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Abstract

A search for anomalous production of events with three or more isolated leptons in
pp collisions at

√
s = 7 TeV is presented. The data, corresponding to an integrated

luminosity of 4.98 fb−1, were collected by the CMS experiment at the LHC during the
2011 run. The search is applicable to any model of new physics that enhances multiple
lepton production. The observed multilepton events are categorized into exclusive
search channels based on the identity and kinematics of the objects in the events.
An estimate of the standard-model background rates from data is emphasized, but
simulation is also used to estimate some of the background rates. The search results
are interpreted in the context of supersymmetry, including both R-parity-conserving
and R-parity-violating models. We derive exclusion limits as a function of squark,
gluino, and chargino masses.
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1 Introduction
Events with three or more prompt leptons are rarely produced by standard-model (SM) pro-
cesses in proton-proton collisions. It is therefore possible that physics processes beyond the
standard model (BSM) at the LHC may first be observed in multilepton final states. In this ar-
ticle, we describe a search for anomalous production of multilepton events based on data col-
lected with the Compact Muon Solenoid (CMS) experiment at the LHC. The analysis described
here is similar in structure to the search described in Reference [1], but uses a substantially
larger integrated luminosity of 4.98 fb−1 [2].

Although this search is not tailored to any particular model, it is well-suited for constraining
models that enhance multilepton production. Certain scenarios in supersymmetry (SUSY) sat-
isfy this requirement. Supersymmetry is a well-known candidate for a BSM theory that solves
the hierarchy problem, allows for the unification of the gauge couplings, and may provide a
candidate particle to solve the dark matter problem [3–8].

In SUSY, R-parity is defined as Rp = (−1)3B+L+2s, where B and L are the baryon and lepton
numbers and s is the particle spin [9]. All SM particles have Rp = +1 while all superpartners
have Rp = −1. In models where R-parity is conserved, superpartners can only be produced
in pairs, and the lightest supersymmetric particle (LSP) is stable and a candidate dark matter
particle. In addition, R-parity conservation ensures proton stability. We study scenarios with
either the neutralino or the gravitino as the LSP. We also compare models in which the LSP is
stable to R-parity violating (RPV) cases in which the LSP decays to SM particles.

If the gravitino is the LSP, one of the sleptons, a lepton superpartner, can be the next-to-lightest
supersymmetric particle (NLSP). Scenarios of this type arise in a wide class of theories of gauge-
mediated supersymmetry breaking (GMSB) [10–12]. Multilepton final states arise naturally in
the subset of the GMSB parameter space where the right-handed sleptons are flavor degenerate,
the so-called “slepton co-NLSP scenario” [11–14].

In R-parity conserving models, the stable, weakly-interacting LSPs appear to produce momen-
tum imbalance, which is measured using Emiss

T , the net transverse energy (ET) carried away by
undetected particles. In addition, the decays of massive squarks and gluinos lead to large total
jet momentum, which is measured using HT, the scalar sum of the pT of all reconstructed jets.
These features make HT and Emiss

T good observables for discriminating R-parity conserving
models from the SM.

In contrast, the lack of a stable LSP in RPV models makes Emiss
T a poor discriminator, which

motivates a second type of analysis using ST, which we define as the scalar sum of Emiss
T , HT,

and the pT of all isolated leptons. The value of ST reflects the sum of the parent particle masses if
most of the energy is reconstructed as leptons, jets, or Emiss

T . Therefore, signal events generated
by new heavy particles are expected to have much larger values of ST than SM backgrounds.

To have sensitivity to both types of models, we apply two separate sets of selections to the
data. The first classifies the data into two regions of HT, HT < 200 GeV and HT > 200 GeV,
and two regions of Emiss

T , Emiss
T < 50 GeV and Emiss

T > 50 GeV. The second classifies events
into three regions of ST: low (ST < 300 GeV), medium (300 GeV < ST < 600 GeV), and high
(ST > 600 GeV).

In both cases, we further categorize events with either three or four isolated leptons (electrons,
muons, or taus) based on the number of opposite-sign same-flavor (OSSF) electron or muon
pairs and whether the event contains an OSSF pair with its invariant mass in the Z mass region,
between 75 and 105 GeV [1].



