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Abstract

A search for a new heavy gauge boson W
′

decaying to an electron or muon, plus a
low mass neutrino, is presented. This study uses data corresponding to an integrated
luminosity of 5.0 fb−1, collected using the CMS detector in pp collisions at a centre-
of-mass energy of 7 TeV at the LHC. Events containing a single electron or muon and
missing transverse momentum are analyzed. No significant excess of events above
the standard model expectation is found in the transverse mass distribution of the
lepton-neutrino system, and upper limits for cross sections above different transverse
mass thresholds are presented. Mass exclusion limits at 95% CL for a range of W

′

models are determined, including a limit of 2.5 TeV for right-handed W
′

bosons with
standard-model-like couplings and limits of 2.43–2.63 TeV for left-handed W

′
bosons,

taking into account their interference with the standard model W boson. Exclusion
limits have also been set on Kaluza–Klein WKK states in the framework of split uni-
versal extra dimensions.
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1 Introduction
This Letter describes a search for a new heavy gauge boson W

′
, using proton-proton collision

data collected during 2011 using the Compact Muon Solenoid (CMS) detector [1] at the Large
Hadron Collider (LHC) at a centre-of-mass energy of 7 TeV. The dataset corresponds to an inte-
grated luminosity of 5.0± 0.1 fb−1 [2]. The search attempts to identify an excess of events with
a charged lepton (an electron or muon) and a neutrino in the final state, and an interpretation
of the results is provided in the context of several theoretical models.

2 Physics models
New heavy gauge bosons such as the W

′
and Z′ are predicted by various extensions of the

standard model (SM). In the sequential standard model (SSM) [3], the W
′

boson is considered
to be a left-handed heavy analogue of the W. It is assumed to be a narrow s-channel resonance
with decay modes and branching fractions similar to those of the W, with the addition of the tb
channel that becomes relevant for W

′
masses above 180 GeV. Interference between the W

′
and

W is assumed to be negligible. If the W
′

is heavy enough to decay to top and bottom quarks,
the predicted branching fraction is about 8.5% for each of the two leptonic channels studied in
the present analysis. Under these assumptions, the width of a 1 TeV W

′
is about 33 GeV. Decays

of the W
′

into WZ dibosons are usually suppressed in this model.

The assumptions of the SSM were used in previous searches in leptonic channels at the Teva-
tron [4, 5] and the LHC [6–9]. The signature of a charged high-momentum lepton and a neu-
trino would also be observed in the decays of a right-handed W′R, predicted by left-right sym-
metric models [10–13]. This particle is typically predicted to decay to a heavy right-handed
neutrino [14–16].

However, the mass of the right-handed neutrino is not constrained, and it could be light as long
as it does not couple to SM weak bosons. This would result in the same W′R decay signature as
for the W.

If the W
′

is right-handed it will not interfere with the W. However, if it is left-handed (W′L),
interference with the W is expected expected [17–19]. Constructive (destructive) interference
occurs in the mass range between W and W

′
if the coupling of the W

′
boson to quarks and lep-

tons has opposite sign to (same sign as) the coupling of the W boson to left-handed fermions
(gL). While constructive interference increases the W

′
production cross section, and therefore

allows experimental sensitivity at higher masses, destructive interference would yield a lower
cross section, rendering previously published LHC mass exclusion limits [7, 9] slightly opti-
mistic. Interference has previously been considered in searches for the decay to top and bottom
quarks [19, 20], but never for leptonic decays.

Figure 1 shows the transverse mass distribution for a W
′

of 2.5 TeV mass for the cases of con-
structive, destructive and non-interference, along with the background due to the SM W. In
the absence of interference the cross sections and transverse mass spectrum of left- and right-
handed W

′
are identical. The W

′
manifests itself as a Jacobian peak with its width almost in-

dependent of the presence and type of interference. However, the intermediate region around
MT ∼ 1 TeV shows a clear variation of the shape. Destructive interference of a W′L boson with
mass ≥ 2 TeV modulates the W transverse mass tail, resulting in a faster fall-off. The mod-
ulation strength and the resulting effect on the cross section both increase with the W

