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Abstract

The transverse momentum spectra of charged particles have been measured in pp
and PbPb collisions at

√
sNN = 2.76 TeV by the CMS experiment at the LHC. In the

transverse momentum range pT = 5–10 GeV/c, the charged particle yield in the most
central PbPb collisions is suppressed by up to a factor of 7 compared to the pp yield
scaled by the number of incoherent nucleon-nucleon collisions. At higher pT, this
suppression is significantly reduced, approaching roughly a factor of 2 for particles
with pT in the range pT = 40–100 GeV/c.
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1 Introduction
The charged particle spectrum at large transverse momentum (pT), dominated by hadrons orig-
inating from parton fragmentation, is an important observable for studying the properties of
the hot, dense medium produced in high-energy heavy-ion collisions. The study of the mod-
ifications of the pT spectrum in PbPb compared to pp collisions at the same collision energy
can shed light on the detailed mechanism by which hard partons lose energy traversing the
medium [1, 2], complementing recent studies of jet quenching and fragmentation properties
using fully reconstructed jets [3, 4].

Using data collected by the Compact Muon Solenoid (CMS) experiment at the LHC, this pa-
per presents measurements of charged particle yields as a function of pT and event centrality
in PbPb collisions at a center-of-mass energy per nucleon pair

√
sNN = 2.76 TeV. The PbPb

charged particle spectra are compared to the corresponding pT-differential cross sections mea-
sured in pp collisions at the same center-of-mass energy, a measurement that follows closely
the analysis described in Ref. [5]. Charged tracks are measured in the pseudorapidity range
|η| < 1, where η = − ln[tan(θ/2)], with θ the polar angle of the track with respect to the
counterclockwise beam direction.

The measurements are motivated by lower-energy results [6–9] from the Relativistic Heavy
Ion Collider (RHIC), where high-pT particle production was found to be strongly suppressed
relative to expectations from an independent superposition of nucleon-nucleon collisions. This
observation is typically expressed in terms of the nuclear modification factor,

RAA(pT) =
d2NAA

ch /dpT dη

〈TAA〉d2σ
pp
ch /dpT dη

, (1)

where NAA
ch and σ

pp
ch represent the charged particle yield per event in nucleus-nucleus (AA) col-

lisions and the charged particle cross section in pp collisions, respectively. In order to compare
the yield of high-pT charged particles produced in PbPb and pp collisions, a scaling factor, the
nuclear overlap function TAA, is needed to provide a proper normalization at a given PbPb
centrality. This factor is computed as the ratio between the number of binary nucleon-nucleon
collisions Ncoll, calculated from the Glauber model of the nuclear collision geometry [10], and
the inelastic nucleon-nucleon (NN) cross section σNN

inel = 64± 5 mb at
√

s = 2.76 TeV [11]. It
can be interpreted as the NN-equivalent integrated luminosity per collision at any given PbPb
centrality. The mean of the nuclear overlap function 〈TAA〉, averaged over a given centrality
bin, is used to determine the nuclear modification factor at that PbPb centrality.

In addition, the centrality dependence of the PbPb spectrum can also be examined through the
TAA-scaled ratio of spectra in central and peripheral bins,

RCP(pT) =
(d2NAA

ch /dpT dη)/ 〈TAA〉 [central]
(d2NAA

ch /dpT dη)/ 〈TAA〉 [peripheral]
. (2)

In the absence of initial- and/or final-state effects on the PbPb pT spectrum, the factors RAA and
RCP at high pT are unity by construction. However, as observed first at RHIC in 200 GeV AuAu
collisions [6–9] and later by ALICE in 2.76 TeV PbPb collisions [12], the yield of pT ∼ 5–10 GeV/c
charged particles is suppressed in the most central heavy-ion collisions by up to a factor of five
compared to that in pp collisions. The CMS measurement presented in this paper confirms
these results with improved experimental uncertainties and extends the measured transverse
momentum range to 100 GeV/c.
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2 Data sample and analysis procedures
This measurement is based on

√
sNN = 2.76 TeV PbPb data samples corresponding to integrated

luminosities of 7 µb−1 and 150 µb−1, collected by the CMS experiment in 2010 and 2011, respec-
tively. The pp reference measurement uses a data sample collected in

√
s = 2.76 TeV collisions

in the 2011 LHC run, corresponding to an integrated luminosity of 230 nb−1.