2 3 Object Selection

2 Detector and Event Trigger
The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diam-
eter, providing a field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a
crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter. Muons
are measured in gas-ionization detectors embedded in the steel return yoke. Extensive forward
calorimetry complements the coverage provided by the barrel and endcap detectors. A more
detailed description can be found in Ref. [15]. Data from pp interactions must satisfy the re-
quirements of a two-level trigger system. The first level performs a fast selection for physics
objects (jets, muons, electrons, and photons) above certain thresholds. The second level per-
forms a full event reconstruction.

CMS uses a right-handed coordinate system, with the origin at the nominal interaction point,
the x-axis pointing to the centre of the LHC, the y-axis pointing up (perpendicular to the LHC
plane), and the z-axis along the counterclockwise-beam direction. The polar angle, θ, is mea-
sured from the positive z-axis and the azimuthal angle, φ, is measured in the x-y plane. The
pseudorapidity, η, is a transformation of the polar angle defined by η = − ln(tan(θ/2)).

Data for this search are collected with single-electron, double-electron, single-muon, and double-
muon triggers, as well as an electron-muon (e-µ) trigger. We use jet triggers, which are based
on the summed jet pT in the event, for ancillary purposes in this analysis. The thresholds on the
triggers varied over the course of 2011 to cope with the increasing instantaneous luminosity of
the LHC. To establish uniformity across the sample, we apply an offline threshold correspond-
ing to the most stringent used during the run.

To ensure that the trigger efficiency is high and stable for our selected events, we require each
event selected by the dielectron (dimuon) triggers to have at least one electron (muon) with
pT > 20 GeV and another with pT > 10 GeV. In the case of the e-µ trigger, we require the
leading lepton to have pT > 20 GeV and the next-to-leading lepton to have pT > 10 GeV.
Single-lepton-triggered events are required to have either a muon with pT > 35 GeV or an
electron with pT > 85 GeV.

Triggers based on HT are used only for determining electron and muon trigger efficiencies.
We estimate the efficiency of the single-electron (single-muon) triggers by selecting isolated
electrons (muons) in the HT-triggered dataset.

A single electron (muon) above the pT specified threshold has a trigger efficiency of 94.5%±
0.7% (87.0%± 0.5%). Dilepton triggers have an efficiency of 99.0+1.0

−2.0% for dielectrons, 92.6%±
2.5% for dimuons, and 96.9%± 2.0% for the e-µ trigger. The uncertainties in the efficiencies are
largely due to the low number of dilepton events in the HT-triggered datasets.

3 Object Selection
We consider events that contain electrons, muons, and taus. In this analysis, additional leptons
(besides those used to satisfy trigger requirements) are required to have pT ≥ 8 GeV and |η| <
2.1. Details of the reconstruction and identification can be found in Ref. [16] for electrons and
in Ref. [17] for muons.

Electrons are reconstructed as electromagnetic showers in the ECAL that are associated with
a track. Electrons must satisfy ∆φ (where φ is the azimuthal angle) and ∆η requirements for
matching between the shower and the track, and the track must satisfy criteria designed to re-
move photon conversions in the detector material. Muons are required to have matching tracks
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in the tracking and muon detectors and to be consistent with a minimum-ionizing particle in
the calorimeters.

Tau leptons can decay either leptonically (τ`) to electrons or muons, or hadronically (τh). Elec-
trons and muons arising from tau lepton decays are selected as described above. The hadronic
decays yield either a single track (one-prong) or three tracks (three-prong), occasionally with
additional electromagnetic energy from neutral pion decays, and are reconstructed using the
hadron plus strips algorithm [18]. In this analysis, we focus on one-prong τh decays, which
have a much lower background.

To ensure that the electrons, muons, and taus are isolated, track pT and calorimeter-tower ET
values are summed in a cone of ∆R < 0.3 (0.4 for electrons) around the object, where ∆R =√

∆φ2 + ∆η2 is the distance in the η − φ plane. This sum is divided by the object’s pT. The
resulting ratio Irel is required to be less than 0.15, which selects electrons, muons, and one-
prong τh decays without additional neutral pions.

