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ABSTRACT
Ad-hoc video search (AVS) is an important yet challenging prob-
lem in multimedia retrieval. Different from previous concept-based
methods, we propose a fully deep learning method for query repre-
sentation learning. The proposed method requires no explicit con-
ceptmodeling, matching and selection. The backbone of ourmethod
is the proposedW2VV++model, a super version of Word2VisualVec
(W2VV) previously developed for visual-to-text matching. W2VV++
is obtained by tweaking W2VV with a better sentence encoding
strategy and an improved triplet ranking loss. With these simple yet
important changes, W2VV++ brings in a substantial improvement.
As our participation in the TRECVID 2018 AVS task and retrospec-
tive experiments on the TRECVID 2016 and 2017 data show, our
best single model, with an overall inferred average precision (in-
fAP) of 0.157, outperforms the state-of-the-art. The performance
can be further boosted by model ensemble using late average fusion,
reaching a higher infAP of 0.163. With W2VV++, we establish a
new baseline for ad-hoc video search.
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1 INTRODUCTION
This paper targets at ad-hoc video search (AVS), a challenging prob-
lem in multimedia retrieval. An AVS system shall search for unla-
beled videos relevant with respect to an ad-hoc query expressed
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Figure 1: Proposed W2VV++ model for ad-hoc video search.
The new model adapts the network architecture of W2VV
[8] by exploiting all GRU output vectors by mean pooling.
In order to exploit abundant irrelevant sentence-video pairs,
W2VV++ is trained to minimize an improved triplet rank-
ing loss [11] instead of the W2VV’s mean square error loss
which considers only relevant sentence-video pairs.

exclusively in terms of a natural-language sentence, e.g., a man
with beard talking or singing into a microphone [3]. The problem
thus differs from classical content-based video search [38], where a
query is accompanied by image or video examples. The semantic
relevance between a textual query and a given video has to be
effectively measured in a cross-modal manner. AVS also differs from
long studied concept-based video retrieval [34], which aims for de-
tecting a specific concept, i.e., an objective linguistic description of
an observable entity, from videos. AVS goes beyond this, requiring
to model interconnections between concepts in the query. We develop
an AVS system, see Fig. 1, that meets these two requirements.

The progress in ad-hoc video search has been measured, thanks
to good evaluation efforts carried out by the NIST TRECVID AVS
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benchmark [1–3]. According to the benchmark evaluation, the ma-
jority of the top-performed solutions are concept-based, that is, rep-
resenting both queries and videos by concept vectors [18, 25, 28, 35],
see Table 1. For query representation, a concept vector is con-
structed by selecting one or few concepts that have the best lexical
[23, 35] or semantic [24, 33] match with the query text. For video
representation, convolutional neural networks (CNNs) pretrained
on visual recognition datasets such as ImageNet [6], EventNet [37],
and FC-VID [15] are employed, and the top-predicted concepts are
preserved to form a concept vector. While being interpretable, the
concept-based representation has two downsides. First, it is difficult
to select a right number of “right” concepts that can be reliably de-
tected from the video content and in the meanwhile, informative to
describe an ad-hoc query [23]. Second, the importance of a specific
concept for query representation is estimated empirically, e.g., in
terms of its semantic relatedness to the query [24], and mostly
unoptimized for cross-modal similarity computation.

In this paper we investigate a deep learning based alternative
that does not require explicit concept modeling, matching and se-
lection. In the context of image retrieval by text, the VSE++ model
by Faghri et al. [11] uses a gated recurrent unit (GRU) network to
model query text. For visual-to-text matching, the Word2VisualVec
(W2VV) model by Dong et al. [8] uses multiple text encoding strate-
gies, which is found to be more effective than using GRU alone.
More recently, Mithun et al. [27] adapt VSE++ for video-text re-
trieval. To the best of our knowledge, the viability of deep learning
based query representation has not been proved in large-scale AVS
benchmarks such as the TRECVID series.

