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Abstract

We develop a forward branching phase-space generator for use in next-to-leading order parton
level event generators. By performirig— 3 branchings from a fixed jet phase-space point, all
bremsstrahlung events contributing to the given jet configuration are generated. The resulting phase-
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next-to-leading order corrections to fully differential gluonic jet configurations.
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1 Introduction

The evaluation of the virtual corrections to processesuiticly a large number of jets has become straight-
forward [1-19] due to the advent of algorithmic implemeintas [20—27] of generalized unitarity [28, 29]
using parametric integration techniques [30]. The onlyuneml diagrammatic evaluations are partonic
tree-level amplitudes. These diagrams can be efficientijueted through algorithmic recursion rela-
tions [31-42]. As a consequence, all building blocks existdnstruct a Next-to-Leading Order (NLO)
event generator for the evaluation of high multiplicity getservables. Such a generator would expand the
possible phenomenological studies at, for example, thgd_Hiadron Collider (LHC) significantly.

However, the integration of the bremsstrahlung events phiase space hinders further development
of such generators. Current methods for the automated ncehartegration [43—50] of the real matrix



elements over the high dimensional phase space require tangputer resources. Already for— 4
processes, the obtainable statistical accuracy is atighftictor for realistic phenomenology.

On the other hand, shower Monte Carlo programs [51-57] seéficient algorithms exist to generate
events closely following the physics [58]. It is thereforfeirderest to investigate phase-space generators
based on especially dipole showers [59-66] as they emplagtghase-space factorization. A shower
based NLO phase-space generator uses as a starting poiptaaton final state, which can have additional
multiple non-partonic particles. The origin of this final state does not affect the NLO generaliocan
be a previously generated Leading Order (LO) event (we@ybteunweighted), an event provided by a
phase-space generator such asiR0 [67], SARGE [68], HAAG [69], KALEU [70] or any other source.
The Forward Branching Phase-Space (FBPS) generator witpret each of the parton momenta as a jet
momentum. Next, following the dipole shower formalism,érforms forward2 — 3 branchings, thereby
generating thén + 1)-parton phase space. The brancher is constructed in a Wy jitsalgorithm based
on a3 — 2 clustering algorithm exactly inverts the branching. As asEnuence the observed final state
is unaltered during the phase-space integration.

As a result, any observable constructed from fiked number of jet momenta remainmalteredby

the FBPS generator and hence does not constrain the resdiemiphase-space integration, which can
thus be viewed as integrating out the partonic degrees efltna inside the jets. In this sense the jet has
become opaque and no information can be extracted abouttdreal jet structure, which is the domain
of resummed calculations, in particular parton showers. ndte that if a dipole shower would use the
same brancher, the matching of this shower to the NLO caioullbecomes a triviality as the shower, just
as the observables, factorizes from the bremsstrahluegration. In other words, the shower does not
alter the NLO event weight nor does it change the partonioljservable.

The FBPS generator is an one-particle phase-space irgegiradependent from the number of jets.
Therefore, for a givem-jet configuration, the numerical accuracy is only affedidhe number of pos-
sible2 — 3 branchings, i.e. the number of jet pairs. This means thatrderoto maintain constant
statistical accuracy, as the number of jets increase, thetdiGarlo program need8(Ne,is x n?) gen-
erated bremsstrahlung events whafg. is a number of events independent of the jet multiplicityAn
additional virtue is that all generated bremsstrahlunghesyare added to the same virtual event, making
the infra-red/collinear cancellations efficient and easpptimize in the three-dimensional phase space.
This allows us to use a simple slicing method to facilitaee ¢hncellation of the infra-red/collinear singu-
larities. Note that subtraction methods can be triviallpiemented as any jet observable does not depend
on the generated bremsstrahlung event.

In the first implementation of this method, we use a speXiat 2 clustering jet algorithm, which is
an augmente@ — 1 jet algorithm. This augmentation adds a recoil parton to2he 1 clustering. As
a result, the NLO jet phase space becomes identical to theet ghpse space. Specifically, jets resulting
from the clustering remain massless and the jet algoritresgives momentum conservation, i.e. particles
“clustered” with the beam are not discarded. From thesergasens it is clear, the jet augmentations
will only modify the last step in the jet algorithm: the clashg prescription. The clustering step is added
rather ad-hoc to current jet algorithms, which makes itexasi implement the necessary modifications as
described later on in this paper.

LAt this early stage of developing our method, we do not casside cases where partonic decays of color-neutral bosons
may contribute to the.-parton final state.



The layout of the paper is as follows. In Section 2 we discassds regarding the infra-red safety of
jet observables. We will propose augmentations of the garithms to make all possible jet observables
infra-red safe. Because of their enhanced infra-red sdfa\ber, these augmented jet algorithms have im-
proved theoretical properties. We will use these propetiseconstruct the FBPS generator in Section 3.
With this phase-space generator at hand, we build — as a-pfgwinciple — a leading-color NLO parton
level event generator foPP — n gluonic jets. This is detailed in Section 4, before we give can-
clusions in Section 5. Finally, two appendices are addea. first appendix details the number and type
of branchings occurring in the FBPS generator. The secopdratix lists the explicit jet configurations
utilized in Section 4 to perform the numerical studies.

2 The Fully Differential Jet Cross Section

At hadron colliders, jets form the basis of defining the ewepblogy and thereby characterize the un-
derlying hard scattering event. It is therefore imperativenderstand jets in both experiment and theory.
An essential requirement of the jet defining algorithm isanfed finiteness, which expresses the fact that
the addition of arbitrary soft/collinear particles doeg alter the final-state jet multiplicity. The infra-red
finiteness requirement in jet algorithms is by now well ustieod (see e.g. [71]).

Before the advent of the numerical parton level NLO genesafd2, 73], semi-numerical programs
calculated corrections to differential jet observablesr &ample, in Ref. [74] the NLO corrections to
the semi-exclusive dijet cross section are calculated Xphatly given values of the dijet mass and the
rapidities of the two leading jets. This gives a necessaniisa-red safe (finite) correction for each point
in the dijet phase space. Note that the jet algorithm inblyittorms an integral part of this calculation.

Current parton level NLO multi-jet generators perform a Mo@arlo integration over the bremsstrah-
lung phase space independently of any actual jet algoritfiiiis has the apparent advantage that any
experimental jet algorithm can be numerically accommatiatethe Monte Carlo programs. However,
owing to the infra-red properties of the jet algorithms, generators only produce infra-red safe results
for more inclusive jet observables. The resulting preditsi from the Monte Carlo generators are not
infra-red safe for each point in the multi-jet phase spadb@& O and NLO jet phase spaces only coincide
on the boundary defined by soft/collinear emissions. A sefiicamount of jet phase-space averaging is
required to obtain finite results. For example, one cannetankitrarily small bin sizes in representing the
results of the Monte Carlo integration — sufficiently widedvare needed.

As mentioned above while current jet algorithms are in&d-finite, the observables constructed from
these jets are not necessarily infra-red safe. This is atd@ensequence of the clustering procedure
constituting the last step of the jet algorithms. For examghe dijet azimuthal angle de-correlation is
a typical non infra-red safe jet observable [75, 76]. At LO=£ 2), the two jets in the event are exactly
back-to-back in the azimuthal plane. At NLO, the generatibiie jet mass will cause the bremsstrahlung
events to deviate from the back-to-back configuration legvincanceled logarithmic divergences. On the
contrary, with an infra-red safe jet algorithm, the NLO jdtage space is identical to the LO jet phase
space and the two jets remain balanced. All that is caladilat&LO is theK -factor; only a third jet will
induce a de-correlation.

It is important to note that the Kinoshita—Lee—NauenbergNIKtheorem is not a jet phase-space aver-
aged property. By integrating over all partonic contribag to &fixedjet configuration, the KLN theorem



should already hold. In other words, an infra-red safe jgbalhm must provide a proper cancellation
between virtual and bremsstrahlung events dachjet phase-space point. As a consequence any jet
observable constructed through an infra-red safe jet dhgoris finite.

2.1 Jet algorithms and infra-red safe observables

To explore the issues with jet algorithms further, we wilkfitook at final-state jets at a lepton collider:
(¢~ — Jp---J,. Here, a sequential jet algorithm is readily constructediefining, as a function of
the cluster momentéc; }, an event resolution measufg,(ci, ..., ¢y ). The event resolution separates
the soft/collinear region from the hard region of phase spathe clusters can be individual hadrons,
calorimeter cells, tracks and combinations thereof Rif; is smaller than the requested jet resolution,
R, the number of clusters is recombined using the clusterguioe defined by the specific jet algorithm:
{c1,...,em} — {é1,...,én-1}. Thisis repeated untR..; > Rje, at which point the remaining clusters
are identified as the jets.

Jet algorithms currently used by experiments ( [71, 77—8&Jjne the event resolution function in
terms of resolution functions of pairs of clustef3.,; = min;; R;; : Ri; = R(c;, ¢;). The minimization
procedure identifies the least resolved pair of clustersecoimbines these two clusters to one new cluster,
thereby decreasing the total number of clusters in the dweate. In here lies a fundamental issue: either
the newly formed cluster has a four-momentum, which is nvassiie to adding the momenta of the two
clusters;; = c¢; + ¢;, or overall momentum conservation is violated. From a tegcal point of view, the
2 — 1 clustering causes the NLO jet phase space to separate feohljet phase space. The LO jets
are massless, while the NLO jets now necessarily are masiiay only match in the exact soft/collinear
limit, in which case the new cluster is masslegg:= 0. As a result we have infra-red finiteness, but no
infra-red safety. The necessary care has to be taken whanndgfet observables. For a given value of a
jet observable),,s, the virtual correction contributes at a single paif® — O,s) while, because of the
jet mass, the bremsstrahlung is distributedag@g© — O,s). This behavior is “cured” by allowing, for
example, sufficient smearing in histogram bins.

