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Abstract

State-of-the-art object detection algorithms are designed to be heavily robust
against scene and object variations like illumination changes, occlusions, scale
changes, orientation differences, background clutter and object intra-class
variability. This allows users to use these algorithms in-the-wild, at any given
location under any given circumstances. However, in industrial machine vision
applications, where objects with variable appearance have to be detected, many
of these variations are in fact constant and can be seen as scene- and application-
specific constraints on the detection problem.

This dissertation takes these constraints and investigates how these can be used
to reduce the enormous search space for object candidates, speeding up the
actual detection process while simultaneously increasing the achieved accuracy.
While doing so we focus on three major aspects of object detection:

1. The amount of training data needed to obtain a robust and highly accurate
detection model. We suggest using our scene- and application-specific
constraints to reduce the amount of needed training data as much as
possible and focus on those training samples that actually matter for
training an effective object detection model. By doing so we reduce the
amount of manual labour, needed for labelling these training samples, as
much as possible. Furthermore, we introduce an innovative active learning
approach that helps us narrow down the useful training samples even
more while maintaining a high detection accuracy.

2. Maintaining real-time processing speeds. This is a hard-constraint in
many industrial applications but several state-of-the-art object detection
algorithms do not yet succeed in achieving these processing speeds. By
smartly using the scene- and application-specific constraints we aim at
increasing the speed of the detection process, and removing image areas
that do not contain objects from the search process as fast as possible.
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iv ABSTRACT

3. Reduce the amount of false positive (non-object image regions detected
as objects) and false negative (object image regions detected as non-object
regions) detections as much as possible, which helps at increasing the
overall average precision of the object detector.

We work on these three aspects of object detection both at training and at
inference time, simplifying both steps of the process. Since data is, according
to literature, crucial in obtaining robust object detection models, we investigate
how we can increase a small meaningful set of training data into more meaningful
data using data augmentation.

To be able to work on all these aspects of object detection, by looking at scene-
and application-specific constraints, we progressively increase the complexity of
our approach. We first start by using the constraints as pre- or post-filtering
operations on the output of a generic off-the-shelf object detector, which already
allowed us to drastically remove the number of false positive detections and
thus boosting the average precision of our models.

Proving their usefulness, we took the power of these constraints a bit further
and integrated scene- and application-specific knowledge into the actual training
process of the model. This not only allowed to reduce the number of false
positive detections, it also allowed a significant drop in false negative detections.
This again pushed the average precision of our models higher, compared to
standard off-the-shelf detectors.

When we proved the power of using these constraints during both training
and inference, we took a look at reducing the amount of manually labelled
training data as much as possible. This is done by suggestion an innovative
active learning approach that uses weak classifiers to look for meaningful and
much-needed training samples, only presenting those to the human annotator.
This not only increased the average precision, but also dropped the manual
annotation from multiple ten thousands to only several hundreds of images.

At the end of our PhD, we investigated the possibilities of using deep learning
as an object detection architecture. We proved that given the combination
of data augmentation and transfer learning, it is possible to train application
specific deep learning object detection models, which given a very limited set
of training samples (eg. for some models only 15 object specific samples were
used) is able to achieve average precisions of 99% and higher, creating optimal
solutions for our case specific object detection tasks.

Finally, we integrated all this research into several industrially relevant
applications and generated a lessons-learned chapter filled with practical tips
and know-how on applying object detection to industrially relevant problems.



Beknopte samenvatting
State-of-the-art objectdetectie algoritmes worden ontworpen met een hoge
robuustheid ten opzichte van scène- en object-variaties zoals een wijzigende
belichting, occlusie, variatie in schaal en oriëntatie, achtergrondruis en
intra-klasse variatie. Door deze variaties in de detector in te bouwen,
kunnen we deze technieken in-het-wild gebruiken, op elke mogelijke locatie
en onder elke mogelijke omstandigheid. Daartegenover staan industriële
beeldverwerkingstoepassingen, waar objecten met een grote variatie voorkomen
en gedetecteerd dienen te worden, maar waar veel van deze variaties in feite
constant en gekend zijn. Hierdoor kunnen we ze gebruiken als scène- en
applicatie-specifieke beperkingen op het objectdetectie probleem.

Deze doctoraatstekst bekijkt hoe deze beperkingen gebruikt kunnen worden om
de gigantische zoekruimte van object-kandidaten te reduceren, waardoor het
detectie-proces versneld wordt en tegelijk de accuraatheid omhoog gaat. Dit
doen we telkens met drie belangrijke aspecten in het achterhoofd:

1. De hoeveelheid trainingsdata nodig om een robuust en accuraat
objectdetectie model te bekomen. We suggereren om gebruik te maken
van onze scène- en applicatie-specifieke beperkingen om de hoeveelheid
trainingsdata zoveel mogelijk te reduceren en om te focussen op de
trainingsvoorbeelden die effectief bijdragen aan het training van een
robuuste objectdetector. Hierdoor reduceren we de hoeveelheid manuele
input die nodig is voor het labelen van de trainingsvoorbeelden zoveel als
mogelijk. Daarenboven introduceren we een innovatieve actieve learning
strategie die ons helpt de belangrijke trainingsvoorbeelden uit te filteren
en tegelijkertijd de hoge detectie accuraatheid te bewaren.

2. Bewaken van real-time uitvoer snelheden. Dit is een niet te negeren vereiste
opgelegd door de eigenheid van industriële objectdetectie toepassingen,
maar verscheidene state-of-the-art algoritmes halen deze realtime uitvoer
snelheid nog niet. Door op een slimme manier onze scène- en applicatie-
specifieke beperkingen te gebruiken, trachten we de snelheid van het
detectieproces op te voeren en beeldregio’s die geen objecten bevatten zo
snel mogelijk uit het zoekproces te halen.
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3. Zoveel mogelijk reduceren van vals positieve (achtergrondregio’s uit het
beeld die gedetecteerd worden als object) en vals negatieve (object regio’s
die gedetecteerd worden als achtergrondregio’s) detecties, wat bijdraagt
aan een toename in gemiddelde accuraatheid van de object detector.

Doorheen het doctoraatsonderzoek werken we aan deze aspecten zowel tijdens de
training als tijdens de inferentie, met het oog op een vereenvoudiging van beide
stappen. Aangezien data, volgens de literatuur, cruciaal is voor het trainen van
een robuust detectiemodel, onderzoeken we hoe een kleine betekenisvolle set
trainingsdata vergroot kan worden via data augmentatie.

Met onze scène- en applicatie-specifieke beperkingen in het achterhoofd, laten
we de complexiteit van onze voorgestelde aanpak stelselmatig toenemen. We
starten allereerst door de beperkingen om te gieten in pre- of post-filter operaties
op de input of output van een off-the-shelf objectdetectie algoritme. Dit laat
ons toe om de beperkingen te gebruiken om het aantal vals positieve detecties
drastisch te doen dalen en de gemiddelde accuraatheid omhoog te duwen. Het
gebruik van deze filters toont de bruikbaarheid van de beperkingen aan, maar
we gaan nog een stap verder en integreren de scène- en applicatie-specifieke
kennis rechtstreeks in het leerproces van het detectiemodel. Dit laat niet enkel
toe om het aantal vals positieve detecties verder te doen dalen, het staat ons
ook toe de hoeveelheid vals negatieve detecties te reduceren.

Na het aantonen van de bijdrage van deze specifieke kennis tijdens zowel de
training als de inferentie, nemen we de hoeveelheid van manueel gelabelde
trainingsvoorbeelden onder de loep, met het oog op het aantal zoveel
mogelijk te doen dalen. Dit doen we door een innovatieve active learning
strategie te implementeren die via zwakke detectoren op zoek gaat naar
betekenisvolle trainingsvoorbeelden, die vervolgens aan de annotator worden
voorgeschoteld. Dit vermindert de hoeveelheid manuele annotaties van
verscheidene tienduizenden tot slechts enkele honderden afbeeldingen.

Op het eind van dit doctoraatsonderzoek onderzochten we de mogelijkheden van
deep learning als objectdetectiearchitectuur. We tonen aan dat de combinatie
van data augmentatie en transfer learning het mogelijk maakt om applicatie
specifieke deep learning architecturen te gebruiken voor objectdetectie, wetende
dat we slechts een beperkte hoeveelheid trainingsdata hebben (bij sommige
modellen gebruikten we slechts 15 objectspecifieke voorbeelden). We behalen een
gemiddelde accuraatheid van 99%, waardoor een optimale oplossing voor onze
specifieke industriële objectdetectie opdrachten zich opdringt.

Tot slot integreerden we al deze kennis in tal van industrieel relevante applicaties
en schreven we een reeks praktische tips en know-how over toegepaste industriële
objectdetectie neer in een ‘lessons-learned’ hoofdstuk.



List of Abbreviations

ACF Aggregated Channel Features. Pedestrian detection
methodology, based on ICF, as described in [24].

AdaBoost Adaptive Boosting. A machine learning algorithm for selecting
strong features from a large feature pool, as described in [35].

AP Average precision. The precision averaged over all values of
the recall (i.e. identical to the AUC).

AUC Area Under the Curve. Often indicates the area under a
PR-curve (percentual), and thus a measure of accuracy.

BSD Licensing model that allows integrating the open-source
software in closed-source applications without paying license
costs.

CMYK A colour space used frequently in printing, based on 4 colours:
cyan, magenta, yellow and black.

CNN Convolutional Neural Networks. A state-of-the-art deep
learning methodology for performing tasks like object
detection, classification and segmentation, as described in [55].

CUDA A parallel computing platform and application programming
interface (API) model created by NVIDIA.

Darknet19 A deeply learned architecture for object classification by
Redmond et al containing 19 convolutional layers, mimicking
the VGG19 model.

Densenet201 A deeply learned architecture for object classification by
Redmond et al containing 201 convolutional layers, mimicking
the behaviour of [47].
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DoG Difference of Gaussians, a feature enhancement algorithm that
involves the subtraction of one blurred version of an original
image from another, less blurred version of the original, which
suppresses high spatial frequencies in images.

DPM Deformable Part Models. An object detection methodology
which employs a non-rigid template model, as described in
[32].

FDDB Face Detection Data Set and Benchmark, a data set of face
regions designed for studying the problem of unconstrained
face detection.

FGIA Flanders Geographical Information Agency.

FN False Negative. Evaluation metric of an object detection
algorithm, indicating instance that is incorrectly classified as
not belonging to the class to be detected.

FPS Frames per second. Indicates the throughput (i.e. speed) of a
camera or an object detection algorithm in the context of this
dissertation.

FP False Positive. Evaluation metric of an object detection
algorithm, indicating instance that is incorrectly classified
as belonging to the class to be detected.

GB Gigabit, a metric for defining RAM memory size, indicating
1.073.741.824 bytes.

GIS Geographic Information System, a system designed to capture,
store, manipulate, analyse, manage, and present spatial or
geographic data.

GPGPU General Purpose Graphical Processing Unit. Dedicated
hardware for doing fast and complex calculations.

GT Ground truth, indicating object label and location to the
image dimensions.

HOG Histogram of Oriented Gradients. A technique for describing
pixel intensity gradients in an image and their orientation, as
described in [16].

HSV One of the most common cylindrical-coordinate
representations of points in an RGB colour model.
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ICF Integral Channel Features. A way of combining multiple
feature channels into a single object detector, tested as
pedestrian detection methodology, as described in [26].

