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Hiromitsu Nakajima67, Isamu Nakamura67, Tomoya Nakamura290, Tsutomu Nakanishi155,

Katsumi Nakao67, Noriaki Nakao54, Kazuo Nakayoshi67, Sang Nam182, Yoshihito Namito67,
Won Namkung182, Chris Nantista203, Olivier Napoly28, Meenakshi Narain20,
Beate Naroska255, Uriel Nauenberg247, Ruchika Nayyar248, Homer Neal203,

Charles Nelson204, Janice Nelson203, Timothy Nelson203, Stanislav Nemecek90,
Michael Neubauer203, David Neuffer54, Myriam Q. Newman276, Oleg Nezhevenko54,
Cho-Kuen Ng203, Anh Ky Nguyen89,135, Minh Nguyen203, Hong Van Nguyen Thi1,89,

Carsten Niebuhr47, Jim Niehoff54, Piotr Niezurawski294, Tomohiro Nishitani112,
Osamu Nitoh224, Shuichi Noguchi67, Andrei Nomerotski276, John Noonan8,
Edward Norbeck261, Yuri Nosochkov203, Dieter Notz47, Grazyna Nowak219,
Hannelies Nowak48, Matthew Noy72, Mitsuaki Nozaki67, Andreas Nyffeler64,
David Nygren137, Piermaria Oddone54, Joseph O’Dell38,26, Jong-Seok Oh182,

Sun Kun Oh122, Kazumasa Ohkuma56, Martin Ohlerich48,17, Kazuhito Ohmi67,
Yukiyoshi Ohnishi67, Satoshi Ohsawa67, Norihito Ohuchi67, Katsunobu Oide67,

Nobuchika Okada67, Yasuhiro Okada67,202, Takahiro Okamura67, Toshiyuki Okugi67,
Shoji Okumi155, Ken-ichi Okumura222, Alexander Olchevski115, William Oliver227,
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Bob Olivier147, James Olsen185, Jeff Olsen203, Stephen Olsen256, A. G. Olshevsky115,
Jan Olsson47, Tsunehiko Omori67, Yasar Onel261, Gulsen Onengut44, Hiroaki Ono168,

Dmitry Onoprienko116, Mark Oreglia52, Will Oren220, Toyoko J. Orimoto239,
Marco Oriunno203, Marius Ciprian Orlandea2, Masahiro Oroku290, Lynne H. Orr282,

Robert S. Orr291, Val Oshea254, Anders Oskarsson145, Per Osland235, Dmitri Ossetski174,
Lennart Österman145, Francois Ostiguy54, Hidetoshi Otono290, Brian Ottewell276,

Qun Ouyang87, Hasan Padamsee43, Cristobal Padilla229, Carlo Pagani96, Mark A. Palmer43,
Wei Min Pam87, Manjiri Pande13, Rajni Pande13, V.S. Pandit315, P.N. Pandita170,

Mila Pandurovic316, Alexander Pankov180,179, Nicola Panzeri96, Zisis Papandreou281,
Rocco Paparella96, Adam Para54, Hwanbae Park30, Brett Parker19, Chris Parkes254,

Vittorio Parma35, Zohreh Parsa19, Justin Parsons261, Richard Partridge20,203,
Ralph Pasquinelli54, Gabriella Pásztor242,70, Ewan Paterson203, Jim Patrick54,
Piero Patteri134, J. Ritchie Patterson43, Giovanni Pauletta314, Nello Paver309,

Vince Pavlicek54, Bogdan Pawlik219, Jacques Payet28, Norbert Pchalek47, John Pedersen35,
Guo Xi Pei87, Shi Lun Pei87, Jerzy Pelka183, Giulio Pellegrini34, David Pellett240,
G.X. Peng87, Gregory Penn137, Aldo Penzo104, Colin Perry276, Michael Peskin203,

Franz Peters203, Troels Christian Petersen165,35, Daniel Peterson43, Thomas Peterson54,
Maureen Petterson245,244, Howard Pfeffer54, Phil Pfund54, Alan Phelps286,

Quang Van Phi89, Jonathan Phillips250, Nan Phinney203, Marcello Piccolo134,
Livio Piemontese97, Paolo Pierini96, W. Thomas Piggott138, Gary Pike54, Nicolas Pillet84,

Talini Pinto Jayawardena27, Phillippe Piot171, Kevin Pitts260, Mauro Pivi203,
Dave Plate137, Marc-Andre Pleier303, Andrei Poblaguev323, Michael Poehler323,
Matthew Poelker220, Paul Poffenberger293, Igor Pogorelsky19, Freddy Poirier47,

Ronald Poling269, Mike Poole38,26, Sorina Popescu2, John Popielarski150, Roman Pöschl130,
Martin Postranecky230, Prakash N. Potukochi105, Julie Prast128, Serge Prat130,

Miro Preger134, Richard Prepost297, Michael Price192, Dieter Proch47,
Avinash Puntambekar189, Qing Qin87, Hua Min Qu87, Arnulf Quadt58,

Jean-Pierre Quesnel35, Veljko Radeka19, Rahmat Rahmat275, Santosh Kumar Rai258,
Pantaleo Raimondi134, Erik Ramberg54, Kirti Ranjan248, Sista V.L.S. Rao13,

Alexei Raspereza147, Alessandro Ratti137, Lodovico Ratti278,101, Tor Raubenheimer203,
Ludovic Raux130, V. Ravindran64, Sreerup Raychaudhuri77,211, Valerio Re307,101,

Bill Rease142, Charles E. Reece220, Meinhard Regler177, Kay Rehlich47, Ina Reichel137,
Armin Reichold276, John Reid54, Ron Reid38,26, James Reidy270, Marcel Reinhard50,
Uwe Renz4, Jose Repond8, Javier Resta-Lopez276, Lars Reuen303, Jacob Ribnik243,

Tyler Rice244, François Richard130, Sabine Riemann48, Tord Riemann48, Keith Riles268,
Daniel Riley43, Cécile Rimbault130, Saurabh Rindani181, Louis Rinolfi35, Fabio Risigo96,

Imma Riu229, Dmitri Rizhikov174, Thomas Rizzo203, James H. Rochford27,
Ponciano Rodriguez203, Martin Roeben138, Gigi Rolandi35, Aaron Roodman203,

Eli Rosenberg107, Robert Roser54, Marc Ross54, François Rossel302, Robert Rossmanith7,
Stefan Roth190, André Rougé50, Allan Rowe54, Amit Roy105, Sendhunil B. Roy189,

Sourov Roy73, Laurent Royer131, Perrine Royole-Degieux130,59, Christophe Royon28,
Manqi Ruan31, David Rubin43, Ingo Ruehl35, Alberto Ruiz Jimeno95, Robert Ruland203,

Brian Rusnak138, Sun-Young Ryu187, Gian Luca Sabbi137, Iftach Sadeh216,
Ziraddin Y Sadygov115, Takayuki Saeki67, David Sagan43, Vinod C. Sahni189,13,

Arun Saini248, Kenji Saito67, Kiwamu Saito67, Gerard Sajot132, Shogo Sakanaka67,
Kazuyuki Sakaue320, Zen Salata203, Sabah Salih265, Fabrizio Salvatore192,

Joergen Samson47, Toshiya Sanami67, Allister Levi Sanchez50, William Sands185,

ILC Reference Design Report III-vii



John Santic54,∗, Tomoyuki Sanuki222, Andrey Sapronov115,48, Utpal Sarkar181,
Noboru Sasao126, Kotaro Satoh67, Fabio Sauli35, Claude Saunders8, Valeri Saveliev174,

Aurore Savoy-Navarro302, Lee Sawyer143, Laura Saxton150, Oliver Schäfer305,
Andreas Schälicke48, Peter Schade47,255, Sebastien Schaetzel47, Glenn Scheitrum203,

Émilie Schibler299, Rafe Schindler203, Markus Schlösser47, Ross D. Schlueter137,
Peter Schmid48, Ringo Sebastian Schmidt48,17, Uwe Schneekloth47,

Heinz Juergen Schreiber48, Siegfried Schreiber47, Henning Schroeder305, K. Peter Schüler47,
Daniel Schulte35, Hans-Christian Schultz-Coulon257, Markus Schumacher306,
Steffen Schumann215, Bruce A. Schumm244,245, Reinhard Schwienhorst150,

Rainer Schwierz214, Duncan J. Scott38,26, Fabrizio Scuri102, Felix Sefkow47, Rachid Sefri83,
Nathalie Seguin-Moreau130, Sally Seidel272, David Seidman172, Sezen Sekmen151,

Sergei Seletskiy203, Eibun Senaha159, Rohan Senanayake276, Hiroshi Sendai67,
Daniele Sertore96, Andrei Seryi203, Ronald Settles147,47, Ramazan Sever151,

Nicholas Shales38,136, Ming Shao283, G. A. Shelkov115, Ken Shepard8,
Claire Shepherd-Themistocleous27, John C. Sheppard203, Cai Tu Shi87, Tetsuo Shidara67,

Yeo-Jeong Shim187, Hirotaka Shimizu68, Yasuhiro Shimizu123, Yuuki Shimizu193,
Tetsushi Shimogawa193, Seunghwan Shin30, Masaomi Shioden71, Ian Shipsey186,

Grigori Shirkov115, Toshio Shishido67, Ram K. Shivpuri248, Purushottam Shrivastava189,
Sergey Shulga115,60, Nikolai Shumeiko11, Sergey Shuvalov47, Zongguo Si198,

Azher Majid Siddiqui110, James Siegrist137,239, Claire Simon28, Stefan Simrock47,
Nikolai Sinev275, Bhartendu K. Singh12, Jasbir Singh178, Pitamber Singh13, R.K. Singh129,

S.K. Singh5, Monito Singini278, Anil K. Sinha13, Nita Sinha88, Rahul Sinha88,
Klaus Sinram47, A. N. Sissakian115, N. B. Skachkov115, Alexander Skrinsky21,

Mark Slater246, Wojciech Slominski108, Ivan Smiljanic316, A J Stewart Smith185,
Alex Smith269, Brian J. Smith27, Jeff Smith43,203, Jonathan Smith38,136, Steve Smith203,

Susan Smith38,26, Tonee Smith203, W. Neville Snodgrass26, Blanka Sobloher47,
Young-Uk Sohn182, Ruelson Solidum153,152, Nikolai Solyak54, Dongchul Son30,
Nasuf Sonmez51, Andre Sopczak38,136, V. Soskov139, Cherrill M. Spencer203,

Panagiotis Spentzouris54, Valeria Speziali278, Michael Spira209, Daryl Sprehn203,
K. Sridhar211, Asutosh Srivastava248,14, Steve St. Lorant203, Achim Stahl190,

Richard P. Stanek54, Marcel Stanitzki27, Jacob Stanley245,244, Konstantin Stefanov27,
Werner Stein138, Herbert Steiner137, Evert Stenlund145, Amir Stern216, Matt Sternberg275,

Dominik Stockinger254, Mark Stockton236, Holger Stoeck287, John Strachan26,
V. Strakhovenko21, Michael Strauss274, Sergei I. Striganov54, John Strologas272,

David Strom275, Jan Strube275, Gennady Stupakov203, Dong Su203, Yuji Sudo292,
Taikan Suehara290, Toru Suehiro290, Yusuke Suetsugu67, Ryuhei Sugahara67,

Yasuhiro Sugimoto67, Akira Sugiyama193, Jun Suhk Suh30, Goran Sukovic271, Hong Sun87,
Stephen Sun203, Werner Sun43, Yi Sun87, Yipeng Sun87,10, Leszek Suszycki3,

Peter Sutcliffe38,263, Rameshwar L. Suthar13, Tsuyoshi Suwada67, Atsuto Suzuki67,
Chihiro Suzuki155, Shiro Suzuki193, Takashi Suzuki292, Richard Swent203,

Krzysztof Swientek3, Christina Swinson276, Evgeny Syresin115, Michal Szleper172,
Alexander Tadday257, Rika Takahashi67,59, Tohru Takahashi68, Mikio Takano196,
Fumihiko Takasaki67, Seishi Takeda67, Tateru Takenaka67, Tohru Takeshita200,

Yosuke Takubo222, Masami Tanaka67, Chuan Xiang Tang31, Takashi Taniguchi67,
Sami Tantawi203, Stefan Tapprogge113, Michael A. Tartaglia54,

Giovanni Francesco Tassielli313, Toshiaki Tauchi67, Laurent Tavian35, Hiroko Tawara67,
Geoffrey Taylor267, Alexandre V. Telnov185, Valery Telnov21, Peter Tenenbaum203,
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Eliza Teodorescu2, Akio Terashima67, Giuseppina Terracciano99, Nobuhiro Terunuma67,
Thomas Teubner263, Richard Teuscher293,291, Jay Theilacker54, Mark Thomson246,

Jeff Tice203, Maury Tigner43, Jan Timmermans160, Maxim Titov28, Nobukazu Toge67,
N. A. Tokareva115, Kirsten Tollefson150, Lukas Tomasek90, Savo Tomovic271,
John Tompkins54, Manfred Tonutti190, Anita Topkar13, Dragan Toprek38,265,

Fernando Toral33, Eric Torrence275, Gianluca Traversi307,101, Marcel Trimpl54,
S. Mani Tripathi240, William Trischuk291, Mark Trodden210, G. V. Trubnikov115,

Robert Tschirhart54, Edisher Tskhadadze115, Kiyosumi Tsuchiya67,
Toshifumi Tsukamoto67, Akira Tsunemi207, Robin Tucker38,136, Renato Turchetta27,

Mike Tyndel27, Nobuhiro Uekusa258,65, Kenji Ueno67, Kensei Umemori67,
Martin Ummenhofer303, David Underwood8, Satoru Uozumi200, Junji Urakawa67,

Jeremy Urban43, Didier Uriot28, David Urner276, Andrei Ushakov48, Tracy Usher203,
Sergey Uzunyan171, Brigitte Vachon148, Linda Valerio54, Isabelle Valin84, Alex Valishev54,

Raghava Vamra75, Harry Van Der Graaf160,35, Rick Van Kooten79, Gary Van Zandbergen54,
Jean-Charles Vanel50, Alessandro Variola130, Gary Varner256, Mayda Velasco172,

Ulrich Velte47, Jaap Velthuis237, Sundir K. Vempati74, Marco Venturini137,
Christophe Vescovi132, Henri Videau50, Ivan Vila95, Pascal Vincent302, Jean-Marc Virey32,
Bernard Visentin28, Michele Viti48, Thanh Cuong Vo317, Adrian Vogel47, Harald Vogt48,

Eckhard Von Toerne303,116, S. B. Vorozhtsov115, Marcel Vos94, Margaret Votava54,
Vaclav Vrba90, Doreen Wackeroth205, Albrecht Wagner47, Carlos E. M. Wagner8,52,
Stephen Wagner247, Masayoshi Wake67, Roman Walczak276, Nicholas J. Walker47,
Wolfgang Walkowiak306, Samuel Wallon133, Roberval Walsh251, Sean Walston138,

Wolfgang Waltenberger177, Dieter Walz203, Chao En Wang163, Chun Hong Wang87,
Dou Wang87, Faya Wang203, Guang Wei Wang87, Haitao Wang8, Jiang Wang87,

Jiu Qing Wang87, Juwen Wang203, Lanfa Wang203, Lei Wang244, Min-Zu Wang164,
Qing Wang31, Shu Hong Wang87, Xiaolian Wang283, Xue-Lei Wang66, Yi Fang Wang87,

Zheng Wang87, Rainer Wanzenberg47, Bennie Ward9, David Ward246,
Barbara Warmbein47,59, David W. Warner40, Matthew Warren230, Masakazu Washio320,

Isamu Watanabe169, Ken Watanabe67, Takashi Watanabe121, Yuichi Watanabe67,
Nigel Watson236, Nanda Wattimena47,255, Mitchell Wayne273, Marc Weber27,

Harry Weerts8, Georg Weiglein49, Thomas Weiland82, Stefan Weinzierl113, Hans Weise47,
John Weisend203, Manfred Wendt54, Oliver Wendt47,255, Hans Wenzel54,

William A. Wenzel137, Norbert Wermes303, Ulrich Werthenbach306, Steve Wesseln54,
William Wester54, Andy White288, Glen R. White203, Katarzyna Wichmann47,
Peter Wienemann303, Wojciech Wierba219, Tim Wilksen43, William Willis41,

Graham W. Wilson262, John A. Wilson236, Robert Wilson40, Matthew Wing230,
Marc Winter84, Brian D. Wirth239, Stephen A. Wolbers54, Dan Wolff54,

Andrzej Wolski38,263, Mark D. Woodley203, Michael Woods203, Michael L. Woodward27,
Timothy Woolliscroft263,27, Steven Worm27, Guy Wormser130, Dennis Wright203,
Douglas Wright138, Andy Wu220, Tao Wu192, Yue Liang Wu93, Stefania Xella165,

Guoxing Xia47, Lei Xia8, Aimin Xiao8, Liling Xiao203, Jia Lin Xie87, Zhi-Zhong Xing87,
Lian You Xiong212, Gang Xu87, Qing Jing Xu87, Urjit A. Yajnik75, Vitaly Yakimenko19,

Ryuji Yamada54, Hiroshi Yamaguchi193, Akira Yamamoto67, Hitoshi Yamamoto222,
Masahiro Yamamoto155, Naoto Yamamoto155, Richard Yamamoto146,

Yasuchika Yamamoto67, Takashi Yamanaka290, Hiroshi Yamaoka67, Satoru Yamashita106,
Hideki Yamazaki292, Wenbiao Yan246, Hai-Jun Yang268, Jin Min Yang93, Jongmann Yang53,

Zhenwei Yang31, Yoshiharu Yano67, Efe Yazgan218,35, G. P. Yeh54, Hakan Yilmaz72,
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Philip Yock234, Hakutaro Yoda290, John Yoh54, Kaoru Yokoya67, Hirokazu Yokoyama126,
Richard C. York150, Mitsuhiro Yoshida67, Takuo Yoshida57, Tamaki Yoshioka106,

Andrew Young203, Cheng Hui Yu87, Jaehoon Yu288, Xian Ming Yu87, Changzheng Yuan87,
Chong-Xing Yue140, Jun Hui Yue87, Josef Zacek36, Igor Zagorodnov47, Jaroslav Zalesak90,

Boris Zalikhanov115, Aleksander Filip Zarnecki294, Leszek Zawiejski219,
Christian Zeitnitz298, Michael Zeller323, Dirk Zerwas130, Peter Zerwas47,190,

Mehmet Zeyrek151, Ji Yuan Zhai87, Bao Cheng Zhang10, Bin Zhang31, Chuang Zhang87,
He Zhang87, Jiawen Zhang87, Jing Zhang87, Jing Ru Zhang87, Jinlong Zhang8,
Liang Zhang212, X. Zhang87, Yuan Zhang87, Zhige Zhang27, Zhiqing Zhang130,

Ziping Zhang283, Haiwen Zhao270, Ji Jiu Zhao87, Jing Xia Zhao87, Ming Hua Zhao199,
Sheng Chu Zhao87, Tianchi Zhao296, Tong Xian Zhao212, Zhen Tang Zhao199,

Zhengguo Zhao268,283, De Min Zhou87, Feng Zhou203, Shun Zhou87, Shou Hua Zhu10,
Xiong Wei Zhu87, Valery Zhukov304, Frank Zimmermann35, Michael Ziolkowski306,

Michael S. Zisman137, Fabian Zomer130, Zhang Guo Zong87, Osman Zorba72,
Vishnu Zutshi171
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List of Institutions

1 Abdus Salam International Centre for Theoretical Physics, Strada Costriera 11, 34014
Trieste, Italy

2 Academy, RPR, National Institute of Physics and Nuclear Engineering ‘Horia Hulubei’
(IFIN-HH), Str. Atomistilor no. 407, P.O. Box MG-6, R-76900 Bucharest - Magurele,

Romania
3 AGH University of Science and Technology Akademia Gorniczo-Hutnicza im. Stanislawa

Staszica w Krakowie al. Mickiewicza 30 PL-30-059 Cracow, Poland
4 Albert-Ludwigs Universität Freiburg, Physikalisches Institut, Hermann-Herder Str. 3,

D-79104 Freiburg, Germany
5 Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India

6 Amberg Engineering AG, Trockenloostr. 21, P.O.Box 27, 8105 Regensdorf-Watt,
Switzerland

7 Angstromquelle Karlsruhe (ANKA), Forschungszentrum Karlsruhe,
Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

8 Argonne National Laboratory (ANL), 9700 S. Cass Avenue, Argonne, IL 60439, USA
9 Baylor University, Department of Physics, 101 Bagby Avenue, Waco, TX 76706, USA

10 Beijing University, Department of Physics, Beijing, China 100871
11 Belarusian State University, National Scientific & Educational Center, Particle & HEP

Physics, M. Bogdanovich St., 153, 240040 Minsk, Belarus
12 Benares Hindu University, Benares, Varanasi 221005, India

13 Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
14 Birla Institute of Technology and Science, EEE Dept., Pilani, Rajasthan, India

15 Bogazici University, Physics Department, 34342 Bebek / Istanbul, 80820 Istanbul, Turkey
16 Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA

02215, USA
17 Brandenburg University of Technology, Postfach 101344, D-03013 Cottbus, Germany
18 Brno University of Technology, Antońınská; 548/1, CZ 601 90 Brno, Czech Republic

19 Brookhaven National Laboratory (BNL), P.O.Box 5000, Upton, NY 11973-5000, USA
20 Brown University, Department of Physics, Box 1843, Providence, RI 02912, USA

21 Budkar Institute for Nuclear Physics (BINP), 630090 Novosibirsk, Russia
22 Calcutta University, Department of Physics, 92 A.P.C. Road, Kolkata 700009, India

23 California Institute of Technology, Physics, Mathematics and Astronomy (PMA), 1200
East California Blvd, Pasadena, CA 91125, USA

24 Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa, Ontario,
Canada K1S 5B6
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25 Carnegie Mellon University, Department of Physics, Wean Hall 7235, Pittsburgh, PA
15213, USA

26 CCLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, UK
27 CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxton OX11 0QX, UK

28 CEA Saclay, DAPNIA, F-91191 Gif-sur-Yvette, France
29 CEA Saclay, Service de Physique Théorique, CEA/DSM/SPhT, F-91191 Gif-sur-Yvette

Cedex, France
30 Center for High Energy Physics (CHEP) / Kyungpook National University, 1370

Sankyuk-dong, Buk-gu, Daegu 702-701, Korea
31 Center for High Energy Physics (TUHEP), Tsinghua University, Beijing, China 100084
32 Centre de Physique Theorique, CNRS - Luminy, Universiti d’Aix - Marseille II, Campus

of Luminy, Case 907, 13288 Marseille Cedex 9, France
33 Centro de Investigaciones Energéticas, Medioambientales y Technológicas, CIEMAT,

Avenia Complutense 22, E-28040 Madrid, Spain
34 Centro Nacional de Microelectrónica (CNM), Instituto de Microelectrónica de Barcelona

(IMB), Campus UAB, 08193 Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
35 CERN, CH-1211 Genève 23, Switzerland

36 Charles University, Institute of Particle & Nuclear Physics, Faculty of Mathematics and
Physics, V Holesovickach 2, CZ-18000 Praque 8, Czech Republic

37 Chonbuk National University, Physics Department, Chonju 561-756, Korea
38 Cockcroft Institute, Daresbury, Warrington WA4 4AD, UK

39 College of William and Mary, Department of Physics, Williamsburg, VA, 23187, USA
40 Colorado State University, Department of Physics, Fort Collins, CO 80523, USA
41 Columbia University, Department of Physics, New York, NY 10027-6902, USA

42 Concordia University, Department of Physics, 1455 De Maisonneuve Blvd. West,
Montreal, Quebec, Canada H3G 1M8

43 Cornell University, Laboratory for Elementary-Particle Physics (LEPP), Ithaca, NY
14853, USA

44 Cukurova University, Department of Physics, Fen-Ed. Fakultesi 01330, Balcali, Turkey
45 D. V. Efremov Research Institute, SINTEZ, 196641 St. Petersburg, Russia

46 Dartmouth College, Department of Physics and Astronomy, 6127 Wilder Laboratory,
Hanover, NH 03755, USA

47 DESY-Hamburg site, Deutsches Elektronen-Synchrotoron in der
Helmholtz-Gemeinschaft, Notkestrasse 85, 22607 Hamburg, Germany

48 DESY-Zeuthen site, Deutsches Elektronen-Synchrotoron in der Helmholtz-Gemeinschaft,
Platanenallee 6, D-15738 Zeuthen, Germany

49 Durham University, Department of Physics, Ogen Center for Fundamental Physics,
South Rd., Durham DH1 3LE, UK

50 Ecole Polytechnique, Laboratoire Leprince-Ringuet (LLR), Route de Saclay, F-91128
Palaiseau Cedex, France

51 Ege University, Department of Physics, Faculty of Science, 35100 Izmir, Turkey
52 Enrico Fermi Institute, University of Chicago, 5640 S. Ellis Avenue, RI-183, Chicago, IL

60637, USA
53 Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, Korea
54 Fermi National Accelerator Laboratory (FNAL), P.O.Box 500, Batavia, IL 60510-0500,

USA
55 Fujita Gakuen Health University, Department of Physics, Toyoake, Aichi 470-1192, Japan
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56 Fukui University of Technology, 3-6-1 Gakuen, Fukui-shi, Fukui 910-8505, Japan
57 Fukui University, Department of Physics, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
58 Georg-August-Universität Göttingen, II. Physikalisches Institut, Friedrich-Hund-Platz 1,

37077 Göttingen, Germany
59 Global Design Effort

60 Gomel State University, Department of Physics, Ul. Sovietskaya 104, 246699 Gomel,
Belarus

61 Guangxi University, College of Physics science and Engineering Technology, Nanning,
China 530004

62 Hanoi University of Technology, 1 Dai Co Viet road, Hanoi, Vietnam
63 Hanson Professional Services, Inc., 1525 S. Sixth St., Springfield, IL 62703, USA

64 Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India
65 Helsinki Institute of Physics (HIP), P.O. Box 64, FIN-00014 University of Helsinki,

Finland
66 Henan Normal University, College of Physics and Information Engineering, Xinxiang,

China 453007
67 High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki

305-0801, Japan
68 Hiroshima University, Department of Physics, 1-3-1 Kagamiyama, Higashi-Hiroshima,

Hiroshima 739-8526, Japan
69 Humboldt Universität zu Berlin, Fachbereich Physik, Institut für
Elementarteilchenphysik, Newtonstr. 15, D-12489 Berlin, Germany

70 Hungarian Academy of Sciences, KFKI Research Institute for Particle and Nuclear
Physics, P.O. Box 49, H-1525 Budapest, Hungary

71 Ibaraki University, College of Technology, Department of Physics, Nakanarusawa 4-12-1,
Hitachi, Ibaraki 316-8511, Japan

72 Imperial College, Blackett Laboratory, Department of Physics, Prince Consort Road,
London, SW7 2BW, UK

73 Indian Association for the Cultivation of Science, Department of Theoretical Physics and
Centre for Theoretical Sciences, Kolkata 700032, India

74 Indian Institute of Science, Centre for High Energy Physics, Bangalore 560012,
Karnataka, India

75 Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
76 Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India

77 Indian Institute of Technology, Kanpur, Department of Physics, IIT Post Office, Kanpur
208016, India

78 Indiana University - Purdue University, Indianapolis, Department of Physics, 402 N.
Blackford St., LD 154, Indianapolis, IN 46202, USA

79 Indiana University, Department of Physics, Swain Hall West 117, 727 E. 3rd St.,
Bloomington, IN 47405-7105, USA

80 Institucio Catalana de Recerca i Estudis, ICREA, Passeig Lluis Companys, 23, Barcelona
08010, Spain

81 Institut de Physique Nucléaire, F-91406 Orsay, France
82 Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität

Darmstadt, Schloßgartenstr. 8, D-64289 Darmstadt, Germany
83 Institut National de Physique Nucleaire et de Physique des Particules, 3, Rue Michel-

Ange, 75794 Paris Cedex 16, France
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84 Institut Pluridisciplinaire Hubert Curien, 23 Rue du Loess - BP28, 67037 Strasbourg
Cedex 2, France

85 Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
86 Institute for Cosmic Ray Research, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa,

Chiba 277-8582, Japan
87 Institute of High Energy Physics - IHEP, Chinese Academy of Sciences, P.O. Box 918,

Beijing, China 100049
88 Institute of Mathematical Sciences, Taramani, C.I.T. Campus, Chennai 600113, India
89 Institute of Physics and Electronics, Vietnamese Academy of Science and Technology

(VAST), 10 Dao-Tan, Ba-Dinh, Hanoi 10000, Vietnam
90 Institute of Physics, ASCR, Academy of Science of the Czech Republic, Division of

Elementary Particle Physics, Na Slovance 2, CS-18221 Prague 8, Czech Republic
91 Institute of Physics, Pomorska 149/153, PL-90-236 Lodz, Poland

92 Institute of Theoretical and Experimetal Physics, B. Cheremushkinskawa, 25,
RU-117259, Moscow, Russia

93 Institute of Theoretical Physics, Chinese Academy of Sciences, P.O.Box 2735, Beijing,
China 100080

94 Instituto de Fisica Corpuscular (IFIC), Centro Mixto CSIC-UVEG, Edificio Investigacion
Paterna, Apartado 22085, 46071 Valencia, Spain

95 Instituto de Fisica de Cantabria, (IFCA, CSIC-UC), Facultad de Ciencias, Avda. Los
Castros s/n, 39005 Santander, Spain

96 Instituto Nazionale di Fisica Nucleare (INFN), Laboratorio LASA, Via Fratelli Cervi
201, 20090 Segrate, Italy

97 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Ferrara, via Paradiso 12,
I-44100 Ferrara, Italy

98 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via G. Sansone 1,
I-50019 Sesto Fiorentino (Firenze), Italy

99 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Lecce, via Arnesano, I-73100
Lecce, Italy

100 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Complesso Universitá
di Monte Sant’Angelo,via, I-80126 Naples, Italy

101 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Pavia, Via Bassi 6, I-27100
Pavia, Italy

102 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Edificio C - Polo
Fibonacci Largo B. Pontecorvo, 3, I-56127 Pisa, Italy

103 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, c/o Universitá’ di
Torino facoltá’ di Fisica, via P Giuria 1, 10125 Torino, Italy

104 Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Padriciano 99, I-34012
Trieste (Padriciano), Italy

105 Inter-University Accelerator Centre, Aruna Asaf Ali Marg, Post Box 10502, New Delhi
110067, India

106 International Center for Elementary Particle Physics, University of Tokyo, Hongo 7-3-1,
Bunkyo District, Tokyo 113-0033, Japan

107 Iowa State University, Department of Physics, High Energy Physics Group, Ames, IA
50011, USA

108 Jagiellonian University, Institute of Physics, Ul. Reymonta 4, PL-30-059 Cracow, Poland
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109 Jamia Millia Islamia, Centre for Theoretical Physics, Jamia Nagar, New Delhi 110025,
India

110 Jamia Millia Islamia, Department of Physics, Jamia Nagar, New Delhi 110025, India
111 Japan Aerospace Exploration Agency, Sagamihara Campus, 3-1-1 Yoshinodai,

Sagamihara, Kanagawa 220-8510 , Japan
112 Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki

319-1184, Japan
113 Johannes Gutenberg Universität Mainz, Institut für Physik, 55099 Mainz, Germany
114 Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins RD.,

Laurel, MD 20723-6099, USA
115 Joint Institute for Nuclear Research (JINR), Joliot-Curie 6, 141980, Dubna, Moscow

Region, Russia
116 Kansas State University, Department of Physics, 116 Cardwell Hall, Manhattan, KS

66506, USA
117 KCS Corp., 2-7-25 Muramatsukita, Tokai, Ibaraki 319-1108, Japan

118 Kharkov Institute of Physics and Technology, National Science Center, 1,
Akademicheskaya St., Kharkov, 61108, Ukraine

119 Kinki University, Department of Physics, 3-4-1 Kowakae, Higashi-Osaka, Osaka
577-8502, Japan

120 Kobe University, Faculty of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501,
Japan

121 Kogakuin University, Department of Physics, Shinjuku Campus, 1-24-2 Nishi-Shinjuku,
Shinjuku-ku, Tokyo 163-8677, Japan

122 Konkuk University, 93-1 Mojin-dong, Kwanglin-gu, Seoul 143-701, Korea
123 Korea Advanced Institute of Science & Technology, Department of Physics, 373-1

Kusong-dong, Yusong-gu, Taejon 305-701, Korea
124 Korea Institute for Advanced Study (KIAS), School of Physics, 207-43

Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea
125 Korea University, Department of Physics, Seoul 136-701, Korea

126 Kyoto University, Department of Physics, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto
606-8502, Japan

127 L.P.T.A., UMR 5207 CNRS-UM2, Université Montpellier II, Case Courrier 070, Bât.
13, place Eugène Bataillon, 34095 Montpellier Cedex 5, France

128 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Chemin du
Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France

129 Laboratoire d’Annecy-le-Vieux de Physique Theorique (LAPTH), Chemin de Bellevue,
BP 110, F-74941 Annecy-le-Vieux Cedex, France

130 Laboratoire de l’Accélérateur Linéaire (LAL), Université Paris-Sud 11, Bâtiment 200,
91898 Orsay, France

131 Laboratoire de Physique Corpusculaire de Clermont-Ferrand (LPC), Université Blaise
Pascal, I.N.2.P.3./C.N.R.S., 24 avenue des Landais, 63177 Aubière Cedex, France

132 Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph
Fourier (Grenoble 1), 53, ave. des Marthyrs, F-38026 Grenoble Cedex, France

133 Laboratoire de Physique Theorique, Université de Paris-Sud XI, Batiment 210, F-91405
Orsay Cedex, France

134 Laboratori Nazionali di Frascati, via E. Fermi, 40, C.P. 13, I-00044 Frascati, Italy
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135 Laboratory of High Energy Physics and Cosmology, Department of Physics, Hanoi
National University, 334 Nguyen Trai, Hanoi, Vietnam

136 Lancaster University, Physics Department, Lancaster LA1 4YB, UK
137 Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Rd, Berkeley, CA 94720,

USA
138 Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94551, USA
139 Lebedev Physical Institute, Leninsky Prospect 53, RU-117924 Moscow, Russia

140 Liaoning Normal University, Department of Physics, Dalian, China 116029
141 Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics (MSU

SINP), 1(2), Leninskie gory, GSP-1, Moscow 119991, Russia
142 Los Alamos National Laboratory (LANL), P.O.Box 1663, Los Alamos, NM 87545, USA

143 Louisiana Technical University, Department of Physics, Ruston, LA 71272, USA
144 Ludwig-Maximilians-Universität München, Department für Physik, Schellingstr. 4,

D-80799 Munich, Germany
145 Lunds Universitet, Fysiska Institutionen, Avdelningen för Experimentell Högenergifysik,

Box 118, 221 00 Lund, Sweden
146 Massachusetts Institute of Technology, Laboratory for Nuclear Science & Center for

Theoretical Physics, 77 Massachusetts Ave., NW16, Cambridge, MA 02139, USA
147 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805

München, Germany
148 McGill University, Department of Physics, Ernest Rutherford Physics Bldg., 3600

University Ave., Montreal, Quebec, H3A 2T8 Canada
149 Meiji Gakuin University, Department of Physics, 2-37 Shirokanedai 1-chome, Minato-ku,

Tokyo 244-8539, Japan
150 Michigan State University, Department of Physics and Astronomy, East Lansing, MI

48824, USA
151 Middle East Technical University, Department of Physics, TR-06531 Ankara, Turkey
152 Mindanao Polytechnic State College, Lapasan, Cagayan de Oro City 9000, Phillipines
153 MSU-Iligan Institute of Technology, Department of Physics, Andres Bonifacio Avenue,

9200 Iligan City, Phillipines
154 Nagasaki Institute of Applied Science, 536 Abamachi, Nagasaki-Shi, Nagasaki 851-0193,

Japan
155 Nagoya University, Fundamental Particle Physics Laboratory, Division of Particle and

Astrophysical Sciences, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
156 Nanchang University, Department of Physics, Nanchang, China 330031

157 Nanjing University, Department of Physics, Nanjing, China 210093
158 Nankai University, Department of Physics, Tianjin, China 300071

159 National Central University, High Energy Group, Department of Physics, Chung-li,
Taiwan 32001

160 National Institute for Nuclear & High Energy Physics, PO Box 41882, 1009 DB
Amsterdam, Netherlands

161 National Institute of Radiological Sciences, 4-9-1 Anagawa, Inaga, Chiba 263-8555,
Japan

162 National Synchrotron Radiation Laboratory, University of Science and Technology of
china, Hefei, Anhui, China 230029

163 National Synchrotron Research Center, 101 Hsin-Ann Rd., Hsinchu Science Part,
Hsinchu, Taiwan 30076
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164 National Taiwan University, Physics Department, Taipei, Taiwan 106
165 Niels Bohr Institute (NBI), University of Copenhagen, Blegdamsvej 17, DK-2100

Copenhagen, Denmark
166 Niigata University, Department of Physics, Ikarashi, Niigata 950-218, Japan
167 Nikken Sekkai Ltd., 2-18-3 Iidabashi, Chiyoda-Ku, Tokyo 102-8117, Japan

168 Nippon Dental University, 1-9-20 Fujimi, Chiyoda-Ku, Tokyo 102-8159, Japan
169 North Asia University, Akita 010-8515, Japan

170 North Eastern Hill University, Department of Physics, Shillong 793022, India
171 Northern Illinois University, Department of Physics, DeKalb, Illinois 60115-2825, USA
172 Northwestern University, Department of Physics and Astronomy, 2145 Sheridan Road.,

Evanston, IL 60208, USA
173 Novosibirsk State University (NGU), Department of Physics, Pirogov st. 2, 630090

Novosibirsk, Russia
174 Obninsk State Technical University for Nuclear Engineering (IATE), Obninsk, Russia

175 Ochanomizu University, Department of Physics, Faculty of Science, 1-1 Otsuka 2,
Bunkyo-ku, Tokyo 112-8610, Japan

176 Osaka University, Laboratory of Nuclear Studies, 1-1 Machikaneyama, Toyonaka, Osaka
560-0043, Japan

177 Österreichische Akademie der Wissenschaften, Institut für Hochenergiephysik,
Nikolsdorfergasse 18, A-1050 Vienna, Austria

178 Panjab University, Chandigarh 160014, India
179 Pavel Sukhoi Gomel State Technical University, ICTP Affiliated Centre & Laboratory

for Physical Studies, October Avenue, 48, 246746, Gomel, Belarus
180 Pavel Sukhoi Gomel State Technical University, Physics Department, October Ave. 48,

246746 Gomel, Belarus
181 Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, Gujarat, India

182 Pohang Accelerator Laboratory (PAL), San-31 Hyoja-dong, Nam-gu, Pohang,
Gyeongbuk 790-784, Korea

183 Polish Academy of Sciences (PAS), Institute of Physics, Al. Lotnikow 32/46, PL-02-668
Warsaw, Poland

184 Primera Engineers Ltd., 100 S Wacker Drive, Suite 700, Chicago, IL 60606, USA
185 Princeton University, Department of Physics, P.O. Box 708, Princeton, NJ 08542-0708,

USA
186 Purdue University, Department of Physics, West Lafayette, IN 47907, USA
187 Pusan National University, Department of Physics, Busan 609-735, Korea
188 R. W. Downing Inc., 6590 W. Box Canyon Dr., Tucson, AZ 85745, USA
189 Raja Ramanna Center for Advanced Technology, Indore 452013, India

190 Rheinisch-Westfälische Technische Hochschule (RWTH), Physikalisches Institut,
Physikzentrum, Sommerfeldstrasse 14, D-52056 Aachen, Germany

191 RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
192 Royal Holloway, University of London (RHUL), Department of Physics, Egham, Surrey

TW20 0EX, UK
193 Saga University, Department of Physics, 1 Honjo-machi, Saga-shi, Saga 840-8502, Japan

194 Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064, India
195 Salalah College of Technology (SCOT), Engineering Department, Post Box No. 608,

Postal Code 211, Salalah, Sultanate of Oman
196 Saube Co., Hanabatake, Tsukuba, Ibaraki 300-3261, Japan
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197 Seoul National University, San 56-1, Shinrim-dong, Kwanak-gu, Seoul 151-742, Korea
198 Shandong University, 27 Shanda Nanlu, Jinan, China 250100

199 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jiaruo Rd.,
Jiading, Shanghai, China 201800

200 Shinshu University, 3-1-1, Asahi, Matsumoto, Nagano 390-8621, Japan
201 Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences,

4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia
202 Sokendai, The Graduate University for Advanced Studies, Shonan Village, Hayama,

Kanagawa 240-0193, Japan
203 Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, CA

94025, USA
204 State University of New York at Binghamton, Department of Physics, PO Box 6016,

Binghamton, NY 13902, USA
205 State University of New York at Buffalo, Department of Physics & Astronomy, 239

Franczak Hall, Buffalo, NY 14260, USA
206 State University of New York at Stony Brook, Department of Physics and Astronomy,

Stony Brook, NY 11794-3800, USA
207 Sumitomo Heavy Industries, Ltd., Natsushima-cho, Yokosuka, Kanagawa 237-8555,

Japan
208 Sungkyunkwan University (SKKU), Natural Science Campus 300, Physics Research

Division, Chunchun-dong, Jangan-gu, Suwon, Kyunggi-do 440-746, Korea
209 Swiss Light Source (SLS), Paul Scherrer Institut (PSI), PSI West, CH-5232 Villigen

PSI, Switzerland
210 Syracuse University, Department of Physics, 201 Physics Building, Syracuse, NY

13244-1130, USA
211 Tata Institute of Fundamental Research, School of Natural Sciences, Homi Bhabha Rd.,

Mumbai 400005, India
212 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 2 North 1st

St., Zhongguancun, Beijing, China 100080
213 Technical University of Lodz, Department of Microelectronics and Computer Science, al.

Politechniki 11, 90-924 Lodz, Poland
214 Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01069

Dresden, Germany
215 Technische Universität Dresden, Institut für Theoretische Physik,D-01062 Dresden,

Germany
216 Tel-Aviv University, School of Physics and Astronomy, Ramat Aviv, Tel Aviv 69978,

Israel
217 Texas A&M University, Physics Department, College Station, 77843-4242 TX, USA
218 Texas Tech University, Department of Physics, Campus Box 41051, Lubbock, TX

79409-1051, USA
219 The Henryk Niewodniczanski Institute of Nuclear Physics (NINP), High Energy Physics

Lab, ul. Radzikowskiego 152, PL-31342 Cracow, Poland
220 Thomas Jefferson National Accelerator Facility (TJNAF), 12000 Jefferson Avenue,

Newport News, VA 23606, USA
221 Tohoku Gakuin University, Faculty of Technology, 1-13-1 Chuo, Tagajo, Miyagi

985-8537, Japan
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222 Tohoku University, Department of Physics, Aoba District, Sendai, Miyagi 980-8578,
Japan

223 Tokyo Management College, Computer Science Lab, Ichikawa, Chiba 272-0001, Japan
224 Tokyo University of Agriculture Technology, Department of Applied Physics,

Naka-machi, Koganei, Tokyo 183-8488, Japan
225 Toyama University, Department of Physics, 3190 Gofuku, Toyama-shi 930-8588, Japan

226 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
227 Tufts University, Department of Physics and Astronomy, Robinson Hall, Medford, MA

02155, USA
228 Universidad Autònoma de Madrid (UAM), Facultad de Ciencias C-XI, Departamento de

Fisica Teorica, Cantoblanco, Madrid 28049, Spain
229 Universitat Autònoma de Barcelona, Institut de Fisica d’Altes Energies (IFAE),

Campus UAB, Edifici Cn, E-08193 Bellaterra, Barcelona, Spain
230 University College of London (UCL), High Energy Physics Group, Physics and

Astronomy Department, Gower Street, London WC1E 6BT, UK
231 University College, National University of Ireland (Dublin), Department of

Experimental Physics, Science Buildings, Belfield, Dublin 4, Ireland
232 University de Barcelona, Facultat de F́ısica, Av. Diagonal, 647, Barcelona 08028, Spain
233 University of Abertay Dundee, Department of Physics, Bell St, Dundee, DD1 1HG, UK
234 University of Auckland, Department of Physics, Private Bag, Auckland 1, New Zealand

235 University of Bergen, Institute of Physics, Allegaten 55, N-5007 Bergen, Norway
236 University of Birmingham, School of Physics and Astronomy, Particle Physics Group,

Edgbaston, Birmingham B15 2TT, UK
237 University of Bristol, H. H. Wills Physics Lab, Tyndall Ave., Bristol BS8 1TL, UK

238 University of British Columbia, Department of Physics and Astronomy, 6224
Agricultural Rd., Vancouver, BC V6T 1Z1, Canada

239 University of California Berkeley, Department of Physics, 366 Le Conte Hall, #7300,
Berkeley, CA 94720, USA

240 University of California Davis, Department of Physics, One Shields Avenue, Davis, CA
95616-8677, USA

241 University of California Irvine, Department of Physics and Astronomy, High Energy
Group, 4129 Frederick Reines Hall, Irvine, CA 92697-4575 USA

242 University of California Riverside, Department of Physics, Riverside, CA 92521, USA
243 University of California Santa Barbara, Department of Physics, Broida Hall, Mail Code

9530, Santa Barbara, CA 93106-9530, USA
244 University of California Santa Cruz, Department of Astronomy and Astrophysics, 1156

High Street, Santa Cruz, CA 05060, USA
245 University of California Santa Cruz, Institute for Particle Physics, 1156 High Street,

Santa Cruz, CA 95064, USA
246 University of Cambridge, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3

0HE, UK
247 University of Colorado at Boulder, Department of Physics, 390 UCB, University of

Colorado, Boulder, CO 80309-0390, USA
248 University of Delhi, Department of Physics and Astrophysics, Delhi 110007, India

249 University of Delhi, S.G.T.B. Khalsa College, Delhi 110007, India
250 University of Dundee, Department of Physics, Nethergate, Dundee, DD1 4HN, Scotland,

UK
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251 University of Edinburgh, School of Physics, James Clerk Maxwell Building, The King’s
Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

252 University of Essex, Department of Physics, Wivenhoe Park, Colchester CO4 3SQ, UK
253 University of Florida, Department of Physics, Gainesville, FL 32611, USA

254 University of Glasgow, Department of Physics & Astronomy, University Avenue,
Glasgow G12 8QQ, Scotland, UK

255 University of Hamburg, Physics Department, Institut für Experimentalphysik, Luruper
Chaussee 149, 22761 Hamburg, Germany

256 University of Hawaii, Department of Physics and Astronomy, HEP, 2505 Correa Rd.,
WAT 232, Honolulu, HI 96822-2219, USA

257 University of Heidelberg, Kirchhoff Institute of Physics, Albert Überle Strasse 3-5,
DE-69120 Heidelberg, Germany

258 University of Helsinki, Department of Physical Sciences, P.O. Box 64 (Vaino Auerin
katu 11), FIN-00014, Helsinki, Finland

259 University of Hyogo, School of Science, Kouto 3-2-1, Kamigori, Ako, Hyogo 678-1297,
Japan

260 University of Illinois at Urbana-Champaign, Department of Phys., High Energy Physics,
441 Loomis Lab. of Physics1110 W. Green St., Urbana, IL 61801-3080, USA

261 University of Iowa, Department of Physics and Astronomy, 203 Van Allen Hall, Iowa
City, IA 52242-1479, USA

262 University of Kansas, Department of Physics and Astronomy, Malott Hall, 1251 Wescoe
Hall Drive, Room 1082, Lawrence, KS 66045-7582, USA

263 University of Liverpool, Department of Physics, Oliver Lodge Lab, Oxford St., Liverpool
L69 7ZE, UK

264 University of Louisville, Department of Physics, Louisville, KY 40292, USA
265 University of Manchester, School of Physics and Astronomy, Schuster Lab, Manchester

M13 9PL, UK
266 University of Maryland, Department of Physics and Astronomy, Physics Building (Bldg.

082), College Park, MD 20742, USA
267 University of Melbourne, School of Physics, Victoria 3010, Australia

268 University of Michigan, Department of Physics, 500 E. University Ave., Ann Arbor, MI
48109-1120, USA

269 University of Minnesota, 148 Tate Laboratory Of Physics, 116 Church St. S.E.,
Minneapolis, MN 55455, USA

270 University of Mississippi, Department of Physics and Astronomy, 108 Lewis Hall, PO
Box 1848, Oxford, Mississippi 38677-1848, USA

271 University of Montenegro, Faculty of Sciences and Math., Department of Phys., P.O.
Box 211, 81001 Podgorica, Serbia and Montenegro

272 University of New Mexico, New Mexico Center for Particle Physics, Department of
Physics and Astronomy, 800 Yale Boulevard N.E., Albuquerque, NM 87131, USA

273 University of Notre Dame, Department of Physics, 225 Nieuwland Science Hall, Notre
Dame, IN 46556, USA

274 University of Oklahoma, Department of Physics and Astronomy, Norman, OK 73071,
USA

275 University of Oregon, Department of Physics, 1371 E. 13th Ave., Eugene, OR 97403,
USA
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276 University of Oxford, Particle Physics Department, Denys Wilkinson Bldg., Keble Road,
Oxford OX1 3RH England, UK

277 University of Patras, Department of Physics, GR-26100 Patras, Greece
278 University of Pavia, Department of Nuclear and Theoretical Physics, via Bassi 6,

I-27100 Pavia, Italy
279 University of Pennsylvania, Department of Physics and Astronomy, 209 South 33rd

Street, Philadelphia, PA 19104-6396, USA
280 University of Puerto Rico at Mayaguez, Department of Physics, P.O. Box 9016,

Mayaguez, 00681-9016 Puerto Rico
281 University of Regina, Department of Physics, Regina, Saskatchewan, S4S 0A2 Canada
282 University of Rochester, Department of Physics and Astronomy, Bausch & Lomb Hall,

P.O. Box 270171, 600 Wilson Boulevard, Rochester, NY 14627-0171 USA
283 University of Science and Technology of China, Department of Modern Physics (DMP),

Jin Zhai Road 96, Hefei, China 230026
284 University of Silesia, Institute of Physics, Ul. Uniwersytecka 4, PL-40007 Katowice,

Poland
285 University of Southampton, School of Physics and Astronomy, Highfield, Southampton

S017 1BJ, England, UK
286 University of Strathclyde, Physics Department, John Anderson Building, 107

Rottenrow, Glasgow, G4 0NG, Scotland, UK
287 University of Sydney, Falkiner High Energy Physics Group, School of Physics, A28,

Sydney, NSW 2006, Australia
288 University of Texas, Center for Accelerator Science and Technology, Arlington, TX

76019, USA
289 University of Tokushima, Institute of Theoretical Physics, Tokushima-shi 770-8502,

Japan
290 University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo District, Tokyo

113-0033, Japan
291 University of Toronto, Department of Physics, 60 St. George St., Toronto M5S 1A7,

Ontario, Canada
292 University of Tsukuba, Institute of Physics, 1-1-1 Ten’nodai, Tsukuba, Ibaraki 305-8571,

Japan
293 University of Victoria, Department of Physics and Astronomy, P.O.Box 3055 Stn Csc,

Victoria, BC V8W 3P6, Canada
294 University of Warsaw, Institute of Physics, Ul. Hoza 69, PL-00 681 Warsaw, Poland

295 University of Warsaw, Institute of Theoretical Physics, Ul. Hoza 69, PL-00 681 Warsaw,
Poland

296 University of Washington, Department of Physics, PO Box 351560, Seattle, WA
98195-1560, USA

297 University of Wisconsin, Physics Department, Madison, WI 53706-1390, USA
298 University of Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany

299 Université Claude Bernard Lyon-I, Institut de Physique Nucléaire de Lyon (IPNL), 4,
rue Enrico Fermi, F-69622 Villeurbanne Cedex, France

300 Université de Genève, Section de Physique, 24, quai E. Ansermet, 1211 Genève 4,
Switzerland

301 Université Louis Pasteur (Strasbourg I), UFR de Sciences Physiques, 3-5 Rue de
l’Université, F-67084 Strasbourg Cedex, France
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302 Université Pierre et Marie Curie (Paris VI-VII) (6-7) (UPMC), Laboratoire de Physique
Nucléaire et de Hautes Energies (LPNHE), 4 place Jussieu, Tour 33, Rez de chausse, 75252

Paris Cedex 05, France
303 Universität Bonn, Physikalisches Institut, Nußallee 12, 53115 Bonn, Germany

304 Universität Karlsruhe, Institut für Physik, Postfach 6980, Kaiserstrasse 12, D-76128
Karlsruhe, Germany

305 Universität Rostock, Fachbereich Physik, Universitätsplatz 3, D-18051 Rostock,
Germany

306 Universität Siegen, Fachbereich für Physik, Emmy Noether Campus, Walter-Flex-Str.3,
D-57068 Siegen, Germany

307 Università de Bergamo, Dipartimento di Fisica, via Salvecchio, 19, I-24100 Bergamo,
Italy

308 Università degli Studi di Roma La Sapienza, Dipartimento di Fisica, Istituto Nazionale
di Fisica Nucleare, Piazzale Aldo Moro 2, I-00185 Rome, Italy

309 Università degli Studi di Trieste, Dipartimento di Fisica, via A. Valerio 2, I-34127
Trieste, Italy

310 Università degli Studi di “Roma Tre”, Dipartimento di Fisica “Edoardo Amaldi”,
Istituto Nazionale di Fisica Nucleare, Via della Vasca Navale 84, 00146 Roma, Italy

311 Università dell’Insubria in Como, Dipartimento di Scienze CC.FF.MM., via Vallegio 11,
I-22100 Como, Italy

312 Università di Pisa, Departimento di Fisica ’Enrico Fermi’, Largo Bruno Pontecorvo 3,
I-56127 Pisa, Italy

313 Università di Salento, Dipartimento di Fisica, via Arnesano, C.P. 193, I-73100 Lecce,
Italy

314 Università di Udine, Dipartimento di Fisica, via delle Scienze, 208, I-33100 Udine, Italy
315 Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata 700064, India

316 VINCA Institute of Nuclear Sciences, Laboratory of Physics, PO Box 522, YU-11001
Belgrade, Serbia and Montenegro

317 Vinh University, 182 Le Duan, Vinh City, Nghe An Province, Vietnam
318 Virginia Polytechnic Institute and State University, Physics Department, Blacksburg,

VA 2406, USA
319 Visva-Bharati University, Department of Physics, Santiniketan 731235, India

320 Waseda University, Advanced Research Institute for Science and Engineering, Shinjuku,
Tokyo 169-8555, Japan

321 Wayne State University, Department of Physics, Detroit, MI 48202, USA
322 Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, Rehovot

76100, Israel
323 Yale University, Department of Physics, New Haven, CT 06520, USA

324 Yonsei University, Department of Physics, 134 Sinchon-dong, Sudaemoon-gu, Seoul
120-749, Korea

325 Zhejiang University, College of Science, Department of Physics, Hangzhou, China 310027
* deceased
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CHAPTER 1

Overview

1.1 INTRODUCTION

The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity
linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF)
accelerating cavities. The use of the SCRF technology was recommended by the International
Technology Recommendation Panel (ITRP) in August 2004 [1], and shortly thereafter en-
dorsed by the International Committee for Future Accelerators (ICFA). In an unprecedented
milestone in high-energy physics, the many institutes around the world involved in linear
collider R&D united in a common effort to produce a global design for the ILC. In November
2004, the 1st International Linear Collider Workshop was held at KEK, Tsukuba, Japan.
The workshop was attended by some 200 physicists and engineers from around the world,
and paved the way for the 2nd ILC Workshop in August 2005, held at Snowmass, Colorado,
USA, where the ILC Global Design Effort (GDE) was officially formed. The GDE member-
ship reflects the global nature of the collaboration, with accelerator experts from all three
regions (Americas, Asia and Europe). The first major goal of the GDE was to define the
basic parameters and layout of the machine – the Baseline Configuration. This was achieved
at the first GDE meeting held at INFN, Frascati, Italy in December 2005 with the creation
of the Baseline Configuration Document (BCD). During the next 14 months, the BCD was
used as the basis for the detailed design work and value estimate (as described in Section 1.6)
culminating in the completion of the second major milestone, the publication of the draft
ILC Reference Design Report (RDR).

The technical design and cost estimate for the ILC is based on two decades of world-wide
Linear Collider R&D, beginning with the construction and operation of the SLAC Linear
Collider (SLC). The SLC is acknowledged as a proof-of-principle machine for the linear col-
lider concept. The ILC SCRF linac technology was pioneered by the TESLA collaboration1,
culminating in a proposal for a 500 GeV center-of-mass linear collider in 2001 [2]. The con-
current (competing) design work on a normal conducting collider (NLC with X-band [3] and
GLC with X- or C-Band [4]), has advanced the design concepts for the ILC injectors, Damp-
ing Rings (DR) and Beam Delivery System (BDS), as well as addressing overall operations,
machine protection and availability issues. The X- and C-band R&D has led to concepts
for RF power sources that may eventually produce either cost and/or performance benefits.
Finally, the European XFEL [5] to be constructed at DESY, Hamburg, Germany, will make

1Now known as the TESLA Technology Collaboration (TTC); see http://tesla.desy.de
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use of the TESLA linac technology, and represents a significant on-going R&D effort of great
benefit for the ILC.

The ILC design has been developed to achieve the following physics performance goals[6]:

• a continuous center-of-mass energy range between 200 GeV and 500 GeV;
• a peak luminosity of ∼ 2 × 10 34 cm−2s−1, and an availability (75%) consistent with

producing 500 fb−1 in the first four years of operation2 ;
• > 80% electron polarization at the Interaction Point (IP);
• an energy stability and precision of ≤ 0.1%;
• an option for ∼60% positron polarization;
• options for e−-e− and γ-γ collisions.
In addition, the machine must be upgradeable to a center-of-mass energy of 1 TeV.
These goals guarantee a rich and varied program of physics. The energy of the ILC will

be sufficient to produce a very large number of tt pairs, which will allow top-quark physics to
be studied with unprecedented precision. The energy range of the ILC spans all predictions
for the mass of a Standard Model Higgs boson based on the precision electroweak data. Any
supersymmetric particles found by LHC will lead to a rich harvest of new phenomena at ILC;
in addition, the ILC has its own unique discovery capabilities which will be the only way to
produce a full picture of any of the new physics that might exist at the Terascale. The ILC
physics case has been endorsed by recent major reviews conducted by distinguished scientists
– some outside the field of particle physics – in all three regions. The ILC has established its
place as the next major project on the world particle physics roadmap.

TABLE 1.1-1
Basic design parameters for the ILC (a) values at 500 GeV center-of-mass energy).

Parameter Unit

Center-of-mass energy range GeV 200 - 500

Peak luminositya) cm−2s−1 2× 1034

Average beam current in pulse mA 9.0

Pulse rate Hz 5.0

Pulse length (beam) ms ∼ 1

Number of bunches per pulse 1000 - 5400

Charge per bunch nC 1.6 - 3.2

Accelerating gradienta) MV/m 31.5

RF pulse length ms 1.6

Beam power (per beam)a) MW 10.8

Typical beam size at IPa) (h× v) nm 640 × 5.7

Total AC Power consumptiona) MW 230

The current ILC baseline assumes an average accelerating gradient of 31.5 MV/m in the
cavities to achieve a center-of-mass energy of 500 GeV. The high luminosity requires the

2This assumes one additional year for commissioning, followed by a ramp up to the peak design performance
over the four year operation period.
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use of high power and small emittance beams. The choice of 1.3 GHz SCRF is well suited
to the requirements, primarily because the very low power loss in the SCRF cavity walls
allows the use of long RF pulses, relaxing the requirements on the peak-power generation,
and ultimately leading to high wall-plug to beam transfer efficiency.

The primary cost drivers are the SCRF Main Linac technology and the Conventional
Facilities (including civil engineering). The choice of gradient is a key cost and performance
parameter, since it dictates the length of the linacs, while the cavity quality factor (Q0)
relates to the required cryogenic cooling power. The achievement of 31.5 MV/m as the
baseline average operational accelerating gradient – requiring a minimum performance of 35
MV/m during cavity mass-production acceptance testing – represents the primary challenge
to the global ILC R&D

With the completion of the RDR, the GDE will begin an engineering design study, closely
coupled with a prioritized R&D program. The goal is to produce an Engineering Design
Report (EDR) by 2010, presenting the matured technology, design and construction plan
for the ILC, allowing the world High Energy Physics community to seek government-level
project approvals, followed by start of construction in 2012. When combined with the seven-
year construction phase that is assumed in studies presented in RDR, this timeline will allow
operations to begin in 2019. This is consistent with a technically driven schedule for this
international project.
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1.2 SUPERCONDUCTING RF

The primary cost driver for the ILC is the superconducting RF technology used for the Main
Linacs, bunch compressors and injector linacs. In 1992, the TESLA Collaboration began
R&D on 1.3 GHz technology with a goal of reducing the cost per MeV by a factor of 20 over
the then state-of-the-art SCRF installation (CEBAF). This was achieved by increasing the
operating accelerating gradient by a factor of five from 5 MV/m to 25 MV/m, and reducing
the cost per meter of the complete accelerating module by a factor of four for large-scale
production.

FIGURE 1.2-1. A TESLA nine-cell 1.3 GHz superconducting niobium cavity.

The TESLA cavity R&D was based on extensive existing experience from CEBAF (Jef-
ferson Lab), CERN, Cornell University, KEK, Saclay and Wuppertal. The basic element of
the technology is a nine-cell 1.3 GHz niobium cavity, shown in Figure 1.2-1. Approximately
160 of these cavities have been fabricated by industry as part of the on-going R&D program
at DESY; some 17,000 are needed for the ILC.

A single cavity is approximately 1 m long. The cavities must be operated at 2 K to achieve
their performance. Eight or nine cavities are mounted together in a string and assembled
into a common low-temperature cryostat or cryomodule (Figure 1.2-2), the design of which is
already in the third generation. Ten cryomodules have been produced to-date, five of which
are currently installed in the in the VUV free-electron laser (FLASH)3 at DESY, where they
are routinely operated. DESY is currently preparing for the construction of the European
XFEL facility, which will have a ∼ 20 GeV superconducting linac containing 116 cryomodules.

The ILC community has set an aggressive goal of routinely achieving4 35 MV/m in nine-
cell cavities, with a minimum production yield of 80%. Several cavities have already achieved
these and higher gradients (see Figure 1.2-3), demonstrating proof of principle. Records of
over 50 MV/m have been achieved in single-cell cavities at KEK and Cornell[7]. However,
it is still a challenge to achieve the desired production yield for nine-cell cavities at the
mass-production levels (∼17,000 cavities) required.

The key to high-gradient performance is the ultra-clean and defect-free inner surface of
the cavity. Both cavity preparation and assembly into cavity strings for the cryomodules
must be performed in clean-room environments (Figure 1.2-4).

3Originally known as the TESLA Test Facility (TTF).
4Acceptance test.
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FIGURE 1.2-2. SCRF Cryomodules. Left: an 8 cavity TESLA cryomodule is installed into the FLASH
linac at DESY. Right: design for the 4th generation ILC prototype cryomodule, due to be constructed at
Fermilab National Laboratory.

FIGURE 1.2-3. High-performance nine-cell cavities. Left: Examples of DESY nine-cell cavities achieving
≥ 35 MV/m. Right: Recent result from Jefferson Lab of nine-cell cavity achieving 40 MV/m.

The best cavities have been achieved using electropolishing, a common industry practice
which was first developed for use with superconducting cavities by CERN and KEK. Over
the last few years, research at Cornell, DESY, KEK and Jefferson Lab has led to an agreed
standard procedure for cavity preparation, depicted in Figure 1.2-5. The focus of the R&D
is now to optimize the process to guarantee the required yield. The ILC SCRF community
has developed an internationally agreed-upon plan to address the priority issues.

The high-gradient SCRF R&D required for ILC is expected to ramp-up world-wide over
the next years. The U.S. is currently investing in new infrastructure for nine-cell cavity
preparation and string and cryomodule assembly. These efforts are centered at Fermilab (ILC
Test Accelerator, or ILCTA), together with ANL, Cornell University, SLAC and Jefferson
Lab. In Japan, KEK is developing the Superconducting RF Test Facility (STF). In Europe,
the focus of R&D at DESY has shifted to industrial preparation for construction of the XFEL.
There is continued R&D to support the high-gradient program, as well as other critical ILC-
related R&D such as high-power RF couplers (LAL, Orsay, France) and cavity tuners (CEA
Saclay, France; INFN Milan, Italy).
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FIGURE 1.2-4. Clean room environments are mandatory. Left: the assembly of eight nine-cell TESLA
cavities into a cryomodule string at DESY. Right: an ICHIRO nine-cell cavity is prepared for initial tests
at the Superconducting RF Test Facility (STF) at KEK.

FIGURE 1.2-5. Birth of a nine-cell cavity: basic steps in surface treatment needed to achieve high-
performance superconducting cavities. (EP = electropolishing; HPR = high-pressure rinsing.)

The quest for high-gradient and affordable SCRF technology for high-energy physics has
revolutionized accelerator applications. In addition to the recently completed Spallation
Neutron Source (SNS) in Oak Ridge, Tennessee and the European XFEL under construction,
many linac-based projects utilizing SCRF technology are being developed, including 4th-
generation light sources such as single-pass FELs and energy-recovery linacs. For the large
majority of new accelerator-based projects, SCRF has become the technology of choice.
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1.3 THE ILC BASELINE DESIGN

The overall system design has been chosen to realize the physics requirements with a max-
imum CM energy of 500 GeV and a peak luminosity of 2 × 1034 cm−2s−1. Figure 1.3-1
shows a schematic view of the overall layout of the ILC, indicating the location of the major
sub-systems:

• a polarized electron source based on a photocathode DC gun;

• an undulator-based positron source, driven by a the 150 GeV main electron beam;

• 5 GeV electron and positron damping rings (DR) with a circumference of 6.7 km, housed
in a common tunnel at the center of the ILC complex;

• beam transport from the damping rings to the main linacs, followed by a two-stage
bunch compressor system prior to injection into the main linac;

• two 11 km long main linacs, utilizing 1.3 GHz SCRF cavities, operating at an average
gradient of 31.5 MV/m, with a pulse length of 1.6 ms;

• a 4.5 km long beam delivery system, which brings the two beams into collision with a 14
mrad crossing angle, at a single interaction point which can be shared by two detectors.

The total footprint is ∼31 km. The electron source, the damping rings, and the positron
auxiliary (‘keep-alive’) source are centrally located around the interaction region (IR). The
plane of the damping rings is elevated by ∼10 m above that of the BDS to avoid interference.

To upgrade the machine to Ecms = 1 TeV, the linacs and the beam transport lines from
the damping rings would be extended by another ∼ 11 km each. Certain components in the
beam delivery system would also need to be augmented or replaced.

1.3.1 Beam Parameters

The nominal beam parameter set, corresponding to the design luminosity of 2×1034 cm−2s−1

at Ecms = 500 GeV is given in Table 1.1-1. These parameters have been chosen to optimize
between known accelerator physics and technology challenges throughout the whole acceler-
ator complex. Examples of such challenges are:

• beam instability and kicker hardware constraints in the damping rings;

• beam current, beam power, and pulse length limitations in the main linacs;

• emittance preservation requirements, in the main linacs and in the beam delivery sys-
tem;

• background control and kink instability issues in the interaction region.

Nearly all high-energy physics accelerators have shown unanticipated difficulties in reach-
ing their design luminosity. The ILC design specifies that each subsystem support a range
of beam parameters. The resulting flexibility in operating parameters will allow identified
problems in one area to be compensated for in another. The nominal IP beam parameters
and design ranges are presented in Table 1.3-1.
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FIGURE 1.3-1. Schematic layout of the ILC complex for 500 GeV CM.

1.3.2 Electron Source

Functional Requirements
The ILC polarized electron source must:

• generate the required bunch train of polarized electrons (> 80% polarization);
• capture and accelerate the beam to 5 GeV;
• transport the beam to the electron damping ring with minimal beam loss, and perform

an energy compression and spin rotation prior to injection.
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TABLE 1.3-1
Nominal and design range of beam parameters at the IP. The min. and max. columns do not represent
consistent sets of parameters, but only indicate the span of the design range for each parameter. (Nominal
vertical emittance assumes a 100% emittance dilution budget from the damping ring to the IP.)

min nominal. max. unit

Bunch population 1 2 2 ×1010

Number of bunches 1260 2625 5340

Linac bunch interval 180 369 500 ns

RMS bunch length 200 300 500 µm

Normalized horizontal emittance at IP 10 10 12 mm·mrad

Normalized vertical emittance at IP 0.02 0.04 0.08 mm·mrad

Horizontal beta function at IP 10 20 20 mm

Vertical beta function at IP 0.2 0.4 0.6 mm

RMS horizontal beam size at IP 474 640 640 nm

RMS vertical beam size at IP 3.5 5.7 9.9 nm

Vertical disruption parameter 14 19.4 26.1

Fractional RMS energy loss to beamstrahlung 1.7 2.4 5.5 %

System Description
The polarized electron source is located on the positron linac side of the damping rings. The
beam is produced by a laser illuminating a photocathode in a DC gun. Two independent laser
and gun systems provide redundancy. Normal-conducting structures are used for bunching
and pre-acceleration to 76 MeV, after which the beam is accelerated to 5 GeV in a supercon-
ducting linac. Before injection into the damping ring, superconducting solenoids rotate the
spin vector into the vertical, and a separate superconducting RF structure is used for energy
compression. The layout of the polarized electron source is shown in Figure 1.3-2.

FIGURE 1.3-2. Schematic View of the Polarized Electron Source.
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Challenges
The SLC polarized electron source already meets the requirements for polarization, charge
and lifetime. The primary challenge for the ILC electron source is the 1 ms long bunch train,
which demands a laser system beyond that used at any existing accelerator.

1.3.3 Positron Source

Functional requirements
The positron source must perform several critical functions:

• generate a high-power multi-MeV photon production drive beam in a suitably short-
period, high K-value helical undulator;

• produce the needed positron bunches in a metal target that can reliably deal with the
beam power and induced radioactivity;

• capture and accelerate the beam to 5 GeV;

• transport the beam to the positron damping ring with minimal beam loss, and perform
an energy compression and spin rotation prior to injection.

System Description
The major elements of the ILC positron source are shown in Figure 1.3-3. The source uses
photoproduction to generate positrons. After acceleration to 150 GeV, the electron beam
is diverted into an offset beamline, transported through a 150-meter helical undulator, and
returned to the electron linac. The high-energy (∼10 MeV) photons from the undulator
are directed onto a rotating 0.4 radiation-length Ti-alloy target ∼500 meters downstream,
producing a beam of electron and positron pairs. This beam is then matched using an optical-
matching device into a normal conducting (NC) L-band RF and solenoidal-focusing capture
system and accelerated to 125 MeV. The electrons and remaining photons are separated
from the positrons and dumped. The positrons are accelerated to 400 MeV in a NC L-
band linac with solenoidal focusing. The beam is transported 5 km through the rest of the
electron main linac tunnel, brought to the central injector complex, and accelerated to 5 GeV
using superconducting L-band RF. Before injection into the damping ring, superconducting
solenoids rotate the spin vector into the vertical, and a separate superconducting RF structure
is used for energy compression.

OMD
Collimator

(upgrade)

Booster Linac
(cryomodules to boost energy to 5 GeV)

Pre-accelerator
(125-400 MeV)

Target~147 GeV e–

150 GeV e–

Helical
Undulator

γ

Damping Ring
Capture RF

(125 MeV)
e– Dump

γ Dump

6-2007
8747A21

OMD
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(125-400 MeV)

Target

Capture RF
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γ Dump

KEEP-ALIVE SOURCE
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FIGURE 1.3-3. Overall Layout of the Positron Source.
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The baseline design is for unpolarized positrons, although the beam has a polarization of
30%, and beamline space has been reserved for an eventual upgrade to 60% polarization.

To allow commissioning and tuning of the positron systems while the high-energy electron
beam is not available, a low-intensity auxiliary (or “keep-alive”) positron source is provided.
This is a conventional positron source, which uses a 500 MeV electron beam impinging on
a heavy-metal target to produce ∼10% of the nominal positron beam. The keep-alive and
primary sources use the same linac to accelerate from 400 MeV to 5 GeV.

Challenges
The most challenging elements of the positron source are:

• the 150 m long superconducting helical undulator, which has a period of 1.15 cm and
a K-value of 0.92, and a 6 mm inner diameter vacuum chamber;

• the Ti-alloy target, which is a cylindrical wheel 1.4 cm thick and 1 m in diameter, which
must rotate at 100 m/s in vacuum to limit damage by the photon beam;

• the normal-conducting RF system which captures the positron beam, which must sus-
tain high accelerator gradients during millisecond-long pulses in a strong magnetic field,
while providing adequate cooling in spite of high RF and particle-loss heating.

The target and capture sections are also high-radiation areas which present remote hand-
ing challenges.

1.3.4 Damping Rings

Functional requirements
The damping rings must perform four critical functions:

• accept e− and e+ beams with large transverse and longitudinal emittances and damp to
the low emittance beam required for luminosity production (by five orders of magnitude
for the positron vertical emittance), within the 200 ms between machine pulses;

• inject and extract individual bunches without affecting the emittance or stability of the
remaining stored bunches;

• damp incoming beam jitter (transverse and longitudinal) and provide highly stable
beams for downstream systems;

• delay bunches from the source to allow feed-forward systems to compensate for pulse-
to-pulse variations in parameters such as the bunch charge.

System Description
The ILC damping rings include one electron and one positron ring, each 6.7 km long, oper-
ating at a beam energy of 5 GeV. The two rings are housed in a single tunnel near the center
of the site, with one ring positioned directly above the other. The plane of the DR tunnel is
located ∼10 m higher than that of the beam delivery system. This elevation difference gives
adequate shielding to allow operation of the injector system while other systems are open to
human access.

The damping ring lattice is divided into six arcs and six straight sections. The arcs are
composed of TME cells; the straight sections use a FODO lattice. Four of the straight sections
contain the RF systems and the superconducting wigglers. The remaining two sections are
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used for beam injection and extraction. Except for the wigglers, all of the magnets in the
ring, are normal-conducting. Approximately 200 m of superferric wigglers are used in each
damping ring. The wigglers are 2.5 m long devices, operating at 4.5K, with a peak field of
1.67 T.

