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ABSTRACT

This paper attacks the challenging problem of violence de-
tection in videos. Different from existing works focusing
on combining multi-modal features, we go one step further
by adding and exploiting subclasses visually related to vi-
olence. We enrich the MediaEval 2015 violence dataset by
manually labeling violence videos with respect to the sub-
classes. Such fine-grained annotations not only help under-
stand what have impeded previous efforts on learning to fuse
the multi-modal features, but also enhance the generaliza-
tion ability of the learned fusion to novel test data. The
new subclass based solution, with AP of 0.303 and P100
of 0.55 on the MediaEval 2015 test set, outperforms the
state-of-the-art. Notice that our solution does not require
fine-grained annotations on the test set, so it can be di-
rectly applied on novel and fully unlabeled videos. Interest-
ingly, our study shows that motion related features (MBH,
HOG and HOF), though being essential part in previous
systems, are seemingly dispensable. Data is available at
http://lixirong.net/datasets/mm2016vsd.
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1. INTRODUCTION
Detecting violence in videos is important for protecting

children against offensive content. Viewing violence as a
specific concept, one might treat violence detection as a
showcase of video concept detection, an extensively stud-
ied topic in the literature [12, 22]. The MediaEval affective
task defines violence as one would not let an 8 years old
child see because of their physical violence [15]. Scenes of vi-
olence lack consistent visual patterns, see Fig. 1. Moreover,
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Figure 1: Visual examples of ten violence subclasses.
We enrich the MediaEval 2015 violence data [15]
by providing video-level annotations with respect to
these subclasses.

the perception of violence varies over subjects. Another ev-
idence showing the different landscape of violence detection
is that state-of-the-art video concept detection uses deep
image features alone [16]. By contrast, a violence detection
system often involves a number of multi-modal features re-
lated to image, audio and motion [2, 8, 23]. We also use
multi-modal features, but go one step further by adding and
exploiting subclasses visually related to violence, for better
performance and deeper insight.

Progress on video violence detection. Thanks to the
MediaEval benchmark effort [3, 4, 15], data for violence de-
tection research has been substantially expanded in terms
of types of violence and the amount of videos, compared
to earlier work on a specific type of violence, e.g., fight in
hockey games [1]. Consequently, different from previous
works that mainly utilize motion related features such as
motion SIFT and histogram of optical flow [1, 20], current
solutions embrace multi-modal features to describe video
content in terms of visual appearance, audio channel and
motion over the temporal dimension. A common package,
as reported in [2,6,8,23], consists of image features extracted
by pre-trained deep convolutional neural networks [14, 17],
MFCC based audio features [5], and local descriptors derived
from improved dense trajectories [19].

As for combining the many features, although late fu-
sion is consistently found to improve over models derived
from single features [6, 7, 23], the success so far has been
limited to average weighting, i.e., all the underlying mod-
els are treated equally. As the effectiveness of the features
varies [8], average fusion is unlikely to be the optimal so-



lution. Nonetheless, efforts on learn-to-fuse are found to
be inferior to the average-fusion baseline [6]. While current
works simply attribute this to divergence between training
and test data [6,7], we believe a more in-depth analysis is re-
quired to understand what impedes the use of learn-to-fuse
for video violence detection.
Contributions of this work. In order to better un-

derstand the difficulty in generalizing models learned on a
given dataset to a novel test set, we first enrich the Media-
Eval 2015 violence set, an up-to-date benchmark for video
violence detection, by providing video-level manual anno-
tations with respect to ten subclasses of violence. We are
inspired by the work from Tan and Ngo [18], which makes
an interesting attempt to express violence by a number of
middle-level concepts. Nonetheless, as they target at learn-
ing these concepts from YouTube videos to derive a seman-
tic feature, the two works are driven by completely different
motivations. As we will show in Section 2, the newly added
subclass annotations help interpret cross-dataset divergence
and consequently the difficulty of generalizing the learned
fusion to previously unseen test data. Moreover, we show in
Section 3 how this difficulty can be resolved to some extent
using subclass based violence detection, and learned fusion
of multiple features and multiple subclasses outperforms sev-
eral state-of-the-art alternatives.