InceptionV3 The third version of a deeply learned architecture by Google
introducing the Inception module, as described in [110].

IoU Intersection over union. A metric used for matching ground
truth annotations and found detections after non-maxima
suppression. It is the area of overlap between both bounding
boxes divided by the area of union of both bounding boxes.

LBP Local Binary Patterns. A technique for describing features
in an image, based on intensity differences around the centre
pixel, as described in [43].

LWIR Long Wave Infra-Red.

MB Megabit, a metric for defining RAM memory size, indicating
1.048.576 bytes.

MSER Maximally Stable Extremal Regions. An algorithm for
extracting features in an RGB image.

NMS Non-maxima suppression. A technique to reduce the number of
bounding boxes after a sliding window evaluation. In the case
of overlapping bounding boxes (based on an overlap criterion)
only the highest scoring bounding box is maintained.

OCR Optical Character Recognition. A technique to automatically
capture written text.

OHTA A colour space introduced by Ohta et al in [78].

OpenCV An open-source computer vision library supplied by Intel, as
described in [12].

PR-curve A curve which visualises the trade-off between the precision
and the recall.

PR Precision-Recall, a universal metric for evaluation object
detection algorithms. P = precision = fraction of the detected
objects that are actual objects. R = recall = fraction of actual
objects that are detected.

R-CNN Region Proposing Convolution Neural Networks. An object
detection methodology which uses region proposals as input
to a deep learning architecture, as described in [98].
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RAM Random Access Memory. A form of computer data storage
which stores frequently used program instructions to increase
the general speed of a system.

RF Random Forests. A Machine learning algorithm for optimally
separating two feature sets, as described in [36].

RGB Red, Green, Blue. The three colour channels of a colour image.

SME Small and medium-sized enterprise.

SSD Single Shot Multibox Detector. An algorithm for detecting
object using only a single pass deep neural network, as
described in [67].

SVM Support Vector Machine. A machine learning algorithm for
optimally separating two feature sets, as described in [15].

TN True Negative. Evaluation metric of an object detection
algorithm, indicating instance that is correctly classified as
not belonging to the class to be detected.

TP True Positive. Evaluation metric of an object detection
algorithm, indicating instance that is correctly classified as
belonging to the class to be detected.

UAV Unmanned Aerial Vehicle. Commonly known as drone and
seen as an aircraft without a human pilot.

VGA Video Graphics Array, indicating a resolution of 640× 480.

VGG19 A deeply learned architecture for object classification by the
Visual Geometry Group containing 19 convolutional layers, as
described in [104].

Viola&Jones Refers to the algorithm of Viola & Jones for robust face
detection using a boosted cascade of weak classifiers, as
described in [119].

VOC Visual Object Class, used in the Pascal Visual Object
Challenge.

VOT Visual Object Tracking Benchmark dataset.

YOLO You Only Look Once Detector. An algorithm for detecting
object using only a single pass deep neural network, as
described in [96].
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Chapter 1

Introduction

Industrial automation is something we can no longer ignore. While automation
of production processes has been something mostly used by large industrial
enterprises in the past, nowadays even SMEs (small and medium-sized
enterprises) are trying to benefit from the power of automation. There are of
course several reasons for this. In latest years, technology for automation has
heavily improved, providing easily accessible soft- and hardware at reasonable
costs. Furthermore, automation is helping to improve the production processes,
aiming at a higher quality standard, achieving more robust and uniform processes.
It also allows companies to reduce personnel costs drastically and make the
work environment safer. This leads to a large shift in job types, as seen in
Figure 1.1. While in the past we focused more on manual labour at conveyor
belts, we are now more and more focusing on technical personnel, needed to
follow up on the automation systems and to act more as process managers.

Figure 1.1: Shift in job types, from manual to robotic apple sorting.
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However, automation is far from fail-proof, and that is the main reason why
we still need the human-in-the-loop mentality. While fully automated systems
are very good at doing repetitive tasks with a very high precision, they still
lack the ingenuity that humans have, especially when searching for outliers in
the process. A human is capable of detecting small changes or differences with
the greatest ease, while for automated systems, it is quite hard to detect these
differences without a redesign of the system. This has led to a large research
field, focussing on improving the existing human-in-the-loop systems (which
can be seen as semi-automated systems) towards fully-automated production
systems (a human operator is in principle no longer needed).

A nice example of this contrast between humans and automated systems can
be found in inspection tasks. Given a set of objects from the same production
line, a human is very good at detecting small cracks or faults, easily viewable
with the human eye and this at incredible speeds. This even works even if the
person has no prior knowledge of what an actual defect will look like. The
human brain, in this case, is very strong at seeing these immediate differences.
A fully automated system, however, is still lacking these self-learning capacities,
requiring the need of teaching it how the defect will look like. This needs
tailor-made algorithms by engineers, explicitly telling the system what to look
for. And that is the hardest part, defining those exact properties of the defects
in order to be able to automatically classify them.

In this dissertation, we want to touch upon a very small part of the complete
automation process. The interdisciplinary field that focusses on gaining a high-
level understanding of digital images and videos is called computer vision. Its
main focus is to try and mimic the human visual system, and perform evenly
well. This research field is needed to tell an automation system what is actually
occurring in its surroundings. One of the main tasks of many automation
processes is to automatically locate objects in an input image, captured by
a camera system. This is frequently referred to as object detection, but in
literature object classification and object categorization are also used. Object
detection is thus the task of providing a user with the exact coordinates of a
given object inside the camera coordinate system, which in turn can then be
related to world coordinates by other techniques in the computer vision field.

A mistake frequently made in computer vision, both in literature as in industrial
context, is the use of the concept of object recognition for object detection tasks
and vice-versa. Therefore we think it is important to highlight this difference.
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Object recognition is the process where we look for an exact instance of an
object. We know beforehand exactly how the instance looks like and try to find
this instance in a given scenery. Take for example a camera pointing at a coffee
stand, where we want to detect coffee mugs. If we know that we are looking
for a blue coffee mug with a black bird on top of it and an oval cup ear, then
object recognition will locate that single coffee mug. However, it will ignore all
other coffee mugs, even though they are part of the coffee mug class.

Object detection, also called object classification or categorization, aims to go
one step further, and instead of focussing on a single object instance, rather
look at a complete object class, with all the included variance. Different mugs
are not visually the same (different colours, different prints, different sizes,
. . . ), but they all contain a cup and an ear to hold the cup. Object detection
aims at generalizing the features describing the object class, and tries to find
a detector that can detect every single coffee mug, without telling which mug
specifically. This is exactly what our research focus will be, generating object
detection approaches for general industrial relevant object classes.

In the remainder of this chapter, we give a concise summary of the main
contributions of this PhD research. We also describe the outline of this
dissertation, discussing briefly the contents of each chapter.

1.1 Problem statement

Grabbing academically developed object detection algorithms and simply
applying them to industrial applications is not always feasible. There are
several issues with the available object detection algorithms:

• Most algorithms are trained on publicly available datasets. These ensure
that enough training data is available for specific classes (depending on
the focus of the dataset), in order to be able to learn a very stable and
descriptive model for the object class. Collecting similar amounts of
training data for completely new classes, is time-consuming and thus very
expensive for any enterprise trying to get started with object detection.

• Academic datasets are in most cases completely irrelevant to industrial
applications, as seen in Figure 1.2. E.g. the publicly available Pascal
VOC dataset, contains object classes like a dog, a sofa, a chair, . . . while
industrial relevant cases are looking for object classes that directly relate to
their application. This generates a mismatch between academic available
data and models trained on that, compared to the actual desires of the
industry.
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• On top of collecting all that training data, one also needs to manually
label them with coordinates and class labels of the actual objects in the
given image. Again this is a very time-consuming and labour-intensive
task. Academics benefit from already available datasets, and thus do not
need to do this relabelling again.

• Training of more general ‘in-the-wild’ object detectors (detectors that
basically work everywhere) can easily take days up to weeks. Commonly
used training parameters are available in many academic publications,
making it feasible to predict the actual training time. However, for a
new industrial relevant case, there is no telling what parameters will work
properly, not to mention it is impossible to estimate beforehand how long
training the object detection model will take. This is not so feasible in a
deadline-driven context.

• In more recent research, deep transfer learning, where an existing model
is fine-tuned into a new object class detector, drew the attention of many
researchers. However several of our experiments prove that this is only
feasible when your object data is related (e.g. a similar context or camera
viewpoint) to the dataset. If your data is utterly different (e.g. dataset is
frontal viewpoint from a car, but your data contains satellite images), then
many transfer-learning techniques do not reach a stable object detection
model and thus require the training of a model from scratch.

• Most techniques are developed in academic context, frequently using a
Matlab environment. For industrial applications, this is a bad choice by
far since Matlab requires a runtime license for each system on which the
application runs. Combined with the fact that most open source academic
implementations are not as well documented as it should be, it is very
difficult for companies to simply implement these techniques on their own.

Figure 1.2: Examples of typical object detection classes in an academic context
(sofas, babies, bikes, aeroplanes, dogs, chairs, . . . ) and industrial context
(orchids, pancakes, micro-organisms, bell peppers, . . . ).
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All these issues with using off-the-shelf detectors convinced us that there is still
a largely unexplored territory, with a focus on increasing the usability of these
object detection algorithms for industrial applications.

We also noticed that even though the field of computer vision is drastically
evolving and literally generating new algorithms each month, that a lot of
application fields are lagging behind. Agriculture and medical fields are both
great examples of places where automation is still being done with very basic
and old computer vision techniques or even totally manually (e.g. microscope
counting). These have only a very limited capability of generating satisfying
results. Pixel colour based segmentation with manually set thresholds is still a
very commonly used technique for object segmentation and object detection in
many application fields, while the computer vision field moved on and now uses
machine learning, and even more recently deep learning, to automatically learn
the best separation between object and background.

Given the above insights, the general problem statement for this dissertation
can be formulated as:

"Given the power of state-of-the-art computer vision based algorithms, we aim
at providing easy-to-use object detection solutions for industrial applications,
requiring a minimal amount of manual intervention, but ensuring very high

accuracies and real-time performance."

1.2 Main contributions

Our research positions itself between academic research on state-of-the-art object
detection algorithms and industrial ready-to-use object detection applications.
We grab existing techniques from academics and adapt them to the actual needs
of the industry. By doing so we close the valley of death, seen in Figure 1.3.

We notice that academically developed algorithms are in many cases not yet
mature enough to get integrated into actual applications. Where academics
invest a lot of resources in the fundamental research phase, once they have a
proof-of-concept they tend to move on to a new research topic, and many times
ignore the development phase. On the other hand, developers in an industrial
context, prefer algorithms that are robust, stable and bug-free, so that they
can pick it up instantly and move to the industrialization phase. They do not
want to invest many resources until an algorithm is actually mature enough.
To bridge that gap, and thus close the valley of death we focus on adding this
extra layer of robustness into publicly available object detection frameworks.
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Figure 1.3: Illustration of the valley of death in application development.

The main contributions that we propose throughout the different chapters in
this dissertation can be summarised as follows:

• We reckon that industrial applications are in fact way more constrained
than their actual academic counterparts. While in academics we try to
develop object detection algorithms that are as robust as possible given
the variation in the object class (e.g. pedestrians have a variety in clothes,
physical build, skin colour, . . . ) and application context (e.g. background,
lighting, . . . ), in industrial context, many of the possible scene and object
variations are heavily controlled. This allows us to define scene and
application-specific constraints that can help improve the performance of
the object detection algorithms.

