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ABSTRACT
In this paper we study a brand new topic of interactive image cap-
tioning with human in the loop. Different from automated image
captioning where a given test image is the sole input in the infer-
ence stage, we have access to both the test image and a sequence of
(incomplete) user-input sentences in the interactive scenario. We
formulate the problem as Visually Conditioned Sentence Completion
(VCSC). For VCSC, we propose ABD-Cap, asynchronous bidirec-
tional decoding for image caption completion. With ABD-Cap as
the core module, we build iCap, a web-based interactive image
captioning system capable of predicting new text with respect to
live input from a user. A number of experiments covering both
automated evaluations and real user studies show the viability of
our proposals.

CCS CONCEPTS
• Human-centered computing→ Text input.
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1 INTRODUCTION
Automated description of visual content, let it be image or video,
is among the core themes for multimedia content analysis and
retrieval. Novel visual captioning models are being actively devel-
oped [5, 8, 10, 13] with increasing performance reported on public
benchmark datasets such as MS-COCO [6] and MSR-VTT [24].
Nonetheless, the success of the state-of-the-art models largely de-
pends on the availability of many well-annotated training examples
in a specific domain. It is apparent that an image captioning model
learned from MS-COCO does not work for medical images, while a
model learned from annotations with respect to human activities is
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Figure 1: User interface of the proposed interactive image
captioning system. Given both the image and live input
from a user, the system interacts with the user by predict-
ing new text to complete the user input. Note that while we
target at Chinese, which is the authors’ first language, major
conclusions of this research shall be language-independent.

ineffective for describing general images [15]. It is also recognized
that one cannot directly use a dataset described in one language to
build models for another language [11, 14]. Therefore, in the days
to come, when one wants to build an effective image captioning
model for a domain where annotations are in short supply, manual
annotation remains indispensable.

Writing image descriptions is known to be laborious, even for
crowd sourcing. Thus an important research question arises: Can
manual annotation be performed in a more intelligent manner other
than fully manual? Li et al. [15] develop a recommendation assisted
annotation system, where a user is presented with five sentences
automatically recommended by the system based on the pictorial
content. Cornia et al. [7] propose a framework that allows a user
to supervise the caption generation process by specifying a set of
detected objects as the control signal. Neither of them is interactive.

In this paper, we study a novel topic of interactive image cap-
tioning with human in the loop. Recall that in automated image
captioning, a given test image is the sole input in the inference stage.
By contrast, an interactive system has to consider live input from a
specific user and respond on the fly, see Fig. 1. Thus, the interactive
scenario is more challenging. A desirable system shall be capable
of predicting new text that refines or completes the current text
provided by the user. Note that such a task conceptually resembles
to some extent query auto completion (QAC) [3] in information
retrieval, as both perform text completion. Major difference is two-
fold. First, QAC has no visual input. Second, different from search
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queries that are typically keywords or phrases, image captions are
natural language text that contains richer contextual information.
We term the new task Visually Conditioned Sentence Completion
(VCSC). To summarize, our contributions are as follows:

• To the best of our knowledge, this is the first work on inter-
active image captioning, where humans and deep captioning
models interact with each other to accomplish the captioning
task.
• We identify a key task in the interactive scenario, namely Vi-
sually Conditioned Sentence Completion (VCSC). We tackle
the task by proposing asynchronous bidirectional decoding
for image caption completion (ABD-Cap).
• We verify our proposal by developing iCap, a web-based
interactive annotation system that responds to user input in
real time. Both automated evaluations and real user studies
justify the effectiveness of the proposed ABD-Cap model
and iCap system.

2 RELATEDWORK
Automated image captioning. A number of deep learning based
methods have been proposed for automated image captioning [2,
19, 21]. These methods mainly follows an encoding-and-decoding
workflow. A given image is encoded into a dense vector by first
extracting visual features by a pre-trained convolutional neural net-
work (CNN) and then reduce the features to the dense vector either
by affine transformation [21] or by an spatially aware attention
module [2]. Even though this line of work has achieved extraor-
dinary performance on several benchmarking datasets, there are
still limitations when applied in more complex scenarios especially
when humans want to get control of the captioning process. Recent
work by Cornia et al. [7] proposes a framework that allows human
to control the caption generation process by specifying a set of
detected objects as the control signal. Our work goes further in this
direction, investigating interactive image captioning with human
in the loop.

Interactive image labeling. In the context of semantic image
segmentation, several works have been done to speed up the pixel
labeling process using interactive techniques. Representative works
are the polygon-rnn series including polygon-rnn [4], polygon-
rnn++ [1] and curve-gcn [16], which focus on producing polygonal
annotations of objects interactively with humans-in-the-loop. An
interactive video captioning system is presented in [23], where a
captioning agent asks for a short prompt from a human. As the
prompt is treated as a clue of the human’s expectation rather than
an (incomplete) caption, that work does not consider sentence
completion. To the best of our knowledge, we are the first to devise
an interactive annotation tool for image captioning.

Bidirectional decoding. Research on utilizing bidirectional de-
coding for image captioning exists [20, 22]. In [20], a backward de-
coder is used only in the training stage to encourage the generative
RNNs to plan ahead. As for [22], a bidirectional LSTM (Bi-LSTM)
combining two separate LSTM networks is developed to capture
long-term visual-language interactions. Predictions at a specific
time step is fully determined by the forward and backward hidden
states at that step. Different from Bi-LSTM, the two LSTMs used in
our ABD-Capmodel work in an asynchronous manner that is suited

for the VCSC task. This design is inspired by ABD-NMT [25] in the
machine translation field. We adapt the backward decoding process
to generate a fixed-length sequence of backward hidden vectors
and change the training procedure from joint training to training
two decoders sequentially. We find in preliminary experiments that
the adaption is better than the original ABD for image captioning.