To maintain infra-red safety, we need to both keep masslessecs and maintain overall momen-
tum conservation when combining clusters. The minimal @doece to do this is by defining the reso-
lution function in terms of triplets of clusters [82R..« = min;;; R(c;, ¢j,c;). The triplets of clusters
{ci, ¢, e} can be recombined to pairs of clustdis, ¢; }, while maintaining both momentum conserva-
tion, ¢; + ¢; = ¢; + ¢; + ¢, and keeping the newly formed clusters masslél%&, c? = 0.2 With this
type of jet algorithm one can define infra-red safe jet crasgigns. As a consequence the fully differ-
ential cross sectiod(”)a/d Ji---dJy, and all possible distributions of jet observables derifredh it,
are infra-red safe. The reason this can be done is that thendON&O jet phase spaces exactly match.
We can therefore construct a phase-space brancher similae bnes used in dipole showers [61, 64]. By
choosing the branching map as the inverse ofithe 2 clustering used in the jet algorithm, all generated
bremsstrahlung events are mapped back to the same jet pbasepoint. This results in an infra-red safe,
fully differential jet cross section by virtue of the KLN tbeem. That is, both virtual and bremsstrahlung
corrections contribute t6(O — O,,s) only and no smearing is required to obtain a finite result.

As is clear from the above discussions, it is straightfodsar construct a FBPS generator for lepton
colliders. It would calculate thé-factor to a fixed jet phase-space point, i.e. the fully défdial jet

2If flavor-tagged clusters are involveéf # 0, the possible quark mass has to be taken into consideration.



cross section. However, for hadron colliders, the inconpagons cause additional complications. The
current jet algorithms used in hadron colliders augmentléipgon collider jet algorithms by including
a resolution measure of clusters with respect to the beana clfister is combined with the beam, it
is effectively removed. As a result the remaining clustdrdate momentum conservation as we have
un-clustered momenta. To get infra-red safety, momentunsewation must be preserved during the
clustering. There are two options: either build up a beapojeperform final-state clusteringsly.

The first option is to construct a beam jet: instead of remgptie final-state clusters, when combining
with the incoming beam, they are combined with the respedteparate) beam cluster. Once the event
resolution passes the jet resolution, we are left with twamining beam jets and the final-state jets. All
jets are massless and four-momentum is conserved. Howtheetywo beam-jet momenta are not along
the incoming (anti-)proton directions. To map onto the LOphase space, where the two beam-jet
momentaare alongthe incoming (anti-)proton directions, we have to define jieobservables in the
frame where the two beam jets are along the (anti-)protoactions. That is, we have to perform a
transverse momentum boost to this frame. From a theorgi@at of view, this has the desirable feature
that the effect of “initial-state radiation” is minimized this radiation does not affect the observable due to
the boost. Effectively, the initial-state radiation isagtated out within the jet cone and the KLN theorem
guarantees a properly defined fully differential jet crosstion.

The second option is to constrain the initial-state clgsteremain along the respective beam direction
during the clustering phase: the beam particle momentardye@scaled. While not immediately obvious,
this can always be accomplished using 3he> 2 clustering maps.From an experimental point of view,
this is not a particular desirable option as all radiatioassigned to the final-state jets.

For a proof-of-principle calculation, the second optiorhighly desirable as it minimizes theoretical
complications. It will be used in this paper. As this is a NL&loulation, only one clustering step is
performed. We start with the partonic scatteringp, — p1---pn+1 and reduce this to the jet final
stateJ,J, — Ji ---J,. Note thata andb are only used to label the incoming partons or jets; no flavor
information is associated with these labels. Out of thedangss of infra-red safe jet algorithms, which
can be constructed, the explicit jet algorithm used in thiggy is as follows:

1. Find initial- or final-state partohand final-state partop by minimizing the resolution parameter
Rij = lsij| = |(£pi + ;)| 1)
where 4" is used fori being a final-state particle and-" for being an initial-state particle.
2. Given partong and; of the previous step, find final-state parteiy minimizing

Rij;k = min (RikaRj ) . (2)

3. If parton: is a final-state parton: cluster partérandj, p;; = p; + p;, and use partok as the
recoil momentum to make the cluster massless:

{ Ji = pij + (1 =) pk,

3)
Jr = YD

3This clustering only works for final states with at least o j



with v = 1 + s;;/(sit + sjx). This maps the three final-state partons onto two massléss je
{pi,vj, pr} — {Ji, Ji} while preserving momentum conservatioh:+ Jj, = p; + pj + Dk.-

4. If parton: is an initial-state parton, say= a: cluster the two final-state momenig;, = p; + p,
and use the initial-state partaras the recoil momentum to make the cluster massless:

{ Ja = YPa (4)
Ji = pjk— (1 =7)pa

with v = 1 — s;1/(Sa; + Sak). The two final-state partons are now mapped onto one magstess
and a rescaled initial-state partofyq, p;, pr} — {Ja,J;}, while maintaining overall momentum
conservationJ, — J; = p, — pj — Pr-

We will use aninclusivemode of the algorithm. This means, we keep clustering umgildesired (LO
predefined) number of jets is reached. The alternative ikigiar until the jet resolution exceeds the preset
minimum, after which the event is vetoed, if the number o jetnot equal to the desired number of jets.
This is theexclusivemode of the algorithm, which igot used in this paper. Note that for reproducing
the usual NLOn-jet inclusive observables, we have to perform a two-stage First, generate the NLO
K-factors for the exclusiver-jet events, next, add the: 4+ 1)-jet events at LO. From this event sample
the observable can be determined.

2.2 Defining the fully differential jet cross section

We want to calculate the fully differential cross sectioraafr-jet final state characterized by the jet-axis
momenta/, ..., J, using the inclusive version of the jet algorithm specifiedhia previous subsection.
The jet event kinematics are given by

TPy +xpy Py = Ji+-+Jy, ©))
J =0,

whereP, ; denote the incoming hadron momenta and

VS

xa,bPa,b = xa,bT (17i17070) . (6)

The collider energy is given by’S and the momentum fractions, andz;, are calculated from the recon-
structed jets:

1S~ 0) oty
Tap = e’ 7
N ;pT )

using the transverse momenta and rapidities of the jets,

P = V)2 + @)))? and yi = 5 log [ —— = |, (8)
2 E(z) _ pgl)



respectively. Note that here we have used the conveptien( £, p., p,, py).
We define the differential cross section of the jet obser/ébhs

do 1 d™ o
% = m/dq)(l’apa,l’bpb g Jl,...,Jn) dl‘ad.’ljb 6(0— O(Jl,,Jn)> m y (9)
where the jet phase space is given by
d® (2o P,y Py Jiy.ooy Jy) = <H d®J; 6(J?) H(EZ-)> §(xoPy + xyPy— Jy — -+ — Jy)
=1
md®) T,
= H1 o5 §(xq Py +apPy — Jy — - — Jn) . (10)

We consider all jets as indistinguishable and hence havdraduce the “identical-jets” averaging factor
of (n!)~1. The fully differential jet cross section at LO is given by

2

9

d™ e, (2)4-3n o

- Fy () F ‘ wPor 2Py J1s T

Al ~ trmg 2. Fel@) Fylw) |MU(zePaaBy )
Uafofifn}

(11)
where thef, , are the parton density functions of the partons in the beaticles and\ ﬂ(0)|2 is the
squared LO scattering amplitude, spin/color summed (@eebrover final (initial) states. The flavor sum
runs over all possible, distinguishable partonic subpssesf, f, — fi--- f. that contribute to the jet
final state* For example, &g + (n — 2)g final state has(n — 1) distinct flavor terms to be added for
one specific initial-state configuration. This way we acadanall ways of assigning the distinguishable
partons of the final staté,, ..., f, to the jetsJy, ..., J,. Note that at LO no phase-space integration is
left for the fully differential jet cross section. Howeveising our definition, the fully differential jet cross
section will be symmetric under any exchange of partonsawuitthe need of integrating over phase space.
Once one does the phase-space integration, as in Eq. (Ystlaésymmetry factors are recovered.

Because the jet algorithm preserves explicit momentumerwation and keeps the jets massless, we
can define &-factor per jet phase-space poift, ..., J,. The NLO corrections to the fully differential
jet cross section can hence be written as

d™ oo

d(n)ONLO
NLO( 1, 7<]) X l’llrn

— 12
dJy---dJy (12)

In the remainder of the paper we will derive the expressianifq , and develop, as a proof-of-principle,
a Monte Carlo integrator for the explicit evaluation of tRefactor for the pure gluonic contribution of an
n-jet event at a hadron collider. Thg-factor is composed of three contributions, the Born coution

“The flavor labelsf; denote gluons and massless (anti-)quarks. We omit spegifither than the partonic flavors for reasons
of keeping the notation simple. For example, we could havectov boson decaying leptonically in all subprocesses.



expressed as “1”, the virtual contributiol, and the bremsstrahlung paRt, We write

Kuo(Ji,. oy dn) = 1+ V(Ji,...,Jn) + R(Ji,..., Jn)
_ asNc
-1+ ( = ><V(J1,...,Jn) + R(Jl,...,Jn)), (13)

where we have factorized the strong-coupling expansioarpeteras/27 and the color factorNVc.

Eq. (13) expresses the cancellation of infra-red singiggriper jet phase-space pomn and R on their
own diverge but their sum gives a finite contribution to fkiefactor. For the calculation of the virtual cor-
rections, many packages have been developed [1-10, 1&;2Z5P, which can be readily used to calculate
this part of theK -factor. On the other hand, the calculation of the bremkkirey contributionR requires

a careful derivation.

To summarize, for the calculation of a jet observable, weegate, using Eq. (9), the jet configurations
contributing to the specific value of the observable. Fohegenerated jet phase-space point, we calcu
late the LO weight according to Eq. (11) and the NLO re-weighmultiplicative K-factor as given in
Eq. (12).

3 The Forward Branching Phase-Space Generator

The explicit construction of the FBPS generator proceedseueral steps. In Section 3.1 the first step is
taken by the decomposition of the bremsstrahlung phase $pacsectors using the event resolution func-
tion given by the jet algorithm. Each sector is defined thiotlg jet algorithm selecting an unique triplet
of partons to be clustered. Next, owing to the invertibilitithe clustering, we develop in Section 3.2 the
real-emission phase-space formalism based on forwarcirsgn off the Born level jet configurations. In
Section 3.3, we derive the specific forward branchers, wfilchach sector such that ttie— 2 cluster
map given by the jet algorithm will recombine the three pastto the same two jets specified by the jet
phase-space point. Finally, in Section 3.4, the proceduralidated using the &vBo flat phase-space
generator.