• Compared to academically developed algorithms, industrial software needs
to be as real-time as possible (hard constraint). We thus focus on increasing
the processing speed of these algorithms whenever possible.

• Missing and wrong detections can have a huge impact in industrial set-ups.
Therefore, we aim at building detection algorithms that are able to detect
all objects in a given image or video sequence with a high certainty.

• In fully automated systems, the amount of manual labour should be
minimized. Object detection techniques need a tremendous amount of
manual labelling work. We tackle this issue by demonstrating an innovative
active learning strategy. This allows us to only ask for manual annotations
on a minimal set of images.
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• Due to the latest trend in computer vision, being deep learning, and the
tremendous drop in hardware costs, we investigate the possibility of using
these very powerful algorithms for industrial object detection tasks. We
prove that fine-tuning existing deep learning models to new detections
tasks is a feasible solution for industrial object detection.

• We know that collecting enough valuable data for training object detection
models can be a hazardous task. We investigate the relationship between
accuracy and the number of actual training samples needed and prove
that we only need to find a minimal set of valuable training samples to
obtain highly accurate object detectors.

1.3 Outline of research
After this introductory chapter, where we outlined our research, discussed our
actual problem to tackle and gave an overview of the main contributions, we
discuss the related work in chapter 2. In this chapter we take a closer look
at the evolution of object-based detection techniques in the past years. We
discuss different approaches in object detection, motivate why we stick to specific
frameworks and give an overview of the state-of-the-art in the field.

Chapter 3 discusses how we analysed industrial applications and discovered
many possible scene- and application-specific constraints that can be used to
improve object detection algorithms. We apply these scene constraints both as
pre- and post-processing filter on top of existing object detection algorithms.

By integrating the knowledge of these scene constraints into the actual training
data and training process, we mimic more advanced object detection techniques
using the robust and well-known cascade classification pipeline in chapter 4.

Trying to solve the issue of the costly and labour-intensive manual annotation
process, chapter 5 discusses an active learning strategy we developed for our
industrial object detection purpose. In this chapter, we aim to reduce the need
for manual annotation as much as possible while maintaining similar accuracies.

Since deep learning is still a rising trend in computer vision, we investigate the
possibilities of using pre-trained object detection models and model fine-tuning
in chapter 6, to obtain even more robust and versatile object detection models.

In chapter 8 we conclude our dissertation. We take a look at future
improvements and possible expansions to this work, have a look at what new
upcoming trends in computer vision could mean for our problem statement and
what it will take to make them mature enough for industrial use. Finally, we
give an overview of the industrial valorisation of this dissertation in chapter 9.





Chapter 2

Related work

In this chapter, we discuss in detail the related work to this dissertation. We
first focus on the evolutions of object detection algorithms in section 2.1, where
we highlight the current state-of-the-art in object detection and motivate why we
selected specific algorithms as a baseline. We take a closer look at research that
uses application-specific constraints to improve their results over unconstrained
scenarios in section 2.2. In section 2.3 we discuss active learning and its use
in application-driven object detection research. We conclude the chapter by
looking at the selected frameworks in section 2.4 and discussing metrics to
compare and evaluate object detection algorithms in section 2.5.

2.1 Object detection

Initial object detection solutions in computer vision applied a series of classical
image processing filters on the input image to filter out image pixels that should
belong to a specific object class. These segmentation based approaches require
a user to set hard thresholds on a specific property of the image pixels, e.g.
all pixels with an intensity value higher than 128 get a true label, all others
get a false label. Each threshold set on a specific property, results in a binary
mask of possible candidate pixels. By then combining these masks, possibly
adding a weight to each mask to represent the relevance of the property, people
obtained a final mask of object pixels. These are then automatically grouped by
applying connected component analysis and using erosion and dilation filters to
remove noisy pixels. However complex object detection cases in unconstrained
environments made it quite difficult to find these specific properties that allow

9
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Figure 2.1: Examples of variation invariant pixel representations: (top left)
Haar-like wavelets (top right) Local Binary Patterns (bottom left) Histogram of
Oriented Gradients (bottom right) Gabor filters.

separating object pixels from background pixels, leading to a time-consuming
and expensive quest of finding the problem defining properties.

Nevertheless, several companies we came into contact with at the beginning of
this PhD research were still actively using this segmentation- and threshold-
based approach. To improve these manually thresholded segmentation based
approaches, people started looking at the power of machine learning. These
supervised techniques use labelled data of the object class and the non-object
class to learn how to set the optimal threshold, removing the need to set a
manually selected threshold, over a given validation dataset. However, in this
case, people still need to look for the significant pixel properties that allow for
learning this optimal threshold.

The biggest drawback of threshold-based techniques is the influence of variation.
Too much variation in for example lighting, shape or colour, will result in a failing
object segmentation approach and will either allow some of the background
pixels to be classified as object or vice-versa. To cope with these variations,
research was pushed in a new direction, using variation invariant features,
automatically learned by machine learning algorithms. Some of these variation
invariant pixel representations are Haar-like wavelets [119, 65], Local Binary
Patterns (LBP) [43, 4], Histogram of Oriented Gradients (HOG) [16], Gabor
filters [48], . . . as illustrated in Figure 2.1.

The general approach of automated learning systems for object detection is
quite straightforward. It requires the generation of a set of training data, both
object images and background images. For the object images, one needs to
manually provide an annotation for each object in the image. This is done by
drawing a bounding rectangle around the object and storing its coordinates
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Figure 2.2: Viola and Jones algorithm: early rejection principle.

relative to the image dimensions. For each annotation, a feature representation
is generated and passed to the classification algorithm. For the background
data, random samples at model size are grabbed from images not containing
the object. Once all data, both object and background samples, is transformed
to the correct feature representation, a classification algorithm is used to learn
the best separation between both classes in the high dimensional feature space.
To ensure that these techniques do not only work on a fixed scale, being the
model dimensions, images are parsed into an image pyramid, where each image
is up-scaled and down-scaled. Once a detection with a fixed model size is found
on a scaled part of the pyramid, the found detection is warped back to the
original image size, allowing for multi-scale object detection into a single model.

A first novel groundbreaking approach in object detection is the boosted
cascade of weak classifiers, presented by Viola and Jones [119] in 2001.
Originally developed for robust face detection, it was quickly adapted to work
for general object detection [65] in 2002. They use Haar-like wavelets as
feature representation, which is basically a subtraction of pixel intensities of
neighbouring pixels. This type of feature can be calculated quite fast by using
integral images. On top of this feature representation, an adaptive boosting
algorithm (AdaBoost) [35] is used to train a cascade of weak classifiers. By
applying a combined sliding-window and image pyramid approach, an image is
efficiently processed in every location and on different scales. The power of the
cascade structure is that many windows are only evaluated by a small set of
weak classifiers, able to reject a lot of negative windows, and thus increasing
processing speed drastically. This is called the early rejection principle, as
illustrated in Figure 2.2.
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Figure 2.3: Deformable Parts Model for bikes as suggested by Felzenszwalb et
al. [31]. (left) Frontal and side model applied to images (right) Root model +
part models + distributions of allowed deformation.

The approach proposed by Dalal and Triggs [16] in 2005 was the next step in
object detection and more specific in pedestrian detection. By using Histograms
of Oriented Gradients (looking at local image gradients) in combination with
a Support Vector Machine (SVM) classifier [15], they automatically learn a
detector that is able to separate pedestrians from the background.

Until then detectors always assume, given a set of features to represent the object
image, that the features are in a fixed position in relation to each other. This
only allows modelling rigid, non-deformable models for object detection. Given
objects like pedestrians, one could argue that those rigid models are actually
under-performing since a pedestrian is a highly deformable model. Therefore the
research of Felzenswalb et al. [31] introduced in 2008 the concept of Deformable
Parts Models (DPM) for object detection. They make a combination of a root
model, a rigid model of the complete object, but extend that with parts and
a deformation relation between those parts. Each part is a rigid model on
itself, and can be seen as logical object parts like a leg, a head, a torso, . . . This
introduction gave object detection again a large performance boost. Figure 2.3
illustrates this. On the left-hand side, we see both a frontal and side model
view for detecting bicyclists. On the right-hand side, we can see the model
separation for both views, starting with the rigid root model, then the rigid
part models and finally the allowed deformations on the parts.

One can argue that only using a single invariant feature representation will
never reach the full potential for object detection. That being said, we saw an
explosion in techniques combining multiple invariant feature representations
in a single model, improving object detection accuracies. However, brick walls
were still hit. To reach an even better performance, Dollár et al.. suggested
in 2009 [26, 25] to take a step back, and acknowledge that for example colour
information, although highly influenced by lighting conditions, still has a major
performance boost when added to these invariant feature representations.
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Figure 2.4: Integral Channel Features: adding LUV channels triggers high
response on face area as shown by Dollár et al. [26] over a large training set.

For example, the face area has a distinctive feature in the LUV colour space, as
illustrated in Figure 2.4. They introduced a technique called Integral Channel
Features (ICF), where a large set of feature representations is combined. The
underlying cascade boosting system then smartly selects the most discriminative
features from different channels, instead of using all of them, to build a very
robust object detection algorithm.

On top of this work, a lot of variants were proposed by Benenson et al. in 2012
and 2013 by either replacing the combination of feature channels, changing the
way features are selected from different feature channels [6, 7], or replacing the
classifier back-end to something like e.g. random forests.

The largest performance boost arrived with the upcoming trend of deep learning
and the drop in the cost of General Purpose Graphical Processing Units
(GPGPU). The introduction of deep Convolutional Neural Networks (CNN) in
2012 [55] and its many variants for object classification and detection pushed
the performance limits of object detectors through the roof. The ability to learn
feature representation from raw pixel input data by applying convolutional
filters removed the manual handcrafting of discriminative feature representations.
Furthermore, these learned CNN features proved to be more effective than any
handcrafted feature out there. Since a complete CNN pipeline (see Figure
2.5(top)) was still very computationally demanding, initial research in object
detection focussed on combining these CNN features with classic classifiers like
SVM [38], Boosting [122], DPM [101] or Random Forests (RF) [41], as shown
in Figure 2.5(bottom).
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Input CNN Features SVM, RF, Boosting, ... Output

Input Convolutional Neural Network Output

Figure 2.5: Different options of convolutional pipelines.

However, in recent years, object detection using deep learning (also called deep
object detection in the remainder of this dissertation) took a huge step forward.
Due to the rise in computational power with affordable GPGPUs, one is capable
of using a complete convolutional pipeline for object detection, so both feature
representation and classification. Several state-of-the-art approaches are based
on this principle.

However, one issue still remains. Since Convolutional Neural Networks process
image patches, doing a multi-scale and sliding window based analysis takes
a lot of time, especially if image dimensions increase. Combine this with
the fact that deeper networks achieve a better detection accuracy, very deep
networks like VGG19 [104] and InceptionV3 [110] can easily take several
seconds for a VGA resolution image. To increase the execution speed of these
algorithms, researchers introduced the concept of region proposal techniques.
Basically, these techniques are fast and lightweight filters that pre-process
images, looking for regions that might have promising content. Instead of
supplying the convolutional chain with multiple millions of windows, the region
proposal algorithms reduce this to only several thousands of windows.