′
mass

and width. Given sufficient detector resolution, the constructive and destructive interference
scenarios may be distinguishable.
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The leptonic final states under study may also be interpreted in the framework of universal
extra dimensions (UED) with bulk mass fermions, or split-UED [21, 22]. This is a model based
on an extended space-time with an additional compact fifth dimension of radius R. All SM
fermions and gauge bosons have Kaluza–Klein (KK) states, for instance Wn

KK, where n denotes
the n-th KK excitation mode, and

m2
Wn

KK
≡ m2

n = m2
W +

( n
R

)2
, (1)

gn = gSMFn(πµR), (2)

Fn(x) =

0 if n = 2m + 1
x2[−1+(−1)me2x ](coth x−1)√

2(1+δm0)(x2+m2π2/4)
if n = 2m. (3)

Here µ is the bulk mass parameter in five dimensions of the fermion field, with [1/R, µ] defin-
ing the UED parameter space. The coupling of the Wn

KK to SM fermions is denoted gn and
defined as a modification of the SM coupling gSM of the W. The function F2m(x) tends to
approach (−1)m

√
2 as x → ∞. In minimal UED models, the parameter µ is assumed to be

zero [23]. Following [21, 22], we assume a non-zero value for µ, thus increasing the cross sec-
tions sufficiently to allow observation by LHC experiments.

KK-odd modes of Wn
KK do not couple to SM fermions, owing to KK-parity conservation. More-

over, there is no expected sensitivity for n ≥ 4 modes at the LHC centre-of-mass energy and
luminosity used in this analysis. W2

KK is therefore the only mode considered. Under this as-
sumption, the decay to leptons is kinematically identical to the sequential SM-like W

′
decay,

and the observed limits obtained from the W
′ → eν and W

′ → µν searches can directly be
reinterpreted in terms of the Wn

KK mass considering the different widths. The width of a Wn
KK

is F 2
n times the SSM-like W

′
width:

ΓWn
KK

= F 2
n

4
3

mWn
KK

mW
ΓW. (4)

3 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip
tracker, the crystal electromagnetic calorimeter and the brass/scintillator hadron calorimeter.
The electromagnetic calorimeter consists of nearly 76 000 lead tungstate crystals. The energy
resolution for electrons with the very high transverse momentum used in this analysis, which
are predominantly in the central pseudorapidity region, is about 1%. In the forward region
the resolution is about 2%. Muons are measured in gas-ionization detectors embedded in the
steel return yoke. Central and forward regions are instrumented with four muon stations com-
bining high precision tracking detectors (drift tubes in the central region and forward cathode
strip chambers) with resistive plate chambers, which contribute to the trigger as well as the
track measurement. The muon transverse momentum, pµ

T, is determined from the curvature of
its track, measured as it traverses the magnetized return yoke. Each muon track is matched to
a track measured in the silicon tracker, resulting in a muon pT resolution of 1 to 10% for pT of
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Figure 1: MADGRAPH and COMPHEP predictions of the transverse mass distribution for the
SM W background and various W

′
models for m(W

′
)=2.5 TeV. In the absence of interference,

W′R and W′L cross sections are identical. A W′L could experience constructive or destructive
interference with the SM W, yielding the shown modulation of the MT spectrum.

up to 1 TeV. CMS uses a two-level trigger system comprising custom hardware processors and
a High-Level Trigger processor farm. Together, these systems select around 300 Hz of the most
interesting recorded bunch-crossings for permanent storage. A detailed description of CMS
can be found in Ref. [1].

A cylindrical coordinate system about the beam axis is used, in which the polar angle θ is
measured with respect to the counterclockwise beam direction and the azimuthal angle φ is
measured in the xy plane, where the x axis points towards the center of the LHC ring. The
quantity η is the pseudo-rapidity, defined as η = − ln[tan θ/2].

4 Event selection
Candidate events with at least one high-transverse-momentum (pT) lepton were selected us-
ing single-muon and single-electron triggers. The trigger thresholds were raised as the LHC
luminosity increased during the data-taking period, the highest values being pT > 80 GeV for
electrons and pT > 40 GeV for muons. Offline, electrons and muons were required to have pT
at least 5 GeV higher than the online threshold, which does not impair the search in the high
mass region.

