
The Type Sanitizer:

Free Yourself from -fno-strict-aliasing

Hal Finkel
Argonne National Laboratory

2017 LLVM Developers' Meeting

An Example

2

$ cat /tmp/clever.c
#include <stdio.h>
#include <math.h>

float i_am_clever(unsigned int *i, float *f) {
 if (!isnan(*f))
 *i ^= 1 << 31;
 return *f;
}

int main() {
 float f = 5;
 f = i_am_clever((unsigned int *) &f, &f);
 printf("%f\n", f);
}

Do we need to load *f again here?

An Example

3

$ gcc -o /tmp/c /tmp/clever.c
$ /tmp/c
-5.000000
$ gcc -o /tmp/c /tmp/clever.c -O3
$ /tmp/c
5.000000
$ gcc -o /tmp/c /tmp/clever.c -O3 -fno-strict-aliasing
$ /tmp/c
-5.000000

$ clang -o /tmp/c ~/tmp/clever.c
$ /tmp/c
-5.000000
$ clang -o /tmp/c ~/tmp/clever.c -O3
$ /tmp/c
5.000000
$ clang -o /tmp/c ~/tmp/clever.c -O3 -fno-strict-aliasing
$ /tmp/c
-5.000000

Clang and GCC are
similar in this regard...

An Example

4

$ clang -o /tmp/c /tmp/clever.c -fsanitize=type -g
$ /tmp/c

The Rules

5

Clang's vector types are also
included in this list.

TBAA Metadata

6

...
store i32* %i, i32** %i.addr, align 8, !tbaa !3
...
%348 = load float*, float** %f.addr, align 8, !tbaa !3
...
%409 = load float, float* %348, align 4, !tbaa !7
...
store i32 %xor, i32* %870, align 4, !tbaa !9
...
!3 = !{!4, !4, i64 0}
!4 = !{!"any pointer", !5, i64 0}
!5 = !{!"omnipotent char", !6, i64 0}
!6 = !{!"Simple C/C++ TBAA"}
!7 = !{!8, !8, i64 0}
!8 = !{!"float", !5, i64 0}
!9 = !{!10, !10, i64 0}
!10 = !{!"int", !5, i64 0}

The root for C++ code.

All pointers are the same.

TBAA Metadata

7

Access Tag: (Base Type, Access Type,Offset)

● For scalar accesses, the base type == access type
● The base/access type is:

(name, member 1 type, offset 1, member 2 type, offset 2, …)

Scalar types, not just structure types, have the above form.
Scalar types don't have members, but they do have parent
types...

char

int short

TBAA Metadata

8

struct Inner {
 int i; // offset 0
 float f; // offset 4
};

 Outer::inner_a::i, Outer @ offset 16

Can alias with...

Inner::i, Inner @ offset 0

An access to:

Can alias with...

struct Outer {
 float f; // offset 0
 double d; // offset 8
 struct Inner inner_a; // offset 16
};

int “@ offset 0”

char “@ offset 0”Can alias with...

TBAA Metadata

9

struct Inner {
 int i; // offset 0
 float f; // offset 4
};

struct Outer {
 float f; // offset 0
 double d; // offset 8
 struct Inner inner_a; // offset 16
};

!2 = !{!3, !3, i64 0}
!3 = !{!"any pointer", !4, i64 0}
!4 = !{!"omnipotent char", !5, i64 0}
!5 = !{!"Simple C/C++ TBAA"}
!6 = !{!7, !8, i64 0}
!7 = !{!"Outer", !8, i64 0, !9, i64 8, !10, i64 16}
!8 = !{!"float", !4, i64 0}
!9 = !{!"double", !4, i64 0}
!10 = !{!"Inner", !11, i64 0, !8, i64 4}
!11 = !{!"int", !4, i64 0}
!12 = !{!7, !11, i64 16}

Start here and work backward.

The Type Sanitizer

10

Clang
● -fsanitize=type
● Always produce TBAA metadata, even at -O0
● Add type metadata to globals
● Link with the tysan runtime library

LLVM
● Don't use TBAA metadata for pointer-aliasing analysis
● Instrument access and generate type descriptors
● Disable some “sanitizer unfriendly” optimizations

compiler-rt
● Uses shadow memory to record access types for memory ranges
● Uses TBAA algorithm at runtime to check access legality
● Reports illegal accesses to the user

Shadow Memory

11

access
descriptor

-1 -2 -3 access
descriptor

-1 access
descriptor

-1 0 ...

4-byte access (scalar) type

2-byte access (scalar) type

Each box above is sizeof(void *) bytes.

Shadow Address = (((Access Address) & __tysan_app_memory_mask) *
 sizeof(void*)) + __tysan_shadow_memory_address

Descriptors

12

1 base-type desc. ptr. access-type desc. ptr. offset

Access descriptor:

Type descriptor:

2 member count member desc. ptr. member offset ... name

● Except for types in anonymous namespaces, use comdat
for each descriptor.

● For unnamed types, hash the structure to make a unique
name.