3 HUMAN-IN-THE-LOOP IMAGE
CAPTIONING

3.1 Problem Formalization
For writing a sentence to describe a given image I , a user typically
conducts multiple rounds of typing and editing. In such a manual
annotation session, one naturally generates a sequence of (incom-
plete) sentences, denoted as {Si |i = 1, . . . ,T }, where Si indicates
the sentence after i rounds and T is the number of rounds in total.
Accordingly, S1 is the initial user input, while ST is the final anno-
tation. Our goal is to devise an image captioning (iCap) framework
so that the user can reach ST in fewer rounds and with reduced
annotation workload.

Given the image I and the user input Si , it is reasonable to assume
that Si is thus far the most relevant with respect to I . Hence, we
shall take both into account and accordingly suggest k candidate
sentences that complete Si . Apparently, this scenario differs from
automated image captioning where the image is the sole input.
We term the new task as Visually Conditioned Sentence Completion
(VCSC). Image captioning can be viewed as a special case of VCSC
that has no user input.

Given an iCap system equipped with a VCSC model, a user
annotates an image in an iCap session, which is illustrated in Fig. 2
and described as follows. A session starts once the user types some
initial text, i.e., S1. At the i-th round (i ≥ 2), the system presents
to the user k candidate sentences {Ŝi,1, Ŝi,2, . . . , Ŝi,k } generated by
the VCSC model. The user produces Si by either selecting one of
the suggested sentence or revising Si−1. The session closes when
the user chooses to submit the last annotation ST .

From the above description we see that a desirable VCSC model
shall not only cope with the multi-modal input but also needs to
respond in real time. Next, we propose a model that fulfills these
two requirements.

3.2 Visually Conditioned Sentence Completion
We develop our model for VCSC based on Show-and-Tell [21], a
classical model for automated image captioning. To make the pa-
per more self-contained, we describe briefly how Show-and-Tell
generates a sentence for a given image. Accordingly, we explain
difficulties in directly applying the model for the VCSC task.

Show-and-Tell generates a sentence by iteratively samplingwords
from a pre-specified vocabulary ofm distinct words {w1, . . . ,wm }.
Note that in addition to normal words, the vocabulary contains
three special tokens, i.e., start, end and unk, which indicate the
beginning, the ending of a sentence and out-of-vocabulary (OOV)
words. Letpt ∈ Rm be a probability vector, each dimension of which
indicates the probability of the corresponding word to be sampled
at the t-th iteration. Show-and-Tell obtains pt using a Long-Short
Term Memory (LSTM) network [9]. In particular, given ht ∈ Rd as
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Figure 2: User state transitions in an iCap session. The ses-
sion starts once a user types something as an initial input
S1. The iCap system tries to complete the input by suggest-
ing k sentences, denoted as {Ŝ1, . . . , Ŝk }. The user performs
the captioning task by switching between the select and edit
states, resulting in a sequence of sentences to be completed
{Si |i = 2, 3, . . .}. The session ends once the user submits the
final annotation ST .

the LSTM’s hidden state vector, pt is obtained by feeding ht into a
d ×m fully connected (FC) layer followed by a softmax layer, i.e.,

pt = softmax(FC(ht )),
ŵt = argmaxw (pt ).

(1)

The word with the largest probability is sampled. Consequently,
the hidden state vector is updated as

ht+1 = LSTM(ht , x̂t ), (2)

where x̂t is the embedding vector of ŵt . To make the generation
process visually conditioned, let v (I ) be a visual representation of
the given image extracted by a pre-trained CNN. LSTM is initialized
with h0 = 0 and x̂0 as the visual embedding vector obtained by
feeding v (I ) into an FC layer.

3.2.1 Show-and-Tell for VCSC. Assume the user input Si has n
words {wi,1, . . . ,wi,n }. Let c be the user-specified cursor position,
suggesting where the user wants to edit. Accordingly, Si is di-
vided into two substrings, i.e., Si,l = {wi,1, . . . ,wi,c } and Si,r =
{wi,c+1, . . . ,wi,n }. As the sampling process of Show-and-Tell is
unidirectional, Si,r has to be omitted. Note that such a deficiency
cannot be resolved by reversing the sampling process, as Si,l will
then be ignored. Consequently, Show-and-Tell is unable to fully
exploit the user-provided information.

In order to inject the information of Si,l into the LSTM network,
we update the hidden state vector by Eq. 2 except that the word
sampled at each step is forced to be in line with {wi,1, . . . ,wi,c }.
Afterwards, the regular sampling process as described by Eq. 1 is
applied until the end token is selected. In order to obtain k candi-
dates, a beam search of size k is performed. The best k decoded
beams are separately appended to Si,l to form {Ŝi,1, . . . , Ŝi,k }.

3.2.2 Proposed ABD-Cap for VCSC. In order to effectively exploit
the user input on both sides of the cursor, we propose Asynchronous
Bidirectional Decoding for image caption completion (ABD-Cap).
The main idea is to deploy two asynchronous LSTM based decoders,
see Fig 3. One decoder is to model the entire user input in a back-
ward manner so that Si,r is naturally included. The other decoder
is responsible for sentence generation similar to Show-and-Tell
except that it receives information from the first decoder through
a seq2seq attention module [17]. The two decoders are separately

trained, and cooperate together in an asynchronous manner for
sentence completion.

Backward decoder. Our backward decoder is trained using
reserved image captions, and thus learns to generate backward
hidden state vectors {

←−
h t } from right to left, i.e.,

←−
h t = LSTM(

←−
h t+1, x̂t+1),

←−p t = softmax(FC(
←−
h t )),

ŵt = argmaxw (←−p t ).

(3)

In order to cope with user input of varied length, we sample
N rounds, where N is the maximum sequence length. This re-
sults in a fixed-length sequence of backward hidden state vectors
←−
H = {

←−
h 0,
←−
h 1, . . . ,

←−
h N }. For injecting the information of Si into

the sequence, we first conduct the regular sampling procedure for
N − n steps. Afterwards, the word sampled per step is forced to be
in line with {wi,n , . . . ,wi,1}.