The superconducting RF system is operated CW at 650 MHz, and provides 24 MV for
each ring. The frequency is chosen to be half the linac RF frequency to easily accommodate
different bunch patterns. The single-cell cavities operate at 4.5 K and are housed in eighteen
3.5 m long cryomodules. Although a number of 500 MHz CW RF systems are currently
in operation, development work is required for this 650 MHz system, both for cavities and
power sources.

The momentum compaction of the lattice is relatively large, which helps to maintain
single bunch stability, but requires a relatively high RF voltage to achieve the design RMS
bunch length (9 mm). The dynamic aperture of the lattice is sufficient to allow the large
emittance injected beam to be captured with minimal loss.

Challenges
The principal challenges in the damping ring are:

• control of the electron cloud effect in the positron damping ring. This effect, which
can cause instability, tune spread, and emittance growth, has been seen in a number
of other rings and is relatively well understood. Simulations indicate that it can be
controlled by proper surface treatment of the vacuum chamber to suppress secondary
emission, and by the use of solenoids and clearing electrodes to suppress the buildup of
the cloud.

• control of the fast ion instability in the electron damping ring. This effect can be
controlled by limiting the pressure in the electron damping ring to below 1 nTorr, and
by the use of short gaps in the ring fill pattern.

• development of a very fast rise and fall time kicker for single bunch injection and
extraction in the ring. For the most demanding region of the beam parameter range,
the bunch spacing in the damping ring is ∼3 ns, and the kicker must have a rise plus
fall time no more than twice this. Short stripline kicker structures can achieve this, but
the drive pulser technology still needs development.

1.3.5 Ring to Main Linac (RTML)

Functional requirements
The RTML must perform several critical functions for each beam:

• transport the beam from the damping ring to the upstream end of the linac;

• collimate the beam halo generated in the damping ring;

• rotate the polarization from the vertical to any arbitrary angle required at the IP;

• compress the long Damping Ring bunch length by a factor of 30 ∼ 45 to provide the
short bunches required by the Main Linac and the IP;
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FIGURE 1.3-4. Schematic of the RTML.

System Description
The layout of the RTML is identical for both electrons and positrons, and is shown in Fig-
ure 1.3-4. The RTML consists of the following subsystems:

• an ∼15 km long 5 GeV transport line;
• betatron and energy collimation systems;
• a 180◦ turn-around, which enables feed-forward beam stabilization;
• spin rotators to orient the beam polarization to the desired direction;
• a 2-stage bunch compressor to compress the beam bunch length from several millimeters

to a few hundred microns as required at the IP.
The bunch compressor includes acceleration from 5 GeV to 13-15 GeV in order to limit

the increase in fractional energy spread associated with bunch compression.

Challenges
The principal challenges in the RTML are:

• control of emittance growth due to static misalignments, resulting in dispersion and
coupling. Simulations indicate that the baseline design for beam-based alignment can
limit the emittance growth to tolerable levels.
• suppression of phase and amplitude jitter in the bunch compressor RF, which can lead

to timing errors at the IP. RMS phase jitter of 0.24◦ between the electron and positron
RF systems results in a 2% loss of luminosity. Feedback loops in the bunch compressor
low-level RF system should be able to limit the phase jitter to this level.

1.3.6 Main Linacs

Functional requirements
The two main linacs accelerate the electron and positron beams from their injected energy
of 15 GeV to the final beam energy of 250 GeV, over a combined length of 23 km. The main
linacs must:

• accelerate the beam while preserving the small bunch emittances, which requires precise
orbit control based on data from high resolution beam position monitors, and also
requires control of higher-order modes in the accelerating cavities;
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• maintain the beam energy spread within the design requirement of ∼0.1 % at the IP;
• not introduce significant transverse or longitudinal jitter, which could cause the beams

to miss at the collision point.

System description
The ILC Main Linacs accelerate the beam from 15 GeV to a maximum energy of 250 GeV at
an average accelerating gradient of 31.5 MV/m. The linacs are composed of RF units, each
of which are formed by three contiguous SCRF cryomodules containing 26 nine-cell cavities.
The layout of one unit is illustrated in Figure 1.3-5. The positron linac contains 278 RF
units, and the electron linac has 282 RF units5.

TUNNEL 
PENETRATION

KLYSTRON
(10 MW, 1.6 ms)

37.956 m

quadQUAD

MODULATOR
(120 kV, 130 A)

9 CAVITIES

TAP-OFFS OF VARIOUS 
COUPLINGS

3 CRYOMODULES

LLRF

9 CAVITIES4 CAVITIES 4 CAVITIES

ATTENUATORS

WR770
WR650

-5.12 dB 
HYBRIDS

LOADS

FIGURE 1.3-5. RF unit layout.

Each RF unit has a stand-alone RF source, which includes a conventional pulse-transformer
type high-voltage (120 kV) modulator, a 10 MW multi-beam klystron, and a waveguide sys-
tem that distributes the RF power to the cavities (see Figure 1.3-5). It also includes the
low-level RF (LLRF) system to regulate the cavity field levels, interlock systems to protect
the source components, and the power supplies and support electronics associated with the
operation of the source.

The cryomodule design is a modification of the Type-3 version (Figure 1.2-2) developed
and used at DESY. Within the cryomodules, a 300 mm diameter helium gas return pipe serves
as a strongback to support the cavities and other beam line components. The middle cry-
omodule in each RF unit contains a quad package that includes a superconducting quadrupole
magnet at the center, a cavity BPM, and superconducting horizontal and vertical corrector
magnets. The quadrupoles establish the main linac magnetic lattice, which is a weak focusing
FODO optics with an average beta function of ∼80 m. All cryomodules are 12.652 m long,
so the active-length to actual-length ratio in a nine-cavity cryomodule is 73.8%. Every cry-
omodule also contains a 300 mm long high-order mode beam absorber assembly that removes
energy through the 40-80 K cooling system from beam-induced higher-order modes above the
cavity cutoff frequency.

To operate the cavities at 2 K, they are immersed in a saturated He II bath, and helium
gas-cooled shields intercept thermal radiation and thermal conduction at 5-8 K and at 40-80

5Approximately 3 GeV of extra energy is required in the electron linac to compensate for positron produc-
tion.
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K. The estimated static and dynamic cryogenic heat loads per RF unit at 2 K are 5.1 W
and 29 W, respectively. Liquid helium for the main linacs and the RTML is supplied from
10 large cryogenic plants, each of which has an installed equivalent cooling power of ∼20 kW
at 4.5 K. The main linacs follow the average Earth’s curvature to simplify the liquid helium
transport.

The Main Linac components are housed in two tunnels, an accelerator tunnel and a service
tunnel, each of which has an interior diameter of 4.5 meters. To facilitate maintenance and
limit radiation exposure, the RF source is housed mainly in the service tunnel as illustrated
in Figure 1.3-6.

FIGURE 1.3-6. Cutaway view of the linac dual-tunnel configuration.

The tunnels are typically hundreds of meters underground and are connected to the surface
through vertical shafts6. Each of the main linacs includes three shafts, roughly 5 km apart
as dictated by the cryogenic system. The upstream shafts in each linac have diameters of
14 m to accommodate lowering cryomodules horizontally, and the downstream shaft in each
linac is 9 m in diameter, which is the minimum size required to accommodate tunnel boring
machines. At the base of each shaft is a 14,100 cubic meter cavern for staging installation; it
also houses utilities and parts of the cryoplant, most of which are located on the surface.

Challenges
The principal challenges in the main linac are:

• achieving the design average accelerating gradient of 31.5 MV/m. This operating gra-
dient is higher than that typically achievable today and assumes further progress will
be made during the next few years in the aggressive program that is being pursued to
improve cavity performance.
• control of emittance growth due to static misalignments, resulting in dispersion and

coupling. Beam-based alignment techniques should be able to limit the single-bunch
emittance growth. Long-range multibunch effects are mitigated via HOM damping
ports on the cavities, HOM absorbers at the quadrupoles, and HOM detuning. Coupling
from mode-rotation HOMs is limited by splitting the horizontal and vertical betatron
tunes.

6Except for the Asian sample site: see Section 1.4.
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• control of the beam energy spread. The LLRF system monitors the vector sum of the
fields in the 26 cavities of each RF unit and makes adjustments to flatten the energy
gain along the bunch train and maintain the beam-to-RF phase constant. Experi-
ence from FLASH and simulations indicate that the baseline system should perform to
specifications.

1.3.7 Beam Delivery System

Functional requirements
The ILC Beam Delivery System (BDS) is responsible for transporting the e+e− beams from
the exit of the high energy linacs, focusing them to the sizes required to meet the ILC
luminosity goals, bringing them into collision, and then transporting the spent beams to the
main beam dumps. In addition, the BDS must perform several other critical functions:

• measure the linac beam and match it into the final focus;

• protect the beamline and detector against mis-steered beams from the main linacs;

• remove any large amplitude particles (beam-halo) from the linac to minimize back-
ground in the detectors;

• measure and monitor the key physics parameters such as energy and polarization before
and after the collisions.

System Description
The layout of the beam delivery system is shown in Figure 1.3-7. There is a single collision
point with a 14 mrad total crossing angle. The 14 mrad geometry provides space for separate
extraction lines but requires crab cavities to rotate the bunches in the horizontal plane for
effective head-on collisions. There are two detectors in a common interaction region (IR) hall
in a so-called “push-pull” configuration. The detectors are pre-assembled on the surface and
then lowered into the IR hall when the hall is ready for occupancy.

The BDS is designed for 500 GeV center-of-mass energy but can be upgraded to 1 TeV
with additional magnets.

The main subsystems of the beam delivery, starting from the exit of the main linacs, are:
The BDS is designed for 500 GeV center-of-mass energy but can be upgraded to 1 TeV

with additional magnets.
The main subsystems of the beam delivery, starting from the exit of the main linacs, are:

• a section containing post-linac emittance measurement and matching (correction) sec-
tions, trajectory feedback, polarimetry and energy diagnostics;

• a fast pulsed extraction system used to extract beams in case of a fault, or to dump
the beam when not needed at the IP;

• a collimation section which removes beam halo particles that would otherwise generate
unacceptable background in the detector, and also contains magnetized iron shielding
to deflect muons;

• the final focus (FF) which uses strong compact superconducting quadrupoles to focus
the beam at the IP, with sextupoles providing local chromaticity correction;

• the interaction region, containing the experimental detectors. The final focus quadrupoles
closest to the IP are integrated into the detector to facilitate detector “push-pull”;

III-16 ILC Reference Design Report



The ILC Baseline Design
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FIGURE 1.3-7. BDS layout, beam and service tunnels (shown in magenta and green), shafts, experimental
hall. The line crossing the BDS beamline at right angles is the damping ring, located 10 m above the BDS
tunnels.

• the extraction line, which has a large enough bandwidth to cleanly transport the heavily
disrupted beam to a high-powered water-cooled dump. The extraction line also contains
important polarization and energy diagnostics.

Challenges
The principal challenges in the beam delivery system are:

• tight tolerances on magnet motion (down to tens of nanometers), which make the
use of fast beam-based feedback systems mandatory, and may well require mechanical
stabilization of critical components (e.g. final doublets).
• uncorrelated relative phase jitter between the crab cavity systems, which must be lim-

ited to the level of tens of femtoseconds.
• control of emittance growth due to static misalignments, which requires beam-based

alignment and tuning techniques similar to the RTML.
• control of backgrounds at the IP via careful tuning and optimization of the collimation

systems and the use of the tail-folding octupoles.
• clean extraction of the high-powered disrupted beam to the dump. Simulations indicate

that the current design is adequate over the full range of beam parameters.
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1.4 SAMPLE SITES

Conventional Facilities and Siting (CFS) is responsible for civil engineering, power distribu-
tion, water cooling and air conditioning systems. The value estimate (see Section 1.6) for the
CFS is approximately 38% of the total estimated project value.

In the absence of a single agreed-upon location for the ILC, a sample site in each region
was developed. Each site was designed to support the baseline design described in Section 1.3.
Although many of the basic requirements are identical, differences in geology, topography and
local standards and regulations lead to different construction approaches, resulting in a slight
variance in value estimates across the three regions. Although many aspects of the CFS (and
indeed machine design) will ultimately depend on the specific host site chosen, the approach
taken here is considered sufficient for the current design phase, while giving a good indication
of the influence of site-specific issues on the project as a whole.

Early in the RDR process, the regional CFS groups agreed upon a matrix of criteria for
any sample site. All three sites satisfied these criteria, including the mandatory requirement
that the site can support the extension to the 1 TeV center-of-mass machine.

The three sample sites have the following characteristics:

• The Americas sample site lies in Northern Illinois near Fermilab. The site provides a
range of locations to position the ILC in a north-south orientation. The site chosen
has approximately one-quarter of the machine on the Fermilab site. The surface is
primarily flat. The long tunnels are bored in a contiguous dolomite rock strata (Galena
Platteville), at a typical depth of 30-100 m below the surface.

• The Asian site has been chosen from several possible ILC candidate sites in Japan. The
sample site has a uniform terrain located along a mountain range, with a tunnel depth
ranging from 40 m to 600 m. The chosen geology is uniform granite highly suited to
modern tunneling methods. One specific difference for the Asian site is the use of long
sloping access tunnels instead of vertical shafts, the exception being the experimental
hall at the Interaction Region, which is accessed via two 112 m deep vertical shafts.
The sloping access tunnels take advantage of the mountainous location.

• The European site is located at CERN, Geneva, Switzerland, and runs parallel to the
Jura mountain range, close to the CERN site. The majority of the machine is located
in the ‘Molasse’ (a local impermeable sedimentary rock), at a typical depth of 370 m.

The elevations of the three sample sites are shown in Figure 1.4-1. The tunnels for all
three sites would be predominantly constructed using Tunnel Boring Machines (TBM), at
typical rates of 20–30 m per day. The Molasse of the European site near CERN requires a
reinforced concrete lining for the entire tunnel length. The Asian site (granite) requires rock
bolts and a 5 cm ‘shotcrete’ lining. The US site is expected to require a concrete lining for
only approximately 20% of its length, with rock-bolts being sufficient for permanent structural
support.

A second European sample site near DESY, Hamburg, Germany, has also been developed.
This site is significantly different from the three reported sites, both in geology and depth
(25 m deep), and requires further study.

In addition, the Joint Institute for Nuclear Research has submitted a proposal to site the
ILC in the neighborhood of Dubna, Russian Federation.
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FIGURE 1.4-1. Geology and tunnel profiles for the three regional sites, showing the location of the major
access shafts (tunnels for the Asian site). Top: the Americas site close to Fermilab. Middle: the Asian site
in Japan. Bottom: the European site close to CERN.

The three sites reported in detail here are all ‘deep-tunnel’ solutions. The DESY and
Dubna sites are examples of ‘shallow’ sites. A more complete study of shallow sites – shallow
tunnel or cut-and-cover – will be made in the future as part of the Engineering Design phase.
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1.5 THE RDR PROCESS

Figure 1.5-1 shows those GDE entities directly responsible for producing the RDR:

FIGURE 1.5-1. GDE structure for producing the ILC Reference Design and Cost.

• An Executive Committee (EC), chaired by the GDE Director, responsible for all
major decisions and overall GDE management. The committee membership included
the three Regional GDE Directors and the three Accelerator Leads (one from each
region).

• Three Cost Engineers, one from each region, who were responsible for coordinating
the cost effort, defining and maintaining the Work Breakdown Structure (WBS) and
its associated dictionary, and ultimately assembling and reviewing the cost estimate.

• The RDR Management Board, responsible for the day-to-day technical management
of the RDR process. Membership included the GDE Director, the three Cost Engineers,
the three Accelerator Leads, and an Integration Scientist.

• The Area, Technical and Global Systems, who were directly responsible for de-
veloping the accelerator design and producing the value estimate (described in detail
below).

• A Design and Cost Board (DCB), charged with defining the costing methodology
and reviewing the progress of the ILC design and costs. The board membership was
made up of the three Cost Engineers and additional GDE members.

• A Change Control Board (CCB), responsible for implementing Change Control for
the BCD as the design developed. Membership was drawn from the GDE.

The important concept of Change Control was implemented early in the ILC design ef-
fort, as a mechanism of maintaining a history of the baseline design, and reviewing the
cost/performance trade-off of any proposed modification. Change Control was formally im-
plemented via the GDE Change Control Board (CCB), whose regionally-balanced member-
ship was taken from accelerator expertise within the GDE.
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The tasks of producing the technical design and cost estimation were the primary function
of the Area, Technical and Global System groups, under the leadership of the RDR Manage-
ment Board. These groups were arranged in the matrix structure shown in Figure 1.5-2.

AREA SYSTEM 
Electron
Source

Positron
Source

Damping
Rings

Ring to Main 
Linac

Main Linac Beam Delivery 
System 

Magnet systems 
Vacuum
Instrumentation 
RF Power 
Cryomodules 
Cavity Package 
Dumps & Collimators TE

C
H

N
IC

A
L 

SY
ST

EM
S

Accelerator Physics 
Conv. Facilities & Site 
Availability & Operations 
Controls
Cryogenics G

LO
B

A
L 

SY
ST

EM
S

Installation

FIGURE 1.5-2. Organizational structures for the Reference Design technical design and costing.

The design of the machine was geographically broken down into Area Systems (Electron
Source, Positron Source, Damping Rings (DR), Ring to Main Linac (RTML), Main Linac
(ML) and Beam Delivery System (BDS)). At least two coordinators were assigned to each
Area System from different regions. Critical systems such as the Main Linac, Damping Rings
and Beam Delivery System were assigned coordinators from all three regions. In all cases, a
lead coordinator was identified.

The Area Systems coordinators were given the following responsibilities:

• produce the detailed design and requirements for the layout and components of their
sub-systems;

• coordinate cost- and performance-driven design modifications, and submit the associ-
ated formal Change Requests to the Change Control Board;

• roll-up and maintain the cost estimates for their specific Area System, and supply that
information to the Cost Engineers.

The Technical and Global systems were responsible for component design and producing
the unit cost estimates:

• Technical Systems, are generally associated with specific accelerator components
found in nearly all the Area Systems: Magnets (conventional and superconducting)
included power supplies and supports; Vacuum systems included insulating vacuum
for the cryogenic systems as well as beamline UHV; Instrumentation covered beam
position, profile, length and loss monitoring; Dumps and collimators were responsible for
low- and high-powered beam dumps, and numerous collimator systems throughout the
machine; RF power sources supplied estimates for klystrons, modulators and waveguide
distribution systems (dominated by the Main Linac RF unit); Cryomodule and Cavity
Package were special cases, both being focused on the Main Linac superconducting RF.
Warm RF sections in the source capture sections, as well as the superconducting RF for
the Damping Rings, were directly estimated by experts in the respective Area Systems.
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• Global Systems represent more global aspects of the machine design which are not
directly related to specific areas. Of these, the Civil Construction and Siting (CFS)
system is by far the largest cost driver. Others include cryogenics, controls, availability
and operations (including machine protection) and installation.

The Technical/Global Systems were responsible for:

• obtaining and consolidating lists of components and their requirements from the Area
System Coordinators;
• producing cost estimates of the components/systems, using a suitably justifiable method

(e.g. comparison to existing machines, bottoms-up approximate designs, in-house esti-
mate or direct industrial quotes);
• iteration of the designs, where either the technical feasibility of the requirements was

not practical, or an alternative more cost effective solution was identified;
• supplying the cost information to the relevant Area Systems, and to the Cost Engineers

for review.

Each Technical/Global system was assigned a coordinator from each region (considered
important for maintaining cost input information from all regions). Points of contact between
Technical/Global and Area systems were identified to enable exchange of information between
the two.

The detailed design work and cost estimation began shortly after the Baseline Config-
uration was agreed upon at the Frascati GDE meeting (November 2005). The effort that
followed can be loosely split into two half-year periods:

• Frascati GDE Meeting (Dec. 2005) – Vancouver GDE Meeting (July 2006) Consol-
idation of the detailed Baseline Design; production of component specifications and
requirements for Technical/Global Systems; Area/Technical/Global Systems prepara-
tion of a first estimate of total project cost for review at the Vancouver meeting.
• Vancouver GDE Meeting (July 2006) – Valencia GDE Meeting (Nov. 2006) Cost-driven

iteration of Baseline Design (Area Systems) and technical component costs. This phase
saw a re-evaluation of the Frascati Baseline Design, resulting in several significant cost-
driven machine layout modifications.

Figure 1.5-3 shows a more detailed schedule, identifying the critical interim milestones in
the process.

The lack of a ‘geographically centralized’ design group has required additional formality
and discipline in the way the work has been organized. Significant use has been made of
teleconferencing facilities and web-based conferencing tools (e.g. WebEx) wherever possible.
Several global teleconferences including all three regions were scheduled every week. Use
of a wiki site for all technical information (on http://www.linearcollider.org/wiki/ ) also
facilitated the distribution of key information between the RDR groups.
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 2005 2006 2007
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

      Frascati GDE
      Agree on Baseline Configuration for design & costing

KEK RDR meeting
FNAL RDR meeting

Bangalore GDE
weekly videoconference review of AS

1st GDE MAC review (FNAL)
Main Linac meeting (DESY)

weekly videoconferences of TS/GS
Vancouver GDE
Review initial cost estimate

  KEK RDR meeting
  initial discussion of cost reduction measures

2nd GDE MAC review (KEK)
cost/design iterations

CFS review (CalTech)

Valencia GDE
final iteration of design/costs
  cost and design freeze

GDE internal full Cost Review (SLAC)
3rd GDE MAC review (costs)

Beijing GDE
publish draft RDR with cost

FIGURE 1.5-3. Milestones in producing the Reference Design Report, including costs.
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1.6 VALUE ESTIMATE

A preliminary cost analysis has been performed for the ILC Reference Design. A primary goal
of the estimate was to allow cost-to-performance optimization in the Reference Design, before
entering into the engineering design phase. Over the past year, the component costs were
estimated, various options compared and the design evolved through about ten significant
cost-driven changes, resulting in a cost reduction of about 25%, while still maintaining the
physics performance goals.

The ILC cost estimates have been performed using a “value” costing system, which pro-
vides basic agreed-to value costs for components in ILC Units7, and an estimate of the explicit
labor (in person hours) that is required to support the project. The estimates are based on
making world-wide tenders (major industrialized nations), using the lowest reasonable price
for the required quality. There are three classes of costs:

• site-specific costs, where a separate estimate was made in each of the three regions;
• conventional costs for items where there is global capability – here a single cost was

determined;
• costs for specialized high-tech components (e.g. the SCRF linac technology), where

industrial studies and engineering estimates were used.

The total estimated value for the shared ILC costs for the Reference Design is 4.79 Billion
(ILC Units). An important outcome of the value costing has been to provide a sound basis
for determining the relative value of the various components or work packages. This will
enable equitable division of the commitments of the world-wide collaboration.

In addition, the site specific costs, which are related to the direct costs to provide the
infrastructure required to site the machine, are estimated to be 1.83 Billion (ILC Units).
These costs include the underground civil facilities, water and electricity distribution and
buildings directly supporting ILC operations and construction on the surface. The costs
were determined to be almost identical for the Americas, Asian, and European sample sites.
It should be noted that the actual site-specific costs will depend on where the machine is
constructed, and the facilities that already exist at that location.

Finally, the explicit labor required to support the construction project is estimated at 24
million person-hours; this includes administration and project management, installation and
testing. This labor may be provided in different ways, with some being contracted and some
coming from existing labor in collaborating institutions.

The ILC Reference Design cost estimates and the tools that have been developed will
play a crucial role in the engineering design effort, both in terms of studying options for
reducing costs or improving performance, and in guiding value engineering studies, as well as
supporting the continued development of a prioritized R&D program.

The total estimated value cost for the ILC, defined by the Reference Design, including
shared value costs, site specific costs and explicit labor, is comparable to other recent major
international projects, e.g. ITER, and the CERN LHC when the cost of pre-existing facilities
are taken into account. The GDE is confident that the overall scale of the project has been
reliably estimated and that cost growth can be contained in the engineering phase, leading
to a final project cost consistent with that determined at this early stage in the design.

7For this value estimate, 1 ILC Unit = 1 US 2007$ (= 0.83 Euro = 117 Yen).
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1.7 R&D AND THE ENGINEERING DESIGN PHASE

For the last year, the focus of the core GDE activity has been on producing the RDR and value
estimate. In parallel, ILC R&D programs around the world have been ramping up to face
the considerable challenges ahead. The GDE Global R&D Board – a group of twelve GDE
members from the three regions – has evaluated existing programs, and has convened task
forces of relevant experts to produce an internationally agreed-upon prioritized R&D plan for
the critical items. The highest-priority task force (S0/S1) addresses the SCRF accelerating
gradient:

• S0: high-gradient cavity – aiming to achieve 35 MV/m nine-cell cavity performance
with an 80% production yield;
• S1: high-gradient cryomodule – the development of one or more high-gradient ILC

cryomodules with an average operational gradient of 31.5 MV/m.

The S0/S1 task force has already produced focused and comprehensive R&D plans. Other
task forces (S2: test linac; S3: Damping Ring; S4: Beam Delivery System, etc.) are in the
process of either completing their reports, or just beginning their work.

For the cost- and performance-critical SCRF, the primary focus of S0/S1 remains the
baseline choice, the relatively mature TESLA nine-cell elliptical cavity. However, additional
research into alternative cavity shapes and materials continues in parallel. One promising
technique is the use of ‘large-grain’ niobium [8], as opposed to the small-grain material that
has been used in the past (Figure 1.7-1). Use of large grain material may remove the need
for electropolishing, since the same surface finish can potentially be achieved with Buffered
Chemical Polishing (BCP) – a possible cost saving. Several single-cells have achieved gradi-
ents in excess of 35 MV/m (without electropolishing) and more recent nine-cell cavity tests
have shown very promising results.

Various new and promising cavity shapes are also being investigated, primarily at KEK
and Cornell. While the basic nine-cell form remains, the exact shape of the ‘cells’ is modified
to reduce the peak magnetic field at the niobium surface. In principle these new shapes can
achieve higher gradients, or higher quality factors (Q0). Single-cells at KEK (ICHIRO) and
Cornell (reentrant) have achieved the highest gradients to date (∼50 MV/m, see Figure 1.7-
1). R&D towards making high-performance nine-cell cavities using these designs continues
as future possible alternatives to the ILC baseline cavity.

The GDE formally supports R&D on alternative designs for components other than the
cavities, where the new designs promise potential cost and/or performance benefits. Some
key examples are alternative RF power source components, of which the Marx modulator
is currently the most promising. In addition, R&D on critical technologies will continue
through the EDR. Topics include items such as the damping ring kickers and electron-cloud
mitigation techniques, the positron target and undulator, the magnets around the beam
interaction point, and global issues that require very high availability such as the control
system, the low-level RF, and the magnet power supplies.

While investment into the critical R&D remains a priority, a significant ramping-up of
global engineering resources will be required to produce an engineered technical design by
2010. An important aspect of this work will be the refinement and control of the published
cost estimate by value engineering. The EDR phase will also require a restructuring of the
GDE to support the expanded scope. A more traditional project structure will be adopted
based on the definition of a discrete set of Work Packages. The responsibility for achieving the
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FIGURE 1.7-1. Cutting-edge SCRF R&D. Top-left: ICHIRO single-cells being prepared for testing at
KEK. Top-right: world-record performance from novel shape single-cells (ICHIRO and Cornell’s reentrant
cavity). Bottom-left: large-grain niobium disk (Jefferson Lab). Bottom-right: single-cell cavity produced
from large-grain niobium material (Jefferson Lab).

milestones and deliverables of each Work Package will be assigned to either a single institute,
or consortium of institutes, under the overall coordination of a central project management
team. The Work Packages need to be carefully constructed to accommodate the direct needs
of the Engineering Design phase, while at the same time reflecting the global nature of the
project. An important goal of the current planning is to integrate the engineering design and
fundamental R&D efforts, since these two aspects of the project are clearly not independent.
The new project structure will be in place by mid 2007.
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CHAPTER 2

Accelerator Description

2.1 BEAM PARAMETERS

The International Linear Collider (ILC) is designed to achieve the specifications listed in the
ILCSC Parameter Subcommittee Report [11]. The three most important requirements are:
(1) an initial center-of-mass (cms) energy up to 500 GeV with the ability to upgrade to 1 TeV,
(2) an integrated luminosity in the first four years of 500 fb−1 at 500 GeV cms or equivalent
at lower energies, and (3) the ability to scan in energy between 200 and 500 GeV cms.

The ILC Reference Design Report describes a collider that is designed to meet these
requirements. The installed RF system is capable of accelerating beams for collisions at 500
GeV cms. The peak luminosity of 2 × 1034 cm−2s−1 at 500 GeV and a collider availability
of 75% should enable the delivery of 500 fb−1 in the first four years of physics operation
assuming an annual physics run of 9 months, and a gradual ramp up of luminosity over
the four years. The energy flexibility has been a consideration throughout the design and
essential items to facilitate a future upgrade to 1 TeV, such as the length of the beam delivery
system and the power rating of the main beam dumps, have been incorporated.

2.1.1 Collider and Beam Parameters

The ILC is based on 1.3 GHz superconducting RF cavities operating at a gradient of 31.5
MV/m. The collider operates at a repetition rate of 5 Hz with a beam pulse length of roughly
1 msec. The site length is 31 km for a cms energy of 500 GeV; the site would have to be
extended to reach 1 TeV. The beams are prepared in low energy damping rings that operate
at 5 GeV and are 6.7 km in circumference. They are then accelerated in the main linacs which
are ∼11 km per side. Finally, they are focused down to very small spot sizes at the collision
point with a beam delivery system that is ∼2.2 km per side. To attain a peak luminosity
of 2 × 1034 cm−2s−1, the collider requires ∼230 MW of electrical power. A summary of the
overall collider parameters appears in Table 2.1-1.

The beam parameters to reach a peak luminosity of 2×1034 cm−2s−1 are listed in Table 2.1-
2. The table lists a set of nominal parameters and three other sets that define a ‘parameter
plane’. The collider has been designed to the nominal parameter set which was optimized
considering aspects of the whole accelerator system such as: the beam instabilities and kicker
hardware in the damping rings, the beam current and the pulse length in the linacs, and the
kink instability and background in the final focus system. The parameter plane establishes
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TABLE 2.1-1
Global Accelerator Parameters for 500 GeV cms.

Parameter Value Units

Center-of-mass energy 500 GeV

Peak luminosity 2× 1034 cm−2s−1

Availability 75 %

Repetition rate 5 Hz

Duty cycle 0.5 %

Main Linacs

Average accelerating gradient in cavities 31.5 MV/m

Length of each Main Linac 11 km

Beam pulse length 1 ms

Average beam current in pulse 9.0 mA

Damping Rings

Beam energy 5 GeV

Circumference 6.7 km

Length of Beam Delivery section (2 beams) 4.5 km

Total site length 31 km

Total site power consumption 230 MW

Total installed power ∼300 MW

a range of operating parameters that represent slightly different tradeoffs between these
considerations. Experience with past accelerators indicates that there will be operational
difficulties, which will be eased by modifying the beam parameters. The parameter plane
provides flexibility to cope with such problems without sacrificing performance. It can also
be useful during collider commissioning and when tuning the luminosity characteristics for
different measurements and particle physics detectors.

2.1.2 The Nominal Parameter Set

The main linac RF system is designed to accelerate beam at a gradient of 31.5 MV/m. The
nominal beam current is 9.0 mA and the beam pulse length is 970 µs so that the RF pulse
length (including the fill time of the cavities) is 1.56 ms. The optimal single bunch charge is
a balance between effects at the IP and in the damping ring; the choice of 2× 1010 is similar
to that specified in the TESLA TDR [2] and the US Technical Options Study [9].

The normalized vertical emittance at the IP is chosen to be 4 × 10−8 m·rad. This cor-
responds to a geometric emittance of ∼2 pm from the damping rings (5 GeV) and assumes
100% emittance growth during the transport to the IP. This damping ring emittance is slighty
lower than what has already been achieved but is thought to be well within the present tech-
nology. The 100% emittance growth estimate is based on calculations made during the ILC
Technical Review Report [10].
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TABLE 2.1-2
Beam and IP Parameters for 500 GeV cms.

Parameter Symbol/Units Nominal Low N Large Y Low P

Repetition rate frep (Hz) 5 5 5 5

Number of particles per bunch N (1010) 2 1 2 2

Number of bunches per pulse nb 2625 5120 2625 1320

Bunch interval in the Main Linac tb (ns) 369.2 189.2 369.2 480.0

in units of RF buckets 480 246 480 624

Average beam current in pulse Iave (mA) 9.0 9.0 9.0 6.8

Normalized emittance at IP γε∗x (mm·mrad) 10 10 10 10

Normalized emittance at IP γε∗y (mm·mrad) 0.04 0.03 0.08 0.036

Beta function at IP β∗x (mm) 20 11 11 11

Beta function at IP β∗y (mm) 0.4 0.2 0.6 0.2

R.m.s. beam size at IP σ∗x (nm) 639 474 474 474

R.m.s. beam size at IP σ∗y (nm) 5.7 3.5 9.9 3.8

R.m.s. bunch length σz (µm) 300 200 500 200

Disruption parameter Dx 0.17 0.11 0.52 0.21

Disruption parameter Dy 19.4 14.6 24.9 26.1

Beamstrahlung parameter Υave 0.048 0.050 0.038 0.097

Energy loss by beamstrahlung δBS 0.024 0.017 0.027 0.055

Number of beamstrahlung photons nγ 1.32 0.91 1.77 1.72

Luminosity enhancement factor HD 1.71 1.48 2.18 1.64

Geometric luminosity Lgeo 1034/cm2/s 1.20 1.35 0.94 1.21

Luminosity L 1034/cm2/s 2 2 2 2

2.1.3 Parameter Plane

The parameter sets labeled ‘Low N’ (low number of particles per bunch), ‘Large Y’ (large
vertical emittance) and ‘Low P’ (low beam power) in Table 2.1-2 are representative points
in the parameter plane. These parameter sets deliver essentially the same luminosity 2 ×
1034 cm−2s−1 at 500 GeV but with different values for the specific beam parameters. The
collider subsystems have been designed such that any point in the parameter plane is at-
tainable. At present, it is not believed that there is a large cost impact of maintaining the
parameter plane and there is a significant gain in operational flexibility; this will need to be
examined again during the next phase of design optimization.

Low N
The bunch population of 2×1010 may lead to problems such as microwave instabilities in

the damping rings, single bunch wakefield emittance dilutions, or a large disruption parameter
at the IP which can cause a kink instability and may make the IP feedback difficult. In such
cases, it could be desirable to reduce the bunch population.

The Low N parameter set addressed these possible difficulties with a reduced single bunch
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charge and reduced bunch length. Halving the bunch population with fixed current (twice the
number of bunches and half the bunch interval) reduces the luminosity but this is compensated
by focusing more tightly at the IP. These parameters also have lower beamstrahlung and
possibly lower backgrounds in the particle physics detectors at the IP which may be desirable
for some measurements. All these changes are beneficial, however, the Low N parameter
set is more demanding in terms of the damping ring kicker, the bunch compressor, and the
multi-bunch collective effects in the damping rings.

Large Y
The vertical emittance at the IP of 4 × 10−8 m·rad may not be achieved due to tuning

difficulties in the damping rings and beam delivery system or wakefield effects in the linac.
The Large Y parameters assume a vertical emittance that is twice the design and the lumi-
nosity is recovered by focusing more tightly in the horizontal at the IP and using a longer
bunch to reduce the increased beamstrahlung. Unfortunately, the disruption parameter at
the interaction point is increased and kink instability may be more pronounced.

Low P
Another condition that may arise are limitations due to the beam current or beam power.

These may arise in the injector systems, damping rings, main linacs or beam delivery system.
In this case, the collider could be optimized in the direction of the Low P parameters where
the beam current is reduced by 30% and the beam power is reduced by a factor of two. Again,
the luminosity is recovered with increased focusing at the IP in the horizontal plane. In this
case, the beamstrahlung cannot be reduced by increasing the bunch length because of the
tight focusing in the vertical plane. This results in a beamstrahlung that is roughly double
that in the nominal parameters and this may limit the performance of the particle physics
detector and the beam delivery extraction line.

2.1.4 Range of Parameters

The parameter plane described above defines a range of parameters as shown in Table 2.1-
3. Note, however, the parameters, when they are varied, are correlated. For example, the
shortest bunch length is required only when the bunch population is low.

TABLE 2.1-3
Range of parameters.

Parameter Symbol min nominal max Units

Bunch population N 1 - 2 - 2 ×1010

Number of bunches nb 1320 - 2625 - 5120

Linac bunch interval tb 189 - 369 - 480 ns

Bunch length σz 200 - 300 - 500 µm

Vertical emittance γε∗y 0.03 - 0.04 - 0.08 mm·mrad

Beta function at IP β∗x 11 - 20 - 20 mm
β∗y 0.2 - 0.4 - 0.4 mm
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2.1.5 Bunch Spacing and Path Length Considerations

In order to extract the bunches in the damping ring one by one and inject into the main linac
there are certain constraints to satisfy among the DR circumference, number of bunches, RF
frequencies and bunch distances in the DR and main linac. The present beam parameters
do not meet all of the constraints needed to best facilitate injection and extraction from the
damping rings [12]. The parameters will continue to be optimized during the next design
phase to better satisfy the constraints, and it is expected that the damping ring circumference
and linac bunch spacing will change by small amounts.

In addition, there is another constraint due to the fact that the positrons are generated
by electrons on the previous pulse. For flexible operation, it is highly desireable that the sum
of certain beamline lengths such as the main linac and the transport lines be a multiple of the
DR circumference. Because of this constraint, the exact location of the injector complex and
the layout of the transport lines is a subject that can be fixed only after the final component
lengths and the site are decided.
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2.2 ELECTRON SOURCE

2.2.1 Overview

The ILC polarized electron source must produce the required train of polarized electron
bunches and transport them to the Damping Ring. The nominal train is 2625 bunches of
2.0×1010 electrons at 5 Hz with polarization greater than 80%. The beam is produced by a
laser illuminating a photocathode in a DC gun. Two independent laser and gun systems pro-
vide redundancy. Normal-conducting structures are used for bunching and pre-acceleration
to 76 MeV, after which the beam is accelerated to 5 GeV in a superconducting linac. Be-
fore injection into the damping ring, superconducting solenoids rotate the spin vector into
the vertical, and a separate superconducting RF structure is used for energy compression.
A third polarized electron source (500 MeV) drives the Positron Keep Alive Source (KAS).
Polarization is not required in the baseline, but will be required for either the e−-e− or γ-γ
options.

The SLC polarized electron source already meets the requirements for polarization, charge
and lifetime. The primary challenge for the ILC source is the long bunch train, which demands
a laser system beyond that used at any existing accelerator, and normal conducting structures
which can handle high RF power. Both R&D developments are considered manageable.

2.2.2 Beam Parameters

The key beam parameters for the electron source are listed in Table 2.2-1.

TABLE 2.2-1
Electron Source system parameters.

Parameter Symbol Value Units

Electrons per bunch (at gun exit) ne 3×1010 Number

Electrons per bunch (at DR injection) ne 2×1010 Number

Number of bunches Ne 2625 Number

Bunch repetition rate Fµb 3 MHz

Bunch train repetition rate Fmb 5 Hz

Bunch length at source ∆t 1 ns

Peak current in bunch at source Iavg 3.2 A

Energy stability S <5 % rms

Polarization Pe 80 (min) %

Photocathode Quantum Efficiency QE 0.5 %

Drive laser wavelength Λ 790±20 (tunable) nm

Single bunch laser energy E 5 µJ
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2.2.3 System Description

Figure 2.2-1 depicts schematically the layout of the polarized electron source. Two inde-
pendent laser systems are located in a surface building. The light is transported down an
evacuated light pipe to the DC guns. The beam from either gun is deflected on line by a mag-
net system which includes a spectrometer, and it then passes through the normal-conducting
subharmonic bunchers, traveling wave bunchers and pre-accelerating sections. This is fol-
lowed by the 5 GeV superconducting linac. The Linac-to-Ring transfer line that brings the
beam to the damping rings contains the spin rotators and energy compression.
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L-band (β = 0.75) 
TW Bunching 

and Pre-Acceleration

DC Gun (2x)

Drive
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FIGURE 2.2-1. Schematic view of the polarized Electron Source.

2.2.3.1 Photocathodes for Polarized Beams

Photocathode materials have been the subject of intense R&D efforts for more than 15
years. The most promising candidates for the ILC polarized electron source are strained
GaAs/GaAsP superlattice structures (see Figure 2.2-2). GaAs/GaAsP superlattice photo-
cathodes routinely yield at least 85% polarization with a maximum QE of 1% (routinely
0.3 to 0.5%) [13, 14, 15]. The present cathodes consist of very thin quantum well layers
(GaAs) alternating with lattice-mismatched barrier layers (GaAsP). Each layer of the su-
perlattice (typically 4 nm) is considerably thinner than the critical thickness (∼10 nm) for
the onset of strain relaxation, while the transport efficiency for elec relaxation, while the
transport efficiency for electrons in the conduction band still can be high [16]. The struc-
tures are p-doped using a high-gradient doping technique, consisting of a thin (10 nm), very
highly doped (5×1019 cm−3) surface layer with a lower density doping (5×1017 cm−3) in
the remaining active layer(s). A high surface doping density is necessary to achieve high
QE while reducing the surface-charge-limit problem [17, 18]. A lower doping density is used
to maximize the polarization [19]. With bunch spacing of ∼300 ns, the surface-charge-limit
problem for the ILC is not expected to be a major issue. The optimum doping level remains
to be determined. An alternative under study is the InAlGaAs/GaAs strained superlattice
with minimum conduction band offset where a peak polarization of 91% has been observed
[20]. Research continues on various cleaning and surface preparation techniques. Atomic
hydrogen cleaning (AHC) is a well-known technique for removing oxides and carbon-related
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contaminants at relatively low temperatures [21] and will be further explored in the near
future.

Active Region
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GaAsP
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1000 Å
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FIGURE 2.2-2. Structure of a strained GaAs/GaAsP superlattice photocathode for polarized electrons.

2.2.3.2 Polarized Electron Gun

The ILC polarized electron gun is a DC gun based on the design of the gun used for the
SLC [22]. However, DC gun technology for polarized sources has evolved considerably, [23]
and technological advances will be incorporated into the ILC gun design. The ILC gun will
be optimized for a space charge limited peak current of 4.5-5 A (4.5-5 nC/1ns). This provides
overhead to compensate for losses that occur primarily through the bunching system. The
gun power supply provides a cathode bias of -140 to -160 kV. An ultrahigh vacuum system
with a total pressure ≤ 10−12 Torr (excluding H2) is required to maintain the negative electron
affinity (NEA) of the cathode. An SF6/dry air gas system is used to maintain a high dielectric
gun environment to avoid HV breakdown between ground and HV components. During HV
operation the electric field on the cathode surface must be kept below 7 MeV/m to ensure
low dark current (< 25 nC). Excessive dark current will lead to field emission resulting in
molecular desorption from nearby surfaces. This process leads to deterioration of the gun
vacuum and is destructive to the cathode’s NEA surface.

The gun area will be equipped with a Mott polarimeter to measure polarization and a
Faraday cup to measure the charge. Several Residual Gas Analyzers (RGAs) characterize the
vacuum near the gun. Other special diagnostics for the DC gun include means to measure
the quantum efficiency of the cathode (a cw diode laser integrated into the gun) and a nano-
ammeter for dark current monitoring.

An NEA cathode requires periodic cesiation. Cesiator channels are located near the
cathode to allow in situ cesiation of the photocathode. An improvement of the current
SLC gun design will be to locate the cesiation channels behind a retractable photocathode.
This will eliminate the deposition of Cesium on electrode surfaces, thereby reducing the
dark current of the gun. The SLC and subsequent polarized beam experiments at SLAC
have demonstrated the operation of an efficient and highly automated cesiation system with
minimal source downtime. The gun will have an integrated cathode preparation chamber and
load-lock system. The activation chamber will be semi-permanently attached to the gun and
both volumes will be semi-permanently maintained under high vacuum. The preparation
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chamber will allow the option of local cathode cleaning and activation as well as storage
of spare cathodes. Cathodes may be rapidly exchanged between the gun and preparation
chamber. The load-lock consists of a small rapidly-pumped vacuum chamber for transferring
cathodes from an external atmospheric source into or out of the preparation chamber without
affecting the latter’s vacuum.

The dominant source of intensity variations and timing jitter is the laser system. A sec-
ondary source for intensity variations is the gun power supply and beam dynamics influenced
by space charge forces within the gun and the low energy sections of the injector.

2.2.3.3 ILC Source Laser System

A conceptual layout schematic of the laser system is depicted in Figure 2.2-3. To match
the bandgap energy of GaAs photocathodes, the wavelength of the laser system must be
790 nm and provide tunability (±20 nm) to optimize conditions for a specific photocathode.
Therefore, the laser system is based on Ti:sapphire technology.
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FIGURE 2.2-3. Schematic view of source drive laser system.

The 3 MHz pulse train is generated by a cavity-dumped mode-locked oscillator. After
diffractive pulse stretching to 1 ns and temporal pulse shaping, the bunch train is ampli-
fied using a multi-pass Ti:sapphire amplifier. The amplifier crystal must be cryogenically
cooled to facilitate power dissipation and minimize instabilities caused by thermal lensing
induced by the high power amplifier pump. A cw frequency-doubled Nd:YAG (or similar
such as Nd:vanadate) diode pumped solid state (DPSS) laser provides the pump power for
the Ti:sapphire amplifier. Additional amplification can be supplied by one or multiple flash-
lamp pumped Ti:sapphire stages. Final laser pulse energy and helicity control is achieved by
electro-optical techniques. This system can also be used as a feed-back device to compensate
for the QE decay of the photocathode between cesiations, to remove slow intensity drifts of
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laser and/or electron beam, and to maintain the circular polarization state of the laser beam.
Various optical techniques are used to cancel systematic effects caused by an asymmetric
laser beam profile or effects associated with the sign of the helicity of the laser light.

2.2.3.4 Bunching and Pre-Acceleration

The bunching system compresses the 1 ns micro-bunches generated by the gun down to ∼20 ps
FWHM. It includes two subharmonic bunchers (SHBs) and a 5 cell traveling wave β=0.75 L-
band buncher. The SHB cavities operate at 216.7 MHz and 433.3 MHz, respectively. Together
they compress the bunch to ∼200 ps FWHM. The L-band bunching system is a modification
of the TESLA Test Facility [24] design with a traveling wave buncher to maximize capture
efficiency. The buncher has 5 cells with β=0.75 and a gradient of 5.5 MV/m and compresses
the bunch to 20 ps FWHM. The buncher and the first few cells of the following TW pre-
accelerator are immersed in a 660 G solenoidal field to focus the beam. Two 50 cell β=1
normal conducting (NC) TW accelerating sections at a gradient of 8.5 MV/m increase the
beam energy to 76 MeV. These structures must withstand very high RF power for the duration
of the very long pulse but they are identical to those being developed for the positron source.
Further details of the bunching system are summarized in reference [25].

2.2.3.5 Chicane, Emittance Measurement and Matching Sections

Immediately downstream of the NC pre-acceleration a vertical chicane provides energy col-
limation before injection into the SC booster linac. The chicane consists of four bending
magnets and several 90◦ FODO cells. The initial dipole at the chicane entrance can be used
as a spectrometer magnet (see Figure 2.2-1). A short beam line leads to a diagnostic section
that includes a spectrometer screen. The injector beam emittance is measured by conven-
tional wire scanners downstream of the chicane. Two matching sections combine the chicane
and emittance measurement station with the downstream SC booster linac.

2.2.3.6 The 5 GeV Superconducting Pre-Acceleration (Booster) Linac

Twenty-one standard ILC-type SC cryomodules accelerate the beam to 5 GeV,and typical
FODO cells integrated into the cryomodules transversely focus the beam. An additional
string of three cryomodules is added to provide redundancy (total of 24 cryomodules). The
booster linac consists of two sections. In the first section, the e− beam is accelerated from
76 MeV to 1.7 GeV in cryomodules with one quadrupole per module. In the second section,
the e− beam is accelerated to the final 5 GeV in cryomodules with one quadrupole every
other module.

2.2.3.7 Linac to Damping Ring Beamline and Main e− Source Beam Dump

The Linac To Ring (LTR) beam line transports the beam to the damping ring injection point
and performs spin rotation and energy compression. The 5 GeV longitudinally polarized
electron beam is first bent through an arc. At 5 GeV, the spin component in the plane
normal to the magnetic field precesses 90◦ in that plane for every n × 7.9◦ (n: odd integer)
of rotation of momentum vector. An axial solenoid field integral of 26.2 T-m rotates the spin
direction into the vertical [26]. A 5 GeV beam dump is installed near the LTR. To dump
the 5 GeV beam, the first bend of the LTR is turned off, and the dump bend downstream
energized. The dump drift is ∼12 m.
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2.2.4 Accelerator Physics Issues

Simulations indicate that >95% of the electrons produced by the DC gun are captured
within the 6-D damping ring acceptance: γ(Ax+Ay) ≤0.09 m and ∆E x ∆z ≤(±25 MeV) x
(±3.46 cm). The starting beam size diameter at the gun is 2 cm, and this is focused to a few
mm diameter before it is injected into the DR. Calculations in the low energy regions of the
injector (≤76 MeV) include space charge effects and use PARMELA [27]. The beam prop-
agation through the superconducting booster linac and LTR beam line has been optimized
using MAD [28] and tracked by the ELEGANT code [29].

FIGURE 2.2-4. Beam envelope along the 76 MeV injector.

2.2.4.1 DC Gun and Bunchers

The DC gun creates a 140-160 keV electron beam with a bunch charge of 4.5-5 nC with
a bunch length of 1 ns and an unnormalized transverse edge emittance at the gun exit of
70 mm-mrad. To minimize longitudinal growth of the bunch it is desirable to locate the first
subharmonic buncher as close to the gun as possible. However, the beam lines needed to
combine both guns require a distance of ∼1-1.5 m between gun and first SHB. The SHBs
capture almost 100% of the electrons generated at the gun. The beam parameters at 76 MeV
are summarized in Table 2.2-2. A plot of the beam envelope from gun up through the
bunching system is given in Figure 2.2-4.
TABLE 2.2-2
76 MeV beam parameters after NC bunching and pre-acceleration.

Parameters β = 0.75 TW Buncher Design

Initial charge 4.5 - 5 nC

Transmitted charge 92%

Phase extension FWHM 9 deg L-band

Energy spread FWHM <100 keV

Normalized rms emittance 70 µm-rad
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2.2.4.2 The 5 GeV Booster Linac and Linac to Damping Ring Line (eLTR)

The optics of the superconducting booster linac are shown in Figure 2.2-5.
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FIGURE 2.2-5. Optics of the SC electron booster linac.

At the dump window, the e-edge beam size σx/σy is 0.72 cm/1.4 cm and 13.9 cm/1.4 cm
for 0% and ±10% energy spread, respectively. These beam sizes are within the dump window
specifications. At the monitor location the dispersion dominates the beam size and thus the
dump also serves as an energy spectrometer with 0.1% resolution.

The LTR arc consists of four FODO cells with eight bends. The total arc bending angle
is 7 × 7.9◦. The R56 (path length energy correlation) is adjustable (86 ±40 cm). The arc is
followed by the solenoid sections and RF unit, which occupy 5.5 m and 8.32 m, respectively.
There are three PPS stoppers with 1 m space in the LTR arc. Two FODO cells upstream of
the LTR arc have laser wire emittance measurement stations. The optics of the LTR system
are shown in Figure 2.2-6.

The arc of the eLTR is designed to rotate the spin vector by 90 degrees from longitudinal
into a horizontal position before injection into the damping ring and to provide the R56
necessary for energy compression. For a n × 90◦ of spin rotation, an arc angle of n × 7.9◦ is
required. A 8.3-m-long superconducting solenoid with 3.16 T magnetic field solenoid rotates
the spin vector into a vertical orientation. After the bunch is decompressed by the arc, an
RF voltage of 180 MV provided by a 9-m-long 6-cavity superconducting linac, rotates the
electrons in longitudinal phase space to match with longitudinal DR acceptance. The LTR
also includes an additional 34.5◦ horizontal bend, a matching section with 4 quadrupoles and
a double bend achromat to match Twiss parameters at the DR injection line [30].
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FIGURE 2.2-6. Optics of the LTR.

2.2.5 Accelerator Components

2.2.5.1 Table of Parts Count

Table 2.2-3 lists the major components of the ILC electron source and Table 2.2-4 the lengths
of the various electron source beamlines.

TABLE 2.2-3
Total number of components for the polarized electron source.

Magnets Instrumentation RF

Bends 25 BPMs 100 216.7 SHB Cavity 1

Quads (NC) 76 Wirescanners 4 433.3 SHB Cavity 1

Quads (SC) 16 Laserwires 1 5 Cell L-band buncher 1

Solenoids(NC) 12 BLMs 5 L-band TW structure 2

Solenoids(SC) 2 OTRs 2 1.3 GHz cryomodules 25

Correctors(SC) 32 Phase monitors 2 L-band klystrons/modulators 13
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TABLE 2.2-4
System lengths for the e- source beamlines.

Beam Line Section Length

Gun area 7 m

NC beam lines 14 m

Chicane + emittance station 54 m

SC beam lines 245 m

eLTR 157 m

Dumplines 12 m

Total beam line length 489 m

Total tunnel length 505 m
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2.3 POSITRON SOURCE

2.3.1 Overview

The ILC Positron Source uses photoproduction to generate positrons. The electron main
linac beam passes through a long helical undulator to generate a multi-MeV photon beam
which then strikes a thin metal target to generate positrons in an electromagnetic shower.
The positrons are captured, accelerated, separated from the shower constituents and unused
photon beam and then are transported to the Damping Ring. Although the baseline design
only requires unpolarized positrons, the positron beam produced by the baseline source has
a polarization of ∼30%, and beamline space has been reserved for an eventual upgrade to
∼60% polarization.

The positron source must perform three critical functions:

• generate a high power multi-MeV photon production drive beam in a suitable short
period, high K-value helical undulator;

• produce the needed positron bunches in a metal target that can reliably deal with the
beam power and induced radioactivity;

• capture and transport the positron bunch to the ILC Damping Rings with minimal
beam loss.

In addition, the Positron Source requires sufficient instrumentation, diagnostics and feedback
(feedforward) systems to ensure optimal operation of the source and ILC.

2.3.2 Beam Parameters

The key parameters of the Positron Source are listed in Tables 2.3-1, 2.3-4, 2.3-5. The
source is required to deliver 2×1010 positrons per bunch at the IP with the nominal ILC
bunch structure and pulse repetition rate. The source target system is designed with a 50%
overhead and can deliver up to 3×1010 positrons per bunch to the 400 MeV point. There
is sufficient RF power to accelerate 2.5×1010 to the damping ring within the 0.09 m-rad
transverse dynamic aperture.

OMD
Collimator

(upgrade)

Booster Linac
(cryomodules to boost energy to 5 GeV)

Pre-accelerator
(125-400 MeV)

Target~147 GeV e–

150 GeV e–

Helical
Undulator

γ

Damping Ring
Capture RF

(125 MeV)
e– Dump

γ Dump

6-2007
8747A21

OMD

Pre-accelerator
(125-400 MeV)

Target

Capture RF
(125 MeV)

e– Dump

γ Dump

KEEP-ALIVE SOURCE

500MeV e-

(not to scale)

FIGURE 2.3-1. Overall layout of the Positron Source.
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TABLE 2.3-1
Nominal Positron Source parameters († upgrade values).

Beam Parameters Symbol Value Units

Positrons per bunch at IP nb 2×1010 number

Bunches per pulse Nb 2625 number

Pulse repetition rate frep 5 Hz

Positron energy (DR injection) E0 5 GeV

DR transverse acceptance γ(Ax+Ay) 0.09 m-rad

DR energy acceptance δ ± 0.5 %

DR longitudinal acceptance Al ±3.4×±25 cm-MeV

Electron drive beam energy Ee 150 GeV

Electron beam energy loss in undulator ∆Ee 3.01 GeV

Positron polarization † P ∼60 %

2.3.3 System Description

Figure 2.3-1 shows the major elements of the positron source. Figure 2.3-2 shows the layout
of the ILC electron side and the relative positions of the major systems of the positron source.
The positrons are produced, separated and accelerated to 400 MeV in the Undulator area of
Fig. 2.3-2. They are then transported to the e+ Booster area where they are further accel-
erated to the positron damping ring injection energy. The important lengths and distances
associated with the positron source are summarized in Table 2.3-2.

undulator and 
target hall area

1.33 km 11.35+1.25 km 2.23 km

Keep Alive e+ source
and e+ booster area

Damping Rings
           (r=1.06 km)

  IR
(14mr)

service tunnel

e- main linac

RTML

FIGURE 2.3-2. Positron Source locations within the ILC complex.

Positrons are produced in electromagnetic showers when a multi-MeV photon beam im-
pinges on a metal target. The photon beam is produced by passing the main electron linac
beam through a long undulator. This photon beam is transported ∼ 500 meters to the
positron source target hall where it hits a 0.4 radiation length thick Ti-alloy target producing
showers of electrons and positrons. The resulting beam is captured using an optical matching
device (OMD) and normal conducting (NC) L-band RF with solenoidal focusing and acceler-
ated to 125 MeV. The electrons and remaining photons are separated from the positrons and
dumped. The positrons are accelerated to 400 MeV in a NC L-band linac with solenoidal
focusing. They are transported ∼5 km to the central damping ring complex, where they are
boosted to 5 GeV in a linac using superconducting (SC) L-band RF and injected into the
positron damping ring.

The positron source system also includes a Keep Alive Source to generate a low intensity
positron beam that can be injected into the SC L-band linac. This allows various beam feed-
backs to remain active if the main electron beam, and hence the undulator based positrons,
is lost. ILC availability studies (see Section 2.9.1) show that the Keep Alive Source makes a
significant improvement in accelerator uptime and delivered luminosity. This source uses a
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500 MeV electron drive beam impinging on a tungsten-rhenium target to produce positrons
which are then captured and accelerated to 400 MeV similar to the main positron source.
The Keep Alive Source is designed to produce 10% bunch intensity for the full 2625 bunch
ILC pulse train at 5 Hz.

TABLE 2.3-2
Positron Source beamline lengths.

Area Length (meters)

Undulator chicane insert 1257

Undulator center to target 500

Undulator insert length 200

Target Hall length 150

400 MeV long transport line 5032

Total RF acceleration length 350

Damping Ring injection line 431

2.3.3.1 Photon Production

The Positron Source relies upon an intense beam of high energy photons impinging upon
a metal target. The photons must be of sufficient energy, typically of order 10 MeV, to
generate electron-positron pairs that can escape from the target material and be captured
and accelerated. The photons are generated by the radiation from relativistic electrons as they
pass through the periodic, helical, magnetic field of the undulator. Details of the undulator
are provided in Section 2.3.5.1. To generate the required photon energy, very high energy
electrons are required. To avoid the expense of a dedicated electron beam, the undulator
is installed part way along the electron main linac, where the electron energy has reached
150 GeV. After passing through the undulator the electrons continue through the remainder
of the main electron linac, gaining energy up to 250 GeV. The first harmonic cut-off energy
for the photon spectrum is 10 MeV.

A helical undulator generates twice the synchrotron radiation power per period than
the equivalent planar undulator, enabling the overall undulator to be shorter for the same
number of positrons. The helical device also produces circularly polarized light which in turn
generates longitudinally polarized positrons.

2.3.3.2 Positron Production and Capture

The positron production, capture and transport to the damping rings are shown in Figure 2.3-
1. The photon beam generated by the helical undulator is incident on the rim of a 0.4 X0

thick rotating target (see Section 2.3.5.2 ) contained in a vacuum vessel. The photon beam
has a transverse size of ∼1 mm rms and deposits ∼10.5 kW of power in the target. Photons
up to the 8th harmonic contribute to the positron generation. The particles emerging from
the downstream side of the target are captured in the 0.09 m-rad transverse dynamic aperture
defined by the positron damping ring. The energy of the beam coming out of the target is
3 - 55 MeV. The target is followed by the tapering magnetic field of an Optical Matching
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FIGURE 2.3-3. Target removal scheme (5-spoke target wheel, OMD and first RF section is seen being
removed from the beamline).

Device (OMD) (see Section 2.3.5.3 ) which has a field which decays from 5 - 0.5 T over 20 cm.
The OMD matches the beam phase space from the target into the capture L-band RF which
accelerates the beam to 125 MeV. The RF cavities have an average gradient of 8 MV/m and
are located inside 0.5 Tesla solenoids which provide beam focusing. Details of the RF are
given in Section 2.3.5.4.

The target and equipment immediately downstream are expected to become highly ac-
tivated. A remote-handling system is used to replace the target, OMD and 1.3 meter NC
RF cavities. Due to the underground location, the activated equipment needs to be removed
vertically from the target vault. Figure 2.3-3 shows the conceptual design of such a system,
where the target wheel, OMD and the first 1.3 meter NC RF cavity is shown being removed.
This design does require special vacuum seals to enable speedy removal from the beam line,
as the power deposition from the beam does not allow for windows in these lines.

2.3.3.3 Low Energy Positron Transport

Downstream of the capture RF, the positrons are separated from electrons and photons in an
achromatic dogleg which horizontally deflects the positron line by 2.5 m. A set of collimators
remove positrons with large diverging angles and large energy offsets. Normal conducting
L-band RF structures embedded in a constant solenoid field of 0.5 T accelerate the positrons
from 125 MeV to 400 MeV. The accelerating gradient is ∼8 MV/m and the length is 34.6 m.

A dogleg deflects the beam 5 m horizontally to the electron main linac tunnel and 2 m
vertically to position the long positron transport line above the electron main linac. This
beamline carries the positrons 4.09 km to the end of the main linac tunnel, then 941 m to
the positron booster linac in a separate tunnel.

III-44 ILC Reference Design Report



Positron Source

2.3.3.4 Keep Alive Source

The Keep Alive Source (KAS) is designed to deliver a low intensity ( ∼10%) beam of positrons
at 400 MeV to the positron booster linac in case the primary positron beam is unavailable.
It occupies ∼500 meters of tunnel just before the booster linac. A 500 MeV electron beam
impinges on a tungsten-rhenium target to produce positrons. The electron drive beam is
similar to the main electron source. The KAS positron target has a simpler design because
of the lower incoming beam power, but still requires remote handling. The positrons are
captured, separated and accelerated to 400 MeV using the same system as for the primary
positron beam.

2.3.3.5 5-GeV SC Booster Linac

The SC booster linac accelerates the beam from 400 MeV to 5 GeV in three sections of periodic
FODO lattice. The first section up to 1083 MeV has four non-standard cryomodules, each
containing six 9-cell cavities and six quadrupoles. The quad field strength ranges from 0.88-
2.0 T. The second section up to 2626 MeV has six non-standard cryomodules, each containing
eight 9-cell cavities and two quadrupoles . The quad strength ranges from 0.62-1.3 T. Finally,
the positrons are accelerated to 5 GeV using twelve standard ILC-type cryomodules, each
with eight 9-cell cavities and one quadrupole with strength ranging from 0.95-1.63 T.

2.3.3.6 Linac to Damping Ring Beam Line

The Linac to Ring (LTR) brings the positrons from the booster linac to the Damping Ring
(DR) injection line. In addition, the LTR orients the beam polarization and compresses the
beam energy to improve acceptance into the DRs. The LTR design is the same as for the
electron source LTR described in 2.2.4.2. The longitudinal polarization of the positrons from
the target is preserved to the LTR. If polarization is needed at the IP it must be preserved
through the DR. This is achieved by rotating the spin to vertical before injection into the
DR. The LTR contains bending magnets which rotate the spin vector from longitudinal to
horizontal, followed by solenoids, if turned on, that rotate from horizontal to vertical. At 5
GeV, the total bending angle must be an odd integer multiple of 7.9◦ to produce a net 90◦ of
spin rotation. 26.23 T-m of solenoidal field is required to produce the horizontal-to-vertical
spin rotation which is provided by two 2.5 meter 5.2 T solenoids.

2.3.4 Accelerator Physics Issues

2.3.4.1 Photon Drive Beam

The photon drive beam is generated by passing the main electron beam through a long,
small-aperture undulator which sits in the middle of a magnetic chicane. The design of this
system has to ensure that this does not compromise the main electron beam quality, and
hence the ILC luminosity. In addition the undulator system and the main linac downstream
of the undulator need to be protected from any beam failures.

The electron beam transport through the complete undulator system is based upon a
simple FODO arrangement with quadrupole spacing of ∼12 m (in the room temperature
section). There are beam position monitors (BPM) at every quadrupole and horizontal and
vertical corrector magnets in each cryomodule. Preliminary studies [31] indicate that the
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total emittance growth in this insertion is small compared to the overall main linac budget.
The undulator increases the energy spread of the electron beam from 0.16% to 0.23%.

The baseline pressure requirement of 10−8 torr has been set to avoid fast ion instability
problems. Vacuum calculations confirm that the cryopumping will be adequate provided that
photons with energy >10 eV are intercepted by absorbers spaced approximately every 12 m
to shadow the cold vessel surfaces. These absorbers are in room temperature sections.

To protect the undulator and downstream linac from beam failure, there is a fast extrac-
tion system before the chicane that can dump the main electron beam into a full power beam
dump. A collimator in front of the undulator can intercept a few bunches before the dump
system fires.

2.3.4.2 Positron Generation

The primary issue for positron production is to efficiently capture the positrons which are
produced with a small spatial extent and large angles. Point-to-parallel focusing immediately
after the target increases the positron capture. An optical matching device (OMD) placed
immediately after the target produces a longitudinal field that decays from 5 Tesla to 0.5
Tesla in ∼ 20 cm. Calculations show a factor of two improvement in positron capture from
the OMD.

2.3.4.3 Beam Transport

The positron beam transport must efficiently bring the large emittance beam from the target
through several km of beamline. The beam at damping ring injection must match the damp-
ing ring phase space to avoid beam losses in the damping ring. Beam outside the acceptance
must be absorbed on collimators to localize radioactivation.

The linac transfer line that takes the 400 MeV positron beam from the target hall to the
booster linac has 16.8 m long FODO cells with 90 degree phase advance per cell and ∼28.5 m
maximum β-function. It follows the earths curvature as does the linac tunnel. The vertical
dogleg which brings the positron beam 8 m vertically from the linac tunnel to the booster
tunnel, has at each end a double bend achromat to provide 17.1 mrad of bending angle. Four
quads are inserted in between two bends to create 180◦ phase advance between the two bends
and cancel the dispersion. The last section connects to the positron booster linac.

In order to match the positron beam into the longitudinal acceptance of the damping
ring, the beam energy spread is reduced from ±2.8% to ±0.5%. The energy compression and
spin rotation take place in four FODO-like cells with 8 bends in the first arc of the LTR. The
total bending angle is 55.5◦. The nominal momentum compaction, R56, is 86 cm but it is
adjustable. After the bunch decompression, a standard 12 m superconducting cryomodule at
an RF voltage of 180 MV rotates the positrons in longitudinal phase space to match the DR
acceptance. The rest of the LTR includes a section with an additional 34.5◦ horizontal bend,
a matching section with 4 quadrupoles and a double bend achromat used to match into the
DR injection line. The geometry is shown in Figure 2.3-4.

Multi-particle tracking has been performed from the target to the DR injection. The
ELEGANT code [29] was chosen to track the positron beam with large angular divergence
and long low-energy tails. The LTR energy compression was optimized to maximize the
positron beam within the 6-dimensional acceptance in the DR equal to γ(Ax+Ay) <0.09 m
and (±25 MeV)×(±3.46 cm). Of the positrons from the target, 55% survive the transport
through the complete beamline based on the physical apertures of the beam pipes [32] and
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FIGURE 2.3-4. Plan view of the LTR beamline (matching happens from 1-25 meters and DR injection is
at z=90meters).

∼50% of the positrons are within the DR 6-dimensional acceptance. An energy collimator in
the LTR second arc reduces the number of unwanted particles reaching the DR from 5.6% to
1.1%. Additional betatron and energy collimators may be required to collimate the rest of
the unwanted 1.1% of particles, 0.8% of which are outside of the transverse DR acceptance.
Tracking with realistic magnet errors shows similar results after orbit correction. Figure 2.3-5
shows the positron yield in various parts of the ILC Positron Source.
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2.3.5 Accelerator Components

Table 2.3-3 lists the components for the positron source. In addition to this there are two
target stations, the first of which is the main production target and the second used in the
Keep Alive Source, and their associated instrumentation. Except for the undulator, target,
remote handling and the OMD, costing for the positron source system was done by the
global systems groups. The undulator, target and OMD costs were estimated by the design
engineers and the remote handling system costs were projected from costs associated with
remote handling in other accelerator facilities.
TABLE 2.3-3
Total number of components in the Positron Source.

Magnets # Instrumentation #

Dipoles 157 BPM x,y pairs 922

NC quads 871 BPM readout channels 922

SC quads 51 Wire scanners 29

Sextupoles 32 Beam length monitors 2

NC solenoids 38 Profile monitors 7

SC solenoids 2 Photon profile monitors 3

NC correctors 871

SC correctors 102 RF #

Kickers 15 NC L-band structures 30

Septa 4 1.3 GHz SC cavities 200

SC undulator cryomodules 42 1.3 GHz cryomodules 26

OMD 2 1.3 GHz klystrons/modulators 37

2.3.5.1 Undulator

The undulator must be superconducting to achieve the required parameters of high field and
short period. The present baseline parameters are given in Table 2.3-4. Two interleaved
helical windings of NbTi spaced half a period apart generate the transverse helical field.
Figure 2.3-6 is a picture of some short sample undulator prototypes showing the forms for
the helical windings. The 147 m of undulator is supplied by forty-two 4 m long cryomodules
containing two separate undulators with an active undulator length per cryomodule of 3.5
m. Figure 2.3-7 shows the cryomodules with the two undulators running along the center.

The undulator vacuum chamber has a nominal inner diameter of 5.85 mm and is made
of copper. The extremely high conductivity of copper at cryogenic temperatures mitigates
resistive wall effects. The material between the superconducting windings is soft magnetic
iron which also serves as an outer yoke to increase the field and provides additional support.
Each cryomodule contains a liquid helium bath and in-situ cryocoolers are used to achieve
zero liquid boil off.

Since the electron vacuum vessel is at cryogenic temperatures, each module effectively
acts as a long cryopump. Roughing pumps are installed in room temperature sections be-
tween cryomodules (approximately every 12 m) but achieving UHV conditions relies upon
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FIGURE 2.3-6. Short sample undulator prototypes.

Two sections of the undulator magnet

Helium bath vessel Thermal shield

Liquid nitrogen bath vessel

FIGURE 2.3-7. 4-meter undulator cryomodule.

cryopumping. To achieve the baseline pressure requirement of 10−8 torr absorbers to pre-
vent photons striking the cold vessel surfaces are placed every 12 meter in room temperature
section.

TABLE 2.3-4
Nominal undulator parameters.

Undulator Parameters Symbol Value Units

Undulator period λ 1.15 cm

Undulator strength K 0.92

Undulator type helical

Active undulator length Lu 147 m

Field on axis B 0.86 T

Beam aperture 5.85 mm

Photon energy (1st harmonic cutoff) Ec10 10.06 MeV

Photon beam power Pγ 131 kW
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TABLE 2.3-5
Nominal target parameters.

Target Parameters Symbol Value Units

Target material Ti-6%Al-4%V

Target thickness Lt 0.4 / 1.4 r.l. / cm

Target power adsorption 8 %

Incident spot size on target σi > 1.7 mm, rms

2.3.5.2 Target

The ILC positron target parameters are shown in Table 2.3-5. The positron production target
is a rotating wheel made of titanium alloy (Ti-6%Al-4%V). The photon beam is incident on
the rim of the spinning wheel, whose diameter is 1 m and thickness is 0.4 radiation lengths
(1.4 cm). During operation the outer edge of the rim moves at 100 m/s. This combination
of wheel size and speed offsets radiation damage, heating and the shock-stress in the wheel
from the ∼131 kW photon beam. A picture of the conceptual target layout is shown in
Figure 2.3-8. A shaft that extends on both sides of the wheel with the motor mounted on
one shaft end, and a rotating water union on the other end to feed cooling water. The target
wheels sit in a vacuum enclosure at 10−8 torr (needed for NC RF operation), which requires
vacuum seals to enable access to the chamber. The rotating shaft penetrates the enclosure
using two vacuum pass-throughs, one on each end. The optical matching device (OMD -
see Section 2.3.5.3 ), is mounted on the target assembly, and requires an additional liquid
nitrogen cooling plant. The motor driving the target wheel is sized to overcome forces due
to eddy currents induced in the wheel by the OMD.

FIGURE 2.3-8. Target station layout.

The target wheel assembly is designed for an operational life of two years. In the event
that the target fails during a run, the assembly can be replaced by a new assembly in about
a day using vertical remote handling.

A series of sensors provide information on the target behavior. An infrared camera tracks
temperatures on the wheel, to allow for quick shutdown in the case of a cooling failure.
Flowmeters monitor cooling water flow in and out of the wheel (to watch for leaks), along
with thermocouples to check ingoing and outgoing flow temperature. A torque sensor is placed
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on the shaft, with vibration sensors on the wheel to report mechanical behavior. Finally, the
wheel’s rotational speed is monitored.

2.3.5.3 Optical Matching Device

The OMD generates a solenoidal magnetic field which peaks in strength at 5 Tesla close
to the target and falls off to 0.5 Tesla to match the solenoidal field at the entrance of the
capture section. The OMD increases the capture efficiency by a factor of 2. The OMD is a
normal conducting pulsed flux concentrator based on an extrapolation of a magnet created
for a hyperon experiment [33].

The magnetic field of the OMD interacts with the spinning metal of the target to create
eddy currents. The target design must accommodate this drag force which increases the
average heat load and requires a stronger target drive motor. The OMD may possibly induce
5 Hz resonance effects in the target that will need to be mitigated.

2.3.5.4 Normal Conducting RF Accelerator System

Due to the extremely high energy deposition from positrons, electrons, photons and neutrons
downstream of the positron target, normal conducting structures must be used up to an
energy of 125 MeV. This normal-conducting section is challenging but feasible, and a proto-
type test structure is under construction. It must sustain high accelerator gradients during
millisecond-long pulses in a strong magnetic field, provide adequate cooling in spite of high
RF and particle loss heating, and produce a high positron yield with the required emittance.
The design contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator
structures [34]. The capture region has two 1.27 m SW accelerator sections at 15 MV/m
and three 4.3 m TW accelerator sections at 8.5 MV/m accelerating gradient. All accelerator
sections are surrounded with 0.5 T solenoids. Figure 2.3-9 shows the schematic layout.