To be sensitive to one-prong τh decays accompanied by neutral pions, we reconstruct neutral
pions within a cone of ∆R < 0.1 around the isolated track and require the invariant mass of
the track and neutral pions to be consistent with that expected from τh decay. We use the CMS
particle-flow (PF) algorithm [19, 20] to identify the neutral pions and to calculate the visible
pT of the τh candidate. A requirement on the isolation is imposed as before; however, since
neutral pions deposit energy near the charged track, the calorimeter tower ET is summed in
a cone of 0.1 < ∆R < 0.3 around the isolated track. In this case, the ratio Irel is the isolation
energy divided by the sum of pT of the track and neutral pions and is required to be less than
0.15. All electrons, muons, isolated tracks, and isolated tracks with neutral pions are required
to point to within 1 cm of the primary vertex and to be separated by at least ∆R > 0.3 from
other particles in the event.

To estimate the efficiencies of the electron and muon identification and isolation requirements,
we use the method described in Ref. [21] for Z→ `+`− events. The simulation models the
efficiencies correctly to within 2% (1%) for electrons (muons). We verify that the simulation
accurately models the efficiencies for isolated tracks and isolated tracks with neutral pions by
comparing the number of Z→ τµτh events in the simulation to the number found in the data.
We measure the ratio of the efficiency in data and simulation for single-prong τh events to be
1.02± 0.04.

Jets are reconstructed with the anti-kT clustering algorithm [22], using a distance parameter of
0.5. The jet reconstruction is based on PF objects. They can include leptons. Jets are required
to have |η| < 2.5 and pT > 40 GeV and to be distant by ∆R > 0.3 from any isolated electron,
muon, or track.

Events with an OSSF pair mass below 12 GeV are rejected to exclude events with J/ψ mesons,
Υ mesons, low-mass Drell–Yan processes, and photon conversions.

4 Background Processes and Systematic Uncertainties
Several SM processes can produce signatures that mimic BSM events with three or more lep-
tons. The largest background remaining after requiring three leptons originates from the pro-
duction of Drell–Yan pairs (including Z boson production) in association with jet activity, in
which the a third, fake lepton is produced from a jet or a photon. The probability for a jet to
produce an isolated-lepton candidate depends on the type of jet, the jet and lepton pT spec-
tra, the number of pile-up interactions (additional proton-proton collisions in the same beam
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crossing), and the number of jets in the event. These factors may be inaccurately modeled in
the simulation; therefore, we estimate the background from jets using dilepton and jet-enriched
data samples as follows.

We measure the number of isolated electron or muon background events to be the product
of the number of isolated (K± or π±) tracks in the dilepton sample and two fractions. The
two fractions are: i) the number of nonisolated leptons divided by the number of nonisolated
tracks in the dilepton sample, and ii) the “isolation efficiency ratio” which is the ratio of the
probability for a lepton originating from a jet to pass the lepton isolation requirement to the
probability for a track candidate to do so.

A complication worthy of note is the dependence of the isolation efficiency ratio on the rel-
ative abundance of charm and bottom quarks, which differs between the QCD and dilepton
samples. Therefore, we parametrize the efficiency ratio as a function of the impact parame-
ter distribution of non-isolated tracks for various QCD samples and then choose the efficiency
ratio value that corresponds to the measured impact parameter distribution of the dilepton
sample. We measure the ratio of the number of isolated leptons to isolated tracks from jets in
dilepton data , i.e., the product of ratios (i) and (ii) above, to be 1.34%± 0.35% (1.45%± 0.15%)
for electrons (muons). (Contributions from dileptonic decays of tt are subtracted throughout.)
The dominant source of systematic uncertainty in the ratio measurements is the difference in
jet properties of the dilepton and jet-dominated QCD samples.

To understand the backgrounds in channels with τh, we extrapolate the isolation sideband
0.2 < Irel < 0.5 to the signal region Irel < 0.15. The ratio of the number of isolated tracks in the
two regions is 15%± 3%. We study the variation of this ratio for a number of jet-dominated
samples and assign a 30% systematic uncertainty to account for the differences measured be-
tween the samples and for the variation in the results from using different functional forms to
parameterize the distribution. We use the ratio to calculate the contribution of jets mimicking
taus in the three- and four-lepton samples by applying it to the number of two-lepton events
with tracks.

Some SM background contributions cannot be estimated using data-driven techniques. We per-
form a detailed simulation of Z/γ∗ + jets, tt quark pairs, double-vector boson production (VV),
ttV + jets, and WWW + jets using the MADGRAPH [23] event generator, and of multijet events
described by quantum chromodynamics (QCD) using the PYTHIA 8.1 generator [24]. We use
CTEQ6.6 parton distribution functions (PDF) [25]. Next-to-leading order (NLO) cross sections
are determined using MADGRAPH [26]. The detector response is modeled with GEANT4 [27].