Forward decoder with attention. In order to utilize the infor-
mation from the backward decoder, we employ the seq2seq atten-
tion mechanism [17]. In particular,

←−
H is converted to a vectormt

that encodes the backward contextual information. Then, by sub-
stitutingmt for x̂t in Eq. 2, the backward information is embedded
into the word sampling process. We express the above as

at = softmax(ReLU(FC(x̂t ,ht )),
mt =

∑N
i=1 at,i ·

←−
hi ,

ht+1 = LSTM(ht ,mt ),

(4)

where at is a N -dimensional attention weight vector.
For the rest of the VCSC task, we follow the same procedure as

depicted in Section 3.2.1.

3.3 Training Models for VCSC
Since our target language is Chinese, we train the models on the
COCO-CN dataset [15]. This public dataset contains 20,342 MS-
COCO images annotated with 27,218 Chinese sentences. We follow
the original data split, with 18,342 images for training, 1,000 images
for validation and 1,000 images for test. For image features we use
the provided 2,048-dim CNN features, extracted using a pretrained
ResNeXt-101 model [18].

All models are trained in a standard supervised manner, with the
cross entropy loss minimized by the Adam optimizer. The initial
learning rate is set to be 0.0005. We train for 80 epochs at the
maximum. Best models are selected based on their CIDEr scores
on the validation set.

Note that in the interactive scenario, a user might provide OOV
words. To alleviate the issue, different from previous works [14, 15]
that perform word-level sentence generation, our models compose
a sentence at the character level. As shown in Section 4.1, this
choice substantially reduces the occurrence of OOV words.

For user study, we build a web-based iCap system, with its user
interface shown in Fig. 1. Given a specific user input, it suggests k =
5 sentences in approximately 70 milliseconds, which is sufficiently
fast for real-time interaction.
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{ �h 0,
 �
h 1, . . . ,

 �
h N }. For injecting the information of Si into the

sequence, we �rst conduct the regular sampling procedure for
N � n steps. A�erwards, the word sampled per step is forced to be
in line with {wi,n , . . . ,wi,1}.

Forward decoder with attention. In order to utilize the in-
formation from the backward decoder, we employ the seq2seq
a�ention mechanism [10]. In particular,

 �
H is converted to a vec-

tormt that encodes the backward contextual information. �en,
by substituting mt for x̂t in Eq. 2, the backward information is
embedded into the word sampling process. We express the above
as

at = so�max(ReLU(FC(x̂t ,ht )),
mt =

PN
i=1 at,i ·

 �
hi ,

ht+1 = LSTM(ht ,mt ),

(4)

where at is a N -dimensional a�ention weight vector.
For the rest of the VCSC task, we follow the same procedure as

depicted in Section 3.2.1.

3.3 Training VCSC Models
Since our target language is Chinese, we train the VCSC models
on the COCO-CN dataset [8]. �is public dataset contains 20,342
MS-COCO images annotated with 27,218 Chinese sentences. We
follow the original data split, with 18,342 images for training, 1,000
images for validation and 1,000 images for test. For image features
we use the provided 2,048-dim CNN features, extracted using a
pretrained ResNeXt-101 model [11].

All models are trained in a standard supervised manner, with the
cross entropy loss minimized by the Adam optimizer. �e initial
learning rate is set to be 0.0005. We train for 80 epochs at the
maximum. Best models are selected based on their CIDEr scores
on the validation set.

Note that in the interactive scenario, a user might provide OOV
words. To alleviate the issue, di�erent from previous works [7, 8]
that perform word-level sentence generation, our models compose
a sentence at the character level. As shown in Section 4.1, this
choice substantially reduces the occurrence of OOV words.

For user study, we build a web-based iCap system, with its user
interface shown in Fig. 1. Given a speci�c user input, it suggestsk =
5 sentences in approximately 70 milliseconds, which is su�ciently
fast for real-time interaction.

4 Evaluation
Unlike automated image captioning, there lacks a well established
evaluation protocol for interactive image captioning. We need to
understand how a user interacts with the iCap system and evaluate
to what extent the system assists the user. To that end, we propose
a two-stage evaluation protocol as follows:

• Stage I. Performed before commencing a real user study,
evaluations conducted at this stage are to assess the validity
of major implementation choices of the VCSC module used
in the iCap system.

• Stage II. Evaluations at this stage are performed a�er run-
ning the iCap system for a while with adequate data col-
lected to analyze the usability of iCap in multiple aspects.

4.1 Stage-I Evaluation
4.1.1 Setup
With no user input provided, the VCSC task is equivalent to auto-
mated image captioning. So we �rst evaluate the proposed ABD-
Cap model in the automated se�ing.

Baselines. As described in Section 3.2, compared to the Show-
and-Tell model [14] used in [8] for Chinese captioning, we make
twomain changes. �at is, the proposed asynchronous bidirectional
decoder and character-level sentence generation. In order to verify
the necessity of these two changes, we compare with the following
four baselines:
• Show-and-Tell with a word-level forward decoder [8].
• Show-and-Tell with a word-level backward decoder.
• Show-and-Tell with a character-level forward decoder.
• Show-and-Tell with a character-level backward decoder.

For a fair comparison, the four baselines are all trained in the
same se�ing as ABD-Cap. All the models are evaluated on the 1,000
test images of COCO-CN [8], each of which is associated with �ve
manually wri�en Chinese captions.

Evaluation criteria. We report BLEU-4, METEOR, ROUGE-L
and CIDEr, commonly used for automated image captioning. Note
that computing the four metrics at the character level is not seman-
tically meaningful. So for a sentence generated by a character-level
decoder, we employ Jieba1, an open-source toolkit for Chinese
word segmentation, to tokenize the sentence to a list of words. �e
presence of the unk token in a generated sentence means an OOV
word is predicted, which negatively a�ects user experience. �ere-
fore, for each model we calculate the OOV rate, i.e., the number
of sentences containing unk divided by the number of generated
sentences.