A detailed description of the CMS detector can be found in Ref. [13]. The central feature of the
CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing an axial mag-
netic field of 3.8 T. Immersed in the magnetic field are the pixel tracker, the silicon strip tracker,
the lead-tungstate crystal electromagnetic calorimeter (ECAL), and the brass/scintillator hadron
calorimeter (HCAL). Muons are measured in gas ionization detectors embedded in the steel re-
turn yoke. The tracker consists of 1440 silicon pixel and 15 148 silicon strip detector modules
and measures charged particle trajectories within the nominal pseudorapidity range |η| < 2.4.
The pixel tracker consists of three 53.3 cm long barrel layers and two endcap disks on each side
of the barrel section. The innermost barrel layer has a radius of 4.4 cm, while for the second and
third layers the radii are 7.3 cm and 10.2 cm, respectively. The tracker is designed to provide
a track impact parameter resolution of about 100 µm and a transverse momentum resolution
of about 0.7 (2.0)% for 1 (100) GeV/c charged particles at normal incidence (η = 0) [14]. The
beam scintillator counters (BSCs) are located at a distance of 10.86 m from the nominal inter-
action point (IP), one on each side, and cover the |η| range from 3.23 to 4.65. Each BSC is a
set of 16 scintillator tiles. The BSC elements provide hit and coincidence rates with a time res-
olution of 3 ns and an average minimum ionising particle detection efficiency of 95.7%. The
two steel/quartz-fibre hadron forward calorimeters (HF), which extend the calorimetric cover-
age beyond the barrel and endcap detectors to the |η| region between 2.9 and 5.2, are used for
further offline selection of collision events. For online event selection, CMS uses a two-level
trigger system: a hardware level (L1) and a software-based higher level (HLT).

A sample of minimum bias events from PbPb collisions was collected, based on a trigger re-
quiring a coincidence between signals in the opposite sides of either the HF or the BSCs. To
ensure a pure sample of inelastic hadronic collision events, additional offline selections were
performed. These include a beam-halo veto, based on the BSC timing, an offline requirement
of at least 3 towers on each HF with an energy deposit of more than 3 GeV per tower, a re-
constructed vertex, based on at least two pixel tracks with pT > 75 MeV/c, and a rejection of
beam-scraping events, based on the compatibility of pixel cluster shapes with the reconstructed
primary vertex. Further details can be found in Ref. [4].

The collision event centrality is determined from the event-by-event total energy deposition
in both HF calorimeters. The distribution of this observable in minimum bias events from the
2010 data sample, shown in Fig. 1 (a), is used to divide the event sample into 40 centrality
bins, each corresponding to 2.5% of the total inelastic cross section. Figure 1 (b) shows the
distribution of events according to centrality bin, which is flat by construction for the minimum
bias selection, except in the most peripheral events where the trigger and offline event selection
are no longer fully efficient. Figure 1 also shows the distributions of the total HF energy and of
the cross-section fraction for the events selected by single-jet triggers with calibrated transverse
energy thresholds of ET = 65 GeV (Jet65) and 80 GeV (Jet80) from the 2011 data samples. The
reconstruction of calorimeter-based jets in heavy-ion collisions in the online trigger as well as in
the offline analysis is performed with an iterative cone algorithm modified to subtract the soft
underlying event on an event-by-event basis [15]. The overall selection efficiency is estimated
to be (97± 3)% based on Monte Carlo (MC) simulations [4]. For the pp analysis, there is an
uncertainty from the estimated number of additional collision interactions in a given beam
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crossing (i.e. “event pile-up”) in addition to the uncertainties from the event selection efficiency.
For the PbPb analysis, the uncertainty due to the event pile-up fraction is negligible (< 0.1%).

For this analysis, the events are analyzed in six centrality bins: 0–5% (most central), 5–10%,
10–30%, 30–50%, 50–70%, and 70–90% (most peripheral). Details of the centrality determination
are described in Ref. [4].

Sum HF energy (TeV)
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Figure 1: (a) Probability distribution of the total HF energy for minimum bias events (black
line), Jet65-triggered (blue-shaded region), and Jet80-triggered (red-shaded region) events. (b)
Distribution of the events in bins of fractional cross section for minimum bias (black line), Jet65-
triggered (blue-shaded region), and Jet80-triggered (red-shaded region) events. By convention,
0% denotes the most central events and 100% the most peripheral.