Our main contributions are two-fold:
• Technically, by improving and repurposing W2VV (originally
for image-to-text matching) for AVS, we provide a new means,
termed W2VV++, to effectively answer ad-hoc queries described
by natural-language text. By contrast, the previous best practices,
relying on intensive visual concept modeling, essentially reduce
query representation to heuristic keyword matching. Despite its
apparent simplicity, W2VV++ is much more effective for ad-hoc
video search.
• Conceptually, by winning the TRECVID’18 AVS task, we success-
fully challenge the concept-based conventions. In fact, our fully
automatic run even outperforms the best run from the manually-
assisted track where a human formulates the initial query based
on topic and query interface (0.121 versus 0.106 in terms of infAP).
This paper, as a proof-of-concept, shows for the first time the feasi-
bility of fully deep learning for ad-hoc video search at a large-scale.
The finding is further confirmed by our retrospective study on the
TRECVID 2016 and 2017 AVS tasks.

2 THE STATE-OF-THE-ART
We review the state-of-the-art in the context of the TRECVID AVS
task [3]. We focus on TRECVID as it is the most challenging bench-
mark, attracting key players in the field [18, 20, 25, 28, 32, 35].
The ground truth was unavailable to participants by the time of
the benchmark evaluation. In the meanwhile, participants were
requested to not tune their systems for any test query. Such a setup
allows one to fairly evaluate how well their models generalize.

Table 1 provides an overview of top-performed systems in the
fully automatic track in 2016–2018. We highlight three key de-
signs in these systems, including how a natural-language query
is represented (query representation), how an unlabeled video is
represented (video representation), and lastly in what feature space
cross-modal matching is performed (common space).

In their winning system at TRECVID 2016, Le et al. [18] develop
a text-based solution. Each video is automatically annotated with
visual concepts extracted from video frames by pre-trained CNNs.
A standard TF-IDF scheme is used to index the concept-based anno-
tations. The similarity between a given query and a specific video is
computed by matching the query text and the video annotations in
a textual space. Markatopoulou et al. [25] take a similar approach,
but develop a rule-based method for concept selection. A semantic-
relatedness score [12] between the query and a visual concept is
computed. If the score is higher than a given threshold, the concept
is selected and used to represent the query. Otherwise a multi-step
linguistic analysis [24] is performed to select concepts that partially
match the query. Different from [18, 25], Liang et al. [20] utilize
a webly-labeled learning algorithm [21] to learn a one-versus-all
model per query. To tackle the zero-example problem, the authors
collect weakly labeled training videos by submitting a given query
to YouTube. Although learning individual concepts from YouTube
videos is found to be promising [17], it remains challenging to au-
tomatically collect a number of relevant videos for complex queries.
Indeed, according to the TRECVID 2016 evaluation, the system is
found to be less effective than the first two systems.

As for TRECVID 2017, while concept-based query / vector repre-
sentation remains popular [28, 35], the winning solution by Snoek
et al. [33] employs a more elegant representation technique called
VideoStory [13]. For each unlabeled video, its CNN feature is trans-
formed into a so-called VideoStory embedding by a linear trans-
formation. The embedding is then transformed to a bag-of-words
vector by another linear transformation. A query, after heuristi-
cally selecting terms based on part-of-the-speech tagging of the
query, is also converted to a bag-of-words vector. Consequently,
the video-query similarity is implemented as the cosine similarity
between their bag-of-words vectors. Despite its good performance,
the VideoStory-based solution has two shortcomings. First, bag-of-
words ignores sequential information in a query sentence. Second,
the effectiveness of bag-of-words counts on proper term selection,
which is however disconnected from the representation learning
process. In contrast, our solution represents a query sentence by
deep neural networks that consider both the importance of query
terms and their orders, and are trained end-to-end.

In TRECVID 2018, multiple deep learning based methods for
query representation have been tried. The runner-up solution by
Huang et al. [14] uses two attention networks, besides the classical
concept-based representation. Bastan et al. [4] experiment with
VSE++, reaching the 3rd place in the benchmark evaluation. Our
W2VV++ based method performs the best.