4.1.2 Results
�e overall performance of each model on the COCO-CN test set
is presented in Table 1. As we can see from the table, our proposed
ABD-Capmodel outperforms the baselines on all of the four caption
evaluating metrics. Even more, the character-level models possess
a zero OOV rate that is way less than the word-level models. �e
result justi�es the superiority of the proposed character-level sen-
tence generation for reducing OOVs. �erefore, the character-level
ABD-Cap is deployed in the iCap system for the following real user
study.

4.2 Stage-II Evaluation
We �rst collect real-world interaction data from a user study. We
then analyze the data in details to understand how users and the
system interacted and to what extent the system assisted users to
accomplish the annotation task.

4.2.1 User Study
To avoid any data bias towards COCO-CN, we constructed our
annotation pool by randomly sampling images from MS-COCO
with COCO-CN images excluded in advance.

Nineteen members in our lab, 14 males and 5 females, partici-
pated as volunteers in this user study. While mostly majored in
computer science, the majority of the subjects have no speci�c
knowledge about the iCap project. So they can be considered as

1h�ps://github.com/fxsjy/jieba

sampling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Conference’17, July 2017, Washington, DC, USA Anon.

input

select

edit

submitstart end

{S1, S2, …, ST}

Figure 2. User state transitions in an iCap session. �e ses-
sion starts once a user types something as an initial input S1. �e
iCap system tries to complete the input by suggesting k sentences,
denoted as {Ŝ1, . . . , Ŝk }. �e user performs the captioning task by
switching between the select and edit states, resulting in a sequence
of sentences to be completed {Si |i = 2, 3, . . .}. �e session ends
once the user submits the �nal annotation ST .

3 Human-in-the-loop Image Captioning
3.1 Problem Formalization
For writing a sentence to describe a given image I , a user typically
conducts multiple rounds of typing and editing. In such a manual
annotation session, one naturally generates a sequence of (incom-
plete) sentences, denoted as {Si |i = 1, . . . ,T }, where Si indicates
the sentence a�er i rounds and T is the number of rounds in total.
Accordingly, S1 is the initial user input, while ST is the �nal anno-
tation. Our goal is to devise an image captioning (iCap) framework
so that the user can reach ST in fewer rounds and with reduced
annotation workload.

Given the image I and the user input Si , it is reasonable to assume
that Si is thus far the most relevant with respect to I . Hence, we
shall take both into account and accordingly suggest k candidate
sentences that complete Si . Apparently, this scenario di�ers from
automated image captioning where the image is the sole input.
We term the new task as Visually Conditioned Sentence Completion
(VCSC). Image captioning can be viewed as a special case of VCSC
that has no user input.

Given an iCap system equipped with a VCSC model, a user
annotates an image in an iCap session, which is illustrated in Fig. 2
and described as follows. A session starts once the user types some
initial text, i.e., S1. At the i-th round (i � 2), the system presents
to the user k candidate sentences {Ŝi,1, Ŝi,2, . . . , Ŝi,k } generated by
the VCSC model. �e user produces Si by either selecting one of
the suggested sentence or revising Si�1. �e session closes when
the user chooses to submit the last annotation ST .

From the above description we see that a desirable VCSC model
shall not only cope with the multi-modal input but also needs to
respond in real time. Next, we propose a model that ful�lls these
two requirements.

3.2 Visually Conditioned Sentence Completion
We develop our VCSC model based on Show-and-Tell [14], a classi-
cal model for automated image captioning. To make the paper more
self-contained, we describe brie�y how Show-and-Tell generates a
sentence for a given image. Accordingly, we explain di�culties in
directly applying the model for the VCSC task.

Show-and-Tell generates a sentence by iteratively samplingwords
from a pre-speci�ed vocabulary ofm distinct words {w1, . . . ,wm }.
Note that in addition to normal words, the vocabulary contains
three special tokens, i.e., start, end and unk, which indicate the

beginning, the ending of a sentence and out-of-vocabulary (OOV)
words. Let pt 2 R

m be a probability vector, each dimension of
which indicates the probability of the corresponding word to be
sampled at the t-th iteration. Show-and-Tell obtains pt using a
Long-Short Term Memory (LSTM) network [5]. In particular, given
ht 2 Rd as the LSTM’s hidden state vector, pt is obtained by feeding
ht into a d ⇥m fully connected (FC) layer followed by a so�max
layer, i.e.,

pt = so�max(FC(ht )),
ŵt = argmaxw (pt ).

(1)

�e word with the largest probability is sampled. Consequently,
the hidden state vector is updated as

ht+1 = LSTM(ht , x̂t ), (2)

where x̂t is the embedding vector of ŵt . To make the generation
process visually conditioned, let � (I ) be a visual representation of
the given image extracted by a pre-trained CNN. LSTM is initialized
with h0 = 0 and x̂0 as the visual embedding vector obtained by
feeding � (I ) into an FC layer.

3.2.1 Show-and-Tell for VCSC
Assume the user input Si has n words {wi,1, . . . ,wi,n }. Let c be the
user-speci�ed cursor position, suggesting where the user wants
to edit. Accordingly, Si is divided into two substrings, i.e., Si,l =
{wi,1, . . . ,wi,c } and Si,r = {wi,c+1, . . . ,wi,n }. As the sampling
process of Show-and-Tell is unidirectional, Si,r has to be omi�ed.
Note that such a de�ciency cannot be resolved by reversing the
sampling process, as Si,l will then be ignored. Consequently, Show-
and-Tell is unable to fully exploit the user-provided information.

In order to inject the information of Si,l into the LSTM network,
we update the hidden state vector by Eq. 2 except that the word
sampled at each step is forced to be in line with {wi,1, . . . ,wi,c }.
A�erwards, the regular sampling process as described by Eq. 1
is applied until the end token is selected. In order to obtain k

candidates, a beam search of size k is performed. �e best k decoded
beams are separately appended to Si,l to form {Ŝi,1, . . . , Ŝi,k }.