The event centrality, specified as a fraction of the total inelastic cross section, can be related
to properties of the PbPb collisions such as the number of nucleons undergoing at least one
inelastic collision (Npart) and the total number of binary nucleon-nucleon collisions (Ncoll). The
calculation of these properties is based on a Glauber model of the incoming nuclei [10] and
studies of bin-to-bin smearing, caused by finite resolution effects and evaluated using fully
simulated and reconstructed MC events [4]. The mean and r.m.s. of the Npart, Ncoll, and TAA
distributions, along with their corresponding systematic uncertainties, are listed in Table 1 for
the six centrality bins used in this analysis. The uncertainties on the centrality variables are
derived from propagating the uncertainties on the event selection efficiency and on the param-
eters of the Glauber model.

In order to extend the statistical reach of the pT spectra in the highly prescaled minimum bias
sample, data recorded in 2011 by unprescaled single-jet triggers, Jet65 and Jet80, are included in
the analysis. The jet ET thresholds in the trigger are applied after subtracting the contribution
from the underlying event and correcting for the calorimeter response. Transverse energy dis-
tributions of the most energetic reconstructed jet with |η| < 2, referred to as the leading jet, are
shown in the upper panel of Fig. 2 (a) for the three samples (minimum bias, Jet65, and Jet80)
as a function of corrected ET, and normalized per minimum bias event. The distribution for
the Jet80 trigger has a peak in the low-ET region as a consequence of stricter ECAL and HCAL
noise elimination, as well as a tighter pseudorapidity requirement in the offline leading-jet se-
lection than in the trigger. This feature is less prominent in the lower threshold Jet65 jet trigger
because the rate of noise triggers relative to the rate of true jet triggers is smaller at lower jet ET.
The lower panel in Fig. 2 (a) shows the trigger efficiency given by the ratio of each jet-triggered
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Table 1: The average number of participating nucleons (Npart), number of binary nucleon-
nucleon collisions (Ncoll), and nuclear overlap function (TAA) for the centrality bins used in
this analysis. The r.m.s. values give the spread over the centrality bins, which are expressed as
fractions of the total inelastic PbPb cross section.

Centrality bin
〈

Npart
〉

r.m.s. 〈Ncoll〉 r.m.s. 〈TAA〉 (mb−1) r.m.s.

0–5% 381 ± 2 19.2 1660 ± 130 166 25.9 ± 1.06 2.60
5–10% 329 ± 3 22.5 1310 ± 110 168 20.5 ± 0.94 2.62
10–30% 224 ± 4 45.9 745 ± 67 240 11.6 ± 0.67 3.75
30–50% 108 ± 4 27.1 251 ± 28 101 3.92 ± 0.37 1.58
50–70% 42.0 ± 3.5 14.4 62.8 ± 9.4 33.4 0.98 ± 0.14 0.52
70–90% 11.4 ± 1.5 5.73 10.8 ± 2.0 7.29 0.17 ± 0.03 0.11
50–90% 26.7 ± 2.5 18.84 36.9 ± 5.7 35.5 0.58 ± 0.09 0.56

distribution to that from the immediately looser selection. The Jet65 (Jet80) trigger becomes
fully efficient above ET = 80 (100) GeV. Following the procedure introduced in the analogous
measurement of the charged particle spectra in 0.9 and 7 TeV pp collisions [5], the spectra for
|η| < 1.0 are calculated separately in three ranges of leading-jet ET, below 80 GeV, between 80
and 100 GeV, and above 100 GeV, each corresponding to a fully efficient trigger path, and then
combined to obtain the final result. Figure 2 (b) shows the contributions from the three ranges
to the combined spectrum. The lower panel of the figure compares the combined spectrum to
the minimum bias spectrum alone, which is in good agreement within statistical uncertainties.
As in the previous analysis [5], a pT-dependent normalization uncertainty of 0–4% is assigned
to this procedure of matching the spectra from the different triggered samples.