We find the simulation to be adequate for estimating backgrounds from ZZ→ 4`, W±Z→ 3`,
and tt+jets→ 2`. To demonstrate the adequacy of the tt simulation, we compare data and sim-
ulation for distributions relevant to this process. An example is the ST distribution for two
control datasets: a dataset with an isolated muon and a jet originating from a bottom quark,
and a dataset with an isolated muon and an opposite-sign, isolated electron. These datasets
are dominated by tt events for large ST. A good agreement between data and simulation is
observed (Fig. 1). The uncertainty on the tt background estimate of 50% contributes a large
systematic uncertainty in channels where this process is prominent. The size of this uncer-
tainty is governed by the limited number of events in the top-enriched control sample used to
measure the isolation distribution of muons and electrons from b jets in data.

There are two different types of photon conversions that give rise to backgrounds in multilep-
ton analyses. The first type is an external conversion in which a real photon produced in the
collision interacts with detector material and produces a `+`− pair (usually an e+e− pair and
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Figure 1: Comparison of ST distributions from data and simulation for two datasets dominated
by tt: a single-muon with a b-jet sample (left) and an opposite-sign electron-muon sample
(right).

very rarely a µ+µ− pair). The electron identification requirements strongly suppress external
conversions. The second type of conversion is an internal photon conversion, where the pho-
ton is virtual and does not interact with the detector. Internal photon conversions can produce
muons almost as often as electrons and can occur in any process that produces photons. If one
of the leptons takes most of the photon energy while its partner is very low pT and not mea-
sured, the process is called an asymmetric conversion. When coupled with additional lepton
production, this process can be a significant source of background.

Internal conversions may not be properly described in the simulation because of low-energy
cutoffs for emitted leptons in the generator; instead, we use data to estimate this background.
We assume that the rate for SM processes to produce real photons is proportional to the rate
for producing virtual photons that yield asymmetric conversions. This assumption is justified
in the leading-logarithm approximation because the virtual photon mass spectrum is strongly
peaked in the low mass region, which means virtual photons have kinematics that are very
similar to real photons. The conversion rate for producing a signal lepton via radiation is
the ratio of the probability for a photon to produce a valid lepton candidate via asymmetric
conversion to the probability for a real photon to pass all of the selection criteria.

For this analysis, the most important source of photon-conversion background involves Z
bosons decaying to leptons, and an asymmetric internal conversion of a γ∗ from one of the
leptons. The radiation of the γ∗ (virtual photon) moves the mass of the dileptons outside of the
Z mass window and through asymmetric conversion the γ∗ is reconstructed as an additional
lepton in the event. We select clean examples of events with final-state radiation by examining
three-body masses near the Z peak in channels with both electrons and muons (Fig. 2).

The ratio of the number of `+`−`± to `+`−γ (real photon) events on the Z peak gives a conver-
sion factor for muons (Cµ) of 0.32%± 0.08%± 0.32% and for electrons (Ce) of (1.45%± 0.14%±
1.45%), where the first uncertainty is statistical and the second is systematic. We assign a sys-
tematic uncertainty of 100% to these conversion factors from our underlying assumption that
the number of isolated photons is proportional to the number of leptons from asymmetric in-
ternal and external conversions because there are insufficient data in control regions to probe
this assumption. We use these conversion factors to estimate the background coming from
asymmetric conversions.

We assign a systematic uncertainty of 2.2% to the luminosity measurement [2], which is corre-
lated among all signal channels and the background estimates that are scaled from simulations.
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Figure 2: Invariant mass distributions of 3µ (left) and µµe (right) events showing clear Z peaks
caused by the asymmetric-conversion background.

Uncertainties on lepton-identification and trigger efficiencies also contribute to the systematic
uncertainty of the result.

5 Results
We present the number of observed events and the expectation from SM processes in the HT
and Emiss

T regions listed in Table 1, and in the ST regions listed in Table 2. The rows are la-
belled by the total number of isolated leptons in the event, the number and mass of OSSF pairs,
and the kinematic conditions; the columns indicate how many of those leptons are τh leptons.
Reflecting the difficulty of τh reconstruction, the background increases with the number of τh
leptons. We do not form OSSF pairs with τh leptons.