2. SUBCLASS ANNOTATION
Video sets. We use the official release of the MediaEval

2015 affective task [15]. Containing 10,900 short video clips
extracted from 199 professional and amateur movies, this
benchmark dataset is much larger and more diverse than
those narrow-domain videos used in previous works [1, 20].
The MediaEval dataset consists of two disjoint subsets: a
development set of 6,144 clips and a test set of 4,756 clips.
Notice that the videos were not originally selected for vio-
lence, so they have low occurrence of violence, with 4.4% in
the development set and 4.8% in the test set.
Manual labeling procedure. We aim to provide fine-

grained annotations of violence videos by manually assigning
visual concepts that are highly relevant to violence. Such a
concept is supposed to have relatively consistent visual ap-
pearance and thus more easy to be detected. We take the 52
middle-level concepts from [18] as our initial concept vocab-
ulary. Given the subjective definition of video violence, the
vocabulary may expand with novel concepts as the manual
labeling process goes on. We watched all violence videos in
the development set, eventually yielding a vocabulary of 95
concepts. For a specific concept, there shall be a reason-
able amount of positive instances, otherwise modeling this
concept is very likely to be futile. We empirically set the
threshold to be 20, i.e., a concept needs to have over 20
occurrences in the development set. This results in ten sub-
classes of violence, as exemplified in Fig. 1. Four of them,
namely ‘bind’, ‘aim’, ‘weapon’ and ‘death’, are not covered
by the initial 52 concepts. A video can be labeled with
multiple subclasses. Some subclasses tend to co-occur with
some others in the same video clips, e.g., ‘rope’ to ‘bind’
and ‘blood’ to ‘death’. However, ‘death’ and ‘fight’ seldom
co-occur, as a fight hardly ends with death in this dataset.
In order to reveal potential divergence between the devel-

opment set and the test set, we repeat the above procedure
to annotate all violence videos in the test set. Fig. 2 shows
the occurrence rate of each subclass, which clearly varies

Figure 2: Occurrence of each subclass in violence
videos, varying across datasets. Such divergence
adds difficulty of generalizing models trained on the
development set to the previously unseen test set.

across the two datasets. Such divergence suggests the chal-
lenge of applying a fusion model trained on the development
set to the (unseen) test set.

Note that the fine-grained annotations of the test set are
meant for cross-dataset analytics only. They are not used
for violence detection. So, similar to existing works [2, 4,
23], our subclass based violence detection solution is directly
applicable to novel video data that are completely unlabeled.

3. USING SUBCLASSES FOR VIOLENCE

DETECTION
To verify the viability of subclass based violence detec-

tion, we build two systems, with and without subclasses,
respectively.

3.1 Setup
Following the current practice [2, 7, 23], we employ multi-

modal video representations including image features ex-
tracted by deep convolutional neural networks [14,17], audio
features [5], and motion features [19]. They are described as
follows, and summarized in Table 1.

Image CNN features. Given a video, we uniformly
extract its frames with an interval of 0.5 second, result-
ing in 131,441 and 101,587 frames in the development and
test sets, respectively. For each frame we extract deep fea-
tures using three pretrained CNN models, i.e., VGGNet [14],
GoogleNet [17], and GoogletNet4k [11], a very recent vari-
ant of GoogleNet trained on a bottom-up reorganization of
the ImageNet hierarchy. By taking the last fully connected
layer of VGGNet and the pool5 layer of the two GoogleNets,
we obtain three frame-level features

A video-level representation substantially reduces the amount
of training/test examples and is commonly used in event
detection [21, 22]. We obtain three video-level features by
average pooling on the corresponding frame-level features.

Audio features. We use the Mel-frequency Cepstral Co-
efficients (MFCCs) [5], computed over a sliding short-time
window of 25ms with a 10ms shift. An audio segment is then



Table 1: Fourteen features used in our experiments,
describing video content in varied aspects.

Modality Feature Notation Dim.

Image

frame-level vggnet vnetf 4,096

video-level vggnet vnetv 4,096

frame-level googlenet gnetf 1,024

video-level googlenet gnetv 1,024

frame-level googlenet4k g4kf 1,024

video-level googlenet4k g4kv 1,024

Audio
mfcc + bow mfccb 4,096

mfcc + fisher vector mfccfv 19,968

Motion

mbh + bow mbhb 4,000

mbh + fisher vector mbhfv 98,304

hog + bow hogb 4,000

hog + fisher vector hogfv 49,152

hof + bow hofb 4,000

hof + fisher vector hoffv 55,296

represented by a set of MFCC features. In order to trans-
form these features into a fixed-dimension vector, we adopt
two encoding schemes, i.e., bag-of-audio-words by hard as-
signment and Fisher Vector encoding [13].
Motion features. The Improved Dense Trajectory (IDT)

[19] is used to capture actions in a video. We use three
trajectory based descriptors, namely Motion Boundary His-
togram (MBH), Histogram of Oriented Gradient (HOG),
and Histogram of Optical Flow (HOF). In a similar man-
ner to the audio features, bag-of-words and Fisher Vector
encodings are used to quantize each of the descriptors, re-
sulting in six motion related features.