125 MeV0.5T Solenoids

3  x  4.3m
TW Sections

2 x 1.27 m 
SW Section

400 MeV

8  x  4.3m
TW Sections

0.5T Solenoids125 MeV

FIGURE 2.3-9. Layout of the capture region (left) and pre-accelerator region (right).

FIGURE 2.3-10. SW structures - cut-away and external views.
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The high gradient (15 MV/m) positron capture sections are 11-cell π mode SW acceler-
ator structures. The SW structures have a more effective cooling system and higher shunt
impedance with larger aperture (60 mm) and require RF circulators to protect the klystrons
from reflected power. The mode and amplitude stability under various cooling conditions
for this type of structure have been theoretically verified. Figure 2.3-10 shows engineering
drawings of the SW structures.

The TW sections are 4.3 m long, 3π/4 mode constant gradient accelerator structures.
The phase advance per cell has been chosen to optimize RF efficiency for a large aperture
TW structure. The TW structures allows easy installation for long solenoids and do not need
circulators. Each accelerator section has an individual 1.3 GHz RF power source.

2.3.5.5 Magnets

The Positron Source has more than 2000 magnets, see Table 2.3-3. Most of the magnet
designs are quite straightforward. The large aperture DC solenoids surrounding the L-band
capture RF must be normal conducting because of the high beam losses in the target region
and as such use a large amount of electrical power. In addition, there are two long high field
SC solenoids for spin rotation in the LTR.

2.3.5.6 Diagnostics

The Positron Source has the normal complement of beamline instrumentation to measure
orbit, emittance, charge and energy spread. Specialized diagnostics are designed into the
unique positron systems, e.g. target. The major cost is in the BPM system because of the
large channel count coming from the long beamlines. The number of readout channels is
halved by processing only one transverse plane of the BPM x,y pair at each quadrupole.
Performance specifications for the diagnostics are in most cases equal to or less than the
Main Linac or RTML.

2.3.5.7 Electron and Photon Beam Dumps

There are 9 beam dumps, 16 variable aperture collimators, 1 fixed aperture collimator and 5
stoppers with burn through monitors planned for the positron source system. Three of the
beam dumps must absorb sufficiently large beam power that they require dump designs with
water in the path of the beam. The plumbing to cool and treat the resulting radioactive
water is the dominant cost.

There is a tune-up dump at the 150 GeV pre-undulator extraction point of the electron
linac. For tune-up, the number of bunches per train is limited to 100; with absorbed power of
240 kW at nominal beam parameters. This dump, roughly in line with the linac, also serves
as the abort dump for up to a full train of electrons (1.35 MJ) to protect the undulator. The
dump consists of a 40 cm diameter by 250 cm long stainless vessel filled with 10 mm diameter
aluminum balls through which flows ∼30 gallons per minute of water; it is backed by a short
length of peripherally cooled solid copper. The dump is shielded from the access passageway
by 10 cm of steel and 40 cm of concrete. A service cavern houses a heat exchanger, pumps
and a system to treat the water for hydrogen, oxygen and 7Be. A second dump, technically
identical (225 kW at nominal beam parameters), is located near the damping ring to tune
the 5 GeV positrons before injection.
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The most challenging dump in the positron production system absorbs the non-interacting
undulator photons from the target. This dump must absorb up to 300 kW (upgrade value)
continuously (1.9 x 1017 photons/sec of 10 MeV average energy). The primary absorber in
this case must be water, contained in a vessel with a thin window. For a dump located
150 m downstream of the target, calculations indicate that the power density on a 1 mm Ti
window is 0.5 kW/cm2, the resultant temperature rise after the passage of one bunch train
is 425◦C, and in the core of the beam the rise in the water temperature is 190◦C. With this
geometry, a compact (10 cm diameter by 100 cm long) pressurized (12 bar) water vessel and
Ti window, with a radioactive water processing system, is required. Lengthening the target
to dump distance by several hundred meters would ease requirements on the dump, but incur
the expense of a longer transport.

The remaining dumps and collimators in the positron system all are based on peripherally
cooled solid metal construction, with the cooling water supplied directly from the accelerator
low conductivity water (LCW) system and do not present technical or cost challenges.
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2.4 DAMPING RINGS

2.4.1 Overview

The ILC damping rings include one electron and one positron ring, each 6.7 km long, operat-
ing at a beam energy of 5 GeV. The two rings are housed in a single tunnel near the center of
the site, with one ring positioned directly above the other. The damping rings must perform
three critical functions:

• Accept e− and e+ beams with large transverse and longitudinal emittances and produce
the low-emittance beams required for luminosity production

• Damp incoming beam jitter (transverse and longitudinal) and provide highly stable
beams for downstream systems

• Delay bunches from the source to allow feed-forward systems to compensate for pulse-
to-pulse variations in parameters such as the bunch charge.

The damping ring system includes the injection and extraction systems, which themselves
include sections of transport lines matching to the sources (upstream of the damping rings)
and the RTML system (downstream of the damping rings).

2.4.2 Beam Parameters

The key parameters for both the electron and positron damping rings are listed in Table
2.4-1.

2.4.3 System Description

The configuration of the damping rings is constrained by the timing scheme of the main linac.
In particular, each damping ring must be capable of storing a full bunch train (roughly 3000-
6000 bunches) and reducing the emittances to the required level within the 200 ms interval
between machine pulses. In addition, the relatively large bunch separation in the main linacs
means that the damping rings must be capable of injecting and extracting individual bunches
without affecting the emittance or stability of the remaining stored bunches.

Several configuration options capable of satisfying the various constraints were evaluated
in 2005 on the basis of cost and technical risk, and the 6.7 km ring was selected [35]. The exact
circumference has been chosen to provide flexibility in the operational timing scheme, allowing
variation in the bunch charge and number of bunches per pulse, for a fixed total number of
particles per pulse and constant pulse length in the linac [12]. The superconducting RF
system is operated at 650 MHz. To achieve the short damping times necessary to reduce the
emittances (by roughly six orders of magnitude in the case of the positron vertical emittance)
within the allowed 200 ms interval, superconducting wigglers of total length roughly 200 m
are used in each damping ring.

As noted in Section 2.1.5, there are significant constraints on the DR circumference, the
fill patterns and the bunch spacing in the main linac. These issues will need to be optimized
during the next design hase and it is likely that small changes will be made to the DR
circumference and the bunch spacing.
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TABLE 2.4-1
Positron damping ring parameters. The electron damping ring is identical except for a smaller injected
emittance.

Parameter Units Value

Energy GeV 5.0

Circumference km 6.695

Nominal # of bunches 2625

Nominal bunch population 2.0× 1010

Maximum # of bunches 5534

Bunch population at max # of bunches 1.0× 1010

Average current A 0.40

Energy loss per turn MeV 8.7

Beam power MW 3.5

Nominal bunch current mA 0.14

RF Frequency MHz 650

Total RF voltage MV 24

RF bucket height % 1.5

Injected betatron amplitude, Ax +Ay m.rad 0.09

Equilibrium γεx µm.rad 5.0

Chromaticity, Ξx/Ξy -63/-62

Partition Numbers, Jx/Jy/JE 0.9998/1.0000/2.0002

h 14,516

νs 0.067

fs kHz 3.0

αc 4.2× 10−4

νx/νy 52.40/49.31

σz mm 9.0

σp/p 1.28× 10−3

τx ms 25.7

τs ms 12.9

2.4.3.1 Lattice Design Considerations

The ring lattice satisfies the basic requirements of damping time, normalized horizontal emit-
tance and bunch length, has sufficient aperture for injecting a large emittance positron beam,
and has a sufficiently large momentum compaction factor to maintain single bunch stability.
However, there remains design work to be done on the lattice, for example to optimize the dy-
namic aperture to ensure efficient acceptance of the large emittance beam from the positron
source, and to minimize sensitivity to tuning and alignment errors that could degrade the
emittance.
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FIGURE 2.4-1. Layout of the ILC Damping Ring.

The ring is divided into six arcs and six straight sections (see Figure 2.4-1). The arcs are
composed of Theoretical-Minimum-Emittance (TME) cells to give low quantum excitation,
and the straight sections are composed of FODO cells for the damping wigglers, RF cavities,
and injection and extraction sections. Optical parameters are shown in Figure 2.4-2. The

FIGURE 2.4-2. Optical functions of the ILC Damping Ring.
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parameters of the TME cells and the wigglers (peak field of 1.67 T) were selected to obtain
the required damping time, momentum spread, and normalized horizontal emittance.

Two families of sextupole magnets are inserted in the TME cells for correcting the first-
order chromatic effects of the linear optics. To reduce nonlinear effects of the sextupoles,
the betatron phase advance of the TME cells was set to 90◦ in each plane. The resulting
dynamic and momentum apertures (see Figure 2.4-3) were found to depend on the number of
straight sections (i.e., the symmetry of the lattice) and on the betatron phase advances of the
straight sections. The straight section betatron phase advances were adjusted for maximum
dynamic aperture. While a larger number of straight sections was found to improve the
nonlinearities, this comes at a higher cost for subsystems. A compromise configuration of six
straight sections was eventually chosen for the baseline lattice.
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FIGURE 2.4-3. Dynamic aperture of the ILC Damping Ring (without field and alignment errors) for relative
momentum errors of -1%, 0% and 1% at x = 44 m and y = 18 m. The thick green line represents the size
of the injected positron beam.

The choice of momentum compaction factor, controlled chiefly by the total number of
TME cells, results from a balance between competing requirements: single-bunch stability
against the impedance of the vacuum chamber (favoring a high value of αc) and a lower cost
RF system (favoring a low value of αc) . The value 4.2× 10−4 is somewhat on the high side
to reduce the risk of single-bunch instability. Unfortunately, a high momentum compaction
factor makes it difficult to achieve a low equilibrium emittance and strong damping wigglers
are required. The Twiss parameters in the wiggler region were adjusted to produce the
required equilibrium emittance.

The injection/extraction sections accommodate a large number of fast stripline kickers
(their large number being due to their inherent weakness). Optical functions were designed to
ensure that the beam goes through the stripline kickers without hitting their apertures. For
the injection section, the beam traverses the kickers at an angle but with a small trajectory
offset.
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2.4.3.2 Fast Ion Instability

Of significant concern to the electron damping ring is the fast ion instability. As opposed
to the more familiar ion-trapping effect, where ions oscillate stably for long periods in the
potential well of the stored beam, the fast ion instability is associated with ions created in
the beam path by interaction with the circulating beam during a single turn. Ions created
at the head of the bunch train move slowly, and remain in the beam path, influencing the
motion of subsequent bunches. The resultant ion-induced beam instabilities and tune shifts
are critical issues for the electron damping ring due to its ultra-low vertical emittance. A low
base vacuum pressure at the 1 nTorr level is essential to reduce the number of ions formed.
To mitigate bunch motion, we also employ bunch-by-bunch feedback systems with a damping
time of ≈0.1 ms.

To further reduce the core ion density, short gaps are introduced in the electron beam
bunch train by omitting a number of successive bunches. The use of such “mini-gaps” in
the train significantly mitigates the fast ion instability by reducing the core ion density and
by inducing tune variation along the train. Figure 2.4-4 shows the buildup of the ion cloud
in the case of a particular multi-train pattern with 118 bunch trains and 49 bunches per
train. In this case, the reduction in the core ion density is a factor of 60 compared with a fill
consisting of a single long bunch train. It is worth pointing out that the effect of train gaps is
a function of beam size, so they are less effective early in the damping cycle. The simulated
growth time for the beam pattern corresponding to Fig. 2.4-4 is 280 µs.
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FIGURE 2.4-4. Buildup of CO+ ion cloud at extraction. The total number of bunches is 5782 (118 trains
with 49 bunches per train). The beam has a bunch separation of two RF bucket spacings, and a train gap
of 25 RF bucket spacings. There are 0.97 × 1010 particles per bunch, and the partial vacuum pressure is
1 nTorr.
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The tune spread due to both linear and nonlinear tune shifts provides Landau damping
that helps control ion-induced instabilities [36]. With a multi-train fill pattern, the size of
the ion cloud is much larger than the vertical beam size, so there is a larger tune spread.
When the oscillation amplitude of the beam reaches the beam size, the nonlinearity effectively
saturates the instability.

2.4.3.3 Electron Cloud Instability

Electron cloud instabilities and tune shifts are critical issues for the positron damping ring.
The electron cloud develops quickly as photons striking the vacuum chamber wall knock out
electrons that are then accelerated by the beam, gain energy, and strike the chamber again,
producing more electrons. The peak secondary electron yield (SEY) of typical vacuum cham-
ber materials is >1.5 even after surface treatment, leading to amplification of the cascade.
Once the cloud is present, coupling between the electrons and the circulating beam can cause
a single-bunch (head-tail) instability and incoherent tune spreads that may lead to increased
emittance, beam oscillations, or even beam losses. Because the electron cloud is difficult to
suppress in the dipole and wiggler regions of the ring, this is where its effects are expected
to be most severe. A large synchrotron tune is beneficial, as it raises the threshold for the
electron cloud head-tail driven instability.

Single-bunch instability simulations for the 6.7 km damping ring lattice show that the
instability sets in above an average cloud density of 1.4 × 1011 e−/m3, where an incoherent
emittance growth is observed, see Figure 2.4-5. Analytic calculations give higher density
thresholds by roughly a factor of 4 [38, 39]. Tune shifts on the order of 0.01 are expected
near threshold.
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Simulations indicate that a peak secondary electron yield of 1.2 results in a cloud density
close to the instability threshold. Based on this, the aim of ongoing experimental studies is
to obtain a surface secondary electron yield of 1.1. Simulations also indicate that techniques
such as grooves in the chamber walls or clearing electrodes will be effective at suppressing the
development of an electron cloud [40, 41]. Figure 2.4-6 shows the buildup of the electron cloud
and the suppression effect of clearing electrodes in an arc bend of the 6.7 km ring. A clearing
electrode bias potential of +100 V is sufficient to suppress the average (and central) cloud
density by more than two orders of magnitude. Techniques such as triangular or rectangular
fins or clearing electrodes need further R&D studies and a full demonstration before being
adopted. Nonetheless, mitigation techniques appear to be sufficient to adopt a single 6.7 km
ring as the baseline design for the positron damping ring.
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FIGURE 2.4-6. Electron cloud buildup in an arc bend of the 6.7 km ring and suppression effect of clearing
electrodes biased at the indicated voltages.

2.4.3.4 Injection and Extraction

The bunch separation in the main linacs is much longer than in the damping rings, so indi-
vidual bunches must be injected and extracted without affecting the emittance or stability of
the remaining stored bunches. For this to be the case, the kicker field must be negligible for
any stored bunch upstream or downstream of the injected or extracted bunch, requiring that
the effective kicker pulse width be less than twice the bunch spacing. Injection is interleaved
with extraction, to minimize excursions in beam loading of the RF system.

Extraction is located near the center of one long straight section. A set of kickers de-
flects a single damped bunch horizontally. A horizontally defocusing quadrupole increases
the deflection. About 90◦ of betatron phase downstream of the kickers, the bunch passes
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through the bending fields of a pair of septum magnets. These deflect the trajectory further
horizontally, so it passes outside of the next focusing quadrupole and into the extraction line
optics. The stored orbit is located in the nominally field-free region of the septum magnets
and is not significantly affected. The extraction straight section also includes an abort dump.

Injection is located near the center of the opposite long straight section. The injection
line grazes the outside of a quadrupole, and is deflected horizontally by a pair of septum bend
magnets so the trajectory passes inside the aperture of the next quadrupole. This horizontally
defocusing quadrupole makes the trajectory nearly parallel to the stored orbit. About 90◦ of
betatron phase downstream from the septa, where the injection trajectory crosses the stored
orbit, a set of kickers deflects the single injected bunch onto the stored orbit. As mentioned
previously, the kicker is distributed into several modules at the axis-crossings of the injected
trajectory, so the module aperture can be minimized.

The kicker modules are 50 Ω stripline structures inside the vacuum pipe, each 30 cm long,
operating at a voltage of 22 kV, provided as +11 and -11 kV pulses on opposite electrodes.
Twenty-one modules are required for injection in each ring and eleven for extraction. The 30
cm stripline gives a 2 ns contribution to the kicker pulse width, leaving less than 10 ns for
the electrical pulse width at the nominal ring bunch spacing of 6 ns. The kickers pulse about
every 300 ns during the linac pulse of about 1 ms. For the low bunch charge parameters, the
ring bunch spacing is 3 ns, requiring an electrical pulse width of less than 4 ns and a pulse
about every 150 ns. The electrical pulser requirements are challenging, and the subject of an
extensive R&D program.

Figure 2.4-7 shows beam deflection vs. kicker time measured at the ATF storage ring at
KEK with 33 cm striplines and a 5 kV, 3 MHz pulser built by FID GmbH. The main pulse
easily meets the width and rate requirement for 6 ns bunch spacing, although at half the
desired amplitude and with undesireable structure before and after the main pulse.

The tolerance on horizontal beam jitter of the extracted beam is 0.1-0.2 σ, which requires
the extraction kicker amplitude stability to be 0.1% or better. A similar tolerance applies to
the kicker amplitude for bunches before and after the target bunch in the ring bunch train.
As a tolerance on the absolute kicker field before and after the pulse, this is very difficult to
achieve and is the subject of ongoing R&D.

The septum magnets are modeled after the Argonne APS injection septa. The thin (2
mm) septum magnet has a 0.73 T field, and the thick (30 mm) septum magnet has a 1.08 T
field. Each magnet has an effective length of 1 m. Both magnets are pulsed once per linac
cycle to reduce power dissipation, with eddy currents in the septum shielding the circulating
beam. A half-sine pulse of about 10 ms width is used, and post-regulation is required to
produce a 1 ms plateau flat to 10−4.

2.4.4 Accelerator Components

The damping ring has conventional electromagnets for the dipole, quadrupole, sextupole,
and corrector magnets. This technology choice offers flexibility for tuning and optimizing
the rings as well as for adjusting the operating beam energy by a few percent around the
nominal value of 5 GeV. Superconducting wigglers based on the CESR-c design [42] provide
sufficient field quality that the wigglers impose no limitation on the damping ring dynamic
aperture. The large wiggler aperture improves the ring acceptance for the large injected
positron beam and reduces the growth of the electron cloud in the wiggler region. Power
supplies and controllers are located in alcoves at the centers of the RF-wiggler straights.
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Magnet counts are shown in Table 2.4-2. Table 2.4.4 gives the key magnet parameters and
maximum higher-order harmonic content specifications.

The superconducting damping wigglers are 4.5 K devices with static heat loads of 2 W/m

TABLE 2.4-2
Magnet types and counts for a single ILC Damping Ring using the OCS6 lattice. These counts do not
include injection and extraction line magnets nor magnets, kickers, and septa associated with the damping
ring abort beam dump. Wiggler magnets are superconducting, all others are room-temperature.

Type Number Power Method

Dipoles (6 m) 114 6 strings, 1 per arc

Dipoles (3 m) 12 6 strings, 1 per arc

Quadrupoles 747 Individual

Sextupoles 504 Individual

Horizontal correctors 150 Individual

Vertical correctors 150 Individual

Skew quadrupoles 240 Individual

Wigglers 80 Individual

Kickers 64 Individual

Septa 4 Individual
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TABLE 2.4-3
Target field tolerances at a reference radius of 20 mm for damping ring magnets. Magnet aperture radii
are 30 mm except for the wigglers. For the wigglers, the operating field is 1.67 T and the field quality
is specified by the observed roll-off for a horizontal displacement from the beam axis by the indicated
distance. The maximum KL-value specifies the nominal strength of the strongest magnet of each magnet
type.(Wigglers have reference radius 20 mm (H); aperture radius 37.5 mm (H), 45 mm (V))

Type Max KL L [m] Max field # of
error types

Dipoles 0.0524 6 ; 3 2× 10−4 2

Quadrupoles 0.31 m−1 0.3 2× 10−4 4

Sextupoles 0.24 m−2 0.25 2× 10−3 1

H correctors 0.002 0.25 5× 10−3 1

V correctors 0.002 0.25 5× 10−3 1

Skew quads 0.03 m−1 0.25 3× 10−3 1

Wigglers – 2.5 3× 10−3 1

or less, based on CESR-c experience. To avoid a significant dynamic heat load, care must
be taken to ensure that only tiny amounts of scattered synchrotron radiation reach the cold
mass. Two of the wigglers are co-located in the damping ring straight sections with the
superconducting RF cavities, where the necessary crygenic infrastructure is readily available.
The other wigglers are fed by transfer lines, with a single transfer line infrastructure for both
rings.

All quadrupoles, sextupoles, wigglers and corrector magnets (dipole, skew quadrupole,
and possibly other multipoles yet to be specified) have individual power supplies. Individual
control of the quadrupole and sextupole magnets significantly enhances the ability to tune
and locally correct the machine optics in a ring with very aggressive operating parameters.
Individual power supplies for the wigglers offer simplified control in the event of a magnet
quench by eliminating the power system coupling between magnets. Because of the long
distances between individually powered magnets and the alcoves, the power supply system
uses bulk supplies located in the main alcoves that power a master “bus” from which DC-to-
DC converters supply power to individual magnets. This design minimizes cable heat loads in
the ring and provides a more efficient power system. For the dipole magnets, each arc section
is powered separately. The pulsed power supplies for the stripline kickers require short cable
runs to preserve the necessary timing synchronization, and must be located in the tunnel or
in small secondary alcoves near each group of kickers.

2.4.4.1 RF System

The damping ring RF frequency of 650 MHz has a simple relationship with the main linac RF
(1.3 GHz) to accommodate varying bunch patterns. While high power 650 MHz RF sources
are not commercially available, several major klystron manufacturers can develop them by
modifying 500 MHz klystrons of equivalent power level. Similarly, the RF cavity units can
be designed by scaling from existing 500 MHz superconducting module designs currently in
operation at CESR, KEK, and elsewhere. The RF cryomodule dimensions are 3.5 m in length
and 1.5 m in diameter [42].

For either ring, the beam power and the total RF voltage is shared among 18 supercon-

ILC Reference Design Report III-63



ACCELERATOR DESCRIPTION

TABLE 2.4-4
Estimated 650 MHz SC cavity parameters (scaled from 500 MHz model) for both electron and positron
damping rings.

Parameter Units All Stations One Station
On Off

Frequency MHz 650

Active cavity length m 0.23

R/Q [Ω] 89

Operating Temperature K 4.5

Standby losses at 4.5 K W 30

Operating SC modules per ring 18 14

Accelerating gradient MV/m 5.8 7.5

Accelerating voltage MV 1.33 1.72

Q0 at operating gradient 109 1.0 0.9

RF cyrogenic losses per cavity W 20 33

Total cryo losses per ring W 900 925

Beam power per cavity kW 194 250

Klystrons per ring 5 4

Klystron emitted power kW 780 1000

ducting cavities. These are located in two RF straight sections roughly 40 m long. Operating
18 SC-cavity modules per ring ensures adequate energy and beam power margin in case of
an RF station fault, and permits continued operation with 14 cavity modules at full perfor-
mance by increasing the RF field in the remaining units. Table 2.4-4 summarizes the RF
system main features and compares the parameters for the nominal case with that when one
RF station is off. Parameters are scaled from the 500 MHz units developed by industry and
being operated in various laboratories.

Two or three RF stations are located in each RF-wiggler straight section, as indicated
schematically in Figure 2.4-8. Each klystron can feed 4 SC cavities by means of a distribution
system having magic-tees for power splitting and 3-port circulators for protecting the klystron.
To guarantee sufficient power margin in case of a klystron fault, the power sources are 1.2
MW CW. One “hot-spare” station in each ring is operated with only two cavities, rather
than four. The stations are upstream of the wigglers at opposite ends of the straight section
tunnel, with waveguides connecting them to the klystrons housed in centrally located alcoves
having access shafts to the surface.

The selection of 650 MHz requires a redesign of existing 500-MHz sources, cavities and
cryomodules. A critical element is the input coupler because the power handling capability
must be kept at a level of about 260 kW CW, comparable to presently operating 500 MHz
systems. The HOM dampers and cryostat mechanical details must also be revised.

2.4.4.2 Cryogenic Plant

The DR cavities operate at 4.5 K and the total cryogenic losses per ring are approximately
900 W with 14 modules operating in case of one klystron fault. The design has one cryogenic
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FIGURE 2.4-8. Schematic layout of DR RF systems. Each of the two RF-wiggler sections accommodates
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that ring.

plant in each RF straight section. With this choice, the helium transfer lines to the RF are not
very long and do not impact the cryogenic plant cost. The cryogenic plant capability must be
sufficient to handle the worst-case scenario of one klystron fault, where the cryogenic power in
the other straight section could increase to a total of 925 W. With the standard refrigerator
efficiency of 0.3% at 4.5 K, the total wall-plug power for each straight-section refrigerator is
about 300 kW. Table 2.4-5 summarizes the specifications of the cryogenic system.

TABLE 2.4-5
Main specifications of the RF cryogenic system, with 18 modules per ring.

Parameter Units Value

Nominal cryogenic losses per straight section W 900

Design cryogenic losses per straight section W 925

Wall plug power per cryogenic plant kW 300

Total number of cryogenic plants 2

2.4.4.3 Fast Feedback System

With thousands of bunches circulating in the ring, wakefields induced in vacuum chamber
components can give rise to coupled-bunch instabilities that cause bunch jitter and/or emit-
tance growth. To combat this, the rings have fast bunch-by-bunch feedback systems in all
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three oscillation planes (longitudinal, horizontal and vertical) [44]. Modern commercial FP-
GAs (Field Programmable Gate Arrays) can easily manage the requirements of the feedback
systems in terms of speed and number of bunches. The bandwidth of the fast feedback system
must be at least fRF (that is, 650 MHz). This means that every block of the system must
have the capability to manage the full bandwidth except for the power section (amplifiers
and kickers), where half bandwidth is sufficient. The main elements of each system are the
analog front end, digital processing unit, analog back end, amplifier and kicker.

The pickups are 4-button monitors (two or three for each beam line) with at least full
bandwidth and adequate dynamic range. The analog front ends must be capable of extracting
the oscillation signals from the monitors in each of the three planes (L, H, V) and giving them
to the digital sections with a swing in the range of ∼0.5 V (typical of many analog-to-digital
converters).

To minimize the quantization noise and have an adequate dynamic range, the digital
units are based on a 16-bit signal processing system. The processing is able to compute
the correction signal for all buckets (including the empty ones) to decouple the feedback
behavior from the fill pattern. This means that all feedback systems must have the capability
to process, in real time, 14,516 input/output channels, although the real bunches are in, at
most, 5,534 buckets. The digital unit sampling frequency is 650 MHz. A real time FIR (finite
impulse response) filter (with ≥50 taps) provides the correction synchrotron or betatron
phase advance using only one pickup for each system. The feedback setup should be easily
configurable using software tools. A down-sampling feature is also needed to manage very
low oscillation frequencies.

The analog back-end systems adapt the output correction signals to the power section.
The longitudinal kicker (a cavity) works at a frequency between 800 and 1600 MHz, whereas
the transverse kickers (striplines) operate at baseband (from 10 kHz up to half the bandwidth
of the fast feedback system). Each power section has four 250 W amplifiers (1 kW total),
with the bandwidth required by the kicker.

2.4.4.4 Vacuum System

The vacuum design for the damping rings is similar to those for modern storage rings and syn-
chrotron radiation sources. The need to avoid the fast ion instability leads to very demanding
specifications for the vacuum in the electron damping ring: <0.5 nTorr CO-equivalent in the
arc cells, <2 nTorr CO-equivalent in the wiggler cells, and <0.1 nTorr CO-equivalent in the
straight sections [45]. A combination of coatings, grooved chamber profiles, and clearing elec-
trodes is required to suppress the electron cloud in the positron damping ring. The baseline
design uses a non-evaporable getter (NEG) coated aluminum tubular vacuum chamber. With
NEG coating, fewer pumps with lower pumping speed are required. Issues associated with the
ultimate lifetime of the NEG material, its regeneration, and the synchrotron radiation power
density on the chamber walls need further study. Each of the 120 arc cells requires one sput-
ter ion pump with an effective pumping speed of 20 L/s installed immediately downstream
of the dipole. In the long straight sections, similar sputter ion pumps are required every 10
m for 0 < z < 80 m, every 20 m for 80 < z < 160 m, and every 40 m for 160 < z < 400 m.

The wiggler straight section vacuum system consists of separate chambers for the wiggler
and quadrupole sections. A cross section of the wiggler chamber is shown in Figure 2.4-9.
The chamber is a machined and welded aluminum unit, designed as a warm-bore insert,
mechanically decoupled from the wiggler and cryogenic system. A NEG pumping system
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and photon absorber are incorporated in antechambers. Integral cooling is incorporated to
minimize distortion of the chamber and thermal load on the wiggler cryostat during NEG
regeneration. A TiZrV NEG surface coating is used on the main chamber bore to minimize
secondary electron yield [46]. Clearing electrodes are also incorporated to reduce the electron
cloud.

Tubular Heater Water Cooled
Absorber

NEG Coating

NEG

NEGNEG

NEG

Clearing Electrodes

10

120

60
R23

FIGURE 2.4-9. ILC damping ring wiggler chamber; dimensions in mm.

The photon absorbers are hollow water-cooled copper conductor designed to absorb pho-
ton power from upstream wigglers in the same straight section. Power radiated from the first
wiggler in the straight section is intercepted initially by wiggler number three. Intercepted
power increases for successive wigglers up to number nine; thereafter, a constant 3 W/mm2

peak power density is reached. The total power absorbed per wiggler is 26 kW, that is, 13
kW per absorber.

The NEG pumping system is similar to that designed for the PEP-II B Factory. The
assembly consists of NEG-coated fins and an integral heating rod for regeneration. The
estimated pumping speed for CO is 1000 L/s/m. With a total incident photon flux of 2 ×
1018 photons/s/m, the estimated yield of CO is 2 × 1013 molecules/s/m. This results in an
equilibrium CO partial pressure of 7 × 10−10 Torr.

Between each wiggler chamber is a separate chamber for the quadrupole section. This
chamber is welded aluminum, incorporating TiZrV NEG coating for secondary electron yield
reduction. Bellows, a BPM assembly, and an ion pump for pumping non-reactive gases
are included. The ion pump also serves as a vacuum gauge. The quadrupole chamber is
completely shadowed by the wiggler chamber photon absorbers and does not absorb any of
the photon power from upstream wigglers.
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2.4.4.5 Cost Methodology

Several of the technical subsystems in the damping rings have specific requirements that
distinguish them from corresponding subsystems in other parts of the ILC; generally, this
is because of the relatively high average current and synchrotron radiation power (for the
vacuum system, wigglers, and fast feedback systems), CW operation (for the RF system),
or unique functionality (for the injection/extraction kickers). The cost estimates for these
damping-ring-specific designs were developed by the damping ring group.

The RF system is CW and operates at 650 MHz, a different frequency from the RF systems
used elsewhere in the ILC. The designs of high-power RF components, such as klystrons
and circulators, were scaled from commercially available 500 MHz devices. Estimates from
klystron manufacturers indicated that development costs would increase the total cost by
roughly the cost of one additional unit at the standard catalog price. Manufacturing costs
for the cavity cryomodules were assumed to be the same as for commercial versions of 500
MHz systems developed at Cornell and KEKB, with increased engineering effort to account
for the rescaling, or in some cases redesign, of the existing subcomponents.

A preliminary design for the vacuum system was based on estimates for required vac-
uum levels (set by ion instabilities in the case of the electron damping ring), handling of
synchrotron radiation, aperture requirements, and conditioning rates. Standard commercial
component costs were used for extruded aluminum vacuum chambers, bellows, pumps, valves,
and bake-out systems. Coating the chambers with NEG was assumed to be done with in-
house labor. The cost estimate for the complex damping wiggler vacuum chamber was based
on fabrication of similar systems for other projects.

The engineering and fabrication experience for the CESR-c wigglers were used to provide
reliable cost estimates for the ILC damping wigglers, taking proper account of the well-
defined differences in specification. Costs for the kicker pulser were based on a commercially
available pulser (a fast ionization dynistor, or FID, device) that comes close to meeting the
specifications for the damping ring injection/extraction kickers; this cost dominates the total
cost of the injection/extraction system. Other components, including the stripline electrodes
and the septa, are relatively conventional, and costs were based on similar existing devices.

Costs of the ILC damping ring fast feedback systems were taken directly from comparable
systems in existing machines. Power amplifiers dominate the cost of the fast feedback systems.
Amplifiers operating in the appropriate parameter regime are available commercially, and
costs for these were obtained from an experienced manufacturer.
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2.5 RING TO MAIN LINAC

2.5.1 Overview

The ILC Ring to Main Linac (RTML) is responsible for transporting and matching the beam
from the Damping Ring to the entrance of the Main Linac. The RTML must perform several
critical functions:

• transport of the electron and positron beams from the damping rings, at the center of
the ILC accelerator complex, to the upstream ends of their respective linacs (“geometry
matching”);

• collimation of the beam halo generated in the damping ring;

• rotation of the spin polarization vector from the vertical to any arbitrary angle required
at the IP;

• compression of the long Damping Ring bunch length by a factor of 30 ∼ 45 to provide
the short bunches required by the Main Linac and the IP;

In addition, the RTML must provide sufficient instrumentation, diagnostics and feedback
(feedforward) systems to preserve and tune the beam quality.

2.5.2 Beam Parameters

The key beam parameters of the RTML are listed in Table 2.5-1. Parameters are shown for
the nominal configuration and for the “low charge” configuration (which requires a shorter
bunch at the IP).

TABLE 2.5-1
Basic beam parameters for the RTML.

Parameter Nominal Value Low Charge Value

Initial energy 5.0 GeV

Initial energy spread 0.15%

Initial emittances 8.0µm × 20 nm

Initial horizontal beam jitter 1 σ

Initial bunch length 9.0 mm

Final bunch length 0.3 mm 0.2 mm

Final energy 15.0 GeV 13.7 GeV

Final energy spread 1.5% 2.7 %

Final horizontal beam jitter 0.1σ

ISR emittance growth 0.9 µm 0.8 µm

Emittance budget 1µm × 4 nm
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2.5.3 System Description

2.5.3.1 Layout

Figure 2.5-1 depicts schematically the layout and location of the various sub-beamlines of
the RTML. The RTML includes the long low-emittance transport from the Damping Ring,
followed by a 180◦ turn-around, the spin-rotation and two-stage bunch compression sections.
The beamlines upstream of the turnaround are collectively known as the “upstream RTML,”
while those from the turnaround to the launch into the main linac are collectively known as
the “downstream RTML.” Figure 2.5-2 shows the Twiss functions of the downstream RTML.
In order to accommodate the different damping ring elevations and linac lengths, the electron
and positron RTMLs have slight differences in their long transport sections, but are otherwise
identical.

Damping Ring

Return (13,600m)

Main Linac

Linac Launch
(89m)

Escalator
(600m)

DR Stretch
(600m)

Pulsed Dump
(220kW)

COLL1
(400m)

Tuneup Dumps
(220 kW each)Turnaround

(218m)

Spin Rotator
(82m)

(with SKEW2 at end)

EMIT2
(27m)

BC1
(238m)

BC1 Ext.
(60m)+

Skew
(27m)

EMIT1
(27m)+

BC2
(758m)

BC2 Ext.
(63m)+

3-07
8747A9

FIGURE 2.5-1. Schematic of RTML, indicating the various functions described in the text.

Each of the key functions of the RTML listed in 2.5.1 is supported by several of the
sub-beamlines shown in Figure 2.5-1.

2.5.3.2 Geometry Match

Following extraction from the damping rings, the beams are brought parallel to the long axis
via the 90◦ arcs in the Arc sections; transported from the the damping ring elevation to the
main linac tunnel elevation via the vertical doglegs in the Escalator sections; transported out
to their respective ends of the site via the Return lines, which are suspended from the ceiling
of the main linac tunnel; and reversed in direction by the Turnaround sections. In addition,
small vertical and horizontal doglegs at the upstream end of the Turnaround change the beam
elevation from the ceiling of the linac tunnel to the nominal linac elevation, and adjust the
horizontal position between the Return line axis and the main linac axis.

2.5.3.3 Collimation

The RTML’s betatron collimation section is downstream of the damping ring extraction arc.
It is constructed from two sets of thin spoiler and thick absorber pairs, placed 90◦ apart
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FIGURE 2.5-2. Twiss functions of the downstream RTML, from the start of the turnaround to the match
into the main linac.

in betatron phase. This is considered sufficient to reduce the halo density by 3-4 orders of
magnitude. The thin spoilers are needed to protect the absorbers from a direct hit from an
errant beam in the event of some machine error [49]. The spoilers in the upstream section are
protected by their proximity to the damping ring, which permits extraction to be halted prior
to spoiler damage if the beam begins to hit the spoiler. There are additional collimators for
energy collimation placed in the Turnaround, and in the wigglers of the Bunch Compressor.

2.5.3.4 Spin Rotation

The beam polarization in the damping rings is vertical, and this polarization is transported
with negligible loss or precession to the end of the Turnaround. At that point it is necessary
to be able to reorient the spin vector to any direction required by the experimental physicists.
To achieve this, both the electron and positron RTMLs have a complete spin rotation system.
Each system includes a pair of superconducting solenoids, followed by an arc with a net 7.9◦

bend angle, which is in turn followed by another pair of solenoids. By adjusting the excitation
in the solenoid pairs, the spin vector at the end of the spin rotator can be oriented in any
desired direction. In order to rotate the spin without introducing undesired x-y coupling,
the solenoid-based rotators each use a pair of identical solenoids separated by a quadrupole
lattice which introduces a +I transformation in the horizontal plane and a −I transformation
in the vertical plane [50], the net effect of which is to cancel the cross-plane coupling.

2.5.3.5 Bunch Compression

In order to achieve the required bunch compression factor of 30-45, a two-stage system is
adopted. A single-stage compressor would produce a beam with a relative energy-spread
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TABLE 2.5-2
Key parameters for the two-stage bunch compressor in the nominal configuration, when compression to
0.3 mm RMS length is desired.

Parameter Nominal BC1 Value Nominal BC2 Value

Initial energy 5 GeV 4.88 GeV

Initial energy spread 0.15% 2.5%

Initial bunch length 9 mm 1.0 mm

RF voltage 448 MV 11.4 GV

RF phase -105◦ -27.6◦

Wiggler R56 -376 mm -54 mm

Final energy 4.88 GeV 15.0 GeV

Final energy spread 2.5% 1.5%

Final bunch length 1.0 mm 0.3 mm

that is unacceptably high, leading to unachievable alignment tolerances in both the RTML
and the early stages of the Main Linac.

Table 2.5-2 summarizes the important parameters for both the first-stage (BC1) and
second-stage (BC2) compressor.

In addition to flexibility in the final bunch length, the two-stage bunch compressor allows
some flexibility to balance longitudinal and transverse tolerances by adjustment of the wiggler
magnet strengths, RF voltages, and RF phases. The nominal compressor configurations
ease tolerances on damping ring extraction phase, damping ring bunch length, and bunch
compressor phase stability, at the expense of tightening the tolerances on transverse alignment
of accelerator components. There are also alternate configurations which loosen transverse
alignment tolerances but tighten the longitudinal (i.e. phase) tolerances.

The linacs in both compressor stages use standard SCRF cryomodules and an RF power
unit configuration similar to that of the Main Linac (i.e. one klystron driving three cryomod-
ules). The first-stage compressor has a single RF unit with 8 cavities and one quadrupole in
each of its 3 cryomodules; the second-stage compressor uses 14 RF units (plus one redundant
spare) which are identical to the main linac configuration (i.e., 26 cavities and 1 quad per
unit, arranged in 3 cryomodules). The stronger focusing in the first stage is necessary to
mitigate the higher wakefields and cavity-tilt effects resulting from the longer bunch length
in the compressors. The first-stage has no spare RF unit; instead, a spare klystron and
modulator are connected via a waveguide switch to provide some degree of redundancy.

Each bunch compressor stage includes a 150 m lattice of bend magnets(“wiggler”) which
provides the momentum compaction required for bunch compression. As implied by the
name, the wigglers introduce no net offset or angle to the beam.

Figure 2.5-3 shows the longitudinal phase space after compression from 9 mm to 0.3 mm
RMS length.

2.5.3.6 Tuning, Correction, and Operations

The diagnostic, correction, and operational requirements of the RTML have been carefully
integrated into the design of the entire beamline.
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FIGURE 2.5-3. Longitudinal phase space of the compressed bunch.

Global Dispersion Correction: The Arc, the BC1 wiggler, and the BC2 wiggler con-
tain normal and skew quads in regions of horizontal dispersion which are used to tune any
residual dispersion due to misalignments and errors. The quads are arranged in pairs, with
an optical −I transform between the two quads in a pair; this permits the tuning of the
dispersion without introducing any betatron coupling or beta beats. The dispersions in the
Turnaround are adjusted by tuning normal quads in the horizontal and vertical doglegs at
the upstream end of the Turnaround; similarly, tuning the normal quads in the Escalator
allows its vertical dispersion to be tuned.

Global Coupling Correction: There are two decoupling regions: the first is immedi-
ately downstream of the Arc, and the second is immediately downstream of the Spin Rotator.
Each decoupling region contains 4 orthonormal skew quads in regions of zero dispersion, which
allow complete and independent control of the 4 betatron coupling terms. The first station
is conceptually intended to correct the coupling introduced by the damping ring extraction
system, while the second corrects coupling generated by errors in the spin rotation system,
as well as the remaining betatron coupling from small rotation errors on the RTML quads.

Emittance Measurement: There are three emittance measurement stations: the first
is between the first decoupling section and the first collimation section, the second is between
the second decoupling station and the bunch compressor, and the third is between the bunch
compressor and the linac. Each of these stations contains 4 laser wire scanners embedded in
a FODO lattice with 45◦ betatron phase; each station can therefore measure the projected x
and y emittances of the beam. The first station can be used to tune the Arc dispersion and
the skew quads in the first decoupler; the second station can be used to tune the Turnaround
dispersion and the skew quads in the second decoupler; the third station can be used to tune
the dispersion correction in the Bunch Compressor wigglers. Although none of the systems
have the capability to directly measure normal-mode emittances and coupling parameters,
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the optics of the first two stations are compatible with a later upgrade if needed.

Beam Position Monitors: There are cavity-type beam position monitors (BPMs) with
horizontal and vertical readout at each quadrupole, with additional units close to the laser
wires, at high-dispersion regions in the Bunch Compressor wigglers, and at other critical
locations. The BPMs in the room-temperature sections of the RTML almost all operate in
the 6 GHz frequency band (“C-band”), while the BPMs in the cryomodules and at a handful
of other locations use the 1 GHz frequency band (“L-band”). At the nominal bunch charge
of 3.2 nC, these BPMs can achieve sub-micron single-bunch resolution. The standard RTML
BPM requires high precision and stability of the BPM’s offset with respect to the device’s
mechanical center; a few of the BPMs have other requirements, such as high bandwidth or
low latency.

Longitudinal Diagnostics: Each stage of the Bunch Compressor contains arrival-time
(phase) monitors, beam position monitors at dispersive locations, X-ray synchrotron light
monitors, and two types of bunch length monitors (a passive device based on measuring
the RF spectrum of the bunch, and an active device based on transverse deflecting cavities
[51]). The active bunch length monitor can also measure the correlation between energy and
longitudinal position within a bunch.

Feedback and Feed-Forward: The RTML is not expected to require any intra-train
trajectory feedback systems, although there will be a number of train-to-train (5 Hz) trajec-
tory feedbacks. In addition, the beam energy at BC1 and BC2 will be controlled by a 5 Hz
feedback, as will the electron-positron path length difference through their respective bunch
compressors (see 2.5.4). There is also a trajectory feed-forward that uses BPMs at the end
of the Return line to make bunch-by-bunch orbit measurements, which are fed forward to a
set of fast correctors downstream of the Turnaround. The speed-of-light travel time between
these two points is about 600 nanoseconds, and the actual distance between them is on the
order of a few tens of meters; the resulting delay of the beam relative to the propagated signal
is more than adequate for a digital low-latency orbit correction system [52].

Intermediate Extraction Points: There are 3 locations where the beam in the RTML
may be directed to a beam dump: downstream of the first collimation section, downstream
of BC1, and downstream of BC2. At each of these locations, there are both pulsed kickers
and pulsed bends for beam extraction. The kickers are used when an intra-train extraction
is required, for example during a machine protection fault, while the bends are used to send
entire trains to their beam dumps. The pulsed bends can also be energized by DC power
supplies if a long period of continual dump running is foreseen. All 3 dumps are capable of
absorbing 220 kW of beam power. This implies that the first 2 dumps, which are at 5 GeV,
can absorb the full beam power, while the third dump, at 15 GeV, can absorb only about
1/3 of the nominal beam power. Full trains can be run to this dump at reduced repetition
rate, or short trains at full rate.

Access Segmentation: During personnel access to the main linac or downstream RTML
beam tunnels, the beam can be sent to the first RTML dump. For additional safety, the bend
magnets in the Escalator are switched off and additional personnel protection stoppers are
inserted into the beamline. This allows the damping ring complex, the Arc dispersion tuning,
the first decoupler, and the first emittance measurement station to be used at full beam power
during linac access.
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2.5.4 Accelerator Physics Issues

A number of beam dynamics issues were considered in the design and specifications of the
RTML.

Incoherent (ISR) and Coherent (CSR) Synchrotron Radiation: Current esti-
mates indicate that the horizontal emittance growth from ISR will be around 90 nm (1.1%)
in the Arc, 380 nm (4.8%) in the Turnaround, and 430 nm (5.4%) in the Bunch Compressor in
its nominal configuration. Vertical emittance growth from ISR in the Escalator is negligible.

Studies of the ILC Bunch Compressor indicate that there are no important effects of
coherent synchrotron radiation, primarily because the longitudinal emittance of the beam
extracted from the damping ring is so large [53].

Stray Fields: Studies have found that fields at the level of 2.0 nTesla will lead to beam
jitter at the level of 0.2 σy [54]. This is considered acceptable since the orbit feed-forward will
correct most of this beam motion. Measurements at existing laboratories [55] indicate that
2 nTesla is a reasonable estimate for the stray field magnitude in the ILC. Emittance growth
considerations also place limits on the acceptable stray fields, but these are significantly
higher.

Beam-Ion Instabilities: Because of its length and its weak focusing, the electron Return
line will have potential issues with ion instabilities. To limit these to acceptable levels, the
base pressure in the Return line must be limited to 20 nTorr [56].

Static Misalignments: The main issues for emittance growth are: betatron coupling
introduced by the Spin Rotator or by rotated quads; dispersion introduced by rotated bends,
rotated quads in dispersive regions, or misaligned components; wakefields from misaligned
RF cavities; and time-varying transverse kicks from pitched RF cavities.

Studies of emittance growth and control in the region from the start of the Turnaround to
the end of the second emittance region have shown that a combination of beam steering, global
dispersion correction, and global decoupling can reduce emittance growth from magnetostatic
sources to negligible levels, subject to the resolution limits of the measurements performed by
the laser wires [57, 58]. Although the upstream RTML is much longer than the downstream
RTML, its focusing is relatively weak and as a result its alignment tolerances are actually
looser. Studies have shown that the same tuning techniques can be used in the upstream
RTML with the desired effectiveness [59]. The tolerances for RF cavity misalignment in
the RTML are large (0.5 mm RMS would be acceptable) because the number of cavities
is small and the wakefields are relatively weak [60]. Although in principle the RF pitch
effect is difficult to manage, in practice it leads to a position-energy correlation which can be
addressed by the Bunch Compressor global dispersion correction [61]. A full and complete
set of tuning simulations have not yet been performed, but it is expected that the baseline
design for the RTML can satisfy the emittance preservation requirements.

Phase Jitter: Phase and amplitude errors in the bunch compressor RF will lead to
energy and timing jitter at the IP, the latter directly resulting in a loss of luminosity. Table
2.5-3 shows the RMS tolerances required to limit the integrated luminosity loss to 2%, and
to limit growth in IP energy spread to 10% of the nominal energy spread [62]. The tightest
tolerance which influences the arrival time is the relative phase of the RF systems on the two
sides: in the nominal configuration, a phase jitter of the electron and positron RF systems of
0.24◦ RMS, relative to a common master oscillator, results in 2% luminosity loss. The tight
tolerances will be met through a three-level system:

• Over short time scales, such as 1 second, the low-level RF system will be required to
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TABLE 2.5-3
Key tolerances for the two-stage bunch compressor.

Parameter Arrival Time Tolerance Energy Spread Tolerance

Correlated BC phase errors 0.24◦ 0.35◦

Uncorrelated BC phase errors 0.48◦ 0.59◦

Correlated BC amplitude errors 0.5% 1.8%

Uncorrelated BC amplitude errors 1.6% 2.8%

keep the two RF systems phase-locked to the level of 0.24 degrees of 1.3 GHz. See
Section 3.9 for a fuller description of the low-level RF system.

• Over longer time periods, the arrival times of the two beams will be directly measured
at the IP and a feedback loop will adjust the low-level RF system to synchronize the
beams. This system is required to compensate for drifts in the low-level RF phase-
locking system which occur over time scales long compared to a second.
• Over a period of many minutes to a few hours, the arrival time of one beam will be

“dithered” with respect to the arrival time of the other beam, and the relative offset
which maximizes the luminosity will be determined. This offset will be used as a new
set-point for the IP arrival-time feedback loop, and serve to eliminate drifts which arise
over time scales long compared to a minute.

Halo Formation from Scattering: Halo formation is dominated by Coulomb scattering
from the nuclei of residual gas atoms, and it is estimated that 100 nTorr base pressure in the
downstream RTML will cause approximately 9 × 10−7 of the beam population to enter the
halo [63]. A similar calculation was performed for the upstream RTML, which indicates that
20 nTorr base pressure will cause approximately 2 × 10−6 of the beam population to enter
the halo. This is well below the budget of 10−5 which has been set for all beamlines between
the damping ring and the BDS collimators (see 2.7.3.2.2).

Space Charge: In the long, low-energy, low-emittance transfer line from the damping
ring to the bunch compressor, the incoherent space-charge tune shift will be on the order of
0.15 in the vertical. The implications of such large values in a single-pass beamline have not
been studied.

Collimator Wakefields: Assuming collimation of the beam extracted from the damping
ring at 10σx, 60σy, and ±1.5% (10σδ) in momentum, the worst-case jitter amplification for
untapered, “razor-blade” spoilers is expected to be around 10% in x, around 75% in y, and
the contribution to x jitter from energy jitter is expected to be negligible [64, 65]. The
vertical jitter amplification figure is marginal, but can be substantially improved through use
of spoilers with modest longitudinal tapers. The other collimator wakefield “figures of merit”
are acceptable even assuming untapered spoilers.

2.5.5 Accelerator Components

Table 2.5-4 shows the total number of components of each type in each RTML. The number
of quadrupoles, dipole correctors, and BPMs is larger in the electron RTML than in the
positron RTML due to the longer electron Return line; for these 3 component classes, the
different totals for each side are shown in Table 2.5-4. Each quadrupole and dipole has
its own power supply, while other magnets are generally powered in series with one power
supply supporting many magnets. The cost estimate for the S-band dipole-mode structures
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was developed by the RTML Area Systems group based on recent experience with accelerator
structure construction at IHEP; all other component cost estimates were developed by the
ILC Technical and Global Systems groups.

TABLE 2.5-4
Total number of components in each RTML. Where 2 totals are shown, the larger number refers to the
longer electron-side RTML, the smaller number refers to the shorter positron-side RTML.

Magnets Instrumentation RF

Bends 362 BPMs 772/740 1.3 GHz cavities 414

Quads 789/752 Wires 12 1.3 GHz cryomodules 48

Dipoles 1185/1137 BLMs 2 1.3 GHz sources 16 + 1

Kickers 17 OTRs 5 S-band structures 2

Septa 7 Phase monitors 3 S-band sources 2

Rasters 6 Xray SLMs 2

Solenoids 4

Table 2.5-5 shows the system lengths for the RTML beamlines.

TABLE 2.5-5
System lengths for each RTML beamline. Where 2 values are shown, the larger number refers to the longer
electron-side RTML, the smaller number refers to the shorter positron-side RTML.

Upstream RTML Turn Spin Emit BC Dumplines

15,447 m / 14,247 m 275 m 82 m 47 m 1,105 m 180 m

Total 17,136 m / 15,936 m

Total, excluding extraction lines 16,956 m / 15,756 m

Footprint length 1,301 m

2.5.5.1 Vacuum Systems

The base pressure requirement for the downstream RTML is set by limiting the generation
of beam halo to tolerable levels, while in the upstream RTML it is set by the necessity of
avoiding beam-ion instabilities. As described in 2.5.4, the base pressure requirement for
the downstream RTML is 100 nTorr, while in the upstream RTML it is 20 nTorr. Both
upstream and downstream RTML vacuum systems will be stainless steel with 2 cm OD; the
upstream RTML vacuum system will be installed with heaters to allow in situ baking, while
the downstream RTML vacuum system will not. The bending sections of the turnaround
and bunch compressors are not expected to need photon stops or other sophisticated vacuum
systems, as the average beam current is low, and the fractional power loss of the beam in the
bending regions is already small to limit emittance growth from ISR.

2.5.5.2 Service Tunnel

There is a service tunnel that runs parallel to the beam tunnel for the full length of the
RTML and is shared with other systems. All of the power supplies, RF sources, and rack-
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mounted instrumentation and controls equipment and computers are installed in the service
tunnel This configuration allows repairs and maintenance to be performed while minimizing
disruption to the accelerator itself.
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2.6 MAIN LINACS

2.6.1 Overview

The two main linacs accelerate the electron and positron beams from their injected energy
of 15 GeV to the final beam energy of 250 GeV over a combined length of 23 km. This
must be accomplished while preserving the small bunch emittances, which requires precise
orbit control based on data from high resolution beam position monitors. The linacs utilize
L-band (1.3 GHz) superconducting technology, with nine-cell standing-wave niobium cavities
operating at an average gradient of 31.5 MV/m in a 2K superfluid helium bath. The choice of
operating frequency is a balance between the high cavity cost due to size at lower frequency
and the lower sustainable gradient due to increased surface resistivity at higher frequency.
The accelerator gradient is somewhat higher than that typically achievable today and assumes
that further progress will be made during the next few years in the aggressive program that
is being pursued to improve cavity performance.

2.6.2 Beam Parameters

Table 2.6-1 lists the key beam parameters in the main linac. A description of the tradeoffs
which led to the selection of the parameters can be found in Section 2.1.

TABLE 2.6-1
Nominal beam parameters in the ILC Main Linacs.

Parameter Value Units Parameter Value Units

Initial beam energy 15 GeV Initial γεx 8.4 µm

Final beam energy 250 GeV Final γεx 9.4 µm

Particles per Bunch 2× 1010 Initial γεy 24 nm

Beam current 9.0 mA Final γεy 34 nm

Bunch spacing 369 ns σz 0.3 mm

Bunch train length 969 µs Initial σE/E 1.5 %

Number of bunches 2625 Final σE/E (e−,e+) 0.14,0.10 %

Pulse repetition rate 5 Hz Beam phase wrt RF crest 5 ◦

The rms bunch length remains constant along the linacs, while the bunch fractional energy
spread decreases roughly as E0/E, where E is the beam energy and E0 is the initial main
linac beam energy. The bunches are phased 5◦ off-crest to minimize their energy spread.
No BNS energy spread is included to suppress resonant head-to-tail bunch trajectory growth
as the short-range wakefield is fairly weak. For this same reason, the focusing strength of
the quadrupole lattice in the linacs is kept fairly weak to reduce emittance growth from
quadrupole misalignments.
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2.6.3 System Description

2.6.3.1 RF Unit

The main linacs are composed of RF units whose layout is illustrated in Figure 2.6-1 and
whose parameters are listed in Table 2.6-2. Each unit has a stand-alone RF source that powers
three contiguous cryomodules containing a total of 26 cavities (with 9, 8 and 9 cavities in
each cryomodule, respectively). The RF source includes a high-voltage modulator, a 10
MW klystron and a waveguide system that distributes the RF power to the cavities. It also
includes the low-level RF (LLRF) system to regulate the cavity field levels, interlock systems
to protect the source components, and the power supplies and support electronics associated
with the operation of the source. To facilitate maintenance and limit radiation exposure,
the RF source is housed mainly in a separate service tunnel that runs parallel to the beam
tunnel.

TUNNEL 
PENETRATION

KLYSTRON
(10 MW, 1.6 ms)

37.956 m

quadQUAD

MODULATOR
(120 kV, 130 A)

9 CAVITIES

TAP-OFFS

3 CRYOMODULES

LLRF

9 CAVITIES4 CAVITIES 4 CAVITIES

WAVEGUIDE 
DISTRIBUTION 
SYSTEM

FIGURE 2.6-1. RF unit layout.

The modulator is a conventional pulse-transformer type with a bouncer circuit to com-
pensate the voltage droop that occurs in the main storage capacitor during the pulse. The
modulator produces 120 kV, 130 A, 1.6 ms, 5 Hz pulses with an efficiency of 83%, including
the charging supply and rise time losses. These high voltage pulses power a multi-beam
klystron (MBK) that amplifies ∼ 100 W, 1.6 ms RF pulses from the LLRF system up to
10 MW. This klystron has higher power and improved efficiency (65% goal) relative to com-
mercial 5 MW tubes (40-45%). Two waveguides transport the power from the dual MBK
outputs through a penetration to the beam tunnel where the power in each waveguide is then
split to feed half of the middle cryomodule and one end cryomodule (see Figure 2.6-1).

The distribution system is composed primarily of aluminum WR650 (6.50” x 3.25”) waveg-
uide components. For long runs, WR770 is substituted to minimize distribution losses, es-
timated to be 7%, including 2% in the circulators. Along each cryomodule, RF power is
equally distributed among the cavities through a series of hybrid-style 4-port tap-offs, each
with appropriate fractional coupling (e.g. 1/9, 1/8, ...1/2). Between each tap-off output and
its associated cavity power coupler, there are a bend, a semi-flexible section, a circulator,
a three-stub tuner, and a diagnostic directional coupler. The three-stub tuner allows fine
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TABLE 2.6-2
RF unit parameters.

Parameter Value Units

Modulator overall efficiency 82.8 %

Maximum klyston output power 10 MW

Klystron efficiency 65 %

RF distribution system power loss 7 %

Number of cavities 26

Effective cavity length 1.038 m

Nominal gradient with 22% tuning overhead 31.5 MV/m

Power limited gradient with 16% tuning overhead 33.0 MV/m

RF pulse power per cavity 293.7 kW

RF pulse length 1.565 ms

Average RF power to 26 cavities 59.8 kW

Average power transferred to beam 36.9 kW

adjustment of cavity phase and can be used to adjust the cavity Qext, although this is mainly
adjusted via motor control of the position of the inner conductor in the cavity power coupler.
The circulator, with a load on its third port, absorbs the RF power reflected from the cavities
during filling and discharge, and so provides protection to the klystron and isolation between
cavities.

The cryomodule design is a modification of the Type-3 version developed and used at
DESY (see Figure 2.6-2). Within the cryomodules, a 300 mm diameter He gas return pipe
serves as a strongback to support the cavities and other beam line components. Invar rods are
used to maintain the spacing between the components when the cryomodule cools down, which
requires roller-type support fixtures. The gas return pipe itself is supported at three locations
off of the top of the outer vacuum vessel, with only the center support fixed. The middle
cryomodule in each RF unit contains eight cavities, rather than nine, to accommodate a quad
package that includes a superconducting quadrupole magnet at the center, a cavity BPM, and
superconducting horizontal and vertical corrector magnets. All cryomodules, whether with
or without the quad package, are 12.652 m long so the active length to actual length ratio
in a 9-cavity cryomodule is 73.8%. Each also contains a 300 mm long HOM beam absorber
assembly that removes energy through the 40-80K cooling system from beam-induced higher
order modes above the cavity cutoff frequency.

The cavities illustrated in Figure 2.6-2 are “dressed” in that the cells are enclosed in a
titanium vessel containing the liquid helium, a tuner system is mounted around the center to
control the cavity length, and a coaxial power coupler (not shown) connects the cavity to the
external waveguide feed. The cavity spacing within the cryomodules is 5 3/4 λ0 = 1.326 m,
which facilitates powering the cavities in pairs via 3 db hybrids as an alternate distribution
scheme that eliminates or reduces the number of circulators. However, the spacing would not
be significantly reduced otherwise due to the required length of bellows between cavities and
space for flange accessibility.

To operate the cavities at 2K, they are immersed in a saturated He II bath, and helium gas-
cooled shields intercept thermal radiation and thermal conduction at 5–8 K and at 40–80 K.
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support post

helium vessel (quadrupole )

gas return pipe

vacuum vessel cavity cutaway

FIGURE 2.6-2. Side view of a cryomodule with a quadrupole magnet in the center. The figure has been
compressed as indicated by the two white gaps, so not all eight cavities are shown.

The estimated cryogenic heat loads per RF unit are listed in Table 2.6-3, and were obtained by
scaling the TESLA TDR estimates. Also, for each of the three cooling systems, the associated
cryoplant power is listed for both the static and dynamic contributions from an RF unit and
associated transfer line and distribution components, including a 50% overcapacity factor.
The dynamic 2 K heat loss, attributable mainly to the RF and beam HOM losses in the
cavities, constitutes about half the total installed power.

TABLE 2.6-3
RF unit cryogenic heat loads and installed AC cryogenic plant power to remove the heat.

40–80 K 5–8 K 2 K Total

Static Dynamic Static Dynamic Static Dynamic

Heat load (W) 177.6 270.3 31.7 12.5 5.1 29.0

Installed power (kW) 4.4 6.2 9.6 3.5 8.1 28.5 60.4

2.6.3.2 Linac Layout

The Main Linac components are housed in two tunnels, each of which has an interior diameter
of 4.5 meters. The tunnels are separated from one another by 5.0 m to 7.5 m depending on
the geology at the ILC site. As illustrated in Figure 2.6-3, the cryomodules occupy the beam
tunnel while most of the RF system, including modulators, klystrons, power supplies, and
instrumentation racks, are located in the service tunnel. This arrangement permits access
to the equipment in the service tunnel for maintenance, repair, or replacement during beam
operation and limits radiation exposure to most of the electronics (except motors in or near
the cryomodules). The two tunnels are connected by three penetrations along each RF unit:
one for the waveguide, one for signal cables, and one for power and high voltage cables.
Personnel access points between the two tunnels are located at roughly 500 meter intervals.
Rather than being “laser straight”, the tunnels are curved in the vertical plane, with a radius
of curvature slightly smaller than that of the Earth. This allows the beam delivery system
to lie in a plane at the center of the site, while the cryomodules nearly follow a gravitational
equipotential to simplify distribution of cryogenic fluids.

The positron linac contains 278 RF units, and the electron linac has 282 RF units; the
four additional RF units are needed to compensate for the beam energy lost in the undulator
that is used to generate gamma rays for positron production. The positron system section
within the electron linac is 1,257 m long and is located near the 150 GeV point (see Section
2.3). Coasting sections, about 400 m long, are included at the end of the linacs so that
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Accelerator Tunnel

Service Tunnel

Penetrations

FIGURE 2.6-3. Cutaway view of the linac dual-tunnel configuration.

additional RF units can be installed as an upgrade to provide up to 3.5% energy overhead
during 500 GeV CM operation. No additional tunnel is included for a future upgrade to
higher energies, although the site is sized to allow expansion for 1 TeV CM operation.

The tunnels in the present sample sites are 100-150 meters underground and are connected
to the surface through vertical shafts. Each of the main linacs includes three shafts, roughly
5 km apart as dictated by the cryogenic system. The upstream shafts in each linac have
diameters of 14 m to accommodate lowering cryomodules horizontally, and the downstream
shaft in each linac is 9 m in diameter, which is the minimum size required to accommodate
tunnel boring machines. At the base of each shaft is a 14,100 cubic meter cavern for staging
installation and housing utilities and parts of the cryoplant, most of which are located on the
surface.

The layout of the RF units in the main linac is not uniform, but includes an additional
2.5 m long “end box” after every 4 RF units that terminates the 2K He distribution to the
upstream cavities and restarts it from the main 2K feed line for the downstream cavities. The
linac section from one such end box to the next is called a “cryo string.” In a few locations,
cryo-strings of three RF units are used instead of four RF units. Cryo-strings are arranged
in groups of 10 to 16 to form a cryogenic unit which is supported by a single cryoplant. Each
cryogenic unit also includes 2.5 m long “service boxes” on each end (one service box replaces
a cryo-string end box), and is separated from the next cryogenic unit by a 7.7 m warm section
that includes vacuum system components and a laser wire to measure beam size. Accounting
for these additional sections and the quad package length, the active to actual length ratio
in the linacs is 69.7% (excluding the undulator section and the coasting section at the end of
each linac). Table 2.6-4 summarizes the linac component lengths and numbers.

There are five, 4 MW-size cryoplants in each linac that also provide cooling for the RTML
and undulator region. The total cryogenic capacity of the ILC linacs is comparable to that of
the LHC. The plants are paired at each linac shaft, one feeding downstream cryomodules and
the other upstream cryomodules, except for the downstream most shaft, where there is only
one plant that feeds upstream cryomodules. The plants are sized with a 40% overcapacity to
account for degradation of plant performance, variation in cooling water temperature, and
operational overhead.

Conventional water cooling towers are also located on the site surface near each linac
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TABLE 2.6-4
Subdivision lengths and numbers in the two main linacs. Total linac lengths exclude the length of the
positron production insertion and the coasting length at the end of each linac.

Subdivision Length (m) Number

Cavities (9 cells + ends) 1.326 14,560

Cryomodule (9 cavities or 8 cavities + quad) 12.652 1,680

RF unit (3 cryomodules) 37.956 560

Cryo-string of 4 RF units (3 RF units) 154.3 (116.4) 71 (6)

Cryogenic unit with 10 to 16 strings 1,546 to 2,472 10

Electron (positron) linac 10,917 (10,770) 1 (1)

shaft. Through various distribution loops, they provide 35◦C process water that removes
most of the heat generated by the RF system, and 8◦C chilled water for heat exchangers that
maintain the tunnel air temperature at 29◦C and cool electronics racks via closed, circulated-
air systems. In each RF unit, roughly 10 kW of heat are dissipated in the racks, and another
10 kW are dissipated into the air from convection off of the RF source components.

The electrical requirements of the main linac are supplied by two high-voltage cable
systems. One of the systems supports the conventional services, while the other supports
the RF system. Table 2.6-5 summarizes the combined power consumption of the two main
linacs. Of this power, 20.5 MW is transferred to the beams, for a net efficiency of 13.7%.

TABLE 2.6-5
AC power consumption of the two main linacs.

System AC Power (MW)

Modulators 81.4

Other RF system and controls 8.4

Conventional facilities 25.7

Cryogenic 33.8

Total 149.3

2.6.4 Accelerator Physics Issues

2.6.4.1 Optics

The main linac lattice uses a weak focusing FODO optics, with a quad spacing of 37.956 m,
corresponding to one quad per RF unit. Each quadrupole magnet is accompanied by horizon-
tal and vertical dipole correctors and a cavity BPM which operates at 1.3 GHz. Because of
the aperiodicity conditions imposed by the cryogenic system, the lattice functions are not per-
fectly regular. The mean phase advance per cell is 75◦ in the horizontal plane and 60◦ in the
vertical plane. The vertical curvature is provided by the vertical correctors at the quadrupole
locations, rather than by dedicated bend magnets. Dispersion matching and suppression
at the beginning and end of the linac and around the undulator insertion are achieved by
supplying additional excitation to small numbers of correctors in “dispersion-bump” configu-
rations. Figure 2.6-4 shows the optical functions of the electron linac, including the undulator
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insertion. The functions for the positron main linac are basically the same except that the
undulator insertion is not present.
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FIGURE 2.6-4. Beam optics functions for the electron main linac. The discontinuity of the pattern around
s∼ 8 km represents the undulator section for positron production.

2.6.4.2 Beam Dynamics

A key requirement of the main linacs is that they preserves the small emittances which are
produced in the damping rings and transported through the RTMLs. This is particularly
true for the vertical emittance, which is smaller than the horizontal emittance by a factor
of 400. The main obstacles to emittance preservation in the linacs are transverse wakefields,
betatron coupling, and dispersion.

The short-range transverse wakefields in the ILC cavities are quite weak compared to the
wakefields typically associated with higher-frequency RF cavities. Alignment tolerances for
cavities and cryomodules in the range of 200-300 µm RMS are expected to yield emittance
growth on the order of 2 nm (10%) in the vertical plane. It is possible that even this small
amount of emittance dilution can be corrected by the use of “wake bumps” (local orbit
distortions which excite wakefields but not other aberrations).

The long-range wakefields in the ILC cavities are potentially more harmful given the high
Q values typical in superconducting cavities. These wakefields are mitigated through HOM
damping ports on the cavities, additional HOM absorbers in each RF unit at the location
of the quadrupole magnet package, and detuning of the HOM’s at the level of 10−3. The
combination of damping and detuning reduces the multi-bunch emittance growth to 0.3 nm
(1.5%).
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Azimuthal deformations to the cavities from construction errors or from the placement of
the HOM and fundamental mode ports can cause the HOM’s to develop diagonal polarizations
instead of horizontal and vertical polarizations. Diagonally-polarized (or “mode-rotation”)
HOM’s can couple beam jitter from the horizontal to the vertical, resulting in unacceptable
vertical emittance dilution. This is mitigated in the main linacs by making the horizontal
and vertical betatron tunes highly unequal. Setting the horizontal phase advance per cell to
75◦ and the vertical to 60◦ limits emittance growth from this effect to 0.4 nm (2%).

Betatron coupling between the relatively large horizontal mode and the relatively small
vertical mode is driven by unwanted rotations of the main linac quadrupole magnets. By
limiting the rms rotations of the quads to 0.3 mrad, the resulting emittance growth can be
limited to 2 nm (10%). Most of this emittance growth can be globally corrected by the
decoupler at the start of the beam delivery section (see Section 2.7.3.1.2), subject to the
resolution limits of the laser wire profile monitors in the BDS.

Dispersion in the main linac is created by misaligned quadrupole magnets and pitched RF
cavities. Emittance growth from this effect is mainly corrected through local or quasi-local
steering algorithms such as Ballistic Alignment (BA), Kick Minimization (KM), or Dispersion
Free Steering (DFS), with additional correction achieved through local orbit distortions which
produce measured amounts of dispersion in a given phase (“dispersion bumps”). Simulations
indicate that emittance growth from dispersion can be limited to about 5 nm (25%) through
combinations of these techniques.

The principal main linac beam diagnostic is the suite of beam position monitors: a BPM
with horizontal and vertical readout and sub-micron single-bunch resolution is located adja-
cent to each quadrupole magnet. For beam size monitoring, a single laser wire is located in
each of the warm sections between main linac cryogenics units (about every 2.5 km). Up-
stream quadrupole magnets are varied to make local measurements of the beam emittances.

The main linacs do not contain any equipment for intra-train trajectory control. Such
trajectory control is implemented only in the warm regions upstream and downstream of the
main linacs and in the undulator section. There are no diagnostics for measuring energy or
energy spread in the main linacs. These measurements are made upstream and downstream
of the main linacs and in the undulator section. There are no beam abort systems in the
main linacs. Machine protection in the linac is ensured by verifying the state of the main
linac hardware (both RF and magnets) prior to beam extraction from the RTML, and by
verifying that the orbit in each damping ring is correct. The limiting aperture along the main
linacs is the 70 mm diameter cavity iris.

2.6.4.3 Operation

Within each RF unit, a low level RF (LLRF) system monitors the vector sum of the fields
in the 26 cavities. It makes adjustments to flatten the energy gain along the bunch train
and keeps the beam-to-rf phase constant. It compensates for perturbations including cavity
frequency variations (e.g. due to microphonics and residual Lorentz force detuning after
feed-forward piezo-electric controller compensation), inter-pulse beam current variations, and
non-flatness of the klystron pulse. In addition to the phase and amplitude of the klystron,
this system has remote control over individual cavity phases (through the RF distribution
system), external quality factors Qext (through the moveable coupler center conductor), and
resonant frequencies (through slow and faster tuners).

The cavities are qualified at 35 MV/m or greater during initial testing (i.e. so-called
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“vertical” tests) prior to installation in cryomodules. This should allow them to run at
31.5 MV/m on average, installed, although the variation of sustainable gradients may be
significant according to current data. Some cryomodule gradient variation within an rf unit
can be accommodated by one-time adjustments in the main feed line power splitters and the
in-line attenuators in each of the two feed lines.

For 500 GeV operation, there is no energy overhead if the average sustainable cavity
gradient is the design value of 31.5 MV/m. With failed RF units, the ILC can only reach
500 GeV if the cavities achieve a higher average gradient (power limited to 33 MeV/m) or
if additional RF units are eventually installed in the reserved drift region at the end of the
linacs. The beam energy is coarsely adjusted by turning on or off RF units, each of which
contributes about 0.3% of the beam energy, and finely adjusted by cross-phasing RF units
near the end of the linacs.

2.6.5 Accelerator Components

2.6.5.1 Cavities and Cryomodules

The 1.3 GHz superconducting accelerating cavity is the fundamental building block of the
ILC main linacs. Its parameters are listed in Table 2.6-6. A partially “dressed” cavity for
installation in a cryomodule is shown Figure 2.6-5, together with the power coupler schematic.
Each cavity is qualified for installation in the main linac in a vertical test stand; cavities which
can sustain a gradient in excess of 35 MV/m with a Q value in excess of 0.8× 1010 are then
installed in cryomodules for use in the main linac. More information on the construction and
testing of cavities can be found in Section 3.6.

FIGURE 2.6-5. Left: A partially dressed cavity including the helium vessel, 2K He feed line and frequency
tuners. Two HOM couplers and an RF pickup (not visible) are located near the ends of the cavity. Right:
Schematic of the coaxial power coupler that attaches to the off-axis port shown in the left figure.