In the three-lepton, no-Z channels with low-HT and low-Emiss
T in Table 1 or with low-ST in

Table 2, we reject events that have a three-body mass consistent with a Z, which lowers the
impact of asymmetric conversions. Because the low-HT/low-Emiss

T bin is not identical to the
low-ST bin, the two tables have slightly different numbers of events.

The two-τh selection in Table 1 is chosen to be consistent with Ref. [1], in which the two recon-
structed τhs either both have, or both do not have, an associated π0. Improved understanding
of τh reconstruction has allowed us to expand the two-τh selection in Table 2 to include events
where one reconstructed τh has an associated π0 and one does not. This modification provides
improved sensitivity in the two-τh channels.

Tables 1 and 2 illustrate a key feature of this analysis: the division into exclusive channels, some
with large SM expectations and some in which they are negligible. Any specific BSM scenario
may produce events in a subset of channels, but not in the rest. The former constitutes the
“signal” region for that particular model, while the latter comprises the “control” region. The
sensitivity of this analysis to a given model depends on the size of the contribution to channels
with low SM expectations. Figure 3 shows a representative distribution for each table, for the
three-lepton, no-Z signature with zero τhs.

We observe one four-lepton event in the zero-τh, no-Z, high-Emiss
T , low-HT bin in Table 1 and in

the high-ST bin in Table 2. The SM expectation for such an event is much lower than one for our
dataset. We find that the dominant SM contribution to the bin is from ZZ production, where
one of the Z bosons is virtual. The background estimate is obtained with MADGRAPH [26],
and an uncertainty of 40% is assigned based on differences in the estimate with MCFM [28].
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Table 1: Number of observed events summed over electron and muon flavors compared with
expectations from simulated and data-driven backgrounds. The labels in the first column refer
to whether or not there are OSSF (no-OSSF) pairs, whether Z → `+`− is excluded (no-Z), and
the HT and Emiss

T requirements, which are given in GeV. Labels along the top of the table give
the number of τh candidates, 0, 1, or 2. All channels are mutually exclusive. The uncertainties
on the expected values include both statistical and systematic uncertainties.