While this work focuses on automated search, it can also play an
important role in interactive search. As noted by Lokoč et al. [22], a
common feature of successful interactive search tools in the Video
Browser Showdown (VBS) competition is effective query initial-
ization. Our model is likely to be beneficial for the state-of-the-art
interactive system [30] that still uses concept detectors.



Table 1: An overview of top-performed systems in the TRECVID 2016 / 2017 / 2018 ad-hoc video search benchmarks (fully
automatic track). We describe these systems along three dimensions, namely 1) how an ad-hoc query is represented, 2) how an
unlabeled video is represented, and 3) what the cross-modal common space is. OurW2VV++ based solution is the first winning
entry that learns to represent ad-hoc queries by deep neural networks in an end-to-end fashion.

Rank System Query Representation Video Representation Common Space

2016:

1 Le et al. [18] Bag-of-words Concept vector extracted by pre-trained
CNNs (VGG-16) A textual space

2 Markatopoulou et al. [25] Concept vector extracted by
rule-based concept selection [24]

Concept vector extracted by pre-trained
CNNs (AlexNet, GoogLeNet, ResNet, VGGNet) A 1,345-dim concept space

3 Liang et al. [20] One-versus-all query modeling [21] Visual features extracted by pre-trained
CNNs (VGG-19, C3D) A visual feature space

2017:

1 Snoek et al. [33] Bag-of-words Bag-of-words generated
by VideoStory [13] A textual space

2 Ueki et al. [35] Concept vector extracted by
rule-based concept selection

Concept vector extracted by pre-trained
CNNs (AlexNet, GoogLeNet) A 50k-dim concept space

3 Nguyen et al. [28] Concept vector extracted by
rule-based concept selection [23]

Concept vector extracted by pre-trained
CNNs (ResNet-50) A 2,774-dim concept space

2018:

1 This paper Dense vector by W2VV++ Visual features extracted by pre-trained
CNNs (ResNeXt-101, ResNet-152)

A visual feature space
or learned subspace

2 Huang et al. [14]
+ Concept vector extracted by
rule-based concept selection
+ Dense vector by attention networks

+ Concept vector extracted by pre-trained
CNNs
+ Visual features extracted by pre-trained
CNNs (ResNet-152)

+ A concept space
+ A learned subspace

3 Bastan et al. [4] Dense vector by VSE++ [11] Visual features extracted by pre-trained
CNNs (ResNet-152) A learned subspace

3 OUR METHOD
3.1 Problem Statement
Given an ad-hoc query expressed by a natural-language sentence s
of l words {w1,w2, . . . ,wl }, we aim to build a video search system
that retrieves videos relevant with respect to the query from a
collection ofn unlabeled videos {v1,v2, . . . ,vn }. The key problem is
to construct a cross-modal similarity function f (s,v ) ∈ R such that
the similarity score of a relevant sentence-video pair (s,v+) will be
larger than the similarity score of an irrelevant sentence-video pair
(s,v−). Accordingly, the relevant video v+ will be ranked ahead
of the irrelevant v− in search results. Let s and v be vectorized
representations of the query and the video in a common space,
respectively. The cross-modal similarity is obtained based on the
cosine similarity:

f (s,v ) := sT v
| |s| | · | |v| |

. (1)

We focus on query representation learning that predicts s from
the query. Meanwhile, v can be instantiated using either deep CNN
features or concept vectors as exploited in previous works.

3.2 Query Representation Learning
Our model is built on top of the W2VV model [8], originally pro-
posed for image and video caption retrieval. Conceptually, W2VV
is composed of two subnetworks, i.e., a sentence encoding network

that quantizes a given sentence into a real-value feature vector
and a transformation network that projects the feature vector into
the video feature space. We improve W2VV with a better sentence
encoding strategy and a better loss for model training, and thus we
term the new model W2VV++.