3.2.2 Proposed ABD-Cap for VCSC
In order to e�ectively exploit the user input on both sides of the
cursor, we propose Asynchronous Bidirectional Decoding for image
caption completion (ABD-Cap). �e main idea is to deploy two
asynchronous LSTM based decoders. One decoder is to model the
entire user input in a backward manner so that Si,r is naturally
included. �e other decoder is responsible for sentence generation
similar to Show-and-Tell except that it receives information from
the �rst decoder through a seq2seq a�ention module [10]. �e
two decoders are separately trained, and cooperate together in an
asynchronous manner for sentence completion.

Backward decoder. Our backward decoder is trained using
reserved image captions, and thus learns to generate backward
hidden state vectors { �h t } from right to le�, i.e.,

 �
h t = LSTM(

 �
h t+1, x̂t+1),

 �
p t = so�max(FC(

 �
h t )),

ŵt = argmaxw ( �p t ).

(3)

In order to cope with user input of varied length, we sample N
rounds, where N is the maximum sequence length. �is results
in a �xed-length sequence of backward hidden state vectors

 �
H =

visual 
embedding
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{ �h 0,
 �
h 1, . . . ,

 �
h N }. For injecting the information of Si into the

sequence, we �rst conduct the regular sampling procedure for
N � n steps. A�erwards, the word sampled per step is forced to be
in line with {wi,n , . . . ,wi,1}.

Forward decoder with attention. In order to utilize the in-
formation from the backward decoder, we employ the seq2seq
a�ention mechanism [10]. In particular,

 �
H is converted to a vec-

tormt that encodes the backward contextual information. �en,
by substituting mt for x̂t in Eq. 2, the backward information is
embedded into the word sampling process. We express the above
as

at = so�max(ReLU(FC(x̂t ,ht )),
mt =

PN
i=1 at,i ·

 �
hi ,

ht+1 = LSTM(ht ,mt ),

(4)

where at is a N -dimensional a�ention weight vector.
For the rest of the VCSC task, we follow the same procedure as

depicted in Section 3.2.1.

3.3 Training VCSC Models
Since our target language is Chinese, we train the VCSC models
on the COCO-CN dataset [8]. �is public dataset contains 20,342
MS-COCO images annotated with 27,218 Chinese sentences. We
follow the original data split, with 18,342 images for training, 1,000
images for validation and 1,000 images for test. For image features
we use the provided 2,048-dim CNN features, extracted using a
pretrained ResNeXt-101 model [11].

All models are trained in a standard supervised manner, with the
cross entropy loss minimized by the Adam optimizer. �e initial
learning rate is set to be 0.0005. We train for 80 epochs at the
maximum. Best models are selected based on their CIDEr scores
on the validation set.

Note that in the interactive scenario, a user might provide OOV
words. To alleviate the issue, di�erent from previous works [7, 8]
that perform word-level sentence generation, our models compose
a sentence at the character level. As shown in Section 4.1, this
choice substantially reduces the occurrence of OOV words.

For user study, we build a web-based iCap system, with its user
interface shown in Fig. 1. Given a speci�c user input, it suggestsk =
5 sentences in approximately 70 milliseconds, which is su�ciently
fast for real-time interaction.

4 Evaluation
Unlike automated image captioning, there lacks a well established
evaluation protocol for interactive image captioning. We need to
understand how a user interacts with the iCap system and evaluate
to what extent the system assists the user. To that end, we propose
a two-stage evaluation protocol as follows:

• Stage I. Performed before commencing a real user study,
evaluations conducted at this stage are to assess the validity
of major implementation choices of the VCSC module used
in the iCap system.

• Stage II. Evaluations at this stage are performed a�er run-
ning the iCap system for a while with adequate data col-
lected to analyze the usability of iCap in multiple aspects.

4.1 Stage-I Evaluation
4.1.1 Setup
With no user input provided, the VCSC task is equivalent to auto-
mated image captioning. So we �rst evaluate the proposed ABD-
Cap model in the automated se�ing.

Baselines. As described in Section 3.2, compared to the Show-
and-Tell model [14] used in [8] for Chinese captioning, we make
twomain changes. �at is, the proposed asynchronous bidirectional
decoder and character-level sentence generation. In order to verify
the necessity of these two changes, we compare with the following
four baselines:
• Show-and-Tell with a word-level forward decoder [8].
• Show-and-Tell with a word-level backward decoder.
• Show-and-Tell with a character-level forward decoder.
• Show-and-Tell with a character-level backward decoder.

For a fair comparison, the four baselines are all trained in the
same se�ing as ABD-Cap. All the models are evaluated on the 1,000
test images of COCO-CN [8], each of which is associated with �ve
manually wri�en Chinese captions.

Evaluation criteria. We report BLEU-4, METEOR, ROUGE-L
and CIDEr, commonly used for automated image captioning. Note
that computing the four metrics at the character level is not seman-
tically meaningful. So for a sentence generated by a character-level
decoder, we employ Jieba1, an open-source toolkit for Chinese
word segmentation, to tokenize the sentence to a list of words. �e
presence of the unk token in a generated sentence means an OOV
word is predicted, which negatively a�ects user experience. �ere-
fore, for each model we calculate the OOV rate, i.e., the number
of sentences containing unk divided by the number of generated
sentences.

4.1.2 Results
�e overall performance of each model on the COCO-CN test set
is presented in Table 1. As we can see from the table, our proposed
ABD-Capmodel outperforms the baselines on all of the four caption
evaluating metrics. Even more, the character-level models possess
a zero OOV rate that is way less than the word-level models. �e
result justi�es the superiority of the proposed character-level sen-
tence generation for reducing OOVs. �erefore, the character-level
ABD-Cap is deployed in the iCap system for the following real user
study.

4.2 Stage-II Evaluation
We �rst collect real-world interaction data from a user study. We
then analyze the data in details to understand how users and the
system interacted and to what extent the system assisted users to
accomplish the annotation task.

4.2.1 User Study
To avoid any data bias towards COCO-CN, we constructed our
annotation pool by randomly sampling images from MS-COCO
with COCO-CN images excluded in advance.

