
Source-based Code Coverage
for Embedded Use Cases

Alan Phipps, Texas Instruments

Cody Addison, Nvidia

2020 LLVM Developers’ Meeting, October 2020

1

What is Code Coverage?

• A measurement for how thoroughly code has

been executed during testing

– All sections of code have an associated test

– Un-executed code may be at higher risk of

having lurking bugs

2

The Challenge

• Embedded devices usually have tight memory requirements

• LLVM Source-based Code Coverage has large size

requirements

– Additional instructions added to instrument your code

– Additional runtime code to control profile data merging

• This includes counter merging and profile data input and output

– Additional data sections to track counters and coverage data

• There ARE things we can do to reduce the size!

3

Memory

Code

Data

Memory

Code

Data

1. Must all data sections be in memory?

• No!

• Code Coverage relies on several data sections:

– __llvm_prf_cnts : Profile counters, incremented at runtime

– __llvm_covfun : Coverage Function Records

– __llvm_covmap : Coverage Mapping Data Records

– __llvm_prf_data : Profile Data

– __llvm_prf_names : Profile Function names

4

These sections may comprise

80%-90% of the data but do not

require runtime modification

1. Must all data sections be in memory?

• No!

• Code Coverage relies on several data sections:

– __llvm_prf_cnts : Profile counters, incremented at runtime

– __llvm_covfun : Coverage Function Records

– __llvm_covmap : Coverage Mapping Data Records

– __llvm_prf_data : Profile Data

– __llvm_prf_names : Profile Function names

• Modify llvm-profdata to accept an object file argument

– Move it off-line: Combine its data with downloaded profile counters, producing

an indexed profile data file

5

Move these sections out of

memory, preserved in object file

2. Can we reduce runtime support?

• We just moved most processing of raw profile data off-line

• Runtime features are included that are unnecessary for

embedded platforms

1. Runtime counter merging

2. Use of environment variable to control where output goes

3. Indexed profile writing output

4. Buffering data for writing output

5. Reading data input in for profile-guided optimization (PGO)

• How big is libclang_rt.profile.a? 100kb for Armv7m!

6

compiler-rt/lib/profile/CMakeLists.txt:
set(PROFILE_SOURCES
 GCDAProfiling.c
 InstrProfiling.c
 InstrProfilingInternal.c
 InstrProfilingValue.c
 InstrProfilingBiasVar.c
 InstrProfilingBuffer.c
 InstrProfilingFile.c
 InstrProfilingMerge.c
 InstrProfilingMergeFile.c
 InstrProfilingNameVar.c
 InstrProfilingVersionVar.c
 InstrProfilingWriter.c
 InstrProfilingPlatformDarwin.c
 InstrProfilingPlatformFuchsia.c
 InstrProfilingPlatformLinux.c
 InstrProfilingPlatformOther.c
 InstrProfilingPlatformWindows.c
 InstrProfilingRuntime.cpp
 InstrProfilingUtil.c
)

2. Can we reduce runtime support?

• We just moved most processing of raw profile data off-line

• Runtime features are included that are unnecessary for

embedded platforms

1. Runtime counter merging

2. Use of environment variable to control where output goes

3. Indexed profile writing output

4. Buffering data for writing output

5. Reading data input in for profile-guided optimization (PGO)

• How big is libclang_rt.profile.a? 100kb for Armv7m!

• If we only support for basic writing of counters and remove

everything else  4kb for Armv7m!

7

compiler-rt/lib/profile/CMakeLists.txt:
set(PROFILE_SOURCES
 GCDAProfiling.c
 InstrProfiling.c
 InstrProfilingInternal.c
 InstrProfilingValue.c
 InstrProfilingBiasVar.c
 InstrProfilingBuffer.c
 InstrProfilingFile.c
 InstrProfilingMerge.c
 InstrProfilingMergeFile.c
 InstrProfilingNameVar.c
 InstrProfilingVersionVar.c
 InstrProfilingWriter.c
 InstrProfilingPlatformDarwin.c
 InstrProfilingPlatformFuchsia.c
 InstrProfilingPlatformLinux.c
 InstrProfilingPlatformOther.c
 InstrProfilingPlatformWindows.c
 InstrProfilingRuntime.cpp
 InstrProfilingUtil.c
)

3. What about counter size?

• Remember…. we made __llvm_prf_cnts the only coverage data section in memory

– But this is comprised of counters that are 64bits in size

• Embedded applications can get away with smaller counter sizes

• Reduce the counter size to 32bits – 50% reduction in size!

• Even better: make counter size configurable to any reasonable size (16bits, 8bits)

– Use saturating addition to prevent against overflow on small counter sizes
8

cnt0 cnt2 cnt1 cnt3

cnt0 cnt1 cnt3 cnt4 cnt2 cnt5 cnt6 cnt7

0… 64… 128… 192…

0… 32… 64… 96… 128… 160… 192… 224…

Thank you!

9