2.6.5.2 Quad Package

In addition to cavities, the center cryomodule in each RF unit contains a 1.2 m long quad
package that includes a quadrupole magnet, combined horizontal and vertical corrector mag-
nets, and a cavity beam position monitor. At the low-energy end of the linac the quadrupoles
and correctors are superferric types, while cos(2θ) and cos(θ) superconducting magnets are
used at the high-energy end of the linac. The maximum gradient required in the quadrupoles
at the high energy end of each linac is 60 T/m, while the maximum dipole integrated strength
required is about 0.05 T-m. The beam position monitor is an L-band design capable of mea-
suring horizontal and vertical positions with 1 micrometer resolution for a single bunch at
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TABLE 2.6-6
Cavity Parameters.

Parameter Value Units

Type 9 cell, π-mode

R/Q of fundamental mode 1036 Ω

Iris diameter 70 mm

Cell-to-cell coupling 1.9 %

Average Q0 1.0× 1010

Average Qext 3.5× 106

Fill time 596 µs

Cavity resonance width 370 Hz

full charge. All of the elements in the quad package have an aperture which is larger than
the 70 mm aperture of the superconducting cavities.

2.6.5.3 Vacuum System

There are three independent vacuum systems along the accelerator: the beamline system that
includes the volume in the cavities and other beamline components, the coupler system that
includes the volume between the two windows in each coupler, and the insulation system that
includes the volume within the cryomodule vacuum vessel. The beamline system runs the
length of the linacs and includes slow valves with second-scale response times in each 154 m
cryo-string plus fast valves with ms-scale responses in the warm sections between cryogenic
units. In the event of a major vent, these systems will limit the length of linac which is
exposed to air to one or two cryo strings. Finally, the coupler vacuum system is segmented
by cryomodule, and all couplers therein are pumped in common. With this system, a leak in
one of the cold windows is fairly benign.

2.6.5.4 Beamline Components

Table 2.6-7 lists the basic beamline components and the total number of each contained in
the two main linacs, excluding those in the positron production undulator region.

TABLE 2.6-7
Main Linac Beamline Components.

Component Number (total)

Cavities 14,560

SC quadrupole magnets 560

X-correctors 560

Y-correctors 560

SRF BPMs 560

Laser wire scanners 7
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2.7 BEAM DELIVERY SYSTEMS

2.7.1 Overview

The ILC Beam Delivery System (BDS) is responsible for transporting the e+/e− beams
from the exit of the high energy linacs, focusing them to the sizes required to meet the ILC
luminosity goals (σ∗x = 639 nm, σ∗y = 5.7 nm in the nominal parameters), bringing them into
collision, and then transporting the spent beams to the main beam dumps. In addition, the
BDS must perform several critical functions:

• measure the linac beam and match it into the final focus;

• protect the beamline and detector against mis-steered beams from the main linacs;

• remove any large amplitude particles (beam-halo) from the linac to minimize back-
ground in the detectors;

• measure and monitor the key physics parameters such as energy and polarization before
and after the collisions;

The BDS must provide sufficient instrumentation, diagnostics and feedback systems to achieve
these goals.

2.7.2 Beam Parameters

Table 2.7-1 shows the key BDS parameters. The IP beam parameters are shown for the
nominal parameter set at 500 GeV CM.
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FIGURE 2.7-1. BDS layout, beam and service tunnels (shown in magenta and green), shafts, experimental
hall.
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2.7.3 System Description

The main subsystems of the beam delivery starting from the exit of the main linacs are
the diagnostics region, the fast extraction and tuneup beamline, the betatron and energy
collimation, the final focus, the interaction region and the extraction line. The layout of the
beam delivery system is shown in Figures 2.7-1 and 2.7-2. The BDS is designed for 500 GeV
center of mass but can be upgraded to 1 TeV with additional magnets.

TABLE 2.7-1
Key parameters of the BDS. The range of L∗, the distance from the final quadrupole to the IP, corresponds
to values considered for the existing detector concepts.

Parameter Units Value

Length (linac exit to IP distance)/side m 2226

Length of main (tune-up) extraction line m 300 (467)

Max Energy/beam (with more magnets) GeV 250 (500)

Distance from IP to first quad, L* m 3.5-(4.5)

Crossing angle at the IP mrad 14

Nominal beam size at IP, σ∗, x/y nm 639/5.7

Nominal beam divergence at IP, θ∗, x/y µrad 32/14

Nominal beta-function at IP, β∗, x/y mm 20/0.4

Nominal bunch length, σz µm 300

Nominal disruption parameters, x/y 0.17/19.4

Nominal bunch population, N 2× 1010

Beam power in each beam MW 10.8

Preferred entrance train to train jitter σy < 0.5

Preferred entrance bunch to bunch jitter σy < 0.1

Typical nominal collimation aperture, x/y 8–10/60

Vacuum pressure level, near/far from IP nTorr 1/50

There is a single collision point with a 14 mrad crossing angle. To support future energy
upgrades, the beam delivery systems are in line with the linacs and the linacs are also oriented
at a 14 mrad angle. The 14 mrad geometry provides space for separate extraction lines and
requires crab cavities to rotate the bunches horizontally for head-on collisions. There are
two detectors in a common IR hall which alternately occupy the single collision point, in a
so-called “push-pull” configuration. The detectors are pre-assembled on the surface and then
lowered into the IR hall in large subsections once the hall is ready for occupancy.

2.7.3.1 Diagnostics, Tune-up dump, Machine Protection

The initial part of the BDS, from the end of the main linac to the start of the collimation
system (known for historical reasons as the Beam Switch Yard or “BSY”), is responsible for
measuring and correcting the properties of the beam before it enters the Collimation and
Final Focus systems. In addition, errant beams must be detected here and safely extracted
in order to protect the downstream systems. Starting at the exit of the main linac, the system
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includes the MPS collimation system, skew correction section, emittance diagnostic section,
polarimeter with energy diagnostics, fast extraction/tuning system and beta matching sec-
tion.
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FIGURE 2.7-2. BDS layout showing functional subsystems, starting from the linac exit; X – horizontal
position of elements, Z – distance measured from the IP.

2.7.3.1.1 MPS collimation At the exit of the main linac is a short 90◦ FODO lattice,
composed of large bore quadrupoles, which contains a set of sacrificial collimators of decreas-
ing aperture. The purpose of this system is to protect the 12 mm aperture BDS from any
beam which develops an extremely large trajectory in the 7 cm aperture main linac (the
effective aperture is R/β1/2, which is 3–4 times smaller in the BDS than in the linac). This
section also contains kickers and cavity BPMs for inter- and intra-train trajectory feedback.

2.7.3.1.2 Skew Correction The skew correction section contains 4 orthonormal skew
quadrupoles which provide complete and independent control of the 4 betatron coupling
parameters. This scheme allows correction of any arbitrary linearized coupled beam.

2.7.3.1.3 Emittance Diagnostics The emittance diagnostic section contains 4 laser
wires which are capable of measuring horizontal and vertical RMS beam sizes down to 1 µm.
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The wire scanners are separated by 45◦ in betatron phase to allow a complete measurement
of 2D transverse phase space and determination of the projected horizontal and vertical
emittances.

2.7.3.1.4 Polarimeter and Energy Diagnostics Following the emittance diagnostic sec-
tion is a magnetic chicane which is used for both Compton polarimetry and beam energy
diagnostics. At the center of the chicane is the Compton IP, a BPM for measuring relative
beam energy changes, and a sacrificial machine protection system (MPS) energy collimator
which defines the energy acceptance of the tune-up extraction line. The length of the chicane
is set to limit horizontal emittance growth due to synchrotron radiation to less than 1% with
a 500 GeV/beam. A detector for the Compton-scattered photons from the laser wires is
included in the chicane.

2.7.3.1.5 Tune-up and Emergency Extraction System The BSY pulsed extraction sys-
tem is used to extract beams in the event of an intra-train MPS fault. It is also used any
time when beams are not desired in the collimation, final focus, or IR areas, for example
during commissioning of the main linacs. The extraction system includes both fast kickers
which can rise to full strength in the 300 ns between bunches, and pulsed bends which can
rise to full strength in the 200 ms between trains. These are followed by a transfer line with
±10% momentum acceptance which transports the beam to a full-beam-power water-filled
dump. There is a 125 m drift which allows the beam size to grow to an area of 2π mm2 at
the dump. A set of rastering kickers sweep the beam in a 3 cm radius circle on the dump
window. By using the nearby and upstream BPMs in the polarimeter chicane and emittance
sections, it is possible to limit the number of errant bunches which pass into the collimation
system to 1–2.

2.7.3.2 Collimation System

Particles in the beam halo produce backgrounds in the detector and must be removed in the
BDS collimation system. One of the design requirements for the ILC BDS is that no particles
are lost in the last several hundred meters of beamline before the IP. Another requirement
is that all synchrotron radiation passes cleanly through the IP to the extraction line. The
BDS collimation must remove any particles in the beam halo which do not satisfy these
criteria. These requirements define a system where the collimators have very narrow gaps
and the system is designed to address the resulting machine protection, survivability and
beam emittance dilution issues.

The collimation system has a betatron collimation section followed by energy collimators.
The downstream energy collimators help to remove the degraded energy particles originat-
ing from the betatron collimation section but not absorbed there. The betatron collimation
system has two spoiler/absorber x/y pairs located at high beta points, providing single-stage
collimation at each of the final doublet (FD) and IP betatron phases. The energy collima-
tion section has a single spoiler located at the central high dispersion point (1530 µm/%).
All spoilers and absorbers have adjustable gaps. Protection collimators (PC) are located
throughout to provide local protection of components and additional absorption of scattered
halo particles.

The spoilers are 0.5 to 1 X0 (radiation length) thick, the absorbers are 30 X0, and the
protection collimators are 45 X0. The betatron spoilers as well as the energy spoiler are
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“survivable” – they can withstand a hit of two errant bunches of 250 GeV/beam, matching
the emergency extraction design goal. With 500 GeV beam, they would survive only one
bunch, and would therefore require more effective MPS or the use of a pre-radiator scheme.

The collimation apertures required are approximately ∼8 − 10σx in the x plane and
∼60 − 80σy in the y plane. These correspond to typical half-gaps of betatron spoiler of
∼1 mm in the x plane and ∼0.5 mm in the y plane.

Wakefield calculations for the BDS spoilers and absorbers give IP jitter amplification
factors [67] of Ax = 0.14 and Ay = 1.05. Estimated as δε/ε = (0.4njitterA)2 this gives
emittance dilutions of 0.08% and 4.4% in the x and y planes respectively, for 0.5 σ incoming
beam jitter. Energy jitter at the collimators also amplifies the horizontal jitter at the IP. An
energy jitter of 1% produces a horizontal emittance growth of 2.2%.

2.7.3.2.1 Muon suppression Electromagnetic showers created by primary beam parti-
cles in the collimators produce penetrating muons which can easily reach the collider hall.
The muon flux through the detector is reduced by a 5 m long magnetized iron shield 330 m
upstream of the collision point which fills the cross-sectional area of the tunnel and extends
0.6 m beyond the ID of the tunnel, as shown in Figure 2.7-3. The shield has a magnetic field
of 1.5 T, with opposite polarities in the left and right halves of the shield such that the field
at the beamline is zero. The shield also provides radiation protection for the collider hall
during access periods when beam is present in the linac and beam switch yard.

FIGURE 2.7-3. Schematic of the 5-meter magnetized muon shield installed in a tunnel vault which is
configured to accommodate possible upgrade to 19-meter shield. The coil is shown in red, and blue arrows
indicate direction of the magnetic field in the iron.

2.7.3.2.2 Halo power handling The power handling capacity of the collimation system
is set by two factors: the ability of the collimators to absorb the incident beam power, and
the ability of the muon suppression system to reduce the muon flux through the detector.
In the baseline design, the muon suppression system presents the more restrictive limitation,
setting a tolerance of 1−2×10−5 on the fraction of the beam which is collimated in the BDS.
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With these losses and the 5 m wall, the number of muons reaching the collider hall would be
a few muons per 150 bunches (a reduction of more than 10−2 ). Since the actual beam halo
conditions are somewhat uncertain, the BDS includes caverns large enough to increase the
muon shield from 5 m to 18 m and to add an additional 9 m shield downstream. Filling all of
these caverns with magnetized muon shields would increase the muon suppression capacity
of the system to 1 × 10−3 of the beam. The primary beam spoilers and absorbers are water
cooled and capable of absorbing 1× 10−3 of the beam continuously.

2.7.3.2.3 Tail-folding octupoles The final focus includes two superconducting octupole
doublets. These doublets use nonlinear focusing to reduce the amplitude of beam halo par-
ticles while leaving the beam core untouched [68]. This “tail-folding” would permit larger
collimation amplitudes, which in turn would dramatically reduce the amount of beam power
intercepted and the wakefields. In the interest of conservatism the collimation system design
described above does not take this tail folding into account in the selection of apertures and
other parameters.

2.7.3.3 Final focus

The role of the final focus (FF) system is to demagnify the beam to the required size (∼639 nm
(horz) and ∼5.7 nm (vert)) at the IP. The FF optics creates a large and almost parallel
beam at the entrance to the final doublet (FD) of strong quadrupoles. Since particles of
different energies have different focal points, even a relatively small energy spread of ∼0.1%
significantly dilutes the beam size, unless adequate corrections are applied. The design of
the FF is thus mainly driven by the need to cancel the chromaticity of the FD. The ILC
FF has local chromaticity correction [66] using sextupoles next to the final doublets. A
bend upstream generates dispersion across the FD, which is required for the sextupoles to
cancel the chromaticity. The dispersion at the IP is zero and the angular dispersion is about
η′x∼0.009, i.e. small enough that it does not significantly increase the beam divergence. Half
of the total horizontal chromaticity of the whole final focus is generated upstream of the bend
in order for the sextupoles to simultaneously cancel the chromaticity and the second-order
dispersion.

The horizontal and the vertical sextupoles are interleaved in this design, so they generate
third-order geometric aberrations. Additional sextupoles upstream and in proper phases
with the FD sextupoles partially cancel the third order aberrations. The residual higher-
order aberrations are minimized further with octupoles and decapoles. The final focus optics
is shown in Figure 2.7-4.

Synchrotron radiation from the bending magnets causes emittance dilution, so it is impor-
tant to maximize the bending radius, especially at higher energies. The FF includes sufficient
bend magnets for 500 GeV CM and space for additional bend magnets which are necessary
at energies above 500 GeV CM. With the reserved space filled with bends, the emittance
dilution due to bends at 1 TeV CM is about a percent, and at 500 GeV CM, with only every
fifth bend installed, about half of that.

In addition to the final doublet and chromaticity correction optics, the final focus includes:
an energy spectrometer (see Section 2.7.4.3.1); additional absorbers for the small number of
halo particles which escape the collimation section; tail folding octupoles (see Section 2.7.3.2);
the crab cavities (see Section 2.7.4.1); and additional collimators for machine protection or
synchrotron radiation masking of the detector.
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FIGURE 2.7-4. BDS optics, subsystems and vacuum chamber aperture; S is distance measured from the
entrance.

2.7.3.4 IR design and integration to detector

The ILC final focus uses independently adjustable compact superconducting magnets for the
incoming and extraction beam lines. The adjustability is needed to accommodate beam en-
ergy changes and the separate beamline allows optics suitable for post IP beam diagnostics.
The BNL direct wind technology is used to produce closely spaced coil layers of superconduct-
ing multi-strand cable. The design is extremely compact and the coils are almost touching in
shared cold mass volumes. Cooling is provided by superfluid helium at 2 K. The technology
has been demonstrated by a series of short prototype multi-pole coils. The schematic layout
of magnets in the IR is shown in Figure 2.7-5 and Figure 2.7-11. The quadrupoles closest
to the IP are actually inside the detector solenoidal field and therefore cannot have mag-
netic flux return yokes; at the closest coil spacing the magnetic cross talk between the two
beam apertures is controlled by using actively shielded coil configurations and by use of local
correction coils, dipole, skew-dipole and skew-quadrupole or skew-sextupole, as appropriate.
Figure 2.7-6 shows the prototype of QD0 quadrupole and illustrates the principle of active
shielding.

To facilitate a rapid, “push-pull” style exchange of detectors at a shared IP, the super-
conducting final focus magnets are arranged into two groups so that they can be housed in
two separate cryostats as shown in Figure 2.7-5, with only warm components and vacuum
valves placed in between. The cryostat on the left in Figure 2.7-5 moves with the detector
during switchover, while the cryostat on the right remains fixed on the beamline.

Additional optical elements are required in the IR to compensate the effects of the detector
solenoid field interacting with the accelerator IR magnets. The first is a large aperture anti-
solenoid in the endcap region to avoid luminosity loss due to beam optics effects [71]. The
second is a large aperture Detector Integrated Dipole (DID) [72] that is used to reduce
detector background at high beam energies or to minimize orbit deflections at low beam
energies.

The vertical position of the incoming beam line quadrupole field center must be stable

ILC Reference Design Report III-95



ACCELERATOR DESCRIPTION

FIGURE 2.7-5. Schematic layout of magnets in the IR.

FIGURE 2.7-6. Prototype of QD0 quadrupole and its active shield (left); calculated field pattern with and
without activation of the shielding coils (right).

to order of a few tens of nanometers, in order to stay within the capture range of the intra-
train collision feedback (see 2.7.4.2). This requirement is well beyond experience at existing
accelerators and is being addressed in ongoing R&D.

2.7.3.5 Extraction line

The ILC extraction line [69, 70] has to transport the beams from the IP to the dump with
acceptable beam losses, while providing dedicated optics for beam diagnostics. After colli-
sion, the beam has a large angular divergence and a huge energy spread with very low energy
tails. It is also accompanied by a high power beamstrahlung photon beam and other sec-
ondary particles. The extraction line must therefore have a very large geometric and energy
acceptance to minimize beam loss.

The optics of the ILC extraction line is shown in Figure 2.7-7. The extraction line can
transport particles with momentum offsets of up to 60% to the dump. There is no net
bending in the extraction line, which allows the charged particle dump to also act as a dump
for beamstrahlung photons with angles of up to 0.75 mrad.

The first quadrupole is a superconducting magnet 5.5 m from the IP, as shown in Figure
2.7-5. The second quadrupole is also superconducting, with a warm section between the
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FIGURE 2.7-7. Disrupted β-functions and dispersion in the extraction line for the nominal 250 GeV beam.

cryostats for these two quadrupoles. The downstream magnets are normal conducting, with
a drift space to accommodate the crab cavity in the adjacent beamline. The quadrupoles
are followed by two diagnostic vertical chicanes for the energy spectrometer and Compton
polarimeter, with a secondary focal point in the center of the latter. The horizontal angular
amplification (R22) from the IP to the Compton IP is set to -0.5 so that the measured
Compton polarization is close to the luminosity weighted polarization at the IP. The lowest
energy particles are removed by a vertical collimator in the middle of the energy chicane.
A large chromatic acceptance is achieved through the soft D-F-D-F quadruplet system and
careful optimization of the quadrupole strengths and apertures. The two SC quadrupoles are
compatible with up to 250 GeV beam energy, and the warm quadrupoles and the chicane
bends with up to 500 GeV beam.

The diagnostic section is followed by a 100 m long drift to allow adequate transverse
separation (>3.5 m) between the dump and the incoming line. It also allows the beam size
to expand enough to protect the dump window from the small undisrupted beam. A set of
rastering kickers sweep the beam in a 3 cm circle on the window to avoid boiling the water in
the dump vessel. Three protection collimators in the 100 m drift remove particles that would
hit outside of the 15 cm radius dump window and protect the rastering kicker magnets.

Extraction beam loss has been simulated for realistic 250 GeV GUINEA-PIG beam distri-
butions [73], with and without beam offset at the IP. No primary particles are lost in the SC
quadrupoles, and all particles above 40% of the nominal beam energy are transmitted cleanly
through the extraction magnets. The total primary loss on the warm quadrupoles and bends
is a few watts, and the loss on the protection collimators is a few kW for the nominal beam
parameters. Figure 2.7-8 shows that even for an extreme set of parameters, with very high
beamstrahllung energy loss, the radiation deposition in the magnet region is manageable.
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FIGURE 2.7-8. Power loss density in the magnet region for disrupted beam at 250 GeV, with an extreme
choice of parameters.

2.7.4 Accelerator Components

The BDS accelerator components are described in the following sections and the total counts
are shown in Table 2.7-2.

2.7.4.1 Crab cavity system

With a 14 mrad crossing angle, crab cavities are required to rotate the bunches so they collide
head on. Two 3.9 GHz SC 9-cell cavities in a 2–3 m long cryomodule are located 13.4 m from
the IP. The cavities are based on the Fermilab design for a 3.9 GHz TM110 π mode 13-cell
cavity [74]. The three cell prototype of this cavity is shown in Figure 2.7-9. The ILC has
two 9-cell versions of this design operated at 5 MV/m peak deflection. This provides enough
rotation for a 500 GeV beam and 100% redundancy for a 250 GeV beam.

FIGURE 2.7-9. Photo of a 3.9GHz 3-cell deflecting cavity built at Fermilab, which achieved 7.5MV/m.

The most challenging specification of the crab cavity system is on the uncorrelated phase
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jitter between the incoming positron and electron cavities which must be controlled to 61 fsec
to maintain optimized collisions [75]. A proof-of-principle test of a 7 cell 1.5 GHz cavity at the
JLab ERL facility [76] has achieved a 37 fsec level of control, demonstrating feasibility. The
higher- and lower-order modes of the cavity must be damped effectively to limit unwanted
vertical deflections at the IP, as must the vertical polarization of the main deflecting mode.

Couplers with lower Qext and greater power handling capability are required to handle
beam loading and LLRF feedback for off-axis beam. The crab cavity needs ∼3 kW per cavity
for about 10 msec, with a Qext of ∼ 106 [77, 78]. The crab cavity is placed in a cryostat with
tuner, x-y and roll adjustment which provides proper mechanical stability and microphonic
rejection. The cryostat also accommodates the beampipe of the extraction line which passes
about 19 cm from the center of the cavity axis.

2.7.4.2 Feedback systems and Stability

Maintaining the stability of the BDS is an essential prerequisite to producing luminosity.
Since the beams have RMS vertical sizes of 5.7 nm at the IP, vertical offsets of about 1 nm
will noticeably reduce the luminosity. In addition, especially for parameter sets with higher
disruption, the beam-beam interaction is so strong that the luminosity is extremely sensitive
to small variations in the longitudinal shape of the bunch caused by short-range wakefields.
Finally, the size of the beam at the IP is sensitive to the orbit of the beam through the final
doublet quads, the sextupoles, and other strong optical elements of the BDS. Care must be
taken to minimize thermal and mechanical disturbances, by stabilizing the air temperature
to 0.5◦C and the cooling water to 0.1◦C, and by limiting high frequency vibrations due to
local equipment to the order of 10 nm.

Beam-based orbit feedback loops are used to maintain the size and position of the beam
at the IP. All of the feedback loops use beam position monitors with at least micron-level
(and in some cases sub-micron) resolution to detect the beam position, and dipole magnets
or stripline kickers to deflect the beam. There are two basic forms of feedback in the BDS:
train-by-train feedbacks, which operate at the 5 Hz repetition rate of the ILC, and intra-train
feedbacks, which can apply a correction to the beam between bunches of a single train.

2.7.4.2.1 Train-by-train feedback A train-by-train feedback with 5 correctors controls
the orbit through the sextupoles in the horizontal and vertical planes, where the optical
tolerances are tightest. Additional correctors throughout the BDS help reduce long-term
beam size growth. The orbit control feedback can maintain the required beam sizes at the
IP over periods from a few hours to several days depending on details of the environment.
On longer timescales, IP dispersion and coupling knobs need to be applied.

2.7.4.2.2 Intra-Train IP position and angle feedbacks The intra-train feedbacks use
the signals detected on early bunches in the train to correct the IP position and angle of
subsequent bunches. The offset of the beams at the IP is determined by measuring the
deflections from the beam-beam interaction; this interaction is so strong that nm-level offsets
generate deflections of tens of microradians, and thus BPMs with micron-level resolution can
be used to detect offsets at the level of a fraction of a nanometer. Corrections are applied
with a stripline kicker located in the incoming beamline between SD0 and QF1. The angle
of the beams at the IP is determined by measuring the beam positions at locations 90◦ out
of phase with the IP; at these locations the beam is relatively large so micron resolution is

ILC Reference Design Report III-99



ACCELERATOR DESCRIPTION

sufficient to directly measure the beam position (and hence the IP angle) to a small fraction
of its RMS size. A stripline kicker is located at the entrance to the FF causing a latency of
about 4 bunch spacings.

The position feedback BPM is located near the IP in a region where electromagnetic
backgrounds or particle debris from the collisions are a concern. Preliminary results from
simulations and from a test-beam experiment indicate that backgrounds are an order of
magnitude too small to cause a problem [79].

2.7.4.2.3 Luminosity feedback Because the luminosity may be extremely sensitive to
bunch shape, the maximum luminosity may be achieved when the beams are slightly offset
from one another vertically, or with a slight nonzero beam-beam deflection. After the IP
position and angle feedbacks have converged, the luminosity feedback varies the position
and angle of one beam with respect to the other in small steps to maximize the measured
luminosity.

2.7.4.2.4 BDS Entrance Feedback (’train-straightener’) A bunch-to-bunch correction
at the end of the Linac removes systematic transverse position offsets within the train due
to long-range wakefield kicks in the accelerating cavities. This system consists of two kicker-
BPM systems similar to those described above. Each pair operates at a different phase to
null the orbit in both vertical degrees of freedom.

For stripline kickers the maximum correction would be about 8–10 µm, and the BPM
resolution requirements are about 200 nm. This requires cavity BPMs that are read out in
bunch-bunch mode and processed with low-latency electronics. The kicker-BPM separations
imply latencies of about 400 ns, allowing feedback on every-other bunch.

2.7.4.2.5 Hardware Implementation for intra-train feedbacks High bandwidth, low-
latency (∼5 ns) signal processors for stripline and button BPMs have been tested at the
NLCTA and ATF [80]. The feedback processor has been prototyped using fast state of the
art FPGAs; a system prototype has been demonstrated with a FB board latency of ∼70 ns
[81]. Commercial boards that meet the latency requirement are not available without custom
firmware modification; one such board has been tested by the FONT group and would meet
the ILC latency specification for bunch-bunch operation.

2.7.4.3 Energy, Luminosity and polarization measurements

2.7.4.3.1 Energy measurements Absolute beam energy measurements are required by
the ILC physics program to set the energy scale for particle masses. An absolute accuracy
better than 200 ppm is required for the center-of-mass energy, which implies a requirement
of 100 ppm on determination of the absolute beam energy. The intra-train relative variation
in bunch energies must be measured with a comparable resolution. Measurements of the
disrupted energy spectrum downstream of the IP are also useful to provide direct information
about the collision process.

To achieve these requirements, there are two independent and complementary detectors
for each beam. Upstream from the IP, a spectrometer based on the LEP-II energy spectrom-
eter is capable of making high-precision bunch-to-bunch relative measurements in addition
to measuring the absolute beam energy scale. A four-magnet chicane in the instrumentation
region provides a point of dispersion which can be measured using triplets of high-precision
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RF BPMs. The maximum displacement of the beam is a few millimeters and must be mea-
sured to a precision below 100 nanometers. Precision movers keep the beam nearly centered
in the BPMs in order to achieve this accuracy.

Downstream from the IP, there is a synchrotron radiation spectrometer. A three-magnet
chicane in the extraction line provides the necessary beam deflection, while the trajectory of
the beam in the chicane is measured using synchrotron radiation produced in wiggler magnets
imaged ∼70 meters downstream at a secondary focus near the polarimeter chicane.

2.7.4.3.2 Luminosity measurements The ILC luminosity can be measured with a pre-
cision of 10−3 or better by measuring the Bhabha rate in the polar-angle region from 30-
90 mrad. Two detectors are located just in front of the final doublets as shown in Figure 2.7-
11. The LumiCal covers the range from 30-90 mrad and the BeamCal covers the range from
5-30 mrad. At 500 GeV center-of-mass energy, the expected rate in the LumiCal region is
∼10 Bhabhas per bunch train, which is too low to permit its use as an intra-train diagnostic
for tuning and feedback. At smaller polar angles of 5-30 mrad the rate or energy deposition
of beamstrahlung e+e- pairs can be measured for a fast luminosity diagnostic. The expected
rate in this region is 15,000 pairs (and 50 TeV energy deposition) per bunch crossing. Fur-
thermore, the spatial distributions of pairs in this region can be used to determine beam
collision parameters such as transverse sizes and bunch lengths.

2.7.4.3.3 Polarization measurements Precise polarimetry with 0.25% accuracy is needed
to achieve the ILC physics goals Compton polarimeters [82, 83] are located both ∼1800 m
upstream of the IP, as shown in Figure 2.7-2, and downstream of the IP, as shown in Fig-
ure 2.7-10, to achieve the best accuracy for polarimetry and to aid in the alignment of the
spin vector.
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FIGURE 2.7-10. Schematics of energy and polarimeter chicanes in the 14 mrad extraction line, shown in
a configuration with two additional bends at the end. Longitudinal distances are given from the IP. Also
shown is the 0.75 mrad beam stay-clear from the IP.

The upstream polarimeter measures the undisturbed beam before collisions. The rela-
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tively clean environment allows a laser system that measures every single bunch in the train
and a large lever arm in analyzing power for a multi-channel polarimeter, which facilitates
internal systematic checks. The good field region of the individual dipoles is wide enough to
accommodate the lowest expected beam energy of 45.6 GeV. The downstream polarimeter
measures the polarization of the outgoing beam after collision. The estimated average depo-
larization for colliding beams is 0.3%, and for the outgoing beam 1%. A schematic drawing
of the extraction line is shown in Figure 2.7-10.

Each polarimeter has a dedicated 4-bend chicane to facilitate injection of the laser light
and extraction of the Compton signal. The upstream polarimeter uses a horizontal chicane
to minimize emittance growth from synchrotron radiation, while the downstream polarimeter
uses a vertical chicane to maximize analyzing power. The systems are designed to meet the
physics requirements at all energies from the Z pole to the full energy of the ILC.

2.7.4.4 Beam dumps and Collimators

The beam delivery system contains two tune-up dumps and two main beam dumps. These
four dumps are all designed for a peak beam power at nominal parameters of 17 MW at
500 GeV per beam. These dumps consist of 1.5 m diameter cylindrical stainless steel high
pressure (10 bar) water vessels with a 30 cm diameter 1 mm thick Ti window; and also include
their shielding and associated water systems.

The dumps absorb the energy of the electromagnetic shower cascade in 6.5 m (18 X0) of
water followed by 1 m of water cooled Cu plates (22 X0). Each dump incorporates a beam
sweeping magnet system to move the charged beam spot in a circular arc of 3 cm radius
during the passage of the 1 ms long bunch train. Each dump operates at 10 bar pressure
and also incorporates a vortex-flow system to keep the water moving across the beam at
1.0-1.5 m/s. In normal operation with 250 GeV beam energy, the combination of the water
velocity and the beam sweepers limits the water temperature rise during a bunch train to
40◦C. The pressurization raises the boiling temperature of the dump water; in the event of
a failure of the sweeper, the dump can absorb up to 250 bunches without boiling the dump
water.

The integrity of the dump window, the processing of the radiolytically evolved hydrogen
and oxygen, and containment of the activated water are important issues for the full power
dumps. The dump service caverns include three loop pump driven 2300 gallon per minute
heat exchanger systems, devices to remotely exchange dump windows as periodic mainte-
nance, catalytic H2-O2 recombiners, mixed bed ion exchange columns for filtering of 7Be,
and sufficient storage to house the volume of tritiated water during maintenance operations.

In addition to the main dumps, the BDS contains 16 stoppers, of which 14 are equipped
with burn-through monitors, and the extraction lines have 6 fixed aperture high power devices
composed of 10 mm aluminum balls immersed in water. The beam delivery system contains
32 variable aperture collimators and 32 fixed aperture collimators. The devices with the
smallest apertures are the 12 adjustable spoilers in the collimation system. To limit their
impedance to acceptable levels, these 0.6-1.0 X0 Ti spoilers have longitudinal Be tapers.

2.7.4.5 BDS Magnets

The BDS has a wide variety of different magnet requirements, and the most distinct magnet
styles (67) of any ILC area, even though there are only 636 magnets in total. Of these,
86 are superconducting magnets clustered into 4 cryostats close to the IP, as described in
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TABLE 2.7-2
BDS components, total counts.

Magnets Instrumentation Dumps
& Collimators

Warm dipoles 190 BPMs C-band 262 Full power dumps 4

Warm quads 204 BPMs L-band 42 Insertable dumps 2

Warm sextupoles 10 BPMs S-band 14 Adjustable collim. 32

Warm octupoles 4 BPMs stripline/button 120 Fixed apert. collim. 32

SC quads 32 Laser wire 8 Stoppers 14

SC sextupoles 12 SR transv. profile imager 10

SC octupoles 14 OTR screens 2 Vacuum

Muon spoilers 2 Crab & deflection cavities 4 Pumps 3150

Anti-solenoid 4 Loss monit. (ion chamb., PMT) 110 Gauges 28

Warm correctors 64 Current monitors 10 Gate valves 30

SC correctors 36 Pick-up phase monitors 2 T-connections 10

Kickers/septa 64 Polarimeter lasers 3 Switches 30

section 2.7.3.4, and the tail-folding octupoles described below. There are 64 pulsed magnets:
5 styles of abort kickers, sweepers and septa. These are used to extract the beams to a fast
extraction/tuning dump and to sweep the extracted beam in a 3 cm circle on a dump window.

The remaining 474 magnets are conventional room temperature magnets, mostly with
water-cooled hollow copper conductor coils and low carbon steel cores. The bend magnets
in the final focus have fields of less than 0.5 kG to minimize synchrotron radiation that
would cause beam dilution; they use solid wire coils. The quadrupoles and sextupoles have
straightforward designs adequate for up to 500 GeV beam. The extraction line magnets have
large apertures, e.g. over 90 mm and up to 272 mm, to accommodate the disrupted beam
and the photons emerging from the IP. These magnets must fit in alongside the incoming
beamline.

The main technical issue with the BDS magnets is their positional stability. All the
incoming beamline quadrupoles and sextupoles sit on 5 degree of freedom magnet movers
with a 50 nm smallest step size. BPMs inserted in the magnet bores provide data on the
relative position of each magnet with respect to the beam so that it can be moved if necessary.
The absolute field strength of the BDS magnets has a tight tolerance, requiring power supplies
with stability of a few tens of ppm. Magnet temperature changes lead to strength and position
variations so the ambient temperature in the tunnel must be controlled to within about 0.5◦C
and the cooling water to within 0.1◦C.

2.7.4.5.1 BDS Magnets: Tail Folding Octupoles The tail folding octupoles are the
only superconducting magnets in the BDS (other than the FD and extraction quadrupoles)
and have the smallest, 14 mm ID, clear working aperture in order to reach the highest
practical operating gradient. The magnets are energized via NbTi conductor cooled to 4.5 K.
With such a small aperture, the beam pipe must have high conductivity to minimize the
impact of wakefields. This can be achieved with a cold aluminum beam pipe at 4.5 K or a
cold stainless steel beam pipe with a high conductivity coating. Because these magnets are
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isolated in the BDS, being far from either the IP or the end of the linac, cryocoolers are used
to provide standalone cooling.

2.7.4.6 Vacuum system

While the aperture of the BDS vacuum chamber is defined by the sizes of the beam, its halo
and other constraints, the design of the chambers and vacuum level are governed mainly
by two effects: resistive and geometric wakes and the need to preserve the beam emittance;
beam-gas scattering and minimization of detector background.

2.7.4.6.1 Wakes in vacuum system The resistive wall (RW) wakefield of the BDS vac-
uum system and the geometric wakefield of the transitions in the beam pipe may cause
emittance growth due to incoming (transverse) jitter or drift, or due to beam pipe misalign-
ment. In order to limit these effects to tolerable levels, the BDS vacuum chamber must be
coated with copper, the vacuum chambers must be aligned with an RMS accuracy of ∼100 µm
[84], and incoming beam jitter must be limited to 0.5 σy train-to-train and 0.25 σy within a
train, to limit the emittance growth to 1-2%.

2.7.4.6.2 Beam-gas scattering The specification for the pressure in the BDS beam
pipe is driven by detector background tolerance to beam-gas scattering. Studies have shown
that electrons which are scattered within 200 m of the IP can strike the beam pipe within
the detector and produce intolerable backgrounds, while electrons which scatter in the region
from 200 to 800 m from the IP are much more likely to hit the protection collimator upstream
of the final doublet and produce far less severe detector backgrounds [85]. Based on these
studies, the vacuum in the BDS is specified to be 1 nTorr within 200 m of the IP, 10 nTorr
from 200 m to 800 m from the IP, and 50 nTorr more than 800 m from the IP.

In the extraction lines the pressure is determined by beam-gas scattering backgrounds in
the Compton Polarimeter located about 200 m from the IP. Here the signal rates are large
enough that 50 nTorr would contribute a negligible background in the detectors.

2.7.4.6.3 Vacuum system design The BDS vacuum is a standard UHV system. The
main beampipes are stainless steel, copper coated to reduce the impedance, with the option
of an aluminum alloy chamber. In locations where there is high synchrotron radiation (SR)
power (≥10 kW/m) (e.g. in the chicanes or septa regions), the beampipe is copper with a
water-cooled mask to intercept the photons. The beampipes are cleaned and baked before
installation. There is no in situ baking required except possibly for the long drift before the
IP.

The required maximum pressure of 50 nTorr (N2/CO equivalent) can be achieved by
standard ion pumps located at appropriate intervals. The beampipe near the IP must have
pressure below 1 nTorr for background suppression, and may be baked in situ or NEG-coated.

2.7.4.7 IR arrangements for two detectors

There are two detectors in a common IR hall which alternately occupy the single IR, in a
so-called “push-pull” configuration. The detector hall is 120 m (long) × 25 m (wide) × 38 m
(high). The layout of the hall is compatible with surface assembly of the detectors. The
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FIGURE 2.7-11. Generic detector and IR arrangements, showing the location of beamline elements near
the IR and their integration with the detector.

previous layout with two 14 mrad IRs is kept as an alternative configuration, and is about
50% more expensive than the single IR.

To facilitate the exchange of detectors, there is a breakpoint in the beam line near the edge
of the detector, between the two final doublet cryostat halves as shown in Figure 2.7-5 and
Figure 2.7-11. A necessary condition for efficient push-pull operation is to avoid disconnecting
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any of the systems for the detectors during the exchange. One possible solution is to equip
each detector with an adjacent services platform which moves together with the detector.
The platforms would house the cryogenic systems, high current power supplies for solenoids
and FD, and detector electronics. All the connections between the platform and detector
would be fixed and not disconnected during the exchange. The movable detector service
platform would have flexible connections to fixed services (including high voltage AC, room
temperature high pressure He supply and return, data I/O, etc.), that do not need to be
disconnected during the exchange.

The FD alignment and support system is designed to be compatible with rapid exchange,
in particular, an interferometer network between the two parts of the FD and the walls may
be needed. The push-pull arrangement of two detectors implies specific requirements for the
radiation safety design of the detector and of the collider hall shielding. Since the off-beam
axis detector needs to be accessible during beam operation, the detectors either need to be
self shielded or there must be a shielding wall between them.

Several technical solutions for moving the detectors are under consideration, including
rails, Hilman Rollers or air pads. A guiding mechanism is needed to determine the path for
the detector motion and its accurate positioning. The motion of a heavy detector (up to
14 kton) in the collider hall produces deformations, which are estimated to be less than a
millimeter [86]. The detector support system must ensure that those deformations, as well
as possible deformations during lifting, do not affect its internal alignment. To minimize
deformations, the detector may require a support platform. The 5 cm thick steel plates
covering most of the experimental hall area also facilitate stability and allow the use of
air-pads.

2.7.4.8 Diagnostic and Correction devices

Each quadrupole, sextupole, and octupole magnet in the incoming BDS beamlines is placed
on an x/y/roll/pitch/yaw mover, and has an associated BPM. There are also several tens of
correctors in the incoming beamlines for 5 Hz feedback, and in the extraction lines, where
there are no movers. The BPMs in the incoming beamline are RF-cavities, either S, C or
L-band, depending on the beamline aperture. Long chains of bends or kickers have sparsely
placed BPMs. BPMs in the extraction lines are button or strip-line design.

Additional instrumentation in the BDS includes a deflecting cavity to measure Y-T corre-
lation, ion chamber and PMT loss monitors, X-synchrotron light transverse profile monitors,
OTR monitors, current monitors, pickup phase monitors, etc.
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2.8 EMITTANCE PRESERVATION AND LUMINOSITY STABI-
LIZATION

2.8.1 Overview

The luminosity performance of the ILC will be affected by many issues ranging from space
charge effects at the electron gun to instabilities in the damping rings to timing errors at the
IP. This section addresses issues associated with the emittance preservation from the damping
ring extraction to the IP which is referred to as the Low Emittance Transport (LET). Other
accelerator physics issues are addressed in the respective subsystem descriptions.

Static and dynamic imperfections in the LET impact the luminosity performance; ex-
amples are the survey errors of beamline components and ground motion. Preserving the
ultra-small emittances requires component alignment tolerances far beyond that which can
be achieved by traditional mechanical and optical alignment techniques, hence the use of
beam-based alignment and tuning techniques are essential in obtaining the design luminos-
ity. The corresponding sensitivity to ground motion and vibration mandates the use of
continuous trajectory correction feedback systems in maintaining that luminosity. The accel-
erator physics group must develop the necessary procedures, specify the required hardware
and assess the potential luminosity degradations.

Estimation of the luminosity performance relies on complex simulations. Experimental
verification of the predictions of the codes is difficult, since the very small emittances are
not readily available in test facilities. Nonetheless, several of the fundamental aspects of the
algorithms have been successfully tested. Many of the emittance transport concepts were
demonstrated and benchmarked in the Stanford Linear Collider (SLC) which operated from
1987 to 1998. Beam-based alignment has been demonstrated in SLC [88], LEP [87], and
the Final Focus Test Beam [89] — a first test of the final focus which demonstrated the
demagnification required for the ILC, and achieved a final spot size of 50 nm. The SLC
operated with tolerances that are very similar to those required for the ILC. The Accelerator
Test Facility (ATF) Damping Ring at KEK is a low-emittance test facility that addresses
some of the emittance issues, and is being extended into a Beam Delivery System test facility
(ATF2). While not a full-scale test of the ILC damping ring and beam delivery system, they
can test a number of aspects of low-emittance generation and preservation.

The simulation tools in use have been developed and refined over many years. Extensive
studies for a superconducting linear collider were performed for the TESLA TDR [2] and the
ILC Technical Review Committee [10], many of which are quite applicable to the present ILC
and provide confidence in the design concepts. In addition, extensive studies have been made
for linear collider designs based on normal conducting acceleration at X-band (JLC/NLC)
and K-band (CLIC), which were designed to operate under more stringent beam dynamics
regimes.

For the aspects of the machine performance that cannot be tested experimentally before
construction, simulations provide the only tool. Fully integrated and realistic simulations
are needed to study both the static (peak luminosity) and dynamic (integrated luminosity)
behavior of the machine.

The performance of the ILC has been simulated for a variety of errors and procedures.
Design performance was achieved in essentially all of these studies. Although the studies are
not yet complete, they are not expected to uncover major obstacles that would prevent the
ILC from reaching design performance.
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2.8.2 Sources of Luminosity Degradation

The performance of the real machine is rapidly degraded by errors in both component align-
ment and field quality. For example, misaligned magnets result in beam trajectory errors
which cause emittance growth via chromatic effects (dispersion) or impedance effects (wake-
fields). The primary sources of emittance degradation considered are:

• Dispersion: The anomalous kicks from misaligned quadrupoles, coupled with the non-
zero energy spread of the beam, cause dispersive emittance growth.
• X-Y Coupling: Rotated quadrupoles and vertically misaligned sextupoles (for example)

couple some fraction of the large horizontal emittance into the small vertical emittance
leading to beam emittance growth.
• Single-bunch wakefields: An off-axis bunch in a cavity or beampipe generates a dipole

wakefield, causing a transverse deflection of the tail of the bunch with respect to the
head. The wakefields are relatively weak for the SCRF accelerating cavities, and the
cavity alignment tolerances correspondingly loose.
• Multi-bunch wakefields (Higher-Order modes): Leading bunches kick trailing bunches,

which can lead to individual bunches in a train being on different trajectories.
• Cavity tilts: The transverse component of the accelerating field causes a transverse kick

on the beam.

2.8.3 Impact of Static Imperfections

2.8.3.1 Beam-Based Alignment and Tuning

The beam emittance at damping ring extraction is γεx = 8 µm and γεy = 20 nm. In a perfect
machine, the emittance would be essentially the same at the interaction point. To allow for
imperfections, the ILC parameters specify a target emittance at the IP of γεx = 10 µm
and γεy = 40 nm. An emittance growth budget for the various regions has been set at
∆εy ≤ 4 nm for the RTML, ∆εy ≤ 10 nm for the main linac, including the positron source,
and ∆εy ≤ 6 nm for the BDS. These allocations may be redistributed as the RTML budget
currently appears too optimistic while the main linac budget appears generous. Depending
on the actual misalignments, the machine performance can differ significantly. The goal for
the alignment and tuning procedures is to ensure that the emittance growth is within the
budget with a likelyhood of at least 90%.

Similar beam-based alignment and tuning procedures are applied in the different subsys-
tems of the LET. First, the elements are aligned in the tunnel with high precision. When the
beam is established, the corrector dipoles are used to zero the readings in the Beam Position
Monitors (BPMs) (so-called one-to-one steering). Even with a very good installation accu-
racy, the final emittance will be significantly above the target; table 2.8-1 lists the expected
main linac alignment errors together with the emittance growth resulting from each error
after simple steering. The most important error source is the total BPM offset (with respect
to the design ideal reference; note that an offset of a cryomodule also results in a BPM off-
set). Achieving the emittance goal requires beam-based alignment (BBA) to minimize the
dispersive emittance growth (the dominant source of aberration).

All BBA algorithms attempt to steer the beam in a dispersion-free path through the
centers of the quadrupoles, either by physically moving the magnets (remote magnet movers)
or by using corrector dipoles close to the quadrupoles. The exact details of the algorithms
and their relative merits differ. The three most studied methods are:
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TABLE 2.8-1
Assumed installation errors in the main linac, and the emittance growth for each error assuming simple
one-to-one steering. The required emittance preservation can only be achieved using beam-based alignment
of the magnets/BPMs.

Error with respect to value ∆γεy [nm]

Cavity offset module 300 µm 0.2

Cavity tilt module 300 µradian < 0.1

BPM offset module 300 µm 400

Quadrupole offset module 300 µm 0

Quadrupole roll module 300 µradian 2.5

Module offset perfect line 200 µm 148

Module tilt perfect line 20 µradian 0.7

• Dispersion Free Steering (DFS): Beam trajectories are measured for different beam
energies, and the final trajectory minimizes the difference, thereby minimizing the dis-
persion.

• Kick Minimisation (KM): The BPM offsets with respect to the associated quadrupole
magnetic centers are determined by varying the quadrupole strength and monitoring
the resulting downstream beam motion. This information is used in a second step
to find a solution for the beam trajectory where the total kick from quadrupoles and
correctors on the beam is minimized.

• Ballistic Alignment (BA): A contiguous section of quadrupoles (and in the linac the
RF) is switched off and the ballistic beam is used to determine the BPM offsets with
respect to a straight line. The quadrupoles/RF are then restored, and the beam is
steered to match the established straight line.

All BBA techniques rely on precise measurements of the BPMs to determine a near
dispersive-free trajectory. The final performance of the algorithms is determined by the
resolution of the monitors.

Once BBA is complete, a final beam-based tuning either minimizes the beam emittance
by direct measurement of the beam size (emittance) or maximizes the luminosity. Closed-
trajectory bumps or specially located and powered tuning magnets are used as orthogonal
knobs to generate specific aberrations, such as dispersion or X-Y coupling. The knobs are
tuned to minimize the emittance (or maximize the luminosity) by canceling the remaining
aberrations in the beam.

2.8.3.2 RTML before the Bunch Compressor

The issue of static emittance growth from misalignments and errors has been studied in
some detail for the section of the RTML from the turnaround to the launch into the bunch
compressor. The strong focusing, strong bending, strong solenoids, and large number of
betatron wavelengths in this area can potentially lead to very serious growth in the vertical
emittance, despite the relatively low energy spread of the beam extracted from the damping
rings.

The tolerances used in the study were similar to those found at the Final Focus Test
Beam for warm, solid-core iron-dominated magnets and are listed in table 2.8-2.
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TABLE 2.8-2
Alignment tolerance for RTML section up to the bunch compressors.

Misalignment RMS Value Reference

Quadrupole Misalignment (x,y) 150 µ m Survey Line

BPM Misalignment (x,y) 7 µ m Quad Center

Quadrupole Strength Error 0.25% Design Value

Bend Strength Error 0.5% Design Value

Quadrupole Rotation 300 µ rad Survey Line

Bend Rotation 300 µ rad Survey Line

Dispersion Correction: The preferred dispersion correction method was found to be a
combination of Kick Minimization (KM) and dispersion knobs, the latter consisting of pairs
of dedicated skew quadrupoles located in the turnaround, where there is non-zero horizontal
dispersion. The two skew quads in a pair are separated by a −I transform such that exciting
the quads with equal-and-opposite strengths causes the resulting betatron coupling to cancel
and the dispersion coupling to add. There are two such dispersion knobs in the turnaround,
which allows correction of dispersion at each betatron phase. Simulations indicate that in
the absence of measurement errors, the combination of KM and dispersion knobs (DK) can
completely eliminate dispersion as a source of emittance growth in this part of the RTML.
The principal remaining source of emittance dilution is betatron coupling, which typically
contributes about 7.2 nm of emittance growth.

Coupling Correction: The coupling correction section consists of four skew quads
phased appropriately to control all four betatron coupling parameters of the beam. The skew
quads are used to minimize the vertical beam sizes as measured in the downstream emit-
tance measurement station. The correction system is can completely eliminate the betatron
coupling introduced by misalignments and errors in this section of the RTML.

In addition to the studies described above, the emittance preservation issues in the long
transfer line from the damping ring to the turnaround have been examined. Because of the
weaker focusing, the alignment tolerances are much looser than in the turnaround area, and
emittance preservation is relatively straightforward [90]. One possible remaining error source
in the long transfer line is the impact of time-varying stray fields, which can drive orbit
oscillations. This can be cancelled by the feed-forward system located across the turnaround.
Measurements at existing laboratories [91] indicate a reasonable estimate for the magnitude
of time-dependent stray field is 2̃ nTesla, which will not cause a problem.

2.8.3.3 Bunch Compressors

The RF in the bunch compressor introduces an energy correlation along the bunch. The long
bunch from the Damping Ring (9 mm) makes the beam particularly sensitive to cavity tilts
in the bunch compressor RF. The near-zero phase crossing of the bunch induces a strong
transverse kick which is also correlated to the longitudinal location in the bunch (i.e. the
bunch is crabbed), and therefore also strongly correlated to the induced energy spread. The
resulting kick-energy correlation can effectively be compensated using downstream dispersion
knobs. Wakefield-driven head-tail correlations can also be compensated the same way. As
with other sections of the LET, the other primary source of emittance dilution is dispersion
due to misaligned quadrupoles.
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Simulation studies with RMS random quadrupole offsets of 0.3 mm, cavity offsets of
0.3 mm and cavity pitch of 0.3 mrad, indicate that combined DFS and DK will reduce the
mean emittance dilution to less than 2 nm [93]. Simulations of combined KM and DK result
in several nm of residual emittance dilution. The expected 0.3 mrad RMS quadrupole roll
errors cause a modest average increase of the vertical emittance of less than 1 nm without
any corrections. Although very promising, these results are preliminary and further study is
required with more realistic errors [92].

2.8.3.4 Main Linac
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FIGURE 2.8-1. The fraction of simulated cases staying below the emittance growth target for the main
linac after Dispersion Free Steering (red), followed by application of dispersion knobs (blue), followed by
wakefield knobs (green).

Single-bunch emittance dilution in the main linac is dominated by chromatic (dispersive)
effects and wakefield kicks arising from misaligned quadrupoles and cavities respectively. X-Y
coupling arising from quadrupole rotation errors also adds a small contribution to the vertical
emittance growth. The assumed installation errors are listed in table 2.8-1. The tolerances
for cavity offsets and quadrupole rolls can be achieved mechanically, but beam-based tuning
is required for the quadrupole and BPM offsets.

The main linac follows the gravitational equipotential of the earth, and is therefore not
laser-straight. This gentle bending in the vertical plane results in a small but non-negligible
design dispersion which must be matched, and taken into consideration during beam-based
alignment. A variant of dispersion free steering, dispersion matched steering (DMS), is used
to attain the matched dispersion function along the lattice. This modified form of DFS
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requires well calibrated BPMs [95] to the level of 5-10% with very stable readout. The
method achieves the required performance in simulations[94, 95, 96, 97]. Additional tuning
knobs to modify the dispersion at the beginning and end of the linac reduce the emittance
growth still further to well below the budget[101], see Fig. 2.8-1. Further improvement is
possible with wakefield tuning knobs.

Studies of kick minimisation have shown similar performance as DMS[102]. The ballistic
alignment method has not been applied to the latest ILC lattice, however studies for TESLA
showed that ballistic alignment and dispersion free steering yielded comparable results (for a
laser-straight machine).

The suppression of multi-bunch wakefields (high-order modes, HOMs) have been a major
part of the SCRF R&D effort over the last decade. If left unsuppressed, the HOMs, which
can have very high Q-values, would lead to unacceptable multi-bunch emittance growth.
Suppression is achieved by random cavity detuning (∼0.1% spread in the HOM frequencies,
expected from the manufacturing process), and by damping using HOM couplers (one per
cavity) and HOM absorbers (one absorber per cryomodule for those modes above cut-off).
All the modes for the baseline TESLA cavity shape have been calculated and measured at
FLASH. The resulting multi-bunch emittance growth due to cavity misalignment is expected
to be below 0.5 nm. If the transverse wakefield modes are rotated due to fabrication errors,
they can lead to a coupling of the horizontal and vertical plane, potentially increasing the
vertical emittance [103]. This effect is mitigated by using a split-tune lattice in which the
vertical and horizontal beam oscillation wavelengths are different, thus avoiding resonant
coupling.

Different codes have been compared in detail for the main linac[98] finding excellent
agreement for both tracking and performance predictions for a specific beam-based alignment
method. This cross-benchmarking increases confidence in the results of each individual code.

2.8.3.5 Undulator Section for Positron Production

At the nominal 150 GeV point in the electron main linac, the beam passes through an
undulator and emits hard photons for positron production. This insert has several potential
consequences for emittance preservation which still require detailed study:

• Stronger focusing in the 1.2 km insert leads to additional dispersive emittance growth.
This should be correctible using BBA methods.

• The undulator increases the energy spread of the beam, which increases the dispersive
emittance growth in the downstream linac. This effect is expected to be small.

• The narrow bore vacuum vessel in the undulator is a potential source of transverse
wakefields. Initial studies indicate these effects to be small.

• The restricted bandwidth of the undulator chicane may hinder the use of DFS algo-
rithms in the downstream linac. This problem can be alleviated by a straight-ahead
bypass for tuning purposes.

Preliminary studies indicate the total emittance growth in this insertion to be small
compared to the overall main linac budget. Further studies are required, however, including
integration into the complete electron LET simulations.
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TABLE 2.8-3
Assumed imperfections in the BDS. The assumed magnet strength errors are very tight, it is expected that
more realistic larger errors mainly lead to slower convergence of the procedures.

Error with respect to size

Quad, Sext, Oct x/y transverse alignment perfect machine 200 um

Quad, Sext, Oct x/y roll alignment element axis 300 urad

Initial BPM alignment magnet center 30 um

Strength Quads, Sexts, Octs nominal 1e-4

Mover resolution (x/y) 50 nm

BPM resolutions (Quads) 1 um

BPM resolutions (Sexts, Octs) 100 nm

Power supply resolution 14bit

Luminosity measurement 0.1%

2.8.3.6 Beam Delivery System (BDS)

Beam-based procedures have been developed to align and tune the BDS. First, all multi-
poles are switched off and the quadrupoles and BPMs are aligned. Second the multipoles are
switched on and aligned. Finally, tuning knobs are used to correct the different beam aber-
rations at the interaction point. Detailed simulations have been made assuming the realistic
installation alignment errors and magnet field errors given in Table 2.8-3.

The current studies have been performed using the beam-beam interaction code GUINEA-
PIG to give a realistic estimate of the luminosity, but assuming that the luminosity is mea-
sured accurately. Further studies are planned including a realistic simulation of luminosity
measurement. The studies will also be crosschecked with other simulation codes. Results to
date indicate that the design goals can be achieved with some overhead.

2.8.4 Dynamic Effects

The ILC relies on several different feedback systems to mitigate the impact of dynamic
imperfections on the luminosity. These feedback systems act on different timescales. The
long ∼ 1 ms pulse length and relatively large bunch spacing (∼ 300 ns) makes it possible to
use bunch-to-bunch (or intra-train) feedbacks located at critical points, the most important
one being the beam-beam feedback at the interaction point which maintains the two beams
in collision. Other feedback systems act from train to train (inter-train) at the 5 Hz pulse
repetition rate of the machine. Over longer timescales (typically days or more) the beam
may have to be invasively re-tuned.

The performance of the feedback systems is governed by the effective loop gain. A large
gain (large bandwidth) is desirable to decrease the response time of the feedback; this is
particularly true for the intra-train feedback, which reacts to each new pulse. A fast response
time minimizes the number of initial bunches over which the feedback converges (normally
a few percent effect). A low gain is desirable to reduce the amplification of high-frequency
noise in the beam, and to effectively integrate away (average over) monitor resolution. The
exact choice of gain is an optimization based on the noise spectrum being corrected (both in
the beam and the monitors).
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The number, type and location of feedback systems along the machine is also an opti-
mization which is currently under study.

Very important sources of dynamic imperfections are ground motion and component
vibration. The ground motion depends strongly on the site location. For the ILC-TRC study
three ground motion models were developed, all based on measurements at existing sites:
Model A represents a very quiet site (deep tunnel at CERN); Model B a medium site (linac
tunnel at SLAC); Model C a noisy site (shallow tunnel at DESY). A fourth model (K) was
later developed based on measurements at KEK and is roughly equivalent to C. These models
have been used in all subsequent simulations of the dynamic behavior of the ILC.

2.8.4.1 Bunch-to-Bunch (Intra-Train) Feedback and Feedforward Systems

The damping ring extraction kicker extracts each bunch individually. If this kicker does not
fully achieve the required reproducibility, the beam will have bunch-to-bunch variations that
cannot be removed by an intra-pulse feedback system (effective white-noise). The feedforward
system in the RTML is designed to mitigate this effect. The position jitter of each bunch
is measured before the turn-around and then corrected on that very bunch after the turn-
around.

Quadrupole vibration in the downstream bunch compressor and (predominantly) in the
main linac will induce transverse beam jitter (coherent betatron oscillations). The tolerance
on the amplitude of this jitter (and hence on the quadrupole vibration) from the main linac
itself is relatively relaxed. Quadrupole vibration amplitudes of the order of 100 nm RMS lead
to negligible pulse-to-pulse emittance growth. However the resulting oscillation (one- to two-
sigma in the vertical plane) in the BDS could lead to significant emittance degradation from
sources such as collimator wakefields. An intra-train feedback at the exit of the linac solves
this problem. In addition, this feedback could correct any residual static HOM disturbance
in the bunch train. If the main linac quadrupole vibrations are significantly less than 100 nm
(e.g. 30 nm RMS, as expected for a typical quiet site), then a intra-train feedback at the exit
of the linac may not be required.

Small relative offsets of the two colliding beams, in the range of nanometers, lead to
significant luminosity loss. The offsets are particularly sensitive to transverse jitter of the
quadrupoles of the final doublet. Fortunately, the strong beam-beam kick causes a large
mutual deflection of the offset beams, which can be measured using BPMs just downstream
of the final quadrupoles. The intra-train feedback system zeros the beam-beam kick by
steering one (or both) beams using upstream fast kickers. The system typically brings the
bunch trains into collision within several leading bunches (depending on the gain). The IP
fast feedback and the long bunch train also affords the possibility to optimize the luminosity
within a single train, using the fast pair monitor as a luminosity signal [104].

Studies performed as part of the TRC indicated that in a quiet site (B or better) the
fast beam-beam feedback and a slow orbit correction in the beam delivery system keeps the
luminosity loss due to dynamic effects negligible [10, 106]. In a noisy site (e.g. C) some
luminosity loss occurs.

2.8.4.2 Train-to-Train (5Hz) Feedback

The exact layout of the train-to-train feedback has not yet been finalized and different options
are being studied. A simple but workable option is to use a number of local feedbacks. At
certain locations in the machine a few correctors are used to steer the beam back through a
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few selected BPMs thus keeping the trajectory locally fixed. These feedback systems can be
used in a cascaded mode where each of the feedback anticipates the trajectory change due to
the upstream feedback systems. Such a system was successfully implemented at SLC.

Since the system corrects only locally, a residual of the dynamic imperfections will remain,
due to deterioration of the trajectory between the feedback locations. After longer times this
will require a complete re-steering of the machine back the exact trajectory determined from
the initial beam-based alignment (gold-orbit).

Other envisaged options are to perform permanent re-steering with a very low gain; this
method avoids the additional layer of steering but may be slower than local feedback. A
further option is the use of a MICADO-type correction. In this procedure all BPMs are used
to determine the beam orbit. A small number of most effective correctors is identified after
each measurement and these are used to correct the trajectory.

2.8.4.3 Feedback Performance (Luminosity Stabilization)

A complete and realistic simulation of the dynamic performance of the collider requires com-
plex software models which can accurately model both the beam physics and the errors (e.g.
ground motion and vibration). The problem is further complicated by the various time scales
which must be considered, which span many orders of magnitude: performance of the fast
intra-train feedbacks requires modelling of the detailed 10 MHz bunch train; fast mechanical
vibrations at the H̃z level need to be accurately modelled to test the performance of the pulse-
to-pulse feedback systems; long-term slow drifts of accelerator components over many days
must be studied to determine long-term stability and the mean time between invasive (re-
)application of BBA. Ideally all these elements need to be integrated into a single simulation
of the complete machine.

Progress towards such complete simulations is on-going. However, many simulations have
already been made, which have focused on individual aspects of the problem (time-scales),
with varying degrees of sophistication of the feedback models. The results thus far give every
indication that the ILC can achieve and maintain the desired performance. For example:

• Extensive simulations have been made of the performance of the fast beam-beam (and
other) intra-train feedback using a model of the main linac and BDS to generate realistic
bunch trains [107, 109]. For realistic component vibration amplitudes, the results
indicate that feedback can maintain the luminosity within a few percent of peak on
a pulse-to-pulse timescale (5 Hz). See for example Figure 2.8-2. These results are in
agreement with earlier studies [106, 10].

• Drifts of components on the timescale of seconds to minutes have been studied [106, 10].
Simulations of 5 Hz operation with all ground motion models, and assuming the beams
are maintained in collision by the fast IP feedback, indicate a slow degradation in
luminosity. This can be mitigated by pulse-to-pulse feedback, especially in the BDS,
where the tolerances are tightest. Noisy sites (model C) showed the most pronounced
effect, and would place most demand on the slower feedback systems.

• Longer term stability has been studied, assuming a variety of configurations for the
slower pulse-to-pulse feedbacks. Studies of the main linac [105] using local distributed
feedback systems indicate that the time between re-steering ranges from a few hours to
a few days for ground motion models C and B respectively. After 10/200 days (models
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FIGURE 2.8-2. Example of integrated dynamic simulations, showing the performance of the beam-beam
intra-train feedback system with realistic beams and beam jitter (simulated from the Main Linac and BDS).
The histograms show performance over 100 seeds of random vibration motion: green - achieved luminosity
for an infinitely fast beam-beam feedback and no bunch-to-bunch variations (3% reduction from ideal);
blue performance including bunch-to-bunch variations (driven by long-range wakefields in the Main Linac);
red as blue but including a finite response time for the feedback (8% reduction from ideal). Taken from
[107, 109].

C/B) simple re-steering does not recover the emittance, at which point a complete
re-tuning would be necessary.

• Recent dynamic studies integrating the main linac and BDS, again based on distributed
local pulse-to-pulse feedback systems (including one in the BDS) and incorporating
many error sources and comparing all ground motion models have been made [110].
The noisy sites (models C and K) show a luminosity reduction of up to 3̃0%, coming
almost entirely from the BDS. Based on results from earlier simulation of other collider
designs (notably TESLA), it is expected that optimization of the BDS feedback config-
uration, together with possible additional stabilization of critical magnets, can recover
a significant fraction of the loss. By contrast, quiet sites (models A and B) show only
a few percent loss for the configuration studied.

Figure 2.8-2 shows the results of running 200 such simulations with differing random
seeds. The brown histogram shows the achieved luminosity for an infinitely fast feedback
and no bunch-to-bunch variations, it is 3% below the case without dynamic effects. The blue
histogram includes the bunch-to-bunch variations while the red one also includes the time to
convergence, leading to an average luminosity 8% below nominal. By optimizing the feedback
gain and the intra-pulse luminosity tuning strategy, one can hope to recover part of the 5%
additional loss.
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2.8.5 Remaining Issues

Simulation tools must be developed further to fully specify the tuning algorithms, and in
particular instrumentation, required to achieve and maintain the design luminosity. The cost
impact should be minor, but the impact on the performance, in particular during commis-
sioning of the machine, will be important.

The beam-based alignment and tuning procedures need to be fully specified for all sub-
systems. In particular, both the RTML and the positron source insertion in the electron linac
need further detailed study. Detailed, fully-integrated and realistic studies of all the feedback
systems also remains to be done. Of particular importance is to quantify the impact of
dynamic errors and equipment failure on the initial static error tuning (beam-based alignment
and knob-based tuning). Preliminary studies have shown no indication of a severe problem
but more study is required.

More thorough studies of the effect of the phase stability of the crab-cavities in the Inter-
action Region are required, and particularly their interaction with the beam-beam feedbacks.
In addition the crab-cavity wakefields can potentially amplify beam jitter and lead to emit-
tance dilution [111]. This can be avoided by ensuring that the transverse modes are not
resonant with the bunch frequency. Further study of collimator wakefields (and other general
impedance issues in the BDS) is also required. Depolarization during the beam transport
from the damping ring to the IP has been found not to be a problem[112, 99].
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2.9 AVAILABILITY, COMMISSIONING AND OPERATIONS

2.9.1 Overview

The ILC is a complex machine with hundreds of thousands of components most of which
must be tuned with exquisite precision to achieve design luminosity. This high luminosity
must be maintained routinely in order to deliver the required integrated luminosity. Great
care must be taken at all stages of the design to ensure that the ILC can be commissioned
rapidly and operate efficiently with minimal downtime. Some of the critical design issues are:

• high availability components and redundancy to minimize downtime;

• ease of commissioning;

• separation of regions to allow beam in one region while another is in access;

• Machine Protection System (MPS) to prevent the beam from damaging the accelerator
while ensuring automated rapid recovery;

• feedback systems and control procedures to maintain optimum performance.

Many of these issues are mentioned elsewhere but are presented here as an integrated
package to emphasize their importance to the ILC.

2.9.2 Availability

2.9.2.1 Importance of Availability

The important figure of merit for the ILC is not the peak luminosity but the integrated
luminosity. The integrated luminosity is the average luminosity multiplied by the uptime.
Having surveyed the uptime fraction (availability) of previous accelerators, a goal of 75%
availability has been chosen for the ILC. This is comparable to HEP accelerators whose
average complexity is much less than that of the ILC. As such it should be a challenging, but
achievable goal. This goal is made even more challenging by the fact that all ILC subsystems
must be performing well to generate luminosity. In contrast, a storage ring has an injector
complex that can be offline between fills without impacting performance.

Because it has more components and all systems must be working all the time, attaining
the target availability for the ILC requires higher availability components and more redun-
dancy than previous accelerator designs. High availability must be an essential part of the
design from the very beginning. A methodology is in place to apportion the allowed downtime
among various components and arrive at availability requirements for the components.

2.9.2.2 Methodology

A simulation has been developed that calculates accelerator availability based on a list of
parts (e.g. magnet, klystron, power supply, water pump). Input includes the numbers of
each component, an estimate of its mean time between failure (MTBF) and mean time
to repair (MTTR), and a characterization of the effect of its failure (e.g. loss of energy
headroom, minor loss of luminosity, or ILC down). The simulation includes extra repair time
for components in the accelerator tunnel (for radiation cool-down and to turn devices off and
on), repair of accessible devices while the accelerator is running, repair of devices in parallel
to overlap their downtimes, and extra time to recover the beam after repairs are completed.

III-118 ILC Reference Design Report



Availability, Commissioning and Operations

It also allows repairs to be made in one region of the ILC while beam is used for accelerator
physics studies in an upstream region.

The inputs to the simulation were varied to test different machine configurations and
different MTBFs/MTTRs to develop a machine design that had a calculated downtime of
15%. The ILC design goal is >75% uptime, but 10% downtime was reserved as contingency
for things that are missing from the simulation or for design errors. The major design issues
are described in the next section.

2.9.2.3 High Availability Design Features

There are some design features of the ILC that are particularly important to achieving a high
availability. These features were assumed in the simulation and if for some reason the ILC
design is changed so these assumptions are no longer valid, then other improvements need to
be made to maintain an adequate availability.

RF Power Sources: High power rf sources typically have a short MTBF either due to
faults or to component lifetime. Large linacs ensure smooth operation by having spare units
that can be switched in quickly to replace the energy lost by the failed unit. The ILC was
assumed to have a 3% energy overhead in each main linac. In the low energy linac regions
(5 GeV booster, bunch compressor, crab cavities...), the fractional energy change due to a
klystron failure is very high making it impractical to replace the energy lost with a unit
in a different location. In these regions, there are hot spare klystron/modulator units with
waveguide switches that can immediately replace the power to the same section of accelerator.
One hot spare for each low energy linac is sufficient. Klystrons and modulators are accessible
with the beam on and can be replaced with only a few minute interruption to the beam to
disconnect the waveguide.

Power supplies and electronics: Power supplies are designed to have a modular
architecture with an extra module for redundancy. Most electronics modules not in the
accelerator tunnel are designed to be replaceable without interrupting power to their crate.
This allows broken modules to be replaced without further impact on the beam.

Separation of regions: There are tune up dumps and shielding between each region of
the accelerator so that one region can be run while people are in another region. The ILC
regions are injectors, DR, main linac and BDS.

Site power: Problems with the overall site power are allocated only 0.5% downtime.
Present experience is that a quarter second power dip can bring an accelerator down for
8 to 24 hours. For the ILC, one 24 hour outage would consume much of the downtime
budget. This places very stringent requirements on the reliability of the incoming power and
on-site power distribution system. The present design of the power distribution system has
some redundancy but the projected performance needs to be reviewed and possibly a larger
downtime budget allocated.

Cryo: The downtime budget allocated to the entire cryogenic systems is set at 1%. This
includes all the time for which there cannot be full power beam due to the outage, including
even possible cool downs after a warm up. With 10 large cryo plants for the main linac and
3 smaller plants for other systems, the required availability of each plant is 99.9% including
outages due to incoming utilities (electricity, house-air, cooling water, ventilation). This is
10-20 times better than the existing Fermilab or LEP cryo plants, where around half of the
cryo system downtime is due to the incoming utilities. Achieving this goal requires both more
reliable utilities and more reliable cryo plants.
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Positron source: The positron target and capture section will become too radioactive
for hands-on maintenance. As the present design does not have a spare target and capture
section on the beam line, it is vitally important that the components be designed so they
can be replaced with the use of remote handling equipment in less than a day. There is a
positron keep-alive source (KAS) that can provide low intensity positrons to the e+ DR when
the electron system in inoperable for some reason. The intensity is high enough for BPMs to
work at their full specifications, about 10% of the design intensity. The KAS is expected to
improve the availability by as much as 7%.

2.9.2.4 Required MTBF and MTTR Improvements

In addition to all the specific design features described in the previous section, many of
the individual components must be designed to have better MTBF and/or MTTR than
measured in present accelerators. Note that for all practical purposes, decreasing the MTTR
is equivalent to increasing the MTBF, so components can be improved in whichever manner
is most practical.

Table 2.9-1 shows the MTBFs and MTTRs needed to attain the desired downtime goals.
As engineering continues, these goals will be refined to minimize the cost of the project while
maintaining the desired availability.

Note that an MTBF of 1 million hours does not mean that a device must run for 114 years
without attention and without failing. Preventive maintenance and even periodic replacement
of components is allowed. It is only failures that occur while the accelerator is running that
count towards the MTBF.

The pie chart in Figure 2.9-1 summarizes how much of the downtime is caused by the
various regions of the ILC. The chart in Figure 2.9-2 shows which systems are causing the
downtime. These charts give starting values for how the unavailability budget is divided
among the regions and systems.

2.9.2.5 High Availability R&D

Table 2.9-1 gives the MTBFs and MTTRs that were used to obtain a 15% downtime. The
desired MTBF is the product of the nominal MTBF in column four and an improvement
factor in column two. The nominal MTBFs give a rough idea of what has been achieved at
present accelerators. The third column shows the percentage downtime caused by the devices
after the MTBF improvements listed. These can be used to estimate the effect of not meeting
one of the MTBF goals. Fairly large improvements are needed for several types of hardware
components. Some of these are being addressed by ILC R&D projects summarized here.

The factor of 20 improvement in magnet power supply MTBFs is mainly to be accom-
plished with redundancy. SLAC has purchased a commercial supply with five 1 kW regulators
to feed a 4 kW load. Tests show a very short dip in the current when one of the regulators
dies. Another 20 supplies of an improved version are to be installed in ATF2 to provide an
extended test. Other improvements such as redundant controllers and embedded diagnostic
boards are planned.

Magnets need an MTBF of 18 million hours. While the average MTBF at SLAC and
FNAL was about 3 million hours, measured MTBFs range from 0.5 to 12 million hours
depending on the sets of magnets used and the time period. The magnet designers from
different facilities are working together to develop a set of best practices that should result
in magnets with MTBFs near the ILC requirements. Serious consideration should be given
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TABLE 2.9-1
Table of the MTBFs that were used to obtain the desired 15% downtime. Note that the desired MTBF is
the product of the nominal MTBF and the improvement factor. The nominal MTBFs give a rough idea of
what has been achieved at present accelerators. The third column shows the percentage downtime caused
by the devices with the MTBF improvements given in the second column. These can be used to estimate
the effect of not meeting one of the MTBF goals.