Figure 2.6: Region proposal networks to obtain faster convolutional neural
networks for object detection as proposed by Ren et al. [98].
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Figure 2.7: Single pipeline deep object detectors: (left) ‘You Only Look Once’ -
detector (YOLOv2) [96] (right) ‘Single Shot Multibox’ - detector (SSD) [67].

Region Proposing Convolutional Neural Networks (R-CNN) [98] use a shallow
region proposal network, as illustrated in Figure 2.6, on the GPU that uses
mutual information of the actual detection pipeline. By doing so we allow
proposing a limited set of region candidates towards the classification part of
the deep learning pipeline. This enabled to run very deep models like VGG19 at
10FPS, giving a 30x speed improvement towards the original implementation.

The ‘Single Shot Multibox’-detector (SSD) [67] introduces an algorithm for
detecting objects in an image using only a single deep neural network,
immediately grouping the convolutional output activations and returning object
boxes. The ‘You Only Look Once’-detector (YOLO) [96] implements a similar
approach, using anchor points that allow learned aspect ratios around pixel
areas that have a high response. Both detectors remove the need for extra region
proposal networks and perform bounding box prediction and class probability
generation in a single run through the network, as illustrated in Figure 2.7.

Even as we speak, the field of object detection keeps growing and producing
new and more effective detection models, e.g. the work of Redmond et al. [97]
delivered a 9000-class real-time object detector. It seems that deep learning
has, for the time being, conquered the top spot and is there to stay for now.

2.2 Application-specific constraints

Using constraints in a computer vision application to obtain better end results is
not something completely new. Especially in machine vision, where constraining
the application by introducing a controlled lighting source, a pre-known
trajectory of the object, a pre-known 2D shape, . . . so that basic threshold
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Figure 2.8: Ground plain assumption illustrated as shown by De Smedt [19].

based segmentation will work, is a common habit. If there is a lot of application-
specific variation then applying these more constrained techniques like the
segmentation approach suggested by Lee et al. [59] will be nearly impossible.

We highlighted the advantage of using application-specific scene constraints
(e.g. a constant illumination, a fixed camera position or a known background) to
improve state-of-the-art object detection algorithms in our first publication [88].
The paper suggests using the knowledge of the application-specific scene- and
object-conditions as constraints to improve the detection rate, to remove false
positive detections and to drastically reduce the number of manual annotations
needed for the training of an effective object model. Some examples from the
literature are given below.

The work of Mathias et al. [71] clearly shows that the combination of object
categorization and known object constraints works for robust traffic sign
classification. In this case, the lighting conditions are quite variable, but the
colour and shape properties of the object itself are quite stable. Furthermore,
research like the work of Cho et al., Peng et al. and Dibra et al. [14, 84, 22]
describes the use of a ground plane assumption for 3D modelling and multiple
camera view processing. This ground plane assumption assumes that pedestrians
in a relative position to a fixed camera (for example mounted on the top of a
car) must have a fixed average size. The same assumption is for example used
in the work of De Smedt and Hulens [19] where they apply a similar ground
constraint for efficient pedestrian detection from UAVs, given a known height
at which the drone is flying, as shown in Figure 2.8.

In every industry-relevant application we developed, we firstly investigated the
state-of-the-art on similar techniques. Many times this resulted in research
pointing at the importance of using scene constraints, which we will further
investigate in chapter 3, or heavily over-relying on actual constraints. We
will discuss this in detail in a separate related work subsection in each of the
following chapters and sections.
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Figure 2.9: The active learning principle illustrated for object detection,
focussing on selecting the most valuable training samples.

2.3 Active learning

Supplying large amounts of training data to machine learning algorithms allows
learning very complex object detection models. However, the downside is that
both in gathering positive and negative training data, it is very difficult to tell
which new sample will actually improve the efficiency of the detection model.
In order to cope with this problem most academic developed techniques just
gather a tremendous amount of training data, ensuring that most frequently
occurring situations are captured by the dataset. This works when your target
object is an object class that has active research and thus finding training data
is simply a task of combining publicly available datasets. However, if your
application field is completely unrelated to the currently investigated academic
application fields, then you are left in collecting all that data yourself. And
since the saying ‘Time is money.’ still stands in industry, putting employees on
this time-consuming and resource-expensive task is in many cases the reason
why the industry does not use machine learning algorithms.
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If we want to drastically reduce the amount of manual interventions, needed
for learning a machine learning based object detection model, then we should
focus on getting the most valuable samples labelled first. In order to decide
which samples are actually valuable to be added to the process, we will apply
a technique called active learning in chapter 5. The idea of active learning
is to use an initial weakly trained detection model, based on a limited set
of training samples and use that model to predict for us which samples are
actually valuable (close to the decision boundary) for adding in a second training
iteration and which are not (no ambiguity in labelling). This principle can be
seen in Figure 2.9. We make a distinction between hard negatives and hard
positives as explained below. Furthermore, the advantage of active learning is
that it limits the amount of manual labour since we only need to provide labels
to new training samples that add extra knowledge to the trained classifier.

Applying active learning in object detection has been done before. The work of
Kapoor et al. [52] combines active learning with Gaussian processes in order
to build an effective object categorization pipeline. While using a very small
dataset for a single category, they are still able to obtain a significant boost in
classification performance compared to using a predefined large set of training
samples, even indicating that using too many general samples, will make the
model less discriminative than only using qualitative samples.

The work of Lia et al. [61] on adaptive active learning tries to tackle a common
issue when using active learning strategies. The query selection strategy is
key to create a robust active learning algorithm. With a large amount of
unlabeled instances, these techniques can become prone to querying outliers.
Their adaptive active learning strategy uses a selection mechanism that combines
an information density measure and an uncertainty measure to select critical
instances to label for image classification tasks, making it very suitable for
object and scene recognition tasks.

In chapter 5 we use this active learning strategy to drastically reduce the number
of annotations needed when collecting valuable training data. We use these
concepts to train initial weak classifiers with a very limited set of training
data, use those models to iteratively search for valuable training samples (both
object and background samples) and only ask for manual input (through label
correction) if the classifier itself is not sure of its decision to label it as object or
background sample.
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2.4 Selected frameworks

A final section in this related work chapter discusses how we selected the
framework as a base of most of our developed research. When starting our
PhD research in 2013, several approaches were available, but most of them were
heavily optimized for either face or pedestrian detection tasks. Combined with
the fact that many of these algorithms were only available as proof-of-concept
software in Matlab package form, this limited our possibilities when developing
industrial relevant object detection applications.

The OpenCV framework [12], standing for open-source computer vision and
now owned by Intel, was a welcome alternative to what was around. It
included several implementations of robust machine learning algorithms like
boosting, support vector machines, random forests, . . . that could work as
efficient classifiers for our industrial relevant datasets, based on the on that
moment state-of-the-art object detection algorithms available. Combined with
good documentation, an intuitive C++ interface and an active community, the
decision was made to continue our research on the base of this package.

After some initial test set-ups to compare different object model detection
interfaces in OpenCV, we decided that the robust and proven implementation
of the Viola and Jones algorithm [119] was the best candidate to continue
our research on top of. It allowed for applying scene constraints as pre- and
post-filtering, as discussed in chapter 3, as well as integrating knowledge in
the actual training pipeline (discussed in chapter 4) mimicking the behaviour
of the more powerful ICF technique [26]. Furthermore, it allowed us to focus
on implementing extra functionality, rather than building an efficient boosting
system again from scratch. Given the fact that the software was also released
under a BSD license, this was the perfect candidate for industrial applications,
since licensing is no longer an issue.

However, we did not simply stick to adaptive boosting and building robust
cascades of weak classifiers for our industrial object detection tasks. Once our
research group implemented a standalone C++ version of the Dollár Integral
Channel Features approach [18] we also decided to compare this against our
boosted cascade models, as seen in chapter 4 section 4.2.

Finally, by the end of my PhD research, we could no longer ignore the exponential
growth in deep learning algorithms for object detection. We considered available
deep learning frameworks and found an easy to adapt framework based on C
and CUDA, called Darknet [95], which can easily be integrated with our existing
software. Based on the YOLOv2 object detection model [96] we applied several
deep learning object detectors to industrial cases, proving their use, even when
having only access to very limited datasets, as discussed in chapter 6.
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2.5 Comparing different detection algorithms

Since our dissertation handles multiple object detection algorithms and several
trained models, we need to establish a baseline approach for evaluating all our
trained models.

2.5.1 Multi-scale sliding window and non-maxima suppression

Before digging into evaluation metrics, we first need to elaborate on how object
detections algorithms return their detections. Object detectors, in general, are
trained on image patches either containing the object (positive training samples)
or not containing the object (negative training patches, also called background
patches). However, when using an object detector in an application, we desire
to supply full images to the system, and not precut image patches.

In order to allow our detection algorithm to apply localization of patches
classified as an object, we apply a multi-scale sliding window based approach.
This means we move a patch, with the same size as the training patches, over
the image, with a pre-set step size in both x- and y-direction. Each patch
is subsequently evaluated by our model and given a detection probability (a
certainty indicating a patch belonging to the object class).

However, this sliding window only provides us with localisation properties.
Using a fixed size window only allows detecting objects at a fixed scale. In
applications, however, objects can appear in different scales and we would want
to avoid training a specific object detection model for each scale that can occur.
For this, we up-scale and down-scale the image by a predefined scaling factor.
Once a detection is found in a resized image, the detection bounding box is
transformed back to the original image using the scaling factor specific to that
resized image.

Of course, performing a multi-scale sliding window based approach yields
multiple slightly shifted detections around an object. To solve this problem we
apply non-maxima-suppression (NMS) on the returned detections. Based on
an overlap criteria, bounding boxes are merged and only the highest score of
the merged bounding boxes is kept and assigned to the final resulting bounding
box, as seen in Figure 2.10. When deciding on the overlap criteria, one has
to keep in mind that objects close together and slightly overlapping should
still be detected as single objects, instead of returning a single melted-together
detection. A detailed study of NMS, selecting the correct overlap threshold and
its influence on detection accuracy can be found in the addendum to the work
of Dollár et al. [27].
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Figure 2.10: Example of non-maxima-suppression: (left) original (middle) after
detector (right) after non-maxima suppression.

2.5.2 Precision-recall curves

Comparing the accuracy of different object detection algorithms is frequently
done in the literature using precision-recall curves (PR-curve), and is done as
follows. On a frame-by-frame basis, the algorithm evaluates each detection that
is returned by the object detection model. For every detection that is matched
with a manually labelled ground-truth annotation, we count a true-positive
detection (TP). A detection that is not matched by a ground-truth annotation,
triggers a false-positive detection (FP). If an object that has a manually labelled
ground-truth, is not detected by the model, we count a false-negative (FN).
We consider a matching ground-truth annotation and a detection, again based
on an overlap criteria, called the intersection-over-union (IoU). Whenever the
IoU has a value which is larger than 50%, two bounding boxes are considered a
match. However, in application-specific scenarios, this value can be lowered or
increased as needed.

Given a ground-truth bounding box (A) and a detection bounding box (D), the
IoU is formulated as:

IoU = area(A ∩D)
area(A ∪D) = intersection

union (2.1)

Based on the found matches and the returned values for TP, FP and FN, we
can now formulate precision (P) and recall (R) as follows:

Precision = P = TP

TP + FP
(2.2)
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Recall = R = TP

TP + FN
(2.3)

The precision indicates the percentage of correct detections (the object the model
is trained for is detected) versus all retrieved detections. At the same time,
the recall indicates the percentage of objects in the complete dataset that are
actually detected.