Selection N(τh)=0 N(τh)=1 N(τh)=2
obs expected obs expected obs expected

4 Lepton results
4` Emiss

T >50, HT >200, no Z 0 0.018 ± 0.005 0 0.09 ± 0.06 0 0.7 ± 0.7
4` Emiss

T >50, HT > 200, Z 0 0.22 ± 0.05 0 0.27 ± 0.11 0 0.8 ± 1.2
4` Emiss

T >50, HT <200, no Z 1 0.20 ± 0.07 3 0.59 ± 0.17 1 1.5 ± 0.6
4` Emiss

T >50, HT <200, Z 1 0.79 ± 0.21 4 2.3 ± 0.7 0 1.1 ± 0.7
4` Emiss

T <50, HT >200, no Z 0 0.006 ± 0.001 0 0.14 ± 0.08 0 0.25 ± 0.07
4` Emiss

T <50, HT >200, Z 1 0.83 ± 0.33 0 0.55 ± 0.21 0 1.14 ± 0.42
4` Emiss

T <50, HT <200, no Z 1 2.6 ± 1.1 5 3.9 ± 1.2 17 10.6 ± 3.2
4` Emiss

T <50, HT <200, Z 33 37 ± 15 20 17.0 ± 5.2 62 43 ± 16
3 Lepton results

3` Emiss
T >50, HT >200, no-OSSF 2 1.5 ± 0.5 33 30.4 ± 9.7 15 13.5 ± 2.6

3` Emiss
T >50, HT <200, no-OSSF 7 6.6 ± 2.3 159 143 ± 37 82 106 ± 16

3` Emiss
T <50, HT >200, no-OSSF 1 1.2 ± 0.7 16 16.9 ± 4.5 18 31.9 ± 4.8

3` Emiss
T <50, HT <200, no-OSSF 14 11.7 ± 3.6 446 356 ± 55 1006 1026 ± 171

3` Emiss
T >50, HT >200, no Z 8 5.0 ± 1.3 16 31.7 ± 9.6 – –

3` Emiss
T >50, HT >200, Z 20 18.9 ± 6.4 13 24.4 ± 5.1 – –

3` Emiss
T >50, HT <200, no Z 30 27.0 ± 7.6 114 107 ± 27 – –

3` Emiss
T >50, HT <200, Z 141 134 ± 50 107 114 ± 16 – –

3` Emiss
T <50, HT >200, no Z 11 4.5 ± 1.5 45 51.9 ± 6.2 – –

3` Emiss
T <50, HT >200, Z 15 19.2 ± 4.8 166 244 ± 24 – –

3` Emiss
T <50, HT <200, no Z 123 144 ± 36 3721 2907 ± 412 – –

3` Emiss
T <50, HT <200, Z 657 764 ± 183 17857 15519 ± 2421 – –

Total 4` 37 42 ± 15 32.0 24.9 ± 5.4 80 59 ± 16
Total 3` 1029 1138 ± 193 22693 19545 ± 2457 1121 1177 ± 172

Total 1066 1180 ± 194 22725 19570 ± 2457 1201 1236 ± 173
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Table 2: Number of observed events summed over electron and muon flavors compared with
expectations from simulated and data-driven backgrounds. The labels in the first column refer
to how many OSSF pairs there are (OSSF-#), whether Z → `+`− is excluded (no-Z), and the
ST binning. ST ranges in GeV are Low (ST < 300 GeV), Mid (300 GeV < ST < 600 GeV), and
High (ST > 600 GeV). Labels along the top of the table give the number of τh candidates, 0,
1, or 2. All channels are mutually exclusive. The uncertainties on the expected values include
both statistical and systematic uncertainties.

Selection N(τh)=0 N(τh)=1 N(τh)=2
obs expected obs expected obs expected

4 Lepton results
4` (OSSF-0) ST(High) 0 0.0010 ± 0.0009 0 0.01 ± 0.09 0 0.18 ± 0.07
4` (OSSF-0) ST(Mid) 0 0.004 ± 0.002 0 0.28 ± 0.10 2 2.5 ± 1.2
4` (OSSF-0) ST(Low) 0 0.04 ± 0.02 0 2.98 ± 0.48 4 3.5 ± 1.1

4` (OSSF-1, no Z) ST(High) 1 0.009 ± 0.004 0 0.10 ± 0.07 0 0.12 ± 0.05
4` (OSSF-1, Z) ST(High) 1 0.09 ± 0.01 0 0.51 ± 0.15 0 0.43 ± 0.15

4` (OSSF-1, no Z) ST(Mid) 0 0.07 ± 0.02 1 0.88 ± 0.26 1 0.94 ± 0.29
4` (OSSF-1, Z) ST(Mid) 0 0.45 ± 0.11 5 4.1 ± 1.2 3 3.4 ± 0.9

4` (OSSF-1, no Z) ST(Low) 0 0.09 ± 0.04 7 5.5 ± 2.2 19 13.7 ± 6.4
4` (OSSF-1, Z) ST(Low) 2 0.80 ± 0.34 19 17.7 ± 4.9 95 60 ± 31

4` (OSSF-2, no Z) ST(High) 0 0.02 ± 0.01 – – – –
4` (OSSF-2, Z) ST(High) 0 0.89 ± 0.34 – – – –

4` (OSSF-2, no Z) ST(Mid) 0 0.20 ± 0.09 – – – –
4` (OSSF-2, Z) ST(Mid) 3 7.9 ± 3.2 – – – –

4` (OSSF-2, no Z) ST(Low) 1 2.4 ± 1.1 – – – –
4` (OSSF-2, Z) ST(Low) 29 29 ± 12 – – – –

3 Lepton results
3` (OSSF-0) ST(High) 2 1.14 ± 0.43 17 11.2 ± 3.2 20 22.5 ± 6.1
3` (OSSF-0) ST(Mid) 5 7.4 ± 3.0 113 97 ± 31 157 181 ± 24
3` (OSSF-0) ST(Low) 17 13.5 ± 4.1 522 419 ± 63 1631 2018 ± 253

3` (OSSF-1, no Z) ST(High) 6 3.5 ± 0.9 10 13.1 ± 2.3 – –
3` (OSSF-1, Z) ST(High) 17 18.7 ± 6.0 35 39.2 ± 4.8 – –

3` (OSSF-1, no Z) ST(Mid) 32 25.5 ± 6.6 159 141 ± 27 – –
3` (OSSF-1, Z) ST(Mid) 89 102 ± 31 441 463 ± 41 – –

