generator std::rand() MRG32k3a Threefry Philox
Scalar 139.98 ± 0.06 209.25 ± 0.07 129.65 ± 0.06 100.78 ± 0.04

Vector(SSE) 123.58 ± 0.06 123.47 ± 1.19 225.82 ± 0.46
Vector(AVX) 110.97 ± 0.06 82.88 ± 0.15 141.54 ± 0.10

Intel MKL/VSL 145.50 ± 0.06 N/A N/A

The performance of the CUDA backend and the Curand library [15] (cuda 8.0, arch=sm 3.5)
in Table 3 were measured using the kernel configuration with 26 blocks x 192 threads on NVidia
Tesla K20M GPU (2496 CUDA cores @ 0.71GHz). The Word size (W) and round (R) used for
Random123 were W4x32 R20 for Threefry and W4x32 R10 for Philox, respectively.

Philox uses the Advance Randomization System (ARS) which iterates bijection with rounds
of the Feistel function and a couple of XOR operations. Poor vector performance of Philox is
due to a lack of a native vector operation for conversion between 64 and 32 bit (SIMD) integers
which forces it to use scalar operations. Performance of Random123 (Threefry and Philox) on
GPU will be further optimized.

4. Reproducibility of simulation in parallel computing
HEP experiments have a goal for the reproducibility for detector simulation: simulations with
the same initial configuration (primary particles and pRNG choice and seed) must give the same
results. This must hold true even if different choices are made during a run, e.g. using vector
kernels for a set of physics processes of selected tracks. A key practical reason is the need to
reproduce and debug problems which occur during the simulation of a particular event or initial
particle. In addition, the reliability of a simulation which cannot be repeated is more difficult
to assess.

In the Geant Vector Prototype (GeantV) [16], baskets of tracks undergoing the same
interaction are accumulated to enable computations on vectors of track properties. The aim is to

Table 3. Performance of VecRNG generators compared with the NVidia Curand library on
NVidia Kepler K20M GPU (Tesla). The time [ms] to generate N = 107 output doubles was
averaged over 200 measurements.

Generator MRG32k3a Threefry Philox
Cuda backend 2.03 ± 0.03 10.22 ± 0.02 10.17 ± 0.01
NVidia Curand 2.05 ± 0.02 N/A 1.92 ± 0.01



use vectors for the bulk of the computational work. The remaining tail of tracks is treated with
serial (non-vectorized) code, using the same algorithms as the vector code. Multi-threading is
used to gather larger populations of tracks having similar properties and enable (wider) vectors,
targeting better use of vector code and higher performance. Due to the out-of-order execution in
multi-threading, different tracks are collected in baskets in each run. In addition, a different set
of remaining ‘unbasketised’ tracks is run in scalar code in each run, in particular during phases
of basket starvation and the ramping down of the simulation. So a particular algorithm must
obtain the same pRNG output value (variate) for a track, whether it is processed as part of a
vector in a basket of tracks (in ‘vector’ mode) or as a single track using the non-vectorized code
(in ‘scalar’ mode).

To obtain the same results for a track’s physics interactions (or other operations), the same
sequence of output values of a pRNG is needed. This is accomplished by associating a single
state of a pRNG with each track. When a new track is created either as a primary particle
or in an interaction, a deterministically-defined new state of the pRNG must be generated
and associated to it. This idea, called ‘pseudo-random’ trees, was first proposed in the 1980s
in a particle transport application [17]. A first implementation was also created using linear
congruential generators. Applications in other parallel and branching computations have been
proposed since - see the recent review of Schaathun[18] for an overview and an evaluation of
methods proposed. One such method, the pedigree method, for constructing seeds was developed
by Leiserson et al. [19] exploiting deterministic parallel computations written in Cilk. This
method was demonstrated in particle transport simulation [20] using Geant4 [21] as a testbed.

We demonstrate how such splittable/tree pRNGs can be used in practice within the
constraints of a particle transport program which mixes vector and ‘scalar’ (non-vector) code
which can be run in either a multi-threaded or serial implementation. We seek also to measure
the overhead, compared to simulations which do not use these methods, and, as a result, do
not reproduce the same results between runs. We discuss a number of considerations and key
aspects of the implementation.

The approach adopted for GeantV depends on two parts: First, an initial seed for the scalar
mode or a set of seeds for the vector mode are assigned by the run number or other units of
parallel tasks. Second, a unique stream index is determined for each track. The stream index
for the primary track consists of high precision bits set by the event number and low precision
bits by the track index. For the secondary (or daughter) track, the stream index is generated
in a collision resistant way using the current state of the pRNG carried by the (mother) track
that undergoes an interaction.

To enable vector code for physics processes, a vector pRNG must be created in order to
generate the output in each vector lane of the PRNG corresponding to that track. In our
design, this is the role of an instance of a proxy class, which acts as a vector pRNG. The proxy
both provides all the expected outputs in each vector lane (as through from the pRNG of its
track) and advances the state of each track’s pRNG accordingly. Our first implementation of
a proxy class gathers the contents of the scalar pRNGs into an instance of the corresponding
VecRng class (e.g. gathering MRG32k3a<double> into MRG32k3a<Double v>). The proxy instance
is reusable, by explicitly attaching and detaching the set of track pRNG states. We have
tested this capability using a limited set of GeantV physics processes, including in particular
bremsstrahlung, ionisation, and Compton scattering, which undergo a self-contained e− − γ
cascade process. The pRNG used in the tests is ThreeFry from the Random123 package. This
counter based generator was chosen because the stream is easily split into, the size of the state
is moderate (128 bits), and the method of initialization from a seed is trivial.