Each detection algorithm couples its detections with a probability, a value
identifying how certain we are that the retrieved detection actually belongs to
the object class we are looking for. By varying a threshold over this probability
we can remove detections that do not agree to the threshold and thus change
the number of TP, FP and FN. Iteratively changing the threshold, generating
specific precision-recall positions, leads to a precision-recall curve.
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Figure 2.11: Example of the precision-recall curve with average precision (AP),
the optimal solution (red star) and the best configuration (green star).
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If the threshold is set low (sloppy), more objects will be detected at the cost
of an increase in false detections (a higher recall at a lower precision). If the
threshold is set high (strict), fewer objects will be detected while the number of
false detections also decreases (a lower recall at a higher precision).

An example of a resulting PR-curve can be seen below in Figure 2.11. The red
star indicates the best obtainable detector with a precision and recall both at
100%. The green star indicates the best set-up specific solution if we consider
the closest distance to the top left corner. However, we proved with several
applications that the optimal position can differ, depending on what your
application prefers (obtaining a higher precision or a higher recall).

2.5.3 Evaluation metric for deeply learned classification net-
works

In chapter 6 we introduce the concept of using a classification network in
combination with a manually constructed sliding window based approach,
to compare against actual object detection networks. In literature, where
classification networks are validated over large public datasets, the metric
of topX-accuracy is being used, instead of the more classical precision-recall
curves, where X can be replaced by a number of classes. For large multi-
class classification challenges, top1-accuracy and top5-accuracy are the most
frequently used metrics. Since the applications in chapter 6 only cover two-class
classification models, we only use the top1-accuracy as an evaluation metric,
described in the equation below.

top1-accuracy = TP + TN

TP + TN + FP + FN
(2.4)

The top1-accuracy is the ratio of the correct detections (true positives and true
negatives) over the total number of patches provided to the classification system.

In the following chapter we start by discussing how we used scene- and
application-specific constraints to our boosted cascade of weak classifiers pipeline
in order to obtain efficient, industrially relevant and real-time object detection
algorithms, supported by actual industrial cases.





Chapter 3

Introducing object- and
application-specific scene
constraints

The work presented in this chapter was published at the MVA 2015 conference
[89], the EMBC 2015 conference [85] and the VISAPP 2016 conference [90].

General academic research on robust object detection starts from one of the
frequently used cases, e.g. pedestrians or faces. This is quite understandable
since these classes already contain a lot of challenges one will need to tackle
in any other object detection task, like a variety of poses, colour combinations,
illumination differences, . . . This results in academic focusing on detecting
objects in-the-wild, which means that an object should possibly occur in any
possible condition with any possible kind of background information. Given the
fact that trying to integrate all this variation leaves most state-of-the-art object
detection algorithms with an accuracy of about 95%, we are sure there is still
room for improvement.

However, many industrial applications specifically decide to partially constrain
these in-the-wild conditions, in order to obtain higher accuracy rates (aiming
for accuracies of 99.9% and higher), that are more suitable for industrial
applications. With an accuracy of 95%, we are still unable to detect five out of
a hundred objects, which is unacceptable in industry, taking into account that
most automated production processes work with thousands up to millions of
object candidates a day.

25
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These introduced application specific scene constraints, ranging from fixed
and well-defined illumination sources to a known background (e.g. a conveyor
belt), can be combined with existing state-of-the-art object detection algorithms
as either pre- or post-filtering steps to push the accuracy over current limits.
One could argue that once you know for example the background, that object
detection algorithms are overkill, and segmentation based approaches could
suffice. Take for example the case of detecting chocolate figures on a conveyor
belt. This belt is cleaned once a day, so at the beginning of a shift, it is clean and
blue, making segmentation a valid candidate. However, after a couple of hours
of running, the belt gets cluttered with leftover chocolate parts, and thus the
algorithm starts failing. Stopping the belt multiple times a day is economically
not manageable. One can see that in these cases a robust detection algorithm,
capable of coping with this cluttered background, will do the trick.

The following subsections will discuss in detail three cases where we developed
scene-specific pre- or post-filtering techniques to push the initial object detection
accuracies one step further. Section 3.1 discusses the visual detection and species
classification of orchid flowers in the context of an automated sorting installation.
This is followed by a study of using object detection algorithms in elderly home
care, in section 3.2. Here we used automated techniques to define if an elderly
is using a walking aid or not, in order to obtain a better estimation of their
walking capabilities, directly related to their health status. Section 3.3 discusses
the topic of automated detection and privacy safeguarding of pedestrians in
mobile mapping images. Finally, section 3.4 will conclude on how to use scene
constraints as pre- and post-filtering for improving object detection accuracies.

3.1 Visual detection and species classification of
orchid flowers

With more than 100.000 different Phalaenopsis orchid flower cultivars, we notice
a large intra-class variation in shape, size, colour and pattern. Object detection
techniques can build a single model for flower detection based on this heavy
varying object data. Our application exists of an industrial orchid grading
machine, in which the orchid plants are passing by a set of cameras. The orchid
itself is rotated 360 degrees to capture the plant from all possible sides, as seen
in Figure 3.1. In each view of the orchid plant, we want to detect all frontal
facing orchid flowers. With only a limited set of annotated training data at hand
(only 250 orchid flower samples), we investigate the possibility of achieving high
detection accuracies on a larger validation set.
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Figure 3.1: Example of the input data for the given orchid flower detection and
classification pipeline, presenting a 360-degree view of the complete orchid.

After collecting all individual orchid flowers, the flowers are passed to a
classification pipeline, which determines which orchid cultivar we are dealing
with. Again this classification pipeline is trained on a very limited set of data
(5 classes with on average 15 training samples per class).

The application itself has several set-up-specific constraints that make the
training of a detector and classifier easier. First of all, there is a controlled
lighting, which restricts the intra-class appearance variation, and thus the
number of negative examples. Furthermore, it also allows using a colour specific
image description for each species. Since colour descriptions will not be unique
for all those orchid species, we will combine the colour description with an
appearance based classification of the flower, based on the visual characteristics
like texture, edge content, dominant colours, etc.

Figure 3.2: Example images of all five orchid flower classes. (a) Uniformly
Coloured (b) Coloured Lip (c) Striped Pattern (d) Spotted Pattern (e) Speckled
Pattern
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Secondly, the position of the camera is known, and thus the scale range of
the orchid flowers is known, which leads to an effective reduction of the huge
object search space based on the image pyramid [88]. Finally, we have a known
blue background, as clearly noticeable in Figure 3.1, which ensures there is no
background clutter.

For classification, we propose to look at a specific set of visual features like colour
differences, dotted patterns, radial lines, etc. After the flower detection phase,
we efficiently combine all this information into a decision tree of binary support
vector machines that succeeds in separating all provided orchid flowers into five
texture based classes as seen in Figure 3.2. Combined with a subsequent unique
colour description this class label successfully separates all given cultivars.

The remainder of this section is organized as follows. Subsection 3.1.1 discusses
related work on orchid detection and classification, while subsection 3.1.2
explains in detail how we detect orchid flowers by using a scene constrained
boosted cascade of weak classifiers. Subsection 3.1.3 elaborates on our flower
species classification approach using binary support vector machines. Finally,
subsection 3.1.4 wraps up some conclusions.

3.1.1 Related work on orchid detection and classification

In the application of orchid flower detection, the variety of species is huge (shape,
pattern and colour variation), which makes it impossible to use segmentation
based approaches like suggested by Nilsback and Zisserman in [77]. In this work
on the multi-class classification of flower species, they introduce a smart flower
segmentation on shape and colour. However, they do not have a controlled
lighting condition and do not discriminate different cultivars of the same flower
species, like in our application.

Object categorization techniques might pose a solution to the problem. They
have been used before for robust object detection in situations with a lot of scene
variation (lighting, occlusion, clutter, ...). In this specific case, the situation is
somewhat different, due to the huge amount of object variation (there are 60
Phalaenopsis species with in total more than 100.000 different cultivars) but
with a uniform, controlled lighting source, a known camera position and a known
background colour. These application specific parameters can hopefully limit
the amount of training data needed to obtain a robust orchid flower detector.

More recently Sfar et al. [102] describe an approach for efficiently classifying
scanned leafs and orchid flowers, using an approach based on vantage feature
frames. Their research is focused on a different variety of orchid flowers and due
to the scanned image, the shape of the flower is far more unique than in our
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application. The work also suggests creating a large set of boundary conditions
in order to ensure a successful classification and a high recognition rate. This
is exactly what we try to avoid since these boundary conditions cannot be
achieved in our case of industrial flower classification.

3.1.2 Orchid flower detection

The first step in processing orchid flowers is detecting where the actual flowers
are in the given input image. Without successful detections, we cannot pass the
detected flowers to the classification pipeline. Due to a limited set of training
samples, and moreover a very limited set of positive training samples compared
to a large set of negative samples, it is important to select an object detection
technique fit for this specific task.

Applying the HOG+SVM approach suggested by Dalal and Triggs [16] proved
infeasible due to the very limited positive training sample dataset available. The
trained detector does not seem to be able to learn an accurate separation between
object and background patches. The detector output generates unsatisfying
results and there is not enough data to generalize a proper model. Also, the
HOG+SVM approach heavily depends on a balanced set of positive and negative
training samples to increase its performance, which is not the case for the data
we have at hand. The cascade classifier approach suggested by Viola and
Jones [119] shows promising results given a very limited dataset, being able to
generalize a model, even if a limited positive sample training set is available. In
addition to that, the framework uses features, being Haar-like wavelets or Local
Binary Patterns [43], that in our specific application seem to generalize better
over the given dataset, compared to for example HOG features.

We take the basics of the Viola and Jones framework and adapt it to our needs
of generic object detection, and more specifically, in this case, the detection of
orchid flowers. We combine the open source training and detection interface
provided by OpenCV [12] and make a complete training and detection framework
for any given object class, based on the experiences collected in this application.

Training the object model

In order to build a robust orchid flower model, we collect a set of training
images. As positive object images, 252 orchid plant images are grabbed from
the industrial pipeline which already has a fixed camera set-up inspecting the
plants. From these images, each flower is manually annotated with a bounding
box, extracted and resized to an average size of 48×56 pixels. The original
images, with the annotated pixels blacked out, are used as large background
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images. From those images, a set of controlled samples, with same dimensions
as the positive training samples, are grabbed as negative training examples.

On each training positive and negative training sample, the LBP or Haar-like
wavelet features are calculated. Over this large set of collected features, a
weak classifier per feature is created as a single depth binary decision tree.
The AdaBoost algorithm then decides which trees are the most discriminative
(resulting in the best separation between positive and negative samples) on the
given training data. The final model is built by using 250 positive image
samples of several orchid flower classes for each stage of weak classifiers and
2000 randomly sampled negative image samples. The model contains a set of 57
weak classifiers. Weak classifiers are combined in stages until each stage reaches
a maximum false alarm rate of 50% while guaranteeing a minimum hit rate of
95% on the positive training samples before moving on to the following stage.
The training takes around 20 hours on a dual-core processor with 8GB RAM.

Due to the known illumination and camera position, an application specific
detection model for our industrial case is created by the training phase. This
model will not work in any other set-ups used for orchid detection. It is highly
dependent on the given background set-up and the way the orchids are presented
to the system in relation to the camera set-up.