The reconstruction of charged particles in PbPb collisions, based on hits in the silicon pixel
and strip detectors, is performed similarly to what is done in pp collisions [5, 16]. However,
some criteria have been fine-tuned to cope with the challenges presented by the much higher
hit density in central PbPb collisions. First, prior to track reconstruction, the three-dimensional
primary vertex position is fitted from a collection of pixel-only tracks reconstructed with three
hits in the pixel detector and extrapolating back to a region around the beam spot. Next, to
reduce the random combinatorial background, track candidates are built from triplet seeds
alone, consisting of hits in three layers of the pixel barrel and endcap detectors. The seeds from
a restricted region within 2 mm of the primary vertex are constructed with a minimum pT of
0.9 GeV/c. Further selections are made on the normalized goodness-of-fit (i.e. χ2) of the track fit
and on the compatibility of the fitted triplet seeds with the primary vertex, before propagating
the seed trajectories through the strip tracker to build fully reconstructed tracks.

To improve the track reconstruction efficiency, two more iterations of the tracking are per-
formed after removing hits unambiguously belonging to the tracks found in the first iteration.
This procedure is based on the standard pp iterative tracking [16]. More efficient pp-based
pixel-pair and triplet-track seedings are used in the second and third iterations, respectively.
The tracks found in the later iterations are merged with the first-iteration tracks after removing
any duplicate tracks, based on the fraction of shared hits. Lastly, the calorimeter (ECAL and
HCAL) information is used to improve tracking efficiency at high pT (&30 GeV/c) by requiring
looser quality criteria for tracks that are determined to be calorimeter compatible. This is pos-
sible because genuine charged hadron tracks with high pT are expected to leave large energy
deposits in the calorimeter. Tracks are matched to the closest calorimeter cell in (η, φ), where φ
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Figure 2: (a) Upper panel: Corrected transverse energy ET of leading jets with |η| < 2 for
a minimum bias trigger and two jet triggers normalized to the number of selected minimum
bias events NEvt

MB . Lower panel: efficiency curves for the jet triggers with corrected energy
thresholds of 65 and 80 GeV. (b) Upper panel: The three trigger contributions to the charged
particle transverse momentum spectrum and their sum (filled circles) for the 0–5% most central
events. Open squares show the minimum bias spectrum for all values of leading-jet ET. Lower
panel: the ratio of the combined spectrum to the minimum bias spectrum.
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is the azimuthal angle of the track. A track is determined to be compatible with the matched
calorimeter cell if the sum of the transverse energy measured by the ECAL and HCAL cells is
above a minimum fraction (30%) of the track transverse momentum. Finally, tight quality cri-
teria are imposed for tracks that are incompatible with their matched calorimeter cell energy.
These include requirements of at least 13 hits on the track (counting stereo strip layers sepa-
rately), a relative momentum resolution of less than 5%, a normalized χ2 of less than 0.15 times
the number of hits, and transverse and longitudinal impact parameters of less than three times
the sum in quadrature of the uncertainties on the impact parameter and the corresponding
vertex position.

Each track is weighted by a factor that accounts for the geometrical acceptance of the detec-
tor, the efficiency of the reconstruction algorithm, the fraction of the tracks for which a single
charged particle is reconstructed as more than one track, the fraction of tracks corresponding
to non-primary charged particles, and the fraction of misidentified tracks that do not corre-
spond to any charged particle. These correction factors are applied differentially as functions
of pseudorapidity, transverse momentum, transverse energy of the leading jet, and event cen-
trality. The various correction terms are estimated based on simulated minimum bias PbPb
events from the HYDJET [17] generator. To improve the statistical precision of the correction
factors at high pT, HYDJET MC samples are also mixed at the level of simulated hits with dijet
events generated with different settings of the hard-scattering scale (p̂T=30, 50, 80, 110, and
170 GeV/c) from PYQUEN [17], a generator for the simulation of rescattering as well as radiative
and collisional energy loss of hard partons in heavy-ion collisions.

Before applying the tight quality selections on the reconstructed tracks, the charged particle
reconstruction efficiency is studied by inserting simulated pion tracks or PYQUEN dijet events
into two different background samples: (i) simulated minimum bias HYDJET events by mixing
GEANT4 [18] detector hits, and (ii) PbPb data events by combining the raw digitized detector
signals. The efficiencies estimated by these two methods agree within 3.0–5.7% in the range
1 < pT < 100 GeV/c. Due to limitations in the data-mixing technique, the two cannot be
compared on an equal footing after applying all of the quality cuts, in particular those involving
the consistency of a track with the primary vertex. However, it is possible to ensure that the
distributions on which the selections are made (i.e. the χ2 of the track fit, the distance of closest
approach between track and vertex, the number of hits in the silicon pixel and strip detectors)
are consistent between the data and the MC simulations, both as a function of pT and event
centrality. To this end, an additional series of checks is performed by varying the requirements
imposed during the track selection and in the determination of the corresponding MC-based
corrections. The resulting variations in the corrected results are within the quoted systematic
uncertainties.