Classification Models. For each of the ten subclasses
as well as the holistic violence class, we train binary linear
SVMs classifiers. To effectively learn from the large amounts
of imbalanced examples, we leverage the Negative Bootstrap
algorithm [9], which iteratively and adaptively finds neg-
ative training examples that better improve classification
than negatives selected at random. For each frame-level
classifier, we obtain its prediction on a given video by first
scoring every frame, smoothing the scores along the tempo-
ral dimension, and then taking the maximal response.
The developement set is randomly divided into two dis-

joint subsets, 70% for training the SVM models and 30% as
a validation set to optimize hyper-parameters.
Strategies for multi-feature multi-subclass fusion.

We investigate late fusion with two weighting strategies.
One is average weighting, i.e., assigning equal weights to the
base classifiers. Despite its simplicity, the average strategy
is found to be effective for multi-feature fusion for violence
detection [8]. The second strategy is learning to fuse. In
particular, we optimize the weights on the validation set
using coordinate ascent, which optimizes a chosen weight
per iteration. A recent study in the context of image clas-
sification [10] shows that compared to more complicated
fusion algorithms such as multiple kernel learning, coordi-

Table 2: Performance of the indiviudal features,
sorted in descending order by AP scores of the learn

run on the test set. For each feature, top performers
on a given dataset are shown in bold font.

MediaEval15 validation set MediaEval15 test set

Feature w/o subclass avg learn w/o subclass avg learn

g4kf 0.321 0.260 0.365 0.190 0.179 0.216

g4kv 0.284 0.237 0.292 0.213 0.195 0.199

vnetv 0.295 0.263 0.316 0.120 0.137 0.156

gnetf 0.245 0.210 0.316 0.097 0.164 0.156

hogb 0.164 0.132 0.174 0.160 0.175 0.153

vnetf 0.347 0.226 0.339 0.118 0.147 0.145

mfccfv 0.313 0.270 0.316 0.100 0.138 0.136

gnetv 0.296 0.258 0.312 0.152 0.142 0.130

mbhb 0.119 0.109 0.197 0.122 0.129 0.092

hofb 0.127 0.130 0.170 0.113 0.109 0.092

mfccb 0.320 0.234 0.295 0.090 0.075 0.077

mbhfv 0.199 0.075 0.159 0.099 0.064 0.067

hoffv 0.134 0.083 0.096 0.102 0.050 0.054

hogfv 0.225 0.070 0.101 0.078 0.047 0.049

nate ascent is more effective by directly optimizing (non-
differential) performance metrics.

Putting all the features and subclasses together, we need
to learn weights for up to 140 classifiers. By contrast, for the
system without subclasses, we only need to optimize weights
for 14 classifiers at maximum. Hence, comparing the two
systems shall allow us to conclude whether the introduction
of subclasses makes sense.

Evaluation criteria. Following the protocol [15], we re-
port Average Precision (AP), Precision at the top 10 ranked
videos (P10), and P100.

3.2 Experiments
Experiment 1. The impact of subclasses in a single-

feature setting. Table 2 shows the performance of the in-
dividual features, where w/o class indicates runs without
considering subclasses, avg means average fusion of the ten
subclasses, and learn is fusion with weights tuned on the
validation set. In the w/o class setting, the best motion fea-
ture hogb, with AP of 0.160, outperforms the best standard
CNN feature, i.e., gnetv. This is consistent with a recent
result reported in [8]. Nonetheless, g4kv with AP of 0.213 is
the top performer.

Half of the features improve by combining subclass classi-
fiers, with the best performance obtained by gnetf + learn.
Interestingly, the majority of the features for which fusion
does not work are motion related. By looking in combina-
tions of one subclass and one feature for violence detection,
we find that the motion features are in general less effective
for modeling subclasses when compared with image CNN
features.

Experiment 2. The impact of subclasses in a multi-
feature setting. We now move to the setting where mul-
tiple features are combined together with subclasses. Given
that there are over 16k combinations, we take a more practi-
cal approach by starting with using all the features. Specific



Table 3: Performance of feature-subclass fusion, sorted in descending order according to AP scores of the
learn run on the test set. For each feature-fusion setting, top performers on a given dataset are shown in
bold font.