The sentence encodingnetwork. Given a sentence s ,W2VV++
quantizes s at multiple scales by running three encoding compo-
nents in parallel, i.e., bag-of-words (bow), word2vec embedding
(w2v), and RNN-based sequential modeling. More specifically, the
bow encoding is performed as

bow(s ) := (c (w1, s ), c (w2, s ), . . . , c (wm , s )), (2)

where c (w, s ) counts the occurrence of a specific wordw in s , withm
as the size of a given vocabulary. The vocabulary used in this work is
constructed by first excluding words that occur less than five times
in our training dataset, resulting in a set of 11,282 unique words.
We then remove those that can be found in the NLTK stopword list,
obtaining eventuallym = 11, 147 words.

Given a pretrained w2v model where e(w ) indicates the semantic
embedding vector of a specific wordw , the w2v based encoding of
the sentence is obtained by mean pooling over its words, namely

w2v(s ) := 1
l

l∑
i=1

e(wi ). (3)



We adopt a 500-dimensional w2v model [8], trained on English tags
associated with 30 million Flickr images. The model supports over
1.7 million words.

Similar to [8] we instantiate the RNN component with Gated
recurrent units (GRUs) [5]. The input vector of a GRU at a specific
time step t is a word embedding vector of the t-th word in the sen-
tence. Let e(wt ) be such a vector, obtained by a table lookup from
a word embedding matrixWe . The output vector of the GRU, de-
noted by ht , is updated by jointly exploiting e(wt ) and the previous
output vector ht−1 as follows:

zt = σд (Wze(wt ) +Uzht−1 + bz ),
rt = σд (Wr e(wt ) +Urht−1 + br ),
h̃t = σh (Whe(wt ) +Uh (rt ◦ ht−1) + bh ),
ht = (1 − zt ) ◦ ht−1 + zt ◦ h̃t ,

(4)

where zt and rt indicate the update and reset gate vectors at time
t ,W , U and b with specific subscripts parameterize affine trans-
formations in the corresponding gates. The output of each gate
is followed by a specific activation function, with σд indicating a
sigmoid function and σh for a hyperbolic tangent. The operator ◦
means the Hadamard product between two vectors.

For GRU-based sentence encoding, different from W2VV which
uses only the output vector at the last time step, namely hl , we
consider the outputs from all intermediate steps as well, obtaining
our GRU-based encoding by mean pooling:

gru(s ) =
1
l

l∑
i=1

hi . (5)

The GRU vocabulary is the same as the bow vocabulary except
that all stopwords are now preserved as they contain meaningful
contextual information in a natural-language sentence.

The multi-scale sentence encoding is obtained by vector con-
catenation, i.e., ms(s ) = [bow(s );w2v(s ); gru(s )]. In this work
the size of the GRU output vector is set to 1,024. Therefore, the
dimensionality ofms(s ) is 11, 147 + 500 + 1, 024 = 12, 671.

The transformation network. This network is used to trans-
form the output of the previous network, i.e., ms(s ), to s so that
Eq. 1 can be computed. To that end, we utilize a network of k fully
connected (FC) layers. The output vector of the first hidden layer,
fc1 (s ), is obtained by affine transformation onms(s ), i.e.,

fc1 (s ) = σ (A1ms(s ) + b1), (6)

whereA1 andb1 are layer weights and bias, while σ is the activation
function for increasing the nonlinearity of the network, which is
ReLU unless otherwise stated. The output vector of a subsequent
layer is computed as

fci (s ) = σ (Ai fci−1 (s ) + bi ), i = 2, . . . ,k . (7)

The output vector of the last hidden layer is used to represent the
query, i.e., s = fck (s ).

Note that the sentence encoding network and the transform net-
work can be jointly trained in an end-to-end manner. To make this
notionmore explicit, we put all the learnable parameters {Wz ,Uz ,bz ,
Wr ,Ur ,br ,Wh ,Uh ,bh ,We ,A1,b1, . . . ,Ak ,bk } together asθ . Accord-
ingly, the similarity function is parameterized as f (s,v ;θ ).