The fraction of misidentified tracks estimated from simulated events for each leading-jet ET
sample as a function of track pT is checked against an estimate from data that uses the side-
bands of the impact parameter distributions. Studies of simulated events reveal that, at low pT
and in peripheral events (e.g. 50–90%), the sidebands are dominated by secondaries and prod-
ucts of weak decays because of their displaced vertex positions. However, in central events
(e.g. 0–5%) and at high pT they are mostly misidentified tracks. Based on varying the functional
form of the sideband extrapolation under the peak from correctly reconstructed primary tracks,
a 2.5–4.0% systematic uncertainty is quoted for the fraction of misidentified tracks remaining
after all selection cuts. An additional check is performed for tracks with pT above 10 GeV/c
to correlate the reconstructed track momentum with the energy deposited in the ECAL and
HCAL. The fraction of high-pT tracks with an atypically small amount of energy deposited in
the calorimeters is consistent with the quoted uncertainty on the misidentification rate.
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The tendency for finite bin widths and finite transverse-momentum resolution to deform a
steeply falling pT spectrum is corrected for in the analysis of the pp spectrum [5]. The higher
occupancy in PbPb events than in pp events has negligible effect on the momentum resolution.
The resulting 3.0% systematic uncertainty is dominated by the uncertain shape of the momen-
tum spectrum at high pT. For the RAA and RCP measurements, a 2.0% systematic uncertainty
is quoted after subtracting the correlated uncertainty between the PbPb and pp pT spectra, or
between the central and peripheral PbPb pT spectra. A summary of all the contributions to the
systematic uncertainty affecting the PbPb and pp pT spectra, and the resulting RAA and RCP
values, is given in Table 2.

Table 2: Summary of the various contributions to the systematic uncertainties affecting the
PbPb and pp pT spectra, and the nuclear modification factors RAA and RCP.

Source Uncertainty [%]
PbPb pp

Track reconstruction efficiency 3.0–5.7 2.2–3.6
Non-primary and misidentified tracks 2.5–4.0 1.0–3.2
Momentum resolution and binning 3.0 0.3–2.7
Normalization of jet-triggered spectra 0.0–4.0 0.0–6.0
Event selection 3.0 3.5
Pile-up estimation <0.1 1.2

Total for pT spectra 5.8–9.1 4.4–9.0

Luminosity – 6.0

TAA determination 4.1–18.0 –

Total for RCP 6.7–20.0 –

Total for RAA 9.9–23.0 –

3 Results
The charged particle invariant differential yield (E d3Nch/dp3) averaged over the pseudorapid-
ity |η| < 1.0 in pp collisions is shown in Fig. 3 (a). The invariant and pT-differential pp cross
section is obtained by normalizing the corresponding yield by the integrated luminosities de-
scribed in Refs. [19, 20]. Also shown in Fig. 3 (a) are various generator-level predictions from
the PYTHIA MC [21] for different tunes [22–25], and the ratios of the data to the various MC
predictions. The pp measurement is also compared to the empirical global power-law scaling
prediction [26] with an exponent n = 4.9 determined from the previous CMS measurements [5]
by plotting (

√
s)n=4.9 E d3σ/dp3 versus the scaling variable xT = 2pT/

√
s, as shown in Fig. 3 (b).

The pp measurement at
√

s = 2.76 TeV is consistent with the global power-law fit established
in Ref. [5]. The next-to-leading-order (NLO) prediction [26] for

√
s = 2.75 TeV overestimates

the measured cross section by almost a factor of two, as shown in Fig. 3 (b).