Object detection using the trained model

The general approach when using a cascade of weak classifiers is to run through
the whole image pyramid, a step-by-step downscaled version of the original
input image, with a sliding window equalling the models’ dimensions. This
allows us to perform a multi-scale object detection using only a single-scale
object model. Unfortunately, the search space for object candidates turns out
to be enormous when the size of the input image grows. Based on the orchid
flower model that was trained and the knowledge of the camera set-up in this
industrial application, we applied several restrictions to the detection pipeline,
in order to efficiently reduce the search space. We start by increasing the image
pyramid scale step and add restrictions to the object candidate size by limiting
the scale range.

On top of reducing the search space and thus decreasing processing time for
a single image, the reduction of the candidate space also helps to drastically
reduce the number of false positive detections. A constant and diffuse lighting
leads to an effective foreground-background segmentation, further reducing the
search space of object candidates, resulting in a fragmented image pyramid, as
we discussed in our earlier work [88].

A final improvement we applied is related to the application specific requirements
and can be achieved by applying a higher detection certainty threshold on the
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Figure 3.3: Orchid flower detections without false positives.
.

final stage of the boosted cascade of weak classifiers. Since we only aim to
correctly classify a complete orchid plant, it does not matter if we miss some
flowers with our detection in a single view of the plant. By combining multiple
views of a single orchid plant for processing, which is automatically supplied by
the orchid sorting set-up, we are able to increase the final stage threshold, so
that only flower detections with a high certainty get accepted and the number
of false positive detections (a detection in the image triggered by pixels not
containing an actual orchid flower) is reduced to zero.

Detection results

The fact that we obtain a well-performing object detector with a very small
training set, by carefully selecting the correct training and detection parameters,
is quite impressive. On the complete validation dataset of 360 test images,
each containing several orchid flowers, not a single false positive detection was
reported, while still maintaining at least a single detection for each orchid plant
image. An example of these detection results without false positive detections
can be seen in Figure 3.3.

3.1.3 Orchid type classification

Only detecting orchid flowers in a given input image does not yet solve the
problem of identifying the exact Phalaenopsis flower cultivars. We present a
complete pipeline for classifying flower cultivars towards a predefined class using
a binary support vector machine set-up and majority voting system. Since there
are so many cultivars, it is impossible to learn a single classifier that is able
to classify each and every one of them. Based on the visual characteristics of
the flowers, we divide the cultivars into five pattern based orchid classes, as
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Figure 3.4: Example of orchid flower detections being segmented out for orchid
type classification.

already shown in Figure 3.2. Combining this with a colour based descriptor of
the flower itself, allows us to decide which cultivar is presented to the system.

Visual characteristics and features

We start by segmenting out the flower from the background, based on the images
retrieved from the orchid flower detector. Our application has the advantage of a
known set-up, including a clear blue background, which makes the segmentation
task a lot easier. On top of that, we filter out dark green and dark brown regions
which could be parts of the plants, like stokes or flower buds, partially occluding
the actual flower. One could argue that this is only valid when evaluating on
a dataset that does not contain dark brown- and green-like coloured orchid
flowers, which would otherwise be segmented out. However, the final industrial
installation also captures a fluorescence image under UV lighting, which yields
a high response to flower buds, leaves and stokes, but not on flowers. This
could be used to replace the green and brown based colour filtering. All this
leads to a segmented flower region image, which can then be passed on to the
classification process. This is visualised in Figure 3.4. Histogram equalization
is applied to the RGB colour channels to improve contrast.

Considering the five orchid flower classes mentioned in Figure 3.2, we generate
a set of visual observations about the flower appearance. As a general
characteristic for all orchid classes, when a flower has multiple colour ranges,
then there are at most two colours, called a foreground and a background colour.

1. Given the uniformly coloured class, we notice that the colour of the
background and foreground are almost identical.

2. The coloured lip class has a large colour contrast between background
and foreground combined with a few foreground blobs. Location of the
foreground blob is at the bottom centre of the flower.

3. The striped pattern class has a large colour contrast between
background and foreground combined with a large number of foreground
blobs. The flower contains strong radial edges.
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4. The spotted pattern class has a large colour contrast between
background and foreground combined with a few foreground blobs. The
foreground blobs have a random location.

5. The speckled pattern class has a large colour contrast between
background and foreground combined with a large number of foreground
blobs. The edges are not dominantly radial.

Based on these visual characteristics of the pattern based classes, we deduced
a set of measurable features which can be used to train any machine learning
decision classifier. Figure 3.5 visualizes all processing steps needed for gathering
the necessary object features from a single input image.

We start by converting the image to the La*b* colour space. This is followed
by several processing steps which lead to the specific flower features used for
classification:

1. A K-means clustering (K=2) is applied to all flower pixels (after the
flower segmentation step) in the a*b* channels in order to define the
dominant foreground and background colour of the flower. Each cluster is
assigned with the average cluster colour. The cluster with the most pixels
is classified as the dominant background colour. The first useful feature
is obtained by calculating the colour difference between the two clusters
(Fig. 3.5(b)).

2. The second classification feature is calculated as the relative y-position of
the centre of gravity of the foreground pixels in relation to the patch.

Figure 3.5: Different preprocessing steps needed for the feature calculation of
each input window. (a) the segmented flower (b) K-means clustering (c/d)
radial unwarping to highlight radial edges.
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Figure 3.6: The feature space visualized with training samples of all classes.

3. A connected component analysis is applied on the binary clustered image.
The ratio between the amount of blobs in foreground and background is
stored as the third classification feature.

4. The radial dominant edges are quantified by applying a radial unwarping
of the input image around its centre of mass (Fig. 3.5(c) and 3.5(d)).
The ratio of the vertical and horizontal response to a corresponding Sobel
filter is stored as the fourth classification feature. Using the centre of
mass can be dangerous, since it depends heavily on the quality of the
flower segmentation, so investigating a more robust solution for the centre
localisation might be worth investigating.

Binary support vector machine tree

After calculating the classification features on the training images dataset, we
learn a set of binary SVM classifiers with linear kernels. The use of other kernel
types was impossible due to the limited size of the dataset available which would
result in a very weak performing classifier.

Figure 3.6 shows the distribution of the feature space for the different flower
classes that we want to separate by training a set of linear SVM classifiers.
Based on this distribution, a binary decision tree based on four linear SVM
classifiers was built as seen in Figure 3.7. The obtained tree structure uses a
set of intermediate classes and subclasses (uniformly coloured, pattern, coarse
pattern and fine pattern) to store in between results.
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Input Orchid Flowers

Uniformly Coloured Pattern

Coarse Pattern Fine Pattern

Coloured Lip Spotted Pattern Speckled Pattern Striped Pattern

Figure 3.7: Scheme of the binary SVM classifier tree.

The complete binary tree of linear SVM classifiers is trained on a set of 97
training images of different orchid flower species, of which all four features are
calculated and used for training the different binary SVM classifiers.

Classification results

After producing the complete classification pipeline, a validation set of orchid
flowers was gathered containing 115 flower images of different species. The
classification results on this validation set can be seen in Table 3.1. Keep in
mind that the classification results are based on a single flower image level.

Overall the results are very good regarding the limited data used and the great
variability of the object. However, we noticed that due to the large intra-class
variance in appearance, obtaining a 100% correct classification result for each
flower image will be near to impossible, especially when increasing the test
set. Even domain-specific experts have problems of dividing all flowers into the
correct ground truth classes (see Figure 3.8).

Figure 3.8: Professional (PL) versus classifier (CL) labels.
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Table 3.1: Classification result on the limited validation set.

Class Amount Correct
Uniformly Coloured 51 94.23%

Coloured Lip 16 93.75%
Spotted Pattern 10 100%
Speckled Pattern 16 100%
Striped Pattern 23 78.26%

Detection and classification combined

Besides the neat testing images used, which were very constrained (white
background, orchids in a uniform position, single flowers, . . . ), we also performed
tests on real images retrieved from our industrial set-up using the orchid flower
detector, as previously shown in Figure 3.4. The cleaned-up and segmented-
out detections ensure that background clutter does not influence the feature
calculation process.

We acknowledge that there are two specific cases where our simple flower-
background segmentation approach yields no clean result. The first case is
where the background of a detected flower is a combination of multiple other
flowers. However since all the flowers of a single orchid plant have similar
colours, this doesn’t influence the feature calculation drastically. Secondly when
flowers are too tilted and the viewpoint changes too much, then the classification
process can yield wrong results. We try to avoid these cases by only training
the orchid flower detection model with flower samples that have the desired
viewpoint and by increasing the detection threshold so that it is high enough to
simply ensure that the correct view is returned in most detections.

In all cases where the classification goes wrong for single flower instances, a
majority voting to get a plant-based classification solves the problem.

Table 3.2: Classification result on complete orchid plants using the majority
voting principle, to cope with single flowers triggering a wrong classification.
{# = number of detections | UC = uniformly coloured | LC = lip coloured | Spo
= spotted pattern| Spe = speckled pattern | Str = striped pattern}

Orchid Manual # UC L Spo Spe Str Majority
1 Striped 10 1 0 0 0 9 Striped
2 Uniform 11 11 0 0 0 0 Uniform
3 Speckled 16 1 0 5 3 7 Speckled
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Table 3.2 illustrates this process of majority voting by supplying 3 orchid plants
to our complete pipeline. First, each plant yields several orchid flowers, by
performing a multi-scale detection using our pre-trained orchid model, which
are then segmented out of the background as suggested previously and passed
to the classification pipeline. By using majority voting each plant is labelled
the correct class.

3.1.4 Conclusions on orchid flower detection and classification

In this section, we investigated the possibility of accurately detecting orchid
flowers and classifying them into five larger visual texture classes. For the
detection, we suggest using a Viola and Jones based approach with LBP
features and AdaBoost learning to learn a boosted cascade of weak classifiers.
The classification part is solved by training a binary tree of linear SVM classifiers
on a limited set of training data. We conclude that we successfully built a
robust orchid flower detection and classification pipeline that reaches the desired
accuracy. By smartly combining the classification output using a majority voting
system we achieve a perfect classification rate on the level of a single orchid
plant. Knowing that we had a very limited training data set for both the
detection model training and the training of the SVM classifiers, the end result
is quite impressive compared to the current research in object detection, where
still multiple thousands of training samples are used to reach robust classifiers.
An explanation for this can be found in the controlled lighting conditions and
the known set-up (camera position, possible background, orchid flower position).

Given the topic of this dissertation, this research is a clear example of how scene-
and application-specific constraints can be used for efficiently improving a basic
boosted cascade classifier trained on only a limited set of manually annotated
training samples. We clearly show that controlling the environment in which
the detector is being used, results in a very robust case-specific detector.
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3.2 Automated walking aid detector based on
indoor video recordings

In this section, we discuss a second industrially relevant example of applying
scene-constraints to an object detection problem with the goal of obtaining a
robust object detector with very limited training data.

As more older adults will require medical care in the coming years, the
development of automated home-care systems has evolved into an important
research field. Automated home-care systems aim to automatically monitor
the health of senior citizens in their own living environment, enabling the
detection of an initial decline in health and functional ability and providing
an opportunity for early interventions. Fall prevention is one of the research
fields in which automated home care systems can be an important asset. Given
that approximately one in three older than 65 falls each year [73, 113] and
20-30% of those who fall sustain moderate to severe injuries, it is clear that
fall prevention strategies should be put in place to reduce this number. When
these automated systems detect an elevated fall risk, preventive measures can
be taken to reduce this risk, e.g. installing an exercise program to enhance
gait and mobility, adapting the medication regime and introducing walking aids
such as walkers.