3.1 An invertible sector decomposition of phase space

The bremsstrahlung contribution to the jet cross sectiath) the jet kinematics specified in Eq. (5), is
given by

~ d™e ! (2m)t=3n 1
R(Ji,....Jn) = <7LO(J1,...,JTL)> X X

dJi - dJy 25 (n+1)!
Fy (2a) F
x > d@(@apa,:szble,...,pnﬂ)d@adib%fﬂ%)

{fafo—frfnfnt1}

2
X Ajet(Jlu .. '7‘]TL |paapb7p17' .- 7pn+1) ‘M(O) (paupb;pla cee 7pn+1)‘

: (14)
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wherep, = &,P, andp, = ,P,. Compared to the LO case, we now have to sum over all partonic
subprocesses with one more parton in the final state. Asdyebdr Egs. (9) and (11), the flavor sum
in combination with the (identical-particle) averagingtiar 1/(n + 1)! guarantee the correct symmetry
factors for the(n 4 1)-particle final states.

The generalized jet delta-functiak;., decides whether a specific subprocess with its parton kitiesna
contributes to the bremsstrahlung facfomt the jet phase-space point, .. ., J,. This jet delta-function
is equal to unity if the jet algorithm clusters the parton neonap,,, py, p1, - - - , Pnt1 t0 the jet-axis four-
vectors.Jy, ..., J, and is zero otherwise. The function (as used here) is flaind bt the jets as well
as the partons are indistinguishable, therefdxg, has to be symmetric under any exchange of jet and
parton momenta. To integrate over the jet delta-functiom,make use of thg — 2 clustering algorithm
discussed in the previous section. This allows us to explaaget delta-function over a sum of dipoles,
each selecting three partons, which will be clustered byjghalgorithm to two jets and, as a result, a
value for the resolution parameté;;.;. will be returned for any of these combinations. The expansio
can then be written as follows:

Ajet(Jh' . ~7Jn ‘ Pa;Pbs P15 - - - 7pn+1)

= 5(1‘@ — .f:‘a) (5(.1‘1, — Zﬁb) X

veto

o7 "
Z Z Ajet (S5 T | Phys P Pry) % H 0(Js — pr,)

i#£] k€ Snt1 s#£1,j
4,j=1,...,n s=1,...,n

+  O(zp — Tp) Z Ajet (Ji | Pas Prors Ph;) Oicr ik, H 8(Js — pr.)

k€ Snt1 s#1
i=1,...,n s=1,...,n
+ 0a—2a) > ANjet(Ji | i PrarsPr) Ot ] 6(Js — pra) s (15)
k€ Snt1 s#1
i=1,....n s=1,....,n

where the sums are over all possible pairs of jet-axis moanént . . , J,, and permutations of the brems-
strahlung four-momentay,...,p,+1. The index vector: describes the elements of the permutations
Sp+1 Of the set{1,2,...,n + 1}. The permutation sum ensures that all dipole—spectatdigroations
and their respectiven — 2)! phase-space combinations in the leftover parton momeetaaéen into
account.

The sector veto (or, just as well, jet resolution) @g{f}f implements the first two steps of our jet
algorithm proposed in Section 2.1. According to Eq. (1), waleate

Rmin = R@@ = minva (16)
vw



11

wherev,w =1,...,n+ 1andv < w. Ifwe takev,w # r = 1,...,n + 1 and define

/ —

min = Min Ry = min min(Ry,, Rar) , an
T

T

cf. Eq. (2), we can formulate this cut as

GZS;CZ =0 (Rmin - Rim) 9( ;nin - Rim;j) ) (18)
using the Heaviside step functiéz), which equals one i: > 0 and is zero otherwise.Step 3 and 4
of the proposed jet algorithm are executed when one compitiether the generid\ . building blocks
are different from zero. They will return one, only if the par momenta reconstruct to the two given
jet momenta or, in the initial—final state cases, to the onergjet momentum. More specifically, we
understand\je (J; J' | pi, pm;pj) = 1, ifand only if J = pip, + (1 — ) pj andJ’ = v p;, cf. Eq. (3).
Neither in the vice versa cask« J’, nor in any other combination we find the genefi¢.; # 0. This
way we avoid double counting when we permute over all partomentum configurations. The emitter—
emitted parton symmetry i@}ﬁff’j, however, leads to double counting the same event in the-final
parton sum of Eq. (15), which we remove by multiplying thetéad /2 to the vetd® Since the order of the
bremsstrahlung momenta is permuted, we guarantee thatmabioations are tested (ily;.; as well as the
product of thed(.Js — pi,) terms) to make sure that the bremsstrahlung events ardesl@chich match
the considered jet phase-space point kinematics andfohergive a contribution tdfz(Jl, vy dn).

We observe in Eqg. (15) that the jet delta-function breakshgesp space in two types of sectors: final—
final state sectors and initial-final state sectors. Noteitharinciple there could be an initial-initial state
sector as well. However, this will only occur if we allow fdrd build-up of beam jets.

We finally note that for each jet phase-space point exactéysattor contributes. Witl! . (based
on Rui,) a global event resolution measure is given, which dependdlanitial-state and jet momenta.
This partitioning of phase space is dictated by the eveugen function given by the jet algorithm, see
Eq. (1). As a consequence the phase space is invertiblen thesjet four-momenta; and.J; one can —
by inverting the cluster map of the jet algorithm — generhtethree-parton configurations for each sector,
which will cluster back to these two initial jets. Such a fang branching Monte Carlo integrator exactly
integrates out the internal jet structure. In the next sectve will formulate these forward branchers.

3.2 Phase-space construction through forward branching

To construct the forward brancher for a sector, we have tgnatte Eq. (14) over the jet delta-function of
Eqg. (15). The jet delta-function selects thdse+ 1)-parton final states, which reconstruct to the given
n-jet phase-space point. We can turn the approach aroundsartieljet delta-function as a prescription to
explicitly generate the+1 bremsstrahlung parton momenta givenithgt momenta. This establishes the
forward-branching picture, which in addition allows foetavoidance of the dipole and permutation sums
of Eq. (15). To see this, we can write down the final—final spiéee of Eq. (14) for a single subprocess

The jet clustering of Section 2.1 is symmetric under the erge of the emitter and emitted partaR.(, = R.. and
Ryv;r = Ruw;r). Therefore, we do not have to consider> v to determine theRi, and R, ;...
SLater on, we resolve this issue by partitioning the phaseesfarther according to the different parton emitter sgtin



12

neglecting all prefactors, including the Born matrix elere

EFF(J]J R} Jn)

~ Z Z d®(JZ] = pki>pkn+1>pkj) Ajet (J’La J] | pk’i7pkn+1;pkj)

i#£] k€ Snt1
i7j:17"'7n

veto
@kikn+1§kj

2

2

X ‘M(O) (ZaPas ©oPo; {Pky = Js}osi s Phi» Phins1s Pk;) (19)
whereJ;; = J;+J;. We observe that the phase-space integration has beemhipleto many factorized
pieces of splitting dipoles. Furthermore, we can exchahgetder in performing the dipole phase-space
integrations and summations. The integration over thestharameter phase spaces can be accomplished
through Monte Carlo techniques. We can treat the expligbldi and permutation sums similarly: in-
stead of carrying them out, we can choose dipole and partofigtwations at randorm.We just have to
keep track of and include possible weights that may occunerselection of dipoles and bremsstrahlung
partons.

Egs. (11) and (14) have complete flavor sums running overoaiple subprocesses that contribute to
then-jet and(n + 1)-jet final states, respectively. We can maintain this inekilavor approach in the
forward generation of the real-emission events. No knogaeaf the particular LO process and its flavors
is needed apart from the given set of the jet-axis momenta&hake interpret as the initial four-vectors
before the parton branching. The forward branching ocaargrinciple, independently of flavor; the
pure generation of the bremsstrahlung momenta in fact hdlavor dependence. The only place where
flavor conditions enter is in combining phase space with tlarimelement for the randomly chosen
subprocess containiy— n + 1 strongly interacting particles: the numberdf- 2 clusterings as given
by combinatorics may reduce owing to flavor constrafnts.

To simplify the discussion, we focus on the pure gluonic caG®nsequently, the flavor sums in
Egs. (11) and (14) collapse to single terms. We also can gianpange to set the first partonic four-
vectors according to the jet-axis momenta. In the final-foaale for example, two of these, the emitter
and spectator momenta, will change owing to the generatidheoadditionally emitted parton, which
we can always choose to label by+ 1. For ordered amplitudes, one may insert the new parton right
after the emitter partoh — 1 and shift all subsequent ones by ohe;» | + 1. Because of the forward
construction of the parton momenta, the criteria undegytime generic\c(J;; J; | pi, pr;p;) terms will
be satisfied by construction. Thus, these terms are reduaddrthe constrained generationgf p,- and
p; already accounts for the: + 1) n (n — 1) combinations of arranging three partons to be clustereleto t
two jets picked for forward branching. Still, with respeotthe non-branching part of the final state, we
have(n — 2)! possibilities to assign the parton momenta with certaimjetnenta. However, owing to the

"Owing to the flavor blindness of the jet definition, the partmmfigurations have to be varied too as long as the chosen
subprocess contains different parton flavors. We can ussetrof indistinguishable particles though to reduce thigimumber
of (n 4+ 1)! possibilities.