Muons were reconstructed by combining tracks from the inner tracker and the outer muon
system. Well-reconstructed muons were selected by requiring at least one pixel hit, hits in
eight tracker layers and segments in two muon stations. Since the segments have multiple
hits and are typically found in different muon detectors separated by thick layers of iron, the
latter requirement significantly reduces the amount of hadronic punch-through. The transverse
impact parameter |d0| of a muon track with respect to the beam spot is required to be less
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than 0.02 cm, in order to reduce the cosmic ray muon background. Furthermore, the muon is
required to be isolated within a ∆R ≡

√
(∆φ)2 + (∆η)2 < 0.3 cone around its direction. Muon

isolation requires that the scalar sum of the transverse momenta of all tracks originating at the
interaction vertex, excluding the muon, is less than 15% of its pT. An additional requirement
is that there be no second muon in the event with pT > 25 GeV to reduce the Z, Drell-Yan and
cosmic ray muon backgrounds.

Electrons were reconstructed as isolated objects in the electromagnetic calorimeter, with addi-
tional requirements on the shower shape and the ratio of hadronic to electromagnetic deposited
energies. The electrons were required to have at least one inner hit, a transverse energy greater
than 85 GeV, and required to be isolated in a cone of radius ∆R < 0.3 around the electron candi-
date direction, both in the tracker and in the calorimeter. In the tracker, the sum of the pT of the
tracks, excluding tracks within an inner cone of 0.04, was required to be less than 5 GeV. For
the isolation using calorimeters, the total transverse energy in the barrel, excluding deposits
associated to the electron, was required to be less than 0.03 · pele

T + 2.0 GeV. The isolation re-
quirements were modified as luminosity increased, owing to the increase in the typical number
of additional pp interactions (‘pile-up’) per LHC bunch crossing. These selections are designed
to ensure high efficiency for electrons and a high rejection of misreconstructed electrons from
multi-jet backgrounds.

The main observable in this search is the transverse mass MT of the lepton-Emiss
T system, calcu-

lated as
MT ≡

√
2 · p`T · Emiss

T · (1− cos ∆φ`,ν) (5)

where ∆φ`,ν is the azimuthal opening angle between the charged lepton’s transverse momen-
tum (p`T) and missing transverse energy (Emiss

T ) direction. The neutrino is not detected directly,
but gives rise to experimentally observed Emiss

T . This quantity was determined using a particle-
flow technique [24], an algorithm designed to reconstruct a complete list of distinct particles
using all the subcomponents of the CMS detector. Muons, electrons, photons, and charged and
neutral hadrons were all reconstructed individually. The Emiss

T for each event was then calcu-
lated as the vector opposing the total transverse momentum of all reconstructed particles in
each event.

In W
′

decays, the lepton and Emiss
T are expected to be almost back-to-back in the transverse

plane, and balanced in transverse energy. Candidate events were therefore selected through a
requirement on the ratio of the lepton pT and the Emiss

T , 0.4 < pT/Emiss
T < 1.5. A requirement

was also imposed on the angular difference in the transverse plane of the lepton and Emiss
T di-

rection, ∆φ`,ν > 0.8× π. No selection is made on jets. After these selections, the average W
′

signal efficiency for masses up to 2.5 TeV in simulated events was found to be around 80% in
both channels, including the roughly 90% geometrical acceptance corresponding to a require-
ment of |ηµ| < 2.1 for muons, and with |ηe| < 1.442 or 1.56 < |ηe| < 2.5 for electrons. The
transverse mass distributions after these selections are shown in Figure 2.

5 Signal and background simulation
Several large samples of simulated events were used to evaluate signal and background effi-
ciencies. The generated events were processed through a full simulation of the CMS detector
based on GEANT4 [25, 26], a trigger emulation, and the event reconstruction chain.