Instrumentation

13

● Reset shadow memory to zero for:
● byval arguments and allocas (i.e., new stack allocations)
● lifetime_start/lifetime_end
● memset

● For memcpy/memmove, do the same for the
corresponding shadow memory

● For a memory access, if the type is unknown (all zeros),
set the type in shadow memory. If the type is set, then
check that it matches (i.e., that the first shadow memory
value is the type descriptor and the remaining values are
-1, -2, …). If it does not match, call the runtime (which
may nevertheless determine that the access is legal).

Interceptors

14

Intercept system functions to…

● Reset the shadow memory to zero (i.e., mark the type as
unknown)
● memset, mmap, malloc, and related functions

● Copy the corresponding shadow memory
● memcpy, memmove, strdup

Writing interceptors is easy…

INTERCEPTOR(int, posix_memalign, void **memptr, uptr alignment, uptr size) {
 int res = REAL(posix_memalign)(memptr, alignment, size);
 if (res == 0 && *memptr)
 tysan_set_type_unknown(*memptr, size);
 return res;
}
...
INTERCEPT_FUNCTION(posix_memalign);

Shadow Memory

15

Allocate unreserved (i.e., unbacked) pages for the shadow
memory based on how each architecture uses its address
space…

#if defined(__x86_64__)
struct Mapping {
 static const uptr kShadowAddr = 0x010000000000ull;
 static const uptr kAppAddr = 0x550000000000ull;
 static const uptr kAppMemMsk = ~0x780000000000ull;
};
…
 __tysan_shadow_memory_address = ShadowAddr();
 __tysan_app_memory_mask = AppMask();
…
MmapFixedNoReserve(ShadowAddr(), AppAddr() - ShadowAddr());

Printing Errors

16

How do you generate those characteristic sanitizer error
messages and stack traces?

First, record information about the caller when you enter
the runtime…

extern "C" SANITIZER_INTERFACE_ATTRIBUTE
void __tysan_check(void *addr, int size, tysan_type_descriptor *td,
 int flags) {
 GET_CALLER_PC_BP_SP;

Declares and initializes:
pc, bp, sp

Printing Errors

17

Next, make use of provided functions for printing and the
stack trace…

 Decorator d;
 Printf("%s", d.Warning());
 Report("ERROR: TypeSanitizer: type-aliasing-violation on address %p"
 " (pc %p bp %p sp %p tid %d)\n",
 Addr, (void *) pc, (void *) bp, (void *) sp, GetTid());
 Printf("%s", d.End());
 Printf("%s of size %d at %p with type ", AccessStr, Size, Addr);
…
 if (pc) {
 BufferedStackTrace ST;
 ST.Unwind(kStackTraceMax, pc, bp, 0, 0, 0, false);
 ST.Print();
 } else {
 Printf("\n");
 }

Another Example

18

$ cat /tmp/so.c
#include <stdio.h>
#include <stdlib.h>

struct X {
 int i;
 int j;
};

int foo(struct X *p, struct X *q) {
 q->j = 1;
 p->i = 0;
 return q->j;
}

int main() {
 unsigned char *p = malloc(3 * sizeof(int));
 printf("%i\n", foo((struct X *)(p + sizeof(int)),
 (struct X *)p));
}

WRITE of size 4 at
0x000002712014 with type int (in
X at offset 0) accesses an existing
object of type int (in X at offset 4)

Partial Overlaps

19

The instrumentation and runtime deals with different
overlap cases:
● The current access points to the first byte of the

previously-recorded type in memory
● The current access points to the middle of some

previously-recorded type in memory
● Not the first byte, but some later bytes, of the current

access overlap with some previously-recorded type in
memory

READ of size 4 at ... with type float accesses
part of an existing object of type long that starts

at offset -4

An Experiment

20

As has been previously identified by others [1], the popular
XML parser library Expat, violates type-aliasing rules.
Compiling Expat 2.2.0 with the Type Sanitizer and executing
the “runtests” program reports 2613 errors, including many
like:

“READ of size 8 at ... with type any pointer (in attribute_id at
offset 0) accesses an existing object of type any pointer (in
<anonymous type> at offset 0)”

“READ of size 4 at ... with type int (in XML_ParserStruct at
offset 512) accesses an existing object of type int (in
prolog_state at offset 8)”

[1] “Detecting Strict Aliasing Violations in the Wild”
http://trust-in-soft.com/wp-content/uploads/2017/01/vmcai.pdf

http://trust-in-soft.com/wp-content/uploads/2017/01/vmcai.pdf

Future Enhancements

21

● “Sticky” types for local/global variables (and more) –
Some variables have declared types and those types
can be set “up front”, and shouldn't be changed later by
accesses.

● (Optional) Origin tracking – Currently the stack trace
shows the location of the illegal access but not the
location of the code that set the type.

● Better handling of unions and arrays – This requires
enhancements to the TBAA representation (such
enhancements are currently under discussion).

Acknowledgments

22

● The LLVM community
● ALCF, ANL, and DOE
● ALCF is supported by DOE/SC under contract DE-

AC02-06CH11357

https://reviews.llvm.org/D32199 (Clang)
https://reviews.llvm.org/D32197 (Runtime)
https://reviews.llvm.org/D32198 (LLVM)

https://reviews.llvm.org/D32199
https://reviews.llvm.org/D32197
https://reviews.llvm.org/D32198

	Slide4
	Slide2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