8As an alternative the FBPS generator may be designed sutththparton flavors are treated as in dipole showers. For
example, select a flavor assignment at LO as in Eq. (11), nowider an initial-state branching; if the LO subprocess dras
incoming quark, there are two bremsstrahlung contribtign— gg andg — ¢g where the gluon and anti-quark are radiated
off, respectively. The corresponding+ 1 matrix element then determines the weight of the selectédrop



13

symmetry of the final state, the leftover permutation sumtmameplaced by a multiplicative factor. The

G)Z-fof is included to the three-parton phase space and acts asegese cut implementing the jet res-
olution criteria. Applying similar arguments to the initifinal state cases, we can take all modifications
and write the result of the phase-space integration as

-2
X

R(Jl,...,Jn):(%) (n+ (M (Jo = ZaParJy = 24Py J1, . .-, J)

1 ——(0 2
[ Z 1 /dq)veto (Jw‘]j thpT?pj) ‘M( )(Jaujb; {ps = JS}S#Z'JWpiuprupj)‘

— n—
i7j
7j:17" n
- zq Fy, (& (0 2
+ Z d Dyeto (Janj Hpaaprapj) T ‘M pmJba {ps —J}s;,é]»pmpj)‘
- zp Fr, (2p) ‘—( ‘2
dq)v J7J sPrylPi) =1 7\ as Pbs JS i Prs Vg .
;/ eto (o, Jj = Dos Pry D)) F ) () M (Jas poi Aps = Js} oz Pro D))

(20)

Note that thgn+1)! term in the denominator has been combined with the multifilie numerator factors
(n — 2)!'and(n — 1)! for final-final and initial-final state branchings, respeslif. Also,r = n + 1 and
Pab = TapPap While J,, = 43P, . As before, the dipole sum and the three-parameter phase spa
be calculated using a Monte Carlo integration, 32/ — (1/Nuc) >;—y  n,c d R,

The dipole factorization of phase space is obvious from theaton above. The — 3 differential
phase-space volumes can be described by dipole or antemsa-pphace factors, which are also used in
shower algorithms. In our calculation the combination wiie matrix element then fully specifies the
branching, which in showers is achieved only approximatshthe use of the splitting function. The
final—final state antenna phase space, cf. [72,83], is giyen b

oY w1 d
dq)veto(JhJj ’_)piaprapj) = ?’J dszrdsrj 2¢ (21)

2 Sirj

whereas the initial-final state antenna phase space, ¢B4Y% expressed as

1 d®p P, J;
_ . -, . _ vet r a J
dveto(Ja = wala; Jj = EalFasprips) = O 5- 2E, <Pa-Jj—Pa-pr> ' (22)

In the latter casep; is given by momentum conservation, i%,P, — J; = ©,P, — p, — p;. The new
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momentum fractiori,, can be calculated using the conditipﬁ: 0; we obtain

o Jj'pr
o = :Ca—i_Pa'Jj_Pa'pr‘

(23)

In both cases above, the phase-space factors have to bemagnped by the corresponding sector veto
(or jet resolution) cut. The cuts guarantee the partitigrofithe bremsstrahlung phase space such that no
overlapping regions can emerge. The actual sector phas® smplume is then measured by the Monte
Carlo integration by means of the sector veto cut.

The formulation of the effective FBPS generator used in #raainder of the paper is now simple.
Given ann-jet event, we generate the bremsstrahlung events in thevioly manner: with probability
(n —1)/(n 4+ 1), select a pair of final-state jets randomly and perform a fifighl state branching.
Else, select one of the two incoming partons and one fin&-$& and perform an initialfinal state
branching. Appendix A gives more explanations regarding $klection. The bremsstrahlung event now
hasn + 1 final-state partons, which reconstruct back to the origj@atonfiguration using our specific
jet algorithm. We repeat the procedure until a sufficient hamof bremsstrahlung events have been
generated to estimate the-factor for this particular jet event. This in fact is the enéon of the Monte
Carlo integration, whose uncertainty can be controlledH®/rtumber of generated Monte Carlo events
per jet phase-space point.

3.3 Forward branchers

To completely assemble the forward-branching buildup eftiremsstrahlung phase space, we still have
to define the generated three-parton final state in termseobtiginal jets and the dipole phase-space
integration variables. In doing so we have to respect thestcaint that the jet algorithm clusters the
three generated partons back to the two initiator jets. énribaxt two subsections, we will formulate the
branchers, explicitly designed for this task.

3.3.1 The final—final state brancher

From the final—final state phase-space factor of Eq. (21) waebthe phase-space factor for the FBPS
generator. We write

d ®Pveto (Ji, Jj > Dispropj) = g Sirj AYir A Yy % 0 (1= yir —yrj) 0 (yij — urj) Ofry  (24)
where the sector veto cut has been introduced in Eq. (18gr&8esomments are in order. We have defined
Ykt = Sk1/Sirj With s = (p + p1)? andsiy; = (pi + pr +p;)? = (J; + J;)?. Apart from the kinematic
constrainty;, +v,; < 1, we added an additional constraipt, < y;;, which divides each sector into two
(sub)sectors, breaking the emitter—emitted partos:(r) symmetry. As a result, the factay2 formerly
presentin Eg. (21) is dropped here. The additional comgtisheeded to accommodate for the integration
over asymmetric functions ip; andp,., e.g. over ordered amplitudes (or over quark—gluon statbgsh

is important for later applications). The distinction igpaularly important when we combine the sectors
with ordered matrix elements as each sector has its own lgirityustructure. It manifests the notion of
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pi,» pr andp; respectively being the emitter, emitted parton and speciatthe phase-space branching.

The algorithmic description of the final—final state brandses follows: starting from two final-state
jetsJ; andJ;;

1. generate the integration variablgs, y,; and¢/(27) on the interval0, 1] and fulfill the constraints
vir +yr; < 1andy,; < y;;. Notice that the sector veto ¢ eto guaranteeg;, < y,;, cf. Eq. (18).

2. rescale the four-momenta and.J;:

{ ki = Ji+vJj,

(25)
b= (=),
wherey = y;, such that we find? = y;, sir;.

3. determine the final-state partgnsandp, by invoking the phase-space decaykpf— p; + p,- with
the on-shell conditiop? = p? = 0.

4, Setpj = ]{Zj.

5. pass the event if and only if the sector decomposition@(}ﬁg‘}‘? has been satisfied. Assign the weight
sir; /2 to the even®

Using this construction procedure, the final—final statestelting of the jet algorithm maps the partonic
set{p;, p,,p;} created through this FBPS generator back onto the jet{pit/;}. Note that each of the
forward branchers would generate the “same” one-partibiesp space, if the sector veto €if" o was
removed from Eq. (24). An additional integration over thget phase space would generate the whole
(n + 1)-particle bremsstrahlung phase space.

3.3.2 The initial-final state brancher

From the initial-final state phase-space factor of Eq. (22wtract the corresponding phase-space factor
for the FBPS generator:

dq)veto(frapaa Jj = fi’aPa,Pr,Pj)

1 d(3)ﬁ P ’Jj
= o " a 0 ril = |Sar veto. 26
27 QET <Pa’<]j_Pa'pT> (|8]‘ ‘S |) @C“"J ( )

Because the initial-state parton is distinct from the fistake partons, no additional ordering requirements
are present. Note that — as in the previous case — by remadvengedctor veto cu‘i—)git;, one allows for

this forward brancher to generate the whle+ 1)-parton bremsstrahlung phase space. The algorithmic
construction underlying this FBPS generator is outlineldwelt is set up such that the initialfinal state

This may be supplemented by a possible weight from the gtiaeraf the integration variables. For example, one may
rewrite ds ass d(log s), which would generate an additional weight to be included.



16

clustering of the jet algorithm maps the generated triplehomenta{z, Py, p,, p; } back onto the initial—
final jet pair {z,F,, J;}. The generation of the momenta then proceeds as followstingtdrom an
initial-state partorz, P, and a final-state jef;;

1. generate the one-particle phase-space momegitwnithin the appropriate integration boundaries.

2. having generateg., calculate

{ z = Zgfrs = 1+ (Jj'pr)/[xapa'(‘]j_pr)]7

(27)
p; = Jj —pr—i—(z— 1)33aPa .

3. pass the event with Weig@Fr (%) assigned, if and only if the jet resolution dd ‘;t;’ has

been satisfied.

3.4 Numerical validation of the phase space generator

We want to verify the FBPS generator on itself, before we bsedgenerator to calculate th€-factor

for an n-jet phase-space point. For this purpose we do not add indhtilsutions stemming from the
matrix elements and PDFs. This is an important validatioartsure the correct treatment of the weight
generation during the build-up of the bremsstrahlung plsasee. We use the flat phase-space generator
RAamBO [67] for the numerical validation of the FBPS generator. phase space generated by Rambo,
dR,, is connected to the customary flat phase spakehrough:

d® (2o Lo, tp Py J1, ..., Jn) =

n—1 (n—2)
(g)( ) ((T(ijﬁb)izz_m') an(:raPa,bebHJl,...,Jn) . (28)
For this test, we do not include parton density functionstéad we choose the parton fractions uniformly
between zero and one. We definerafet event at collider energy of 7 TeV using the followingeszion
criteria for then jets regarding their transverse momentum, rapidity andrgetncal jet—jet separation:
p¥> > 250 GeV, |y;| < 2.0 andAR;; > 0.5. We present the results of our tests in Figures 1 and 2 where
we exemplify the FBPS validation by means of comparisongstfidutions for two distinct observables.
Here, we define

(29)

as a dimensionless (scaled) variant of an ordindry variable where instead of using the scalar sum of
the jetprs, the squared quantities have been summed up. With thedsebservable, we want to look
into an angular distribution, namely the azimuthal anglevieen the two leading jets. This variable is



17

o

x10° _Flat phase space: 2 jet inclusive
2 — Rambo + Clustering
r — Rambo + Branching
L — Rambo
.
2 L
[
¢
5
g L
E L
=3
c L
0 . . . . . .
0.1 - - - - - -

¢ Flat phase space: 3 jet inclusive

X
fay
(=]

— Rambo + Clustering
— Rambo + Branching
— Rambo

=

number of events

x10° _Flat phase space: 2 jet inclusive

[ — Rambo + Clustering
20 [ — Rambo + Branching
- — Rambo
o [
c
s L
: |
= [
= |
£ 10
=3
[=4 -
0 . . . . . .
0.1 T T T T T T
005 b e e e eaea e e e eeeaeeeaea e
0
005 I i iieiiiiiiiiiciiiceiieeetiteetteetitteettseteteeetateestseetateattsasntaeatasatstasatatanntnn
035 05 T 5 2 25 3
Aq,
x10° _Flat phase space: 3 jet inclusive
[ — Rambo + Clustering
[ — Rambo + Branching
I —Rambo
-
ﬂ :
[= -
[
et
B L
g r
5§ o
(= -
O C 1 1 1 1 1 1
0.1
005 e iieeiiiiiiiiiiiitcetiecttiteetteetitceetasceiteeatatanstaannl " 4444444444444444444444444444444
of- Tt o
_005 I i iieiiiiiiiiiciiiceiieeetiteetteetitteettseteteeetateestseetateattsasntaeatasatstasatatanntnn
0% 05 T 15 3 25 3
Aq,

Figure 1: The Hr and A¢;o pure phase-space comparisons between clustered1)-particle RaMBO events
(blue lines) and forward-branchedparticle RamBO events (red lines) for = 2-jet (upper graphs) and = 3-jet

(lower graphs) configurations. The lower panels show thie taétween the clustered and branched predictions

minus one. The black lines represent the results of the sporedingr-particle RAMBO generations. To focus on
the phase-space validation, the matrix-element and PDghisehave not been included in these calculations.
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calculated by

(1) .5(2)
A¢s = arccos | ——L__ | . (30)
| —»(1)| | —»(2)|
b | |Pp

For variousn-jet final states, thédr and A¢,o distributions resulting from our phase-space tests are
displayed in Figures 1 and 2. All plots contain three cunadseled by “Rambo”, “Rambo+Branching”
and “Rambo+Clustering” (represented by the black, red dunellimes, respectively); in the corresponding
lower panes, we always show the ratio, subtracted by one/geet the latter two predictions. In general
we observe steeper tails in tlier spectra for an increasing number of jets. The;, distributions show
the opposite behavior; their low angle-difference binsdmee more populated owing to a larger amount
of phase space being filled. For the same reason of enhanasd-gpace filling, the total energy is shared
among more jets, which leads to the suppression offhdails.