The event samples for the W′R signal were produced separately from the SM W sample, using
the PYTHIA 6.4.9 generator [27]. This is consistent with the case of non-interference assumed
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Figure 2: Observed transverse mass distributions for the electron (left) and muon (right) chan-
nels. Simulated signal distributions for a (left- or right-handed) W

′
without interference of

2.3 TeV mass are also shown, including detector resolution effects. The simulated background
labelled as ‘diboson’ includes WW, ZZ and WZ contributions. The top background prediction
includes single top and top pair production. The total background prediction from a fit to the
simulated transverse mass spectrum in each channel is shown by the dashed line.

for the previous ATLAS and CMS studies. In order to include interference of W′L and W in this
analysis, a model of a single new heavy vector boson W

′
with a SM-like left-handed coupling

strength |g′L| ≈ 0.65 was implemented in the MADGRAPH event generator [28]. This model
includes spin correlations as well as finite-width effects. For such a left-handed scenario with
interference, the generation of samples is technically more challenging. Since the scattering
amplitude responsible for the `ν final state is the sum of W′L and SM W boson terms, both con-
tributions have to be generated simultaneously. A threshold in MT was applied to suppress
the dominant W contribution around the W-mass, where interference effects are negligible for
the W′L masses considered in this search. The simulation uses MADGRAPH 4.5.1, matched to
PYTHIA for showering and hadronisation. For the hadronisation model, the PYTHIA Tune Z2
was used for both the W′R and W′L simulations. Both generators simulate at leading order (LO)
and use the CTEQ6L1 parton distribution functions (PDF) [29]. Mass-dependent K-factors,
varying from 1.14 to 1.36, for the next-to-next-to-leading order (NNLO) correction were cal-
culated with FEWZ [30, 31]. The resulting NNLO W

′ → `ν production cross section times
branching fraction ranged from 17.7 pb (for mW′ = 0.5 TeV) to 0.71 fb (for mW′ = 3 TeV) for a W

′

without interference (see Table 1 for cross sections). Efficiencies and detector acceptance are
then taken into account for estimating the expected number of signal events. The acceptance is
nearly maximal since the decay products of such heavy particles tend to populate low pseudo-
rapidities. Efficiencies are high because the selections have been optimised. Detailed numbers
for both quantities are given in Section 4. The Tevatron W′L → tb search used the COMPHEP
generator [32, 33] which has the case of destructive interference implemented. The agreement
between the model implementations in COMPHEP and MADGRAPH is demonstrated for the
case of destructive interference in Figure 1.

The primary source of background is the off-peak, high transverse mass tail of the standard
model W → `ν decays. Other important backgrounds arise from QCD multijet, tt, and Drell–
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Yan events. Dibosons (WW, WZ, ZZ) decaying to electrons, muons, or taus were also con-
sidered. The event samples for the electroweak background processes W → `ν and Z → ``
(` = e, µ, τ) were produced using PYTHIA. NNLO cross sections were accounted for via a sin-
gle K-factor of 1.32 for the W, and mass-dependent K-factors, ranging from 1.28 to 1.23, for the
Z. The PYTHIA generator was also used for QCD multijet events. The tt events were gener-
ated with MADGRAPH in combination with PYTHIA, and the newly-calculated NNLL (next-to-
leading-order including the leading logarithms of NNLO) cross section was applied [34]. All
other event samples were normalised to the integrated luminosity of the recorded data, using
calculated NNLO cross sections. The only exceptions were the diboson and QCD samples,
for which the NLO and LO cross sections were used respectively. We note that multijet back-
ground is largely suppressed by the event selection requirements. The simulation of pile-up
is included in all event samples by superimposing minimum bias interactions onto the main
background processes.