Loss function. Different from W2VV trained to minimize the
mean square error loss, we adopt an improved triplet ranking loss

over sampling

CNN feature extraction

mean pooling

mean pooling

1x2048

10x2048

1x2048

Figure 2: Video representation, obtained by first using a pre-
trained image CNN to extract frame-level features in an
over-sampling manner and then mean pooling.

[11], which achieves the state-of-the-art in the image domain.While
the classical triplet ranking loss selects the negative example by
random, the improved loss selects the hardest negative that violates
the ranking constraint the most. More specifically, the loss in the
current context is defined as

loss (s;θ ) = max
v−

(0,α + f (s,v−;θ ) − f (s,v+;θ )), (8)

where α is a nonnegative hyper parameter controlling the margin.
The hardest negative example is practically selected from each
mini-batch during training.

3.3 Video Representation
As aforementioned, this work targets at query representation learn-
ing. So for video representation, we simply use deep visual features
extracted by state-of-the-art CNNs in an over-sampling manner
followed by mean pooling, see Fig. 2. For more advanced video
representation, we refer to [9]. We employ two CNNs: ResNeXt-
101 used in [33] and ResNet-152 used in [7]. For each model, we
take the input of the classification layer as the feature, which has
a dimensionality of 2,048. For a given video, we uniformly sam-
ple frames with an interval of 0.5 second. Each frame is resized
to 256 × 256. CNN features are extracted from its 10 sub images,
which are generated by clipping the frame and its horizontal flip
with a window of 224× 224 at their center and four corners. The 10
features are averaged as the frame-level feature. Accordingly, two
2,048-dim video-level features are obtained by mean pooling over
frames. For the ease of reference, we denote the two features as
ResNeXt and Resnet, respectively, and use ResNeXt-Resnet to refer to
their concatenation. When predicting s with respect to ResNeXt or
Resnet, the last hidden layer of W2VV++ has a shape of 2, 048 × 1.
When predicting ResNeXt-Resnet, the shape has to be adjusted
accordingly to 4, 096 × 1.

In principle, W2VV++ can be used to predict any video features
including concept vectors [23, 24, 26], 3D-CNN features [27] and
their combinations. We leave this direction for future investigation.

3.4 W2VV++ Implementation
We implementW2VV++ using the PyTorch framework [29]. To train
W2VV++, We employing the RMSProp optimizer, using its default
parameters except for the learning rate, which is empirically set to



0.0001. To avoid gradient explosion, we clip gradients by scaling
them down by their l2 norm. The learning rate is decayed by a
factor of 0.99 after each epoch. If the performance on a validation
set does not increase in three consecutive epochs, the learning rate
is divided by 2 [16]. If the performance does not increase in ten
consecutive epochs, an early stop is applied. We pick the model
that has the best performance on the validation set.

A mini-batch consists of 128 relevant sentence-video pairs. For
each sentence in a given batch, we calculate its loss by simply
treating videos from the other pairs irrelevant, and thus selecting
the hard negative example from these videos. Themargin parameter
α in Eq. 8 is set to 0.2. To prevent overfitting, dropout with a rate of
0.2 is applied on the hidden layers in the transformation network.

4 EVALUATION
To justify the effectiveness of our W2VV++ based solution, we
conduct two sets of experiments. The first set is based on our par-
ticipation in the TRECVID 2018 AVS task, where each team was
allowed to submit four runs at maximum. This restriction limits
our investigation. Therefore, in the second set we perform a retro-
spective study, providing a more comprehensive evaluation using
the TRECVID AVS queries from the last three years (2016–2018).

4.1 Experimental Setup
Training / validation / test sets used in our experiments are as
follows, with basic statistics summarized in Table 2.