Device Needed Downtime Nominal Nominal
improvement to these MTBF MTTR

factor devices (%) (hours) (hours)

Power supplies 20 0.2 50,000 2

Power supply controllers 10 0.6 100,000 1

Flow switches 10 0.5 250,000 1

Water instrumentation near pump 10 0.2 30,000 2

Magnets - water cooled 6 0.4 3,000,000 8

Kicker pulser 5 0.3 100,000 2

Coupler interlock sensors 5 0.2 1000,000 1

Collimators and beam stoppers 5 0.3 100,000 8

All electronics modules 3 1.0 100,000 1

AC breakers < 500 kW 0.8 360,000 2

Vacuum valve controllers 1.1 190,000 2

Regional MPS system 1.1 5,000 1

Power supply - corrector 0.9 400,000 1

Vacuum valves 0.8 1,000,000 4

Water pumps 0.4 120,000 4

Modulator 0.4 50,000 4

Klystron - linac 0.8 40,000 8

Coupler interlock electronics 0.4 1,000,000 1

Vacuum pumps 0.9 10,000,000 4

Controls backbone 0.8 300,000 1

to having an analog readout for each thermal and flow interlock so that impending problems
can be fixed before affecting operations.

There is no active work on flow switches and water instrumentation. The approach is
likely to be to reduce the number of flow switches and/or give them analog readout and add
redundancy to the other water instrumentation.

Kicker pulsers with built-in redundancy to provide high availability have been developed.
Most kicker installations also use multiple kickers each with its own pulser, with one or more
spare units to replace a failed unit.

Electronic modules were assumed to have a factor of 3 improvement in MTBF. The plan
is to achieve this through the use of the advanced telecommunications architecture, ATCA.
This provides crates with redundant power supplies and fans, and modules that are hot
swappable. ATCA prototype systems are being tested to learn how this technology can best
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FIGURE 2.9-2. Distribution of the total downtime among the various systems of the ILC. Note that the
global system (site power, cryo plants, site-wide controls) are not shown in this chart.

be used for the ILC. Commercial ATCA modules provide redundant CPUs and networking
with automatic fail-over, but the ILC also needs to develop I/O boards that are sufficiently
reliable. The ability to replace a module with the crate powered eases requirements on
modules such as BPMs which degrade performance without causing actual downtime.
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2.9.3 Commissioning

This section describes initial ideas on commissioning. The actual implementation will evolve
with the schedule for construction of the conventional facilities and the availability of early
access to regions of the accelerator. The plan needs further development during the EDR
phase.

2.9.3.1 Phased Commissioning

To minimize the time from completion of construction of the ILC to operation for high lumi-
nosity, it is desirable to complete upstream regions of the accelerator early. Commissioning
can then start on these regions while construction continues downstream. This is called
phased commissioning. In particular, it would be beneficial to complete the electron injector
and damping rings in time to allow one or two years of commissioning while construction of
the linacs and BDS continues.

If a sufficient number of tunnel boring machines are available to start all civil engineering
projects simultaneously (i.e. the main linacs, the beam delivery system and the damping
rings), there is about a year period available for phased commissioning. This is because the
damping ring tunnel, being shorter than the main linacs, can be completed earlier. If the
number of boring machines is limited, the preferred order of completion is injector, damping
rings, electron linac, positron linac and then beam delivery system.

A large amount of hardware validation and alignment and beam commissioning studies are
necessary to produce low emittance beams with good stability and availability. Consequently,
it is important to allocate a sufficient amount of commissioning time at an early stage.
A major function of the DR commissioning period is to achieve the alignment of optical
components and to establish a small beam emittance. In addition, there are beam intensity
related issues that need to be checked and high intensity beams are needed for vacuum
chamber scrubbing. The use of the damping rings obviously necessitates functional beam
source systems. Since both DRs are in the same tunnel, a schedule optimization has to be
done to determine if it is best to install both DRs at the same time or if the e- ring should be
installed and commissioned followed by the e+ ring. The trial construction schedule shown
in Figure 2.9-3 assumes that both rings are installed together.

Commissioning of the positron damping ring can begin with electrons and then positrons
from the positron-keep-alive source. However, high-current commissioning must await partial
commissioning of the electron main linac up to the undulator at the 150GeV point and the e+
transport line to the DR. The electrons that are used for producing the positrons are dumped
at the end of the main linac. Care has to be taken to avoid interference with installation
work on the beam delivery system which may still be ongoing at that time.

The actual commissioning scenario depends on the construction duration which is largely
influenced by financial resources. Nonetheless the general features are seen in Figure 2.9-3.

The construction of the experiment is likely to consume the largest contiguous amount
of time. It is recognized that construction of the underground detector hall is a major un-
dertaking which cannot be completed several years after groundbreaking of ILC. To mitigate
the schedule impact, most of the sub-assemblies of ILC detector facilities are built on surface
and lowered later into the hall in large pieces [120].
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FIGURE 2.9-3. Sketch of the dependencies of the various construction tasks and the implications on
commissioning. Construction of e−, e+ and Beam Delivery are shown and separated from the respective
commissioning steps. Length of time lines are not to scale and the critical path indicated varies accordingly.

2.9.3.2 Electron Source and Reversible Positron Damping Ring for Commission-
ing

The positron sources have a large emittance which by design nearly fills the aperture of
the positron damping ring. This makes initial commissioning of the e+ ring with positrons
challenging, since initial construction and alignment errors cause substantial beam losses
which tend to produce false data from beam instrumentation. Hence it is desirable to conduct
some aspects of very early commissioning of the positron damping ring with low emittance
electrons. The electron injector of the keep-alive-source is designed so it can provide these
electrons. For this commissioning with electrons, The positron ring needs to have its magnet
polarities reversed. Reversal of the DR polarity may be allowed to take several days as it is
not done frequently.

2.9.4 Radiation Shielding and PPS Zones

To enable efficient operation and commissioning, the personnel protection system (PPS) is
designed to allow personnel access in one region while beam is in another region. As an

III-124 ILC Reference Design Report



Availability, Commissioning and Operations

example, the main linac beam tunnel can be in access while there is beam in the damping
ring. It is assumed that all accelerator housings could have radiation levels that exceed the
requirements for non-radiation workers. Therefore, the radiation shielding and PPS zones
described here are designed for radiation workers.

2.9.4.1 Summary of Regions’ Radiation Requirements

Maximum allowable radiation levels for radiation workers for each region are summarized in
Table 2.9-2. Radiation shielding and PPS devices must be designed to satisfy these criteria
under the ILC beam-loss scenarios.

TABLE 2.9-2
Maximum allowable radiation levels and doses.
(a) Radiation Protection Instructions, DESY, June 2004.
(b) Radiation Safety Instructions, KEK, in Japanese, June 2004.
(c) Radiation Safety System, SLAC, April, 2006.
(d) Fermilab Radiological Control Manual, FNAL, July, 2004.

DESY (a) TESLA KEK (b) SLAC (c) FNAL (d)

Standard 20 mSv/yr 1.5 mSv/yr 20 mSv/yr 50 mSv/yr

Fertile women 2 mSv/month 1.5 mSv/yr 6 mSv/yr
2 mSv/3months

Pregnant women 1 mSv 1.5 mSv/yr 1 mSv 5 mSv
/pregnancy /pregnancy /pregnancy

Operating
conditions

Normal 20 µSv/hr 5 µSv/hr
(1mSv/week ) (10 mSv/year)

Mis-steering 20 mSv/event 4 mSv/hr
(20 mSv/year )

System failure 20 mSv/event 250 mSv/hr for
(20 mSv/year ) max. credible

beam
(30 mSv/event)

The TESLA TDR cited beam-loss scenarios for the main linac as 0.1 W/m loss for normal
operation and 100 W/m loss for 100 hours per year for mis-steering condition.

The SLAC maximum credible beam loss condition is the full beam power of 18 MW. Using
these scenarios and the maximum allowable radiation levels, the most stringent criteria comes
from the SLAC maximum credible beam condition. This gives a limit of 0.014 mSv/hr/kW
loss for the main linac.

The interaction region will be occupied by many experimentalists. Hence tighter radiation
design critera have been used so that occupants do not need to have radiation worker training.
For normal operation, the IR hall radiation design limit is 0.5 microSv/h. For the maximum
credible incident the limits are 250 mSv/h and 1mSv/event.
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FIGURE 2.9-4. Two designs for passageways between the tunnels that give adequate radiation shielding.

2.9.4.2 Shielding Calculation between Two Tunnels

The linac design has a beamline and a service tunnel separated by 7.5 m. Radiation levels
must be low enough in the service tunnel to allow occupancy for repairs when beam is
in the beam tunnel. Radiation dose rates were evaluated using the Monte Carlo codes,
MARS and FLUKA, and the two tunnel configuration satisfies the radiation dose limit of
0.014 mSv/hr/kW. Here are a few selected results.

• For sections with no penetrations between two tunnels, 4 m of earth provides adequate
shielding. This was evaluated by the MARS code and the Jenkins formula with a soil
density 1.9 g/cm3 and a 250 GeV electron beam incident on the worst case target: a
thick copper cylinder 20 X0 long and a radius of 1 X0.

• In sections which have a penetration for waveguides or cables, the radiation near the
penetration is above the allowed limit. However, the radiation level falls off rapidly with
distance so it is sufficient to fence off the area immediately next to the penetration.
The penetrations are located near the top of the tunnel, well above the personnel
passage, so the fencing does not significantly restrict access in the service tunnel. In
the calculations, the penetration was assumed to be a 7.5 m long circular hole with
a diameter of 48 cm, and no shielding in the penetration. Suitable shielding could
potentially lower the radiation levels further.

• Personnel access passages between the two tunnels are located every 500 m along the
main linac for emergency egress. Heavy movable shielding doors cannot be used because
of the need for a fast escape route. These passages cannot have a direct line-of-sight
or the radiation dose in the service tunnel would be unacceptable, but two designs
adequately reduced the radiation in the service tunnel below the limit. These are
shown in Figure 2.9-4 and described below.

1. A rotated “V” shape passageway gave the lowest dose rate, about 20% of the limit.
In this simulation, the access passageway had a width of 1.2 m, a height of 2 m
and the arms of the “V” were angled 10 degrees away from the accelerator tunnels.
The total length of the passage was about 50 m.

2. Another design is a modified crank with an inclined center passageway. The dose
rate calculated by the simulation was about 80% of the limit.
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2.9.4.3 PPS Zones

The personnel protection system (PPS) prevents people from being in the accelerator tunnel
when beam is on. A system of gates and interlocks turn off the beam before allowing access
to the accelerator housing. Access to the service tunnel is not part of the PPS system. The
ILC is divided into different regions (PPS zones) with tune up dumps and shielding to allow
beam in one region while there is access in another region. The PPS zones are the injectors,
DR, main linac and BDS. Entrance gates for PPS zones are monitored and stop the beam
when opened.

The ILC PPS zones are long and it would be burdensome to search the full region after
each permitted access. To ameliorate this problem, they are divided into multiple search
zones separated by fences with gates that are also monitored. The search zones are up to
several hundred meters long. For example, in the linac a search zone is 500 m long and is
separated by gates midway between each cross tunnel passageway.

Personnel access from a service area (service tunnel, shaft, detector hall etc.) to an
accelerator area is controlled by PPS gates, as is the access from one accelerator region (PPS
zone) to another accelerator region. Fences, doors, or moving shields are used for these gates
and they have redundant gate-closed status switches for PPS monitoring. They are locked
to prevent careless access but have an unlocking mechanism for emergencies. Information
and communication systems are provided at the gates to show the operational status and
allow communication between a person at the gate and an operator granting permission to
go through the gate.

There are personnel access passages between accelerator area and service area at the
main linac, shafts, alcoves and the detector hall with PPS gates near each end. Since the
passageways are used as emergency exits, heavy moving doors are avoided if possible. PPS
gates between the accelerator areas and the service areas (including the access passageway)
need to restrict the flow of activated air from the accelerator tunnel to the service area.

2.9.4.4 Shielding between PPS Zones

Shielding between PPS zones is designed to allow beam in the upstream zone while people
are in the downstream zone. The upstream beam is deflected into a tune-up dump and there
are triply redundant beam stoppers between the beam and the accessed region to ensure the
beam does not enter the accessed region.

2.9.5 Machine Protection System

The task of the machine protection system, MPS, is to protect the machine components from
being damaged by the beam when equipment failure or human error causes the beam to strike
the vacuum envelope. The MPS design must take into account the types of failures that may
occur and the damage they could produce.

2.9.5.1 Overview

The ILC Machine Protection System (MPS) is a collection of devices intended to keep the
beam from damaging machine components. The nominal average beam power is 20 MW,
consisting of 14,000 bunches of 2×1010 particles per second, and typical beam sizes near
10 × 1 µm. Both the damage caused by a single bunch and the residual radiation or heating

ILC Reference Design Report III-127



ACCELERATOR DESCRIPTION

caused by small (fractional) losses of many bunches are important for MPS. The MPS consists
of 1) a single bunch damage mitigation system, 2) an average beam loss limiting system, 3)
a series of abort kickers and dumps, 4) a restart ramp sequence, 5) a fault analysis recorder
system, 6) a strategy for limiting the rate with which magnetic fields (and insertable device
positions) can change, 7) a sequencing system that provides for the appropriate level of
protection depending on machine mode or state, and 8) a protection collimator system. The
systems listed must be tightly integrated in order to minimize time lost to aberrant beams
and associated faults.

2.9.5.2 Single Pulse Damage

Single pulse damage is mitigated by systems that check the preparedness of the machine
before the high power beam passes. Single pulse damage control is only necessary in the
‘damped-beam’ section of the ILC. Three basic subsystems are involved: 1) a beam permit
system that surveys all appropriate devices before damping ring beam extraction begins and
provides a permit if each device is in the proper state 2) an abort system that stops the
remaining bunches of a train if a bunch does not arrive at its intended destination 3) spoilers
upstream of devices (typically collimators) to expand the beam size enough that several
incident bunches do not cause damage. In addition, some exceptional devices (damping ring
RF and extraction kickers for example) have fast monitoring systems and redundancy.

Spoilers or sacrificial collimators are placed before the bunch compressors, in the undulator
chicane, at the beginning of the BDS system and in the collimator section of the BDS.
Locations with dispersion downstream of an accelerator section have spoilers to intercept off-
energy beam caused by klystron faults or phase errors before the beam can hit a downstream
collimator or beam pipe. The spoilers are designed to survive the number of incident bunches
that hit before the abort system can stop the beam. If this design becomes problematic, the
use of a pilot bunch is being kept as an option. A pilot bunch is one percent of nominal
current and is spaced 10 µs ahead of the start of the nominal train. If it does not arrive at
its intended destination, the beam abort system is triggered to prevent full intensity bunches
from hitting the spoiler.

Studies [114] have shown that for many failure scenarios such as quadrupole errors or
klystron phase errors, the beam is so defocused by the time it hits the linac aperture that it
does not cause damage. For this reason, no spoilers or extra beam abort kickers are included
in the linac.

The beam abort system uses BPMs and current detectors to monitor the beam trajectory
and detect losses. On a bunch by bunch basis, the system checks for major steering errors or
loss of beam. When a problem is detected it inhibits extraction from the damping ring and
fires all abort kickers upstream of the problem. The abort kickers cleanly extract the beam
into dumps, protecting downstream beamlines.

In the few milliseconds before the start of the pulse train, the beam permit system checks
the readiness of the modulators and kicker pulsers, and the settings of many magnets before
allowing extraction of beam from the damping rings.

2.9.5.3 Average Beam Loss Limiting System

Average beam loss is limited, throughout the ILC, by using a combination of radiation,
thermal, beam intensity and other special sensors. This system functions in a manner similar
to other machines, such as SLC, LHC, SNS and Tevatron. If exposure limits are exceeded
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at some point during the passage of the train, damping ring extraction or source production
(e+/e−) are stopped. For stability, it is important to keep as much of the machine as possible
operating at a nominal power level. This is done by segmenting it into operational MPS
regions. There are 11 of these regions, as noted in Table 2.9-3. Beam rate or train length
can be limited in a downstream region while higher rate and train lengths are maintained in
upstream regions.

TABLE 2.9-3
Beam shut off points. Each of these segmentation points is capable of handling the full beam power, i.e.
both a kicker and dump are required. These systems also serve as fast abort locations for single bunch
damage mitigation.

Region name Begin End

1 e− injector Source (gun) e− Damping ring injection (before)

2 e− damping ring Ring injection e− Ring extraction (after)

3 e− RTML Ring extraction e− Linac injection (before)

4 e− linac Linac injection Undulator (before)

5 Undulator Undulator BD; e+ target

6 e− BDS BD start e− Main dump

7 e+ target e+ target e+ damping ring injection

8 e+ damping ring Ring injection e+ ring extraction

9 e+ RTML Ring extraction e+ linac injection

10 e+ linac Linac injection e+ BDS

11 e+ BDS e+ BDS e+ main dump

2.9.5.4 Abort Kickers and Dumps

Abort systems are needed to protect machine components from single bunch damage. It is
expected that a single bunch impact on a vacuum chamber will leave a small hole, roughly
the diameter of the beam. Each abort system uses a fast kicker to divert the beam onto a
dump. The kicker rise time must be fast enough to produce a guaranteed displacement of
more than the beampipe radius in an inter-bunch interval.

There are three abort systems in each RTML, one at the undulator entrance, and one at
the entrance to each BDS.

There will be many meters of fast kickers needed at each dump and megawatts of peak
power from pulsers. R&D is need to optimize the system and and ensure its reliability.

2.9.5.5 Restart Ramp Sequence

Actual running experience is needed to exactly define the restart ramp sequence. For that
reason the sequencer must be flexible and programmable. Depending on the beam dynamics
of the long trains, it may be advisable to program short trains into a restart sequence. There
may also be single bunch, intensity dependent effects that require an intensity ramp. In order
to avoid relaxation oscillator performance of the average beam loss MPS, the system must
be able to determine in advance if the beam loss expected at the next stage in the ramp
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sequence is acceptable. Given the number of stages and regions, the sequence controller must
distribute its intentions so that all subsidiary controls can respond appropriately and data
acquisition systems are properly aligned.

The sequence may need to generate a ‘benign’ bunch sequence with the nominal intensity
but large emittance. The initial stages of the sequence can be used to produce ‘diagnostic’
pulses to be used during commissioning, setup and testing.

2.9.5.6 Fault Analysis Recorder System

A post mortem analysis capability is required that captures the state of the system at each
trip. This must have enough information to allow the circumstances that led to the fault
to be uncovered. Data to be recorded on each fault include: bunch by bunch trajectories,
loss monitor data, machine component states (magnets, temperature, RF, insertable device
states), control system states (timing system, network status) and global system status (se-
quencer states, PPS, electrical, water and related sensors). The fault analysis system must
automatically sort this information to find what is relevant.

2.9.5.7 Rapidly Changing Fields

In addition to the above, there are critical devices whose fields (or positions) can change
quickly, perhaps during the pulse, or (more likely) between pulses. These devices need 1)
special controls protocols, 2) redundancy or 3) external stabilization and verification systems.

1. Depending on the state of the machine, there are programmed (perhaps at a very low
level) ramp rate limits that keep critical components from changing too quickly. For
example, a dipole magnet is not allowed to change its kick by more than a small fraction
of the aperture (few percent) between beam pulses during full power operation. This
may have an impact on the speed of beam based feedbacks. Some devices, such as
collimators are effectively frozen in position at the highest beam power level. There
may be several different modes, basically defined by beam power, that indicate different
ramp rate limits.

2. There are a few critical, high power, high speed devices (damping ring kicker and RF,
linac front end RF, bunch compressor RF and dump magnets) which need some level
of redundancy or extra monitoring in order to reduce the consequence of failure. In the
case of the extraction kicker, this is done by having a sequence of independent power
supplies and stripline magnets that have minimal common mode failure mechanisms.

3. There are several serious common mode failures in the timing and phase distribution
system that need specially engineered controls. This is necessary so that, for example,
the bunch compressor or linac common phase cannot change drastically compared to
some previously defined reference, even if commanded to do so by the controls, unless
the system is in the benign beam-tune-up mode.

2.9.5.8 Sequencing System Depending on Machine State

The ILC is divided into segments delineated by beam stoppers and dump lines. There may
be several of these in the injector system, two beam dumps in each RTML, and 2 (or 3) in
the beam delivery and undulator system. In addition, the ring extraction system effectively
operates as a beam stopper assuming the beam can remain stored in the ring for an indefinite
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period. This part of the MPS assumes that the beam power in each of these segments can
be different and reconfigures the protection systems noted above accordingly.

2.9.5.9 Protection Collimators

The entire ILC requires protection collimators and spoilers that effectively shadow critical
components. These devices must be engineered to withstand innumerable single pulse im-
pacts. The number and locations of these protection collimators are documented in the
descriptions of each accelerator region.

2.9.6 Operability

To ensure high average luminosity it is important that the ILC have many features built in
to make its operation mostly automatic and efficient. These features include:

• Accurate, reliable, robust diagnostics
• Monitoring, recording, and flagging of out-of-tolerance readings of all parameters that

can affect the beam. Some of these must be checked milliseconds before each pulse
train so beam can be aborted if there is a problem.
• Beam-based feedback loops to keep the beam stable through disturbances like temper-

ature changes and ground motion
• Automated procedures to perform beam based alignment, steering, dispersion correc-

tion, etc.
• Automatic recovery from MPS trips starting with a low intensity high emittance beam

and gradually increasing to nominal beam parameters

2.9.6.1 Feedback systems

The transport of the beam through the ILC requires a large number of feedback systems
to be active to steer the beam to the interaction point. These feedback systems include
measurements from various beam position monitors, from laserwires scanning the beam profile
and other diagnostics. The feedback loops must be carefully designed to be orthogonal and
to maintain corrections that are within the device ranges. The feedback systems must avoid
trying to compensate for large deviations of the beam due to component failure. It is hence
necessary to use flexible setups for the control loops such as provided by MATLAB tools and
analysis techniques.
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CHAPTER 3

Technical Systems

3.1 MAGNET SYSTEMS

3.1.1 Overview

The ILC has ∼80 km of beamlines which require magnets for focusing and steering the beams.
There are over 13,000 individual magnets, of which approximately 18% are superconducting
and the rest “conventional” warm iron-dominated magnets with copper coils. About 40% are
low-current corrector magnets. Superconducting technology is primarily used for the magnets
located in the RF cryomodules, but it is also required for the spin rotation solenoids, damping
ring wigglers, positron source undulator and beam delivery octupoles, sextupoles and final
doublet quadrupoles.

3.1.2 Technical Description

The scope of the Magnet Technical System includes the magnets and their power systems, as
well as the magnet support stands and positioning devices needed for precise magnet align-
ment in the beamlines. Power systems include the power supplies, cabling to the magnets,
sensors and systems for local control, monitoring, and magnet protection. Pulsed kicker and
septum magnets used for beam injection, extraction, and/or protection are particularly chal-
lenging. Almost all of the room temperature magnets have easily achievable requirements.
The major technical issues, challenges and special purpose magnet systems are presented
below. Challenging technical issues unique to particular Areas (especially BDS and DR) are
discussed in those sections.

The magnet design process starts with the Area System leaders who specify a standard
set of requirements based upon the lattice designs, machine layout, and envisioned operating
scenarios. Conceptual magnet designs follow primarily from the specified integrated strength,
field quality, clear bore aperture, and slot length constraints. Given the conceptual magnet
design, a power supply (PS) design is developed based on the magnet-specific current, voltage
and stability requirements, and the need to power magnets individually or in series.
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3.1.3 Technical Issues and Challenges

3.1.3.1 High Availability and Low Cost

A major criterion for ILC magnet design is to achieve very high availability in spite of the
very large number of magnets. The “availability” goal of the ILC is 75% (or better) and
the magnets have been budgeted to incur no more than 0.75% down time. The availability
“A” of a component is given as A = MTBF/(MTBF+MTTR), where MTBF is Mean Time
Between Failures, and MTTR is Mean Time To Repair a magnet, turn it back on and restore
the beam. Detailed studies of magnet failures at three high energy physics labs indicate that
most failures are with conventional water-cooled magnets, which had an MTBF ranging from
about 0.5 million to 12 million hours based on tens of millions of integrated magnet-hours.
The ILC has 6873 such magnets. With an MTTR of 16 hours, the MTBF of each one must
be longer than 18 million hours in order to achieve the desired availability.

This reliability level should be achievable, without incurring a significant increase in cost,
by applying the assembled magnet design, production and operation experience at existing
HEP accelerators. The approach is to apply best modern magnet engineering practices,
ensure adequate quality control of materials and procedures during fabrication, and use es-
tablished guidelines for operating within reasonable environmental limits (such as ambient
temperature and allowed temperature rise, maintaining proper water flow conditions, and
keeping electronic components out of radiation areas where possible). Power system elec-
tronic components typically have much lower MTBF values of around 100,000 hours. Here,
the solution is to build in redundancy for crucial elements, and use “smart” electronics that
can detect failure and rapidly switch to redundant units. Replacement of failed units can
then be scheduled to occur during beam downtimes. Comprehensive failure mode and effects
analyses (FMEA) are thus viewed as an essential part of the magnet system engineering
effort.

3.1.3.2 Field Quality and Alignment

The field quality requirements in most normal-conducting ILC magnets are similar to those
at other accelerators currently in operation, and not particularly challenging. Higher order
harmonics must be on the order of a “few units” (1 unit = 10−4) of the main field strength, and
are most stringent in the Damping Rings where beam circulates for many turns. For corrector
magnets, a few tens of units is characteristic. In warm iron-dominated electromagnets, these
levels are achieved through careful control of pole shapes and their positioning. Similarly,
control of coil position is important for superconducting magnet field quality, and is achievable
with proper mechanical design and tooling. Large room temperature magnets have a split
yoke design to reduce repair time in the tunnel; experience shows that field quality can be
maintained with proper design and care in re-assembly.

Alignment and mechanical stability requirements in many areas are very challenging. In
the BDS, beam positions must be maintained at sub-micron levels to collide the beams, so
precision 5-axis magnet positioning mounts, or “movers,” are needed for continuous adjust-
ment of all the quads and sextupoles in the final focus region. For the regions where movers
are not required, room temperature and cryogenic magnet stands use a robust and precisely
adjustable design. In some areas, pedestals are required to offset the precision stands from
the tunnel floor. Alignment tolerances on the relative positions of Beam Position Monitors
(BPMs) to quadrupoles differ by area (∼10 µm in BDS, ∼100 µm in ML). In the BDS this
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results in stringent temperature control requirements locally, where geometry-sensitive cavity
style BPMs are affixed to the thermally active magnets.

3.1.3.3 Superconducting Magnets

There are 2318 superconducting (SC) magnets in a variety of applications throughout the
ILC, but fewer than 10% of them require high integrated field strength in limited space
and about 60% are correcting coils wound in the same physical space as the main coils.
Most of the SC magnets are not very strong and are located in the RF cryomodules. A
package containing a focusing quadrupole (quad), steering dipole correctors and a Beam
Position Monitor is located at the center of every third main linac cryomodule. This location
makes it challenging to maintain the quad positions during thermal cycles and to measure
and relate the quad positions to external survey fiducials and to the BPMs used to keep
the beam centered in the quads (at the 100 micron level, over a distance of ∼6 meters).
The resulting magnetic center in nested dipole and quad designs may also be affected by
persistent current effects. Alternative designs and further research are needed to understand
these issues and develop the magnet support and measurement techniques; there could be
significant advantages to moving the magnets and BPMs from the RF cryomodule out to a
separate cryostat.

The superconducting wigglers in the damping rings and the superconducting undulators
in the positron source also require great mechanical precision; their particular challenges are
described in their respective chapters. The most challenging superconducting magnets, those
just before the interaction point, are described in the BDS chapter. They have strong gradi-
ent fields with many layers of correcting coils, and must fit into as small a radius possible to
not interfere with the detector. In the ILC sources, there are superconducting solenoids for
spin rotation and a few large aperture magnets that may be either conventional or supercon-
ducting, depending on detailed optimization of operating versus capital cost.

3.1.3.4 Power Systems Design

The non-pulsed ILC magnets operate with DC currents, with set points that may be adjusted
periodically but only slowly (∼5 A/s or less). Most magnets are individually powered to al-
low independent control. Power supply stability requirements are assumed to be comparable
to performance of existing commercial units. The design of a power system, whether for an
individual or a string of magnets, requires a conceptual magnet design which determines the
required operating current, defines the coil resistance and inductance and cooling require-
ments (air or water). The magnet position, with respect to power supplies located in alcoves,
defines the cable length; cables are sized for the maximum operating current using two sizes
above the NEC rated minimum, to reduce voltage drop and heat generation. The required
maximum power supply voltage is then determined by the cable and coil resistive drop at
maximum current, plus the inductive drop at the maximum ramp rate. The supply is sized
with a 10% margin on the power rating, to accommodate uncertainties in magnet strength,
inductance, cable lengths, etc. The summed power ratings set requirements for AC power,
air and water conditioning in each area.

Power systems are classified by their size and type, and standard models were developed
for each of the various system categories: they are distinguished by “normal” versus “super-
conducting”, “individually powered” versus “series connected”, “rack mounted” versus “free
standing”. These styles have certain elements in common, but may differ in detail (water
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versus air cooling, for example); Figure 3.1-1 shows one example which contains all of the
power system elements, and illustrates interconnections between components and systems.
Each power system provides local control and magnet protection (via PLCs and FPGAs),
and has the capability of diagnostic data capture. The design incorporates redundant cur-
rent transductors, controllers, and Ethernet IOCs, which are utilized for communication with
machine control, protection, and other technical systems (e.g., to obtain cryogenic or LCW
process variables for operating permissive). Smaller rack-mount supplies can accommodate a
redundant supply within the rack, for automatic switch-over in case of a failure. The concep-
tual design for the superconducting magnets is based on the generic model shown, although
the protection elements may be simplified after detailed magnet design.

FIGURE 3.1-1. An example DC power system style: items in red are specific to the power system, magnet
elements are in black; relevant interfaces are shown, where blue and green lines are responsibility of other
groups (global controls, cryogenics, vacuum, facilities, etc.).

3.1.3.5 Kicker, Septum, and Pulsed Magnets

A kicker is a device that makes fast time-dependent changes in the beam path. A septum
magnet has regions with very different magnetic field with a material septum between them.
A kicker diverts the beam from one side of the septum to the other, and the much higher field
of the septum diverts the beam by a much larger angle, typically around some downstream
obstacle like a quadrupole magnet. A pulsed magnet changes its field as part of normal
operation, but less rapidly than a kicker. The high power beam dumps have pulsed magnets
upstream to sweep the beam across the dump to avoid localized damage. Fast actuators in
the beam feedback systems in the damping rings and at the IP, which are also sometimes
called “kickers,” are described in the area chapters.
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There are several classes of kickers in the ILC. The damping ring injection and extraction
kickers are pulsed every few hundred ns for single bunches during each millisecond linac pulse,
and need rise and fall times of a few ns. A damping ring abort kicker is only fired when an
abnormal beam condition is detected, to divert the stored beam to a dump, and avoid damage
to machine components. The rise time must be less than the ion-clearing or abort gap in the
ring filling pattern, with a pulse width of a full ring turn (≈22 µs).

There are other abort kickers at several locations outside the damping rings, with rise
times of less than the time between bunches (≈100 ns). When used as abort kickers, the
pulse rate is nearly zero, and the pulse width need only be long enough for the bunches that
cannot be stopped upstream. An abort kicker can also be used to limit the beam power
downstream, by firing it after a fraction of the beam bunches in the train have passed. In
this application, the kicker may be fired on every linac pulse, for the full linac pulse duration.

The ILC kickers are all stripline structures inside the vacuum chamber, driven by pulsed
power supplies. The injection and extraction kickers have short strips and extremely fast
pulsers to achieve fast rise and fall times. The required total kicker strength (kilovolt-meters)
is set essentially by the beam size and energy, with the result that a large number of stripline
and pulser units are needed for each installation. The damping ring abort kickers use more
conventional thyratron or FET pulsers and longer strips since the rise time can be longer, the
pulse length is moderate, and the rate is low. The other abort kickers have relaxed rise time
requirements, but the pulse may need to be a millisecond long at full linac rate, and higher
beam energies require more kicker field energy. The pulser power required scales inversely
with the cube of the available length, and can be quite high. The beam delivery system abort
kicker installations each require several pulsers of the scale of main linac modulators.

The baseline design has a thin and a thick pulsed eddy-current septum magnet for each
damping ring kicker. This design is inspired by the Argonne APS septa, but R&D is required
to make a millisecond flat top to the required tolerance. An alternative optics design is
under consideration for injection and extraction that allows a DC current-sheet septum of
moderate current density to be used. An abort septum must be DC, and could be a current
sheet septum, or an iron magnet with a beam-hole in its pole region (Lambertson septum).
The damping ring abort region optics, and thus the type and parameters of its septum, are
discussed in the Damping Ring chapter. The RTML and beam delivery abort septa are DC
current sheets. The undulator protection abort septa are dogleg bend magnets modified to be
Lambertson septa. All of the abort dumps downstream of the damping ring require sweeper
magnets.

3.1.3.6 Fabrication, Test, and Storage

The program of fabrication and testing of ILC magnets follows a 7 year schedule, with one
year of preparation, five years of production and testing, and (overlapping) four years of
installation. Magnet fabrication utilizes industrial suppliers world-wide; tooling developed
for ILC magnet fabrication belongs to ILC for future use. A large fraction of solid-wire
corrector magnets are tested by manufacturers, and all non-corrector magnets are tested and
magnetically measured at the ILC test facility. Superconducting test stands share cryogenic
resources with nearby SRF test facilities and have both production and special measurement
areas and test systems. The conventional magnet measurement area is large, with multiple
stands for efficient and high throughput, with space for temporary magnet storage. Alignment
and survey capabilities are needed for all magnet styles. In the long term, some space could be
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converted for storage of tooling and spare magnets (or coils and parts), and part of the facility
could be devoted to repair and new magnet fabrication. Also an area remains dedicated to
making tests and measurements, and conducting R&D for later machine improvements. Such
a facility is necessary to ensure the initial high quality of ILC magnets.

3.1.4 Cost Estimation

The cost estimate is based on the conceptual designs for magnets, power systems, stands
and movers described above, with additional assumptions about estimated costs of material
and labor. Given time and resource limitations, detailed conceptual designs were developed
for only a small number of the magnet styles. The majority of estimates are “engineering
estimates” based on existing designs with similar requirements. Standardized labor rates were
determined from laboratory and industrial sources1. In order to determine the material costs,
the weights of magnet and cable materials, primarily copper and iron, have been estimated
and summed, and current world commodity prices obtained. Similarly, prices have been
obtained for commercially available electronic components such as power supplies, FPGAs
and PLCs, controllers and Ethernet interfaces.

In one instance, a design and a complete set of drawings was developed for a e+ Source
transfer line quadrupole (a large quantity item) and a request for quote sent to a number
of magnet vendors. The cost estimates obtained were in reasonable agreement with an in-
ternal estimate: the average agreed within a few percent of the internal estimate, with a
spread of ∼25%. For a few magnet systems, more detailed cost estimates were provided
based on either existing designs (Cornell wigglers) or R&D prototypes already in progress
(Daresbury/Rutherford undulators); in a similar fashion, Brookhaven provided detailed cost
estimates for the superconducting insertion magnets at the IR based on experience with
similar magnet designs.

Estimates of EDIA labor costs were based upon reviews of recent large accelerator magnet
and power supply projects at SLAC and Fermilab, where the materials, fabrication and EDIA
labor fractions are well known. The fractional distribution of EDIA among several types of
laborers, which were costed at the standardized labor rates, was assigned on the basis of
project management experience.

3.1.5 Component Counts

The number of conventional and superconducting magnets and magnet styles in each of the
ILC Areas is shown in Table 3.1-1. There are compelling reasons to reduce the number of
magnet styles - to reduce cost and increase maintainability and reliability - and this process
is an iterative one, that has not yet been fully optimized.

1It should be noted that rates for different world regions have not been incorporated at this time. It should
also be recognized that labor rates and production hours are not necessarily uncorrelated: the lowest labor
rates are quite often in regions with less automation and infrastructure resulting in longer task times.
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3.2 VACUUM SYSTEMS

3.2.1 Overview

The ILC has over ∼80 km of beamlines which must be kept under vacuum to limit the beam-
gas scattering and operate the RF cavities. Different areas of the machine present different
challenges but fortunately, there is an experience base at existing accelerators for essentially
all of the systems, to facilitate design and costing [122, 123, 124]. The largest and most
complex are the vacuum systems for the cryomodules containing superconducting cavities
that accelerate the beam. There are ∼1680 cryomodules in the main linacs, electron and
positron booster linacs and bunch compressors. There are also single cavity cryomodules
in the damping rings and beam delivery systems. These cryogenic units require separate
vacuum systems for the beam line, the insulating vacuum and the waveguides.

Other beamlines throughout the ILC pose particular challenges. The lifetime of the elec-
tron source photocathode requires a vacuum in the range of a pico-Torr. The superconduct-
ing undulator for the positron source is a warm bore chamber with a very small aperture.
Chambers for bending magnets in the damping rings and elsewhere require antechambers
and photon absorbers for the synchrotron radiation. The presence of electron cloud in the
positron damping ring and ions in the electron damping ring can seriously impact perfor-
mance and requires mitigation. Beam-gas scattering in the beam delivery must be limited to
reduce backgrounds in the experimental detectors. The designs for each system and costing
approach are discussed in more detail below and in reference [121].

3.2.2 Technical Issues

3.2.2.1 Linac Cryomodules

There are ∼20 km of cryomodules in the main linac and another ∼1.6 km of modules in the
sources and bunch compressors. Each cryomodule has separate vacuum systems for the ac-
celerating structures, the insulating vacuum and the transmission waveguides. The structure
vacuum vessel holds the niobium cavities and is at 2K cryogenic temperature. This system
must produce very low quantities of particulates as these can contaminate the cavities causing
field emission and lowering the available gradient. The system must also be able to produce
ultra-high vacuum at room temperature to eliminate the risk of residual gases condensing
on the niobium walls during cooldown. The beamline vacuum is segmented into strings of
154.3 m. Each string has an insulating vacuum break and a port for valves and ion pumps.
Every other string has additional valves, pumps, leak detection, and vacuum diagnostics.
Each group of 4 strings (617 m) has cold vacuum isolation valves. A vacuum/diagnostics
station is installed between every 16 strings (2.472 km). These stations have slow start
turbo-molecular pumps, leak detection, clean venting systems, and warm isolation valves.

The insulating vacuum system must maintain a typical pressure of ∼ 0.1 mTorr, a regime
where high voltage breakdown is a serious issue. It is complicated by the pump cabling from
the main system which must pass through the insulating vacuum. The system is segmented
into 154.3 m strings consistent with the beamline vacuum. Each string has valves, a turbo-
molecular pump, and bypass valves. Every other string additionally has a leak detector and
a large screw pump.

Much of the transmission waveguide vacuum is at room temperature, but it must transi-
tion to helium temperatures at the couplers. In addition, the rf power being transmitted is
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FIGURE 3.2-1. Beamline vacuum system – 2 turbo-molecular pumps (TMP) with high sensitivity leak
detector (LD) and residual gas analyzer (RGA), safety, clean venting system, slow start pumping etc.

very high, so multipactoring and arcing must be considered in the design. There is a valve
for each coupler. Every cryomodule has an ion pump and titanium sublimation pump, and
every 3 cryomodules have a turbomolecular pump, a scroll fore pump and a leak detector.

While the cryomodule vacuum system is complex, costs can be estimated from work done
for the TESLA TDR proposal and from recent projects such as SNS. Standard parts, were
estimated from vendor quotations and from recent large quantity procurements.

3.2.2.2 Damping Ring and Beam Delivery Cryomodules

The damping ring accelerating rf is single 650 MHz cavities in individual cryomodules. The
beam delivery also uses superconducting crab cavities with individual cryomodules. (See
Sections 2.4 and 2.7.4.1 for a description of damping ring cryomodules and crab cavity cry-
omodules.)

3.2.2.3 Polarized Electron Source

The electron source is a DC gun with a laser illuminated photocathode similar to the electron
guns at SLAC and Jefferson Lab. To maintain photocathode lifetime, the pressure must be <

FIGURE 3.2-2. Beamline vacuum system gates and valves.
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FIGURE 3.2-3. Insulating vacuum system – 4 TMP pumping units: 2 with LD (leak detector) + 2 large
screw pump for fore pumping.

3×10−11 torr. This is achieved by incorporating large ion pumps and non-evaporable getter
(NEG) pumps.

3.2.2.4 Positron Source

The positron source undulator and target vacuum systems are particularly challenging. Elec-
trons are transported through a superconducting undulator to produce γ-rays. The super-
conducting undulator is a cold bore chamber with a small aperture. The γ-rays are then
directed onto a target to produce positrons. The positron target has a very large power load
deposted into the target and nearby structures.

3.2.2.5 Damping Ring

The most challenging issues for the damping ring vacuum systems are suppression of the
electron cloud in the positron damping ring and ions in the electron damping ring. A variety of
techniques are used, including low residual pressure, low SEY coatings, and possibly grooved
chambers or clearing electrodes. Lifetime considerations require pressures of less than 1

FIGURE 3.2-4. Waveguide and coupler vacuum system.
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TABLE 3.2-1
Transport lines for the ILC Electron Source System. Vacuum specifications, beam aperture inner diameters,
and lengths are noted. Except in the case of the accelerator sections, the vacuum chamber material is
stainless steel.

Beamline Max Aperture Length Number Comments
Pressure Diameter (m) of
(nTorr) (cm) Beamlines

Gun 10−3 4 0.2 2 Integrated into gun design

Gun 10−3 to 0.1 3 1 2 Differential pumping
combining needed to protect
beam line gun vacuum

Transport 1 4 ∼15 1
through
Bunching
System

NC beam 10 4 ∼17.5 1
lines

SC RF <1 7 ∼273 1 8 strings (of 3) cryomodules,
adopt vacuum specification
for Main Linac

Dump beam 10 4 12 1
line

ELTR 10 4 ∼140 1 Linac to Ring beam line

nTorr which is achieved with neg coated chambers. The bend magnet vacuum pipe requires
an antechamber with a photon absorber to collect synchrotron radiation emitted. (For details
see 2.4.)

The wiggler straight vacuum system for the ILC damping rings consists of separate cham-
bers for the wiggler and quadrupole sections. The chamber is a machined and welded alu-

TABLE 3.2-2
Transport lines for the ILC Positron System. The reasoning behind the specification is noted and is subject
to discussion. Vacuum specifications and aperture inner diameters are noted. Except in the case of the
accelerator sections, the vacuum chamber material is stainless steel.

Beamline Max Pressure Aperture Length Comments

(nTorr) (cm) (m)

Chicane 1 50 2 300 halo generation

Undulator 100 0.6 290 fast ion, Daresbury

Chicane 2 50 20 300 halo generation

Photon line 1000 4.5 500

Positron transport 100 15 5,100

NC RF 20 6 and 6-4.6 115 1.27 m and 4.3 m sections

SC RF <1 7 280 12.6 m sections

Linac-to-Ring 50 2 80

Other 100 6 300
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minum unit designed as a warm bore insert which is mechanically decoupled from the wiggler
and cryogenic system. A NEG pumping system [125] and photon absorber are incorporated
in ante chambers. Integral cooling is incorporated to minimize distortion of the chamber
and thermal load on the wiggler cryostat during NEG regeneration. A NEG surface coating
will be used on the main chamber bore to minimize secondary electron yield [126]. Clearing
electrodes will also be incorporated to reduce the electron cloud.

The quadrupole chamber is welded aluminum, also incorporating NEG coating for sec-
ondary electron yield reduction. Bellows, a BPM assembly and an ion pump are incorporated.
The quadrupole chamber is completely shadowed by the wiggler chamber photon absorbers
and does not absorb any of the photon power from upstream wigglers.

3.2.2.6 Ring to Main LINAC

Each of the two Ring to Main Linac transport sections contains a room temperature transport
line of ∼15 km length, superconducting RF sections of ∼0.5 km length, and additional room
temperature beamlines of ∼1.0 km length. The vacuum level in the long room temperature
transport line is set by requirements on the beam-ion interaction in the electron system to
∼20 nTorr. The vacuum level in the remaining room temperature beamlines is set by beam
scattering requirements to 100 nTorr, at which level about 1×10−6 of the beam population is
scattered out of the acceptance. The superconducting RF sections have vacuum requirements
and system designs which are identical to those of the main linac, i.e., beamline and isolation
vacuum systems. Although the RTML contains room temperature bending sections they are
not expected to need photon stops or other photon power absorbers because the average
current is low and the bending radii in the RTML are kept large to limit emittance growth
from incoherent synchrotron radiation effects.

3.2.2.7 Beam Delivery System

The beam delivery system transport requires special attention to limit backgrounds in the
experimental detectors. In order to reduce the residual beam-gas scattering to acceptable
levels, the line pressure near the interaction region needs to be <1 nTorr. The design is
complicated by the requirement for small chamber diameters. The small chamber diameter
and the low pressure require close spacing of the ion pumps, bake-outs and the use of NEG
coated chambers.

3.2.3 Cost Estimation

The main parts of the vacuum systems were obtained from quotations from vendors and from
recent large quantity procurements. “Consumables,” such as flanges, gaskets, bolts and nuts,
cables, etc, were either not yet included or were estimated for quantity discounts of catalog
items.
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3.3 MODULATORS

3.3.1 Overview

The accelerating gradient for the ILC main linacs is supplied by superconducting 1.3 GHz
cavities powered by 560 10 MW RF stations, each with a modulator, klystron and RF dis-
tribution system. Another 86 similar stations are used in the e+ and e− Sources and RTML
bunch compressors. The damping ring RF power is supplied by 650 MHz superconducting
cavities powered by 1.2 MW peak power klystrons. These are fed from a DC supply and do
not have pulsed modulators. There are also a few special purpose S-band RF stations for
instrumentation and a 3.9 GHz RF station to power the crab cavities near the Interaction
Point. This section describes only the 1.3 GHz modulators, Damping Ring HVPS system

TABLE 3.3-1
Modulator Specifications & Requirements Assuming Klystron µP=3.38, Effy=65%.

Specification Typical Maximum

Charger input voltage kV RMS 7.67 8

Charger average power input kW 147.9 161.7

Charger efficiency 0.93 0.93

Charger DC output voltage = Modulator kVin 10.8 11.3

Charger DC avg output current = Modulator Ain 13.26 13.26

Charger average power output @ 5 Hz kW 137.5 150.3

Modulator efficiency 0.94 0.94

Modulator pulse voltage output = Pulse Transformer kVin 10.16 10.18

Modulator pulse current output = Pulse Transformer Ain 1560 1680

Modulator average power output @ 5 Hz kW 129.3 141.3

Pulse transformer step-up ratio 12 12

Pulse transformer efficiency 0.97 0.97

Pulse transformer voltage out = Klystron kVpk 115.7 120

Pulse transformer current out = Klystron Apk 133.0 140

Pulse transformer average power output @ 5 Hz kW 125.4 137.1

High voltage pulse duration (70% to 70%) ms 1.631 1.7

High voltage rise and fall time (0 to 99%) ms <0.23 0.23

High voltage flat top (99% to 99%) ms 1.565 1.565

Pulse flatness during flat top % < ±0.5 ±0.5

Pulse to pulse voltage fluctuation % < ±0.5 ±0.5

Energy deposit in klystron from gun spark J < 20 20

Pulse repetition rate, Hz 5 5

Klystron filament voltage V 9 11

Klystron filament current A 50 60
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and associated components.

3.3.2 Technical Description

The 10 MW L-Band RF power stations for the ILC are installed in the support tunnel, spaced
approximately 38 meters apart. The L-Band Modulator baseline design was developed for the
TESLA Test Facility at DESY, and has been adopted for the European XFEL. Three FNAL
units and 5 commercial units have brought online at DESY starting in 1993. The design has
a series on-off solid state switch with partial capacitor discharge. The ILC unit varies from
this design in two minor ways: (1) A new solid state redundant switch is employed to form
the 1.7 msec output pulse, for better reliability; and (2) the input charger will operate from a
voltage of 8 kV instead of 480 V to eliminate the AC input step-up transformer in the current
design. The modulator specifications and requirements are summarized in Table 3.3-1.

Modulator

11.3 KV
Cap Charger

Power Supply

1:12 Stepup
Pulse XFormer

Low Level
RF Control
and Timing

RF Driver

RF Distribution

Cryomodule 1

Solid State
On-O� Switch
Modulator +

Bouncer

Interlock
–Aux Power–

Controls

11 KV @
1.7msec

XXX AC
Power In

130 KV @
1.7msec

L Band XX
XX MW
Klystron

Cryomodule 2

RF Distribution

Cryomodule 34-2007
8747A17

Capacitor Bank
Charging Supply

100
1400 µF
Main
Capacitor
Bank

2000 µF
Bouncer
Capacitor
Bank

50 µH 3µF

IGBT IGBT

6 x 4.5 kV 
Switches

Klystron

300 µH

1:12 Pulse
Transformer

ZOV

ZOV 160

160

200 µF

200 µF

Undershoot
Clipper
Network

0.2

330 µH

FIGURE 3.3-1. Modulator schematic and L-Band RF station block diagram (1 of 646).

FIGURE 3.3-2. (a) Capacitor stack, (b) Dual IGBT switch, (c) Bouncer choke, (d) Pulse transformer.

The block schematic is shown in Figure 3.3-1. Photos of current prototypes are shown in
Figure 3.3-2. Operation is straightforward: The charger delivers a DC voltage to the storage
capacitors of approximately 11 kV. The modulator main switch is then triggered and held
closed for 1.7 msec. Capacitor current flows through the switch to the step-up transformer
input. At the same time, an auxiliary droop compensation “bouncer” circuit is fired to
maintain the pulse top flat to within ±0.5% during the RF drive period. The slightly above
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High Voltage
Power Supply

Low Level RF
Control & Timing

Driver

CW Klystron

Splitter

Circulator

Splitter

Cavity 1 Cavity 2

Splitter

Cavity 4Cavity 3 2-2007
8747A2

FIGURE 3.3-3. Damping Ring 1.2 MW RF station (1 of 20).

10 kV drive pulse (to compensate for Bouncer voltage) is delivered to the input of the pulse
transformer in order to produce at least 115.7 kV 133.0 A to the klystron for rated 10 MW
peak output.

The Damping Rings have 650 MHz CW stations using 1.2 MW peak power klystrons,
20 in total for 2 rings. Power is supplied from a DC supply of 2.0 MW delivering 50-75 kV
at 17-10 A DC. The RF envelope is controlled by the low level RF and timing to maintain
stability and clearing gaps as needed. The station block diagram is shown in Figure 3.3-3.

3.3.3 Technical Issues

3.3.3.1 L-Band

There are no major technical issues with the L-Band modulator as long as the entire sys-
tem has sufficient overhead (redundancy) to compensate for a failed station. To achieve an
acceptable availability, the linac energy and beam current parameters must be chosen to
provide some RF spare stations. Redundancy of internal components such as IGBT switches
and sectioning of chargers for N+1 redundancy2 is also important. Currently this is only
partially implemented in the prototypes.

The present design which develops the drive pulse at low voltage and high current has
larger losses than would be experienced with a higher voltage design. This is not a major
technical issue, but a cost, size and weight issue. Installation and repair during operations
will be more difficult with multi-ton components such as the transformer and main capacitor-
switch multi-cabinet assembly.

2N+1 design segments a single unit such as a power supply into N parallel or series smaller modules
components plus an additional spare so one module can fail without interrupting operation. N+1 design is
used in stacked or parallel power supplies, capacitors and IGBT’s. Such designs can achieve much higher overall
Availability especially if modules can be exchanged without interrupting operation (Hot Swap capability). This
is only possible in lower voltage units.
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An alternative modulator design is being investigated to address these issues, including
the possibility of significant cost reduction. The design would reduce the overall footprint
and eliminate the step-up transformer and other oil-filled components.

3.3.3.2 Damping Rings 650 MHz

The Damping Ring stations are modeled after similar stations in operation in Italy, Japan and
the US. The power supply systems are very well understood. The only change desired would
be to make them N+1 redundant internally for higher reliability. This will be investigated
and will not have a large cost impact.

3.3.4 Cost Estimation

The L-Band modulator cost model was derived directly from the latest FNAL design, extrap-
olated as needed to fit the ILC specifications. A traditional bottom-up estimate was made
and learning curves applied to first-unit costs for an estimated manufacturing cost. Both
single and dual source factory models were examined, as well as sensitivity to learning curve
assumptions. These costs were also compared with industrial estimates from both Europe
and Japan. In general, the US estimated cost lies between the two offshore commercial es-
timates. Conservative learning curve exponents (“alphas”3) were used for both parts and
labor. Profit and factory support costs were than applied, as well as the staging costs of
preparing the units for installation and final system checkout. These costs were compiled in
M&S and FTE’s. The factory models were documented in detail for each Area subsystem
and given to the responsible managers for the Area rollups.

The modulator and charger costs were based on recent fabrication of units at SLAC in
partnership with LLNL. All parts were recently purchased or fabricated at outside shops, and
small additional extrapolations were made for the total quantities.

The cost of the HV power supply for the Damping Ring CW tubes was estimated based
on recently built PEPII stations at SLAC, and separate estimates from Italy and Japan.
All estimates were in reasonable agreement. The CW power rating needed is 25% lower
than for PEP but there will be some additional cost for the N+1 implementation. Again a
conservative learning curve was applied for 20 units.

3.3.5 Table of Components

Table 3.3-2 shows the modulator component counts in various Areas.

TABLE 3.3-2
Modulator distribution by type and area.

Modulator type Total e− e+ e− e+ e− e+ e− e+

Inj Inj RTML RTML Linac Linac DR DR

10 MW–1.3 GHz–5 Hz 646 13 39 17 17 282 278 0 0

1.2 MW–650 MHz–CW 20 0 0 0 0 0 0 10 10

3“Alpha” refers to the exponential decrease of costs with each doubling of manufacturing volume. For
details see section 6.1.
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3.4 KLYSTRONS

3.4.1 Overview

The accelerating gradient for the ILC main linacs is supplied by superconducting 1.3 GHz
cavities powered by 560 10 MW RF stations, each with a modulator, klystron and RF dis-
tribution system. Another 86 identical klystron/modulator systems are used in the e+ and
e− Sources and RTML bunch compressors. The damping ring RF power is supplied by 650
MHz superconducting cavities powered by 1.2 MW CW klystrons. These are fed from a DC
charging supply and do not have modulators. There are also a few special purpose S-band
RF stations for instrumentation and a 3.9 GHz RF station to power the crab cavities near
the Interaction Point. This section describes the 1.3 GHz and damping ring klystrons.

3.4.2 Technical Description

3.4.2.1 L-Band Klystrons

The 10 MW L-band source in the ILC baseline design is a Multi-Beam Klystron (MBK),
chosen as a result of ten years of R&D for TESLA and the European XFEL. The MBK is a
design approach for linear beam tubes that achieves higher efficiency by using multiple low
space charge (low perveance) beams. This allows MBKs to operate at a lower voltage yet with
a higher efficiency than simpler single round beam klystrons, and provides a cost-effective
and simplified design configuration for the ILC RF systems.

FIGURE 3.4-1. Toshiba E3736 Multi-Beam Klystron.

MBK prototypes have been successfully built for the XFEL by three major electron tube
manufacturers: Thales, CPI and Toshiba. These prototypes were designed for essentially
the same peak RF output power specifications as required at ILC, yet with nearly twice
the duty cycle as required for the XFEL. All of these manufacturers have extensive past
experience in bringing prototype klystrons of state-of-the-art designs into production models,
and they are regarded as fully capable of ramping up and producing the required quantities
of MBKs to meet the delivery schedule for the construction of the ILC. A summary of the
MBK specifications is shown in Table 3.4-1.
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TABLE 3.4-1
10 MW MBK parameters.

Parameter Specification

Frequency 1.3 GHz

Peak Power Output 10 MW

RF Pulse Width 1.565 ms

Repetition Rate 5 Hz

Average Power Output 78 kW

Efficiency 65%

Saturated Gain ≥47 db

Instantaneous 1 db BW >3 MHz

Cathode Voltage ≤120 kV

Cathode Current ≤140 A

Power Asymmetry ≤1%

Lifetime >40,000 hours

3.4.2.2 Damping Ring Klystrons

The CW Klystron used in the damping rings is a frequency scaled version of the 1.2 MW
500 MHz CW klystrons currently operating reliably at SLAC and KEK [43]. Frequency
scaling of klystrons is a common practice in industry, which has a thorough understanding
of the engineering procedures to follow. Therefore, availability of the 650 MHz klystrons is
not considered to be a technical concern.

3.4.3 Technical Issues

3.4.3.1 L-Band Klystrons

The RF design of the MBK klystron has matured through several iterations of design and
testing, and today essentially all aspects of the electrical design are considered solved, in
particular, the choice of resonant frequencies to use for the cavities within the klystron body,
the beam focusing and others [130], [131], [132], [133]. Test results for all three manufacturers
are summarized in Figure 3.4-3.

The three most important technical issues for the MBK are lifetime, manufacturability,
and reliability. Lifetime for linear beam tubes is dominated by cathode performance. Both
the CPI and Toshiba MBKs have gun designs with cathode loading close to 2 A/cm2. For
an M-type dispenser cathode, this low current density corresponds to a lifetime in excess of
50,000 hours. However, this lifetime has to be confirmed by suitable long-term operation
tests. The “lifetime” quoted in Table 3.4-1 is the time during which the klystron can operate
at the design performance specifications.

Construction of the MBK is inherently more complex than that of single-beam klystrons
due to the several linear beam tubes being built into a single vacuum envelope. The number
of braze joints, the fixturing and tooling, and the processes required to successfully construct,
bakeout, and test an MBK are issues that require attention in developing an efficient assembly
procedure that reduces the unit cost.
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FIGURE 3.4-2. (a) CPI VKL-8301 (b) Thales TH1801 (c) Toshiba MBK E3736.

For reliable performance, a robust thermal design of the output circuit (output cavity,
waveguide, and RF window) is important. Since ILC MBK klystrons are being built for the
European XFEL, where they will operate at nearly twice the duty cycle of the ILC, there
will be significant thermal/mechanical margin when operated for ILC specifications. The
XFEL, however, does not require operation at full power, so reliability at 10 MW must also
be demonstrated.

A remaining open issue is that the existing prototypes are vertical klystrons but a hori-
zontal version is required for installation in the tunnel. While this is an engineering challenge,
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DESY is already working with the manufacturers to produce a horizontal klystron for the
XFEL.

An alternate design is being developed to improve on the manufacturability and reliability
of the MBK. The Sheet Beam Klystron (SBK) [133] has fewer parts and processes than an
MBK. It is focused with a periodic permanent magnet (PPM) system and, as a result, is
smaller and weighs less than an MBK.

3.4.4 Cost Estimation

The cost estimate for the MBKs was derived from cost estimates from the manufacturers
themselves, from the actual costs of the prototypes, and from a bottoms-up factory model.
The manufacturers’ estimates have inherent in them a set of assumptions that are company
specific and not transparent to an outside reviewer. These assumptions cover the spectrum
from proprietary processes to corporate policy decisions regarding risk assessment. The actual
costs of prototypes are useful to determine the characteristics of possible learning curves a
company may have used for quantity discounting, and may be useful in benchmarking models
such as those used in the bottoms-up factory model.

The bottoms-up factory model used for the MBK was derived from the model used for
the NLC X-band klystron. It is a comprehensive factory model with explicit assumptions
about variable costs such as yield and learning curves, and fixed costs, such as up-front
costs of tooling and fixturing. Fixed costs are more than 50% of the total cost during the
prototype and pre-production stage of manufacturing, and taper off to 10% during the years
of maximum production rates. The range of estimates from all sources is well within the risk
associated with those estimates.

The cost estimate for the Damping Ring klystrons was based on actual procurement costs
for 1.2 MW klystrons already produced by industry.

3.4.5 Components

TABLE 3.4-2
Klystron requirements by area.

Klystron Main Linac RTML e− source e+ source DRs

1.3 GHz 560 34 13 39 0

650 MHz 0 0 0 0 10
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3.5 RF DISTRIBUTION

3.5.1 Overview

The accelerating gradient for the ILC main linacs is supplied by superconducting 1.3 GHz
cavities powered by 560 10 MW RF stations, each with a modulator, klystron and rf distri-
bution system. Another 86 similar stations are used in the e+ and e− sources and RTML
bunch compressors. The injector stations have slightly fewer cavities (24-25) per RF unit.
This section describes the baseline design for distributing the high-power RF to the cavities.

3.5.2 Technical Description

The high-power L-band RF from each 10 MW klystron is brought to the accelerator cavity
couplers through an RF distribution system (see Figure 3.5-1). The standard linac RF unit
powers 26 nine-cell superconducting cavities filling three cryomodules. The upstream and
downstream cryomodules contain nine cavities each, and the middle one contains eight, with
a superconducting quadrupole magnet replacing the center cavity. This three cryomodule
unit occupies 37.956 m and, at the nominal 31.5 MV/m cavity gradient, provides 846.6 MeV
of acceleration (5◦ off-crest). With a 9 mA beam current, the total power needed in the
cavities is 7.62 MW, so some overhead is included.

TUNNEL 
PENETRATION

KLYSTRON
(10 MW, 1.6 ms)

37.956 m

quadQUAD

MODULATOR
(120 kV, 130 A)

9 CAVITIES

TAP-OFFS OF VARIOUS 
COUPLINGS

3 CRYOMODULES

LLRF

9 CAVITIES4 CAVITIES 4 CAVITIES

ATTENUATORS

WR770
WR650

-5.12 dB 
HYBRIDS

LOADS

FIGURE 3.5-1. RF unit diagram showing the basic waveguide distribution layout between the klystron and
26 cavities in three cryomodules.

The dual outputs of the klystron feed into two waveguides, each carrying half the power,
which run roughly 11 m to the linac through a penetration between the service tunnel and the
main tunnel. High-power in-line attenuators allow more power to be sent through one arm
than the other to accommodate different average gradient capabilities in the sets of cavities
they feed. The penetration emerges approximately at the center of the middle cryomodule of
the unit. Here, a hybrid splitter divides the power in each waveguide with a 4:9 ratio (-5.12
dB). The lower power output of each splitter feeds half the center cryomodule and the higher
power output is carried approximately 6 m to one of the outer cryomodules.

ILC Reference Design Report III-153



TECHNICAL SYSTEMS

Along each cryomodule, RF power is equally distributed among the cavities in a linear
waveguide system, passing through a series of hybrid-style 4-port tap-offs. These tap-offs
couple the appropriate sequential fraction (1/8, 1/7, ...1/2 or 1/4,1/3,1/2) of the power
remaining in the line to all but the last cavity, which is directly fed the remainder. The
nominal power required in each cavity is 293.7 kW. Between the tap-offs, the remainder
of the 1.326 m coupler spacing is filled with modified straight waveguide sections whose
width is symmetrically tapered, with 1/4-wave transformer matching steps, varying the guide
wavelength to roughly yield the proper inter-cavity phasing.

Between each tap-off output and its associated cavity coupler are a circulator, a three-
stub tuner, and a diagnostic directional coupler (see Figure 3.5-2). The three-stub tuner
allows fine adjustment of both cavity phase and external coupling. The circulator, with a
load on its third port (thus technically an isolator), absorbs RF power reflected from the
standing-wave cavity during filling and emitted during discharge. It provides protection to
the klystron and isolation between cavities. A couple of E-plane waveguide U-bends are also
needed to keep the system compact and feed into the downward pointed coupler flange, and
a short semi-flexible section is included to relieve stress and ease alignment tolerances.

FIGURE 3.5-2. Waveguide circuit from tap-off hybrid to coupler input, showing the various components
(except for the directional coupler).

III-154 ILC Reference Design Report



RF Distribution

3.5.3 Technical Issues

3.5.3.1 Waveguide

The bulk of the distribution system consists of aluminum WR650 waveguide (6.50” × 3.25”)
components. This is the standard rectangular waveguide for 1.3 GHz. Larger WR770 waveg-
uide (7.70” × 3.85”), which has 32% lower attenuation, is used, with matched transition
sections, for the long runs through the penetration and to the outer cryomodules in order to
reduce system losses. The remaining loss, estimated at about 6.5%, may be further reduced
by plating the inner walls of waveguide and/or components with copper, which is 22% less
lossy.

The entire waveguide system, from the klystron window to the outer coupler window, is
pressurized with dry nitrogen to a pressure of 3 bar absolute. This prevents RF breakdown
at the klystron window and potential problems in the circulator or elsewhere. It requires
thicker-walled (0.25”) waveguide, but is more economical than evacuating the system and
also avoids multipactoring. The option of using SF6 was considered undesirable due to safety
regulations and the risk of corrosion. Gas loss due to an open connection provides a signal
to disable RF operation as a safety measure during installation and maintenance.

Relative phase changes along an RF unit due to temperature change during installation,
maintenance or operation are at most about 1.1◦ per degree Celsius. This can be easily
controlled with water cooling and insulation on some waveguide runs and components. In
addition to the water cooling required on the loads and circulators, this water removes heat
from the system that would be more expensive to remove from the tunnel air.

As a cost-saving measure, electron-beam welding of waveguide joints is used in place of
expensive waveguide flanges and gaskets where feasible. This is particularly useful for the
penetration waveguide, which cannot be put through in one piece, as it reduces the effective
waveguide cross-section.

3.5.3.2 Tap-offs, Circulators and Tuners

The tap-offs are compact four-port hybrids with WR650 ports of the type used at TTF. Eight
different designs are required, with various coupling fractions: four each with 1/4, 1/3, and
1/2, and two each with 1/9, 1/8, 1/7, 1/6, and 1/5. The 4/13 hybrids providing the 4:9 split
of the power from each klystron arm may be of the same type. Alternatively, a “button type”
hybrid with slight adjustability of the split ratio might be used to provide added flexibility
to tailor the system for unequal cryomodule performance.

The circulators are ferrite-based, with a T-junction configuration that provides a needed
H-plane bend. The third port of this device is matched into a load, which absorbs power
propagating backward, away from the cavity. In addition to being the most expensive com-
ponents in the distribution system, circulators contribute the most loss (2% out of ∼6.5%).
R&D for an alternate distribution system aims at eliminating the need for them [135].

With three degrees of freedom, the three-stub tuner is a complicated tool to use. It is,
however, compact and well tested in TTF. It may be desirable to replace it with an alternate
phase shifter [136], with the movable coupler antenna providing Qext adjustment.

3.5.4 Cost Estimation

The cost estimate for the RF distribution system was derived from cost estimates from com-
ponent manufacturers, from the actual costs of purchased components in small quantities,
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and from a bottoms-up factory model. The estimates from waveguide component manufac-
turers have inherent in them a set of company specific assumptions that are not transparent
to an outside reviewer. However, it is possible to quantify high quantity discounts and learn-
ing curves from a manufacturer if small quantities of a component were already purchased.
The actual costs of purchased components were used in two different ways: 1) to calculate
learning curves and quantity discounts as mentioned above, and 2) to use in bottoms-up
factory models. The bottoms-up factory model approach developed a cost for a single unit
using information from previous experience in constructing components such as loads and
couplers. These costs included material, labor and overhead, and fixturing costs. Once a
completed first unit cost was computed, a learning curve was applied for high quantities.

The difference between the manufacturers’ estimates and the factory model was about
10%. Cost estimates for some components reflected a wide range in capacity and high-volume
manufacturing experience among the three regions.

3.5.5 Components

Table 3.5-1 gives a rough part count for the components in the baseline RF distribution
system of a single RF unit. There are a total of 560 L-Band RF units in the main linacs and
approximately 86 more (some normal conducting) in the injectors and RTMLs.

TABLE 3.5-1
Component count for a single L-Band RF distribution system to 26 Cavities.

Component #/RF Unit Component #/RF Unit

Circulators w/loads 26 H-Plane bends 24

3-stub tuners 26 E-Plane bends 4

Directional couplers 32 E-Plane U-bends 52

Hybrids 24 Meters of WR770 34

Loads 24 Meters of WR650 4

Flex guides 30 WR650-770 trans. 8

Phasing sections 25 Gaskets 306

III-156 ILC Reference Design Report



Cavities

3.6 CAVITIES

3.6.1 Overview

The accelerating gradient in the ILC main linac is supplied by over 16,000 9-cell superconduct-
ing RF cavities, grouped into approximately 12.6 m long cryomodules. Another ∼1200 9-cell
cavities provide acceleration in the sources and bunch compressors. The baseline cavities use
the TESLA design developed at DESY over the past 10 years. The cavities are qualified at
35 MV/m gradient in a vertical test and operated at an average gradient of 31.5 MV/m. At
these gradients, piezo-electric tuners are required to compensate for Lorentz force detuning.

3.6.2 Technical Description

3.6.2.1 Cavity Design

The TESLA 9-cell superconducting cavity was chosen as the baseline design because it has
achieved the highest qualification gradients to date for multi-cell cavities, approximately
within the range required for ILC. There is significant operational experience with these
cavities and it has been demonstrated with beam that accelerating gradients of greater then
30 MV/m are possible after full installation in a cryomodule. Figure 3.6-1 shows examples of
the best vertical test performance for individual cavity structures at DESY (left) and results
for a recent DESY cryomodule assembled with the best collection of high gradient cavities
(right).

 

0 10 20 30 40
Eacc [MV/m]

Q
0

AC70
AC72
AC73
AC78
AC76
AC71
AC81
Z83
Z87

1011

109

1010

 

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8

Cavity Position in Module

E
ac

c[
M

V
/M

]

Vertical
Horizontal
MTS
FLASH

FIGURE 3.6-1. Q0 vs. E curves for the best 9 Cell vertical qualification tests at DESY (left) and data for
a high gradient cryomodule assembled at DESY (right).

Each 9 cell cavity consists of nine accelerating cells between two end group sections.
One end group has a port for coupling RF power from the power source into the structure,
and the other end has a port for a field sampling probe used to determine and control
the accelerating gradient. Each of these ports accepts an electric field antenna required for
qualification and operation. Each end group also has a resonant higher order mode (HOM)
coupler structure with a probe port and small electric field antenna for extracting HOM power
and for diagnostics. In the process of building a cryomodule, these cavity structures are
cleaned, tested and placed in a helium jacket for cooling together with additional peripheral
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components assembled on them (dressing the cavity). A dressed cavity contains one 9-cell
niobium cavity structure, coarse and fine tuners for adjusting the frequency of the structure,
magnetic shielding material to minimize the cavity losses, a variable coupling high power
input antenna for powering the cavity, an electric field sampling antenna and two higher
order mode electric field antennas. Nine of these dressed cavities are usually connected into a
string and are a subcomponent of a superconducting cryomodule. Figure 3.6-2 shows a TTF
cavity undergoing clean assembly for RF qualification. The basic design parameters for this
cavity are listed in Table 3.6-1.

FIGURE 3.6-2. A TTF cavity assembled and prepared for RF qualification testing.

3.6.2.2 Cavity Fabrication

The fabrication of high quality superconducting cavities starts with high quality niobium
materials. The cavity accelerating cells and end group components are fabricated from high
purity, high RRR niobium sheets. The RRR (residual resistivity ratio) value indirectly in-
dicates the purity of the bulk metal as well as interstitial contamination that can affect the
performance of the superconducting properties. An RRR value of 300 is considered desirable
Table 3.6-2 shows the typical properties of niobium sheets considered suitable for ILC. The
transition joints to the helium vessel are fabricated from a lower grade niobium sheet called
“reactor grade” with a RRR value of around 40. The cavity flanges and transitions to the
helium vessel are made from bar or round stock niobium alloy, typically NbTi55. The alloy is
harder and stronger, and it prevents deformation near the vacuum seals and provides strong
transition joints at the cavity connections.

As a final quality assurance check prior to use, the cell material is sometimes eddy-current
scanned to a depth of 0.5 mm into the surface of the sheet material. Cavity cells are tradi-
tionally formed by deep drawing or hydro-forming methods where the sheets are pressed into
dies to form the necessary shapes. These fabrication methods require machining of surfaces
to form the weld joints. All cavity subcomponents are joined by electron beam welding in a
vacuum chamber. This reduces the contamination at the welds and is considered the cleanest
form of joining metals together. Prior to electron beam welding, all subcomponents are in-
spected, degreased then prepared typically by mechanical polishing of surfaces to be welded,
as necessary. The welded components are degreased and chemically etched and rinsed to
remove inclusions and surface contamination from the machining and welding steps. The
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TABLE 3.6-1
ILC 9-Cell superconducting niobium cavity design parameters.

Parameter Value

Type of accelerating structure Standing Wave

Accelerating Mode TM010, π mode

Fundamental Frequency 1.300 GHz

Average installed gradient 31.5 MV/m

Qualification gradient 35.0 MV/m

Installed quality factor ≥1×1010

Quality factor during qualification ≥0.8×1010

Active length 1.038 m

Number of cells 9

Cell to cell coupling 1.87%

Iris diameter 70 mm

R/Q 1036 Ω

Geometry factor 270 Ω

Epeak/Eacc 2.0

Bpeak/Eacc 4.26 mT MV−1m−1

Tuning range ±300 kHz

∆f/∆L 315 kHz/mm

Number of HOM couplers 2

completed cavity has both internal and external chemistry to further remove the damage
layer from the fabrication steps of both welding and handling. A smooth outer surface is

TABLE 3.6-2
Typical properties of high-RRR Niobium suitable for use in ILC cavities.

Element Impurity content Property Value
in ppm (wt)

Ta ≤500 RRR ≥300

W ≤70 Grain size ≈50 µm

Ti ≤50 Yield strength >50 MPa

Fe ≤30 Tensile strength >100 MPa

Mo ≤50 Elongation at break 30%

Ni ≤30 Vickers hardness

H ≤2 HV 10 ≤50

N ≤10

O ≤10

C ≤10
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necessary to provide good thermal contact with the cryogenic bath.
In total about 150-250 µm of niobium material is removed from the interior RF surface

of the cavity through several cleaning steps. After each of these acid etchings the cavity has
a new superconducting RF surface and can have different RF performance and a different
gradient limitation.

The two primary issues with cavity fabrication are quality assurance on the niobium
materials and on the electron beam welds. Niobium materials must be scanned to detect
and eliminate surface defects, and then protected with care throughout the manufacturing
process. Defective material will ultimately limit the gradient performance of a completed
cavity. As with the surface defects, impurities in the welds and heat affected zones next to
welds will also limit the gradient performance. Welds must have a smooth under-bead and
form no surface irregularities, in particular, sharp edges where the weld puddle meets the
bulk material. Defects in the equator welds will limit the gradient by thermal quenches due
to the high magnetic fields there. Thermal mapping of quench locations suggests that they
are typically located at or near the equator region.