Varied settings of feature fusion MediaEval15 val set MediaEval15 test set

Image CNN Audio MFCC Motion IDT w/o subclass with subclass w/o subclass with subclass

vnetf vnetv gnetf gnetv g4kf g4kv mfccb mfccfv mbhb mbhfv hogb hogfv hofb hoffv avg learn avg learn avg learn avg learn

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ 0.484 0.511 0.386 0.510 0.274 0.251 0.288 0.303

✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ 0.376 0.492 0.293 0.493 0.269 0.275 0.277 0.296

✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ 0.455 0.473 0.397 0.491 0.248 0.236 0.283 0.290

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 0.442 0.531 0.279 0.522 0.248 0.270 0.226 0.279

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘ 0.440 0.527 0.282 0.511 0.300 0.260 0.259 0.275

✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✘ ✔ ✘ ✔ ✘ 0.394 0.482 0.254 0.435 0.280 0.225 0.249 0.263

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 0.468 0.495 0.353 0.512 0.266 0.228 0.250 0.263

✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ 0.427 0.449 0.291 0.419 0.244 0.233 0.239 0.255

✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 0.373 0.479 0.226 0.447 0.229 0.249 0.202 0.253

✔ ✔ ✔ ✔ ✔ ✔ ✘ ✘ ✘ ✔ ✘ ✔ ✘ ✔ 0.434 0.468 0.250 0.444 0.238 0.253 0.171 0.231

✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 0.308 0.424 0.194 0.446 0.164 0.141 0.141 0.141

✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✘ 0.347 0.348 0.273 0.353 0.107 0.106 0.111 0.117

✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✔ ✔ ✔ ✔ ✔ 0.206 0.279 0.146 0.296 0.143 0.111 0.116 0.114

features are progressively removed with preference given to
slower and longer features. E.g., fisher vectors are removed
in advance to their bag-of-words counterparts. Moreover,
in order to study complementariness of distinct modalities,
features of an unchosen modality are left out. Eventually
we obtain 13 feature combinations with their performance
reported in Table 3.
Comparing with the single feature setting, multi-feature

fusion improves the performance. In the w/o subclass set-
ting, however, fusion weights learned on the validation set
often yields lower AP than average weighting. As shown
in Table 3, for only 4 out of 13 times learn is better than
avg. By contrast, the use of subclasses makes learn beats
avg 11 out of 13 times. This result shows the importance of
subclasses for learning to fuse.
We observe that some subclasses are more easier to detect,

e.g., ‘blood’, ‘gun’ and ‘death’, than some others, e.g., ‘aim’,
‘rope’, and ‘bind’. Due to page limit, more detailed analysis
concerning the subclass detection will be presented in the
future extension of this work.
Concerning the complementariness of distinct modalities,

all the modalities are required for deriving a holistic violence
detector, as in the w/o subclass scenario. However, once
subclasses are taken into account, the joint use of image
and audio modalities (with motion excluded) performs the
best.
Finally, we make a system level comparison between the

proposed subclass based system and three state-of-art sys-
tems as demonstrated in the MediaEval 2015 evaluation.
The result shown in Table 4 further confirms the effective-
ness of subclass based violence detection.

4. SUMMARY AND CONCLUSIONS
We contribute to video violence detection as follows. First,

we enrich the MediaEval 2015 violence dataset by provid-
ing video-level annotations with respect to ten subclasses
of violence. The clear divergence between subclass distri-
butions of the MediaEval dev and test sets explains why
existing learn-to-fuse attempts did not work. Second, by a

Table 4: Comparing with front-runners in the
MediaEval 2015 violence detection task.

System AP P10 P100

Fudan-Huawei [2] 0.296 1.0 0.46

MIC-TJU [23] 0.285 0.8 0.49

NII-UIT [7] 0.268 0.6 0.44

this work, w/o subclass 0.275 0.9 0.42

this work, with subclass 0.303 1.0 0.55

systematic comparison between violence detection with and
without subclasses, we re-justify the effectiveness of learn-
to-fuse for violence detection. The new solution beats the
state-of-the-art on the MediaEval 2015 test set. Moreover,
decomposing violence into subclasses results in novel find-
ings concerning complementariness of distinct modalities.
The conclusion of [8] that visual and motion features are
better than audio features holds when modeling violence in
a holistic manner. For fusion of multiple subclasses and
multi-modal features, motion related features appear to be
ignorable.
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