Nineteen members in our lab, 14 males and 5 females, partici-
pated as volunteers in this user study. While mostly majored in
computer science, the majority of the subjects have no speci�c
knowledge about the iCap project. So they can be considered as

1h�ps://github.com/fxsjy/jieba
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{ �h 0,
 �
h 1, . . . ,

 �
h N }. For injecting the information of Si into the

sequence, we �rst conduct the regular sampling procedure for
N � n steps. A�erwards, the word sampled per step is forced to be
in line with {wi,n , . . . ,wi,1}.

Forward decoder with attention. In order to utilize the in-
formation from the backward decoder, we employ the seq2seq
a�ention mechanism [10]. In particular,

 �
H is converted to a vec-

tormt that encodes the backward contextual information. �en,
by substituting mt for x̂t in Eq. 2, the backward information is
embedded into the word sampling process. We express the above
as

at = so�max(ReLU(FC(x̂t ,ht )),
mt =

PN
i=1 at,i ·

 �
hi ,

ht+1 = LSTM(ht ,mt ),

(4)

where at is a N -dimensional a�ention weight vector.
For the rest of the VCSC task, we follow the same procedure as

depicted in Section 3.2.1.

3.3 Training VCSC Models
Since our target language is Chinese, we train the VCSC models
on the COCO-CN dataset [8]. �is public dataset contains 20,342
MS-COCO images annotated with 27,218 Chinese sentences. We
follow the original data split, with 18,342 images for training, 1,000
images for validation and 1,000 images for test. For image features
we use the provided 2,048-dim CNN features, extracted using a
pretrained ResNeXt-101 model [11].

All models are trained in a standard supervised manner, with the
cross entropy loss minimized by the Adam optimizer. �e initial
learning rate is set to be 0.0005. We train for 80 epochs at the
maximum. Best models are selected based on their CIDEr scores
on the validation set.

Note that in the interactive scenario, a user might provide OOV
words. To alleviate the issue, di�erent from previous works [7, 8]
that perform word-level sentence generation, our models compose
a sentence at the character level. As shown in Section 4.1, this
choice substantially reduces the occurrence of OOV words.

For user study, we build a web-based iCap system, with its user
interface shown in Fig. 1. Given a speci�c user input, it suggestsk =
5 sentences in approximately 70 milliseconds, which is su�ciently
fast for real-time interaction.

4 Evaluation
Unlike automated image captioning, there lacks a well established
evaluation protocol for interactive image captioning. We need to
understand how a user interacts with the iCap system and evaluate
to what extent the system assists the user. To that end, we propose
a two-stage evaluation protocol as follows:

• Stage I. Performed before commencing a real user study,
evaluations conducted at this stage are to assess the validity
of major implementation choices of the VCSC module used
in the iCap system.

• Stage II. Evaluations at this stage are performed a�er run-
ning the iCap system for a while with adequate data col-
lected to analyze the usability of iCap in multiple aspects.

4.1 Stage-I Evaluation
4.1.1 Setup
With no user input provided, the VCSC task is equivalent to auto-
mated image captioning. So we �rst evaluate the proposed ABD-
Cap model in the automated se�ing.

Baselines. As described in Section 3.2, compared to the Show-
and-Tell model [14] used in [8] for Chinese captioning, we make
twomain changes. �at is, the proposed asynchronous bidirectional
decoder and character-level sentence generation. In order to verify
the necessity of these two changes, we compare with the following
four baselines:
• Show-and-Tell with a word-level forward decoder [8].
• Show-and-Tell with a word-level backward decoder.
• Show-and-Tell with a character-level forward decoder.
• Show-and-Tell with a character-level backward decoder.

For a fair comparison, the four baselines are all trained in the
same se�ing as ABD-Cap. All the models are evaluated on the 1,000
test images of COCO-CN [8], each of which is associated with �ve
manually wri�en Chinese captions.

Evaluation criteria. We report BLEU-4, METEOR, ROUGE-L
and CIDEr, commonly used for automated image captioning. Note
that computing the four metrics at the character level is not seman-
tically meaningful. So for a sentence generated by a character-level
decoder, we employ Jieba1, an open-source toolkit for Chinese
word segmentation, to tokenize the sentence to a list of words. �e
presence of the unk token in a generated sentence means an OOV
word is predicted, which negatively a�ects user experience. �ere-
fore, for each model we calculate the OOV rate, i.e., the number
of sentences containing unk divided by the number of generated
sentences.

4.1.2 Results
�e overall performance of each model on the COCO-CN test set
is presented in Table 1. As we can see from the table, our proposed
ABD-Capmodel outperforms the baselines on all of the four caption
evaluating metrics. Even more, the character-level models possess
a zero OOV rate that is way less than the word-level models. �e
result justi�es the superiority of the proposed character-level sen-
tence generation for reducing OOVs. �erefore, the character-level
ABD-Cap is deployed in the iCap system for the following real user
study.

4.2 Stage-II Evaluation
We �rst collect real-world interaction data from a user study. We
then analyze the data in details to understand how users and the
system interacted and to what extent the system assisted users to
accomplish the annotation task.

4.2.1 User Study
To avoid any data bias towards COCO-CN, we constructed our
annotation pool by randomly sampling images from MS-COCO
with COCO-CN images excluded in advance.

Nineteen members in our lab, 14 males and 5 females, partici-
pated as volunteers in this user study. While mostly majored in
computer science, the majority of the subjects have no speci�c
knowledge about the iCap project. So they can be considered as

1h�ps://github.com/fxsjy/jieba

Figure 3: Diagram of the proposed ABD-Cap model for visually conditioned sentence completion. Given an image and a user-
input sentence Si which is separated into two substrings Si,l and Si,r by the user-specified cursor, the forward encoder exploits
multi-source information (from the image and the backward decoder) to complete Si .