In order to provide a background estimate independent of any interference effects in the W
transverse mass tail, the shape of the background was determined from simulation. The full
transverse mass spectrum was modelled by a function optimised to best describe the spectrum
in either channel up to very high masses. This function, of the form

f (MT) =
a

(MT + b)c (6)

was fitted to the simulation and then normalised to data in the region 200 GeV < MT <
500 GeV, and used to estimate the expected number of SM background events for all trans-
verse mass bins (shown as the dashed lines in Figure 2). A cross check under the assumption
of no interference was done by fitting the MT distribution in data confirming the simulation.
To determine the uncertainty introduced by this method, in addition to statistical errors on the
fit parameters, two alternative functions were fitted:

f (MT) =
a

(M2
T + b ·MT + c)d (7)

f (MT) =
a(1 + MT)

b

(Mc+d·ln MT
T )

(8)

The largest difference in the background prediction with respect to the original fit was taken
as a systematic uncertainty. For MT larger than 1.4 TeV, this corresponds to an additional un-
certainty of 0.14 events with a background expectation of 0.98 events in the muon channel and
0.26 events with a background expectation of 1.28 events in the electron channel.

6 Systematic uncertainties
The expected number of potential signal and background events was evaluated from simula-
tion. In addition to uncertainties due to the fit procedure for the background, systematic un-
certainties due to imperfections in the description of the detector performance were included.
Uncertainties due to the lepton energy or momentum resolution and scale, ranging between
0.4% and 10% [6, 7] were applied to the transverse mass spectrum. Uncertainties due to mo-
mentum scale were evaluated using detailed studies of the Z → µµ shape and high pT muons.
The muon pT resolution has been previously determined with cosmic ray muons to within
10% for high momentum tracks [35]. In order to estimate the uncertainty on the number of
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expected events, the muon pT spectrum was distorted (scaled and smeared) according to the
values extracted from comparisons with data. The missing transverse energy was adjusted ac-
cordingly, and finally a distorted transverse mass spectrum was obtained and observed to vary
by ∼1%. The electron energy scale uncertainty was around 1% in the ECAL barrel and 3% in
the endcaps. Its impact on the number of signal events above the threshold of MT > 600 GeV
was ascertained to be less than 1% for all W

′
masses. We assume an uncertainty of 10% on

the hadronic component of the Emiss
T resolution (that is, excluding the lepton), and the x and y

components of the reconstructed Emiss
T in the simulation were smeared accordingly. The impact

on the number of signal events was found to be around 2%.

Effects caused by pile-up were modeled by adding to the generated events multiple interac-
tions with a multiplicity distribution matched to the luminosity profile of the collision data.
The resulting impact on the signal was studied by varying the mean of the distribution of
pile-up interactions by 8%, yielding a variation of the signal efficiency of ∼2%. Following
the recommendations of the PDF4LHC group [36], the signal event samples for W′R generated
with PYTHIA were reweighted using the LHAPDF package [37]. PDF and αs variations of the
MSTW2008 [38], CTEQ6.6 [39] and NNPDF2.0 [40] PDF sets were taken into account and the
impact on the signal cross sections was estimated.

7 Results and limits
A W

′ → eν or W
′ → µν signal is expected to manifest itself as an excess over the SM expectation

in the tail of the MT distribution. No significant excess has been observed in the data.

For W
′

masses well below the centre-of-mass energy of
√

s = 7 TeV the signal events are ex-
pected to lie in the Jacobian peak corresponding to the W

′
mass. For masses above 2.3 TeV, the

reduced phase space results in many events below the Jacobian peak, and the acceptance for
the Mmin

T cut drops from about 40% for intermediate masses to 14% at very high W
′
masses. The

expected signal yields given in Table 1 for a range of W′R masses are largely unaffected when in-
troducing interference effects, owing to the high MT cut corresponding to the optimum search
window, which naturally lies around the Jacobian peak.

We set upper limits on the production cross section times the branching fraction σW′R
×B(W′R →

`ν), with ` = e or µ. The observed highest transverse mass events had MT = 1.6± 0.1 TeV
in the electron channel, and MT = 2.4 ± 0.1 TeV in the muon channel. For MT > 1.6 TeV,
the background expectation from the fit to simulation is less than one event in each channel.
Cross-section limits were derived using a Bayesian method [41] with a uniform prior proba-
bility distribution for the signal cross section. The number of data events above an optimised
transverse mass threshold Mmin

T was compared to the expected number of signal and back-
ground events. Systematic uncertainties on the signal and background yield were included via
nuisance parameters with a log-normal prior distribution. The Mmin