In order to continuously monitor the fall risk of a person in their home
environment, the development of an automated fall risk assessment tool is
needed. For this purpose, a camera-based system was installed in the homes
of three senior citizens during periods varying from eight to twelve weeks, all
three using walking aids to move around. The resulting video data was used to
monitor predefined trajectories using the transfer times as an indicator of the
fall risk since they heavily relate to the general health of the person [54].

Figure 3.9: Input frames with a walker present and both trajectories visualized.
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Previous studies [5] observed that the gait speed of a person differs when using
walking aids like a walker or a cane. Transfer times measured with aids can
therefore not be compared to transfer times measured without them. This
underlines the necessity to automatically differentiate between the different
video sequences and to determine whether a walking aid was used or not. Our
presented system will focus on automatically detecting which walking aid is
being used in the selected transfers based on the given video data, and more
specifically focusing on the case of a walker. Examples of such a walker walking
aid can be seen in Figure 3.9.

The applications of walking aid detection are not limited to monitoring these
transfer times, but can be expanded to every situation where we want to have
an objective measure of the indoor usage of any walking aid, like e.g. in an
elderly home, where we could monitor how frequently people leave their room
with a walking aid, by pointing the camera towards the entrance of the room.

In this section, we develop state-of-the-art object detection techniques to
automatically detect if a walker has been used in a certain indoor walking
track. The output generated by our software can in this context be used
efficiently to differentiate between walker based sequences and non-walker based
sequences (using a walking cane or no walking aid at all). This benefits the
automated analysis of transfer times, removing the need to manually label each
sequence and making the measurements more meaningful by automatically
adding a label of the used aid. This switches the process from semi-automatic
towards fully-automated fall risk assessment. Similar steps can be applied to
other walking aids like a walking cane to further differentiate the non-walker
based sequences. As a result, we are able to give nurses a measure of the walker
usage.

The case of detecting walking aids for elderly people is an example of an object
detection application in a constrained scenery and is, therefore, an ideal case
to prove the theorem suggested in this chapter, namely that scene-specific
conditions can be used as constraints on top of the actual detection application.
First of all, we have a fixed camera set-up, with multiple cameras observing the
scene. Secondly we know that many elderly people have a fixed home set-up
(location of bed, table, wardrobes, etc.) resulting in a known environment. This
gives us two advantages, a known background and a known object size range.
By using this application- and scene-specific knowledge, we succeed in building
a robust walker detector. We aim at using a limited training data set and a
reduced training time in order to ensure that a specific set-up can be learned
within a single day timespan.
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The remainder of this section is organized as follows. Subsection 3.2.1 will
present related research. Then subsection 3.2.2 discusses how the data was
collected and how the object model was trained using scene- and application-
specific constraints. This is followed by subsection 3.2.3 in which the complete
proposed processing pipeline is evaluated. Subsection 3.2.4 elaborates on the
obtained output of the algorithm on real-life data. Finally, subsection 3.2.5
draws some conclusions.

3.2.1 Related work on walking aid detection

Automatic detection of a walker in random video material is not an easy task.
Hagler et al. discuss that many existing behaviour measuring systems have
inconvenience and obtrusiveness as a major downside [42]. Combined with that,
many of the existing approaches are tested in lab environment situations. These
are not representative for actual home-care situations, like in our case. The major
advantages of our camera-based approach are therefore the unobtrusiveness of
the system and the fact that the algorithm works on a real-life dataset.

In our application, the variance of the object, a walker, is amongst others heavily
due to lighting changes, day and night conditions and different viewpoints (fixed
camera set-up but side and front view of the walker in single sequence). This
makes it nearly impossible to use segmentation approaches like proposed by Lee
et al. [59]. On the contrary, we have a known camera position, a rather known
environment and a set of known trajectories that are followed by the elderly
person. We prove that these restrictions can effectively limit the amount of
training data needed and increase the accuracy of our detector model to meet
the desired standards.

3.2.2 The setup

In this subsection, we discuss how the dataset for training the walker detection
model was acquired and filtered in order to reach usable sequences for object
model training. We will also take a closer look at how scene-specific knowledge
was used to further improve the detection result.

The acquired dataset

The dataset is acquired using a multiple wall-mounted IP-camera set-up in the
home environment of a participant recruited through convenience sampling. The
participant is a seventy-five year old female living in a service flat, alternating
between the use of a walker, a cane or no walking aid.
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She is monitored for a period of twelve weeks in which 444 walking sequences are
automatically detected and timed using the research presented by Baldewijns
et al. in [5].

In this research, we only train a walker detector. We split all walking sequences
into direction specific parts, given the viewpoint changes too drastically during
the complete sequences to be able to train a single object model. In large parts
of the recorded sequences, the walking aid is completely occluded by the user,
which does not yield usable training and validation data. We define trajectory
A, as seen in Fig. 3.9, which is the trajectory from the apartment’s kitchen
towards the table in the centre of the room, giving a more sideview of the walker.
This is followed by trajectory B, from the toilet back towards the table in the
centre of the room, giving a more frontal view of the walker. Since the original
video sequences have double the amount of walking sequences in trajectory A,
compared to trajectory B, we keep the same ratio in training and test data for
both trajectories.

From the pool of available video data, we randomly grab a training set of ten
sequences of trajectory A and five sequences of trajectory B. Since trajectories
happen in both day and night conditions we assure that both conditions are
available in the training set for both detection models. The test set contains
twelve randomly picked sequences for evaluating the detector of trajectory A and
five sequences for evaluating the detector of trajectory B, again both containing
day and night conditions. Furthermore, we ensure no training data is included
in the evaluation sets.

A manual annotation of the walker location in all training frames is performed,
storing the exact location of the walking aid appearances through its bounding
box location. This results in a set of positive training samples of 695 walker
annotations for trajectory A and 2200 walker annotations for trajectory B.
The main difference in the number of annotations is due to the duration of
the sequences measured, the longer the sequence the more frames with walker
appearances. As negative training data, we use the provided sequence images,
since they contain all the info needed, and set the walking aid pixels to black.
This results in as many negative frames without walker aids as there are positive
samples. However, these images are much larger than the actual trained model
size and the annotated positive training samples. Therefore we randomly
sample, using the size of the model which is based on the average annotation
size, 2000 negative training windows for trajectory A and 4000 negative samples
for trajectory B. The ratio of positive versus negative samples is approximately
1 : 2.8 and rounded to the nearest 1000 samples. This ratio is chosen from the
experience of training multiple generic object detection models.
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Since this application is used as a reference for training similar walking aid
set-ups, since we are building scene and application-specific models, we also
keep an eye at how long it takes to collect the training data. On average, once
a person gets familiar with the annotation tool, he tends to provide around 500
annotations per hour.

Our object detection approach

We use the approach suggested by Viola & Jones in [119] as a base technique
for training the object model and performing the object detection, changing the
features towards local binary patterns instead of Haar-like wavelets. The main
advantage of using a cascade of weak classifiers is the early rejection principle,
where a small set of features is used to discard most object candidates, up to
75%. Only object candidates that pass these first weak classifiers will progress
and will require more features to be calculated. This drastically decreases
execution time.

For both the object model of trajectory A and B, we choose a minimum hit rate
of 99.5% and a maximum false alarm rate of 50%, the default values assigned
by the OpenCV implementation of boosted cascades. This means that we need
to correctly classify at least 99.5% of our positive training samples at each
weak classifier stage while correctly classifying at least 50% of the used negative
training samples. Both models can be trained within 4 hours of processing on a
basic dual core system with 8GB of RAM memory, still keeping it possible to
get the whole installation set up and running within a single day timespan.

3.2.3 Complete pipeline

In this subsection we discuss the several building blocks, seen in Figure 3.10,
needed to supply a correct label for each video sequence, indicating if it is either
a walker or non-walker (walking cane or no walking aid) based sequence. We
also discuss the measures taken for increasing the accuracy of our detector.

Using scene-specific information

We focus on detecting walking aids in constrained scenes like manually defined
walking trajectories of elderly people or specific regions that we want to monitor.
Since we want to make a system that is as versatile as possible, we start by
supplying the user with the ability to define a region of interest. This mask
contains the application specific regions of the input images in which the lowest
point of the detection box of the walker can occur, annotated as a region on
top of the ground floor and door openings. Figure 3.11 clearly shows how the
user is asked to visually assign a mask to the recorded sequence.
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The mask allows us to simply ignore all detections that are not part of that
mask with their centroid, reducing a heap of false positive detections.

Figure 3.10: The separate building blocks for performing the video sequence
classification into walker and non-walker sequences.

Figure 3.11: Manually defined masks for (A) front model and (B) backwards
model.
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Since the exact position of the camera-based capturing system is known, we can
use this knowledge to apply scene-specific constraints to the detection algorithm.
Based on the provided training samples we can define an average width and
height of possible object instances, which are used to create a narrow scale
range that prunes the image pyramid, leading to a huge reduction of object
candidates in the image pyramid search space. The benefits are two-fold. First,
it reduces the time needed to process a single image drastically since entire
scale levels are removed. Secondly, the removal of the scale layers also reduces
the number of false positive detections for a given input image. This means
that the reduction of the image pyramid benefits both in the obtained accuracy
and the reported processing time.

A frame-by-frame detection of object instances

Object detection is applied on a frame-by-frame basis and due to the limited
training data, it still yields false positive detections (detections triggered by
image regions that do not contain an object). Even when there is only a single
walker object in the frame, this can still result in multiple detections in that
frame. Applying a predefined mask region inside the larger images reduces
already the amount of false positive detections drastically, but they will never
be removed completely. In order to circumvent this issue, we take a spatial
relation between detections into account, by assuming only a small position
shift between consecutive frame detections. This assumption in spatial relation
is given by the fact that an elderly has a limited moving speed and thus that
the subsequently detected walker positions should be close to each other.

The spatial relation can be found by looking for a connection between the
obtained detections in the currently detection-triggering frame FT and the
selected detection in the last processed frame FT−1 as seen in equation (3.1).
For each new detection, D1 to DN , of the current frame FT , the Euclidean
distance is calculated with the selected reference detection (DR) from the last
processed frame. Based on those scores, the detection with the smallest distance
is kept for the current frame and stored as the new reference DR value.

DR = min
i=1:N

[dist(Di, DR)] (3.1)

In the first frame of a sequence, the average location of all triggered detections
is used, since no DR value exist. Due to the limited mask region that is selected
the error introduced by this is rather limited and can thus be neglected. Figure
3.12 illustrates this spatial relation between walker detections inside trajectory
A and B and thus removing all detections that are further away. The complete
calculation is repeated for each new frame where detections occur, else the
frame is simply ignored in the pipeline. Applying this extra measure ensures
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Figure 3.12: Detection results for (A) trajectory A and (B) trajectory B trained
object models.

another large decrease in false positive detections. The combined trajectory is
also visually stored for further analysis.

Performing Detection On a Sequence Basis

The visual output is good for verifying the work of the object detector on a
single sequence, but when someone needs to go through a large set of sequences,
then visual confirmation would be insufficient and an automated decision should
be created. In our approach, we do this by training a decision classifier based
on example sequences.