We now explain the three different predictions, which we fasehe validation and show in the figures.
The “Rambo” curves are obtained from jet momenta generatedrding to Eq. (28) where we define the
“LO” n-jet phase space as theparticle uniform phase space. The jet momenta satisfy theance
cuts given above. To produce the “NL@*jet phase space, we generater 1 particles in flat phase
space with the help of RvBO and apply our jet algorithm to find jets from which we can calculate
the jet observables. Again, these jets have to fulfill theeptance criteria. This procedure gives us
the “Rambo+Clustering” predictions in Figures 1 and 2. Tlfeedknces seen between “Rambo” and
“Rambo+Clustering” visualize the pure phase-space effein generating the “NLO” corrections.

We can now validate the FBPS generator: we construct “b&gt configurations using the flat phase-
space generator as we did for the “Rambo” predictions. Fon eanfiguration, we subsequently generate
bremsstrahlung events using the FBPS. As the generatedseaigvays reconstruct back to the origi-
nating n-jet event, we only have to average over the generated eveights!® This determines the
“Rambo+Branching” curves, which have to coincide — apatrirstatistical fluctuations — with the re-
spective curves of the “Rambo+Clustering” procedure. Timplots in Figures 1 and 2 illustrate how
well this is achieved by directly comparing the flat phasaegp“NLO” predictions and the FBPS gen-
erated “NLO” predictions. We see excellent agreement betwhbe two results and thereby validate the
FBPS generator. It is interesting to note that at “NLO” the,, distribution for two jets does not show
the usual feature of de-correlating. Because the jet dlguris infra-red safe for all jet observables, the
two jets are always exactly back-to-back (in the azimuthgle) for both “LO” and “NLO”, i.e. this dijet
observable is not affected by the initial-state radiation.

4 The Gluonic Jet Generator

As a proof-of-principle we describe in this section a get@ravhich calculates the NLQX -factor per
jet phase-space point for the pure gluonic partgét production at hadron colliders in the leading-color
approximation.

The determination of th& -factor for a givem-jet event requires the evaluation of a single virtual event
and a three-dimensional Monte Carlo integration over tleensstrahlung phase-space sectors defined by

1%0f course, we also cross-checked that the backward clngterileed recovered thejet phase-space point.
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Figure 2: The Hr and A¢;o pure phase-space comparisons between clustered1)-particle RaMBO events
(blue lines) and forward-branchedparticle RamBO events (red lines) fon = 6-jet (upper graphs) and = 10-jet

(lower graphs) configurations. The lower panels show thie taétween the clustered and branched predictions

minus one. The black lines represent the results of the sporedingr-particle RAMBO generations. To focus on
the phase-space validation, the matrix-element and PDghisehave not been included in these calculations.
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the jet resolution scale. This is discussed in Section 4irallly, in Section 4.2 our results are presented:
we verify the cancellation of the slicing parameter in fiefactor and the evaluation of the full leading-
color NLO corrections up td5-jet configurations.

4.1 Evaluation of the K-factor

In terms of ordered amplitudes, the fully differential gluonic leading-order, leadinglor contribution
to then-jet cross section is given as

d™a,o (27r)4—3n 9
- F () F, (x3) N® (N2 -1
dJldJn 2xabe g(l‘ ) g(l‘b) C( C )
—(0) 2 1
Y ‘m (@aPar Jors Tmss )| + O )| (31)

o€ Sn+1

where the colorN¢, dependence has been made explicit. The sum is ovet all1)! different permuta-
tions of the ordered amplitudes and ) |2 are the corresponding helicity averaged/summed squared
matrix elements. Note that thg take values fromb, 1,...,n whereJ, = z;,P,. We can now define the
fully differential NLO cross section through orderéefactors,

d™ oo (27)4—3n 9
= F,(x,) F. NE (N& -1
dJldJn QJia.TbS g(.T ) g(.Tb) C( (@] ) x

Z ENLO (Ja7 J0'1 9 J0'27 LA J0n+1) ‘W(O) (Ja7 J0'1 9 J0'27 ] J0n+1)

0 ESn+1

Lo <Ni%> (32)

with J, = x,P,. Notice that each ordering has been assigned its/e¥actor.

We further detail the orderek-factor similar to Eq. (13) by dividing the virtual contribban into two
parts, which we calt, and f. The former is proportional to the LO term and contains timgglarities;
the latter describes the finite virtual corrections. We nawttfermore specify helicity dependenfactors
and write representative for all orderings

N,
ko (T, T, TN ) = 1+ <O‘;7rc> X

(UD(Ja,Jb,Jl,...,Jn) + (s Ty Js s ) + f(JQa,Jjb,Jﬁl,...,Jgn)) , (33)
where

Aa TA  TM An
T SRV L C/ T LU
(mm)( Na I TN T

(34)
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Note that they, part is independent of the helicity structure and is knowanalytical form [72,73]. The
helicity information is carried by the LO amplitude. We u$e ttode of Ref. [5] to calculate the finite,
helicity dependent contributiofi. The unresolved soft/collinear contributions contained are obtained
using a phase-space slicing method [72, 73]. Similarly eodingular virtual terms, this analytically cal-
culated contribution is helicity independent and promovéil to the Born level expression. We add it to
the v, term, which now becomes dependent on the slicing parameter: vp(smin), While the resolved
contribution is contained in — r(smin). The ordered resolved bremsstrahlung faetey,;, ) is defined

such that it is independent of the helicity choice. This iseln the same manner as for the unordered
bremsstrahlung factoR = % in Eq. (20). We define the bremsstrahlung factor as the rdtihe
helicity summed bremsstrahlung contribution divided by kielicity summed LO contribution, schemat-
ically written as|mp. "2 = (2, [mpkl ™2/ S, [mia 7 2) x |mid (2. By doing so we
have arranged for having all the helicity dependence aaibie the jets.Js, ..., J,, i.e. the Born level
ordered amplitude. This approach of defining the helicitpedelence gives us the correct behavior: the
soft/collinear limit is found to be proportional to the LOliogty dependent ordered amplitude. Further-
more, if the helicity sum over the jets is carried out, oneieges the helicity summed bremsstrahlung

amplitude.

At this level of the Monte Carlo program development, it isvenient to have an explicibg?(smin)
dependence in the unresolved parton contribution. In teeipus section we validated the FBPS generator
based on and using flat phase-space generation. Howevespftheollinear limit is hardly probed by
distributing the momenta uniformly in phase space. Asshg dependence of the, part has to cancel
against that of the FBPS generator, we get an excellent mmobe crucial correctness of the soft/collinear
behavior of the FBPS generator.

In the future we can switch to a subtraction method, elinmgathe dependence on the slicing param-
eter. For the class of infra-red safe jet algorithms, thialmost trivial. The observable jet final state
is invariant under the bremsstrahlung Monte Carlo intégnat This means we only have to add to the
k-factor, an integral over the unresolved phase space. Thgrand is simply given by the difference
between the bremsstrahlung matrix element squared andtésrga approximation. The,;, parameter
then becomes equivalent to the so-calleparameter introduced in Ref. [85].

4.2 Numerical studies of NLO high multiplicity jet events

For all numerical studies we use single, exclusivet events. As for the numerical validation of the
FBPS generator in Section 3.4, all events pass the jetpéﬁts 250 GeV, |y;| < 2.0 andAR;; > 0.5

at a collider energy of 7 TeV using the CTEQ6M PDF set [86]. Tdmrmalization/factorization scale is

set to one half times the average dijet mass. This scaleewaiosely connected to shower Monte Carlo
approaches where the dijet mass is often used as the stsetufgfor branchings off the particular dipole

antenna.

We first have to study the dependence on the slicing paramgtefor explicit jet configurations. To
this end we calculate the resolveds.,i, ), and the unresolvedy, (smin ), helicity independent contribu-
tions to thek-factor. The results are shown in Figures 3, 4 and 5 togethir tive helicity independent
part of thek-factor, 1 + (%) [7(Smin) + vo(smin)], for a single2-jet, 3-jet, 4-jet, 5-jet and 8-jet
event and two different orderings per kinematic configarati The notation in the figures is such that
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Figure 3: The cancellation of the,,;,, dependence for the 2-jet and 3-jet configurations given ipeiulix B. The
upper panels show the resolved contribution in red, theaaived contribution in black and the helicity independent
part of thek-factor defined in Eq. (33) in blue. In the lower panel, theategence on,,;,, of the helicity independent
part of thek-factor is shown in finer detail. The different color ordegg(indicated in the respective plot titles) use
the same events in the Monte Carlo evaluation, leading telzded statistical fluctuations.
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Figure 4. The cancellation of the,,;;, dependence for the 4-jet and 5-jet configurations given ipeiulix B. The
upper panels show the resolved contribution in red, theaaived contribution in black and the helicity independent
part of thek-factor defined in Eq. (33) in blue. In the lower panel, theategence on,,;,, of the helicity independent
part of thek-factor is shown in finer detail. The different color ordegg(indicated in the respective plot titles) use
the same events in the Monte Carlo evaluation, leading telzded statistical fluctuations.
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jets || r-factor || |m(©| * | k-factor |m©@)| ? k-factor |m©@)| 2 k-factor
2 172+ 1 1.72216| 1.15-0.05 || 1.6x1073! - — = 0.00552438 | 1.09+ 0.05
3 243+ 2 120.638| 1.13+0.08 || 0.043632 | 1.18+ 0.08 5.98249 1.10+0.08
4 392+ 3 125.234| 1.30+0.13 0.282847 | 1.174+0.13 0.0498892 1.18+0.13
5 366+ 4 5941.55| 0.94+ 0.17 849.054 | 0.874+0.17 31.5083 0.80+0.17
6 529+ 5 1202.54| 1.15+-0.24 69.0066 | 1.06+0.24 0.469815 0.82+0.24
8 650+ 7 26732.0| 1.41+:-0.34 1364.49 | 1.32-0.34 1.41604 1.15+-0.34
10 844+ 11 || 6575.23| 1.49+ 0.49 579.066 | 1.26+0.49 | 6.09232<10-% | 0.97+ 0.49
15 || 12644+20 || 4690.02| 1.39+ 0.95 671.554 | 1.28+0.95| 4.3717810~7 | 1.24+0.95