T threshold was optimised
for the best expected exclusion limit, a procedure used in previous analyses [7] which is also
appropriate for establishing a W

′
discovery. The Mmin

T threshold defining the search window
increases with W

′
mass up to masses around 2.5 TeV, following the Jacobian peak. For larger

masses, cross sections become so small that fewer than two events are expected in the recorded
data. These events are likely to have lower transverse mass because the production is shifted to
the off-peak region, as mentioned above. Both these effects serve to lower the Mmin

T threshold of
the search window for very heavy W

′
bosons. The expected number of signal and background

events listed separately for the two channels are summarized in Table 1. A common theoretical
NNLO cross section is assumed.
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Figure 3: Upper limits on σ(W′R) × B(W′R → `ν), with ` = e, µ, and their combination at
95% confidence level. The one (two) sigma uncertainty bands are shown in green (yellow).
The theoretical cross section, with PDF uncertainties, is displayed with and without a mass-
dependent NNLO K-factor for the right-handed model without interference. The theoretical
cross sections for Kaluza–Klein W2

KK with µ=0.05 TeV and µ=10 TeV are also shown.
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Table 1: Mmin
T requirement for different W′R masses, expected number of signal and back-

ground events, number of observed events, theoretical cross section and upper limits on
σ(W′R)× B(W′R → `ν), with ` = e, µ.

W
′

mass Mmin
T Nsig Nbkg Nobs σtheory Exp. Limit Obs. Limit

( GeV) ( GeV) (Events) (Events) (Events) (fb) (fb) (fb)
Electron channel

500 350 44000 ± 4200 830 ± 85 850 17723 64.15 70.18
700 550 9600 ± 1500 114 ± 15 128 4514 16.94 22.48
900 700 3160 ± 460 37.4 ± 5.7 41 1470 8.38 9.61

1000 800 1730 ± 280 20.0 ± 3.8 22 886 6.77 7.55
1400 1050 294 ± 36 5.4 ± 1.6 6 144 3.56 3.77
1600 1150 128 ± 13 3.4 ± 1.1 5 63.3 3.02 3.80
1800 1200 63.9 ± 5.5 2.79 ± 0.99 3 28.5 2.53 2.57
2100 1350 18.7 ± 1.5 1.55 ± 0.64 2 9.37 2.38 2.61
2400 1450 5.47 ± 0.39 1.08 ± 0.49 2 3.40 2.69 3.39
2700 1450 1.75 ± 0.13 1.08 ± 0.49 2 1.43 3.54 4.46
3000 1400 0.59 ± 0.05 1.29 ± 0.56 2 0.71 5.45 6.42

Muon channel
500 350 41000 ± 3200 749 ± 47 732 17723 44.65 39.13
700 550 8700 ± 1000 102 ± 10 100 4514 15.42 14.28
900 700 2920 ± 370 32.6 ± 5.0 36 1470 8.24 9.51

1000 750 1840 ± 150 23.3 ± 4.2 26 886 6.62 7.57
1400 1000 313 ± 25 5.6 ± 1.9 6 144 3.37 3.47
1600 1100 136.3 ± 9.2 3.4 ± 1.4 4 63.3 2.83 3.04
1800 1250 56.5 ± 3.7 1.78 ± 0.86 3 28.5 2.48 3.18
2100 1300 18.5 ± 0.9 1.45 ± 0.75 2 9.37 2.35 2.65
2400 1400 5.54 ± 0.26 0.98 ± 0.56 2 3.40 2.59 3.37
2700 1450 1.68 ± 0.08 0.81 ± 0.49 2 1.43 3.45 4.77
3000 1400 0.58 ± 0.03 0.98 ± 0.56 2 0.71 5.17 6.73

The expected and observed upper limits for both channels and their combination, in the right-
handed scenario without interference, are shown in Figure 3. Using the central value of the
theoretical cross section times the branching fraction, we exclude at 95% confidence level (CL)
the existence of a W′R with SM-like couplings of masses less than 2.5 TeV (compared with an
expected limit of 2.6 TeV). Note that the background uncertainty has a negligible impact on the
lower limits on W

′
mass, owing to the lack of observed events in the tail of the MT distribution.