3.6.2.3 Cavity Processing

The current technology for preparing cavity surfaces consists of a series of process steps [137]
that: remove niobium material damage incurred during the fabrication process or handling;
remove the chemical residues left over from the material removal steps; remove the hydrogen
from the bulk niobium that has entered during the chemistry steps; remove any particulate
contamination that entered during the cleaning and assembly steps; and close up the cavity
to form a hermetically sealed structure. The following steps are typical of those used to
qualify a cavity structure in a vertical RF test.

Mechanical Inspection: The cavity is mechanically measured with a coordinate mea-
suring machine to compare dimensional measurements against mechanical tolerances identi-
fied on design drawings.

RF Inspection: The cavity fundamental frequency is measured. A bead is pulled
through the beam axis of the cavity to determine and record the stored energy of each cell.
The bead disturbs the fields in each cell as it passes through which changes the frequency by
an amount equal to the stored energy in that cell.

Bulk Chemistry: Both the internal and external surfaces of the cavity are ultrasonically
treated in hot de-ionized water to remove grease from the handling and surface particulates
that have collected since fabrication. The cavity is then internally chemically etched with
electropolishing [138] to remove 150-250 µm of material. The cavity is placed horizontally
into an alignment fixture, which levels the cavity and seals the openings while allowing the
cavity to rotate. A high purity aluminum cathode rod is inserted on the beam axis to pump
cooled electrolyte into each cell of the cavity through a series of holes in the cathode. The
cathode is electrically connected to the negative contact of a DC power supply. The cavity
itself is the anode and is typically connected on the cells to the positive contact of the DC
supply. The electrolyte is a mixture of hydrofluoric and sulfuric acid in a 1:9 or 1:10 parts by
volume respectively. At the start of the process, the cavity is filled to the 60% level covering
the entire cathode with the cavity slowly rotating at ≈1 RPM. The DC power supply provides
a current density of about 50 mA/cm2 and the cavity is polished for approximately 6-7 hours
for an etching depth of 150 µm. Temperatures are monitored during the process to control
the current and etch rate which is 0.4 µm/minute at 30 degrees C. After etching, the cavity is
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rinsed extensively with ultra pure water to remove any chemical residues or chemical safety
hazards.

Heat treatment: After bulk chemistry the cavity is cleaned and dried before inserting
into a vacuum furnace for heat treatment. The chamber is evacuated to ≈10−7 mbar and
the bare cavity is heated to 800 ◦C and soaked at that temperature to remove any excess
hydrogen gained during the chemistry. This additional hydrogen, if not removed, lowers the
cavity Q-value due to formation of a niobium hydride during cool-down, that adds surface
losses. The cavity is then cooled to room temperature and removed from the furnace.

RF Tuning: The cavity is tuned to the correct warm frequency and the stored energy
(field flatness) in each cell equalized. The cells are measured with a bead pull and then
plastically deformed by pulling or squeezing in a mechanical tuner. The cavity is mechanically
adjusted to correct any alignment errors that would affect tuning for field flatness.

Final Chemistry: The final internal chemistry refreshes the niobium surface by elec-
tropolishing removal of 10-30 µm of material. The processing steps are the same as for the
bulk chemistry although the processing time is much shorter. After the standard water rins-
ing, additional steps should be taken to remove any sulfur particulates from the surface and
several methods are now under evaluation.

High Pressure Rinsing: The cavity is inserted vertically into the high pressure rinse
(HPR) [139] system where a wand is moved slowly through the beam axis of the cavity and the
cavity is rotated. The head of the wand has small diameter nozzles tilted at angles through
which high pressure ultra pure water is sprayed. A water pressure to the wand of 80-100 bar
produces up to 40 N of force on the surface at impact. The wand is repeatedly moved up and
down spraying all surfaces of the cavity with water to remove surface particulates which are
attached on the cavity interior. The HPR process is considered the most effective cleaning
method to remove surface contamination.

First Assembly: Assembly takes place in a Class 10 cleanroom, where the cavity has
been left open to air dry over night. Once the cavity has dried, cleaned subcomponents are
carefully attached to the cavity by hand. Each flange connection is sealed using a diamond
shaped aluminum alloy gasket that is crushed between flange faces with high line loading
forces. High strength bolts and nuts with washers provide the force necessary to crush the
seal. All subcomponents are assembled to the cavity except the bottom beam-line flange to
allow for the second high pressure rinse.

Second HPR: The second rinse is typically longer then the first rinse and is necessary to
remove any additional particulates that have entered during the assembly steps, either from
the personnel, the cleanroom environment, or the subcomponents. The cavity is removed
from the HPR system after the rinse is completed and is moved to the Class 10 area to dry
again overnight, this time with only the lower beam-line flange open.

Second Assembly: The bottom beam-line flange is connected to the cavity. It typically
has an isolation vacuum valve with pump-out port and an RF input probe to power the
cavity. The cavity is now hermetically sealed and ready for evacuation.

Cavity Evacuation: The cavity pump-out port is connected to a vacuum pump and
evacuated. The pump system usually has a turbo molecular pump with a scroll type dry
mechanical backing pump. The cavity is pumped overnight and the following day tested for
vacuum leaks by spraying the cavity flange joints with helium gas and using a residual gas
analyzer on the vacuum system to detect helium.

120◦C Vacuum Bake: To improve the high field Q-value, the cavity is baked at 120
degrees C for 12-24 hours while actively being pumped by the vacuum system. After being
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cooled to room temperature, the cavity is ready for RF testing.
RF Qualification Testing: The cavity is mounted vertically into a cryogenic test stand,

RF cables are connected to the cavity probes and the stand is inserted into a cryogenic dewar.
The dewar is cooled to 4.2 K by helium gas and liquid is collected to fill the dewar. The
dewar is pumped down, lowering the temperature to 2.0 K where the cavity is RF tested
to determine its gradient, Q-value and limitations. Once testing is complete, the dewar
is warmed up to room temperature and the stand with cavity is removed. With existing
technology and infrastructure, this cryogenic cycle usually takes about 2 days at DESY, and
about 4 to 5 days at KEK.

3.6.2.4 Peripheral Components

The DESY variable input coupler has been chosen as part of the baseline cavity design. This
coupler features two ceramic RF windows as wells as two bellows which allow the center
conductor to be mechanically moved into or out of the cavity structure thus changing the
RF coupling of klystron power to the cavity. Further R&D will focus on reducing the cost of
construction and adapting it to large scale production in industry.

The ILC cavities have both a mechanical coarse tuner and a piezo electric fine tuner.
There are several viable designs for both the mechanical and the piezo electric tuners such
as the blade tuner (mechanical). Currently no tuner has been chosen for the baseline design,
and R&D is required to determine the reliability and installed performance of current designs.

The ILC cavities use a DESY style helium vessel made from titanium, which is thermally
matched to the cavity material to avoid distortion of the cavity shape during cool down.

3.6.2.5 Cavity Performance Requirements

The ILC cavities must meet specific requirements on accelerating gradient and Q-value, both
in the vertical qualification test and after assembly in a cryomodule. For the vertical test, each
cavity must achieve 35MV/m gradient with a Q-value of 0.8×1010 or greater. The Q-value is
a ratio of the stored energy within the cell structure to the losses dissipated in the cell walls.
Lower Q-values increase the heat load to the cryogenic system. A cavity assembled within
a cryomodule must reach 31.5MV/m on average, with a Q-value of 1 × 1010. The installed
gradient and Q-value requirements are believed to be achievable with current fabrication
and processing techniques. The vertical test gradient requirement is higher then that of the
cryomodule in order to increase the success rate of assembled cryomodules. The performance
of a cryomodule can be limited by additional system variability and administrative interlocks
for the protection of peripheral components as well as from the cavity. The baseline design of
ILC has been developed under the assumption that cavities qualified at 35MV/m will meet
the requirement of 31.5MV/m on average once installed in a cryomodule, with overheard to
compensate for microphonics and for limitations from weaker cavities powered by the same
RF source.

With current fabrication and process procedures, cavities have a large spread in gradient
and Q-value performance and do not reliably reach 35MV/m in the vertical tests. The
primary issue is the magnitude and onset of field emission, which lowers the Q-value below
specification. Field emission is typically caused by surface contamination located in regions
of high electric field. Electrons emitted from the contamination site bombard other cavity
surfaces, increasing surface heating and surface losses, thus lowering the cavity Q-value at
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that gradient. Once field emission starts, it is typically stable and the Q-value continues to
drop with increasing gradient.

When not dominated by field emission, the high gradient performance of a cavity is
typically limited by a thermal magnetic quench of the niobium material. Quenches can
be caused by a variety of surface defects such as bad welds, lossy oxides and imbedded
materials entering during fabrication or handling, or even by field emitted electrons from
surface contamination.

The highest priority for ILC accelerator cavity R&D is to increase the success rate in
producing cavities that reach the required performance. Increased quality control of the
processing and assembly steps is expected to address the field emission issues which currently
appear to dominate the limitation and variation of cavity performance. Better control of
the process variables are being pursued through a global R&D effort. Current emphasis is
on understanding and improving the electropolishing process. To reach the desired gradient
and Q-value, a high level of quality control must be implemented for the preparation of
material used in cavity fabrication, throughout the fabrication of the structures, and during
the cleaning and assembly processes.

FIGURE 3.6-3. A low loss nine cell prototype RF structure under development.

3.6.2.6 Alternative Cavity Designs

Alternative cavity shapes and fabrication materials are being studied that could potentially
reduce the cost of fabrication or increase the achievable gradient. If successful, either could
significantly reduce the ILC cost.

By slightly changing the shape of the cavity cell walls, it is possible to reduce the peak
magnetic flux on the walls and allow the cavity to reach higher accelerating gradients before
reaching a critical field limit on the niobium surface and starting to quench. New cavity shapes
have been successfully tested as single cell structures up to gradients of 50MV/m at both
Cornell University, with a reentrant shape [141], and at KEK with the “Ichiro” design [142].
Figure 3.6-3. shows a low loss nine cell prototype RF structure. However, the cavity shape
affects many other operational parameters such as the effectiveness of higher order mode
damping, multipactoring, shunt impedance, peak electric fields, energy dissipation, beam
impedance and mechanical properties since a different aperture size is to be adopted. These
aspects must be reoptimized.
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Recent niobium material studies at Jefferson Lab have led to new methods for cavity
fabrication using either large grain or single crystal niobium. These new materials may lead
to significant cost savings in cavity preparation as well as simplification of the processing
procedures.
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3.7 CRYOMODULES

3.7.1 Overview

The accelerating gradient in the ILC main linac is supplied by over 16,000 9-cell supercon-
ducting RF cavities. These cavities are grouped into approximately 1,700 12.7 m long cry-
omodules. Each cryomodule holds nine cavities, their supporting structure, thermal shields,
associated cryogenic piping, and the insulating vacuum vessel. Every third cryomodule in
the main linac contains a superconducting quadrupole/corrector/BPM package in place of
the center cavity. Another 150 cryomodules are located in the e+ and e− sources and RTML
bunch compressors. Most of these are the standard linac configuration of 9 cavities or 8
cavities plus quad. A few have special configurations of cavities and quadrupoles.

3.7.2 Technical Description

The cryomodule design is a modification of the type developed and used in the TESLA
Test Facility (TTF) at DESY, with three separate vacuum envelopes. The ILC cryomodules
contain either nine 9-cell cavities or eight cavities plus a quadrupole package, and have a
uniform length of 12.652 m. The cavity spacing within this modified cryomodule is (6-1/4)
λ0 = 1.327 m. This facilitates powering the cavities in pairs via 3 db hybrids with reflection
cancelation in an alternate distribution scheme that may allow the elimination of circulators.
Present day accelerators with superconducting RF cavities typically have many separate
cryogenic supply boxes and associated warm-to-cold transitions, which represent a significant
fraction of the cost. The concept adopted for the ILC is to significantly reduce this number
by having a single long continuous string of about 2.5km—called a cryogenic unit—which is
connected to one cryogenic supply box at the beginning and one end box.

2K 
HGRP

2.2K 
SUPPLY

5K 
SUPPLY

40K 
SUPPLY

2K 2-Phase

BEAM 
AXISCOOL DOWN

WARM UP

8K 
RETURN

80K 
RETURN

Type 4 Cryomodule

FIGURE 3.7-1. Representative Cryomodule Cross-Section.
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3.7.3 Technical Issues

3.7.3.1 The Cryomodule

Figure 3.7-1 shows a cross-section of a TTF-III cryomodule [2]. The 300 mm diameter
helium gas return pipe (GRP) is the main support structure for the string of cavities and the
quadrupole package. The GRP is supported from above by three posts which provide the
necessary thermal insulation to room temperature. The posts are fastened to large flanges on
the upper part of the vacuum vessel by adjustable suspension brackets, allowing the axis of
the cavities and quadrupoles to be correctly aligned, independent of the flange position. The
support system is designed to allow the GRP to contract/expand longitudinally with respect
to the vacuum vessel during thermal cycling. The center post is fixed to the vacuum vessel,
while the two end brackets can move in the axial (z) direction to accommodate differential
shrinkage. A post consists of a fiberglass pipe terminated by two shrink-fit stainless steel
flanges. Two additional shrink-fit aluminum flanges are provided to allow intermediate heat
flow intercept connections to the 5-8 K and 40-80 K thermal shields; the exact location of
these flanges has been optimized to minimize the heat leakage [143].

Each of the cavities is encased in a titanium helium vessel, supported by the GRP by
means of stainless steel brackets connected to four titanium pads on the helium vessel itself;
each bracket is equipped with a longitudinal sliding mechanism and adjusting screws and
pushers for alignment. A mechanical, coaxial (blade) and a piezo-electric tuner are mounted
to the vessel. The inter-cavity spacing—which accommodates RF- and HOM-couplers and
a flanged interconnecting bellows—amounts to 291 mm. Manually operated valves required
by the clean-room assembly terminate the beam pipe at both module ends. The valves are
fitted with simple RF shields.

During cool down the two ends of the ∼12 m long gas return pipe move by up to 18mm
toward the center of the module. To keep the cold input coupler head of each cavity fixed
longitudinally within an accuracy of 1 mm, each cavity is anchored to a long invar rod
attached to the longitudinal center of the gas return pipe. The beam pipe interconnection
between the cryomodules consists of a 0.38 m long section that incorporates a Higher Order
Mode (HOM) absorber, a bellows, and a vacuum pumping port; the latter connected to a
flange in the vacuum vessel every ninth cryomodule.

The cryostat includes two aluminum radiation shields operating in the temperature range
of 5-8K and 40-80K respectively [144]. Each shield is constructed from a stiff upper part
(divided into two halves), and multiple lower sections (according to the number of the cold
active components, e.g. cavities, magnets). The upper parts are supported by the interme-
diate flanges on the fiberglass posts; they are screwed to the center post but can axially slide
on the other two posts, to which they are still thermally connected. The ‘finger welding’
technique [145] is used both to connect each thermal shield to its properly shaped aluminum
cooling pipe, and the lower shield parts to the upper ones.

Blankets of multi-layer insulation (MLI) are placed on the outside of the 5-8 K and the
40-80 K shields. The 5-8 K shield blanket is made of 10 layers while the 40-80 K blanket
contains 30 layers. In addition the cavity and quadrupole helium vessels, gas return pipe
and 5-8 K pipes are wrapped with 5 layers of MLI to reduce heat transfer in the event of a
vacuum failure.

The cryostat outer vacuum vessel is constructed from carbon steel and has a standard
diameter of 38”. Adjacent vacuum vessels are connected to each other by means of a cylindri-
cal sleeve with a bellows, which is welded to the vessels during installation. Radiation shield
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bridges are also provided. In the event of accidental spills of liquid helium from the cavity
vessels, a relief valve on the sleeve together with venting holes on the shields prevent exces-
sive pressure build-up in the vacuum vessel. Wires and cables of each module are extracted
from the module using metallic sealed flanges with vacuum tight connectors. The insulating
vacuum system is pumped during normal operation by permanent pump stations located at
appropriate intervals. Additional pumping ports are available for movable pump stations,
which are used for initial pump down, and in the event of a helium leak. The RF power
coupler needs an additional vacuum system on its room temperature side; this is provided by
a common pump line for all couplers in a module, which is equipped with an ion getter and
a titanium sublimation pump.

The following helium lines [146] are integrated into the cryomodules:

• The 2 K forward line transfers pressurized single phase helium through the cryomodule
to the end of the cryogenic unit.
• The 2 K two phase supply line (made from titanium) is connected to the cavity and

magnet helium vessels. It supplies the cavities and the magnet package with liquid
helium and returns cold gas to the 300 mm GRP at each module interconnection.
• The 2 K GRP returns the cold gas pumped off the saturated He II baths to the refrig-

eration plant. It is also a key structural component of the cryomodule
• The 5-8 K forward and return lines. The 5K forward line is used to transfer the He

gas to the end of the cryogenic unit. The 5-8 K return line directly cools the 5-8 K
radiation shield and, through the shield, provides the heat flow intercept for the main
coupler and diagnostic cables, and the higher-order mode (HOM) absorber located in
the module interconnection region.
• The 40-80 K forward and return lines. The 40 K forward line is used to transfer He gas

to the cryogenic unit end and cools the high temperature superconductor (HTS) current
leads for the quadrupole and correction magnets. The 40-80 K return line directly cools
the 40-80K radiation shield and the HOM absorber and, through the shield, provides
an additional heat flow intercept for the main coupler and diagnostic cables.
• The warm-up/cool-down line connects to the bottom of each cavity and magnet helium

vessel. It is used during the cool down and warm up of the cryostat.

The helium lines connected to the cavities and the magnets withstand a pressure of 4 bar;
all other cryogenic lines withstand a pressure of 20 bar. The helium lines of adjacent modules
are connected by welding, as was done for the HERA superconducting magnets. Transition
joints (similar to those used in the HERA magnets) are used for the aluminum to stainless
steel transition on the thermal shield cooling lines. The cryostat maintains the cavities and
magnets at their operating temperature of 2 K. A low static heat load is an essential feature of
the cryostat design; the total heat load is dominated by the RF losses, and is thus principally
determined by cavity performance. Table 3.7-1 lists the heat loads for an RF unit scaled from
the 12-cavity cryomodule heat loads calculated for TESLA and documented in the TESLA
TDR. For the scaling to the ILC, it was assumed that the gradient is 31.5 MV/m, the cavity
Q0 is 1× 1010, and the beam and RF parameters are those listed in section 2.6.

Most losses occur at lower frequencies where the conductivity of the superconducting
surfaces is several orders higher than that of normal conducting walls. Part of this power is
extracted by input- and HOM-couplers, but high frequency fields will propagate along the
structure and be reflected at normal and superconducting surfaces. In order to reduce the
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TABLE 3.7-1
Heat loads for one RF unit of 3 cryomodules with 26 cavities. All values are in watts.

2 K 5-8 K 40-80 K

Static Dynamic Static Dynamic Static Dynamic

RF Load 22.4 4.2 97.5

Supports 1.8 0.0 7.2 18.0

Input coupler 1.6 0.5 4.4 4.0 46.5 198.2

HOM coupler (cables) 0.0 0.6 0.9 5.5 5.5 27.1

HOM absorber 0.4 0.0 9.4 1.6 9.8 32.6

Beam tube bellows 1.1

Current leads 0.9 0.9 1.4 1.4 12.4 12.4

HOM to structure 3.6

Coax cable (4) 0.2

Instrumentation taps 0.2

Diagnostic cable 4.2 7.4

Sum 5.1 29.0 31.7 12.5 177.6 270.3

losses at normal conducting surfaces at 2 K and 4 K, the cryomodule includes a special HOM
absorber that operates at 70 K, where the cooling efficiency is much higher. The absorber
basically consists of a pipe of absorbing material mounted in a cavity-like shielding, and
integrated into the connection between two modules. As the inner surface area of this absorber
(about 280 cm2) is small compared to that of all the normal conductors in one cryomodule,
the absorber has to absorb a significant part of all the RF power incident upon it. In field
propagation studies, which assume a gas-like behavior for photons, it has been shown that
an absorber with a reflectivity below 50% is sufficient. Theoretical and experimental studies
have suggested that the required absorption may be obtained with ceramics like MACOR or
with artificial dielectrics.

The ambient magnetic field in the cavity region must not exceed 0.5 µT to preserve the low
surface resistance. The magnetic field tolerance is achieved by demagnetizing the vacuum
vessel before assembly of the cryomodule, and placing a passive shield made of Cryoperm
around each cavity’s helium vessel.

3.7.3.2 Quadrupole/Corrector/BPM Package

The quadrupole/corrector/BPM package is discussed in Section 2.6. An important feature
that must be addressed is the package fiducialization and subsequent transfer of these features
to reproducible, external cryomodule fiducials to assure the correct alignment of the package
with respect to the cryomodule string.

3.7.3.3 Damping Ring and Beam Delivery Cryomodules

The damping ring accelerating RF is single 650 MHz cavities in individual cryomodules. The
beam delivery also uses superconducting crab cavities with individual cryomodules. This
system is discussed in Section 2.4.
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3.7.3.4 Shipping of Cryomodules

To date, no engineering design to facilitate the shipping of completed cryomodules exists. It
is essential that a reliable method be developed and incorporated into the ILC cryomodule
deign.

3.7.4 Cost Estimation

The cryomodules represent nearly one third of the total ILC project cost. Cost studies have
been conducted in all three regions , Americas, Asia and Europe. Much of the original effort
relied on the TESLA TDR costing as a basis for comparison. However, independent regional
studies and the cost study for the XFEL have proved useful in improving the reliability of
the ILC cost numbers.

Significant effort has been expended to understand the cost drivers for cryomodules. The
cavities are the largest item, with over 40% of the cryomodule cost for cavity fabrication,
processing, dressing and qualification. The next largest items are the power couplers, the
helium vessel fabrication, the quad package and the tuners, which represent another 30%. It
is anticipated that joint studies between ILC engineers and designers and industrial partners
utilizing design for manufacture methodology and value engineering principles will lead to
significantly reduced cryomodule component and assembly costs.

3.7.5 Table of Cryomodule Types

The different cryomodule types and required quantities of each type are listed in Table 3.8-1.
As can be seen in this table, there are basically four types of cryomodules required for the
1.3 GHz portion of the ILC.
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3.8 CRYOGENIC SYSTEMS

3.8.1 Overview

With superconducting equipment throughout the ILC, cryogenic systems of extensive size and
capacity will be required. Superconducting RF cavities operating at 2 Kelvin in the main
linacs are the primary accelerating structures in the ILC and comprise the largest cryogenic
cooling load. Although not as extensive, the positron and electron sources, damping rings,
RTML, and beam delivery systems include a large number and variety of superconducting
RF cavities. Table 3.8-1 summarizes the numbers of various types of superconducting RF
modules in the ILC.

In addition to the RF modules listed in Table 3.8-1, there are a variety of superconducting
(SC) magnets in the ILC. About one third of the 1.3 GHz cryogenic modules contain SC
magnets. As part of the positron source, the electron linac includes about 150 meters of
SC helical undulators in 2 to 4 meter length units. The Damping Rings have 8 strings of
superconducting wiggler magnets, and there are special SC magnets in the sources, RTML,
and beam delivery system.

FIGURE 3.8-1. The overall layout concept for the cryogenic systems.

Figure 3.8-1 illustrates the concept for the cryogenic system arrangement in ILC. Ten large
cryogenic plants with 2 Kelvin refrigeration cool the main linac, RTML and the electron and
positron sources. Three smaller cryogenic plants with mostly 4.5 K loads cool the damping
rings and beam delivery system.

3.8.2 Technical Issues

3.8.2.1 Cryogenic System Definition

The ILC cryogenic systems are defined to include cryogen distribution as well as production.
Thus, components of the cryogenic system include the cryogenic plants, distribution and
interface boxes, transfer lines, and non-magnetic, non-RF cold tunnel components. Although
cryomodules, SC magnets, and production test systems also include significant cryogenics,
those are not considered in this section of the RDR.
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TABLE 3.8-1
Superconducting RF modules in the ILC, excluding the two 6-cavity energy compressor cryomodules located
in the electron and positron LTRs

Cryomodules Total
(cavities/cryomoule) 8-C 9-C 8-C 6-C 1-C 2-C
(quads/cryomodule) 1-Q 0-Q 2-Q 6-Q
(frequency, MHz) 1300 1300 1300 1300 1300 650 3900

Main Linac e− 282 564 846

Main Linac e+ 278 556 834

RTML e− 18 30 48

RTML e+ 18 30 48

e− source 24 24

e+ booster 12 6 4 22

e+ Keep Alive 2 2

e− Damping Ring 18

e+ Damping Ring 18

Beam Delivery System 2

Total 634 1180 6 4 1824 36 2

3.8.2.2 Cryogenic Cooling Scheme for the Main Linac

Main linac cryogenic modules each containing eight (with magnet package) or nine (without
magnet package) nine-cell niobium cavities, cold helium pipes, and thermal shields are the
dominant load to be cooled by the cryogenic system. The magnet package, in one third of
the cryomodules, includes a superconducting quadrupole and corrector magnets. The ILC
cryomodule design for the 1.3 GHz RF is based on the TESLA Test Facility (TTF) type III
design [2] which contains all the cryogenic pipework inside its vacuum enclosure. There are
approximately 23 km of 1.3 GHz cryomodules including main linac, RTML, and sources.

Series architecture is mostly used in the cryogenic unit cooling scheme. Like for the
TESLA cryogenic concept, saturated He II cools RF cavities at 2 K, and helium gas cooled
shields intercept thermal radiation and thermal conduction at 5 - 8 K and at 40 - 80 K. A
two-phase line (liquid helium supply and concurrent vapor return) connects to each helium
vessel and connects to the major gas return header once per module. A small diameter
warm-up/cool-down line connects the bottoms of the He vessels.

A subcooled helium supply line connects to the two-phase line via a Joule-Thomson valve
once per string (typically 12 modules). The 5 K and 40 K heat intercepts and radiation
screens are cooled in series through an entire cryogenic unit of up to 2.5 km in length. For
the 2 K cooling of the RF cavities, a parallel architecture is implemented with the parallel
cooling of cryo-strings resulting in operational flexibility. Consequently, each cryogenic unit
is subdivided into about 14 to 16 cryo-strings, each of which corresponds to the 154 meter
length elementary block of the cryogenic refrigeration system.

Figure 3.8-2 shows the cooling scheme of a cryo-string, which contains 12 cryomodules.
The cavities are immersed in baths of saturated superfluid helium gravity filled from a 2 K
two-phase header. Saturated superfluid helium is flowing all along the two-phase header
for filling the cavities and phase separators located at both ends of the two-phase header.
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Cryo-string (12 cryomodules, ~154 m)

Two-phase Header

Cryomodule Slope
H

Line F
(80 K, 1.8 MPo)

(40 K, 2 MPo)

(8 K, 0.5 MPo)

(5 K, 0.55 MPo)

(2.2 K, 0.12 MPo)

Coupler & Adsorber
Heat Intercepts

Heater
Temperature

Sensor
SC Level
Sensor

Screens
or Shields

Current Lead
Heat Intercepts 9 Cell Cavity

Line B
(2 K, 3.1 MPo)
(Pumping Return)

Line E

Line D

Line C

Line A

Quadrupole

LT

LT

TT

TT TT

CD CD

JT

LT
LT

TT

JT

H

LT

H
2-2007

8747A1

FIGURE 3.8-2. Cooling scheme of a cryo-string.

The first phase separator is used to stabilize the saturated liquid produced during the final
expansion. The second phase separator in used to recover the excess of liquid, which is
vaporized by a heater. At the interconnection of each cryomodule, the two-phase header is
connected to the pumping return line.

The division of the Main Linac into cryogenic units is driven by various plant size limits
and a practical size for the low pressure return pipe. A cryogenic plant of 25 kW equivalent
4.5 K capacity is a practical limit due to industrial production for heat exchanger sizes
and over-the-road shipping size restrictions. Cryomodule piping pressure drops also start to
become rather large with more than 2.5 km distances. Practical plant size and gas return

FIGURE 3.8-3. Lengths and typical arrangement of modules in the electron Main Linac.
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FIGURE 3.8-4. Two-phase helium flow for level and for sloped systems.

header pressure drop limits are reached with 192 modules in a 16-string cryogenic unit,
2.47 km long. Five cryogenic units divide the main linac conveniently for placing the positron
source undulators at 150 GeV. Figure 3.8-3, illustrates the division of the main linac into
strings and units.

3.8.2.3 Liquid Helium Management in 1.3 GHz Modules

As the ILC site has not yet been selected, the cryogenic system concept must accommodate
different configurations of tunnel and civil works. The tunnel may follow the earth’s curvature
or be laser-straight with a maximum slope of up to 0.6% creating large elevation differences.
To avoid harmful instabilities, all fluid should ideally be transported over large distances
in a mono-phase state. Local two-phase circulation of saturated liquid can be tolerated
over limited lengths, within a controlled range of vapor quality. Figure 3.8-4 illustrates two
methods of liquid management in the two-phase supply pipe for main linac cryogenic modules,
one case for a sloped system and the other for a level system.

3.8.2.4 Sources, Damping Rings, and Beam Delivery Systems

As listed above in Table 3.8-1, electron and positron sources each include just over 20 SRF
modules containing 1.3 GHz RF cavities cooled to 2 Kelvin. The sources also include several
superconducting magnets, as well as about 150 meters of superconducting positron source
undulators. These undulators are cooled by one of the cryogenic plants in the electron linac
cryogenic system. The electron and positron source linacs are also cooled from main linac
cryogenic plants, as illustrated in Figure 3.8-1.

Damping ring cryogenic loads include 4.5 K superconducting wigglers, 4.5 K 650 MHz
cryomodules, associated cryogenic distribution systems, and 70 K thermal shields for all of
these. Two cryogenic plants serve the damping rings.
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TABLE 3.8-2
Main Linac heat loads and cryogenic plant size.

40-80 K 5-8 K 2 K

Predicted module static heat load (W/mod) 59.19 10.56 1.70

Predicted module dynamic heat load (W/mod) 94.30 4.37 9.66

Modules per cryo unit 192 192 192

Non-module heat load per cryo unit (kW) 1.0 0.2 0.2

Total predicted heat per cryo unit (kW) 30.47 3.07 2.38

Efficiency (fraction Carnot) 0.28 0.24 0.22

Efficiency (Watts/Watt) 16.45 197.94 702.98

Uncertainty & overcapacity factor (Fo) 1.54 1.54 1.54

Heat Load per Cryo Unit including Fo (kW) 46.92 4.72 3.67

Installed power (kW) 771.7 934.9 2577.6

Installed 4.5 K equivalent (kW) 3.5 4.3 11.8

Percent of total power at each level 18.0 21.8 60.2

Total operating power for one cryo unit based on predicted heat (MW) 3.34

Total installed power for one cryo unit (MW) 4.33

Total installed 4.5 K equivalent power for one cryo unit (kW) 19.57

The beam delivery system has one 3.9 GHz cryomodule (containing two cavities) on
each side of the interaction point, superconducting final focus quadrupoles, and other special
superconducting magnets spaced several hundred meters from the IR. One cryogenic plant
serves both sides of the interaction region. This plant could also serve the cryogenic needs of
the detectors, but that aspect of these cryogenic systems is not considered here.

3.8.2.5 Heat Loads and Cryogenic Plant Power

Table 3.8-2 shows the predicted heat load for a typical Main Linac Cryogenic Unit. This
table lists a combined uncertainty and overcapacity factor, Fo, which is a multiplier of the
estimated heat loads. The factor Fo is used to estimate a total required cryogenic plant
capacity as follows. Installed cryogenic capacity = Fo × (Qd + Qs), where Fo is overcapacity
for control, off design operation, seasonal temperature variations, and heat load uncertainty.
Qd is predicted dynamic heat load, and Qs is predicted static heat load. Note also that
cryogenic plant efficiency is assumed to be 28% at the 40 to 80 K level and 24% at the 5 to
8 K temperature level. The efficiency at 2 K is only 20%, however, due to the additional
inefficiencies associated with producing refrigeration below 4.2 Kelvin. All of these efficiencies
are in accordance with recent industrial conceptual design estimates.

A similar analysis has been done for the sources, damping rings, and beam delivery system
in order to estimate size requirements for each. (RTML cooling is included with the main
linac.)

Table 3.8-3, below, lists the estimated heat loads and required cryogenic plant size for the
damping rings.

Table 3.8-4 summarizes the required capacities of the cryogenic plants for the different
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TABLE 3.8-3
Damping Ring cryogenics (per ring, two total).

Units Value

Total predicted 4.5 K heat W 1660

Total predicted 4.5 K liquid production (for current leads) grams/sec 0.80

Total predicted 70 K heat W 5080

Uncertainity and overcapacity (total combined) Margin 1.54

Installed power MW 1.13

Cryogenic plant capacity (converted to 4.5 K equiv) kW 3.45

area systems. The maximum required plant capacities (equivalent at 4.5 K) are comparable
with the present state of the art cryogenic plants used in the Large Hadron Collider [3]. Total
installed power for the cryogenic system is 48 MW, with an expected typical operating power
of 37 MW.

TABLE 3.8-4
ILC cryogenic plant sizes (sources listed separately here, but may be combined with Main Linac).

Installed Total Operating Total
# of Plant Size Installed Power Operating

Area Plants (each) Power (each) Power
(MW) (MW) (MW) (MW)

Main Linac + RTML 10 4.35 43.52 3.39 33.91

Sources 2 0.59 1.18 0.46 0.92

Damping Rings 2 1.26 2.52 0.88 1.76

BDS 1 0.41 0.41 0.33 0.33

Total 47.63 36.92

If the tunnel is located near the surface, i.e. with depth of access shafts smaller than
30 m, the entire cryogenic plant can be installed above ground. If the tunnel is deep, certain
components must be installed at tunnel level because of the hydrostatic pressure loss.

3.8.2.6 Helium Inventory

As illustrated in Figure 3.8-5, most of the helium inventory consists of the liquid helium
which bathes the RF cavities in the helium vessels. The total helium inventory in ILC will be
roughly equal to that of the LHC at CERN, about 650,000 liquid liters, or about 100 metric
tons.

3.8.3 Cost Estimation

The cryogenic system cost estimate has been generated based on experience in procurement
of cryogenic plants and equipment at Fermilab, CERN, DESY, and other laboratories.
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FIGURE 3.8-5. Helium mass in a module.

TABLE 3.8-5
Main Linac helium inventory.

Volumes Helium Inventory
(liquid liters Tevatron LHC Cost
equivalent) Equiv. Equiv. (k$)

One module 370

String 12 modules 4,500 0.1 13.4

Cryogenic unit 14-16 strings 68,000 1.1 0.1 203.6

ILC Main Linacs 2x5 cryo units 680,000 11.3 0.9 2,037
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3.9 LOW LEVEL RF CONTROLS

3.9.1 Overview

The Low-Level RF system (LLRF) controls the phase and amplitude of the RF cavities used
to accelerate the beam, and is essential for stable and reliable beam operation. The LLRF
includes feedback and feed-forward, exception handling and extensive built-in diagnostics
with suitable speed and accuracy. Each of the ∼650 L-Band RF units in the main linacs,
sources and bunch compressors have a LLRF controller, as do the damping ring RF stations.
LLRF also controls the crab cavities in the beam delivery and various RF diagnostic devices.

A primary challenge for the ILC LLRF is the large number of cavities driven by a single
klystron. The LLRF controls the vector-sum of all cavities as well as controlling the individual
cavities. Most of the needed requirements have been demonstrated in the LLRF systems in
operation at the FLASH facility at DESY [148]. The DESY LLRF uses state-of-the-art
technologies for digital control of the operational parameters. Similar systems are being
implemented at FNAL and KEK.

3.9.2 Technical Description

The performance requirements for the LLRF are set by the gradient desired from the cavities
and by the stability required for beam parameters such as energy and energy spread, both
bunch to bunch and pulse to pulse. There are also stringent requirements on the bunch
compressor RF to set the arrival time of the beams at the IP, and on the crab cavity RF to
fix the beam position at the IP.

Three issues of particular importance for the ILC LLRF are:

1. Lorentz force detuning: The radiation pressure of the electromagnetic field during the
RF pulse deforms the cavity and pulls it off resonance. The static detuning (∆f) due
to the Lorentz forces is proportional to the square of the accelerating field (Eacc) and
is approximately 600 Hz [149] for operation at design gradient in the main linac (31.5
MV/m).

To maximize the RF power efficiency, and to reduce the electric fields at the cavity
input coupler, it is essential to cancel the Lorentz force detuning by a fast frequency
tuner (for example, piezoelectric actuators).

2. Microphonics: External mechanical vibrations can be transferred to the cavities via the
supporting system within the cryostat. Modulation of the resonant frequency due to
microphonics is estimated to be ∼10 Hz rms. This modulation is not correlated to the
macro pulse and therefore can only be corrected by the feedback system.

3. Beam loading: The beam loading by individual bunches is about 0.15% at design
bunch charge, which is considered acceptable. However, slow bunch charge fluctuations
within the bandwidth of the RF system cause cavity vector disturbances that need to
be controlled on the order of 0.05% at each station as the bunch charge fluctuations are
correlated through the accelerator chain. Bunch charge is measured in the DRs and
processed by the LLRF to create a correction feedforward term before beam is injected
into the linac.

The RF systems in the main linacs and RTML require tight field control on the order of up
to 0.07% for amplitude errors and 0.35◦ for the phase. Due to microphonics, the measurement
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TABLE 3.9-1
Summary of tolerances for phase and amplitude control. These tolerances limit the average luminosity
loss to <2% and limit the increase in RMS center-of-mass energy spread to <10% of the nominal energy
spread.

Location Phase (degree) Amplitude (%) limitation

correlated uncorr. correlated uncorr.

Bunch Compressor 0.24 0.48 0.5 1.6 timing stability at IP

(luminosity)

Main Linac 0.35 5.6 0.07 1.05 energy stability ≤0.1%

of the vector sum must be calibrated to an accuracy on the order of 1% for amplitude and
1.0◦ for phase. The phases of crab cavities in the beam delivery system must be stabilized to
better than 0.015◦. Table 3.9-1 gives an overview of the regulation requirements of the Main
Linac and RTML bunch compressor.

Besides field stabilization, the LLRF provides automatic beam-based system calibration
and diagnostic signals to the accelerator control system. Exception handling is required to
avoid unnecessary beam loss and to allow for maximum operable gradient.

Availability and maintainability are also critical considerations in the LLRF system de-
sign. Although most of the LLRF system components are located in the service tunnel,
the large number of units requires a high availability design. Possible failure modes must
be understood, their operational impacts examined, and mitigation measures developed and
implemented. Adequate redundancy such as a simple feed-forward technique in the complex
feedback scheme should be an integral part of the system design. Built-in diagnostics for
both hardware and software are required to support preventative maintenance and increase
reliability.

3.9.3 Technical Issues

3.9.3.1 Hardware Architecture

The most basic function of any LLRF control is a feedback that measures the cavity field
vector and attempts to hold it to a desired set-point. The vector difference between the
measured field and the set-point is filtered and amplified, then used to modulate the klystron
drive and thereby the incident power to the cavities. The forward and reflected power signals
are also processed to measure the resonant frequencies of the ILC cavities, for automated
adjustment by slow motor-controlled tuners and fast piezoelectric actuators. The architecture
of a typical LLRF control system is shown in Figure 3.9-1. The signal from the master
oscillator, brought through the RF distribution system, is used as the RF reference.

The LLRF has to combat numerous perturbations with various time patterns and fre-
quencies. Some of these perturbations recur at the machine repetition rate (5 Hz for ILC),
like Lorentz force detuning and beam loading. An adaptive feedforward system is used to
compensate for the average repetitive errors. The set-points for cavity fields are also imple-
mented in a table to accommodate the time-varying gradient and phase during the cavity
filling.

III-178 ILC Reference Design Report



Low Level RF Controls

Master
Oscillator

Vector
Modulator

rf
Switch Klystron

Timing

DAC

Local Server (VME)

ADC

FT Beam
Pickup

PZ1

ADC

ADC

ADC

ADC

Network

FPGA
&

DSPDAC

DAC

HV

Isolator rf Power Transmission

Main Frame (client)

Digital FeedbackClock

Clock

Downconverter

Cav 1

Piezo Tuner Drive

Cav n

Isolator

Wave
Guide
TunerRep. Rate Ainc

Aref

3-2007
8747A7

FIGURE 3.9-1. Typical configuration of an RF control system using digital feedback control.

3.9.3.2 Digital Technologies

The key technologies to be used are modern Analog to Digital Converters (ADCs), Digital to
Analog Converters (DACs), as well as powerful Field Programmable Gate Arrays (FPGAs)
and Digital Signal Processors (DSPs) for signal processing. Low latency can be realized, with
time delays from ADC input to DAC output ranging from a few 100 ns to several µs depending
on the chosen processor and the complexity of the algorithms. Gigabit links are used for the
high speed data transfer between the large number of analog input and output channels and
the digital processor as well as for communication between various signal processing units.
Typical parameters for the ADCs and DACs are sample rates of 65-125 MHz and 14-bit
resolution. The signal processing uses FPGAs with several million gates, including many fast
multipliers. More complex algorithms are implemented on slower floating point DSPs

A down-converter module translates the 1.3 GHz RF cavity probe signal to the Intermedi-
ate Frequency (IF) where it can be digitized and processed further. The down converter can
degrade overall performance if not properly designed. Problems with nonlinearities, thermal
noise, phase noise and thermal stability must be addressed in order to maintain the integrity
of the detected signal from the cavity. The up-converter module translates a digitally gen-
erated IF signal back to the RF in a process similar to that of the down converter. The up
converter has less stability issues since it is within the feedback loop.

A fast piezoelectric actuator and a slow motor-driven tuner control the resonant frequency
of each individual cavity. The frequency error of the cavity is measured during and after
the flattop. This error can be reduced by suitable excitation of the piezoelectric actuator
(fast tuner), or it can be compensated via additional RF power. The motor-driven tuner is
only used to correct for long-term drifts. The station LLRF system must interface to High
Level RF, beam transfer control, machine protection, sector and global energy and phase
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regulation, and the control system. A control system IOC is built into the LLRF system to
handle parameter and data collection.

3.9.3.3 Software Architecture

A major benefit of a digital RF feedback and feed-forward system is that it supports auto-
mated operation with minimal operator intervention. This is accomplished by deploying a
number of algorithms to maintain best field stability (i.e. lowest possible rms amplitude and
phase errors), to allow for fast trip recovery, and to support sophisticated exception handling.
Beam-based feed-forward further improves the field stability. Figure 3.9-2 shows the basic
functional diagram of the LLRF software system.

FIGURE 3.9-2. Basic functional diagram of the LLRF software system.

The software implementation of the RF control system must also support high availability.
The main requirements for the algorithms are low latency for feedback, modularity to simplify
interfacing, and support of a high degree of automation. Important applications include
exception handling, built-in diagnostics and beam-based feedback.

subsubsectionSoftware Implementation
The massive parallel processing in the FPGAs provides low latency for the feedback

algorithm. Complex algorithms requiring floating point calculations such as adaptive feed-
forward can be also implemented.

The setting of system parameters and piezoelectric tuner control are implemented on
floating point DSP processors since the latency requirements are not as stringent. Auto-
mated operation can also be implemented on a middle layer server CPU since the timing
requirements are not as critical.

The distribution of the modular algorithms requires well-defined interfaces to ensure sim-
plicity in performing trouble shooting, maintenance, and upgrades. Low latency links use
in-house protocols while commercial protocols are available for links needing high bandwidth
but not low latency.
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System redundancy is achieved with algorithms, which calculate the key results from
multiple signal sources. It is, for example, possible to calculate the cavity field from forward
and reflected power although the measurement error is larger. Any discrepancy between the
independently derived signals flags potential errors in hardware or algorithms.

Data storage is provided locally on most processor boards and is distributed to the central
servers between pulses for further signal processing. With almost 15,000 cavities to control,
automation is essential to ensure simplicity of operation and high availability. To support
automation, the front-end hardware and software must as a minimum include the following
features: field vector measurement, loop phase and loop gain, loaded Q and cavity detuning,
beam phase and beam induced voltage, calibration of cavity field and phase, vector-sum cal-
ibration, calibration of forward and reflected wave, beam loading compensation (current and
phase), klystron linearization, exception detection and handling, RMS field errors, warnings
and alarms.

It is desirable to implement the algorithms as close a possible to the LLRF station con-
troller to reduce network traffic. However, if the algorithms and applications are implemented
in middle layer servers or as client applications, it can simplify the programming, facilitate
later upgrades and improve maintainability.

3.9.4 Components

Table 3.9-2 gives a rough parts count for the components in the baseline LLRF system for a
single RF unit in the main linac.

TABLE 3.9-2
Rough parts count for the components in the baseline LLRF system for a single RF unit at the main linac.

Module Specification Quantity

Precision cable 1/2 Coax–low temp.coef. 94

Down converter 1300MHz to IF 95

ADC channel 14 bit, 65MHz or higher 95

FPGA & DSP State of the art 3 to 10 each

DACs 16 bit, 100 MHz or higher 6

There are a total of 14,540 cavity modules in the main linacs, where 560 klystrons (i.e.
560 RF units) provide the drive power for 26 cavities each. The e− source, e+ source, RTMLs
have 11, 39 and 36 RF units, respectively. The e− and e+ damping rings have 10 klystrons
driving 36 superconducting cavity modules in total. Each of these cavity modules has three
signals monitored by the LLRF, a cavity field probe, and a forward and reflected power signal.
Each signal is routed in temperature-stabilized coaxial cable.
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3.10 INSTRUMENTATION

3.10.1 Overview

To deliver high luminosity, the ILC must produce very low emittance beams in the damping
rings, preserve that low emittance through more than 20 kilometers of beam transport, bunch
compression and acceleration, to finally focus the beams to a few nanometers at the collision
point. This requires extensive beam instrumentation with requirements at or often beyond
the current state-of-the-art. Most of the beam instrumentation in the linac and beam delivery
requires single-pass, bunch-by-bunch signal processing and data acquisition. The damping
ring requires turn-by-turn or multi-turn measurements similar to modern storage rings. Beam
instrumentation is a critical component of:

• diagnostic systems characterizing machine performance, beam properties and collision
parameters,

• beam-based feedbacks,

• machine protection system.

The beam position monitors (BPM), beam profile monitoring systems and feedbacks are
particularly challenging, and include devices based on RF cavities or lasers. In many cases,
individual devices have been built that satisfy the minimal requirements, but these must be
integrated into large, highly reliable systems to achieve the required levels of beam monitoring
and control.

3.10.2 Technical Description

Instrumentation includes all direct beam monitors, e.g. beam position, profile, bunch length
and bunch charge monitors, as well as beam feedbacks, but not general machine infras-
tructure monitoring systems such as RF control and protection interlocks, temperature and
pressure monitors, flow meters, etc. Near the interaction point (IP), there is also specialized
beam instrumentation, e.g. luminosity and background monitors, energy spectrometers and
polarimeters, that is not within the scope of the instrumentation technical system.

In both physical and cost terms, the largest instrumentation systems are the beam position
monitors (BPMs) and the laser-based beam profile monitors (laser-wires). The BPM systems
consist of ∼4500 beam pickups of two basic types, i.e. resonant cavity-sytle and broadband
button (or stripline) style, with associated analog front-end electronics, digital signal process-
ing, and related infrastructure such as cables, power-supplies, racks, crates, etc., distributed
along the beamlines. The laser-wires include 68 laser/beam Interaction Points, fed by 17
lasers with 29 Compton gamma detectors.

3.10.2.1 Beam Position Monitors

The beam position monitor systems in the ILC accelerator complex are the most essential and
most extensive beam instrumentation tool. Four different types of beam position monitors
(BPMs) are used throughout the ILC. Broadband BPMs of stripline or button style (Fig. 3.10-
1, left) are used for applications requiring medium or lower resolution, ∼10-30 µm RMS
(single bunch). Button pickups are used in the gun region, in the damping rings and in
other space critical areas. Stripline pickups are used in most warm sections of the sources
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FIGURE 3.10-1. Broadband (left: hor. equipotentials of the ATF damping ring button BPM) and resonant
BPM pickups (right: exploded view of the L-Band cavity BPM).

and in the BDS. Cavity BPMs are used for higher resolution applications, where few- or
sub-micron RMS single-bunch resolution is required (see Table 3.10-2). Three different basic
styles, C-Band, S-Band and L-Band, are used according to the needs of different beam pipe
apertures. A “cold” version of the L-Band cavity BPM is used in the cryostats of the Main
Linacs, RTMLs and Sources (Fig. 3.10-1, right). “Warm” cavity BPMs of all styles are used
thoughout the ILC accelerator complex downstream of the damping rings.

Except for the damping rings, all BPM systems are designed to be able to provide the
beam position of each bunch in the macropulse (bunch-by-bunch). This requires a measure-
ment or integration time smaller than the bunch-by-bunch time spacing (369 ns, nominal)
for all BPM system components. The damping ring BPMs have to time resolve the beam
position on a turn-by-turn basis (trev ∼20 µs) or measure in a narrow-band (BW ∼1 kHz)
averaging mode. A common set of readout, timing and auxiliary hardware and software is
used for all BPMs, apart from the RF analog signal processing front-end section. This mini-
mizes cost, and simplifies commissioning, maintenance and troubleshooting. A beam position
monitor consists of:

• A pickup detector, which detects the beam’s electromagnetic field and converts it to an
electrical signal, usually in the range of RF or microwave frequencies.

• A set of analog and digital read-out electronics, which processes the pickup signals to
extract the required beam displacement information.

• Trigger and timing hardware to time-resolve position data for individual bunches or
turns.

• A system for calibration and self-diagnosis tests.

• Digital data acquisition and control hardware and software, including a control system
interface.

• Auxiliary systems and components (racks, crates, power supplies, cables, etc.).

There are a variety of R&D activities for ILC BPMs at the laboratories, mostly in-
cluding university collaboration. Warm cavity BPMs studied under ILC-like beam condi-
tions (nanoBPM collaboration) at the KEK Accelerator Test Facility (ATF) have achieved a
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single-bunch position resolution of ∼20 nm. The ATF damping ring is also developing high
resolution BPMs based on a digital receiver readout system [152]. The DESY FLASH linac
has a variety of button and stripline-BPMs, and uses RF-signals from the HOM-couplers
of the accelerating structures for beam position and alignment studies (HOM collaboration)
[153]. S-Band cavity BPMs tested in SLAC “End Station A” (ESA) achieved a single bunch
resolution well below 1 µm [154]. A “cold” L-Band cavity-BPM for use in the cryomodule is
being built at FNAL using a read-out digitizer based on the high availability ATCA standard
[155].

3.10.2.2 Beam Profile Monitors

5-2007
8747A19 (a) In Electron Beam Direction

(b) In Laser Beam Direction
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FIGURE 3.10-2. Schematic of a laser-wire beam profile monitor.

A variety of beam profile monitors are used throughout the ILC. Conventional wire scan-
ners are used for beam transverse emittance measurements in upstream low-energy sections,
i.e. the electron and positron sources. However, in the damping rings and downstream areas
of the machine the low emittance beam would destroy any conventional wire scanner. In these
areas laser-wires must be used for any measurements of the beams transverse dimensions.

The laser-wire (Fig. 3.10-2) operates by scanning a finely focussed beam of laser light
across the electron/positron bunches. The resulting rate of Compton scattered photons is
measured in a downstream detector, as a function of relative position of laser and beam. The
laser-wire is a relatively non-invasive device and can be used to measure the beam properties
continuously during ILC operations. Prototype laser-wire systems are being developed at
PETRA [156] and ATF [157] [158]. In the latter case the key R&D challenge is to push the
spatial resolution to the micron level, as required for ILC.

Other optical beam monitors are used to analyze transverse and longitudinal beam pa-
rameters, and beam energy. There are OTR (optical transition radiation) and OTRI (OTR
interferometer) screen monitors for beam emittance and energy measurements in the sources,
RTML and BDS. Screen monitors are also used in other ways (e.g. YaG, slits, etc.) X-ray
synchrotron light monitors are used for transverse and longitudinal beam imaging in the
positron source, damping rings, RTML and BDS. In the damping rings they can image the
3D parameters of a bunch on a turn-by-turn basis (as done at LEP). Other optical-based
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beam monitor systems, currently not in the RDR baseline, may be required (e.g. bunch
length measurements based on elecro-optical sampling (EOS), optical diffraction radiation
(ODR) monitors, interferometers, etc.). As these are lower cost single system installations,
they would not affect significantly the overall instrumentation costs and requirements.

3.10.2.3 Bunch Length Monitors

The electron and positron sources and RTMLs have Deflecting Mode Cavity (DMC) or
LOLA [159] structures, based on normal-conducting technology to measure bunch length
and longitudinal charge distribution. A pair of DMCs based on superconducting technol-
ogy are located near the crab-cavity bunch rotation system just upstream of the IP. Streak
cameras are used for beam imaging in the damping rings.

3.10.2.4 Beam Current Monitors

There are a variety of beam current monitors used to measure the bunch charge, including
toroids, wall current monitors (WCM), Faraday cups and DC Current Transformers (DCCT).
The WCM and Faraday cups are located in the sources, and the DCCTs in the damping
rings. These monitors measure the charge of every bunch in the macro pulse. Like the
BPMs, the measurement time has to be < 369 ns to time resolve the charge of individual
bunches. Monitors with higher bandwidth are required in the damping rings where the
bunch-to-bunch spacing is 6 ns. Synchronized bunch charge measurements also quantify the
injection/ejection efficiency to/from the damping rings, and are used to detect beam losses
as part of the machine protection system (MPS). For luminosity monitoring, a high precision
bunch charge measurement is required in both Beam Delivery Systems. All of these devices
are commonly available and require little or no R&D.

Toroids are the simplest and most reliable detector for bunch charge measurements, with
medium to high bandwidth (100. . .1000 MHz), and a cut-off frequency as low as 10 Hz.
Toroids for accelerator applications are offered by several smaller companies but are also
developed in-house at some laboratories (eg. DESY, CERN).

Faraday cups are used in the electron source at the end of the low-energy spectrometer and
in the gun region. As they physically collect the particles, they have a very high sensitivity
and can also be used for dark current investigations. The bandwidth is sufficient to resolve
the charge of individual bunches.

The wall current monitor (WCM) is a broadband beam current / bunch charge monitor
which offers very high bandwidth (typically 5-10 GHz). It is used in the electron and positron
sources as an excellent source of bunch timing signals and as a diagnostic for issues in the
timing and trigger distribution system, e.g. filled neighbor buckets (parasitic bunches), time-
of-flight measurements, etc.

A DCCT monitor in each damping ring measures the DC beam current component with
high resolution. The system can also serve for diagnostic purposes and machine development
studies, e.g. beam lifetime studies.

3.10.2.5 Beam Phase Monitors

Beam phase monitors are used in the electron and positron sources, RTMLs and BDS. The
precise measurement of the phase or time of the bunch center (or the average of all bunches)
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with respect to the 1.3 GHz RF-drive signal, is crucial for successful ILC operation (see Sec-
tion 3.9). The beam phase can be used to diagnose numerous machine performance issues,
such as unwanted signal content generated in the different sections of the RF sources and dis-
tribution (noise, jitter, wrong set points, problems in feedback, feed-forward or state machine
systems), problems in the related auxiliary systems (water cooling, power distribution), in
the accelerating cavities (slow tuners, Lorenz force compensation), and finally issues driven
by the beam itself (beam loading, wakefields). The resolution requirements for a beam phase
monitor ranges from 0.1-0.01◦ of 1.3 GHz (equivalent to ∼200-20 fs). In many instances, an
average beam phase measurement is sufficient, but in some cases, a bunch-by-bunch beam
phase gives additional, valuable information. Two or more broadband detectors can provide
a time-of-flight (TOF) measurement of particular interest in the bunch compressors. DESY
is currently developing two beam phase measurement methods, relevant for ILC.

• A broadband, bunch-by-bunch beam phase and TOF measurement system is based
on an electrical pickup (similar to a button BPM) read-out by an optical Terahertz
sampler. Beam tests show a bunch-by-bunch resolution of 30 fs RMS. This method is
used in several locations in the sources, RTML and BDS areas of the ILC.

• A broadband read-out (oscilloscope based) of the HOM signals is used for a high resolu-
tion (0.08 degree RMS, equivalent 170 fs) measurement of the beam phase, by comparing
the signal of the RF-driven fundamental TM010 mode (1.3 GHz) with the beam-driven
first higher monopole mode TM011 mode. This technique is used in the RF cryomodules
to measure the average beam phase of all bunches.

3.10.2.6 Beam Loss Monitors

Two types of beam loss monitors are used throughout the entire machine complex. Long
ion-chambers (LION) run along the tunnel sections and photo-multiplier tube (PMT) based
beam loss monitors are attached to scintillation paddles or aluminum foils. Both systems are
used for machine commissioning and for the machine protection system (MPS). A reliable
detection of low beam losses <0.01 % of the total beam intensity is required, along with good
calibration and linearity.

3.10.2.7 Beam Feedback Systems

Beam based feedback systems stabilize the beam current, energy and trajectory through-
out the machine. There are slow, pulse-to-pulse (5 Hz), and bunch-to-bunch (intra-train)
feedbacks. Only beam-based feedback systems are discussed here, all of which employ in-
strumentation such as beam position monitors (BPMs) and fast kickers. Other feedback and
feed-forward systems (including non-beam based), such as adaptive LLRF control loops, cav-
ity temperature control, etc. are covered elsewhere. A partial list of feedback loops is given
in Table 3.10-1.

Damping ring orbit stability requirements are similar to those for existing storage rings
such as B factories and synchrotron light sources. Orbit feedback based on a response matrix
method takes position measurements from multiple BPMs around the ring, and corrects the
orbit with multiple distributed correctors, using algorithms and technology that are well
established.

A turnaround in the Ring to Main Linac (RTML) allows bunch-by-bunch trajectory mea-
surements to be fed forward over a shorter path length to two fast correctors/kickers per
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TABLE 3.10-1
Partial list of feedback loops.

Damping Ring

Injection and extraction trajectory control 5 Hz

Dynamic orbit control 10-20 KHz

Bunch-by-bunch transverse feedback

Ring to Main Linac

Pre- and post-turnaround emittance correction 5 Hz

Turnaround trajectory feed-forward bunch-by-bunch

Beam energy at bunch compressor two stages

Main Linac

Trajectory Feedback (several cascaded loops) 5 Hz

Dispersion measurement and control

Beam energy (several cascaded sections) 5 Hz

End of linac trajectory control bunch-by-bunch

Positron Source

Beam energy at undulator 5 Hz

Beam Delivery System

Trajectory feedback 5 Hz

Interaction Point collision feedbacks 5 Hz and bunch-by-bunch

plane, separated by 90 degree phase advance. Processing time is critical as the turnaround
length is only 170 m, which allows less than 0.5 µsec to measure, process, and apply the kick
angle correction.

All trajectory feedback, except the RTML feed-forward, has the same basic elements,
the same algorithm, and similar or identical hardware. The algorithm is based on response
matrices, but most of the trajectory correction loops operate synchronously at the 5 Hz ILC
pulse rate. BPM measurements are processed locally, and read by the middle-ware layer of
the control system, which then calculates corrector magnet settings for the subsequent ILC
pulse, and distributes the corrector setpoints synchronously.

Several cascaded feedback loops provide position and energy control in the sources, bunch
compressor, main linac, and beam delivery system. In addition to the trajectory feedback,
two BPMs in each section are used to measure beam energy and provide local feedback using
klystron phase/amplitude control. There is a 5 Hz BDS trajectory feedback system that may
be cascaded with the linac 5 Hz systems, and/or augmented with feed-forward information
from upstream in the machine (i.e. from the linacs and/or the damping rings). In addition,
there is a 5 Hz interaction-point (IP) feedback system. All of these systems will use similar
hardware software based on state space analysis and adaptive feedback algorithms.

For collision optimization, and luminosity stabilization, there is an intra-train (bunch-
to-bunch) feedback system at the IP. A BPM sensor several meters downstream of the IP
measures the position of the outgoing bunches, and a kicker several meters upstream of the
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IP corrects the incoming bunches. Such a system can lock in within ∼100 bunch crossings
to achieve roughly 80% of the luminosity attainable if the beams were in perfect collision.
Additional upstream BPM-kicker sets provide angle correction. An intra-train position/angle
scan(s) is used to optimize a bunch-by-bunch luminosity signal from the detector. Inputs to
the feedbacks from additional diagnostics such as beam charge, transverse size, and bunch
length monitors allow adaptive gain control as collision conditions change.

3.10.3 Technical Issues

3.10.3.1 Feedback Hardware

The relatively low correction rates and the distributed nature of many of the monitors and
actuators make it possible to implement the 5 Hz feedback in the integrated controls infras-
tructure without requiring dedicated hardware and interfaces. Dedicated local systems are
required for intra-bunch feedback systems that must operate at the bunch rate of ∼3 MHz,
such as the RTML turnaround trajectory feed-forward control, and intra-bunch trajectory
control at the IP. In addition, a fast synchronous infrastructure will allow implementation of
delayed bunch-to-bunch feedback/feed-forward along the length of the linac.

Modern storage rings have refined orbit correction systems to the level likely required
for the ILC damping ring. Ongoing advances in digital processor performance and fast high
performance analog to digital conversion chips has allowed the conversion from the analog
to digital domains to be performed much earlier in the signal chain. Most challenging are
systematic effects in beam position monitoring when required resolutions are at or below the
few micron level.

Fast intra-bunch trajectory control for the IP is presently being developed by the FONT
collaboration, with the latest implementation being (FONT-4) [160] aiming to demonstrate
feedback with 100 ns latency in the electronics, and stabilization at µm level.

3.10.3.2 Layout

A generalized schematic of an Instrumentation system is shown in Fig. 3.10-3. While the
pickup monitors of the beam instruments are located in the accelerator tunnel (in most cases
they are part of the vacuum system), the read-out electronics are typically installed in an
accessible service tunnel or in service buildings. Pickup stations and electronics are connected
by cables through the penetrations between the parallel tunnels. Most of the signal processing
is done in the digital domain, if applicable. Standardized, common hardware (e.g. ATCA,
VME) is used over the entire system complex. Data management, collection and distribution
are part of the Control system. Auxiliary systems for trigger and clock signals (timing), AC
power and cooling and the infrastructure for racks, crates, cabling, etc. are required.

3.10.4 Cost Estimation Methodology

For beam monitors the Instrumentation cost estimation covers:

• all pickup stations, as part of the vacuum system;

• scintillators, PMTs, laser systems, calibration systems;

• RF systems and infrastructure for the DMC-based bunch length monitors;

• associated motors, switches, and mechanical set-up;
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FIGURE 3.10-3. Generalised Schematic of Beam Pickups and Read-Out Systems.

• signal and control cables, connectors, patch-cables, etc.;
• dedicated read-out electronics (analog & digital), control units, local timing electronics,

calibration electronics, local software and firmware.
Except for special cases, e.g. certain feedback systems, data acquisition infrastructure

is covered by the control system cost estimation. Controls includes global trigger and clock
signals, global electronics infrastructure (racks, crates, power supplies, cabling), global com-
munication and data acquisition hardware, firmware and software.

For costing purposes, instrumentation was classified into 17 different systems. Core cost
and manpower information was estimated for each individual component of an instrumen-
tation system and its subcomponents, including the cost reductions due to volume or/and
technology advances. Counts for each type of instrumentation were supplied by the Area
Systems. No spares were included. Counts of control racks required for data acquisition were
generated form the above data. Labor information (in person years) was estimated separately
for Prototyping, Testing and Installation. The Installation labor was then incorporated into
the Installation estimate and not included in Instrumentation.

3.10.5 Table of Components
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3.11 DUMPS, COLLIMATORS, AND STOPPERS

3.11.1 Overview

The ILC requires a total of 26 beam dumps, each of which must be capable of absorbing
its rated beam power indefinitely without failing. Most of these dumps are used primarily
during personnel access, during invasive beam tuning, or as locations where the beam can be
extracted in the event of a machine protection system (MPS) fault. There are also 2 main
beam dumps near the interaction point and 1 photon dump in the positron source which are
used during normal luminosity delivery. Almost all of the dumps require water cooling.

In addition to the dumps, there are 25 beam stoppers in the ILC. These stoppers are
never intended to see beam during normal operation, but are only used as backups to other
devices and/or systems which are expected to contain the beam power. The stoppers are
thus designed as sacrificial devices, which are expected to be damaged if struck by the beam.
Their failure then cause a beam abort. Stoppers are used as part of the Personnel Protection
System (PPS) as well as MPS.

The ILC collimators are required to absorb a fixed fraction of the beam power indefinitely
without failing. In general, this fraction is between 0.1% and a few percent. The collimators
are used to reduce detector backgrounds, to protect downstream devices and apertures from
damage, and to limit radiation deposition and activation to specific regions of the beamline,
which can then be shielded locally. The ILC has 113 collimators with adjustable apertures
and 85 collimators with fixed apertures.

3.11.2 Technical Description

The design of each beam dump, collimator or stopper is determined by the peak incident
power, power density, beam energy, and particle type. Electron and positron beam dumps
and collimation devices that absorb from 0-25 W of power can be made of uncooled metal;
this category of devices includes the abort dumps in the damping rings, which are only used
in the event of a hardware failure in the rings themselves, and the faraday cups at each
electron source. Devices which are required to absorb from 25 W to 40 kW can also be made
of metal, with peripheral cooling that is provided by the facility’s low conductivity water
(LCW) system; this category of devices includes the low-power tune-up dumps in the BDS,
and the full power dumps at low-energy (100-400 MeV) locations in the electron and positron
sources. For beam power in the range of 40 kW to 600 kW, the dump contains aluminum balls
immersed in water; this category of devices includes the tune-up dumps at the 5 GeV end of
the electron and positron sources, the tune-up dumps in the RTML, and the tune-up dump
in the positron production undulator hall. Beam power above 600 kW requires water as the
absorbing medium; this category of devices includes the main beam dumps and the tune-up
dumps in the BDS. The photon dump downstream of the positron production undulator is
also a pure-water dump.

The ILC collimation system includes devices with fixed apertures and devices which are
adjustable, either in one plane or in two. There are 6 fixed-aperture collimators in the
post-collision extraction lines which require water-cooled aluminum balls as their primary
absorber; the remainder of the collimators are solid metal with peripheral cooling. In many
locations, a thin (0.6-1.0 X0) collimator (or “spoiler”) is placed in front of a thick (> 20 X0)
collimator (or “absorber”); if the primary beam leaves the collimation acceptance, the spoiler
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expands the beam size via multiple Coulomb scattering to reduce the power density on the
absorber. This approach is used to improve the survivability of collimators in some locations,
most notably the collimators downstream of the damping ring and upstream of the final
focus.

Beam stoppers that are part of the ILC Personnel Protection System (PPS) are low power
devices that self-destruct when struck by the beam, such that the loss of beamline vacuum
causes the beam to be shut off; they are inserted into the beam path during access periods as
insurance against the failure of the primary beamline components that protect the area under
access. Beam stoppers that are part of the ILC Machine Protection System (MPS) have fixed
or adjustable apertures; if the beam violates the defined aperture their burn through monitors
protect the remainder of the beamline by spoiling the vacuum and shutting down the beam.

For dumps and absorbers that bring water into direct contact with ionizing radiation,
underground plumbing must be provided to safely remove or contain the radiolytically evolved
gases or isotopes while providing adequate cooling. All dumps and collimators require local
steel and concrete shielding to protect equipment and personnel from residual radiation from
the activated devices. If the site chosen for the ILC tunnels is not dry, additional shielding
to protect ground water from tritium activation will be required.

3.11.3 Technical Issues

3.11.3.1 18 MW Beam Dumps

The four linac tune-up and main beam dumps are sized for a peak power at nominal 1 TeV
beam parameters of 18 MW. These dumps (Figure 3.11-1) consist of 1.5 m diameter cylindrical
stainless steel high pressure water vessels with a 30 cm-diameter 1 mm-thick Ti window; they,
their shielding and associated water systems represent most of the cost of the Beam Delivery
System dumps and collimators. The design is based on the SLAC 2.2 MW water dump
[161][162] that has been used without problems for over 40 years.

The dumps absorb the energy of the electromagnetic shower cascade in 6.5 m (18 X0) of
water followed by 1 m of water cooled Cu plates (22 X0). Each dump incorporates a beam
sweeping magnet system to move the charged beam spot in a circular arc of 3 cm radius
during the passage of the 1 ms long bunch train. Each dump operates at 10 bar pressure
and also incorporates a vortex-flow system to keep the water moving across the beam at
1.0-1.5 m/s. In normal operation with 250 GeV beam energy, the combination of the water
velocity and the beam sweepers limits the water temperature rise during a bunch train to
40◦C. The pressurization raises the boiling temperature of the dump water; in the event of
a failure of the sweeper, the dump can absorb up to 250 bunches without boiling the dump
water. The power which is absorbed in the dump is finally removed by a heat exchanger
system with a capacity of 2300 gallons per minute.

The integrity of the dump body and dump window, the management of radionuclides,
the processing of the radiolytically evolved hydrogen and oxygen, and containment of the
activated water are important issues for the 18 MW dumps.

3.11.3.1.1 Mechanical Failure of Dump or Dump Window The main vessel is welded
using low carbon stainless steel (316L) and all welds radiographed to ensure quality; the 10
atmosphere radioactive water cooling system is closed but communicates with the atmosphere
via a small diameter tube from the gas space on top of the surge tank to avoid it being
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FIGURE 3.11-1. Schematic of the 18MW water dump.

classified as a nuclear pressure vessel. Several materials are under consideration for use
in the dump window: 316L stainless, Ti-6Al-4V, and Inconel (A601,718,X750). All of these
materials have been extensively used in nuclear reactors; their mechanical properties, thermal
properties, and reaction to radiation damage have been thoroughly studied. As described
above, the bunches in each train are swept in a circle to further reduce the thermal stress and
radiation damage to the dump windows; the windows also have additional water cooling from
multiple water jets in a separate cooling loop from the main vessel. Each dump incorporates
a remote controlled mechanism for exchanging the highly activated windows on a regular
schedule driven by integrated specific dose, along with local temporary storage for all tritiated
water. As a final backup to guarantee environmental safety in the event of a failure of the
dump body or dump window, the dump enclosure is air tight and incorporates adequate sump
volume and air drying capacity to prevent the release of tritiated water even in the case of
catastrophic dump failure. Since a failure of the window could create a catastrophic water-
to-vacuum leak with highly radioactive tritated water, a pre-window, with peripheral and gas
cooling, isolates the beamline vacuum system and provide secondary containment. Storage
space for a damaged dump and a removable cavern wall are provided for dump replacement.

3.11.3.1.2 Water Activation Products Activation products are primarily the result of
photo-spallation on 16O, primarily 15O, 13N, 11C, 7Be and 3H (tritium). The first three
radionuclides have short half lives and decay after ∼ 3 hours. 7Be is removed from the
system by filtering it out in a mixed bed ion exchange column located in the dump support
cavern. Tritium, a ∼ 20 keV emitter with a half life of 12.3 years builds up in the water to
some equilibrium level; the tritium is contained by the integrity of the dump system and the
backup measures described in the preceding section.
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3.11.3.1.3 Radiolysis and Hydrogen and Oxygen Evolution Hydrogen is produced via
the reaction H2O → H2+H2O2 at the rate of 0.3 l/MW-s, or 5.4 l/s at 18 MW beam power.
The lower explosive limit (LEL) of hydrogen in air is ∼ 4%. Experience at SLAC [163] indi-
cates that a catalyst consisting of a high-nickel stainless steel ribbon coated with platinum
and palladium, in the form of a 46 cm diameter 6.4 cm thick mat, will reduce the H2 concen-
tration to the 25% of the LEL in one pass. Other types of higher density catalyst are also
available. The gases released in a surge tank are heated to 65◦ C and are pumped through
the catalyst, which does not need replacement or servicing.

3.11.3.1.4 Shielding and Protection of Site Ground Water Assuming a dry rock site,
as in the baseline configuration, 50 cm of iron and 150 cm of concrete shielding are needed
between the dump and other areas of the tunnel enclosure to protect equipment from radiation
damage. If the chosen site is not dry, the area surrounding the dump must be enveloped by
an additional 2 m thick envelope of concrete to prevent tritium production in the ground
water.

3.11.3.2 Undulator Photon Dump

The dump that absorbs non-interacting undulator photons from the positron production
target must absorb 300 kW continuously. The photon energy spectrum spans the range 0-
140 MeV, with an average energy of 10 MeV; 300 kW corresponds to 1.9× 1017 photons/sec.
The photons are transported 500 m to the rapidly rotating 1.4 mm Ti positron production
target and then 150 m to a stationary dump. The important issues are the energy density
and temperature rise in the dump window and in the body of the dump absorber. The cross
section of the photons is such that aluminum balls cannot be used despite the relatively low
total power; the primary absorber in this case must be water. With the current undulator-
dump separation the power density on a 1 mm Ti window is 0.5 kW/cm2 and the resultant
temperature rise after the passage of one bunch train is 425◦ C. This is to be compared with
a limit of 2 kW/cm2 and a fracture temperature of 700◦ C. In the core of the beam the rise
in the water temperature would be 190◦ C. With this geometry a compact (10 cm diameter
by 100 cm long) pressurized (12 bar) water vessel and Ti window, with a radioactive water
processing system, is required. Lengthening the target to dump distance by several hundred
meters would result in a less technically challenging and less expensive system, but with the
added expense of boring a longer hole for the undulator photon transport.

3.11.3.3 Aluminum Ball Dumps

The water-cooled aluminum ball dump [164] consists of a 40 cm diameter by 250 cm long
stainless vessel which is filled with 10 mm aluminum balls and water. The water is circulating
with a flow rate of approximately 30 gallons per minute. The dump is backed up by a short
length of peripherally-cooled solid copper. The aluminum ball dumps have technical issues
which are qualitatively similar to some of those of the all-water main dumps: generation of
hydrogen and oxygen, activation of the water, and local shielding. Because of the much lower
power levels and the use of aluminum as the main absorbers, all of these issues are much less
severe.
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3.11.3.4 Stoppers and Collimators

The stoppers and collimators are largely based on well-understood designs in regular use
at accelerator laboratories all over the world. The technical issues in these devices are not
considered important, with two exceptions.