Training set. We combine the MSR-VTT [36] and TGIF [19]
datasets as our training set. The MSR-VTT dataset contains 10K
web video clips and 200k natural sentences describing the visual
content of the clips. The average number of sentences per clip is
20. From each clip we sampled frames uniformly, obtaining 305,462
frames in total. The TGIF dataset contains 100K animated GIFs and
120K sentences describing visual content of the GIFs. We again
sampled frames uniformly, obtaining 1,045,268 frames in total.

Validation set. We adopt the training set of the TRECVID 2016
Video-to-Text task [3], termed TV16-VTT-train, for model selection.
This set consists of 200 videos, each associated with two sentences.
For each video, we use its first sentence as a textual query, simply
considering the other 199 videos irrelevant with respect to this
query. Accordingly, we use the mean reciprocal rank (MRR) to
measure the performance of a specific model on the validation set.

Test set. We test on IACC.3, the official test set for the TRECVID
AVS task 2016–2018 [3]. The set contains 4,593 Internet archive
videos (600 hours) with Creative Commons licenses in MPEG-
4/H.264 format. Video duration ranges from 6.5 minutes to 9.5
minutes, with a mean duration of approximately 7.8 minutes. Au-
tomated shot boundary detection has been performed by the task
organizers, resulting in 335,944 video clips in total. From each clip
we sampled frames uniformly, obtaining 3,845,221 frames in total.

Test queries. Each year the TRECVID AVS task organizers de-
fine a list of 30 test queries. Each query is presented in terms of a
natural-language sentence with varied length and varied visual and
semantic complexity. Examples are “Find shots of palm trees”, “Find
shots of a man with beard and wearing white robe speaking and
gesturing to camera”, and “Find shots of a truck standing still while

Table 2: Datasets used in this paper. Notice that the training
and validation datasets were independently constructed by
their developers for other purposes, i.e.,MSR-VTT for video
captioning [36], TGIF for gif captioning [19], and TV16-VTT-
train for video-to-text matching [3].

Dataset Shots Frames Sentences Words for training

For training:
MSR-VTT 10,000 305,462 200,000 9,707
TGIF 100,855 1,045,268 124,534 4,959

For validation:
TV16-VTT-train 200 5,941 200 –

For testing:
IACC.3 335,944 3,845,221 – –

a person is walking beside or in front of it”. All the queries start
with the phrase “Find shots of”, which was removed automatically.

Performance metric. We report inferred average precision (in-
fAP), the official performancemetric [1–3]. The overall performance
of a video search system is measured by averaging infAP scores of
all test queries.

4.2 Experiments
4.2.1 Experiment 1. TRECVID 2018 Participation. We participated
in the TRECVID 2018 AVS task with the following four models,

(1) W2VV++ (ResNeXt-Resnet): A W2VV++ model that predicts
the combined feature of ResNeXt-101 and ResNet-152 for a
given sentence.

(2) W2VV++ (ResNeXt, subspace): This model differs from the pre-
vious one in two aspects. First, it predicts only the ResNeXt
feature. Second, it adds a FC layer on top of the video feature
for feature re-learning.

(3) W2VV++ (ResNeXt-Resnet, subspace): Similar to the second
model, but predicting the combined feature.

(4) Ensemble: Late average fusion of dozens of W2VV++ models,
which are trained with varied setups including the choice
of video features (ResNeXt, Resnet or ResNeXt-Resnet), the
choice of activation functions (ReLU or hyperbolic tangent)
and the number of hidden layers (k = 1, 2) in the transforma-
tion network, and the dimensionality of the word embedding
for GRUs (300 or 500).

An overview of the TRECVID 2018 benchmark results is shown
in Fig. 3. W2VV++ (ResNeXt-Resnet), serving as our baseline, is
better than all submissions from the other teams. The result clearly
shows the effectiveness of our W2VV++ based video search system.
W2VV++ (ResNeXt-Resnet, subspace), by adding an additional feature
re-learning layer, outperformsW2VV++ (ResNeXt-Resnet), though
the improvement appears to be marginal. The Ensemble model
gives a noticeable performance boost, suggesting that the meta
models are complementary to each other.