A similar search procedure was performed including the effect of interference. The theoretical
cross sections are approximately 10–30% lower (higher) for destructive (constructive) interfer-
ence when integrating over the transverse mass spectrum above 500 GeV and hence influence
the resulting mass limits [17]. Optimising for the best expected cross section limit resulted in
very similar search windows at high MT, yielding lower limits on the W′L mass of 2.63 (2.43) TeV
for constructive (destructive) interference, based on the same MADGRAPH cross sections and
K-factors as the ones used in Figure 3. We note that the interference affects mainly the medium
MT and hardly the Jacobian peak region, with the latter being used to set the limits. The lim-
its shown do not take into account higher order electroweak corrections at high mass, which
can be sizable. The effect of these missing corrections would be a reduction of the size of in-
terference effects, leading to limits that are closer to the ones quoted for the no-interference
case.

In addition to the model dependent results on W
′

production, upper limits for the cross sec-
tion of beyond-the-SM production of charged lepton-neutrino events are given in Table 2 and
Figure 4. The results are presented as a function of the transverse mass threshold, Mmin

T , and
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Table 2: Excluded cross sections times branching fraction in the search window (MT > Mmin
T )

in the electron and muon channels individually, along with their combination. The number
of expected background events was taken from simulation. The expected and observed cross
section limits are given for each search window.

Electron channel Muon channel Combined channels
Mmin

T Events Limit (fb) Events Limit (fb) Limit (fb)
( GeV) Nbkg Nobs Exp. Obs. Nbkg Nobs Exp. Obs. Exp. Obs.

500 175 ± 22 192 10.14 13.85 158 ± 14 141 8.20 6.13 6.86 6.04
600 77 ± 10 83 5.99 7.13 67.9 ± 8.1 62 5.12 4.46 4.01 3.95
700 37.4 ± 5.7 41 3.80 4.57 32.6 ± 5.0 36 3.60 4.41 2.65 3.31
800 20.0 ± 3.8 22 3.03 3.24 17.0 ± 3.6 16 2.95 2.54 1.94 1.99
900 11.4 ± 2.6 12 2.10 2.30 9.5 ± 2.6 11 2.01 2.46 1.46 1.68

1000 6.8 ± 1.8 8 1.79 2.02 5.6 ± 1.9 6 1.57 1.80 1.11 1.32
1100 4.3 ± 1.3 6 1.40 1.88 3.4 ± 1.4 4 1.32 1.56 0.94 1.19
1200 2.79 ± 0.98 3 1.32 1.32 2.2 ± 1.0 3 1.18 1.45 0.78 0.92
1300 1.87 ± 0.74 2 1.15 1.15 1.45 ± 0.75 2 0.97 1.26 0.69 0.77
1400 1.29 ± 0.56 2 0.94 1.22 0.98 ± 0.56 2 1.00 1.32 0.59 0.85
1500 0.91 ± 0.43 1 0.97 0.97 0.68 ± 0.43 2 0.72 1.37 0.53 0.76
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Figure 4: 95% confidence level upper limits on the cross section times branching fraction for
physics beyond the SM (labelled BSM) for the charged lepton-neutrino production with trans-
verse masses exceeding Mmin

T . The results for the electron, the muon channel, as well as for
both channels combined are presented. The one (two) sigma uncertainty bands are shown in
green (yellow).
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listed separately for the electron and the muon channels, and their combination. The only as-
sumptions made here are that we are searching for a narrow s-channel produced resonance,
using the detector acceptance and selection efficiency outlined in Section 4. Note that the Mmin

T
threshold is on an experimentally-measured quantity affected by detector resolution.

These exclusion limits on the cross-section can be translated to excluded W
′

masses within the
context of a given model, such as constructive or destructive W′L, W′R or something else.