4 EVALUATION
Unlike automated image captioning, there lacks a well established
evaluation protocol for interactive image captioning. We need to
understand how a user interacts with the iCap system and evaluate
to what extent the system assists the user. To that end, we propose
a two-stage evaluation protocol as follows:

• Stage I. Performed before commencing a real user study,
evaluations conducted at this stage are to assess the validity
of major implementation choices of the module for VCSC
used in the iCap system.
• Stage II. Evaluations at this stage are performed after run-
ning the iCap system for a while with adequate data collected
to analyze the usability of iCap in multiple aspects.

4.1 Stage-I Evaluation
4.1.1 Setup. With no user input provided, the VCSC task is equiv-
alent to automated image captioning. So we first evaluate the pro-
posed ABD-Cap model in the automated setting.

Baselines. As described in Section 3.2, compared to the Show-
and-Tell model [21] used in [15] for Chinese captioning, we make
twomain changes. That is, the proposed asynchronous bidirectional
decoder and character-level sentence generation. In order to verify
the necessity of these two changes, we compare with the following
four baselines:

• Show-and-Tell with a word-level forward decoder [15].
• Show-and-Tell with a word-level backward decoder.
• Show-and-Tell with a character-level forward decoder.
• Show-and-Tell with a character-level backward decoder.

For a fair comparison, the four baselines are all trained in the
same setting as ABD-Cap. All the models are evaluated on the 1,000
test images of COCO-CN [15], each of which is associated with five
manually written Chinese captions.

Evaluation criteria. We report BLEU-4, METEOR, ROUGE-L
and CIDEr, commonly used for automated image captioning. Note
that computing the four metrics at the character level is not seman-
tically meaningful. So for a sentence generated by a character-level
decoder, we employ Jieba1, an open-source toolkit for Chinese word
segmentation, to tokenize the sentence to a list of words. The pres-
ence of the unk token in a generated sentence means an OOV word
is predicted, which negatively affects user experience. Therefore, for
each model we calculate the OOV rate, i.e., the number of sentences
containing unk divided by the number of generated sentences.

4.1.2 Results. The overall performance of eachmodel on the COCO-
CN test set is presented in Table 1. As we can see from the table,
our proposed ABD-Cap model outperforms the baselines on all of
the four caption evaluating metrics. Even more, the character-level
models possess a zero OOV rate that is way less than the word-
level models. The result justifies the superiority of the proposed
character-level sentence generation for reducing OOVs. Therefore,
the character-level ABD-Cap is deployed in the iCap system for the
following real user study.

4.2 Stage-II Evaluation
We first collect real-world interaction data from a user study. We
then analyze the data in details to understand how users and the
system interacted and to what extent the system assisted users to
accomplish the annotation task.

4.2.1 User Study. To avoid any data bias towards COCO-CN, we
constructed our annotation pool by randomly sampling images
from MS-COCO with COCO-CN images excluded in advance.

Nineteen members in our lab, 14 males and 5 females, partici-
pated as volunteers in this user study. While mostly majored in
computer science, the majority of the subjects have no specific

1https://github.com/fxsjy/jieba
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Table 1: Performance of different models for VCSC without any user input, i.e., automated image captioning. Char and Word
represent character-level and word-level decoders, respectively. Our proposed ABD-Cap model outperforms the baselines.
Moreover, the character-level ABD-Cap has zero OOV rate.

BLEU_4 METEOR ROUGE_L CIDEr OOV rate (%)

Model Char Word Char Word Char Word Char Word Char Word

Show-and-Tell 24.0 25.5 27.1 27.4 47.8 48.4 70.6 72.4 0 3.8

Show-and-Tell, backward decoder 23.0 23.9 26.6 27.0 47.0 48.2 68.2 71.5 0 5.0

proposed ABD-Cap 24.4 26.0 27.6 27.3 48.3 48.6 71.7 73.7 0 7.4

knowledge about the iCap project. So they can be considered as
average users for interactive image captioning. Our subjects per-
formed the annotation task in their spare time. User actions in each
session such as the editing history of the input box and the selec-
tion operation from the drop-down list were logged for subsequent
analysis.

The user study lasted for onemonth, with 2,238 images annotated
and 2,238 sentences in total. Table 2 summarizes main statistics of
the gathered data. Depending on whether the system-suggested
sentences were selected, user annotation is divided into two modes,
i.e., fully manual and interactive. For 793 out of the 2,238 sentences
(35.4%), they were written in the interactive mode, i.e., users selected
the suggested sentences at least once. Moreover, the sentences
written in the interactive mode tend to be longer and thus more
descriptive than their fully manual counterparts. Also note the
relatively smaller number of editing rounds in the interactive mode.
These results encouragingly suggest that user-system interactions
produce better annotations in a shorter time.

4.2.2 Analysis of an iCap Session. We now analyze user-system
interactions at the session level. The editing history of a specific
user was recorded as a sequence of sentences {S1, . . . , ST }, gen-
erated by scanning the input box every 0.2 second. If the text in
the input changes between two consecutive scans, we consider an
editing operation occur. To quantize the changes, we compute the
Levenshtein distance2 (LevD) [12] between Si and Si+1. On the
basis of the pair-wise LevD, we derive the following two metrics:
• Accumulated LevD, computed over the sequence {S1, . . . , ST }
by summing up all pair-wise LevD values. Thismetric reflects
the overall amount of editing conducted in an iCap session.
Smaller is better.
• LevD (S, ST ) between an (incomplete) sentence S and the
final annotation. This metric estimates human workload.
Specifically,LevD (∅, ST )measures humanworkload required
in the fully manual mode. Smaller is better.

As Table 2 shows, the sentence sequences in the interactive mode
has an averaged Accumulated LevD of 13.9, clearly smaller than
that of the fully manual mode.

User behaviors. For the 793 interactive annotations, a total
number of 996 selections were recorded, meaning 1.2 selections per
session on average. As shown in Fig. 4, more than half of the selec-
tions are made on the top-1 suggested sentences. Meanwhile, the
2The Levenshtein distance between two Chinese sentences is the minimum number
of single Chinese character edits (insertions, deletions or substitutions) required to
change one sentence into the other

other suggestions also get selected but with their chances decreas-
ing along their ranks. The result demonstrates the effectiveness of
beam search as well as the necessity of presenting multiple sugges-
tions to the user.

