Argonne &

NAL LABORATORY

An Example

$ cat /tmp/clever.c
#include <stdio.h>
#include <math.h>

float i_am_clever(unsigned int *i, float *f) {
if (lisnan(*f))
*1h=1 << 31,
return *f;

}

int main() {
float f = 5;
f=1_am_clever((unsigned int *) &f, &f);
printf("%f\n", f);

}

5 Argonne &

An Example

$ gcc -o /tmp/c /tmp/clever.c

$ /tmpl/c

-5.000000

$ gcc -o /tmp/c /tmp/clever.c -O3
$ /tmpl/c

5.000000

$ gcc -o /tmpl/c /tmpl/clever.c -O3 -fno-strict-aliasing
$ /tmpl/c

-5.000000

$ clang -o /tmp/c ~/tmp/clever.c

$ /tmpl/c

-5.000000

$ clang -o /tmp/c ~/tmp/clever.c -O3

$ /tmpl/c

5.000000

$ clang -o /tmp/c ~/tmp/clever.c -O3 -fno-strict-aliasing
$ /tmpl/c

-5.000000

3 Argonne &

An Example

$ clang -o /tmp/c /tmp/clever.c -fsanitize=type -g
$ /tmplc

==28127==ERROR: TypeSanitizer: type-aliasing-violation on address 0x7fff042dcf8c (pc 0x000000420ff5 bp 0x7fff042dcd80 sp Ox7fff042dc500 tid 28127)
READ of size 4 at Ox7fff@42dcf8c with type accesses an existing object of type
#0 0x420fT4 in i am clever /tmp/clever.c:6:8
#1 0x421755 in main /tmp/clever.c:12:7
#2 Ox7T13b0ef3cO4 in _ libc start main (/1ib64/1libc.so0.6+0x21c04)
#3 0x402al4 in _start (/tmp/c+0x402a14)

==28127==ERROR: TypeSanitizer: type-aliasing-violation on address 0x7fff042dcf8c (pc 0x00000042117c bp Ox 042dcd80 sp Ox7fff042dc500 tid 28127)
WRITE of size 4 at Ox7fff042dcf8c with type accesses an existing object of type
#0 0x42117b in i am clever /tmp/clever.c:6:8
#1 0x421755 in main /tmp/clever.c:12:7
#2 0x7T13b0ef3c04 in _ libc start main (/1ib64/1libc.s0.6+0x21c04)

#3 0x402al4 in _start (/tmp/c+0x402a14)

-5.000000

READ of size 4 at Ox7fffe42dcf8c with type accesses an existing object of typé'

4 Argonne &

NATIONAL LABORATORY

The Rules

6.10 Lvalues and rvalues [basic.lval]

8 If a program attempts to access the stored value of an object through a glvalue of other than one of the
following types the behavior is undefined:*®

(8.1) — the dynamic type of the object,

(8.2) — a cv-qualified version of the dynamic type of the object,

(83) — a type similar (as defined in 7.5) to the dynamic type of the object,

(8.4) — a type that is the signed or unsigned type corresponding to the dynamic type of the object,

(8.5) — a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type

of the object,

(8.6) — an aggregate or union type that includes one of the aforementioned types among its elements or non-
static data members (including, recursively, an element or non-static data member of a subaggregate or
contained union),

(8.7) — a type that is a (possibly cv-qualified) base class type of the dynamic type of the object,
(8.8) — a char, unsigned char, or std: :byte type.

56) The intent of this list is to specify those circumstances in which an object may or may not be aliased.

5 Argonne &

TBAA Metadata

store i32* %i, i32** %i.addr, align 8, !thaa 13
‘%348 = |load float*, float** %f.addr, align 8, !tbaa !3

%409 = load float, float* %348, align 4, !tbaa !7

éfore 132 %xor, 132* %870, align 4, !tbaa !9
|3 = {14, 14, i64 0} ’

14 = {!"any pointer", !5, i64 0}
15 = {!"omnipotent char", !6, i64 0}
16 = {!"Simple C/C++ TBAA"}

17 = {18, 18, i64 0}
18 = I{I"float", 15, i64 0}

19 = {110, 110, i64 O}
1710 = {!"int", 15, 164 0}

6 Argonne &

TBAA Metadata

Access Tag: (Base Type, Access Type,Offset)

* For scalar accesses, the base type == access type
* The base/access type Is:

(name, member 1 type, offset 1, member 2 type, offset 2, ...)

Scalar types, not just structure types, have the above form.
Scalar types don't have members, but they do have parent

types...

7 Argonne &

TBAA Metadata

struct Inner { struct Outer {

inti; //offsetO float f; I offset O
float f; // offset 4 double d; /I offset 8
b struct Inner inner_a; // offset 16

I3

An access to:

Can alias with...

Can alias with...

Can alias with...

8 Argonne &

TBAA Metadata

struct Inner { struct Outer {

inti; // offsetO float f; I offset O
float f; // offset 4 double d; /I offset 8
b struct Inner inner_a; // offset 16

I3

12 = |13, 13, 164 0}

13 = {!"any pointer", 4, i64 0}

14 = {!"omnipotent char", !5, i64 0}

15 = {I"Simple C/C++ TBAA"}

16 = Y{!7, 18, i64 0}

17 = {!I"Outer", 18, 164 0, 19, i64 8, !10, i64 16}
18 = {!"float", !4, i64 0}

19 = I{I"double”, 4, i64 0}

110 = I{!"Inner", 111, i64 0, I8, i64 4}
111 = I{!"int", 14, i64 0}

112 = {17, 111, i64 16}

9 Argonne &

The Type Sanitizer

A rgNoATngL.]LAeIORAYERV

Shadow Memory

L‘

Each box above is sizeof(void *) bytes.