4.2.2 Experiment 2. Retrospective Study . To better understand the
influence of the video features, we train two more W2VV++ models,
one for predicting ResNeXt and the other for predicting Resnet,
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Figure 3: Overview of the TRECVID 2018 AVS task benchmark, all runs ranked according to mean infAP.

denoted asW2VV++ (ResNeXt) andW2VV++ (Resnet), respectively.
In the remaining part of the experiments, we useW2VV++ (ResNeXt)
as a reference for comparison.

Comparison to the state-of-the-art. Since our retrospective
study covers all the test queries from the last three years, we com-
pare with the following:

• Top-3 systems at TRECVID 2016, i.e., [18], [25] and [20], and
at TRECVID 2017, i.e., [33], [35] and [28].
• Markatopoulou et al. [24], as an improved version of [25].
• VideoStory [13], the best single model that contributes to
the winning solution of [33] at TRECVID 2017.
• W2VV [8], upon which W2VV++ is developed.
• VSE++ [11], the loss of which is used by W2VV++.

The performance is summarized in Table 3. Note that the scores
of the existing methods are directly cited from their papers or tech-
nical reports except for VSE++ and W2VV. These two works have
released their source codes, allowing us to re-train their models
with our experimental setup. Our four models from Experiment 1
(corresponding to the last four rows in Table 3), used as is, outper-
form the previous best runs. It is worth noting the top-1 result by
[33], with an infAP of 0.206, is obtained by combining a number of
meta models. It is surpassed byW2VV++ (ResNeXt-Resnet, subspace),
a single model reaching a higher infAP of 0.213. These results again
confirm the effectiveness of W2VV++.

Note the video pool stays the same while the queries change each
year. Our retrospective experiment suggests that the 2018 queries
are the most difficult, while the 2017 queries seem to be the easiest.

Test of statistical significance. We perform a randomization
test [31], which is valid if permutations of retrieval system A and
B are fully random. This assumption is fulfilled with ease by the
test protocol, and thus applicable to most IR experiments [10, 31].
The test result is listed in Table 4. Except for W2VV++ (ResNeXt,
subspace), the performance difference between W2VV++ (ResNeXt)

Table 3: Retrospective experiments on the TRECVID 2016
/ 2017 / 2018 AVS tasks. For W2VV++ with varied setups,
we use W2VV++ (ResNeXt) as a reference. Relative improve-
ments over this reference are shown in parentheses.

TRECVID edition

2016 2017 2018 OVERALL

Top-3 TRECVID finalists:
Rank 1 0.054 [18] 0.206 [33] 0.121 –
Rank 2 0.051 [25] 0.159 [35] 0.087 [14] –
Rank 3 0.040 [20] 0.120 [28] 0.082 [4] –
Literature methods:
VSE++ (ResNeXt) [11] 0.123 0.154 0.074 0.117 (↓ -10.7%)
VideoStory [13] 0.087 0.150 – –
Markatopoulou et al. [24] 0.064 – – –
W2VV (ResNeXt) [8] 0.050 0.081 0.013 0.048 (↓ -63.4%)
Our W2VV++:
ResNeXt 0.137 0.168 0.088 0.131
Resnet 0.126 0.151 0.089 0.122 (↓ -6.9%)
ResNeXt-Resnet 0.149 0.176 0.104 0.143 (↑ 9.2%)
ResNeXt, subspace 0.140 0.171 0.103 0.138 (↑ 5.3%)
ResNeXt-Resnet, subspace 0.151 0.213 0.106 0.157 (↑ 19.8%)
Ensemble 0.149 0.220 0.121 0.163 (↑ 24.4%)

and the other models passes the randomization test at the signifi-
cance level of p = 0.05. We interpret the result as follows. Towards
building a more effective W2VV++ model, a better video feature is
preferred to video feature re-learning. Nonetheless, the two can be
exploited together for even better performance.