We compare the number of tracks and steps of a simulation of 1000 events, each comprised
of ten 10 GeV electrons impinging on a 50 layer lead and liquid argon calorimeter. The number
of tracks and steps of scalar (‘non-vector’) and vector configurations, with either 1 or 4 threads



Figure 1. The ratio of the total
number of tracks (steps) of the default
(non-reproducible) mode normalized to the
reproducible configuration of which the total
number of tracks (steps) is No.

Figure 2. The overhead of the reproducibil-
ity in simulation (CPU) time for the strat-
egy using gathering scalar states to a vector
state for different configurations and split-
ting states visa versa.

each has been compared.
The simulation is run in two modes: the default mode in which a per-thread state of one

serial pRNG and one vector pRNG are used in each thread, and the ‘reproducible’ mode in
which our method is used. Using the values for the ‘reproducible’ mode run with 1 thread as
baseline (Seq-1T), the ratios of the number of tracks and steps can be seen in Figure 1.

It is verified that the reproducible mode maintains the constant number of tracks and steps
for all tested configurations, as required. In addition, those numbers are different from the
single threaded mode for each of the 1-thread (Seq-1T) and vector 1-thread (Vec-1T) modes by
0.2− 0.6%. In the multi-threaded mode, the number of tracks and steps fluctuates, as expected
with averages (and variances) within one sigma of the values of the reproducible mode.

Reproducibility introduces an overhead in simulation time due to copying and assigning
pRNG states during simulation workflows, gathering scalar states to a SIMD vector state or
joining-splitting states for the proxy approach, and synchronizing the index of states in output
(Random123 specific). Figure 2 shows an example of the CPU overhead as the fraction of
Time(Reproducibility)/Time(Default Mode) using gathering scalar PRNG states to a vector
state and splitting states visa versa. Another approach using the join-split method shows a
similar (2-5%) performance degradation for the reproducibility mode.

Alternative proxy implementations are under development, including one that avoids the cost
of copying the data. This is of most interest for the cases in which the average number of variates
required is small and/or the PRNG state is large.

5. Conclusion
We implemented common kernels of pseudorandom number generation for SIMD and SIMT
architecture using VecCore. We also demonstrated reproducibility of propagating multiple
particles in parallel for HEP event simulation with concurrent workflows.



Acknowledgments
† Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the United States Department of Energy.

References
[1] P. L’Ecuyer, R. Simard, E.J. Chen, W.D. Kelton, An object-oriented random number package with many long

streams and substreams, Operations Research 50 (2002) 1073-1075
[2] J.K. Salmon, M.A. Moraes, R.O. Dror, D.E. Shaw, Parallel random numbers: as easy as 1, 2, 3, International

Conference for High Performance Computing, Networking, Storage and Analysis, ACM (2011) pp. 16:1-
16:12

[3] K. Savvidy and G. Savvidy, MIXMAX Random Number Generator, arXiv:1510.06274v3 (2011), K. Savvidy
2015, The MIXMAX random number generator, Comp. Phys. Comm. , 196, 161 and arXiv:1403.5355v2
(2014).

[4] P. L’Ecuyer, D. Munger, B. Oreshkin, R. Simard, “Random numbers for parallel computers: Requirement
and methods, with emphasis on GPUs”, Math. and Computers in Simulation 135 3-17 (2017).

[5] Amadio G et al 2018 J. Phys.: Conf. Ser. 1085 032034
[6] P. L’Ecuyer “Combined Multiple Recursive Random Number Generators”, Op. Research 44, 816
[7] G. Marsaglia, DIEHARD: A batter of tests of randomness (1996) http://stat.fsu.edu/ geo/diehard.html

[8] P. L’Ecuyer, R. Simard, TestU01: A C Library for Empirical Testing of Random Number Generators ACM
Transaction on Mathematical Software, Vol. 33, No.4, Article 22 (2007)

[9] Kretz M and Lindenstruth V 2011 Vc: A C++ library for explicit vectorization Software: Practice and
Experience. Online at http://dx.doi.org/10.1002/spe.1149

[10] UME::SIMD A library for explicit simd vectorization. Online at https://github.com/edanor/umesimd

[11] Wenzel S 2014 Towards a high performance geometry library for particle-detector simulation 16th
International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT)

[12] de Fine Licht J 2014 First experience with portable high-performance geometry code on GPU GPU
Computing in High Energy Physics 2014

[13] Amaro O et al. 2019 Vectorization techniques for probability distribution function using VecCore, the 19th

ACAT conference
[14] Intel MKL/VSL library, Intel Parallel Studio 2016
[15] NVIDIA Curand library, http://docs.nvidia.com/cuda/pdf/CURAND Library.pdf
[16] Amadio G et al. 2015 J. Phys.: Conf. Ser.664 072006
[17] Halton J H 1989 Pseudo-random trees: Multiple independent sequence generators for parallel and branching

computations”, J. of Comp. Physics 84 1.
[18] Schaathun, H G 2015 Evaluation of Splittable Pseudo-Random Generators. J. of Functional Programming

25, e6.
[19] Leiserson C E 2012 et al. Deterministic Parallel Random-number Generation for Dynamic-multithreading

Platforms, SIGPLAN Not., 47, 193.
[20] Savin D, Using Pseudo-Random Numbers Repeatably in a Fine-Grain Multithreaded Simulation

https://sd57.github.io/g4dprng/gsocPreprint.html
[21] Allison J et al. 2016 Recent developments in Geant4 Nucl. Instrum. Methods Phys. Res. A 835 186-225
[22] Ahn S et al. 2014 Geant4-MT: bringing multi-threading into Geant4 production Joint International

Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013) 04213