The PbPb spectrum is shown for six centrality bins and compared to the measured pp reference
spectrum, scaled by the nuclear overlap function, in Fig. 4. For easier viewing, several sets of
points have been scaled by the arbitrary factors given in the figure. By comparing the PbPb
measurements to the dashed lines representing the scaled pp reference spectrum, it is clear that
the charged particle spectrum is strongly suppressed in central PbPb events compared to pp,
with the most pronounced suppression at around 5–10 GeV/c.
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Figure 3: (a) Upper panel: Invariant charged particle differential yield for |η| < 1.0 in pp
collisions at

√
s = 2.76 TeV compared with the predictions of four tunes [22–25] of the PYTHIA

MC generator and with the CMS interpolated spectrum using data at 0.9 and 7 TeV [5]. Lower
panel: the ratio of the measured spectrum to the predictions of the four PYTHIA tunes and to
the interpolated spectrum. The grey band corresponds to the statistical and systematic uncer-
tainties of the measurement added in quadrature. (b) Upper panel: Inclusive charged particle
invariant differential cross sections, scaled by (

√
s)4.9, for |η| < 1.0 as a function of the scaling

parameter xT for CMS data at 0.9 and 7 TeV [5] and this analysis at 2.76 TeV. The result is the
average of the positive and negative charged particles. Lower panel: ratios of the differential
cross sections measured at 0.9, 2.76, and 7 TeV to those predicted by NLO calculations [26]. The
bands show the variations in the predictions when changing the factorization scales from 0.5
to 2.0 pT.
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The nuclear modification factor RAA is constructed according to Eq. (1) by dividing the PbPb
pT spectrum for each centrality range by the scaled pp reference spectrum (i.e. the filled points
by the dashed lines in Fig. 4). It is presented as a function of pT in Fig. 5 for each of the six cen-
trality bins. The yellow boxes around the points show the systematic uncertainties, including
those from the pp reference spectrum, listed in Table 2. An additional systematic uncertainty
from the TAA normalization, common to all points and also listed in Table 2, is displayed as the
shaded band around unity in each plot. The statistical uncertainties do not increase monotoni-
cally as a function of pT, as seen most prominently in the peripheral bins, as a consequence of
combining the highly prescaled minimum bias sample with the two unprescaled jet triggers,
as discussed in Section 2. In the most peripheral events (70–90%), a moderate suppression of
about a factor of 2 (RAA ≈ 0.6) is observed at low pT, with RAA rising slightly with increas-
ing transverse momentum. The suppression becomes more pronounced in the more central
collisions, as expected from the increasingly dense final-state system and longer average path-



10 3 Results

 (GeV/c)
T

p
1 2 3 4 56 10 20 30 100

A
A

R

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

70-90%

 and lumi. uncertaintyAAT

CMS  PbPb
|<1.0η = 2.76 TeV, |NNs

 (GeV/c)
T

p
1 2 3 4 56 10 20 30 100

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2

10-30%

 (GeV/c)
T

p
1 2 3 4 56 10 20 30 100

A
A

R
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50-70%

 (GeV/c)
T

p
1 2 3 4 56 10 20 30 100

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2

5-10%

 (GeV/c)
T

p
1 2 3 4 5 10 20 30 100

A
A

R

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

30-50%

 (GeV/c)
T

p
1 2 3 4 5 10 20 30 100

A
A

R

0

0.2

0.4

0.6

0.8

1

1.2

0-5%

Figure 5: Nuclear modification factor RAA (filled circles) as a function of pT for six PbPb central-
ities. The error bars represent the statistical uncertainties and the yellow boxes represent the
pT-dependent systematic uncertainties. An additional systematic uncertainty from the normal-
ization of TAA and the pp integrated luminosity, common to all points, is shown as the shaded
band around unity in each plot.

lengths traversed by hard-scattered partons before fragmenting into final hadrons. In the 0–5%
centrality bin, RAA reaches a minimum value of about 0.13 at pT = 6–7 GeV/c. At higher pT, the
value of RAA rises and levels off above 40 GeV/c at approximately 0.5. A rising RAA may simply
reflect the flattening of the unquenched nucleon-nucleon spectrum at high pT if one assumes a
constant fractional energy loss, although the magnitude of the rise varies among the different
theoretical models.

The TAA-scaled ratio of spectra in central and peripheral bins, RCP, is constructed according
to Eq. (2). The peripheral interval used for the normalization is chosen as the combined 50–
90% centrality bin to improve the statistical precision at high pT. This approach removes the
4.4–9.0% systematic uncertainty from the pp reference. Also part of the TAA uncertainties is
correlated between centrality bins and cancels out in the RCP ratio. The resulting values of
RCP for the four most central bins are shown in Fig. 6. The statistical uncertainty of RCP does
not increase monotonically with pT for the same reasons as mentioned for RAA. As in the
measurement of RAA, the RCP results show that the pT spectra in central PbPb collisions are
significantly suppressed compared to peripheral collisions.