3` (OSSF-1, no Z) ST(Low) 126 150 ± 36 3721 2983 ± 418 – –
3` (OSSF-1, Z) ST(Low) 727 815 ± 192 17631 15758 ± 2452 – –

Total 4` 37 42 ± 13 32.0 32.1 ± 5.5 124 85 ± 32
Total 3` 1021 1137 ± 198 22649 19925 ± 2489 1808 2222 ± 255

Total 1058 1179 ± 198 22681 19957 ± 2489 1932 2307 ± 257
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Figure 3: We show the Emiss
T distribution for the three lepton, no-τh, no-Z, HT < 200 GeV

channel (left) and the ST distribution for the same set of events (right). Comparison between
the observed events (dots) and expected SM background (histograms) is shown. The hashed
bands represent the uncertainty on the SM contribution.

Consistent predictions in low-ST and on-shell control samples of the data are found; however,
there are not enough data to test the SM prediction for off-shell diboson production at high ST.

6 Interpretation
In supersymmetry, multilepton final states arise naturally in the subset of GMSB parameter
space where the right-handed sleptons are essentially flavor-degenerate and at the bottom of
the minimal supersymmetric standard model (MSSM) mass spectrum. Supersymmetric pro-
duction can proceed through pairs of squarks and gluinos (q̃ and g̃). Cascade decays of these
states eventually pass through the lightest neutralino (g̃, q̃ → χ̃0 + X), which decays into a
slepton (˜̀) and a lepton (χ0 → ˜̀±`∓). Each of the right-handed sleptons promptly decays to
the Goldstino component of the almost-massless and non-interacting gravitino and a lepton
(˜̀→ G̃`) thus yielding events with four or more hard leptons and missing transverse energy.
Such scenarios have a large cross section with little background [14].

Models with RPV interactions that violate B or L, but not both, can avoid direct contradic-
tion with the proton-lifetime upper limits [29]. A common specification of the superpotential
includes three RPV terms, parametrized by the Yukawa couplings λijk, λ′ijk or λ′′ijk [30], respec-
tively,

WRPV =
1
2

λijkLiLjEk + λ′ijkLiQjDk +
1
2

λ′′ijkUiDjDk,

where i, j, and k are generation indices; L and Q are the lepton and quark SU(2)L doublet su-
perfields; and E, D, and U are the charged lepton, down-like quark, and up-like quark SU(2)L
singlet superfields, respectively. The third term violates baryon-number conservation, while
the first and second terms are lepton-number violating. In this analysis, we consider leptonic R-
parity-violating (L-RPV) models with λijk 6= 0 and λ′ijk = λ′′ijk = 0, as well as hadronic R-parity-
violating (H-RPV) models with λijk = λ′ijk = 0 and λ′′ijk 6= 0. We consider squark and gluino
production with leptons coming either from the decay of a neutralino through leptonic RPV
(L-RPV) couplings, or from cascade decays to a neutralino that decays through hadronic RPV
couplings (H-RPV). The value of λijk determines the lifetime and therefore the decay length of
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the intermediate particle. Values of λijk and λ′′ijk considered in this analysis, 0.05, correspond to
decay lengths less than 100 µm, which is chosen so that most decays will be prompt.

The files specifying the signal-model parameters are generated according to the SUSY Les
Houches accord (SLHA) standards with the ISAJET program [31, 32]. The SLHA output files
are input to PYTHIA for event generation using the CTEQ6.6 PDFs. The generated events then
undergo detector simulation in the CMS fast simulation framework [33]. The cross sections are
calculated in PYTHIA to leading order with NLO corrections calculated using PROSPINO [34].

Simulation for the co-NLSP scenario is generated on a grid in the chargino-gluino mass plane.
The other super partner masses are related to these by m˜̀R

= 0.3mχ± , mχ̃0
1
= 0.5mχ± , m˜̀L

=

0.8mχ± , and mq̃ = 0.8mg̃. Flavor universality and vanishing left-right mixing for squarks and
sleptons are enforced. Simulations for three separate L-RPV models and the H-RPV model,
described below, are generated on a grid in the squark–gluino mass plane. To determine the
sensitivity for various signal-model scenarios, we perform a simultaneous fit across all of the
exclusive channels listed in either Table 1 or in Table 2 to compute the likelihood of observing
a signal.