The first exception is the collimators in the extraction lines, which use water-cooled
aluminum balls to absorb the beam power. This system has similar issues to the main dumps
in terms of activation and risks of water-to-vacuum leaks, although on a much smaller scale.
These collimators share the radioactive water system of the nearby main dumps.

The other exception is limiting the deleterious effects of wakefields in the collimators, in
particular the geometric wakes of the short spoilers and the resistive-wall wakes of the long
absorbers. The wakes are limited by the use of copper coatings on all surfaces in the vacuum
system, and by longitudinal tapering of the apertures to limit geometric wakes.

3.11.4 Cost Estimation

The systems that put water into direct contact with the beam dominate the cost estimate of
this technical system. For the main 18 MW dumps, the cost estimate is based on industrial
studies [165] [166] by two German companies expert in nuclear reactor technology. Their
estimates have been examined by the staff responsible for the ISIS neutron spallation target
and adjusted, for example, to add the costs of the remote controlled window replacement
system and air drying systems. For the aluminum ball dumps that do not operate at high
pressure, the cost of the 2006 ISIS target cooling system was used as the basis of estimate.

Items with peripheral cooling supplied by the tunnel low conductivity water (LCW) sys-
tem have only mechanical design and construction costs. Whether for collimators or solid
dumps, these costs are estimated based on the production costs of similar devices in use at
SLAC.

3.11.5 Table of Components
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TABLE 3.11-1
Dump types and locations.

Item # Locations

Beam Dumps

10 MW 10 atm water 4 Ends of linacs and BDS dumplines

300 kW undulator photon 1 Behind positron production target

250 kW aluminum ball 9 DR injectors (2)
RTML (6)
positron production undulator chicane (1)

Fixed 10 kW solid metal, 6 100 MeV points in e- sources (2),
peripherally cooled 114 and 400 MeV points in e+ sources (4)

Insertable low power tuning dumps 2 Final focus

Faraday cups 2 Electron guns

Uncooled aluminum blocks 2 DR abort dumps

Adjustable Aperture Collimators

Short 2 jaw (H,V) tapered 60 RTML (36)
uncooled beam spoilers BDS Collimation (24)

Long 2 jaw (H,V) cooled 43 BDS Collimation (32)
beam absorbers BDS FF SR masks (4)

Electron sources (2)
Positron 5 GeV point (5)

Short 2 jaw uncooled collimator 10 Positron sources

Fixed Aperture Protection Collimators

30 cm cooled solid metal 74 RTML (52)
with circular aperture BDS (22)

High power water cooled 6 BDS extraction lines
aluminum balls

Single jaw cooled device 2 BDS collimation

Uncooled block with rectangular aperture 2 BDS Crab Cavities

Photon collimator 1 Undulator / positron source

Beam Stops with Burn Through Monitors

PPS stoppers 14 Positron source (2)
RTML (6)
BDS(6)

Fixed aperture MPS 9 Positron source (3)
Stoppers BDS (6)

Variable aperture MPS 2 BDS Tuneup Dump Line
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3.12 CONTROL SYSTEM

3.12.1 Overview

Rapid advances in electronics and computing technology in recent decades have had a pro-
found effect on the performance and implementation of accelerator control systems. These
advances will continue through the time of ILC construction, when network and computing
capabilities will far surpass that of equipment available today. Nevertheless, a machine of the
scope of an ILC presents some unique control system challenges independent of technology,
and it is important to begin the process of determining functional requirements for the ILC
control system.

This chapter discusses the control system requirements for the ILC, and describes a func-
tional and physical model for the system. In several places implementation details are de-
scribed, but this has been done largely as a means to describe representative technologies,
and in particular, to establish a costing model. Regardless of the final technology implemen-
tation, the control system model described in this chapter contains a number of architectural
choices that are likely to survive.

3.12.2 Requirements and Technical Challenges

The broad-scope functional requirements of the ILC control system are largely similar to those
of other modern accelerator control systems, including control and monitoring of accelerator
technical systems, remote diagnostics, troubleshooting, data archiving, machine configura-
tion, and timing and synchronization. However, several features of the ILC accelerator push
implementation beyond the present state of the art. These are described below.

3.12.2.1 Scalability

The ILC has an order of magnitude more technical system devices than other accelerators
to date. The primary challenges of scalability in relation to existing accelerator control
systems are the physical distances across the accelerator, the large number of components
and number of network connections, and the implied network bandwidth. Real-time access
to control system parameters must be available throughout the site, and by remote access.
These challenges are also present in the commercial domain, notably in telecommunication
applications, and lessons learned there are almost certainly applicable to the ILC control
system.

3.12.2.2 High Availability

Requirements for high availability drive many aspects of the ILC control system design and
implementation. These requirements were derived from accelerator-wide availability simula-
tions. The control system as a whole is allocated a 2500 hour MTBF and 5 hour MTTR (15
hours downtime per year). This translates to control system availability between 99% and
99.9% (2-nines and 3-nines). A detailed analysis of how control system availability relates
to beam availability is complicated. However, a coarse analysis shows that if the control
system comprises some 1200 controls shelves (electronics crates), then each shelf must be ca-
pable of providing 99.999% (5-nines) availability. Such availability is routinely implemented
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in modern telecom switches and computer servers, but has not been a requirement of present
accelerator control systems.

3.12.2.3 Support extensive automation and beam-based feedback

A very complex series of operations is required to produce the beams and deliver them to
the collision point with the required emittance. The control system must provide function-
ality to automate this process. This includes both getting beam through the entire chain
and also tune-up procedures to maximize the luminosity. Beam-based feedback loops are
required to compensate for instabilities and time-dependent drifts in order to maintain stable
performance. Inter-pulse feedback should be supported in the control system architecture
to minimize development of custom hardware and communication links. The automation
architecture should have some built-in flexibility so procedures can easily be changed and
feedback loops added or modified as needed. Automation and feedback procedures should
incorporate online accelerator models where appropriate.

3.12.2.4 Synchronous Control System Operation

The ILC is a pulsed machine operating at a nominal rate of 5 Hz. Sequences of timing events
must be distributed throughout the complex to trigger various devices to get beam through
the accelerator chain. These events are also used to trigger acquisition of beam instrumen-
tation and other hardware diagnostic information so that all data across the machine can be
properly correlated for each pulse.

3.12.2.5 Precision RF Phase Reference Distribution

The control system must generate and distribute RF phase references and timing fiducials
with stability and precision consistent with the RF system requirements.

3.12.2.6 Standards and Standardization, Quality Assurance

A critical aspect of implementing a high availability control system will be the use of consistent
(“best”) work practices and a level of quality assurance process that is unprecedented in the
accelerator controls environment. Additional technical solutions to HA will rely on this
foundation of work practices and quality assurance processes. Commercial standards should
be used wherever they can meet the requirements, for such things as hardware packaging and
communication networks.

The control system must specify standard interfaces between internal components and to
all other systems. This makes integration, testing, and software development easier and more
reliable. Standard interfaces allow parts of the system to be more easily upgraded if required
for either improved performance or to replace obsolete technologies.

3.12.2.7 Requirements on Technical Equipment

Technical equipment comprises field hardware such as power supply controllers, vacuum
equipment, beam instrumentation, and motion control devices. These systems are the re-
sponsibility of the technical groups. However, they must interface to the control system in
a coherent way to allow equipment to be accessed via a common interface for application
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programming, data archiving, and alarms. In order to meet the very stringent require-
ments for overall system reliability, as well as provide for more efficient R&D and long-term
maintenance, standards must be applied to the technical equipment for packaging, field bus,
communication protocol, cabling, and power distribution.

3.12.2.8 Diagnostic Interlock Layer

A Diagnostic Interlock Layer complements normal self-protection mechanisms built into tech-
nical equipment. The DIL utilizes information from diagnostic functions within the technical
equipment to monitor the health of the equipment and identify anomalous behavior indicative
of impending problems. Where possible, corrective action is taken, such as pre-emptive load
balancing with redundant spares, to avert or postpone the fault before internal protective
mechanisms trip off the equipment.

3.12.3 Impact of Requirements on the Control System Model

In order to meet the high availability requirements of the ILC, a rigorous failure mode analysis
must be carried out in order to identify the significant contributors to control system down-
time. Once identified, many well-known techniques can be brought to bear at different levels
in the system, as well as system wide, and at different time scales (i.e. bunch-to-bunch, macro
pulse, process control) to increase availability. The techniques begin with relatively straight-
forward, inexpensive practices that can have a substantial impact on availability. A careful
evaluation and selection of individual components such as connectors, processors, and chassis
are crucial. Administrative practices such as QA, agile development methodology, and strict
configuration management must also be applied. Other techniques are much more complex
and expensive, such as component redundancy with automatic detection and failover [167].
The control system must be based on new standards for next-generation instrumentation that

1. are modular in both hardware and software for ease in repair and upgrade;

2. include inherent redundancy at internal module, module assembly, and system levels;

3. include modern high-speed, serial, inter-module communications with robust noise-
immune protocols; and

4. include highly intelligent diagnostics and board-management subsystems that can pre-
dict impending failure and invoke evasive strategies.

The Control System Model incorporates these principles through the selection of the front-end
electronics packaging standard and component redundancy.

In addition to its intrinsic availability, the control system is responsible at the system
level for adapting to failures in other technical systems. For example, the feedback system is
responsible for reconfiguring a response matrix due to the loss of a corrector, or switching on
a spare RF unit to replace a failed station.

Scalability requirements are met through a multi-tier hierarchy of network switches that
allow for the flexible formation of virtual local area networks (VLANs) as necessary to seg-
ment network traffic. Control system name-servers and gateways are utilized extensively to
minimize broadcast traffic and network connections. These software components manage
the otherwise exponential growth of connections when many clients must communicate with
many distributed control points.
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Automation and flexible pulse-to-pulse feedback algorithms are implemented by a coordi-
nated set of software services that work together through global coordination and distributed
execution. The distributed execution is synchronized with the machine pulse rate via the tim-
ing event system which can produce software interrupts where needed. The network backbone
accommodates the distribution of any sensor value to any feedback computation node. This
distribution can be optimized to allow for efficient local as well as global feedback.

3.12.4 Control System Model

The model of the ILC control system is presented here from both functional and physical
perspectives. This model has served as a basis for the cost estimate, as well as to document
that the control system requirements have been satisfied. Functionally, the control system
architecture is separated into three tiers, as shown in Figure 3.12-1. Communication within
and between these tiers is provided by a set of network functions. A physical realization, as
applied to the Main Linac, is shown in Figure 3.12-2. The remainder of the chapter describes
the functional and physical models in more detail.

Client Tier

Services Tier

Front-end Tier

Engineering model
Physics model
Controls model
Operational data
Archive data

RDB
DB

Access

Channel-Oriented API Deployment and Mgmt. API

Service API

Services
Device Abstraction, Model Interaction,

Archiving, Save/Restore, Logging, Alarms,
Deployment/Management, …

Channel-Oriented API (sync, async) Service API (sync, async)

Applications

Timing & Synchronization

General Purpose Network

Interlock and MPS Network/Bus

Soft Real-time Control Network

Video Network

Feedback Network/Bus

Deployment and Management Network

Functional
breakdown of
networks

General Purpose Network

FIGURE 3.12-1. Control system functional model.
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FIGURE 3.12-2. Control system physical model.

3.12.4.1 Functional Model

The control system model is functionally composed of three distinct tiers, as shown in Fig-
ure 3.12-1. The 3-tier model includes a middle tier that implements significant portions of
the logic functionality through software services that would otherwise reside in the client tier
of a 2-tier system [168]. The three tiers are described in more detail below:
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Client Tier: Provides applications with which people directly interact. Applications
range from engineering-oriented control consoles to high-level physics control applications
to system configuration management applications. Engineer-oriented consoles are focused
on the operation of the underlying accelerator equipment. High-level physics applications
require a blend of services that combine data from the front-end tier and supporting data
from the relational database in the context of high-level device abstractions (e.g., magnets,
BPMs).

Services Tier: Provides services that coordinate many activities while providing a well-
defined set of public interfaces (non-graphical). Device abstractions such as magnets and
BPMs that incorporate engineering, physics, and control models are represented in this tier.
This makes it possible to relate high-level machine parameters with low-level equipment set-
tings in a standard way. For example, a parameter save/restore service can prevent two clients
from simultaneously attempting to restore a common subset of operational parameters. This
centralization of control provides many benefits in terms of coordination, conflict avoidance,
security, and optimization.

Front-end Tier: Provides access to the field I/O and underlying dedicated fast feedback
systems. This tier is configured and managed by the services tier, but can run autonomously.
For example, the services tier may configure a feedback loop in the front-end tier, but the
loop itself runs without direct involvement. The primary abstraction in this tier is a channel,
or process variable, roughly equivalent to a single I/O point.

3.12.4.2 Physical Model

The ILC control system must reliably interact with more than 100,000 technical system de-
vices that could collectively amount to several million scalar and vector Process Variables
(PVs) distributed across the many kilometers of beam lines and facilities at the ILC site.
Information must be processed and distributed on a variety of timescales from microsec-
onds to several seconds. The overall philosophy is to develop an architecture that can meet
the requirements, while leveraging the cost savings and rapid evolutionary advancements of
commercial off-the-shelf (COTS) components.

3.12.4.2.1 Main Control Center The accelerator control room contains consoles, servers,
displays, and associated equipment to support operations of the ILC accelerator from a sin-
gle location. Operators and technical staff run the accelerator and interact with technical
equipment through Client Tier applications that run in the Main Control Center.

3.12.4.2.2 Controls Computing Services Conventional computing services dedicated
to the control system include storage arrays, file servers, and compute nodes. A separate
simulation farm is anticipated for offline control system modeling and simulation, and for
potentially performing model-reference comparisons to dynamically detect off-normal condi-
tions. Enterprise-grade relational databases act as a central repository for machine-oriented
data such as physics parameters; device descriptions; control system settings; machine mod-
els; installed components; signal lists, and their relationships with one another.

3.12.4.2.3 Controls Networks and Distributed Computing
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Main Controls Network Data collection, issuing and acting on setpoints, and pulse-to-
pulse feedback algorithms are all synchronized to the pulse repetition rate. The controls
network must therefore be designed to ensure adequate response and determinism to sup-
port this pulse-to-pulse synchronous operation, which in turn requires prescribing compliance
criteria for any device attached to this network. Additionally, large data sources must be
prudently managed to avoid network saturation.

For example, in the Main Linac, waveform capture from the LLRF systems likely domi-
nates linac network traffic. Full-bandwidth raw waveforms from individual RF stations could
be required for post-event analysis and therefore must be captured on every pulse. However,
only summary data is required for archiving and performance verification. By grouping mul-
tiple RF stations together (notionally into groups of 32), full-bandwidth waveforms can be
locally captured and temporarily stored, with only summary data sent on.

Dedicated compute nodes associated with each backbone network switch run localized
control system services for monitoring, data reduction, and implementing feedback algo-
rithms.

Other Physical Networks To accommodate communication functions that are not com-
patible with the Main Controls Network, several other physical networks are envisioned,
namely: a General-purpose controls network for general controls network access, including
wireless access and controls network access to non-compliant devices; an Out-of-band monitor-
ing network: to provide independent means to access and configure all Network switches and
Controls Shelves; a Video network to distribute video data streams facility wide. A Technical
Equipment Interlock Network provides a means to distribute interlock signals. Functionally,
this has similarities with the Machine Protection System described elsewhere. Technical
equipment may report equipment or sensor status for use by other systems or utilize status
information provided by other technical systems.

Based on initial assessments, commodity-computing equipment (e.g. 10-GB redundant
Ethernet) is adequate to meet the requirements for all the networks.

3.12.4.2.4 Controls Front-end The control system model front-end comprises the fol-
lowing three main elements:

1U Switch: Aggregates the many Ethernet controlled devices in a rack or neighborhood
of racks. Some of these devices speak the controls protocol natively, while others have pro-
prietary protocols that must be interfaced to the control system. It is assumed these 1U
switches reside in many of the technical equipment racks.

Controls Shelf: Consists of an electronics chassis, power supplies, shelf manager, back-
plane switch cards, CPUs, timing cards, and instrumentation cards (mainly BPMs). The
Controls Shelf serves several purposes: (1) hosts controls protocol gateways, reverse gate-
ways, and name servers to manage the connections required for clients to acquire controls
data; (2) runs the core control system software for managing the various Ethernet device
communication protocols, including managing any instrumentation (BPM) cards in the same
shelf; (3) performs data reduction, for example, so that full-bandwidth RF/BPM waveforms
need not be sent northbound in the control system. The control system physical model ref-
erences the commercial standard AdvancedTCA (ATCA) for the Controls Shelves. This is
a specification that has been developed for the telecommunications industry [169], and has
applicability for the ILC control system in part because of its high availability feature set.
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Aggregation Switch: Aggregates network connections from the 1U switches and Con-
trols shelves and allows flexible formation of virtual local area networks (VLANs) as needed.

3.12.4.2.5 Technical Equipment Interface It has been common practice at accelerator
facilities for the control system to accommodate a wide variety of interfaces and protocols,
leaving the choice of interface largely up to the technical system groups. The large scale of
the ILC accelerator facility means that following this same approach would almost certainly
make the controls task unmanageable, so the approach must be to specify a limited number of
interface options. For the purpose of the conceptual design and for the costing exercise, two
interface standards were chosen: a Controls-shelf compliant electronics module for special
sensor signals and specific beam instrumentation applications such as BPM electronics; a
controls compliant redundant network for all smart technical systems. While not explicitly
part of the control system model, it is assumed that discrete analog and digital I/O can be
provided through micro-controller chassis or PLCs.

In addition to conventional interfaces for controls purposes, the control system provides
functionality for remote configuration management of technical equipment for micro- con-
trollers, PLCs, application oriented FPGAs, etc.

3.12.4.3 Pulse-to-Pulse (5 Hz) Feedback Architecture

Many of the beam-based feedback algorithms required for ILC apply corrections at the rela-
tively low machine pulse rate (nominally 5 Hz). This low correction rate and the distributed
nature of many of the monitors and actuators make it desirable to use the integrated controls
infrastructure for these feedback systems.

Using the integrated control system architecture to implement the feedback algorithms
offers many advantages, including:

• Simpler implementation, since dedicated interfaces are not required for equipment in-
volved in feedback loops.
• Higher equipment reliability, since there are fewer components and interfaces.
• Greater flexibility, since all equipment is inherently available for feedback control, rather

than limited to predefined equipment.
• Simplified addition of ad hoc or un-anticipated feedback loops with the same inherent

functionality and tools. This could significantly enhance the commissioning process and
operation of the ILC.

Referring to Figure 3.12-2, feedback algorithms are implemented as services running in
both distributed and centralized compute nodes. Design and implementation of feedback
algorithms is enhanced through high-level applications such as Matlab [170] integrated into
the Services Tier shown in Figure 3.12-1.

Implementing feedback at the machine pulse rate demands synchronous activity of all
involved devices and places stringent compliance criteria on technical equipment, control
system compute nodes, and the main controls network.

3.12.5 Remote Access / Remote Control

It is becoming commonplace for accelerator-based user facilities to provide means for techni-
cal experts to remotely access machine parameters for troubleshooting and machine tuning

III-204 ILC Reference Design Report



Control System

purposes. This requirement for remote access is more critical for the ILC because of the
likelihood that expert personnel are distributed worldwide.

3.12.6 Timing and RF Phase Reference

Precision timing is needed throughout the machine to control RF phase and time-sampling
beam instrumentation [171]. The timing system emulates the architecture of the control
system, with a centrally located, dual-redundant source distributed via redundant fiber signals
to all machine sector nodes for further local distribution. Timing is phase-locked to the RF
system.

3.12.6.1 RF Phase Reference Generator

The RF phase reference generator is based on dual phase-locked frequency sources for redun-
dancy. It includes fiducial generation (nominally at 5 Hz) and line lock. The macro-pulse
fiducial is encoded on the distributed phase reference by a momentary phase shift of the refer-
ence signal. Failure of the primary frequency source can be detected and cause an automatic
failover to the backup source.

3.12.6.2 Timing and RF Phase Reference Distribution

The phase reference is distributed via dual redundant active phase stabilized links. Fig-
ure 3.12-3 shows an overview of dual redundant phase reference transmission and local,
intra-sector distribution.

The Phase Comparator unit detects failures in the primary phase reference link and
automatically fails over to the secondary link. Both the Phase Comparator unit and the
Sector Timing Control units are fault tolerant. A local DRO or VCXO is phase-locked to
the phase reference to develop a low phase noise local reference for distribution within an RF
sector of the main linac.

Figure 3.12-4 shows a block diagram of a single active phase-stabilized link. A portion of
the optical signal is reflected at the receiving end. The phase of the reflected optical signal
is compared with the phase of the frequency source. The resulting error signal controls the
temperature of the shorter series section of fiber to compensate for environmentally induced
phase shifts [172].

3.12.6.3 Timing and Sequence Generator

An event stream is distributed via dual redundant links in a star configuration. The system
automatically fails over to the redundant link upon detection of a failure. The event system
provides a means for generating global and local sequences, synchronizing software processing
to timing events, and generating synchronous time stamps.

3.12.7 Beam-based Feedback

Beam-based dynamical feedback control is essential for meeting the high performance and
luminosity needs of the ILC. Feedback systems stabilize the electron and positron trajectories
throughout the machine, correct for emittance variations, and provide measurement and
correction of dispersion in the Main Linac. Two timescales of beam-based feedback are
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anticipated, namely pulse-to-pulse feedback at the 5 Hz nominal pulse repetition rate, and
intra-train feedback that operates within the macropulse containing ∼3000 bunches spaced
at ∼300ns intervals.
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3.12.7.1 Architecture for Intra-Bunch Feedback Systems

Unlike pulse-to-pulse feedback, which is implemented through the control system, dedicated
systems are required for intra-bunch feedback. These must operate at the bunch rate of
∼3 MHz, and include the RTML turnaround trajectory feed-forward control and intra-bunch
trajectory control at the IP. Orbit feedback in the damping ring is synchronized to the
damping ring revolution frequency.

Local input/output processors acquire beam position, cavity fields, beam current, and
other local beam parameters at the full 3 MHz bunch rate and distribute that information
to a fast synchronous network. Local interconnections with the low-level RF systems provide
opportunities for local feedback loops at the full 3 MHz bunch rate. Dedicated processing
crates provide both dedicated real-time bunch-to-bunch control, such as RF cavity fields, and
dispersion-free steering, while additional uncommitted crates could provide feedback systems
to be implemented as required.

3.12.7.2 Hardware Implementation

Most of the feedback processing requirements described in this section can be met using
commercial hardware, including dynamic orbit control in the damping ring. Custom hardware
solutions are required in cases where low latency or unique capabilities are required, such as for
the RTML turnaround trajectory feed-forward and the IP intra-bunch trajectory feedback.
High availability solutions are implemented as appropriate, using the same standards and
approach as for other instrumentation and control system equipment.

3.12.8 Information Technology (IT) Computing Infrastructure

The ILC requires an Information Technology infrastructure. For the purposes of the RDR,
this infrastructure is costed assuming that it resides at the ILC site. Equivalent functionality
can be achieved by outsourcing many of the required services, but it is expected that the
cost is similar. There is a central computing building to house the machines and network
infrastructure, a network internal to the laboratory, a connection to the wide area network,
computer hardware and software for business computing, computing tools for engineering
support (excluding civil engineering), basic services (web, email, file servers, databases, back-
ups, help desk, accounts), and computer security that complies with regulations and allows
for secure access to and dissemination of information.

3.12.9 Cost Estimation, Bases of Estimates

An inherent assumption is that the control system hardware model can be implemented
largely using COTS equipment.

Manpower estimates were developed top down, using assumptions about the level of effort
required to implement a control system for ILC, and were compared with levels of effort from
recent accelerator projects. It is assumed that the ILC control system software framework is
founded on an existing framework, rather than developing a new framework from the ground
up. Assumptions were made on the level of extra effort needed to implement high availability
control system hardware and software.

Materials and Services cost estimates were derived from a bottom-up assessment of the
controls requirements from each accelerator area and technical system. Costs for computing
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infrastructure (servers, networking, storage) were based on current commodity computing
vendor prices, with an inherent assumption that technology advances will bring commodity
computing to the level of performance required for the ILC by the time of project construc-
tion. Estimates for RF phase reference distribution were developed from a reference design
and vendor quotes. Estimates for ATCA front-end electronics were based on technically com-
parable components in other electronics platforms since equivalent components are not yet
available (or at least not in quantity) for ATCA.

The IT infrastructure estimates were based on actual costs for building and running IT
infrastructure at Fermilab, assuming that an ILC laboratory requires equivalent functionality
at approximately the same scale.

3.12.10 Table of Components

The following table shows a snapshot of the counts of the major control system elements.
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TABLE 3.12-1
Snapshot counts of the major control system elements.

Component Description Quantity

1U Switch Initial aggregator of network connec-
tions from technical systems

8356

Controls Shelf Standard chassis for front-end process-
ing and instrumentation cards

1195

Aggregator Switch High-density connection aggregator for
2 sectors of equipment

71

Fiber Channel RAID Disks Controls computing high performance
disk storage

350 Terabytes

Tape Library Automated tape system for backup &
retrieval, plus front-end disk cache

1

Controls CPU Controls computing CPUs (other than
real-time front-end processors)

452

Database CPU CPUs for running development, stag-
ing, and production databases

30

Controls Backbone Switch Backbone networking switch for con-
trols network

126

General Purpose Backbone Switch Backbone networking switch for gen-
eral purpose network

126

Monitoring Backbone Switch Backbone networking switch for moni-
toring (SNMP, IPMI) network

126

Video Backbone Switch Backbone networking switch for video
distribution network

126

Phase Ref. Link Redundant fiber transmission of 1.3-
GHz phase reference

68

Phase Comparator Phase comparison of dual phase refer-
ences and adjacent sector

68

Sector Phase Ref. Timing Control Local sector receiver of phase ref. and
fiducial

68

Event System Link Fiber link for event code distribution 68

Local Timing Card Controls shelf timing receiver and
intra-shelf timing distribution

1134

Controls Rack Standard rack populated with one to
three controls shelves

753

LLRF Controls Station Two racks per station for signal pro-
cessing and motor/piezo drives

668
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CHAPTER 4

Conventional Facilities and Siting

4.1 OVERVIEW

This section provides an overview of the ILC Conventional Facilities and Siting (CFS) which
has been adopted as the basis of the RDR cost estimate. A more detailed description can
be found in [173]. In the absence of a specific ILC site, three reference sites – one in each
region – have been developed in parallel by the CFS Group. The reference sites (described in
Chapter 5) are all deep-tunnel sites, but have varying geologies and topographical constraints.
An evaluation of an optimized shallow site (either a shallow tunnel or ‘cut and cover’) was
beyond the scope of the current RDR activities, but will be done in the near future. While
the focus of the CFS design work has been on the 31 km long 500 GeV machine, the sites are
required to support the footprint of the 1 TeV upgrade, both in terms of space and available
infrastructure (e.g. power).

The CFS Sample Site designs were generated using criteria provided by each of the ILC
Area Systems. Overall tunnel lengths were specifically determined by the machine param-
eters. However, the size of tunnels, shafts, underground caverns and surface buildings, as
well as the related CFS systems, have been developed to accommodate specific equipment in-
stallation, maintenance and personnel access and egress requirements. For all these systems,
the original criteria have been iterated in order to minimize overall costs while meeting the
requirements of the present state of the ILC design. Specific examples include the reduction
of Service and Beam tunnel diameters, the number and size of shafts, electrical power and
process cooling loads. Further documentation can be found in references [174] to [188].

Figure 4.1-1 indicates the basic scope of the civil construction of the ILC layout:

• Two parallel 31 km long 4.5m diameter underground tunnels house the main accel-
erators and the Beam Delivery Systems (Beam Tunnel), and their associated support
hardware (Service Tunnel, containing klystrons, modulators, power supplies, controls
and instrumentation electronics etc.). The tunnels are generally separated horizontally
by ∼11 m (center-to-center), and are connected via small diameter penetrations every
12 m supporting cables, waveguides etc. Personnel access connection tunnels (primarily
for safety egress) are located every 500 m.

• A total of 13 shafts along the length of the machine provide access to underground
caverns linking to the tunnels. They primarily support the large cryogenics plants
required for the superconducting linacs.
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FIGURE 4.1-1. Layout of the civil construction, indicating the position of shafts and caverns.

• A single collider hall at the Interaction Region (IR) is large enough to support two
physics detectors in a push-pull configuration.
• A single 5 m inner-diameter ∼7 km approximately circular tunnel located around the

central IR region and ∼10 m above the BDS elevation houses both the electron and
positron Damping Rings in a stacked configuration.

• Several additional tunnels and service shafts house the electron and positron sources
and injector linacs (injection into the Damping Ring), and connect the damping ring
to the main accelerator housing.

Civil Engineering, Electrical, and Process Cooling Water comprise greater than 90% of
the total cost of the CFS. The Civil Engineering portion of the project is almost two thirds
of the total CFS cost, with the Underground Facilities equating to 75% of Civil Engineering.
The more than 72 km of tunnel is the single largest cost element. Although formal value
engineering has not yet been accomplished, the designs have been reiterated with the project
team several times to develop a cost efficient, workable design.
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4.2 CIVIL ENGINEERING AND LAYOUT

4.2.1 Main Accelerator Housing

The largest underground structures are the two parallel 4.5 m diameter tunnels, which effec-
tively run for the entire length of the machine footprint (∼31 km). One tunnel (the Beam
Tunnel) contains the beamline components (SCRF accelerator cryomodules, magnets, vacuum
systems etc.) The second so-called “Service” Tunnel houses the entire support infrastructure:
RF power sources (klystrons, modulators, pulse transformers); dc magnet power supplies;
radiation-sensitive instrumentation and controls (electronics). Unlike the Beam Tunnel, the
Service Tunnel is designed to be accessed during beam operation, allowing in-situ repairs and
adjustment of equipment during running.

Figure 4.2-1 shows a cross-section of the Main Linac twin-tunnel, with the Beam Tunnel
on the left. The 4.5 m inner diameter accommodates the cryomodules and RF distribution
(waveguides), at the same time as allowing space for cryomodule installation (or removal),
while maintaining a minimum “clear passage” for emergency egress (see Figure 4.2-1 left).
The Cryomodules and other floor standing components are placed on short stands mounted
to a concrete floor. The beam is centered 1.1 meters above the floor and 0.8 meters away
from the wall, which is considered sufficient to allow for cryomodule installation (welding)
and the installation of the RF waveguides. Space needed for the survey lines of sight has
also been considered. The outer positioning of the cryomodules allows for clear access to the
egress passageways connecting the two tunnels, spaced at 500 meter intervals (not shown).

FIGURE 4.2-1. Cross-section of the Main Linac housing (Beam Tunnel, left) and Service Tunnel, showing
the connecting waveguide penetration.

The lateral separation of the tunnels is ∼11 m (center to center). The ∼7 m rock and
concrete separation between the Service Tunnel and Beam Tunnel is required for structural
reasons and to provide the required radiation shielding mass allowing workers to enter the
Service Tunnel while the accelerator is operating. Penetrations between tunnels have been
sized and configured to provide the required radiation shielding.
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TABLE 4.2-1
Main Service Tunnel equipment for a single RF unit.

Item Name Size (Meters) Comments

Klystron 1. × 3.38

Pulse transformer 1.34 × 1.25

Modulator 1 × 4.27

Electronic racks 9 0.80 × 1.1 Self Contained w/ integral cooling

LCW & CW skids 1.22 × 2.06

RF transformer 1.353 × 1.499 Plus 800 Amp Panel

Charging supply transformer 1.22 × 2.44

Conventional transformer 1.575 × 1.245 Plus 800 Amp Panel

Emergency transformer 1.575 × 1.245

The regions of superconducting RF (accelerator) dominate the length of the main accel-
erating housing. These sections are made up of many consecutive identical RF units. An RF
unit is approximately 38 m long (three cryomodules), and is supplied from the Service Tunnel
by three cross penetrations at intervals of approximately 12 m: one for the RF waveguides,
and two additional ones for cables and signals. The main RF unit components housed in
the Service Tunnel and their approximate space requirements are given in Table 4.2-1. For
the ‘warm’ sections of the Ring-to-Main-Linac (RTML) as well as the Beam Delivery System
(BDS), the Service Tunnel accommodates the many independent magnet power supplies, as
well as electronics for controls and instrumentation.

In addition to the RTML, Main Linac and BDS beamline components, the Beam Tunnel
also houses the 5 GeV low-emittance transport line (part of the RTML) which transports
the beam from the central Damping Rings to the far ends of the machine. The RTML
‘turnarounds’ at the ends of the machine are housed in a 4.5 m diameter looped tunnel with
an average bending radius of ∼30 m in the horizontal plane. The length of each loop is
approximately 140 m. On the electron linac side, a third beamline from the undulator-based
positron source (nominal 150 GeV point) is required to transport the 400 MeV positrons
from the source to the Damping Rings. Both the long 5 GeV low-emittance and the 400
MeV positron transport lines are supported from the Beam Tunnel ceiling, and are positioned
towards the center of the tunnel to allow for installation and replacement without removing
a cryomodule. Power and cooling services for these elements are provided from equipment in
the Service Tunnel.

The BDS and RTML bunch compressor tunnels (a total of ∼5.3 km and ∼2 km, re-
spectively) lie in a plane, while the Main Linac tunnels (47.8 km) and associated beamline
components, including the long RTML transfer lines, follow the Earth’s curvature.

The large cryogenic plants (see Section 3.8), required primarily for the SCRF RF cry-
omodules, are housed in eight underground caverns connected to the surface via shafts (four
per side, spaced approximately 5000 m apart): shaft nos. 2, 3, 4, 5, 10 and 11 are 14 m
in diameter, while shaft nos. 6 and 7 are 9 m diameter (see Fig. 4.1-1 for shaft locations).
Figures 4.2-2 , 4.2-3 shows a schematic of a typical 9 m shaft and cavern. In addition to hous-
ing the cryogenic plants, these shafts are also used for: installation of machine components
(including cryomodules at the 14 m shafts); normal and safety egress from the tunnels; and
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for supporting all services such as cooling water, power etc. The 14 m shafts are also used to
lower, assemble and prepare the Tunnel Boring Machines (TBM) which are used extensively
for tunnel excavation.

FIGURE 4.2-2. Example of a 9 m shaft with underground cavern, Service and Beam Tunnels (European
Sample Site).

FIGURE 4.2-3. Detailed view of 14 meter shaft.

Temperature neutral air is routed through the tunnel from the shafts, no additional
heating or cooling is required in the Beam Tunnel. Where needed there is dehumidification
equipment installed to maintain humidity levels below the dew point. Seepage is directed to
a drain and routed to the sumps located at the shaft caverns.

A special underground cavern is required to service the undulator-based positron source,
located at the nominal 150 GeV point in the Main Electron Linac. A 4 m vertical shaft is
provided for removal and installation of ‘hot’ targets.
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4.2.2 Central Injectors

The central injector systems include: the 6.7 km circumference Damping Rings; the polarized
electron source; the positron Keep Alive Source (KAS); and the electron and positron 5 GeV
SCRF injector linacs. Figure 4.2-4 shows the primary tunnel and shaft arrangements.

FIGURE 4.2-4. Layout of the Central Injector Complex (electron side).

The electron and positron Damping Rings are housed in a single 5 m inner-diameter
quasi-circular tunnel with a total circumference of 6704 m. The tunnel is located in the
horizontal plane, approximately 10 m above the plane of the BDS. The ring is made up
of six arc sections, two long straight sections for injection and extraction and four short
straight sections containing the superconducting damping wigglers and RF. The DR tunnel
is connected to the injection tunnels from the sources in the middle of the long straight
sections (see Fig. 4.2-4). The tunnel has 6 alcoves in total, located in the middle of the
straight sections. Two main alcoves are accessed via two 9 m diameter shafts, and are used
to house the cryogenic plants and RF power sources for the wigglers and RF cavities (and are
also used for installation). The four smaller alcoves in the remaining straight sections are not
connected to the surface, but two of them are vertically connected to the BDS portion of the
Service Tunnel 10 m below to allow personnel access. As there is no separate service tunnel
for the DR, all service and support equipment are housed in the two shaft caverns and the
four smaller alcoves. A cross-section of the Damping Ring tunnel is shown in Fig. 4.2-5; the
5 m inner diameter is required to house the two rings (vertically stacked), and the emergency
egress passage, while allowing enough space for component installation.

The electron and positron 5 GeV injector linacs are each housed in 4.5 m diameter tunnels,
and share the main Service Tunnel with the BDS. The sources also make use of the 14 m
diameter shafts located directly at the end of each Main Linac, where the connecting tunnel
to the Damping Rings has a 2% slope to accommodate the 10 m vertical offset between the
Damping Ring and Main Accelerator Housing. The KAS source requires an underground
cavern similar to the positron production vault in the electron Main Linac, again with a 4 m
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FIGURE 4.2-5. Cross-sections of the 5 m diameter Damping Ring tunnel showing vertical stacked rings at
several locations.

diameter vertical shaft for removal and installation of the hot target.

4.2.3 Interaction Region and BDS

The Physics Detector Hall is the largest cavern in the project. It is sized to accommodate
two Physics Detectors in a Push Pull type configuration assuming surface assembly of each
detector. The hall is connected to the surface assembly buildings via two 16 m diameter shafts,
one for each Detector. It is also connected to the Beam Tunnel, to a service cavern through
a passageway, and to the survey galleries. The floor slab is thick enough to accommodate
the weight of the two Detectors and the weight of the movable shielding wall (2 pieces) in
between the Detectors. The walls of the hall are equipped with 3 to 5 levels of steel platforms
to be used for services and access at various levels to the Detectors. The hall also has beams
and rails for one 400 ton crane and two 20 ton cranes, assuming the surface pre-assembled
Detector elements weigh 400 tons at most.
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FIGURE 4.2-6. Schematic of the Physics Detector Hall, showing BDS service cavern arrangement.

An additional service cavern for the BDS is located next to the Detector Hall (see Fig. 4.2-
6). It houses all the equipment needed for the running of the Detectors and ancillary facilities,
which need to the shielded from radiation or the magnetic field of the detectors. It has two
steel platforms as intermediate floors for equipment, and is connected to the Detector Hall
through a shielded passage for personnel and goods, and to the BDS service tunnel on both
sides. The service cavern is accessible from the surface via a 9 m diameter vertical shaft,
which supports all services, houses a safe staircase and lift for personnel and equipment, and
leaves space for lowering all components to be installed in the service cavern.

There are four full-powered Beam Dump facilities in the BDS System, two on each side.
For each one there is a cavern which houses the high-pressure water dump itself, and a service
cavern located ∼30 m away to house all electrical, control and cooling equipment.

The inner diameter of the BDS beam tunnels are locally enlarged at four locations (two
per side) to house the large magnetized toroids (so-called Muon spoilers) for reducing the
muon background to the experimental hall.

4.2.4 Surface Buildings

A total of 96, 140 and 133 buildings are foreseen for the Americas, Asian and European sites,
respectively. The type, number and dimensions of the buildings include only those surface
facilities required for construction, installation and operation of the project, taking into
account the specifics of each of the three sample sites. For instance, additional infrastructure
such as seminar rooms, guest-houses, restaurants, administrative facilities etc. are assumed
to be supplied by a nearby (host) laboratory, and are not included in the cost estimate. The
Asian sample site does not have a nearby laboratory and that estimate does include such
central campus facilities.

Types of surface buildings considered included: surface equipment buildings, including
cooling towers and pump stations; shaft head buildings; storage areas; local workshops and
assembly areas, local technical offices etc. The majority of these buildings are concentrated at
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the “central campus” and specifically at the Interaction Region. The remaining buildings are
located at the shafts positioned along the Main Accelerator Housing. Concrete construction
with acoustic absorbent material is used for buildings which contain “noisy” equipment; the
remaining buildings have steel structures and insulated steel “sandwich” type panels for roof
and wall cladding on concrete foundations. In all cases, the design of the buildings takes
into account the local climatic loads, seismic load (according to local standards) and fixed
or moving loads linked to the use of that building. The requirements for each building type
have been considered in making the cost estimate. Overhead cranes, gantries, elevators and
other lifting gear with appropriate capacity are included where necessary in surface and
underground structures. A detailed breakdown of the surface buildings can be found in [173].

4.2.5 Site Development

For the areas where surface buildings are located (central campus, shaft positions), the fol-
lowing items have been included in the cost estimate:

• fences and gates;
• roads and car parks within fences and from fence to existing road network;
• pedestrian walkways;
• lighting for the above and around buildings including buried electrical connections;
• all necessary drains along roads, car parks, including sumps, water treatment facilities

and connections to existing mains;
• all needed water supply pipes, tanks and connection to existing water supply network;
• landscaping and planting of trees, bushes, seeding of grass as required;
• spoil dumps (where applicable) created close to the building areas, including landscap-

ing.

All temporary facilities needed for the construction works as well as the necessary site
preparation before start of the works are also included in the cost estimate.

4.2.6 Regional Variants

Both the Americas and European sites are similar deep tunnel sites and both utilize vertical
shafts for access as described in the sections above. These shafts are respectively 135-100 m
deep. The Asian site is somewhat different, in that it is located along the side of a mountain.
With the exception of the two central shafts for servicing the Detector Hall at the IR, long
almost horizontal access tunnels are used instead of vertical shafts. The lengths of these
access tunnels range from 700 m to 2000 m. Other variants which are due to construction
methods depending on local geology are covered in Chapter 5.
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4.3 A.C. POWER DISTRIBUTION

Electrical power is categorized by three major systems:

• RF power (modulators);
• conventional power (normal conducting magnet power supplies, cryogenic plants, elec-

tronic racks, surface water plant systems and infrastructure components);
• emergency power provided by back-up generators (emergency lighting, sump pumps

and ventilation systems for sub-surface enclosures).

The power requirements are dominated by the RF system (modulators) located in the
Service Tunnel along the length of the Main Linac. Table 4.3-1 gives an overview of the esti-
mated nominal 1 power consumption for 500 GeV center-of-mass operations, broken down by
system area and load types. The cost estimate is based on a total nominal power requirement
of 216.3 MW. The additional required power for a potential upgrade to 1 TeV centre-of-mass
is not included in the current power load tabulation.

TABLE 4.3-1
Estimated nominal power loads (MW) for 500 GeV centre-of-mass operation.

Conventional Power

Area RF Conv NC Water Cryo Emer Total
System Power Magnets Systems Power (by area)

Sources e− 1.05 1.19 0.73 1.27 0.46 0.06 4.76

Sources e+ 4.11 7.32 8.90 1.27 0.46 0.21 22.27

DR 14.0 1.71 7.92 0.66 1.76 0.23 26.29

RTML 7.14 3.78 4.74 1.34 0.0 0.15 17.14

Main Linac 75.72 13.54 0.78 9.86 33.0 0.4 134.21

BDS 0.0 1.11 2.57 3.51 0.33 0.20 7.72

Dumps 0.0 3.83 0.0 0.0 0.0 0.12 3.95

Totals (by system) 102.0 32.5 25.6 17.9 36.9 1.4 216.3

High voltage (HV) connections to the utility system varies by region, ranging from 275kV
(Asia), 345kV (America) and 400kV (Europe). All regions provide for a main substation
located at or near the Interaction Region/Central Damping Ring for connection to the utilitys
high voltage transmission system. Standards for high voltage transmission, and medium
(MV) and low voltage (LV) distribution vary across regions; consequently the approach to
distributing the power to the machine components is slightly different for the three sample
sites. However, the salient features remain the same:

• Connection to the utilitys HV transmission system via a main substation located at the
central campus;
• HV transmission voltage is transformed to medium voltage (MV; 34-69 kV) for distri-

bution across the site to remote shafts (access points);
1Nominal electrical power requirements have been developed (as much as practical) as continuous power ,

sometimes denoted as wall power . Installed power may be 75-100% higher.
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• From the remote shaft locations, power is further transformed and distributed to the
Service Tunnel. For the Main Accelerator Housing, this implies a distribution of ap-
proximately ±2.5 km (in both directions) from the shaft locations. Medium voltage
is distributed directly to RF stations (modulators). Low-Voltage transformers located
along the Service Tunnel tap-off the MV distribution system to provide power to the
LV systems and components.

An optimized engineering solution for the power distribution is heavily influenced by
site selection, including: availability and location of utilitys substations; regional voltage
standards and regional safety regulations. The design work for this report was developed
globally by identifying site-dependent and site-independent infrastructure requirements, the
former being developed by the regions and the latter being based on a European estimate.
Details can be found in [173]. In the following sections, the European solution is presented.
Important regional variations are briefly described in Section 4.3.6.

4.3.1 System Configuration

Voltage levels selected for the MV distribution systems are 66/6 kV, 36 kV and 69/34 kV
for the Asian, European and Americas regions, respectively. LV distribution systems for all
regions are in the magnitude of hundreds of volts. Standardized switchboards powered from
the LV transformers are used to locally distribute LV power.

All HV and MV substations - including the one at the central campus - are provided
with a bus-tie-bus configuration (RF bus system and conventional bus system). The HV
and MV protection systems are based on numerical relays with facilities for programming
automated sequences, and for recording network perturbations; thus allowing every major
electrical system to be monitored by a Supervisory Control and Data Acquisition system
(SCADA)

4.3.2 Distribution for the Main Accelerator Housing

Two MV cable lines are routed along those sections of Service Tunnel containing SCRF
cryomodules (Main Linac and RTML):

• One MV system provides power to the RF (Modulator) system, with a ring main unit
(RMU) installed at every RF unit (∼38 m) connected directly to the RMU.

• The second MV system provides power for conventional services, with a RMU and
500 kVA transformer located at every fourth RF unit (∼152 m). A LV switchboard is
powered from the 500 kVA transformer and located near the transformer in the Service
Tunnel. The switchboard supplies LV power to ∼152 m of both the Beam and Service
Tunnels.

In those sections of the Main Accelerator Housing where there are no RF units (warm
sections of RTML and the BDS), only the conventional services MV system components are
installed. The same 152 m module structure is used in these areas. For the BDS sections,
individual transformers are rated 1000 kVA (each) in lieu of 500 kVA due to the higher density
of the load (larger number of normal conducting magnets)

LV power is supplied to the Beam Tunnel via the connecting penetrations, spaced ap-
proximately 12 m apart (12 per 152 m distribution unit).
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4.3.3 Distribution for the Central Injectors

Power for the central injectors (damping rings, sources and injector linacs) is derived from
the main substation located at the central campus.

The SCRF is responsible for about two-thirds of the total power requirement for the
Damping Rings, the remaining third being the normal conducting magnets and supercon-
ducting wigglers. Due to the restricted tunnel cross section, the MV systems are installed
partly on the surface and partly in the tunnel alcoves (see Section 4.2.2). The Damping Ring
tunnel is supplied from a MV loop system originating at one of the two Damping Ring service
shafts. A distribution substation is installed on the surface, fed directly from the central area
via a MV system. The surface equipment at the second service shaft completes the closed
loop. A LV transformer provides power in the shaft base alcoves. RF and other large power
consumers are fed via RMUs and the dedicated MV system at the surface.

For the remaining four subterranean alcoves located in the Damping Ring straight sec-
tions, an underground substation is powered utilizing RMUs. The LV distribution in the
Damping Ring tunnel uses multiple LV switchboards. The LV in the tunnel provides gen-
eral power to lighting, outlets, and possibly minor machine system loads. Switchboards are
generally located in the alcoves together with the substation and RMU.

The sources are essentially concentrated in short tunnels and caverns. The equipment for
each of the sources is fed from a short MV system with RMUs. Dedicated LV transformers are
installed for the RF for the source capture sections and SCRF injector linacs. The remaining
part of the electrical load is powered from the conventional power distribution system.

4.3.4 Interaction Region

The power requirements of the detectors are currently not known. The current design is
estimated based on a detector load requirement of 3 MVA, scaled down from CMS. A MV
cable system, RMUs, LV transformers and switchboards has been reserved for the detectors.

4.3.5 Emergency Supply Systems

The emergency supply system is based on stand-by diesel generator systems. Each generator
set supplies a protected substation, which is normally supplied by the utility power. During
a utility power interruption, the diesel engines start automatically and transfer the critical
load when ready. On return of utility power, the diesel generator systems synchronize to the
utility power system and the load is re-transferred back to the utility power system, after
which the diesel generator systems shut down.

Due to voltage drop considerations, the generator output voltage must be transformed up
to a MV level. The Main Linacs and the RTML zones are equipped with a MV system with
RMUs at regular spacing. The Damping Ring tunnel is also equipped with a MV system,
originating at one access shaft with a RMU in each alcove or cavern. Each MV system is
completed by exiting the adjacent access shaft to the surface. Each of the RMUs feeds the
critical load through a LV transformer and switchboard. Any critical system which cannot
accept any power interruption is provided with an Uninterruptible Power Supply (UPS)
system, or no-break systems.
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TABLE 4.3-2
Various voltage levels utilized by regions. Note that there are two levels of HV distribution utilized for the
Americas and Asian sample sites

Voltages Europe America Asia

Transmission 400 kV 345 kV 275 kV

Distribution 36 kV 69 kV 66 kV

Distribution 36 kV 34 kV 6.6 kV

Distribution 400/230 V 480/277 V 400/200 V

4.3.6 Miscellaneous Technical Issues

Power quality considerations A separation of pulsed and non-pulsed systems may be needed
to avoid interference between certain loads. Reactive power compensation and harmonics
filtering may also be needed, depending on the non-linear load and the dynamic behaviour
of the load, especially the RF (Modulator) system.

4.3.7 Regional Variations

Table 4.3-2 gives an overview of the various voltages assumed for the different regions.
European Sample Site: The description of the power distribution given above is pri-

marily that adopted for the European site (and the cost estimate). The utility voltages are
400 kV, with the MV levels set to 36 kV. LV levels are typically 400 V (three phase) and
220-240 V (single phase).

Asian Sample Site: The distribution of power is slightly different to that documented
above. The utility voltage is 275 kV, and is transformed to 66 kV and distributed via the
Service Tunnel to the secondary substations located in each access base caverns. Secondary
substations transform the voltage to 6.6 kV which is then distributed to local LV transform-
ers. A LV system of 400 V (three-phase) and 100-200 V (single-phase) is supplied via local
transformers from the 6.6 kV system. The system applies to power transport and distribution
in the entire underground areas.

Americas Sample Site: The Americas distribution also varies slightly in that the utility
voltage of 345 kV is first transformed to 69 kV at the master substation. The 69 kV is routed
through the tunnel to each shaft, and then up the shaft to where it is stepped down to the
medium distribution voltage (34.5 kV).

4.3.8 Information Network

Site-wide communications are in general supported via a fiber-optic based LAN system.
For the underground areas, local LAN racks are located in the tunnel at an interval of
approximately 200 m, which serve as the primary connection point to the end equipment
(via electrical cables). From here the signals are sent to sub-center LAN racks located in the
Shaft Bases, and finally to the main control center.

The LAN supports the following equipment:

• General digital data transfer.

• Telephone system: 1,800 cordless lines and 240∼360 fixed lines are assumed. Cordless
telephones are supported in the underground areas via IP transmitters.
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• Public address system (including safety address system): for the underground areas,
speakers are mounted every 10 m of tunnel.
• Security CCTV and other video monitoring where needed (both surface buildings and

underground areas).
• Fire alarms, smoke detectors etc.

In the case of the critical safety-related systems, emergency back-up power is supplied
from the standby generator in case of power failure.
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4.4 AIR TREATMENT EQUIPMENT

Figure 4.4-1 shows the air-flow and treatment for a typical section of Main Linac. Conditioned
ventilation airflow of 68,000 m3/hr is ducted down every major shaft and routed into the
Service Tunnel at the base of the shaft or Access Cavern in both directions. Air flows
through the Service Tunnel to the midpoint between the major shafts (∼2.5 km) where it is
directed through a protected air passageway into the Beam Tunnel and returned back to the
shaft area. The return air is ducted to the surface where 15% (10,200 m3/hr) of the stale air
is vented to the outdoors, and an equivalent amount of fresh conditioned outside air is mixed
back in with the remaining circulated air. While at the surface, the air is cooled, dehumidified
and/or heated as needed to achieve a neutral dry condition approximately 24-27◦C dry bulb
and 40% relative humidity. The supply air is then ducted back to the Service Tunnel. This
air flow pattern requires evaluation by radiation safety personnel.

The conditioning units are located on the surface and reject tunnel heat and moisture to
the ambient air. Air is supplied to the tunnel at a flow rate of approximately 27 m/min; this
provides one complete air exchange every 6 hours in the entire tunnel volume. Additional
non-conditioning exhaust and supply fans are provided at each shaft to double and/or reverse
the airflow during emergency operation. Common ducts are used for both systems separated
by configuration control dampers. Elevator shafts and exit vestibules are provided with
separate air systems for control and pressurization during emergency operation.

TABLE 4.4-1
HVAC requirements.

Location Temperature Dewpoint RH Air Flow
(drybulb)

e- Source 29◦C <13◦C <35% 27 m/min

Damping Ring 40◦C <13◦C <20% 27 m/min

Main accelerator service tunnel 29◦C <13◦C <35% 27 m/min

Main Linac beam tunnel (not contr.) >30◦C <13◦C <35% 27 m/min

BDS beam tunnel 29-32◦C <13◦C <35% 27 m/min

IR hall 29-32◦C <13◦C <35% 27 m/min

4.4.1 Controls

The temperature and humidity in the Service Tunnel are primarily set by regional standards
for allowing personnel to be in the tunnel at moderate work levels with no required rest
periods. The requirements for the tunnels in each of the system areas are summarised in
Table 4.4-1. In general, air temperature in the Service Tunnel is controlled at 27-29◦C using
chilled water Fan Coil Units (FCU), as described in Section 4.2.5. In the Main Linac sections,
the FCUs are located at every RF unit.

Temperature control in the Main Linac Beam Tunnel is not provided because of the
relatively low heat loads. The humidity level is maintained by the air circulation from the
Service Tunnel and by packaged dehumidification units located approximately every 100
meters. Beam Tunnel temperatures in the BDS are maintained locally at 40-43◦C by FCUs.
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FIGURE 4.4-1. Air treatment concept for the Main Accelerator housing.

III-226 ILC Reference Design Report



Process Cooling Water

4.5 PROCESS COOLING WATER

Cooling water is required as a heat rejection medium for technical components such as the
water cooled RF components, water cooled magnets, and water dumps in the BDS. The
majority if not all of these require low conductivity/deionized water (LCW). Further study is
needed to establish water quality requirements. The following descriptions present a reference
solution that is generally applicable for all regions, ignoring minor regional site differences.

4.5.1 Heat Loads

Table 4.5-1 summarizes the estimated heat-loads broken down by Area Systems. Of the total
load of ∼182 MW, over half is attributed to the Main Linac. Table 4.5-2 lists the heat loads
for the Main Linac RF unit.
TABLE 4.5-1
Summary of heat loads broken down by Area System.

Area System LCW Chilled Water Total
(MW) (MW) (MW)

Sources e− 2.880 1.420 4.300

Sources e+ 17.480 5.330 22.810

DR e− 8.838 0.924 9.762

DR e+ 8.838 0.924 9.762

RTML 9.254 1.335 10.589

Main Linac 56.000 21.056 77.056

BDS 10.290 0.982 11.272

Dumps 36.000 0.000 36.000

Total Heat Load (MW) 182

4.5.2 System Description

There are two water cooling systems; Process Water and Chilled Water. Chilled Water is
used for water cooled racks in each RF area and for fan coils that remove the heat rejected to
the tunnel air. The Process Water handles the water cooled technical components. The scope
of the Process Water cooling included in conventional facilities includes the surface cooling
towers, pumps, controls, cavern heat exchangers, skids and piping headers, and distribution
and valving up to the water cooled components. Final hose connections to each water-cooled
technical component are included in the relevant Technical System. The tower system for
the cryogenics is considered part of the Cryogenics Technical System.

All water systems are closed loop. The cooling tower type is a closed circuit cooler similar
to a dry cooler. The tower works dry by releasing the heat directly to the air during most
of the year. During hot periods in the summer seasons, the towers/coolers are wetted with
water in order to guarantee the supply temperature. This setup minimizes and conserves
water and treatment chemicals and associated cost, as compared to typical open type towers.
The closed circuit coolers also minimize plume from the tower. The make-up water to the
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TABLE 4.5-2
Typical Main Linac RF component heat loads.

Components Tunnel Total Average To Water To Air
(KW) (kW) (KW) (KW)

RF Charging Supply 34.5 KV AC-8 KV DC service 4.0 4.0 2.8 1.2

Switching power supply 4kV 50kW service 7.5 7.5 4.5 3.0

Modulator service 7.5 7.5 4.5 3.0

Pulse transformer service 1.0 1.0 0.7 0.3

Klystron socket tank / gun service 1.0 1.0 0.8 0.2

Klystron focusing coil (solenoid ) service 4.0 4.0 3.6 0.4

Klystron collector/ body/windows service 58.9 47.2 45.8 1.4

Relay racks (instrument racks) service 10.0 10.0 0.0 -1.5

Circulators, attenuators & dummy load beam 42.3 34.0 32.3 1.7

Waveguide beam 3.9 3.9 3.5 0.4

Subtotal Main Linac RF unit (KW) 120

system and tower is supplied from a well with proper water treatment, from each surface
water plant.

FIGURE 4.5-1. Process water system at shaft 7 plant.

Figure 4.5-1 shows a schematic of a typical Process Water Plant. The Process water
system has three closed water loops:

• The first is a water/glycol mixture loop from the surface cooling tower to the cavern
heat exchanger at 29.4◦C supply temperature.

• The second is a process water loop from the cavern heat exchanger at 32.2◦C supply
temperature to the LCW skid in the Service Tunnel. The heat exchanger in the cavern
is needed to offset the effect of the static head on system pressure due to the tunnel
depth.
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• The third is the demineralized/LCW water from the skid at 35◦C supply temperature.

The supply water temperature has a tolerance of ±0.5◦C. The basis for pipe sizing and
costing is for a ∆T ∼11◦C water system. The return pipe is thermally insulated to reduce
the heating of the tunnel air. This setup is applicable for the Main Linac; a variation of this
scheme is used for other areas. In the case of the Process Water supply to the large BDS
(main) beam dumps, a near surface buried piping distribution from a surface plant at the
IR location is fed into each dump cavern hall through individual drilled shafts. (The cooling
system for the main high-powered beam dumps is discussed elsewhere.)

The Chilled Water system provides ∼6.6◦C supply temperature water to fan coils and
to the water skid for racks. The water skid, in turn, regulates and provides the proper
temperature (above dew point) to the water cooled RF racks. The major components for
this system are the same as for the Process Water except for the addition of Chillers on the
surface. All chilled water piping is thermally insulated (see Fig. 4.5-2).

FIGURE 4.5-2. Chilled water system at shaft 7 plant.

4.5.3 Locations and Distribution

The main distribution of the Process Water system follows the major shaft and cryogenic
distribution locations. There are twelve surface water plants. For the reference solution, the
distribution is simplified to minimize the number of area systems served by each water plant
(considered consistent with the current estimate). Only the Main Linac RF system has been
considered in any detail. Estimates for other areas have been scaled from the Main Linac
model based on their respective loads.

One Low Conductivity Water (LCW) skid is used for cooling all the water cooled technical
components for every four Main Linac RF units. Each LCW skid includes one stainless
steel centrifugal pump (with no standby), one plate heat exchanger, controls, stainless steel
expansion tanks, and miscellaneous fittings and accessories.
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Similar to the LCW skid, one chilled water skid for racks is provided for every 4 RF units.
This skid is a commercially available package coolant modulating unit typically used in data
center rack applications. Each skid includes a multi-stage centrifugal pump, brazed plate
heat exchanger, 3-way control valve, expansion tank, flow switch and integrated controls.
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4.6 SAFETY SYSTEMS

4.6.1 Radiation safety

The radiation safety systems are described in Section 2.9.4

4.6.2 Fire Safety

Because there are no existing laws and standards in any region which directly and compre-
hensively stipulate the safety measures for a facility like ILC, the currently planned safety
measures are based on examples of existing accelerator tunnels and the regulations for build-
ings and underground structures of various types. The final plan will be subject to the
approval of the competent authority that has jurisdiction over the selected site.

Evacuation of the underground Service Tunnel is the primary concern, due to the relatively
high level of cables. In the event of a fire in the Service Tunnel, personnel can escape to the
safety of the Beam Tunnel via the Beam-Service Tunnel personnel cross-overs, located every
500 m (see Figure 4.6-1). Egress to the surface is only possible at the shafts, located every 5
km. Assuming a walking speed of 1 m/s, 500 m between emergency egress points is considered
acceptable (∼8 minutes maximum). During beam operations, triggering of a fire alarm will
immediately de-energize the machine, making it safe for personnel to enter the Beam Tunnel.

During access periods or installation, when personnel are present in the Beam Tunnel,
emergency egress can be either to the Beam or Service Tunnel, depending on the location of
the fire.

FIGURE 4.6-1. Examples of the personnel cross-connection passages between the Service and Beam
Tunnels (left Asia and Europe, right Americas). The geometry of the passage is designed to reduce the
radiation levels in the Service Tunnel to acceptable levels.

For the Damping Rings (during installation and maintenance), emergency egress is to a
separate safety enclosure behind a fire wall within the tunnel (see Section 4.2.2).

In all cases, personnel can either safely escape to the surface via the nearest shaft, or
remain in a fire-safe area until the emergency services respond.

Smoke detectors are installed in all underground tunnels and halls at intervals of 30 m.
Manual alarms (buttons) are located at intervals of 100 m. Alarm bells are also installed at
intervals of 100 m. A smoke exhaust fan of 60,000 m3/hr is installed at each Shaft Access
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Building on the surface. 1.2 m2 ducts are installed in the Access Shafts/Tunnels to connect
the fans and the Access Hall.

No emergency smoke exhaust system is installed in the tunnels. Instead, movement of
the smoke is retarded by 1.5 m high walls mounted to the top of the tunnels at intervals of
50 m. Simulations using software developed and widely used in Japan indicate this solution
is more effective than a mechanical exhaust system

Provisions for the required emergency fixtures are also included in the current estimate:

• emergency lighting located every 8 m
• illuminated exit signs installed above every exit door in the underground spaces
• illuminated exit direction signs installed at intervals of 20 meters in the underground

spaces
• portable chemical powder fire extinguishers (3.0 kg) placed every 30 m in the Service

Tunnel, Beam Tunnel and for Asia Site the Access ramps
• large size fire extinguishing equipment (30 kg) located every 200 meters in the Access

Halls and the Experimental Hall.
Sprinklers, hydrants and water curtains have not been specified to avoid possible water

damage to the machines.

4.6.3 Safety Access Control

Access control equipment such as a card lock is installed at the entrances to the radiation
control areas as required by the radiation safety plan.

4.6.4 Safety for Helium

The helium supply system is equipped with an oxygen meter which activates an alarm and
stops the gas supply in case of oxygen deficiency. Air in the Beam Tunnel is automatically
pressurized.
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4.7 SURVEY AND ALIGNMENT

Survey and alignment covers a very broad spectrum of activities, starting from the conceptual
design of the project, through the commissioning of the machines, to the end of operations.
The cost estimate developed covers the work necessary until successful completion of the ma-
chine installation. It includes equipment needed for the tasks to be performed, and equipment
for a dedicated calibration facility and workshops. It also includes the staff that undertake
the field work, and the temporary manpower for the workshops. Full time, regular staff is
considered to be mainly dedicated to organizational, management, quality control, and spe-
cial alignment tasks. The cost estimate is mostly based on scaling the equivalent costs of the
LHC to the ILC scope.

4.7.1 Calibration Facility

A 100 m long calibration facility is needed for the calibration of all the metrological instru-
ments. The facility is housed in a climate controlled and stable building. Due to the range
limit of current day commercial interferometers against which the instruments are to be
compared the facility has been restricted to 100 m. A mechanical and an electronic work-
shop are also needed during the preparation phase and throughout the entire project. They
are used for prototyping, calibration, and maintenance of the metrological instruments.

4.7.2 Geodesy and Networks

A geodetic reference frame is established for use across the whole site, together with appropri-
ate projections for mapping and any local 3D reference frames appropriate for guaranteeing
a coherent geometry between the different beam lines and other parts of the project. An
equipotential surface in the form of a geoid model is also established and determined to the
precision dictated by the most stringent alignment tolerances of the ILC.

The geodetic reference frame consists of a reference network of approximately 80 mon-
uments that cover the site. These monuments are measured at least twice, by GPS for
horizontal coordinates, and by direct leveling for determining the elevations. The first de-
termination is used for the infrastructure and civil engineering tasks. The second, and more
precise determination, is used for the transfer of coordinates to the underground networks
prior to the alignment of the beam components. A geodetic reference network is also installed
in the tunnel and in the experimental cavern. For costing purposes it is assumed that the
reference points in the tunnel are sealed in the floor and/or wall (depending on the tunnel
construction) every 50 m. In the experimental cavern, the reference points are mostly wall
brackets. The underground networks are connected to the surface by metrological measure-
ments through vertical shafts. The distance between two consecutive shafts does exceed 2.5
km in most cases.

4.7.3 Civil Engineering Phase

The layout points which define the tunnel locations and shapes are calculated according to the
beam lines in the local 3D reference frame. The tunnel axes are controlled as needed during
the tunnel construction. All tunnels, including profiles, are measured in 3D using laser scanner
techniques when the tunnels are completed. The same process is applied to the experiment
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cavern(s) and other underground structures. The buildings and surface infrastructure are
also measured and the as-built coordinates are stored in a geographical information system
(GIS).

4.7.4 Fiducialization

Systematic geometrical measurements are performed on all beamline elements to be aligned
prior to their installation in the tunnels. The alignment of elements installed on common
girders or in cryomodules is first performed, and the fiducial targets used for the alignment
in the tunnels are then installed on the girders (cryomodules) and all individually positioned
elements. The positional relation between the external markers and the defining centerlines
of the elements are then measured. For this report, an estimated 10,000 magnetic elements
were assumed to need referencing. It is also assumed that most corrector magnets do not
need fiducialization. This number does not account for instrumentation, collimators, or other
special beam elements.

4.7.5 Installation and Alignment

The trajectories of all the beamlines are defined in the local 3D reference frame which covers
the entire site. The location of reference markers at the ends of each beam line element to
be aligned are defined in this reference system, together with the roll angle giving a full 6
degrees of freedom description of element location and orientation. Likewise the position of
all geodetic reference points is determined in this reference frame.

Prior to installation, the beamlines and the positions of the elements are marked out on
the floors of the tunnels. These marks are used for installing the services, and the element
supports. The supports of the elements are then aligned to their theoretical position to
ensure that the elements can be aligned whilst remaining within the adjustment range of the
supports.

After installation of services such as LCW and cable trays, the tunnels are scanned with
a laser scanner. The point clouds are then processed, and the results inserted into a CAD
model. A comparison with theoretical models is used by the integration team to help identify
any non-conformity and prevent interference with the subsequent installation of components.
The current requirements for the one sigma tolerances on the relative alignment of elements
or assemblies are given in Table 4.7-1.

The components are aligned in two steps:

• A first alignment is performed to allow connection of the vacuum pipes or interconnec-
tion of the various devices. This is done using the underground geodetic network as
reference.
• After all major installation activities are complete in each beamline section, a final

alignment, or so-called smoothing, is performed directly from component to component
in order to guarantee their relative positions over long distances.

To reach and maintain the positioning tolerances of the final doublets in the BDS IR, a
150 m straight reference line is set up as close as possible to the beam components. This line,
consisting of a laser or stretched wire and hydrostatic levels, is housed in a dedicated gallery
built parallel to the beam tunnel, and goes through the experimental cavern. This allows for
the geometrical connection between the beam lines and the detector.
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TABLE 4.7-1
Component alignment tolerances.

Area Type Tolerance

Sources, Damping Offset 150 µm (horizontal and vertical),
Rings and RTML over a distance of 100 m.

Roll 100 µrad

Main Linac Offset 200 µm (horizontal and vertical),
(cryomodules) over a distance of 200 m.

Pitch 20 µrad

Roll

BDS Offset 150 µm (horizontal and vertical),
over a distance of 150 m around the IR.

4.7.6 Information Systems

The theoretical positions of all the components to be aligned on the beam lines is managed in
a dedicated database. This database is also used for managing all the geodetic and alignment
measurements and the instrument calibrations. All measurement data are captured and
stored electronically and subsequently transferred to the database. Pre-processing of the
measurements are carried out in the database and then dedicated software for data analysis
is used to calculate the best fit position of the elements and components. These results are
also stored in the database where they can be accessed for further post-processing, analysis
and presentation. A geographic information system (GIS) is set up for managing all location
data.
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4.8 CFS COST METHODOLOGY

The cost for the ILC CFS has been developed internationally with teams in each of the three
regions (Americas, Asia and Europe). These teams have worked closely together to optimize
the CFS design, based on the requirements supplied by the Area and Technical Systems.

To make use of the available resources for the design and cost work, a detailed WBS for
the project was produced, containing up to 5 levels of detail. This WBS was then broken
down into site-dependent and site-independent sections. For the site-dependent estimates,
the CFS group established a set of uniform definitions for underground construction unit
costs. This ensured consistency across all three regions. Estimates for each unit cost were
independently produced by experts and consultant engineering firms in each of the three
regions (the Civil Engineering falls into this category, for example) and then used to develop
each site-dependent design. The remaining site-independent parts were then divided up
amongst the regional teams to produce single estimates as follows:

Civil Construction Regionally developed

Electrical: site-dependent Regionally developed

Electrical: site-independent European estimate used

Air treatment facilities Americas estimate used

Process cooling water Americas estimate used

Handling equipment European estimate used

Safety systems Asian estimate used

Survey and Alignment systems European estimate used

Cost estimates in all three regions were developed using the same criteria and drawings.
information was drawn from consultant engineers, historical data from other accelerator or
similar projects, industry standard cost estimating guides, and where applicable the scaling
of costs from similar systems. In all cases, the estimates reflect a median value for the
work based on the criteria provided to date and the pre-conceptual level of design maturity.
There are no factors for contingency contained in any of the CFS costs estimates. Costs for
activities that take place prior to the construction start are explicitly not included in the
estimate. Some examples of such costs are A/E Services before the start of construction,
development costs for geotechnical and environmental investigation, land acquisition costs
and cost incurred for compliance with local governmental statutes and regulations. These
costs cannot be accurately identified until a specific site selection is made.
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4.9 INSTALLATION PLAN

4.9.1 Overview

The baseline ILC covers a large geographical area over 30 kilometers long that includes a
complex network of ∼72 km of underground tunnels at a depth of approximately 100 m. An
overall schematic layout of the ILC is shown in Figure 4.9-1. These tunnels house most of the
technical equipment needed to operate the accelerator. There are ∼2,000 cryomodules, over
13,000 magnets and approximately 650 high level RF stations to be installed. These and other
technical components are described in the Area and Technical System sections of this report.
The schedule for construction of the ILC is assumed to be 7 years as described in Section
6.3. This section describes the model that was developed and costed for the installation of
all components on an appropriate schedule.
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FIGURE 4.9-1. Schematic layout of ILC.

4.9.2 Scope

The installation plan covers all activities required to prepare, coordinate, integrate, and exe-
cute a detailed plan for the complete installation of the ILC components as well as associated
site-wide logistics. It includes all labor, incidental materials and equipment required to re-
ceive, transport, situate, affix, accurately position, interconnect, integrate, and checkout all
components and hardware from a central storage or subassembly facility to their operational
location within the tunnels. The premise is that installation recieves fully tested assem-
blies certified for in-tunnel installation. It does not include component fabrication, assembly,
quality control or commissioning. It also does not include the basic tunnel utilities provided
by conventional facilities, such as ventilation, air conditioning, fire prevention, high voltage
electrical and low-conductivity water distribution.
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4.9.3 Methodology

For the RDR, the goal was to understand and define the scope of installation work sufficiently
to develop a reasonable model for a first stage of planning and costing. The model was based
on a work breakdown structure (WBS) that listed all of the activities required for installation
of the technical systems, including the management, planning, and engineering support.

The installation WBS was broken down into two major level-of-effort categories, Gen-
eral Installation and Area Systems Installation. General Installation included all common
activities and preparations and associated logistics on the surface. Area System Installa-
tion included all efforts required for complete installation of the components underground.
General Installation was further broken down into logistics management, engineering sup-
port, equipment, vehicles, shipping-receiving, warehousing, and transportation. Area System
Installation covered the six machine areas, electron source, positron source, damping rings,
RTML, main linac and beam delivery. Each element of the WBS for both General and Area
System was then extended two levels of effort further and populated with required labor as
well as incidental material and equipment costs, as described below. Table 4.9-1 shows the
top-level installation WBS.
TABLE 4.9-1
Top-level WBS installation.

WBS Component

1 7 3 Installation

1 7 3 1 General Installation

1 Logistics management

2 Engineering support

3 Equipment

4 Vehicles

5 Shipping & receiving

6 Warehousing

7 Surface transport

1 7 3 2 Area System Installation

1 Sources e− area installation

2 Sources e+ area installation

3 Damping Rings area installation

4 RTML area installation

5 Main Linac area installation

6 Beam Delivery area installation

The installation cost estimate for the “Cold” Linear Collider from the 2003 US Technology
Options Study was used as a starting point for developing the ILC WBS. This was adjusted
for the differences between that design and the ILC as well as for lessons learned from other
projects. Available information from the WBSs developed for NLC and TESLA was incorpo-
rated wherever possible, as was pertinent material from similar installation projects at APS,
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FNAL Main Injector, KEKB, LHC, PEP-II, SLC and SPEAR-III, as well as installation
plans for SSC and the European XFEL. The scope, complexity and salient features of these
other machines were compared with the ILC.

To populate the WBS, a comprehensive list of components was compiled and interfaces
and boundaries with the technical systems carefully defined. As an example of such cost/scope
definition, it was assumed for magnet installation that fully tested and measured magnets
complete with supports, anchor bolts, and other required materials were delivered to a surface
staging area, along with any special instrumentation or handling equipment. The installation
group transported the device to the proper location, arranged for alignment, installed the
device and instrumentation, and connected it to the local power, water and cryogenic systems.
Details of which group supplied the cables, hoses or fittings were explicitly specified, as were
testing responsibilities.