Table 1: The LO ordered amplitude squargd®) (.J,, Jy, J1, . .., J,)|? and its corresponding s,,i,, ) and ordered
k-factor as defined in Eq. (33) for an exclusivéet event. The explicit jet momenta for the different jetltiplicities
are given in Appendix B. The slicing scalg,;, is set tol0~* x S and the Monte Carlo integration over the
bremsstrahlung phase space has been done with 100,00@gpehevents.

m©0(1,2,....n+2) = mO(J,, Jy, J1,...,Jy) With 1 < a,2 < b, 3 — 1 etc. For each antenna, we
only have to perform a three-parameter integral, givingamsdgcontrol over the cancellations. The graphs
demonstrate that the cancellation of thg,, parameter dependence is achieved in a satisfactory manner a
values of the order of0—* x S and smaller. Moreover, we were able to maintain good nuraksiability
down to values 0f i, < 1072 x S (= Sconider IN the figures), even though we did not use any adaptive
Monte Carlo integration such ase¢As [87] to obtain these resulis.

We can now proceed to make some predictions forithet configurations listed in Appendix B. In
Table 1 we show the results for several helicity configuratiof the calculations of thg-factors de-
fined in Eq. (33) multiplying the ordered amplitudes squar@d can be seen from the table, the scale
choice described above leads to relatively smdihctors, i.e. the normalization of the LO prediction is
fairly close to the NLO rate. In other words, the correctidntiee LO weight due to radiative correc-
tions is of the order of one. In addition to thefactors, our table also displays the numerical results
r(smin) Of the bremsstrahlung phase-space integration using tiRSKgnerator. As expected, for a fixed
number of bremsstrahlung events, the uncertainty on tlegyiation results scales with the square root
of the number of dipoles, i.e. it grows linearly in the numbéfinal-state jets (except for the two high-
est jet multiplicities, where with the chosen number of égeme did not achieve a sufficient accuracy
for determining a reliable uncertainty estimate). The namdif final—final and initial—final dipoles is
n(n — 1) and2n, respectively. To obtain an integration uncertainty iretegent of thex-jet multiplicity,
we would have to scale the number of bremsstrahlung eveataaed in the Monte Carlo integration as
nn—1)+2n=n(n+1).

From Table 1 one also reads off that the relative errors onktfectors become sizeable for a large
number of jets. This is when the values of th&actors turn big and one finds large cancellations between

1For future applications, the resulting three-parametesgration can readily be optimized by important sampling adap-
tive stratification.
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Figure 5: The cancellation of the,,;, dependence for the 8-jet configurations given in AppendixIBe upper
panels show the resolved contribution in red, the unresbtemtribution in black and the helicity independent part
of the k-factor defined in Eq. (33) in blue. In the lower panel, theetegence on,,;, of the helicity independent
part of thek-factor is shown in finer detail. The different color ordeyi(indicated in the respective plot titles) use
the same events in the Monte Carlo evaluation, leading telzded statistical fluctuations.

the single terms in Eq. (33). Owing to the use of a slicing réténd its explicit dependence g (smin ),
we are not able to avoid this behavior easily without switghto an approach based on subtractions.

Because of these large cancellations, the absolute valuks multiplied by (%) ~ 1/20 are hence
pivotal in determining the uncertainty on tkefactors.

5 Conclusions

In this paper we derived a new type of NLO phase-space gamerttis forward-branching phase-space
generator has the property of inverting the clustering aueg in the jet algorithm. Because of this, the
bremsstrahlung phase space of a fully exclusive jet fina ssagenerated. The bremsstrahlung events
constructed in this way do not change the value of a jet obbdgythey are all added to the single virtual
contribution. This gives a perfect cancellation of the dient pieces — the soft/collinear real and virtual
contributions — as dictated by the KLN theorem for any jetesbable.

However, the current jet algorithms used by the experimentploy a2 — 1 clustering scheme.
Furthermore, a beam jet is not defined leading to transverm®@entum imbalance in jet events. As a
result the LO and NLO jet phase spaces are different and oatghmat the soft/collinear boundary. This
makes the jet observables infra-red finite, but not necibgsafra-red safe. The KLN theorem becomes
applicable only after some phase-space averaging. As @&goesce, the fully exclusive multi-jet event
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is not defined at NLO.

Any infra-red finite jet algorithm using & — 2 clustering scheme, which includes beam jets, suffices
to define the fully exclusive multi-jet differential crosscdion. For the purposes of this paper, we worked
out a theoretically simple jet algorithm such that fully kigive jet final states can be defined at NLO.
Nevertheless, the difference between an observable deexirby this more theoretical jet algorithm and
one currently used by the experiments amounts to a finitectoon. This correction is readily calculated
for a particular observable by an extra bremsstrahlunggsaace integration, extending the applicability
of the forward-branching phase-space generator beyoradgetithms usingd — 2 clustering schemes.

Since the forward-branching bremsstrahlung phase-spamergtor does not alter the jet configuration,
a K -factor can be defined for a given multi-jet phase-spacetpaine K -factor can be determined from
the leading-order probability associated with the paléiciet phase-space point. In this sense, the proba-
bilistic interpretation of the NLO prediction is restorey guantifying it as a positive-weight adjustment.
We validated our method in two steps: first, we verified thestrction of the bremsstrahlung phase
space; second, we calculated the radiative correctionsdidridual events with up ta5s jets. As our test
scenario, we chos2 — n gluon production in the leading-color approximation.
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A The Enumeration of Branchings

We can choose the branching pair of jets in Eq. (20) by MontdoQaeans. However, it is useful to
control the ratio of initial-final and final—final branchinfge optimization purposes. This ratio is given
by the number of ways the + 3 partons can be clustered #ojets plus2 incoming partons. If no flavor
constraints are taken into account, the derivation of thie far the jet algorithm used in this paper goes
as follows:

— Given an initial-state parton, there arén + 1) possible clusterings since it is the final-state parton
pair that effectively gets combined. This number is basett@ating all final-state partons as dis-
tinguishable particles. The recoil is taken by one of the padons in the initial state, giving the
number of initial—final state clustering$: = 2n (n + 1).

— The number of final—final state clusterings is givervly. + 1). For each of these clusterings, we
haven — 1 remaining possible recoil partons. For the number of fitalesclusterings, we hence
obtainNg: = (n—1)n(n+1).

— Accordingly, the total number of possible clustering®Vis; = N + Nee = n (n + 1)2.



27

— Following these observations, the fraction of finalfin@lte branchings to be generated is then
given by Nee/Niot = (n — 1)/(n + 1). Similarly, the fraction of initial-final state branchingsus
is Ne/Niot = 2/(n + 1). As we see for a very large number of jets, the fraction of final-state
branchings tends towards one as expected.

Note that in Eq. (20) we see that each dipole term is “averalgge@xactly the number of final—final state
dipoles, N, or the number of initial—final state dipoles per be%NlF.
B The Explicit Jet Events

The jet configurations used to calculate the results in Thlle given in this appendix, together with some
kinematic properties of the particularjet event. These properties are calculated from the fitzdie gets.

* Forn = 2, we have:

1
as (§<m”>) = 0.0854525 s (mjj> = 2320.1 GeV s
min (m;;) = 2320.1GeV, max(mj;) = 2320.1 GeV (35)

and the momenta (in GeV) are given by

2o P = (651.429,651.429,0,0),
P, = (2065.78, —2065.78,0,0),
Ji = (988.026,4.76957, 150.427, 976.496) ,
Jy = (1729.19,—1419.12, —150.427, —976.496) . (36)

e Forn = 3, we have:

as (%<mjj>)

min (mj;) = 837.178 GeV, max(mj;) = 2342.36 GeV (37)

0.08936, (m;;) = 1546.75 GeV ,

and the momenta (in GeV) are given by

2. P, = (1002.78,1002.78,0,0),
P, = (1789.36,—1789.36,0,0),
Ji = (1203.62,—339.322,1151.26, —90.3834) ,
T (1243.44, —297.018, —1187.58, —218.141) ,
J; = (345.076,—150.236, 36.3206, 308.525) . (38)

* Forn = 4, we have:

o (%(mjp)

min (m;;) = 906.006 GeV , max(mj;) = 2636.08 GeV (39)

0.0873363, (mj;) = 1899.39 GeV ,
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and the momenta (in GeV) are given by

2o Py = (2293.54,2293.54,0,0),

P = (2359.46,—2359.46,0,0),
Ji (1725.71, 877.743,982.549, 1114.55) ,
Jy = (954.182,356.832, —669.803, —578.359) ,
Js = (1037.51,—521.634, —809.127, —386.844) ,
Ji = (935.596, —778.871,496.381, —149.35) .

* Forn =5, we have:

1
as (§<mjj>) = 0.0921983, (m,;) = 1074.2 GeV ,
min (mj;) = 365.996 GeV, max(m;;) = 1794.95GeV

and the momenta (in GeV) are given by

2. Py = (883.985,883.985,0,0),
P = (3263.37,—3263.37,0,0),
Ji = (684.733,—446.345, —519.146,11.084) ,
Jy = (780.483,—90.2618,684.399, —364.149) ,
T3 (1081.8, —949.154, 502.292, 130.739) ,
Ji = (458.187,—330.582,216.105, —232.271)
(

Js = (1142.15,—-563.042, —883.651, 454.598) .

* Forn = 6, we have:

ag (%(mm)

min (m;;) = 372.579GeV, max(mj;) = 2307.33 GeV

0.0898744, (mj;) = 1470.28 GeV ,

and the momenta (in GeV) are given by

2. Py = (2711.42,2711.42,0,0),

z Py (2989.73, —2989.73,0,0) ,
Ji = (1305.48, —936.767, —465.008, 781.36) ,
T (416.233, 43.8532, 163.26, —380.359) ,
Js = (1255.05,418.867,211.911,1163.96)
Ji = (809.408,—755.773, —267.267, —111.885)
Js = (1029.43,606.551,515.234, —652.956) ,
Js = (885.548,344.959, —158.13, —800.121) .