We present the observed limits, the median expected limits, and the 1- and 2-standard deviation
bands at each point in the mass planes of the models of interest, which are calculated using
the “LHC style” [35] CLs [36] prescription. The inputs to the limit calculation include the
number of observed events and background estimates as listed in Tables 1 and 2, and signal
estimates obtained for the model point. The systematic and statistical uncertainties on the
signal and background estimates are treated as nuisance parameters in the limit calculations,
with appropriate correlations taken into account. We estimate the effect of uncertainties from
the PDFs as 14% and from scale uncertainty as 10% on the signal strengths.

We interpret the HT/Emiss
T binning (Table 1) in the co-NLSP model. The 95% confidence level

(CL) exclusion limits for the slepton co-NLSP model are shown in the chargino-gluino mass
plane in Fig. 4. The exclusion curve approaches a horizontal asymptote in regions dominated
by strong superpartner production, and the vertical one in regions dominated by weak super-
partner production. With strong superpartners decoupled, the production is dominated by
wino chargino-neutralino and chargino-chargino production.

The ST binning from Table 2 is interpreted in the context of R-parity violating models. In Fig. 5,
we show the 95% CL exclusion-limit contours for λeµτ and H-RPV coupling λ′′uds in the squark-
gluino mass space, along with the expected limits in the absence of signal.

In the specific slepton co-NLSP L-RPV SUSY topology described in Ref. [1] and references
therein, the bino is the lightest superpartner with a fixed mass of 300 GeV. The gluino and
degenerate squark masses, mg̃ and mq̃, are variable and define the parameter space for our
search. All other superpartners are decoupled, holding the bino RPV decay width fixed.

The superpartner spectrum for the H-RPV SUSY topology used here consists of a wino, right-
handed sleptons, and bino, with fixed masses of 150, 300, and 500 GeV, respectively, and
varying gluino and right-handed squark masses larger than 500 GeV. The left-handed squark
masses and higgsino mass parameter are fixed at 5000 and 3000 GeV, respectively. Flavor uni-
versality and vanishing left-right mixing for squarks and sleptons are enforced.

In this topology, the right-handed squarks decay to the bino and the gluino decays predomi-
nantly to the bino except for relatively small values of the gluino–bino mass splitting. The bino
decays to a right-handed slepton, which in turn decays to the wino neutralino. Starting from
strongly-interacting superpartner pair production, all cascade decays that produce the bino
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therefore yield either four leptons, of which zero, two, or four can be taus. The wino lightest
superpartner decays to three jets through hadronic R-parity violating couplings. This topology
yields events with jets and multiple charged leptons, with no particles emitted directly from
the supersymmetric cascade that carry missing energy.

In the H-RPV case, gluino masses below 500 GeV are not excluded even though the production
cross section in this region can be large. This is due to the low gluino branching fraction to
the bino and subsequently to leptons. The non-zero coupling is λ′′uds in our H-RPV model.
We apply our search findings to RPV models in which either λeµµ, λeµτ, or λµττ couplings are
non-zero, though only the λeµτ results are shown here due to space constraints. We choose
λeµτ because it couples democratically to all three types of leptons, although the sensitivity is
typically better for couplings to only electrons and muons.
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7 Conclusions
We have performed a search for physics beyond the standard model by examining a variety of
multilepton final states. By studying many channels with different requirements, we greatly
enhance sensitivity to new physics. We see good agreement between observations and expec-
tations in all exclusive channels, both in channels with and without Z-boson decays.

Taking advantage of the 7 TeV center-of-mass energy at the LHC, we are able to probe new
regions of the MSSM parameter space. Our search complements those at the Tevatron [37–39],
which are mostly sensitive to electroweak gaugino production via quark-antiquark interac-
tions [1]. The results presented here are mostly sensitive to gluino and squark production via
quark-gluon or gluon-gluon interactions. Finding consistency with SM expectations, we use
these results to exclude regions of slepton co-NLSP scenarios with gravitinos as the LSP as
described above.

We demonstrate the reach and versatility of the search by applying the results to the case of
RPV decays of SUSY particles in multilepton events. We are able to exclude squark and gluino
masses in the 1 TeV range for models with a neutralino LSP that decays through a L-RPV cou-
pling λeµτ that is greater than 0.05. Similarly, we are able to exclude regions of a model with
leptons emitted in cascade decays without missing energy and a neutralino LSP that decays
through the H-RPV coupling λ′′uds > 0.05.
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