The evolution of the nuclear modification factor with center-of-mass energy, from the SPS [27,
28] to RHIC [29, 30] and then to the LHC [12], is presented in Fig. 7. Note that RHIC results
are shown for both neutral pions and charged hadrons, the latter being less suppressed below
pT ≈ 8 GeV/c [29, 30] possibly due to parton recombination processes that enhance proton
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Figure 6: TAA-scaled ratio of pT spectra in central and peripheral bins, RCP, as a function of pT
for four PbPb centralities. The error bars represent the statistical uncertainties and the yellow
boxes the pT-dependent systematic uncertainties. An additional systematic uncertainty from
the normalization of TAA, common to all points, is shown as the shaded band around unity in
each plot.

production and thus the overall yield of charged hadrons [31]. Below pT ≈ 10 GeV/c, charged
hadron production at the LHC is found to be about 50% more suppressed than at RHIC, and
has a similar suppression value as for neutral pions measured by PHENIX [29].

The CMS measurement of RAA presented in this paper for the 0–5% centrality interval is com-
pared to the ALICE result [12] in Fig. 7. Note that the pp spectrum measured by CMS at√

s = 2.76 TeV is roughly 5–15% higher than the ALICE spectrum obtained by interpolating
their 0.9 and 7 TeV spectra [12]. The two RAA results are in agreement within their respective
statistical and systematic uncertainties.

The high-pT measurement of RAA from this analysis, up to pT = 100 GeV/c, is also compared
to a number of theoretical predictions, for the LHC design energy of

√sNN = 5.5 TeV (PQM [32]
with medium transport-coefficient 〈q̂〉 = 30–80 GeV2/fm and GLV [33, 34] for various values
of the medium gluon pseudorapidity density dNg/dy) and for the actual collision energy of√sNN = 2.76 TeV (ASW [35, 36] and YaJEM [37] including a model for elastic energy loss pa-
rameterized with the Pesc variable). While most models predict the generally rising behavior
of RAA that is observed in the data at high pT, the magnitude of the predicted slope varies
greatly between models, depending on the assumptions for the jet-quenching mechanism. The
new CMS measurement presented here should help in constraining the quenching parameters
used in these models and improve the understanding of parton energy loss in a hot and dense
medium.
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4 Summary
Measurements of the charged particle transverse momentum spectra have been presented for√sNN = 2.76 TeV pp and PbPb collisions. The results for the PbPb collisions have been com-
pared to the measured pp pT spectrum scaled by the corresponding number of incoherent
nucleon-nucleon collisions. The high-pT yields in central PbPb collisions are significantly sup-
pressed when compared to peripheral PbPb and pp collisions. In the range pT = 5–10 GeV/c, the
suppression is stronger than that seen at RHIC. Beyond 10 GeV/c, both RAA and RCP show a ris-
ing trend, as already suggested by data from the ALICE experiment, limited to pT = 20 GeV/c.
The CMS measurement, with improved statistical precision, clearly shows that this rise contin-
ues at higher pT, approaching a suppression factor RAA ≈ 0.5–0.6 in the range 40–100 GeV/c.
The overall pT dependence of the suppression can be described by a number of phenomeno-
logical predictions. The detailed evolution of the RAA rise from 6 to 100 GeV/c depends on
the details of the models. Together with measurements of high-pT charged hadron azimuthal
anisotropies, inclusive jet spectra, fragmentation functions, and dijet transverse energy balance,
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this measurement of the nuclear modification factors as a function of pT and collision central-
ity should help elucidate the mechanism of jet quenching and the properties of the medium
produced in heavy-ion collisions at collider energies.
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Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, L. Ceard, J. De Favereau De Jeneret, C. Delaere, T. du Pree, D. Favart,
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J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux,
France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau,
L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov



19

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, L. Benhabib, L. Bianchini, M. Bluj11, C. Broutin, P. Busson, C. Charlot,
N. Daci, T. Dahms, L. Dobrzynski, S. Elgammal, R. Granier de Cassagnac, M. Haguenauer,
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K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski
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27: Also at Università degli studi di Siena, Siena, Italy
28: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
29: Also at University of California, Los Angeles, Los Angeles, USA
30: Also at University of Florida, Gainesville, USA
31: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
32: Also at INFN Sezione di Roma; Università di Roma ”La Sapienza”, Roma, Italy
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