(40)

(41)

(42)

(43)

(44)
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* Forn = 8, we have:

2

. <mjj>)

as (3

0.0956911, (m;;) = 861.375 GeV ,

min (m;;) = 239.955GeV, max(mj;) = 1483.52 GeV

and the momenta (in GeV) are given by

Tq P,
xp Py
Ji
Jo
Js
Jy
Js5
Js
J7
Jg

1566.71,1566.71,0,0) ,

3315.09, —3315.09, 0, 0) ,

771.638, 72.2583, 756.755, 132.381) ,
799.106, —447.319, —526.283, —401.875) ,
362.664, —225.218,127.162, —254.228) ,
455.86,294.142, —344.111, —53.627) ,
336.571, —176.658, 48.6816, 282.315) ,
897.978, —705.684, 548.115,89.1335) ,
897.601, —802.832, —399.01, 44.0329) ,
360.374,242.933, —211.31, 161.867) .

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

* Forn = 10, we have:

2

1
<mjj>) = 0.0950109, (my;) = 913.794 GeV,

as (3

min (mj;) = 237.586 GeV, max(m;;) = 1830.56 GeV

and the momenta (in GeV) are given by

T, P,
xp Py
Ji

Jo

J3

Jy

Js

Js

J7

Jg

Jo
Jio

2827.46, 2827.46,0,0) ,

3322.41, —3322.41,0,0) ,
547.589,302.187, 339.049, 305.912) ,
956.324, —806.585, 389.162, 335.454) ,
350.22, —95.7603, 228.577, 247.461) ,
259.829, —26.1444, —35.2505, —256.096) ,
314.102, —35.8975,4.96171, 312.004) ,
986.504, —606.912, 589.914, —506.804) ,
889.429, —326.063, —798.032, —218.89) ,
891.285,649.951, —560.226, —241.04) ,
518.799, 168.343, —476.506, 117.284) ,
435.784,281.925, 318.35, —95.2848) .

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

* Forn = 15, we have:

2

. <mjj>)

as (3

0.0993949, (mj;) = 633.545 GeV ,

min (m;;) = 147.1GeV, max(m;;) = 1497.81 GeV

(45)

(46)

(47)

(48)

(49)
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and the momenta (in GeV) are given by

830.982,518.077,212.244,614.069) ,
259.874,32.133, —30.3028, 256.093) . (50)

2o P, = (3403.1,3403.1,0,0),
P, = (3096.06,—3096.06,0,0),
Ji (349.237,141.394, —212.337, —238.51) ,
Jy = (272.807,—73.295,214.113, —152.339) ,
Js = (465.556,289.402,279.374,234.392) ,
Ji = (269.21,54.8123, —263.571, —0.174956) ,
Js = (451.568,254.001,87.8387, —362.88),
Js = (437.866,292.297,303.293, —119.594) ,
Jr = (368.167,—241.648,223.073,165.504) ,
Js (355.366, —41.1757, —217.718, —277.828) ,
Jo = (328.823,—87.4318, —296.434, —112.281),
Jio = (458.585, —188.764, —88.852,408.379)
Jin (332.789,159.417, —133.945, 259.603) ,
Jio = (572.199,—470.06, —321.957, —52.8996) ,
Jis (746.136, —332.113, 245.182, —621.534) ,
(
(

References

[1] W.T. Giele and G. ZanderighDn the Numerical Evaluation of One-Loop Amplitudes: The
Gluonic CaseJHEPO06 (2008) 038, &r Xi v: 0805. 2152].

[2] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov, and G. Zderighi, One-loop amplitudes foi/+3
jet production in hadron collisionsJHEP 01 (2009) 012, &r Xi v: 0810. 2762].

[3] A. LazopoulosMulti-gluon one-loop amplitudes numericallgr Xi v: 0812. 2998.

[4] R. K. Ellis, K. Melnikov, and G. ZanderighGeneralized unitarity at work: first NLO QCD results
for hadronicW +3 jet production JHEP 04 (2009) 077, &r Xi v: 0901. 4101].

[5] J. Winter and W. T. GieleCalculating gluon one-loop amplitudes numerically
ar Xi v: 0902. 0094.

[6] C. F. Bergeret. al, Precise Predictions fob” + 3 Jet Production at Hadron Collider$?hys. Rev.
Lett. 102(2009) 222001,4r Xi v: 0902. 2760].

[7] K. Melnikov and M. SchulzeNLO QCD corrections to top quark pair production and decay at
hadron colliders JHEP08 (2009) 049, &r Xi v: 0907. 3090].



31

[8] G. Bevilacqua, M. Czakon, C. G. Papadopoulos, R. Pitiad, M. Worek Assault on the NLO
Wishlist: pp — t£ bb, JHEP09 (2009) 109, &r Xi v: 0907. 4723].

[9] W. Giele, Z. Kunszt, and J. WinteEfficient Color-Dressed Calculation of Virtual Correctign
Nucl.PhysB840(2010) 214-270,4r Xi v: 0911. 1962].

[10] G. Bevilacqua, M. Czakon, C. Papadopoulos, and M. Wddekninant QCD Backgrounds in
Higgs Boson Analyses at the LHC: A Studypf— tt + 2 jets at Next-To-Leading Order
Phys.Rev.Lettl04(2010) 162002,4r Xi v: 1002. 4009].

[11] C. Berger, Z. Bern, L. J. Dixon, F. Cordero, D. Forég, al, Next-to-Leading Order QCD
Predictions for Zy* + 3-Jet Distributions at the Tevatroihys.RevD82 (2010) 074002,
[ar Xi v: 1004. 1659].

[12] K. Melnikov and M. SchulzeNLO QCD corrections to top quark pair production in assoimat
with one hard jet at hadron collideyNucl. PhysB840(2010) 129-159,dr Xi v: 1004. 3284].

[13] T. Melia, K. Melnikov, R. Rontsch, and G. ZanderigNiext-to-leading order QCD predictions for
W+Wjj production at the LHGJHEP 12 (2010) 053, &r Xi v: 1007. 5313].

[14] R. Frederix, S. Frixione, K. Melnikov, and G. ZandeliighLO QCD corrections to five-jet
production at LEP and the extraction af (M), JHEP11(2010) 050, &r Xi v: 1008. 5313].

[15] C. Berger, Z. Bern, L. J. Dixon, F. Cordero, D. Forég, al, Precise Predictions folV + 4 Jet
Production at the Large Hadron CollidePhys.Rev.Lettl06(2011) 092001,
[ar Xi v: 1009. 2338].

[16] S. Badger, B. Biedermann, and P. Uw6luon: A Package to Calculate One-loop Multi-gluon
Amplitudes Comput.Phys.Commuh82(2011) 1674-16924dr Xi v: 1011. 2900].

[17] Z. Bern, G. Diana, L. Dixon, F. Cordero, D. Ford#, al, Left-Handed W Bosons at the LHC
ar Xi v: 1103. 5445.

[18] T. Melia, K. Melnikov, R. Rontsch, and G. ZanderigNil.O QCD corrections fof¥// +W ~ pair
production in association with two jets at hadron collideas Xi v: 1104. 2327.

[19] Z. Bern, G. Diana, L. Dixon, F. Cordero, S. Hocleg, al, Driving Missing Data at Next-to-Leading
Order, ar Xi v: 1106. 1423.

[20] R. K. Ellis, W. T. Giele, and Z. Kunsz& Numerical Unitarity Formalism for Evaluating One-Loop
AmplitudesJHEP 03 (2008) 003, &r Xi v: 0708. 2398].

[21] W.T. Giele, Z. Kunszt, and K. Melniko¥ull one-loop amplitudes from tree amplituddsiEP 04
(2008) 049, &r Xi v: 0801. 2237].

[22] C. F. Bergert. al, An Automated Implementation of On-Shell Methods for OneplAmplitudes
Phys. RevD78(2008) 036003,4r Xi v: 0803. 4180].



32

[23] R. K. Ellis, W. T. Giele, Z. Kunszt, and K. MelnikoiMasses, fermions and generalized
D-dimensional unitarityNucl. PhysB822(2009) 270-282,dr Xi v: 0806. 3467].

[24] A.van Hameren, C. G. Papadopoulos, and R. Pigaiomated one-loop calculations: a proof of
concept JHEPQ9 (2009) 106, &r Xi v: 0903. 4665].

[25] P. Mastrolia, G. Ossola, T. Reiter, and F. Tramonta&uattering AMplitudes from Unitarity-based
Reduction Algorithm at the Integrand-leydHEP 1008(2010) 080, &r Xi v: 1006. 0710].

[26] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, Maltoni, et. al, Automation of one-loop QCD
corrections JHEP1105(2011) 044, &r Xi v: 1103. 0621].

[27] R. Ellis, Z. Kunszt, K. Melnikov, and G. Zanderigldne-loop calculations in quantum field theory:
from Feynman diagrams to unitarity cutsr Xi v: 1105. 4319.

[28] Z.Bern, L. J. Dixon, D. C. Dunbar, and D. A. KosowEysing gauge theory tree amplitudes into
loop amplitudesNucl. PhysB435(1995) 59-101,Hep- ph/ 9409265].

[29] R. Britto, E. Buchbinder, F. Cachazo, and B. Fe@ge-loop amplitudes of gluons in SQCD
Phys.RevD72 (2005) 065012,Hep- ph/ 0503132].

[30] G. Ossola, C. G. Papadopoulos, and R. PitReducing full one-loop amplitudes to scalar integrals
at the integrand leveNucl. PhysB763(2007) 147-169,Hep- ph/ 0609007].

[31] F. A. Berends and W. T. Giel®ecursive Calculations for Processes with n Glyadihscl. Phys.
B306(1988) 759.

[32] D. A. Kosower,Light Cone Recurrence Relations for QCD Amplitydéscl. PhysB335(1990)
23.

[33] F. Caravaglios and M. MorettAn algorithm to compute Born scattering amplitudes without
Feynman graphsPhys. LettB358(1995) 332—-338,Hep- ph/ 9507237].