Shadow Address = (((Access Address) & __tysan_app_memory_mask) *
sizeof(void*)) + tysan_shadow_memory_address

11 Argonne &

Descriptors

Access descriptor:

Type descriptor:

e Except for types in anonymous namespaces, use comdat
for each descriptor.

* For unnamed types, hash the structure to make a unigue
name.

12 Argonne &

Instrumentation

* Reset shadow memory to zero for:
* byval arguments and allocas (i.e., new stack allocations)
e lifetime_start/lifetime_end
e memset

 For memcpy/memmove, do the same for the
corresponding shadow memory

 For a memory access, if the type is unknown (all zeros),
set the type in shadow memory. If the type is set, then
check that it matches (i.e., that the first shadow memory
value is the type descriptor and the remaining values are
-1, -2, ...). If it does not match, call the runtime (which
may nevertheless determine that the access is legal).

13 Argonne &

nnnnnnnnnnnnnnnnnn

Interceptors

Intercept system functions to...

* Reset the shadow memory to zero (i.e., mark the type as
unknown)
« memset, mmap, malloc, and related functions

e Copy the corresponding shadow memory
* memcpy, memmove, strdup

Writing interceptors is easy...

INTERCEPTOR(int, posix_memalign, void *memptr, uptr alignment, uptr size) {
int res = REAL(posix_memalign)(memptr, alignment, size);
If (res == 0 && *memptr)
tysan_set type_unknown(*memptr, size);
return res;

}
INTERCEPT_FUNCTION(posix_memalign): gy

nnnnnnnnnnnnnnnnnn

Shadow Memory

Allocate unreserved (i.e., unbacked) pages for the shadow
memory based on how each architecture uses its address
space...

#if defined(__x86 64)

struct Mapping {

static const uptr kShadowAddr = 0x010000000000ull;
static const uptr kAppAddr = 0x550000000000ull;
static const uptr kAppMemMsk = ~0x780000000000ull;

3

.”_tysan_shadow_memory_address = ShadowAddr();
__tysan_app_memory_mask = AppMask();

MmapFixedNoReserve(ShadowAddr(), AppAddr() - ShadowAddr()):

15 Argonne &

nnnnnnnnnnnnnnnnnn

Printing Errors

How do you generate those characteristic sanitizer error
messages and stack traces?

First, record information about the caller when you enter
the runtime...

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void _ tysan_check(void *addr, int size, tysan_type_descriptor *td,
int flags) {
GET _CALLER_PC_BP _SP;

Argonne &

16

Printing Errors

Next, make use of provided functions for printing and the
stack trace...

Decorator d;

Printf("%s", d.Warning());

Report("ERROR: TypeSanitizer: type-aliasing-violation on address %p"
" (pc %p bp Y%p sp %p tid %d)\n",
Addr, (void *) pc, (void *) bp, (void *) sp, GetTid());

Printf("%s", d.End());

Printf("%s of size %d at %p with type ", AccessStr, Size, Addr);

if (pc) {
BufferedStackTrace ST,
ST.Unwind(kStackTraceMax, pc, bp, O, O, O, false);
ST.Print();

} else {
Printf("\n");

}

17 Argonne &

AAAAAAAAAAAAAAAAAA

Another Example

$ cat /tmp/so.c
#include <stdio.h>
#include <stdlib.h>

struct X {
int i;
int j;

I3

int foo(struct X *p, struct X *
q->) =1,
p->i = 0;
return g->j;

}

int main() {
unsigned char *p = malloc(3 * sizeof(int));
printf("%i\n", foo((struct X *)(p + sizeof(int)),
(struct X *)p));

18 Argonne &

Partial Overlaps

The instrumentation and runtime deals with different

overlap cases:

e The current access points to the first byte of the
previously-recorded type in memory

* The current access points to the middle of some
previously-recorded type in memory

* Not the first byte, but some later bytes, of the current
access overlap with some previously-recorded type in
memory

19 Argonne &

An Experiment

As has been previously identified by others [1], the popular
XML parser library Expat, violates type-aliasing rules.
Compiling Expat 2.2.0 with the Type Sanitizer and executing
the “runtests” program reports 2613 errors, including many
like:

“READ of size 8 at ... with type any pointer (in attribute id at
offset 0) accesses an existing object of type any pointer (in
<anonymous type> at offset 0)”

“READ of size 4 at ... with type int (in XML_ParserStruct at
offset 512) accesses an existing object of type int (in
prolog_state at offset 8)”

[1] “Detecting Strict Aliasing Violations in the Wild”
http://trust-in-soft.com/wp-content/uploads/2017/01/vmcai.pdf

20 Argonne &

nnnnnnnnnnnnnnnnnn

http://trust-in-soft.com/wp-content/uploads/2017/01/vmcai.pdf

Future Enhancements

 “Sticky” types for local/global variables (and more) —
Some variables have declared types and those types
can be set “up front”, and shouldn't be changed later by
accesses.

 (Optional) Origin tracking — Currently the stack trace
shows the location of the illegal access but not the
location of the code that set the type.

» Better handling of unions and arrays — This requires
enhancements to the TBAA representation (such
enhancements are currently under discussion).

21 Argonne &

nnnnnnnnnnnnnnnnnn

Acknowledgments

 The LLVM community

 ALCF, ANL, and DOE

e ALCF is supported by DOE/SC under contract DE-
AC02-06CH11357

https://reviews.llvm.org/D32199 (Clang)
https://reviews.llvm.org/D32197 (Runtime)
nttps://reviews.llvm.org/D32198 (LLVM)

2 Argonne &

https://reviews.llvm.org/D32199
https://reviews.llvm.org/D32197
https://reviews.llvm.org/D32198

	Slide4
	Slide2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