Per-query analysis. For a more comprehensive picture of our
results, we visualize per-query performance in Fig. 4. After ob-
serving the search results, we find that an infAP of over 0.1 often
means a number of relevant examples are included in the top-20
results. For nearly 54% of the queries, our best single modelW2VV++



552 a person wearing any kind of hat

524 a man with beard and wearing white 

robe speaking and gesturing to camera

543 a person communicating using sign language

576 a person holding his hand to his face

578 a person in front of or inside a garage

573 medical personnel performing medical tasks

Figure 4: Performance of all the 90 queries from theTRECVID 2016 / 2017 / 2018AVS tasks. The queries are sorted in descending
order according to the performance of the Ensemble model. Images below a given query indicate the top-5 videos retrieved by
the bestmodel with respect to the given query. For 48 out of the 90 queries, the best singlemodel, i.e., W2VV++ (ResNeXt-Resnet,
subspace), obtains infAP scores larger than 0.1. Best viewed in color.

(ResNeXt-Resnet, subspace)meets this criterion, making it promising
for precision-oriented video search.

We also look into failed queries such as query #576 “a person
holding his hand to his face”. As Fig. 4 shows, the top-5 hits contain
either purely hands or a woman holding her hands to her face.
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Query Top-5 shots retrieved from IACC.3

teaching

smiling

laughing

screaming

diving

swimming

jumping

cooking

feeding

running

jogging

exercising

hunting

feeding a 
cow

feeding a 
bird

Figure 5: Showcase of answering single-word queries by
W2VV++ (ResNeXt-Resnet). Best viewed in color.

Table 4: Test of statistical significance. W2VV++(ResNeXt) is
used as a reference. Except forW2VV++(ResNeXt, subspace),
the performance difference of the other models against this
reference is found to be statistically significant.

Model p-value Significant?

W2VV (ResNeXt) 0.0000 ✓

VSE++ (ResNeXt) 0.0492 ✓

W2VV++ (ResNeXt-Resnet) 0.0138 ✓

W2VV++ (ResNeXt, subspace) 0.2083 ✗

W2VV++ (ResNeXt-Resnet, subspace) 0.0034 ✓

Ensemble 0.0000 ✓

Recall that our model is learned from the video descriptions of the
MSR-VTT and TGIF datasets, where the joint use of the key terms
holding, hand and face is relatively rare. An interesting future work
is to automatically paraphrase an ad-hoc query so that it better fits
the data where the model is learned from.

AlthoughW2VV++ is intended for representing natural-language
queries, it also works with queries of few or one word. Fig. 5 shows
how the model responses to daily actions such as teaching, learning,
smiling, laughing, and swimming. In addition to the TRECVID ex-
periments, we compare with Mithun et al. [27], SOTA by the time
of MM’19 submission on MSR-VTT, using the same ResNet-152
feature and the same data split. W2VV++ is better in terms of R@1
(7.0 vs 5.8), R@5 (20.5 vs 17.6) and R@10 (29.3 vs 25.2).

5 CONCLUSIONS
For ad-hoc video search, we propose W2VV++ that learns to rep-
resent an ad-hoc query by deep neural networks. Different from
previous concept-based methods, W2VV++ is concept-free. More-
over, the proposed model can be trained in an end-to-end manner,
enabling a joint optimization of query representation learning and
cross-modality similarity computation. From the experimental re-
sults on the TRECVID 2016 / 2017 / 2018 AVS benchmarks, we arrive
at the following conclusions:
• For building a more effective W2VV++ model, a better video
feature is preferred to video feature re-learning. The two can
be exploited together for even better performance.
• We recommendW2VV++ (ResNeXt-Resnet, subspace) as the
best single model to use. For state-of-the-art results, we
recommend the Ensemble model.
• Even though W2VV++ is intended for representing natural-
language queries, it also works with queries of few or one
word.

W2VV++, with room for future improvement, has established a new
baseline for ad-hoc video search.
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