The estimates for labor and equipment required to install the components came from
a wide variety of sources. For conventional components, like beampipes and magnets, the
technical systems provided estimates, based on experience with other projects. Visits to
CERN and DESY provided data on installation of cryomodules, LHC magnets and the CMS
detector as well as the opportunity to observe actual installation procedures. RSMeans
2006 cost data (North America’s leading supplier of construction cost information) was used
in estimating total work-hours needed for installing equivalent size/weight equipment under
similar conditions. Since the main linac is a major cost driver, the installation of cryomodules
and RF sources was modeled in detail. This is described in the next section. For other systems
where there was not an appropriate experience base, the estimates were scaled from similar
installation tasks based on an assessment of complexity.

The resulting estimates were subjected to a variety of cross-checks and reviewed for com-
pleteness and appropriateness by technical and area system leaders. The estimates were
compared with individual estimates from other sources, and with the actual manpower used
for the installation of recent accelerator projects. The labor estimate for the particular cry-
omodule installation tasks was also independently calculated by a second engineering team,
and the results were in agreement to within 13%. An additional check was that the overall
installation costs were 7% of the total level of effort. This is consistent with the estimate
from the 2003 Options Study where the installation effort was 7% and with the installation
costs for other projects studied which also averaged 7%.

Figure 4.9-2 shows the distribution of installation effort between General and Area Sys-
tems and between the various Area Systems, where the Main Linac accounts for almost half
of the effort.

4.9.4 Model of Main Linac Installation

At this stage of the ILC design, it is too early for a complete model of the entire installation
sequence. The Main Linac cryomodules and rf sources represent a major installation effort so
a bottoms-up model for their installation was developed. The model was derived from that
in the TESLA TDR. Installation was assumed to take place over a period of 3 years with half
a year ramp up time. Labor productivity was taken to be 75%, or 6 hours per shift, given
transport distances and handling difficulty.

Before starting installation, the section of the main linac beam and support tunnels must
be completely ready for joint occupancy, along with one large and two small associated access
shafts. The installation sequence was first to fix the cryomodule supports, then to move
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FIGURE 4.9-2. Distribution of effort between General and Area Systems and between Areas.

the cryomodules from the access shafts, install the cryomodule and complete the cryogenic,
vacuum and rf connections. Figure 4.9-3 is a schematic of the cryomodule indicating the
number of connections to be made. The installation rate was three cryomodules (one RF
unit) and associated services per day for each crew. The model included the number and size
of equipment, distances to installation, speed of transportation and estimates of number of
staff and hours for each task.

Gas Return Pipe 
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Cool down 
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RF Coupler 
Vacuum

Beam Pipe

2 K Pipe

80 K Pipe

4 K Pipe

2.2 K Pipe

40 K shield

4 K shield

FIGURE 4.9-3. Schematic of the cryomodule showing multiple connections.

The study concluded that a total of 72 person-days are required to install 3 cryomodules.
This labor includes engineers and technicians from a variety of specialties. The 3 cryomodules
account for only about 20% of the effort to assemble an entire RF unit (and everything in this
38 m length of beam and support tunnels) so the installation estimate for an entire RF unit
was taken to be 5 times the cryomodule estimate. The other components include, klystrons,
modulators, control racks, cable trays, control cables and RF waveguides. Such a section of
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the tunnels and components are shown in Figure 4.9-4.

FIGURE 4.9-4. Plan view of service tunnel components in Main Linac (upper). Cross section of two Main
Linac tunnels (lower).

4.9.5 Modelling

Installation planning of the large and complex ILC machine requires the creation of 3-D
computer models of all the major components as well as the underground facilities. To
create a cost effective, timely and safe installation plan, certain facility conditions must be
assumed to exist prior to installation. Some examples include the availability of utilities,
communication systems, above ground warehousing and equipment staging areas. Below
ground, the personnel access rules, including safety and emergency considerations, must be
defined and the schedule of equipment and tunnel availability must be known. Once these
and the details of the technical components are known, a very general model, both in time
and 3-D space, can be developed as is shown below for the main linac (see Figure 4.9-5).

Here the 72 man crew is working in a (moving) 1 km section of the tunnels at the 3
cryomodule per day rate, showing the different activities which spread over a 6 week time
span. Two crews are working independently starting at shafts 2 and 6 and working towards
shaft 4. Similar activities and crews will be working in other sections of the linac tunnels when
they become available. This is also true for the central complex of injectors and damping
rings.

The RDR estimate assumed a 3 year installation schedule, a six month period of ramp
up and on the job training, and a 75% efficiency. In tunnel activities are concentrated on day
shift, with transport and staging on swing shift. Figure 4.9-6, shows a model of multishift
manpower versus time, indicating the total manpower necessary to fit all of the installation
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FIGURE 4.9-5. Installation model for main linac components in underground segment.

activities into that 3.5 year period. During the peak 3-year period, there are over 500 people
on day shift and another 300 on swing shift in various parts of the tunnel. There are also
about 100 people involved in surface logistics.
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FIGURE 4.9-6. Required human resources versus time for the installation effort.

In the absence of a detailed fabrication plan for the major machine components, a very top
level installation schedule was developed to integrate with a 7 year construction schedule. This
will continue to be refined as more information on fabrication schedules become available.
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Sample Sites

5.1 INTRODUCTION

For this reference design, three ‘sample sites for the ILC were evaluated. Each site was
required to be able to accommodate all the conventional facilities for the 500 GeV CM
machine; in addition, the sites needed to have the sufficient length to support an upgrade
of the machine to 1 TeV CM, assuming the baseline main linac gradient. There were two
reasons for the use of three sample sites for this reference design:

• This procedure demonstrates that each region can provide at least one satisfactory site
for the ILC. This is important, since it shows that any of the regions has the potential
to be a host for the project.
• The cost of, and technical constraints on, the project could depend strongly on the

site characteristics. Since the actual site is not yet known, it is important to assess a
range of sites with a diverse set of site characteristics, to provide confidence that when
the actual site is chosen, it will not present unexpected technical difficulties or major
surprises in cost.

In addition to the three sample sites presented, a second European sample site near DESY
in Hamburg, Germany, has also been developed. This site is significantly different from the
other sites, both in geology and depth (∼25 m deep), and requires further study.

The Joint Institute for Nuclear Research has also submitted a proposal to site the ILC in
the neighborhood of Dubna, Russian Federation.

The three sites reported in detail here are all deep-tunnel solutions. The DESY and
Dubna sites are both examples of shallow sites. A more complete study of a shallow site –
either a shallow tunnel or a cut-and-cover site – will be made in the future as part of the
Engineering and Design phase.
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5.2 AMERICAS SITE

5.2.1 Location

The Americas sample site lies in Northern Illinois near the existing Fermi National Accelerator
Laboratory. The site provides a range of locations to position the ILC in a north-south
orientation. The range is bounded on the east by the Fermilab site, and extends some 30
km to the west. For the purpose of this document and the RDR estimate, a site alignment
that is roughly centered on Fermilab was selected. While this site is more developed than an
alignment to the west, there is a reasonable construction path and the location benefits more
directly from the existing Fermilab site and facilities.

While the routing requires the tunnel to pass below residential areas, the shafts can be
located in non-residential areas. It is highly possible that no homes will be physically affected
by this project. Roughly one quarter of the alignment is on Fermilab property, including the
ILC central campus and IR. The Fermilab site is located approximately thirty-five miles west
of downtown Chicago. The area surrounding Fermilab is comprised of residences, research
facilities, light industry, commercial areas, and farmland. Higher population densities are
found to the east with more rural and farm communities to the west. The towns and villages
around Fermilab vary in population size from ten thousand to over one hundred thousand
people. The surrounding communities have established schools, hospitals, infrastructure sup-
port functions and local governments.

The Fermilab site borders on a local railroad line with a railroad hub located within four
kilometers to the south. Major roads connect Fermilab to the Illinois toll road system within
two miles of its gates. Access to OHare International Airport and Midway Airport are via
highways with travel times to these airports of less than one hour. Steel mills and other
heavy industry are located both in Illinois and in neighboring states.

5.2.2 Land Features

The existing surface of northern Illinois is primarily flat, with surface elevations ranging from
200 meters to 275 meters above sea level. Much of the eastern half of northern Illinois is de-
veloped with Chicago suburban communities and municipalities including many commercial,
residential and industrial complexes. Underdeveloped areas are currently used for agricul-
ture. Major water bodies include Lake Michigan located approximately 65 kilometers east of
Fermilab, the Illinois River approximately 30 kilometers southeast of Fermilab and the Fox
River 3 kilometers west of Fermilab. An intricate highway system extends throughout the
northeastern Illinois area.

The 2751 hectare (6800-acre) Fermilab site is also relatively flat with less than 15 meters
of fall from northwest to southeast. Approximately one-third of the Fermilab site is developed
with various high-energy physics accelerator complexes or related experimental areas. The
remaining two thirds are equally split between leased agricultural uses and open space includ-
ing prairies, wetlands and recreational areas. A series of paved roadways exist throughout
Fermilab.

5.2.3 Climate

The climate is typical of the Midwestern United States which has four distinct seasons,
and a wide variety of types and amounts of precipitation with moderate variations between
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monthly and seasonal average values. In summer, temperatures ordinarily reach anywhere
between 26◦C to 33◦C and humidity is moderate. Overnight temperatures in summer are
usually around 17◦C. Yearly precipitation averages 920 mm. Winter temperature averages
-2◦C during the daytime, and -10◦C at night. Temperatures can be expected to drop below
-18◦C on 15 days throughout the winter season.

5.2.4 Geology

FIGURE 5.2-1. Geology of the Americas Sample Site.

The tunnels are located in the Galena Platteville layer (Figure 5.2-1), which is character-
ized as a fine to medium grained dolomite, that is cherty. The Maquoketa shales overlaying the
dolomite have a low hydraulic conductivity that will act as a hydrogeologic barrier between
upper overburden aquifers and the dolomite. At the proposed siting, the Galena Platteville
varies from 100 to 125 meters in thickness, gently rising in datum elevation from the south
to the north. The Galena is covered by 15 to 30 meters of shale, 15 to 25 meters of Silurian
dolomite which in turn, is overlaid by 15 to 45 meters of overburden. The upper Silurian
dolomite found at the Fermilab site disappears for alignments further to the west. These ge-
ologic conditions should provide a relatively dry tunnel, both during construction and during
operations, but it is expected that some grouting will be required. The Galena is the most
structurally sound rock in the area and, in general, should not require any extraordinary rock
support methods.

5.2.5 Power Distribution System

Electric power to the Northern Illinois area is provided by Exelon Generation with access
to approximately 35,000 MW of electricity . Electrical power is generated by fossil fuel,
hydroelectric, wind and nuclear power generating systems and distributed in Northern Illinois.
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5.2.6 Construction Methods

Conventional un-shielded tunnel boring machines are used for the tunnels. No temporary
support is required, permanent support can be pattern spaced rock bolts or dowels. Produc-
tion rate is anticipated to be 30 m/day. Caverns are excavated using drill and blast methods.
Temporary supports are required for the largest spans, permanent support is provided by
rock bolts. Production rate for medium to large size caverns where mechanized equipment
can be employed is estimated at 1,200 cubic meters per week. Shaft overburden is excavated
using standard earth excavators and muck boxes, supported by ring beams and timber lag-
ging, keyed into the underlying rock. Excavation through the limestone and shale to the final
depth uses conventional Drill & Blast methods. Support is provided by resin encapsulated
rockbolts and the shaft is reinforced and concrete lined.

FIGURE 5.2-2. Longitudinal profile of the Americas Site in Northern Illinois.
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5.3 ASIAN SITE

5.3.1 Location

A set of about 50 criteria have been used over the past decade to evaluate a large number
of ILC candidate sites in Japan. Out of these candidates, a sample site was selected for the
RDR with an endorsement by the ILC-Asia group at its 4th meeting in November 2005. It
satisfies the following criteria, some overlapping with the criteria matrix developed by the
CFS Global Group:

• Firm and uniform geology to ensure stable beam operation at the interaction region.

• Sufficient length to accommodate straight tunnels spanning over 50 km.

• Absence of any known, active faults in the neighborhood.

• Absence of epicenters of any known earthquakes exceeding M6 within 50 km from
anywhere in the site since AD1500.

• Uniform altitude of the terrain so that the ILC tunnel depth is less than 600 m through-
out.

• Availability of sufficient electrical power for ILC operation.

• Existence of a practical construction plan for the underground tunnels and caverns.

• Suitable environment, in terms of climate and access, for smooth operation.

The Asian site is located in a moderate plateau area (low mountains) in uniform solid
rock. It is within 10 to 20 km of cities which provide a living environment with reasonable
quality of life. The neighboring cities are connected to an international airport within several
hours by both bullet train and highway.

5.3.2 Land Features

The site surface is dominated by woods and is partly occupied by an agricultural area which
is crossed by occasional local paved roads. Only a few local residences exist along the tunnel
route. There are no major high-ways or streets with heavy traffic and no large river systems
which cross the tunnel route. Hence, very few sources of natural or human-made vibrations
exist. An adequate flat surface area is available to accommodate surface facilities. Existing
local roads can be utilized as access routes to entrances of the tunnel.

5.3.3 Climate

The climate is mild. There is snowfall in winter but only for a short period. It is not too hot
in summer. There is no recorded history of major typhoons.

5.3.4 Geology and Tunnel Structure

The 31 km ILC tunnels for the first project phase can be constructed within solid hard rock.
In the second project phase, when the tunnels are extended to 50 km, one side of the main
linac tunnel will pass through an area with sedimentary rock, but this geology is also solid.
The depth of the tunnels, which will be built in a low mountainous part of the site, is in the
range between 40 m and 600 m. Most of the access to the tunnel is provided by sloped ramps
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FIGURE 5.3-1. Detail of an access ramp for the Asian Sample Site.

(Figure 5.3-1). An exception is the access to the interaction region which has a vertical shaft
approximately 112 m deep.

Past experience with Japanese construction projects indicates that the uniform granite
has sufficient strength that the tunnels and caverns do not require reinforcement by rock bolts
or concrete lining. Shotcrete is used to cover the inner surfaces of the tunnels. Excavation of
very large caverns, such as the experimental hall, may require reinforcement by rock bolts.

5.3.5 Power Distribution System

The site is located in the neighborhood of an existing 275 kV power grid. It is considered to
be reasonably straightforward to supply the power of 240 MW required for the 500 GeV ILC.
Power failures in Japan are very rare, and even if they occur, the system average interruption
duration index (SAIDI) 1 has been only 13 minutes, according to the statistics of the Ministry
of Economy, Trade and Industry of Japan.

5.3.6 Construction Methods

The geology is uniform hard granite below 20 m of softer topsoil and weathered rock. The
access shafts are sloped tunnels excavated by NATM (New Austrian Tunneling Method),

1System average interruption duration index = sum of customer interruption durations normalized by the
total number of customers served
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except for the IR hall. These tunnels match the mountainous geography and allow vehicle
transport of personnel and materials. They are 7.5 m x 7.0 m to accommodate access for the
TBM. From the surface to a depth of 20 m, the tunnel is reinforced by rock bolts, a 15-20
cm thick shotcrete liner and steel supports. In the granite, the tunnel is reinforced by rock
bolts and 5 cm thick shotcrete.

The IR vertical shafts are excavated by drill and blast, with metal supports and a concrete
lining. Caverns are excavated by NATM. The top of the arch is excavated by advancing top
drift method with drill and blast. Reinforcement is by rock bolt, pre-stressed bolt and sprayed
concrete 20 mm thick with a metal mesh, overlaid by a 1.5 m thick cast concrete liner on the
arch. The lower part of the cavern is excavated by drill and blast. After reinforcement in the
same method as the top, the side wall is finished with 1.0 m thick concrete, and the concrete
floor cast 2.0 m thick. Passageways are excavated manually and finished with sprayed mortar
and pre-mixed fiber 20 mm thick.

FIGURE 5.3-2. Longitudinal profile of the Asian Sample Site in Japan.
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5.4 EUROPEAN SITE

5.4.1 Location

The European site for the ILC is located in the north-western part of the Geneva region
near the existing CERN laboratory. The area is fairly well populated; the more than 30 km
long path of the accelerator crosses the border between France and Switzerland three times
and passes under several villages. The region around the accelerator path is mainly covered
with agricultural lands and some forests. There are some biologically protected zones and
historical places or memorials in the area but the site does not affect national parks.

The proposed site meets all the main requirements of the ILC Project. Colliders have been
in operation in this area for more than three decades, including the new Large Hadron Collider
(LHC) that will start operating soon. The geological characteristics allow construction of
tunnels for the accelerator and its support equipment in a stable rock formation with little
seismic activity at a depth of 80 - 110 meters.

CERN and the Geneva area have at their disposal all necessary infrastructure to accom-
modate specialists for the period of the accelerator construction, to store and assemble the
equipment, and to provide for the project-production support during manufacturing of the
special-purpose equipment. Due to the importance of Geneva as headquarters of many inter-
national organizations and to the existing colliders at CERN, all necessary modern network
and information infrastructure is available.

The international airport of Geneva is situated only 5 km away from CERN and is served
by Swiss Rail and connected to the European railway network. The highway connecting
Switzerland and France (Northern Europe to Southern Europe) passes nearby. The access
roads to CERN are suitable for all necessary transportation to deliver the equipment of the
accelerator itself and its technical systems.

The governments of France and Switzerland have existing agreements concerning the
support of particle accelerators in Geneva area, which make it very likely that the land for
the accelerator location could be made available free of charge, as they did for previous CERN
projects.

5.4.2 Land Features

The proposed location of the accelerator is situated within the Swiss midlands embedded
between the high mountain chains of the Alps and the lower mountain chain of the Jura.
CERN is situated at the feet of the Jura mountain chain in a plain slightly inclined towards
the lake of Geneva. The surface was shaped by the Rhone glacier which extended once from
the Alps to the valley of the Rhone. The water of the area flows to the Mediterranean Sea.
The absolute altitude of the surface ranges from 430 to 500 m with respect to sea level.

5.4.3 Climate

The climate is warm-continental. The mean temperature of the air of the coldest month
(January) is -0.2◦C. The mean temperature of the air of the warmest month (July) is +18.4◦C.
The mean annual rainfall is 928 mm. Snow usually falls in the months of December to
February. On the whole, the climate in the vicinity of Geneva is considered to be quite
comfortable.
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5.4.4 Geology

Most of the proposed path of the ILC is situated within the Molasse, an impermeable sed-
imentary rock of the Swiss midlands laying over the Jurassic Bedrock. The path crosses a
fault at the valley of the Allondon river which is situated South-West of Geneva and filled
with sands and gravels. In this valley, the tunnels are built below the groundwater level. For
the 1 TeV extension of the project, the tunnel will cross a second valley at Gland, situated
North-East of Geneva, and will just enter some Jurassic limestone.

FIGURE 5.4-1. Longitudinal profile of the European Sample Site near CERN.

The alignment of the ILC accelerator is placed at a level of 370 m in the Molasse (Fig-
ure 5.4-1). This makes it possible to excavate the tunnels with shielded tunnel boring ma-
chines (TBM-S) with a high penetration rate and simultaneous placement of precast concrete
segments. For the crossing of the Allondon and Gland valleys, the shielded tunnel boring
machines must be replaced by hydro mix-shield machines (SM) able to tunnel in closed mode
through the sands and gravels below groundwater level and to work in open mode as a normal
tunnel boring machine in the Molasse.

5.4.5 Power Distribution System

The European sample site provides sufficient electrical power for the accelerator complex. A
nearby 400 kV substation of the French grid will serve as connection point. The availability
of the network is considered adequate for the LHC and is thus likely to also be sufficient for
the ILC.

5.4.6 Construction Methods

The upper parts of the shafts lie in dry moraines, with total thickness ranging from 0 to 50 m,
depending on the situation. Traditional means can be used to excavate down to sound rock,
except in water bearing sands and gravels where it will be necessary to use other techniques
such as diaphragm walling to allow safe excavation of the shafts. Once in the rock (sandstone)
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the shafts and caverns are excavated with the use of rock breakers and road headers, with
blasting as a possible exceptional resort. After the temporary lining (rock bolts, mesh and
shotcrete) is in place, the walls and vaults are sealed with waterproof membranes and covered
with cast in-situ reinforced concrete.

Shielded Tunnel Boring Machines (TBM-S) with a prefabricated concrete segment lining
are used for the long tunnels. An average daily advance of 25 m/day is assumed. The concrete
tunnel floors are then cast in-situ. Short tunnel sections (less than 300 m) and passageways
are excavated with road headers or small size rock breakers, then shotcreted. The penetrations
between tunnels are excavated with small diameter boring machines, anchored in one of the
two tunnels.
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5.5 SUMMARY

Although the three sample sites have differences, they all meet the ILC design requirements
and at comparable cost. Table 5.5-1 compares some of the salient features.

TABLE 5.5-1
Summary of notable features of the sample sites and construction methodology.

Subject Americas Region Asian Region European Region

Sample site Northern Illinois – Japan Geneva Area –
location near FNAL. near CERN

Land features 200 ∼ 240m 120 ∼ 680 m 430 ∼ 480 m
above sea level above sea level above sea level

Geology Dolomite Granite (sedimentary Molasse (sedimentary
rock in phase-2 extension) rock / sandstone)

Tunnel depth 100 ∼ 150m 40 ∼ 600 m 95 ∼ 145m
from surface (except 1 valley 30 m)

Access paths 13 shafts 10 sloped tunnels (7.5m 13 shafts
to underground 9m, 14m, 16m diam × 7m × 700 ∼ 2000m) 9m, 14m, 16m diam
caverns 100 ∼ 135 m deep and 3 shafts (for IR) 100 ∼ 135m deep

Tunnel TBM TBM TBM
construction

Tunnel lining 20% of length 100% of length 100% of length precast
shotcreted shotcreted concrete segments

Average tunnel 30m/day/TBM 16m/day/TBM 25m/day/TBM
excavation speed (boring) (boring + surface work) (boring)

Number 9 15 (6 out of 9 accesses 9
of TBMs have two TBMs starting

in opposite directions)

Cavern Drill and blast Drill and blast Road breaker
construction (NATM) /header

Shaft Earth excavation Drill and blast Road breaker/header
construction / Drill and blast (step by step method) (Moroccan method)

New surface 92 166 120
buildings

Distribution 69/34 kV 66/6.6kV 36kV
voltage
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CHAPTER 6

Value Estimate

6.1 VALUE ESTIMATING METHODOLOGY

6.1.1 Introduction

The ILC is an international scientific project to be funded by a collaboration of countries or
regions around the world, each of which have different traditions and conventions for planning
and estimating the cost of large projects. In order to equitably divide up contributions among
the collaborators, one must develop a project estimate that is independent of any particular
accounting system but compatible with all of them. The “VALUE” methodology has become
the standard for such international projects. It was adopted by ITER (the international
thermonuclear experimental reactor project) and by the LHC experiments, among others.
Value is a particularly convenient concept for dealing with “in-kind” contributions, for which
manufacturing costs and labor rates can vary widely between collaborators. Conversion of the
value estimate to various national costing practices can only be done by each participating
nation.

The ILC estimate consists of two important parts: VALUE (in terms of currency units)
for items provided and LABOR (in terms of person-hours or person-years), which may be pro-
vided by the collaborating laboratories and institutions, or may be purchased from industrial
firms. This is similar to what has been traditionally used for European project proposals.
The value of a component is defined as the lowest reasonable estimate of the procurement
cost in adequate quality, based on production costs in a major industrial nation. It is ex-
pressed in 2007 currency units (not escalated to the years in which the funds are projected
to be spent) and does not include R&D, pre- or post-construction or operating costs, taxes
or contingency. It is effectively the barest cost estimate that would be used by any of the
funding agencies. Individual regions can then add to the base value any other items usually
included in their own estimating system.

In this context, LABOR is defined as “explicit” labor, which may be provided by the
collaborating laboratories and institutions, or may be purchased from industrial firms. This to
be distinguished from a company’s “implicit” labor associated with the industrial production
of components and contained (hidden) within the purchase price. The implicit labor is
included in the VALUE part of this estimate.

The ILC VALUE plus LABOR estimate is the basis on which contributions are appor-
tioned among the collaborators. Each participant makes an agreement with the ILC man-
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agement to provide a certain value of components and services. They are then responsible
for providing the contracted items, independently of what they actually cost.

6.1.2 Scope of Estimate

The estimate is for a 500 GeV center-of-mass machine but includes some items sized for 1
TeV to enable a later energy upgrade, such as the beam dumps and the length of the Beam
Delivery tunnel. The ILC estimate does not include the cost of the detectors. They are
assumed to be funded by a separate agreement between the collaborating institutes, in the
way the LEP and LHC detectors were built. The estimate does include civil engineering work
for the detectors, e.g. assembly buildings, underground experimental halls, shafts, etc.

The estimate covers all aspects of construction, including tooling-up industry, final en-
gineering designs and construction management. The estimate specifically does not include
costs for any of the engineering, design, or preparation activities that can be accomplished
before construction start. It does not include Research and Development, proof-of-principle
or prototype systems tests, pre-construction (e.g. architectural engineering, conceptual and
construction drawings, component and system designs and preparation of bid packages), com-
missioning, operation, decommissioning, land or underground easement acquisition costs. It
also does not include items which are treated differently from region to region such as taxes,
escalation, or contingency. Table 6.1-1 summarizes the items that are included in, or excluded
from, the value and labor estimate.

The estimate assumes a seven-year construction period. The estimate for a given item
covers the cost from the day the project obtains funding until that item is installed, tested,
and ready for commissioning. Commissioning in one area may overlap with construction
elsewhere. The construction period ends when the last component has been installed and
tested.

6.1.3 Estimating Approach

The ILC estimate was developed by the RDR matrix of Area, Technical and Global System
leaders working with the Cost Engineers. The Area Systems Leaders (AS) defined the require-
ments for their accelerator systems. The Technical (TS) and Global System (GS) Leaders
provided the estimated value and explicit labor per component unit. Specialized components
such as the polarized electron gun were estimated by the Area Systems themselves. The AS
leaders then compiled the estimate for their areas. The estimates were iterated to optimize
cost and performance.

The cost estimates were prepared using a Work Breakdown Structure (WBS) where each
item included a description, basis of estimate, quantity required, materials and services esti-
mate and implicit and explicit labor. These could then be summed to produce to an estimated
total cost for the component, system, or section of the machine. There were 351 active WBS
elements, where each element represented a roll-up of further detailed estimating information
provided by the systems leaders. An example of the lower level of detail for one of these
WBS elements provided by the Conventional Facilities and Siting group is presented in the
Appendix.
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TABLE 6.1-1
Summary of the items that are included in, or excluded from the value and labor estimate.

Included Excluded

Construction of a 500 GeV machine,
including items sized to enable a
later energy upgrade

Tooling-up industry, final engineer-
ing designs and construction man-
agement

Engineering, design, or preparation
activities that can be accomplished
before construction start, such as,
research & development, proof-of-
principle or prototype systems tests,
pre-construction

Construction of all conventional fa-
cilities, including the tunnels, sur-
face buildings, access shafts and
others

Surface land acquisition or under-
ground easement acquisition costs

Construction of the detector assem-
bly building, underground exper-
imental halls and detector access
shafts

Experimental detectors

Commissioning, operations, decom-
missioning

Explicit labor, including that for
management and administrative
personnel.

Taxes, contingency and escalation

6.1.3.1 General Guidelines

The ILC estimate is given as the sum of VALUE (in currency units) and explicit LABOR (in
person-hours).

Guidelines and Instructions for performing, preparing, and presenting the cost estimate
are available at

http://www-ilcdcb.fnal.gov/RDR costing guidelines.pdf
http://www-ilcdcb.fnal.gov/RDR Cost Estimating Instructions 23may06.pdf
Estimates are quoted as median or 50%-50% estimates, where, if a given item were to be

independently purchased many times, taking the lowest world-wide bid each time, half of the
purchases would be below the median estimate and half above.

6.1.3.2 Currency Rates and Raw Materials

Component estimates from all three regions were converted to a common cost basis, the ILC
Unit, where one ILC Unit is set equal to $1 U.S. (January 2007 value) The conversion rates
used were:

1 ILC Unit = 1 US 2007$ (= 0.83 Euro = 117 Yen)
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These currency exchange rates are an average of the exchange rates over the five years
2003 through 2007. The value estimates were developed during 2006 and then adjusted to
January, 2007 using the official regional cost escalation indices.

Electricity and raw materials such as niobium, steel or copper are assigned fixed prices
as of January 1, 2007, as summarized in Table 6.1-2.

TABLE 6.1-2
Assumed prices for electricity and representative raw materials.

Resource Jan 1, 2007 Price

Electricity: $0.10 per kWh (including supply cost)

Copper: $8 per kilogram

Black steel: $0.6 per kilogram (up to three times higher price
for stainless and magnet steel)

Niobium: $70 per kilogram

6.1.3.3 Contingency and Risk

The ILC estimate does not contain contingency. Contingency is a quantitative measure
of risk – the final number is set higher than the initial estimate to allow for unexpected or
uncontrollable factors that may raise the ultimate price. The ILC project will avoid any future
cost increases through R&D, industrial studies, vendor pre-qualifications, and competitive,
global calls for tender. The level of uncertainty in the current estimate is summarized below.
A preliminary technical risk register has been compiled and is discussed in section 7.2.2 on
Critical R&D in the Engineering Design Report Phase.

6.1.4 Component Estimates

Three different classes of items were identified and approached differently.

• Site specific: The costs for many aspects of conventional facilities are site specific and
there are separate estimates for sample sites in all three regions: Asia, Europe, and
the Americas. These costs are driven by real considerations, e.g. different geology and
landscape, availability of electrical power and cooling water, etc. Site dependent costs
due to formalities (such as local codes and ordinances) are not included. Common items
such as internal power distribution, water and air handling, which are essentially iden-
tical across regions although the implementation details differ, have a single estimate.
The sample sites have different geologies. Nevertheless, they use similar tunnel-boring
machine technologies and the value estimates are very close. Because a site has not yet
been chosen, the ILC value estimate is taken as the average of the three site-dependent
estimates. Individual estimates for each of the three sites are also provided.
• High technology: Items such as cavities, cryomodules, and rf power sources, where there

is interest in developing expertise in all three regions, have been estimated separately
for manufacture by each region. Costs are provided for the total number of components
along with parameters to specify the cost of less than the total number. The European
estimate for the cavities and cryomodules is used for the ILC value as it is the most

III-258 ILC Reference Design Report



Value Estimating Methodology

mature, in terms of R&D and industrial studies. Estimates from the other regions
provide a crosscheck.
• Conventional: Estimates for components, such as conventional magnets and controls,

which can be produced by many manufacturers in all regions, are based on a world-wide
call for tender.

Component estimates include the manufacturer’s implicit labor, EDIA (engineering, de-
sign, inspection, and administration), quality control/assurance, and technical testing. A
single supplier is assumed to be responsible for one deliverable, even though in practice,
multiple suppliers may be chosen to reduce risk. The estimates quoted for mass-produced
technical systems were generated either by detailed bottom-up industrial studies for the quan-
tities required, or by assuming a learning curve explicitly in an in-house engineering estimate.
The basis of estimate and cost estimating methodology for each set of components are dis-
cussed in the individual Area System, Global System, and Technical System sections for this
report.

6.1.5 Explicit Labor

Explicit labor is estimated separately from component costs, and is given in person-hours.
It may be provided by the ILC collaborators as in-kind contributions, drawn from existing
laboratories with their own personnel and budgets, or may be purchased from industrial
firms. To convert person-hours to person-years, it was assumed that laboratory staff works an
average of 1,700 hours per year. Only three classes of manpower are used: engineer/scientist,
technical staff, and administrative staff.
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6.2 ESTIMATE FOR CONSTRUCTION OF ILC

6.2.1 Value Estimate

The value and explicit labor estimates are current as of February 1, 2007, and will be updated
in the final report. The preliminary value estimate presented here is for the cost of the ILC in
its present design and at the present level of engineering and industrialization. The estimate
contains three elements:

• 1.83 Billion (ILC Units) for site-dependent costs, such as the costs for tunneling in a
specific region
• 4.79 Billion (ILC Units) for shared value of the high technology and conventional com-

ponents
• 14,200 person-years for the required supporting manpower (=24 million person-hours)
For this value estimate: 1 ILC Unit = 1 US 2007$ (= 0.83 Euro = 117 Yen)

A common estimate was used for all non site-specific technical components, regardless of
region. The three regional site-specific estimates were based on local costs for civil engineering
and the primary high voltage electrical power connections, feeds, substations and primary
cooling water systems. All three site-dependent estimates are within a few percent of the
average.

There are many possible models for dividing the responsibilities among the collaborating
regions. The numbers below present one possible model where the estimates are divided
into site-specific and shared parts. In this model, the host region is expected to provide the
site-specific parts, because of the size, complexity, and specific nature of these elements. The
site-specific elements include all the civil engineering (tunnels, shafts, underground halls and
caverns, surface buildings, and site development work); the primary high-voltage electrical
power equipment, main substations, medium voltage distribution, and transmission lines; and
the primary water cooling towers, primary pumping stations, and piping. Responsibilities for
the other parts of the conventional facilities: low-voltage electrical power distribution, emer-
gency power, communications, HVAC, plumbing, fire suppression, secondary water-cooling
systems, elevators, cranes, hoists, safety systems, and survey and alignment, along with the
other technical components, could be shared between the host and non-host regions. Such a
model may be summarized as shown in Table 6.2-1.
TABLE 6.2-1
Possible division of responsibilities for the 3 sample sites (ILC Units).

Region Site-Specific Shared Total

Asia 1.75 B 4.78 B 6.53 B

Americas 1.89 B 4.79 B 6.68 B

Europe 1.85 B 4.79 B 6.64 B

and Average 1.83 B 4.79 B 6.62 B

plus 14 K person-years of explicit labor

or 24 M person-hours 1,700 hours/year

The value estimates broken down by Area System are shown separately for both the
conventional facilities and the components in Figure 6.2-1 and Table 6.2-2. Common refers to
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infrastructure elements such as computing infrastructure, high-voltage transmission lines and
main substation, common control system, general installation equipment, site-wide alignment
monuments, temporary construction utilities, soil borings and site characterization, safety
systems and communications.

The component value estimates for each of the Area (Accelerator) Systems include their
respective RF sources and cryomodules, cryogenics, magnets and power supplies, vacuum
system, beam stops and collimators, controls, Low Level RF, instrumentation, installation,
etc.. The superconducting RF components represent about 69% of the estimate for all non-
CF&S components.
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FIGURE 6.2-1. Distribution of the ILC value estimate by area system and common infrastructure, in ILC
Units. The estimate for the experimental detectors for particle physics is not included. (The Conventional
Facilities estimates have been averaged over the three regional site estimates. )

Initial cursory analysis of the uncertainties in the individual estimates from the Technical
Systems indicates that the RMS for the current RDR value estimate for the presented baseline
design is likely to be in the σ = ±10−15% range, and that the 95th percentile for this estimate
is no larger than +25% above the mean.

6.2.2 Explicit Labor Estimate

The explicit labor for the Global Systems, Technical Systems, and specific specialty items
for Electron Source, Positron Source, Damping Rings, and Ring to Main Linac, include the
scientific, engineering, and technical staff needed to plan, execute, and manage those elements
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TABLE 6.2-2
Distribution of the ILC Value Estimate by area system and common infrastructure, in ILC Units. The
estimate for the experimental detectors for particle physics is not included. (The Conventional Facilities
estimates have been averaged over the three regional site estimates. )

Conventional
Area - M ILC Units Total Components Facilities

Main Linac 3,894 2,723 1,172

DR 630 398 231

RTML 554 320 234

e+ source 398 232 166

BDS 408 157 252

Common 369 229 140

Exp Hall 200 0 200

e− source 165 87 78

Sum 6,618 4,146 2,472

including specification, design, procurement oversight, vendor liaison, quality assurance, ac-
ceptance testing, integration, installation oversight, and preliminary check-out of the installed
systems.

Installation is the largest fraction of explicit labor, about 29%. Management is the second
largest fraction at about 17%. At this stage of the ILC design, it is too early for a complete
analysis of installation requirements. Instead, the RDR estimate was based on scaled infor-
mation from a variety of sources, including the actual manpower used for the installation
of recent accelerator projects. There was also a bottoms-up study for installation of the
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FIGURE 6.2-2. Explicit labor, which may be supplied by collaborating laboratories or institutions, listed
by Global, Technical, and some Area-specific Systems.
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TABLE 6.2-3
Explicit labor, which may be supplied by collaborating laboratories or institutions, listed by Global, Tech-
nical, and some Area-specific Systems.

Explicit labor M person-hours

Installation (all labor) 6.91

Management 4.09

Controls & computing 2.76

Magnets & Power Supplies 2.60

Cavities & cryomodules 2.23

RF Power Systems 1.12

Beam Delivery System specific 0.89

CF&S (construction phase) 0.60

Cryogenics 0.56

DR specific 0.46

Instrumentation 0.44

Alignment 0.42

e+ Source specific 0.31

e− Source specific 0.24

Dumps & Collimators 0.19

Accelerator Physics 0.11

RTML specific 0.09

Ops, Reliability, Commissioning 0.07

Main Linac specific 0.06

Vacuum 0.05

Sum 24.19

cryomodules for the Main Linac done by two separate engineering teams, with comparable
results. The estimates were reviewed by experts and crosschecked for reasonability.

In the present estimate, the installation task is characterized almost exclusively as explicit
labor, with minimum costs for material-handling equipment. This is on the assumption that
much of the installation and system check-out labor at the ILC site can be contributed by the
staffs of collaborating institutions or laboratories. The validity of this assumption depends
on the availability of the necessary skilled manpower and local labor regulations. Because of
the size of the project, it is likely that many tasks like electrical and plumbing work will need
to be outsourced to industry. Trade-offs and translations are likely between using in-house
labor and external contracts. It is estimated that a minimum of 10% of the installation task
must be management and supervision by in-house manpower.

The management model is similar to that of the construction phase of the Superconducting
Super Collider (SSC), but without central computing staff which are included elsewhere. The
management personnel is estimated to be half as large as in the SSC model. The ILC staff
consists of 345 persons, divided as shown in Table 6.2-4. Personnel for the Area, Global, and
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Technical System groups are not included in the Project Management Division.

TABLE 6.2-4
Composition of the management structure at ILC.

Unit Responsibilities

Directorate (30): Directors Office, Planning, ES&H Over-
sight, Legal, External Affairs, Educa-
tion, International Coordination, Technol-
ogy Transfer;

Management Division (13): Quality Assurance, ES&H;

Laboratory Technical Services (125): Facilities Services, Engineering Support,
Material and Logistical Services, Labora-
tory Fabrication Shops, Staff Services;

Administrative Services (94): Personnel, Finance, Procurement, Minor-
ity Affairs;

Project Management Division (83): Management, Administrative, Project
Management Division Office.

This explicit labor estimate is very preliminary. Producing a more realistic explicit labor
estimate will be a priority in the Engineering Design phase.

It is the practice in some regions to apply general and administrative overheads to pur-
chases and labor for projects. These overheads are applied as a multiplier on the underlying
LABOR and VALUE, and cover the costs of the behind-the-scenes support personnel. In this
estimate, such personnel are explicitly enumerated as labor under Directorate, Management
Division, Laboratory Technical Service, and Administrative Services in Table 6.2-4. There-
fore, the overheads are included as additional explicit LABOR, rather than as a multiplier
on VALUE.

This explicit labor corresponds to 35% scientists and engineers, 14% administrative per-
sonnel, 27% technical staff, and 24% installation staff which could be either institutional or
laboratory labor or contract labor or some combination.

6.2.3 Operating Cost

Operating costs are not included in the estimate for the construction project, but a very
preliminary estimate is given. It is also to be noted that spare components (those stored
in warehouses and not the installed redundant components), although fabricated along with
the installed components, are assumed to be financed through operating funds, and are
not considered part of the construction projects. Major factors in the operating cost include
personnel costs, electrical power, maintenance and repairs, helium and nitrogen consumables,
and components that have a limited life expectancy and need continuous replacement or
refurbishment, like klystrons.

The model assumes 9 months of machine operations per year at full power of about
227 MW, corresponding to 500 GeV at design luminosity, plus 3 months standby at reduced
power (25 MW) with the superconducting cavities maintained at 4.5K, which is above their
operating temperature. At the current electrical power rate of $0.1 per kW-hr, the operating
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costs for these materials and services are estimated to be approximately 150-270 M$ per
year in 2007 Dollars. The continuing operations and administrative staff is expected to be
comparable to that at existing facilities (not including support of the scientific program).

Commissioning activities and operating costs are anticipated to gradually increase over
the fourth through seventh years of construction from zero up to the full level of long-term
operations at the end of the 7 year construction phase.
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6.3 SCHEDULE

6.3.1 Example Construction Schedule

A detailed schedule for realization of the ILC depends on a variety of factors and milestones
including: completion of crucial R&D, completion and review of the conceptual design of
the machine (RDR) and detectors, and endorsement of the RDR and cost by international
funding agencies so that critical R&D can be funded to completion. Site specific engineering
and civil designs require international agreements on site selection which allow land acquisi-
tion, environmental assessments, etc. In addition agreements on cost sharing and spending
profiles are required to plan the industrial production of components and the preparation of
construction contracts.

In the absence of much of this information an attempt was made to construct a technically
limited schedule for the construction of ILC assuming that these items have been completed
prior to a physical construction start (T0). The RDR cost estimate has been based on this
schedule.

6.3.2 Conventional Facilities Schedule

Conventional facilities include Civil Engineering of above and below ground structures, elec-
trical infrastructure, cooling and ventilation, and buildings. In what follows, an assumption
was made that a site was selected several years prior to the start of construction and that
funding was available such that Architectural & Engineering (A&E) firms can be retained to
design the conventional facilities and prepare bid packages prior to the start of construction.
In the absence of other financial constraints, the construction schedule for conventional fa-
cilities is dominated by the required underground construction. ILC requires about 72 km
of underground tunnel construction for the Main Linac, Beam Delivery and Damping Ring
systems. For the purpose of this section it was assumed that the tunnel is deep, at a depth of
∼100 m and located in dry rock such that standard tunnel boring machines can be employed.
(Several possible ILC sites have different local underground conditions. However, these are
believed to alter the conclusions in the section in only a minor fashion).

The layout of the ILC is shown in Figure 6.3-1. A possible construction schedule is shown
in Figure 6.3-2 [120], where it is assumed that all shaft and underground construction can
start simultaneously or optimally (i.e. no funding limits) and that at least 9 tunnel boring
machines (TBM) of suitable diameter are available and employed simultaneously. Assuming
1 year for the shaft construction (based on LEP/LHC experience), 3 months for TBM setup,
and 25 m/day boring speed/TBM, then the actual underground construction time for the
ML and Damping Ring is about 3.5 years from ground breaking to beneficial occupancy.

For the purposes of this schedule it was assumed that the finished tunnel can be outfitted
with services at the following rate:

1 Installation of cable trays and pipes supports 4 weeks/km

2 Installation of cooling pipes 3 weeks/km

3 Installation of cables + connection 3 weeks/km

4 Installation of electrical equipment (transformers, switch gear) 4 weeks/km

III-266 ILC Reference Design Report



Schedule

FIGURE 6.3-1. Schematic layout of the ILC.

These rates are based on experience at existing facilities, not independent analysis. It
is assumed that these teams do not overlap in the tunnel at the same time, but that a
sufficient quantity of trained personnel are available to form teams that can work in parallel
at all available locations. The installation of services require about 1 year such that the
tunnel is ready to accept technical components after about 3.5 to 4.5 years from the start
of construction. (Some areas might be available for component installation a few months
sooner, but the start of installation in these areas could disrupt the installation of services.
As a result, this was not considered in the modeling.)

About one additional year is required to finish the underground detector enclosure so
that detector installation can proceed about 4.5 years after the start of civil construction. It
is assumed that detector assembly buildings and detector construction start at the earliest
opportunity. Most of the detector assembly is assumed to take place above ground following
the general scheme adopted for the CMS detector at CERN. This scheme allows detector
construction and commissioning to occur in parallel with the underground construction. In
the case of CMS the detector assembly and commissioning took 6 years. In the absence of
more detailed information, we assume the same schedule for the ILC detectors.

6.3.3 Technical Component Schedule

It is assumed that the high volume technical components required for the Main Linac and
Damping Ring are produced by industry. Components in this category include SCRF cav-
ities, cryomodules, modulators, klystrons, SC and conventional magnets, cryogenic refriger-
ators, transfer line, cables, piping, etc. The production of even such complex components
as klystrons, modulators and conventional magnets are well within the capability of indus-
try. The sequence would probably involve industrial pre-series production by several vendors
followed by tender for production quantities of components. The number of vendors and
the region of production will largely be determined by decisions concerning “in-kind” con-
tributions from the regions participating in the project. The required cryogenic plants are
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FIGURE 6.3-2. Schematic of an example of an ILC civil construction plan using TBMs. Note that TBM
#9 is first used to excavate the tunnel for the damping ring (not shown). Five Tunnel Boring machines
must be transported in this plan. (Analysis and figure is based upon LEP and LHC experience at CERN.)

sufficiently similar to those recently acquired for the LHC that they can be procured from
industry. Provided funding is available, these components do not determine a technically
driven ILC schedule.

The SCRF cavities and cryomodules are the most technically challenging components
and require the largest industrial infrastructure and technical ramp up. The overall cost of
the cryomodules and associated infrastructure is likely to exceed any one regions production
capacity. Regional interest in SCRF technology is also high. Both considerations suggest
a model in which three regions of the world provide these cryomodules in equal quantity.
Figure 6.3-3 shows one possible model for the ramp up of cryomodule production in one of
three regions. Note that the five year production schedule shown in Figure 6.3-3 assumes
funding is available prior to construction start so that infrastructure with long lead times can
be purchased early. Different regions could have earlier start times and a flatter production
schedule.

6.3.4 Technical Component Installation Schedule

The installation process follows the civil construction model with parallel ongoing activities in
separate areas but planned to minimize interferences with other teams. The general schedule
plan is based on experience with the LHC. Transportation of components from surface holding
areas into their rough location in the underground tunnels takes place during the evening
shift. This minimizes interference with all other activities above and below ground. These
components are installed, aligned, interconnected etc. during the day shift.
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FIGURE 6.3-3. A possible model schedule for cryomodule production shows 1/3 of the required ILC
cryomodules produced in one of three regions. R&D and pre-series devices lead to 5 years of series
production (yellow). The position and magnitude of the peak of series production will vary with changes
to the available construction and test infrastructure.

An example of this schedule for the main linac cryomodules is shown in section 4.9.5.
This is accomplished with specialized crews which are appropriately trained and have all the
required support from the technical systems. This manpower versus time profile for the linac
installation is also shown in section 4.9.5. As with the civil construction schedule, installation
in the central DR/INJ complex takes place in parallel and is 6 months to 1 year ahead of the
main linac schedule.

6.3.5 Example Funding Profile

With the assumptions described above and with the value estimates, one can model a con-
struction schedule with its required funding profile. This was done for a seven year con-
struction project which is consistent with the construction, manufacturing and installation
schedules. The civil construction of the underground facilities is concentrated in the first four
years and the high technology cryomodules are spread throughout the seven years. The re-
maining civil construction and technical component manufacture and installation are spread
throughout years three to seven.

This plausible plan shows the need for early funding of the two cost drivers, civil con-
struction and the production of cavities and cryomodules. The civil construction schedule
drives the overall schedule and therefore this funding, assumed to be mainly from the host
country, is on the critical path. The more global distribution of funding of other systems al-
lows flexibility in optimizing construction and installation. This funding profile is, of course,
model dependent but it shows that there are no unusual or unattainable requirements in a
seven year construction schedule. Operations funding would begin gradually starting in year
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five and would be at full operating level in year eight.

FIGURE 6.3-4. A funding profile for a model seven year construction schedule.
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Appendix: Example of the next level of WBS detail for Conventional Facilities and
Siting for Civil Engineering for the Main Linac Area System for the Americas site.

TABLE 6.3-1: WBS detail for Conventional Facilities and Siting for
Civil Engineering for the Main Linac Area System for the Americas
site.

WBS # WBS Title Quantity Unit

1.7 Conventional Facilities

1.7.1 Civil Engineering

1.7.1.1 Engineering, study work and documentation

1.7.1.1.1 In-house Engineering man-hr

In-house Engineering 4% %

1.7.1.1.2 Outsourced Consultancy Services

Outsourced Engineering 6% %

1.7.1.2 Underground Facilities

1.7.1.2.1 Shafts

e− ML 14m dia. Shafts @ Points 5,3 (2x425 vert ft) 259 vert m

e− ML 9m dia. Shaft @ Point 7 (1x425 vert ft) 130 vert m

e− ML 1500mm dia. Survey Shafts @ Points 3.1, 5.1
(2x425 vert ft)

259 vert m

e+ ML 14m dia. Shafts @ Points 2, 4 (2x425 vert ft) 259 vert m

e+ ML 9m dia. Shaft @ Point 6 (1x425 vert ft) 130 vert m

e+ ML 1500mm dia. Survey Shafts @ Points 2.1, 4.1
(2x425 vert ft)

259 vert m

Surface Grouting of Points 2-5 14m dia. Shafts (4x425
vert ft)

4 ea.

Surface Grouting of Points 6-7 9m dia. Shafts (2x425
vert ft)

2 ea.

Surface Grouting of Points 2.1, 3.1, 4.1, 5.1 Survey
Shafts (4x425 vert ft)

4 ea.

Points 2,3,4,5,6,7 - 14&9m dia. Shafts, finishing
(stairs, conc. wall, elev.#2)

777 vert m

ML Underground Potable Water (1/2 of Points 2 & 3) 1 ea.

ML Underground Potable Water (Points 4,5,6,7) 4 ea.

ML Underground Sanitary Sewer (1/2 of Points 2 &
3)

1 ea.

ML Underground Sanitary Sewer (Points 4,5,6,7) 4 ea.

1.7.1.2.2 Tunnels

continued on next page . . .
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TABLE 6.3-1 – continued

WBS # WBS Title Value Unit

e− ML 4.5m dia. Beam Tunnel, TBM Excavation
(37,162 lin ft)

11,327 lin m

e− ML 4.5m dia. Service Tunnel, TBM Excavation
(37,162 lin ft)

11,327 lin m

e− ML 4.5m dia. Tunnels, Conc. Inv. (74,324 lin ft) 22,654 lin m

e+ ML 4.5m dia. Beam Tunnel, TBM Excavation
(36,660 lin ft)

11,174 lin m

e+ ML 4.5m dia. Service Tunnel, TBM Excavation
(36,660 lin ft)

11,174 lin m

e+ ML 4.5m dia. Tunnels, Conc. Inv. (73,320 lin ft) 22,348 lin m

Provide Tunnel Construction Water Treatment Plant 4 ea.

Maintain and Operate Tunnel Construction Water
Treatment Plant

4 ea.

Treatment of Tunnel Construction Water 4 ea.

1.7.1.2.3 Halls

1.7.1.2.4 Caverns

e− ML Shaft Base Caverns D&B Excavation @ Points
3,5,7 (3x20,056 CY)

46,003 m3

e− ML Points 3,5,7 D&B Exc. for Shield Doors (in
Base Caverns) (3x959 CY)

2,199 m3

e− ML Beam Dump Cavern D&B Excavation @ Point
3 (3,034 CY)

2,320 m3

e+ ML Shaft Base Caverns D&B Excavation @ Points
2,4,6 (3x20,056 CY)

46,003 m3

e+ ML Points 2,4,6 D&B Exc. for Shield Doors (in
Base Caverns) (3x959 CY)

2,199 m3

e+ ML Beam Dump Cavern D&B Excavation @ Point
2 (3,034 CY)

2,320 m3

Shield Doors @ Base Caverns @ Points 2-7 6 ea.

1.7.1 CIVIL ENGINEERING (continued)

1.7.1.2.5 Miscellaneous works

e− ML Personnel Crossovers, D&B Excavation (23 X
295.5 CY)

5,196 m3

e− ML Waveguides, Drill Excavation (968) 968 ea.

continued on next page . . .
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TABLE 6.3-1 – continued

WBS # WBS Title Value Unit

e+ ML Personnel Crossovers, D&B Excavation (23 X
295.5 CY)

5,196 m3

e+ ML Waveguides, Drill Excavation (968) 968 ea.

1.7.1.3 Surface Structures

1.7.1.3.1 Central Lab Buildings

1.7.1.3.2 Detector Assembly Buildings

1.7.1.3.3 Office Buildings

Points 4-7 Office Buildings (4 x 3,750 sq ft) 1,396 sq m

1.7.1.3.4 Service Buildings

Points 2-7 Electrical Service Buildings (6 x 1,500 sq
ft)

836 sq m

Points 2-7 Cooling Towers & Pump Stations Bldgs. (6
x 7,500 sq ft)

4,181 sq m

Points 2-7 Cooling Ventilation Buildings (6 x 2,500 sq
ft)

1,394 sq m

1.7.1.3.5 Cryo- Equipment Buildings

Points 2-7 Cryo - Warm Compressor Building (6 x
4,500 sq ft)

2,508 sq m

Points 2-7 Cryo - Surface Cold Box Building (6 x 6,250
sq ft)

3,484 sq m

1.7.1.3.6 Control Buildings

1.7.1.3.7 Workshops

Points 4-7 Workshop Bldg. - Machine & Detector (4
x 11,250 sq ft)

4,181 sq m

1.7.1.3.8 Site Access Control Buildings

Points 4-7 Site Access Buildings (4 x 750 sq ft) 279 sq m

1.7.1.3.9 Shaft Access Buildings

Points 2-7 Shaft Access Buildings (6 x 9,375 sq ft) 5,226 sq m

1.7.1.3.10 Miscellaneous Buildings

1.7.1.3.11 User Facilities

1.7.1.4 Site Development

1.7.1.4.1 Off-site Site work

1.7.1.4.2 Network of Monuments

1.7.1.4.3 Construction Support

1.7.1.4.4 Site Preparation

continued on next page . . .
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TABLE 6.3-1 – continued

WBS # WBS Title Value Unit

Points 2 - 7, Clearing, Grubbing, and Initial Site
Preparation (6 sites)

6 ea.

1.7.1.4.5 Utility Distribution

Points 2 - 7, Utility Corridors (Gas, DWS, San.,
Storm, Elec., Comm.)

6 ea.

Points 2 - 7, Septic Field / Tank or Sanitary Sewer 6 ea.

Points 2 - 7, Wells or DWS 6 ea.

Points 4 - 7, Elevated Water Tank 4 ea.

Points 4 - 7, Water Pump House 4 ea.

1.7.1.4.6 Road, Sidewalks & Parking Areas

Points 2 - 7, Service Roads (6 sites x 1250 lin ft / site) 2,286 lin m

Points 2 - 7, Paved Areas (6 sites x 8750 sy / site) 43,896 sq m

Points 2 - 7, Flatwork (6 sites x 2,500 sq ft / site) 1,394 sq m

1.7.1.4.7 Landscaping

Points 2 - 7, Landscaping 6 ea.

Points 4 - 7, Security Fencing (4 sites x 5,000 lin ft /
site)

6,097 lin m

1.7.1.4.8 Environmental

Points 2 - 7, Sediment & Erosion Control (6 sites) 6 ea.

1.7.1.4.9 Miscellaneous Site Works
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The Engineering Design Phase

7.1 THE SCOPE OF THE ENGINEERING DESIGN PHASE

The completion of the RDR is an important milestone on the way to ILC approval. The next
phase of ILC development must produce an engineering design of the project in sufficient
technical detail that approval from all involved governments can be sought, and so that the
ILC can begin construction soon after that approval is obtained. The general plan is that
the GDE will deliver an ILC Engineering Design Report (EDR) in 2010, to demonstrate
that the project can be built within the specified budget and that it can deliver the required
performance.

A fundamental management principle of the Engineering Design phase will be the con-
tainment of the current RDR Value estimate. Areas of potential cost-reduction via good en-
gineering practises have been clearly identified in the RDR. Together with the risk-mitigating
prioritised R&D program, these areas will be the focus for the EDR.

The primary goal of the Engineering Design phase is to complete and document a fully
integrated engineering design of the accelerator. This design must satisfy the energy, lumi-
nosity, and availability goals outlined in the ILC RDR, and include a more complete and
accurate value estimate. Specific requirements include:

• demonstrate through the ILC R&D program that all major accelerator components can
be engineered to meet the required ILC performance specifications;

• provide an overall design such that machine construction could start within two to three
years if the project is approved and funded;

• mitigate technical risks by providing viable documented fallback solutions with esti-
mates of their costs;

• contain a detailed project execution plan including an achievable project schedule and
plan for competitive industrialization of high-volume components across the regions;

• limit options, where technical decisions are not yet final, to focus R&D and industrial-
ization efforts on these issues;

• design the conventional construction and site-specific infrastructure in enough detail to
provide the information needed to allow potential host regions to estimate the tech-
nical and financial risks of hosting the machine, including local impact, required host
infrastructure, and surface and underground footprints;
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• provide a complete value cost estimate for the machine, except for the details not yet
completed in the site-specific designs, which includes a funding profile consistent with
the project schedule proposed.

A key component of the Engineering Design phase will be the increasing direct involvement
of industries across the regions. Industrialisation is a critical issue for cost-effective production
of the key technologies, and will also play an important role in understanding how individual
countries can contribute in-kind to the construction project. This must be achieved on a
truly world-wide basis, including potential industrial bases which may not yet have been
considered or fully engaged.

The GDE is committed to achieving the above goals as a global project, building on the
success of the RDR. The GDE must also ensure that the internal momentum is maintained
and foster continued growth in the enthusiasm and commitment of the international ILC
community.
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7.2 FROM RDR TO EDR: COST DRIVERS AND TECHNICAL
RISK

7.2.1 The Importance of the RDR for the EDR Planning

The RDR and its associated value estimate forms a solid basis from which to prioritize
and efficiently direct the GDEs efforts for the Engineering Design phase. The fundamental
assumptions on which the EDR planning will be organized are that:

• the RDR conceptual design is sound and complete, although the overall engineering
design remains immature;

• the remaining identified technical risks can be successfully mitigated via a realistic and
prioritised R&D program during the next two years;

• the current estimate for the value is valid at the <30% level;

• the value estimate can be maintained and possibly reduced by focused and prioritized
engineering program, including application of “value engineering” (an assumption that
was independently noted by the ILCSC/FALC International Cost Review in their report
[193]).

The RDR provides a design and a value estimate that is parametric in nature, and allows
us to clearly identify the cost drivers and the technical risks; this information is critical in
prioritizing both engineering and R&D, given the limited resources available to the GDE.

The primary cost drivers are the Superconducting RF (SCRF) linac technology and the
Conventional Facilities and Siting (CFS), which together account for approximately 70% of
the ILC value estimate. These two areas will correspondingly be a major focus during the
Engineering Design phase.

The identification of technical risk, together with its impact and mitigation, is a critical
planning concept which the GDE has begun during the RDR phase. The GDE Global R&D
Board (RDB) produced a prioritized list of the critical R&D activities that are required to
mitigate many of the technical risks in the RDR design (see section 7.2.2). A second and
quasi-independent Risk Assessment process has begun to assist management in planning a
path from the RDR through the development of the EDR and on into construction and
commissioning. The goal of this assessment is to evaluate the RDR design for technical risks,
estimate the degree of risk and define the strategy and impact of mitigating these risks. The
impact includes both the direct cost and the effects on other ILC systems. These data have
been used to begin the formation of a risk register.

A first evaluation of the register shows (as expected) that the prioritized R&D plans
from the RDB are well correlated with the relative value of risks and costs. However there
are also important issues that require engineering or prototyping rather than R&D programs,
although the boundary between engineering and R&D cannot be sharply defined. The impact
of suggested mitigation strategies on other area or global systems is identified but requires
more development and study. In addition, areas have been identified where a re-evaluation
of the choice of the basic machine parameters can impact and reduce the risks and associated
mitigation costs.

The Risk Assessment process is at an early stage of development and will continue with
analysis and data updates throughout the Engineering Design phase as the R&D results
become available.
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One important aspect not currently included in this analysis is the impact of the design
alternatives to the current baseline, which after suitable R&D may provide either increased
performance or a cost saving (or both). Support for R&D on the more promising of these
alternative designs is a key part of the Engineering Design phase. The R&D on these sup-
ported alternative solutions will have clear scheduled milestones and agreed-upon criteria for
acceptance as the baseline solution to be included in the EDR.

7.2.2 Critical R&D in the EDR Phase

The purpose of the R&D for the ILC is to establish that:

• the various technologies chosen to achieve the required performance for the machine
are viable ;

• the cost of the technology has been minimised ;

• the chosen path provides sufficient operational flexibility to maximise the chances of
successful operation even when unforeseen constraints arise that affect the working
point of the machine.

All these R&D goals can eventually be expressed in equivalent cost. For example, the cost
of a design oversight that severely limits operation of the ILC may be a significant fraction
of the total cost of the machine. In other cases, R&D that improves the luminosity of the
machine by a certain factor can be compared to the corresponding savings in running time.

The purpose of R&D for the ILC is hence to reduce risk, i.e. extra cost, delays or compro-
mised performance. The concept of risk mitigation is one that drives both engineering and
R&D. This approach – implemented in a systematic manner – is currently being pursued both
for R&D and engineering for the ILC. It is expected in the near future to yield quantitative
assessments of the benefit of R&D.

The ILC R&D is currently funded almost exclusively through national (via national lab-
oratories and universities) and regional programs (e.g. via the European Commission). The
lack of centralized funding has been an issue in coordinating the global R&D, and will likely
remain so during the Engineering Design phase. At its inception, the GDE formed the Global
R&D Board (RDB) to monitor the international R&D activities. The RDB has since made
significant progress in identifying the critical-path R&D, cataloguing the global programs
and available resources, and in several of the more critical cases, achieving consensus on an
R&D program that makes most efficient use of world-wide resources. The preeminent ex-
ample here is the work supported in all three regions on high-gradient cavities. Within the
limited resources available, it is critical that this type of activity be maintained throughout
the Engineering Design phase.

The RDB has addressed and prioritized the risk-mitigating ILC R&D. Starting with
the highest priorities, task forces have been established to provide a realistic cooperative
international plan, which takes into account the constraints of projected resources and the
EDR timeline. At the time of writing, the top six priority so-called “S” task forces1 have
been formed; they are listed in Table 7.2-1. Additional task forces will be convened in the
future. A full report on the status of the S0 through S5 task-forces can be found in [192].
A general goal for each task force was to produce a realistic R&D plan to achieve required
goals within the EDR time-scale.

1The letter “S” was chosen as a successor to the “R” requirements used in the second TRC Report
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TABLE 7.2-1
Existing and planned R&D “S” task forces as of writing.

S0 Cavity gradient Establishment and demonstration of cavity surface
preparation procedures which routinely (yield≥80%)
produce gradients of 35 MV/m with a Q0 = 1010 in
a vertical low-powered test.

S1 Cryomodule gradient Demonstration of a 8 cavity cryomodule operating
at an average accelerating gradient of 31.5 MV/m
at Q0 = 1010, including fast tuner operation etc..

S2 Module string test Determination of the needs, size and nature of a
module string test (ILC linac systems test)

S3 Damping Rings electron cloud

fast injection/extraction kickers

lattice design

low-emittance tuning

impedance-driven single-bunch effects

ion effects

S4 Beam Delivery System integrated IR design, including push-pull

IR superconducting magnets

crab-cavity system

critical (novel) diagnostics

intra-train feedback systems

high-powered beam dump system

collimator design and wakefield performance

stabilization issues etc.

S5 Positron Source superconducting helical undulator

photon target

capture section (optical matching device and warm
RF acceleration)

remote handling.

S6 Controls in planning

S7 RF Power Source in planning

Beyond S5 are additional aspects of the design, for example RF power source, controls,
etc. These areas are challenges in their own right and certainly require R&D. However, they
are not currently considered high risk-mitigation priorities on the time-scale of the EDR.

7.2.3 The Importance of Alternative Designs

The focus of the design work during the RDR phase was on the Baseline Configuration, which
was essentially established at the Snowmass Workshop in August 2005, and formally adopted
at the Frascati Workshop the following November. As part of that process, a list of viable
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alternatives to the baseline choices was also created. An alternative design or solution was
defined as being:

A technology or concept which may provide a significant cost reduction, increase in per-
formance (or both), but which will not be mature enough to be considered baseline by the end
of the RDR phase.

The identified alternative designs were also formally included in the Baseline Configura-
tion Document (BCD), but they are not included in the RDR, which is focused on the ILC
configuration used to produce the value estimate.

Implicit in the definition of a supported alternative design is that on-going R&D may
eventually bring an alternative to a state mature enough that it can be considered as a
replacement for the baseline solution. In evaluating an alternative solution as viable, the time
scale involved becomes relevant. If an alternative will not reach a critical maturity on a time
scale that is commensurate with cost-effective implementation, it must be discarded or set
aside for consideration as a possible later upgrade. Unfortunately, the exact time scale for this
is not well-defined: the true time scale may go beyond the (technically driven) Engineering
Design phase due to political and financial reasons. It may be prudent to maintain non-
baseline R&D beyond the EDR phase if the cost/performance benefits merit it. How much
of this can and should be supported will become clearer as the Engineering Design phase
evolves towards 2010. Defining criteria for accepting the alternative designs as baseline is an
important task for the planning of the Engineering Design phase milestones; monitoring the
progress of the alternatives will be a key task throughout the process.

Examples of high-level alternative solutions are:

• Novel cavity shapes: so-called low-loss structures or re-entrant designs are currently
being investigated. They offer the potential of higher gradients by reducing the peak
magnetic field on the cavity surface, or alternatively higher Q0. Several R&D programs
are being pursued, notably at KEK and Cornell.

• RF Power source: the baseline RF power source and distribution is considered mature
and relatively low risk. However on-going R&D at SLAC into novel concepts could yield
a significant cost reduction for this system. Of these activities, the Marx modulator is
the most mature and promising, and could well be the first test case of the adoption
of an alternative design. Other R&D activities are on sheet-beam klystrons and lower-
cost RF distribution systems, both of which are less mature, but have the advantage of
being drop-in compatible solutions that could in principle be adopted at a late stage in
the design.

• IR solutions: 2 mrad and “head-on” crossing-angle geometries are being considered
as alternatives to the current 14 mrad baseline.

• Compton-based positron source: an independent source based on laser Compton
scattering is being investigated by an international collaboration.

In addition to the alternatives described in the BCD, there are many technical choices
still to be made between competing technologies, where no clear baseline emerged during
the RDR phase. Examples of these include development of the fast kicker systems for the
Damping Ring (an S3 priority), and mechanical tuner designs for the SCRF cavities.

The criteria used to monitor the progress of an alternative design during the Engineering
Design phase must be chosen carefully. Time scales for evaluation must be based on the
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impact on the design work as it evolves. The examples above of the alternative IR solutions
and the Compton-based positron source have a very large impact on the overall layout of
the machine and the associated CFS (a cost driver); such decisions will become increasingly
difficult to cost-effectively implement at a mature stage of the design. On the other hand,
the choice of cavity shape could be made relatively late, if the cost benefits were considered
adequate.
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7.3 RESTRUCTURING THE GDE: PROJECT MANAGEMENT
FOR THE EDR PHASE

The scope of the EDR necessitates a robust management and an appropriate organization,
with resources sufficient to accomplish its aims. It is essential that the current management
structure of the GDE be adapted to the needs of the Engineering Design phase. Particu-
larly in the area of project management, it is clear that substantial changes from the RDR
management structure are required.

The Engineering Design phase organization must have clear lines of authority and re-
sponsibility and must effectively connect tasks with human and financial resources (often
from multiple sources across the regions). The organization must include transparent mech-
anisms to establish and communicate high-level goals and objectives, receive technical and
political advice, set priorities, manage change, resolve conflict and fill voids of human or fi-
nancial resources. All of this must be accomplished while maintaining a strong international
collaboration in the absence, at least initially, of centralized funding.

As of writing, the exact details of the new project structure are being developed, and
will be completed and in-place by fall 2007. The following therefore reflects a snapshot of an
evolving picture which is under discussion.

7.3.1 Top-Level Project-Management Structure

The RDR Management Board will effectively be replaced by a Project Management Team
consisting of three Project Managers (one from each region) with distinct and clear respon-
sibilities. The currently proposed structure is shown in Figure 7.3-1.

The Project Managers will report directly to the Director. The division of responsibil-
ity reflects the primary cost drivers (SCRF technology and CFS). Accelerator Systems is
responsible for the injectors, damping rings, bunch compressors and beam delivery systems.

The top-level management of the GDE will remain an Executive Committee similar to
the current one, chaired by the Director.

The three Project Managers will lead a Project Management Office. One Project Manager
will act as chair, and will have the final authority over project management decisions. The
project management office has a regionally-balanced staff and supports several important
central functions, depicted in Figure 7.3-2. (As of writing, the exact definition and structure
of these functions is still being discussed.)

7.3.2 Work Packages

The technical work of the Engineering Design phase itself will be organized in Work Packages
(WPs). Each Level-3 System in Figure 7.3-1 will manage a collection of WPs representing
the Work Breakdown Structure (WBS) of that part of the project. The WPs should reflect
the critical engineering and R&D milestones of the EDR phase, and should have well-defined
scope (deliverables), such that they are suitable for distribution across geographically sepa-
rated resources.

The formation of consortia of all types to deliver the WPs will be encouraged by the
GDE. Close consultation will take place with laboratory directors and other senior figures to
ensure that the WPs are optimally defined. Flexibility and responsiveness will be necessary
as the Engineering Design phase progresses. In particular, it is necessary to ensure as far as
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FIGURE 7.3-1. Basic proposed Project Management structure for the EDR phase. The org chart indicates
the top three levels of management: level-1 Director; level-2 Project Managers; level-3 System Managers.

FIGURE 7.3-2. Primary central functions of the Project Management Office.

possible that partners joining the project at whatever stage can be assigned responsibilities
appropriate to their resources, competences and aspirations.

The engineering for the ILC design, and the R&D program, will need to be closely inte-
grated in the work-package structure. Clear milestones and technology choices will need to
be defined to meet the EDR schedule.

The exact structure of the WBS and associated WP definitions is a process which will
evolve with time. The Project Managers together with the Level-3 (system) managers are
primarily responsible for identifying the key milestones and deliverables. Negotiations with
individual institutes should start shortly thereafter. While the new Project Management
structure is being set-up, an interim task-force was commissioned at the Beijing Workshop
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(February 2007) to produce a straw man WBS and possible high-level WP definitions. This
task force will report to the Executive Committee in August 2007.

7.3.3 Resources, responsibilities and organizational Issues

Until such time as the GDE activities are centrally funded, the GDE must continue to seek
its resources indirectly via the institutes (funded entities) which form the collaboration. Re-
sponsibilities for delivering a WP or part thereof must be formally agreed upon between
the GDE Project Management and the corresponding institute via MoU. The institutes are
then responsible for obtaining the necessary resources for the task from their funding sources
(agencies). The process by which the WPs are defined, and the allocation of institutes to
carry out those WPs through MoUs, must be an open and transparent process allowing all
interested parties to make a proposal to carry out the work and to understand and accept
the criteria used in decision making.

WP 1.1 WP 1.2 WP 1.3 WP 1… WP 2.1 WP 2.2 WP 2.3 WP 2… WP 3.1 WP 3.2 WP 3.3 WP 3…
Institute A C
Institute B C C
Institute C C C
Institute D C C
Institute E C C
… C
Institute T C
Institute U
Institute V C

Level-3 System Manager 3

Project Managers

Agency I

Agency II

Agency III

Level-3 System Manager 1 Level-3 System Manager 2MoUs R
esponsibility &

 A
uthority

Funding & Resources

FIGURE 7.3-3. Managing a non-centrally funded project. The green-filled boxes indicate a commitment
from an institute to deliver part of a WP. MoUs facilitate the desired (and necessary) connection between
the Project Management (authority and responsibility) and the institutions (funding and resources). The
C indicates a coordinating role in a WP (an individual in an institute). Note that each WP has only one
coordinator.

Figure 7.3-3 represents a typical situation facing the EDR Project Management. A top-
down project management structure must have responsibility for achieving the project goals,
and requires authority over the resources to do so (represented by the columns of Figure
Figure 7.3-3). However, these resources are supplied and funded via the collaborating insti-
tutes, and so the Project Management has no direct line-authority over them (the rows of the
matrix). In addition, a single institute is likely to take on responsibilities for several parts of
many Work Packages (indicated in Figure Figure 7.3-3 by the green highlighting). The MoUs
will be critically important in establishing the correct and suitable level of authority for the
Project Management. Each MoU will need to be tailored to suit (a) the specifics of the scope
of the WP commitment and (b) the individual institutes management and funding situation.
Note that the many different funding agencies involved and the associated differences in the
way each works adds an additional complication to the problem.
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7.3.4 Future Resource Requirements

To estimate the resources required, we have looked at two international projects, each with
similarities and differences to the ILC, in order to try to estimate the FTE years necessary
to produce their equivalent of the EDR phase. These projects were ITER, an international
project approved in all three regions, and XFEL, a predominantly but not exclusively Euro-
pean project recently approved. A fairly exact estimate of the effort required to produce the
XFEL TDR was possible; it is more difficult to estimate such a directly comparable figure
from ITER. However, the information available, together with the extrapolation of estimates
already made by some GDE area systems to the whole project, leads to a similar conclusion,
viz. that an increase in the global ILC effort by approximately a factor of two to three in
manpower is required to complete an EDR of the scope of that of ITER or XFEL on the
required timescale.
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7.4 CONCLUDING REMARKS

The GDE remains committed to the technically driven schedule of supplying the EDR in
2010, making start of construction possible as early as 2012. The critical path and cost
drivers have been clearly identified during the RDR phase, and they define the priorities
for the next three years of the Engineering Design phase. The R&D program will be fine-
tuned to mitigate the remaining identified technical risks of the design. A key element of
the engineering activity will be the formation of a qualified competitive industrial base in
each region for the SCRF linac technology. An equally critical focus will be on the civil
construction and conventional facilities – the second primary cost driver – where an early site
selection would clearly be advantageous; hence it is critical that the political site-selection
process begin in parallel to the technical EDR activity. This will also necessitate a movement
to a more direct involvement of the funding agencies in the governance of the ILC, taking
over functions and oversight currently performed by ICFA through the ILCSC.

Finally, the GDE remains committed to completing these challenging goals as a truly
international organization, by building on and consolidating the successful collaboration that
produced the RDR. The support of the world-wide funding agencies is critical in this endeav-
our. The GDE – together with the leaders of the particle physics community – will continue
to work with the regional funding agencies and governments to make this project a reality in
the early part of the next decade.
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