Figure 4: Distribution of selection with respect to the ranks
of generated sentences. Sentences ranked at the top aremore
likely to be selected by users.

Influence of sentence completion. To study the direct influ-
ence of the sentences completed by the ABD-Cap model, let Ss
be the completed sentence selected by a given user at a specific
editing round. By definition, the pre-completion sentence is ob-
tained as Ss−1. We then calculate LevD (Ss−1, ST ) and LevD (Ss , ST ),
which respectively measures the distance of the pre-completion
and post-completion sentences to the final annotation. The dis-
tribution curves of these two type of distances are shown in Fig.
5. The green curve which shows the distribution of LevD (Ss , ST )
is skewed towards the left side. The result clearly shows that the
sentence completion module helps the user input to converge to
the final annotation, and thus reduces human workload.

4.2.3 ABD-Cap versus Show-and-Tell for VCSC. With the interac-
tion data collected, we now perform a simulated experiment to
compare two distinct instantiations for the sentence completion
module, namely ABD-Cap versus Show-and-Tell.

Again, let Ss be the candidate sentence selected by a given user
at a specific editing round, and accordingly we have access to Ss−1
which is the user input of the sentence completion model to gener-
ate Ss . Now, instead of ABD-Cap, we use Show-and-Tell to generate
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Table 2: Major statistics of the interaction data collected in our user study. Smaller sequence lengthT , Accumulated edits, and
Levenshtein distance (LevD) suggest less amount of human workload.

Statistics per sentence Statistics per iCap session

Annotation mode Sentences Num. words Num. chars Num. selections T Accumulated edits Accumulated LevD

Fully manual 1,445 9.0 15.3 0 11.6 10.6 18.9
Interactive 793 9.8 16.7 1.2 9 8 13.9

Figure 5: Distribution of pre-completion / post-completion
sentences’s LevD to the final annotation. Smaller LevD
means post-completion sentences aremore close to the final
annotation.

five candidate sentences. Comparing these candidates to the final
annotation ST allows us to conclude which model provides better
suggestions.

Table 3: LevD between sentences produced by distinct mod-
els to the final annotation. Lower LevD means a suggested
sentence is more close to the final annotation, and thus im-
plies lessened human interaction.

Rank

Model for VCSC 1 2 3 4 5

Show-and-Tell 5.69 5.93 6.05 6.21 6.43
ABD-Cap 4.99 5.17 5.28 5.56 5.76

Quantitative results. Table 3 shows LevD between sentences
generated by the two models to the final annotation. Lower LevD
means the generated sentences are more close to the final anno-
tation. The proposed ABD-Cap outperforms Show-and-Tell at all
ranks. Moreover, the LevD increases as the rank goes up. This result
confirms our previous finding (Fig. 4) that the sentences ranked at
the top describe images better and thus more likely to be selected
by the user.

Qualitative results. To better understand the differences be-
tween the two models for sentence completion, we present some

typical results in Table 4. In particular, the first two rows show
cases where the user cursor is placed at the end of the current input
text, i.e., Si,r is empty. The last two rows show cases where the user
cursor is placed in the middle. Compared to Show-and-Tell which
considers only text at the left-hand side of the cursor, our ABD-Cap
model exploits texts at both sides, and thus suggest sentences more
close to the final annotation.

Limitation of this study. The current system assumes user
input preceding the cursor to be noise free. The robustness of iCap
to user input with noises such as typos and grammar errors needs
further investigation. While sentences written in the interactive
mode are longer and presumably more descriptive, their effective-
ness as a better alternative to train an image captioning model has
not been verified.

5 CONCLUSIONS
In this paper we have made a novel attempt towards image cap-
tioning with human in the loop. We develop iCap, an interactive
image captioning system. We conduct both automated evaluations
and user studies, allowing us to draw conclusions as follows. With
the assistance of visually conditioned sentence completion, better
image captions can be obtained with less amount of human work-
load. Moreover, asynchronous bidirectional decoding is found to
be important for effectively modeling live input from a user during
the interaction.
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Table 4: Some qualitative results showing how our iCap system responses to user input in a specific annotation session. The
cursor, marked out by ∧, indicates the position where the user wants to edit. Text completed by a specific model is highlighted
in color. Different from the baseline model (Show-and-Tell) which considers only text at the left-hand side of the cursor, our
ABD-Cap model exploits texts at both sides, and thus suggests sentences more close to final annotations. Texts in parentheses
are English translations, provided for non-Chinese readers.

Test image Texts in an iCap session

User input at a specific moment:
一个∧

(A ∧)
Top-1 sentence generated by a specific model:
Baseline⇒一个戴眼镜的男人正在打电话
(A man with glasses is on the phone)
ABD-Cap⇒一个穿着西装的男人的黑白照片
(A man in a suit in a black-and-white photograph)
Final annotation:
一个穿着西装打着领带的男人坐在街道上的黑白照片

(A man in a suit sit on the street in a black-and-white photograph)

User input at a specific moment:
一只狗∧

(A dog ∧)
Top-1 sentence generated by a specific model:
Baseline⇒一只狗在草地上奔跑
(A dog is running on the grass)
ABD-Cap⇒一只狗在草地上玩飞盘
(A dog is playing frisbee on the grass)
Final annotation:
一只狗站在绿色的草地上玩飞盘

(A dog is playing frisbee on the green grass)

User input at a specific moment:
一只黑白相间的斑点狗和∧躺在沙发上

(A black and white spotted dog and ∧ lie on the sofa)
Top-1 sentence generated by a specific model:
Baseline⇒一只黑白相间的斑点狗和一只狗
(A black and white spotted dog and a dog)
ABD-Cap⇒一只黑白相间的斑点狗和一只棕色的狗趴在沙发上
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Final annotation:
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(On the table sits a strawberry and cheese pizza)
Final annotation:
桌子上放着一个草莓和奶酪的比萨饼

(On the table sits a strawberry and cheese pizza)
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