[34] A. Kanaki and C. G. Papadopould3ELAC: A package to compute electroweak helicity
amplitudes Comput. Phys. Commuh32(2000) 306—315,Hep- ph/ 0002082].

[35] M. Moretti, T. Ohl, and J. Reute@’Mega: An optimizing matrix element generator
hep- ph/ 0102195.

[36] F. Cachazo, P. Svrcek, and E. WittdnHV vertices and tree amplitudes in gauge theEP 09
(2004) 006, hep-t h/ 0403047].

[37] K. RisagerA direct proof of the CSW rule§HEP 12 (2005) 003, hep-t h/ 0508206].

[38] R. Britto, F. Cachazo, and B. Fengew Recursion Relations for Tree Amplitudes of Glubhsl.
Phys.B715(2005) 499-522 Hep-t h/ 0412308].

[39] R. Britto, F. Cachazo, B. Feng, and E. Witt&nrect Proof Of Tree-Level Recursion Relation In
Yang- Mills TheoryPhys. Rev. Let®4 (2005) 181602,Hep-t h/ 0501052].



33

[40] P. D. Draggiotis, R. H. P. Kleiss, A. Lazopoulos, and CP@padopoulofiagrammatic proof of
the BCFW recursion relation for gluon amplitudes in QCHur. Phys. JC46 (2006) 741750,
[hep- ph/ 0511288].

[41] D. Vaman and Y.-P. YadQCD recursion relations from the largest time equatidREP 04 (2006)
030, hep-t h/ 0512031].

[42] C. Schwinn and S. Weinzier§calar diagrammatic rules for Born amplitudes in QCIHEP 05
(2005) 006, hep-t h/ 0503015].

[43] S. Frixione, Z. Kunszt, and A. Signéfrhree jet cross-sections to next-to-leading ordéwucl.Phys.
B467(1996) 399-442 Hep- ph/ 9512328].

[44] S. Catani and M. H. Seymouk general algorithm for calculating jet cross sections inMIRCD,
Nucl. PhysB485(1997) 291-419,Hep- ph/ 9605323].

[45] T. Gleisberg and F. Krausdutomating dipole subtraction for QCD NLO calculatiofgur. Phys. J.
C53(2008) 501-523,dr Xi v: 0709. 2881].

[46] R. Frederix, T. Gehrmann, and N. GreinAgtomation of the Dipole Subtraction Method in
MadGraph/MadEventJHEP0809(2008) 122, &r Xi v: 0808. 2128].

[47] M. Czakon, C. G. Papadopoulos, and M. Worélarizing the DipolesJHEP08 (2009) 085,
[ar Xi v: 0905. 0883].

[48] R. Frederix, S. Frixione, F. Maltoni, and T. StelzAgtomation of next-to-leading order
computations in QCD: The FKS subtractiaqtHEP0910(2009) 003, &r Xi v: 0908. 4272].

[49] K. Hasegawa, S. Moch, and P. UwAgtoDipole - Automated generation of dipole subtraction
terms ; Comput. Phys. Commuh81 (2010) 1802-18174r Xi v: 0911. 4371].

[50] R. Frederix, T. Gehrmann, and N. Greinitegrated dipoles with MadDipole in the MadGraph
framework JHEP 06 (2010) 086, &r Xi v: 1004. 2905].

[51] G. Corcella, I. Knowles, G. Marchesini, S. Moretti, Kdayiri, et. al, HERWIG 6: An Event
generator for hadron emission reactions with interferidgans (including supersymmetric
processes)JJHEP0101(2001) 010, hep- ph/ 0011363].

[52] M. Bahr, S. Gieseke, M. Gigg, D. Grellscheid, K. Hamiltet. al, Herwig++ Physics and Manual
Eur.Phys.JC58(2008) 639-707,dr Xi v: 0803. 0883].

[53] T. Sjostrand, S. Mrenna, and P. Z. Skariél¥,THIA 6.4 Physics and ManyadHEP 0605(2006)
026, hep- ph/ 0603175].

[54] T. Sjostrand, S. Mrenna, and P. Z. Skantigrief Introduction to PYTHIA 8,1
Comput.Phys.Commuh78(2008) 852—-867,d4r Xi v: 0710. 3820].

[55] T. Gleisberg, S. Hoche, F. Krauss, A. Schalicke, S. admn,et. al, SHERPA 1. alpha: A Proof of
concept versionJHEP 0402(2004) 056, hep- ph/ 0311263].



34

[56] T. Gleisberg, S. Hoche, F. Krauss, M. Schonherr, S. 8@nn,et. al, Event generation with
SHERPA 1.1.JHEP0902(2009) 007, &r Xi v: 0811. 4622].

[57] A. Buckley, J. Butterworth, S. Gieseke, D. Grellsche&dd Hochegt. al, General-purpose event
generators for LHC physi¢c$hysics Report€011) far Xi v: 1101. 2599].

[58] C. W. Bauer, F. J. Tackmann, and J. ThateenEVA. Il. A Phase space generator from a reweighted
parton showerJHEP0812(2008) 011, &r Xi v: 0801. 4028].

[59] L. Lénnblad,ARIADNE version 4. A Program for simulation of QCD cascadeglé@menting the
color dipole modelComput.Phys.Communl (1992) 15-31.

[60] T. Sjostrand and P. Z. Skandgansverse-momentum-ordered showers and interleaveiipieul
interactions Eur.Phys.JC39(2005) 129-154,Hep- ph/ 0408302].

[61] W.T. Giele, D. A. Kosower, and P. Z. SkandsSimple shower and matching algorithRhys.Rev.
D78 (2008) 014026,4r Xi v: 0707. 3652].

[62] M. Dinsdale, M. Ternick, and S. WeinzieRarton showers from the dipole formalisPhys.Rev.
D76 (2007) 094003,4r Xi v: 0709. 1026].

[63] S. Schumann and F. KraugsParton shower algorithm based on Catani-Seymour dipole
factorisation JHEP0803(2008) 038, &r Xi v: 0709. 1027].

[64] J. Winter and F. Krausénitial-state showering based on colour dipoles connedteiticoming
parton lines JHEP0807(2008) 040, &r Xi v: 0712. 3913].

[65] A.J.Larkoski and M. E. Peskiigpin-Dependent Antenna Splitting FunctioRbys.RevD81
(2010) 054010,dr Xi v: 0908. 2450].

[66] S. Platzer and S. Giesekeépherent Parton Showers with Local RecpllslEP1101(2011) 024,
[ar Xi v: 0909. 5593].

[67] R. Kleiss, W. J. Stirling, and S. D. Elli®, new Monte Carlo treatment of multiparticle phase space
at high-energiesComput. Phys. Commu#0 (1986) 359.

[68] P. D. Draggiotis, A. van Hameren, and R. KleiS®4\RGE: An algorithm for generating QCD
antennasPhys. LettB483(2000) 124-130,Hep- ph/ 0004047].

[69] A.van Hameren and C. G. Papadopoulagierarchical phase space generator for QCD antenna
structures Eur. Phys. JC25(2002) 563-574,Hep- ph/ 0204055].

[70] A.van HamerenKaleu: a general-purpose parton-level phase space geograt
ar Xi v: 1003. 4953.

[71] M. Cacciari, G. P. Salam, and G. Soy&he Anti-k(t) jet clustering algorithmrdHEP 0804 (2008)
063, [ar Xi v: 0802. 1189].



35

[72] W. Giele and E. Glovetdigher order corrections to jet cross-sections in e+ e- dnilaition,
Phys.RevD46 (1992) 1980-2010.

[73] W. Giele, E. Glover, and D. A. Kosowetigher order corrections to jet cross-sections in hadron
colliders, Nucl.PhysB403(1993) 633-670,l{ep- ph/ 9302225].

[74] S. D. Ellis and D. E. Sopefriply differential jet cross-sections for hadron colbsis at ordera? in
QCD, Phys.Rev.Letf74 (1995) 5182-5185hep- ph/ 9412342].

[75] D@ Collaboration, V. M. Abazowt. al, Measurement of dijet azimuthal decorrelations at central
rapidities inpp collisions at,/s = 1.96 TeV, Phys. Rev. Let®4 (2005) 221801,
[hep- ex/ 0409040].

[76] CMS Collaboration, V. Khachatryaet. al, Dijet Azimuthal Decorrelations ipp Collisions at
/s = 7 TeV, Phys.Rev.Lettl06 (2011) 122003,4r Xi v: 1101. 5029].

[77] S. Catani, Y. L. Dokshitzer, M. Seymour, and B. Weblemgitudinally invariantk; clustering
algorithms for hadron hadron collision®ucl.PhysB406(1993) 187-224.

[78] S.D. Ellis and D. E. Sope§uccessive combination jet algorithm for hadron collisidPhys.Rev.
D48 (1993) 3160-3166Hep- ph/ 9305266].

[79] G. C. Blazey, J. R. Dittmann, S. D. Ellis, V. Elvira, K.@me,et. al, Run |l jet physics
hep- ex/ 0005012.

[80] G. P. Salam and G. Soyex,Practical Seedless Infrared-Safe Cone jet algoritiREP 0705
(2007) 086, fr Xi v: 0704. 0292].

[81] S. Ellis, J. Huston, K. Hatakeyama, P. Loch, and M. Tenm&nn Jets in hadron-hadron collisions
Prog.Part.Nucl.Phys60 (2008) 484-551,dr Xi v: 0712. 2447].

[82] L. L6nnblad,ARCLUS: A New jet clustering algorithm inspired by the coliode model Z.Phys.
C58(1993) 471-478.

[83] S. Weinzierl and D. A. Kosowe®QCD corrections to four jet production and three jet struetin
e+ e- annihilation Phys.RevD60 (1999) 054028,ljep- ph/ 9901277].

[84] A. Daleo, T. Gehrmann, and D. Maitr&ntenna subtraction with hadronic initial stateBHEP 04
(2007) 016, hep- ph/ 0612257].

[85] Z. Nagy and Z. TrocsanyNext-to-leading order calculation of four jet observabie®lectron
positron annihilation Phys.RevD59 (1999) 014020,lep- ph/ 9806317].

[86] J. Pumplin, D. Stump, J. Huston, H. Lai, P. M. Nadolsiy,al, New generation of parton
distributions with uncertainties from global QCD analysi$iEP0207(2002) 012,
[hep- ph/ 0201195].

[87] G. P. LepageYEGAS: An adaptive multi dimensional integration progré&@hNS- 80/ 447.