1/R [TeV]
0 0.5 1 1.5 2

 [T
eV

]
µ

-110

1

10

Excluded

Electron
channel

Muon
channel

Combined
channels

CMS

 = 7 TeVs

-1 L dt = 5.0 fb∫

Figure 5: 95% confidence limits on the split-UED parameters µ and R derived from the W
′
mass

limits taking into account the corresponding width of the W2
KK. The colored areas correspond

to the W2
KK exclusion regions with the same final state as the SM-like W

′
. Results are shown for

the electron and muon channels, as well as for both channels combined. The W2
KK is the lowest

state that can couple to SM fermions. Since it has even parity it can be produced singly.

The observed limits illustrated in Figure 3 can be reinterpreted in terms of the W2
KK mass, as

shown in the same figure for values of the bulk mass parameters µ = 0.05 TeV and µ = 10 TeV.
For these parameters the second Kaluza–Klein excitation W2

KK has been excluded for masses
below 1.4 TeV (µ = 0.05 TeV) or 2.9 TeV (µ = 10 TeV), respectively. The corresponding widths
(Eq. (4)) are taken into account in the calculation of the cross section times the branching frac-
tion of W2

KK. These lower limits on the mass can be directly translated to bounds on the split-
UED parameter space [1/R, µ] with µ being the mass parameter for bulk fermions and R the
radius of the extra dimension. The results are displayed in Figure 5, using the relations be-
tween R, µ and the W2

KK mass, and the couplings to SM fermions described by expressions (1),
(2) and (3). The split-UED model also allows for W-W

′
interference. When the constructive

case is considered, it has a comparable sensitivity to the no-interference case.
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8 Summary
A search for an excess of events with a final state consisting of a charged lepton (electron or
muon) and significant missing transverse momentum has been performed, using 5.0 fb−1 of√

s = 7 TeV pp collision data. No significant excess over the SM expectation was observed
in the distribution of transverse mass. A W′R in the SSM with a mass of less than 2.5 TeV has
been excluded at 95% CL. For the first time in such a study, W-W

′
interference effects have been

taken into account, and mass exclusion limits have been determined as 2.63 TeV and 2.43 TeV for
constructive and destructive interference respectively. These are the most stringent limits yet
published. An interpretation of the search results has also been made in a specific framework of
universal extra dimensions with bulk mass fermions. The second Kaluza–Klein excitation W2

KK
has been excluded for masses below 1.4 TeV, assuming a bulk mass parameter µ of 0.05 TeV or
masses below 2.9 TeV for µ=10 TeV.
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[12] G. Senjanović and R. N. Mohapatra, “Exact Left-Right Symmetry and Spontaneous
Violation of Parity”, Phys. Rev. D 12 (1975), no. 5, 1502,
doi:10.1103/PhysRevD.12.1502.
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E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, L. Millischer,
A. Nayak, J. Rander, A. Rosowsky, I. Shreyber, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj11, C. Broutin, P. Busson, C. Charlot,
N. Daci, T. Dahms, L. Dobrzynski, R. Granier de Cassagnac, M. Haguenauer, P. Miné,
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Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, O. Bondu, G. Boudoul, H. Brun, J. Chasserat, R. Chierici1,
D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca,
M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, S. Tosi, Y. Tschudi, P. Verdier, S. Viret

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi,
Georgia
Z. Tsamalaidze13

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
G. Anagnostou, S. Beranek, M. Edelhoff, L. Feld, N. Heracleous, O. Hindrichs, R. Jussen,
K. Klein, J. Merz, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger,
H. Weber, B. Wittmer, V. Zhukov14

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, A. Güth, T. Hebbeker,
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INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b ,1, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c,
N. De Filippisa,c ,1, M. De Palmaa ,b, L. Fiorea, G. Iasellia ,c, L. Lusitoa ,b, G. Maggia,c,
M. Maggia, B. Marangellia ,b, S. Mya ,c, S. Nuzzoa ,b, N. Pacificoa ,b, A. Pompilia ,b, G. Pugliesea,c,
G. Selvaggia ,b, L. Silvestrisa, G. Singha,b, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
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12: Also at Université de Haute-Alsace, Mulhouse, France
13: Now at Joint Institute for Nuclear Research, Dubna, Russia
14: Also at Moscow State University, Moscow, Russia
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
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