Due to the limited data, we cannot train a classifier that will yield no false
positive detections, so simply depending on the fact that a detection occurred
to classify a sequence is a bad idea. However, the number of found detections is
also highly dependent on the number of frames that were processed from the
initial sequence. We calculate the ratio between the number of walker detections
over the complete sequence (#D) and the total number of frames (#F) inside a
walking sequence. This ratio is called the walker certainty score (Cwalker):

Cwalker = #D
#F (3.2)

We determined the optimal value of the walker certainty score by randomly
selecting a subset of 20 validation sequences from the remaining video data,
of which 10 walker based sequences (half trajectory A and half trajectory B)
and 10 non-walker based sequence (again half trajectory A and half trajectory
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Figure 3.13: Precision-Recall curves for frame-based object detection on both
trajectory A and trajectory B: • denotes theoretically best configuration, while
� denotes the selected configuration.

B), containing both day and night conditions and in the case of the non-
walker sequences containing walking cane and no walking aid sequences. For
this complete validation set, we calculated the walker certainty score using
the appropriate detection model and analysed the data. We selected walker
certainty threshold that was low enough to classify walker sequences with less
detections still as a walker sequence but ensuring that the few false positive
detections that can occur in a non-walker sequences (e.g. by lighting changes
or a walking cane that does trigger a detection) still get discarded and thus also
get correctly classified. This yields a walker certainty score threshold of 0.2,
which works fine for both trained models, but which can be re-evaluated once a
larger set of previously unused walker and non-walker sequences is available.
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3.2.4 Quantitative detection results

Frame-by-frame detection results

Figure 3.13 shows the Precision-Recall curves for the detection models for both
trajectories, together with the average precision of both models on a frame-
by-frame base (calculated by the area under the curve (AUC)). We notice that
the AUC value for trajectory A is better than for trajectory B. This can be
explained by the fact that the training data for trajectory B was biased due to
the walker occlusion from the dining table being in front of the trajectory.

In theory, the best operating point (indicating the best detection threshold) is
reached by selecting the curvature point that is closest to the top right corner,
denoted by •. However, in our application, we want a detection threshold
that yields as few false positive detections as possible but still ensures that
there are enough true positive detections (true positive detections with lower
score also disappear when increasing the threshold) to retrieve a walker certainty
score that is over 0.2. In our case this position was set at a recall level of 0.3,
denoted by �. This was validated on the same validation set that was used to
determine the optimal walker certainty score. Ideally one would optimize both
parameters together, instead of independently from each other and fixing the
walker certainty score at 0.2, which might allow us to use another position on
the precision-recall curve.

Sequence-based detection results

The precision-recall curves are based on a frame-by-frame analysis, the most
common manner of evaluating object detection algorithms. In order to get a
performance measure on our complete pipeline, we collected a mixed test set of
26 walking sequences from both the frame-by-frame test set and the validation
set of the walker certainty score. For both the models of trajectory A and B,
we used sequences containing walkers (16), a walking cane (6) or no walking
aid (4) at all. The results of this walking sequence-based classification can be
seen in the confusion matrix in Table 3.3.

Table 3.3: Confusion matrix of algorithm output using both trajectories A and
B with a Cwalker = 0.2.

Walker Classified Non-Walker Classified
Walker Sequence 14 2
Cane Sequence 0 6
No Aid Sequence 0 4
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We do acknowledge that still 2 walker sequences (related to trajectory B) are
classified incorrectly. After a small investigation into the matter, it seems that
their threshold was just below the set 0.2 walker certainty score. Further testing
and validating over a larger set to find the most optimal threshold is required
to resolve this issue.

Training data versus accuracy

Since the goal is to supply a tool for caregivers that needs as little manual input
as possible to obtain a result as accurate as possible, we roughly tested the
relationship between the amount of training data and the accuracy achieved
by the frame-by-frame walker detector, since it is the core part of our pipeline.
For this we took the model of trajectory A and varied the amount of positive
and negative training data (see Fig. 3.14), while still keeping the pos:neg ratio
at 1:2.8, which is the same ratio as for training the model.

Figure 3.14: PR curves under varying amounts of training data with the
achieved object detection accuracy defined by the area under the curve (AUC).
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We noticed that the first models show a steep increase in accuracy when adding
more data while reducing a bit when arriving at the final models. For the
complexity of the set-up, this test suggests that we would have achieved a
slightly better result by using only 500 positive samples instead of all the
670 positive samples. This behaviour can either be explained by the natural
variation in training iterations or possibly by over-fitting on the training data
(where the average precision is dropping on a separate set of validation samples,
but still increasing on the given set of training samples). A deeper investigation
in the matter is necessary to make firm conclusions.

3.2.5 Conclusions on detecting walking aids

The goal of this section is to automatically detect walking aids in walking videos
of elderly people with the goal of improving automated fall risk assessment. We
applied an LBP feature-based approach with an AdaBoost learner to robustly
create two object detectors for walkers in two separate trajectory directions.
Several improvements to the basic algorithm of Viola and Jones based on the
scene and set-up specific knowledge were applied.

We prove that our approach can be used to automatically label video sequences
for automated fall risk assessment. While the detection rates we achieve on
a frame-by-frame basis are only around 68% for trajectory A and 36% for
trajectory B (both measured on a recall of 0.3), we achieved 92.3% accurate
detection results on full trajectory video sequences by adding the spatial relation
constraint and the walker certainty score thresholding. Secondly, we show that
we create an easy to train system given a specific walker type, of course for a
specific situation, but limiting the training time to just a couple of hours while
still preserving decent accuracy. This ensures that it is easy to set-up a new
system for another walker type in another location. We also prove that the
amount of training data can be related to the achieved detection accuracy and
the set-up complexity. Since the performance difference between the best model
and the actually used model for this approach is rather limited, we ignored the
influence on the sequence-based validation and did not repeat all tests.

For validating the complete pipeline with the case of using a walking cane, the
available training set was too limited and the cane itself existed of only a few
image pixels due to the low camera resolution, which does not work well with
the object detection framework suggested by Viola & Jones.

In this section, we proved that using scene- and application-specific constraints
clearly helps for building and improving basic object detectors. Furthermore,
we prove that we do not always need a highly accurate detector, as long as our
complete pipeline scores accurately enough given the application-specific task.
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3.3 Safeguarding privacy by reliable automatic blur-
ring of faces in mobile mapping images

This final section of chapter 3 discusses a third industrially-relevant application,
where using scene-specific constraints helps to improve the object detector output.
It does so by transforming the constraints into smart post-processing filters,
allowing us to initially use a detector with a high recall and a lower precision.
By then applying the post-filters, we reduce the false positive detections and
thus increase the precision.

For mobile mapping applications, a vehicle equipped with cameras is used to
capture images in order to give the user a digital view of the surroundings.
This is repeated at pre-set intervals in order to ensure that the complete
surroundings of the car are being captured. Companies like Google, but also
local land surveying offices, are carrying out such measuring campaigns to make
digital images of streets across the globe. When collecting all this data, one
can imagine that the amount of data increases drastically once someone is
capturing larger projects, e.g. the ‘Google Street View’ application. The goal of
capturing all this data is providing users with fast, accurate and detailed data
measurements for producing all kinds of 2D and 3D geographical information
systems.

Avoiding pedestrians, walking around the scene when capturing mobile data,
is nearly impossible, which raises the question of privacy issues when they are
actually recorded. Especially when this data is shared with or sold to industrial
partners, it is important that the privacy of these pedestrians is guaranteed.
Therefore companies are continuously looking for robust solutions able to filter
out privacy-sensitive content from the captured data.

One solution could be to manually browse the data, indicating every pedestrian
and making them privacy-safe by applying a blurring filter. In the case of limited
data, this might be the fastest and most accurate solution. However when the
data size rises over several millions of images a week, one immediately notices
that this approach is no longer suitable. In those cases an automated approach
is preferred, like applying pedestrian detection algorithms [16, 119, 26, 31] on
the captured mobile mapping data, marking possible pedestrian-like areas in
the image. These, in turn, can then be blurred or cut out, to avoid transferring
privacy-sensitive data.

A major downside of existing pedestrian detectors is that they require the manual
selection of a threshold on the detection certainty score to find a good balance
between finding actual pedestrians in the image and avoiding false positive
detections. If the threshold is set too strict, we will only detect pedestrians but
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be unable to find all of them, and thus privacy issues arise again. If we put the
threshold too sloppy, all pedestrians will be found, but similar objects or areas
will trigger a false positive detection which will also be blurred. We want to
avoid this at all costs because data is used to derive GIS systems, which need
to be as accurate as possible.

In this section, we propose an effective post-filtering step using scene-specific
constraints, by setting a sloppy detection certainty threshold, avoiding false
negative detections (missed pedestrians), but additionally ensuring the removal
of false positive detections using several post-processing steps. Furthermore, we
expand the system with additional small colour-based classifiers able to remove
even more false positives. Finally, we provide an elegant soft blurring approach
for safeguarding the privacy of pedestrians inside mobile mapping images.

The remainder of this section is structured as follows. Subsection 3.3.1 presents
related research, while subsection 3.3.2 discusses the data collection. This
is followed by subsection 3.3.3 in which the proposed approach is discussed
in detail. Finally, subsection 3.3.4 elaborates on the obtained results while
subsection 3.3.5 sums up conclusions.

3.3.1 Related work on scene-constrained pedestrian detection

Van Beeck et al. [117] introduced a warping window approach where fast real-
time vision-based pedestrian detection is obtained by calibrating the height and
orientation of the pedestrian at each specific image location. We prove that
we can apply a similar technique, as a post-processing step after the detection
phase, by learning a relationship between the height and position of an average
pedestrian from a limited set of application-specific annotations. We explicitly
decided to use this as a post-processing step, to ensure we have as many
candidates as possible, which can then be pruned by our filters. Furthermore,
our filters are based on the output of the detector, which is not available before
training.

Earlier in this dissertation, we proved that using application-specific information,
is one way to improve the accuracy of object detection algorithms. Similar
rules apply for pedestrian detection, as far as the application allows you to find
some application-specific constraints. In our application we exploit the fact
that the camera is mounted on top of a car, at a fixed position with respect to
the ground plane, resulting in a relation between the position and the height of
any given pedestrian. Furthermore, we exploit the annotated training data to
learn regions of interest, avoiding the processing of undesired image regions, like
the sky or on top of buildings. Several papers [14, 84, 22] describe the similar
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use of a ground plane assumption for 3D modelling and multiple camera view
processing.

For privacy masking, several solutions have been proposed. Tanaka et al. [111]
try to define how much blurring is needed to reach a certain level of privacy.
Ilia et al. [82] apply a simple block based blurring, whereas Nakashima et al.
[76] suggest using image melding, replacing a person’s face with a fixed neutral
expression instead of blurring. Our application still demands masking, but
avoiding the hardness of block-based blurring, we propose to use a smooth
soft-blurring approach.

Figure 3.15: Example frames for both datasets used: (top) Dataset 1 - An
urban area in the Netherlands; (bottom) Dataset 2 - Belgian train and bus
station.
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3.3.2 Datasets

This research is developed on top of two mobile mapping datasets, which are
made publicly available1, to encourage further research in this area. An example
of both mobile mapping datasets can be seen in Figure 3.15.

The first dataset is a series of mobile mapping cycloramic images with a
resolution of 4.800× 2.400 pixels, captured using a LadyBug 1 camera set-up,
in a quiet and calm urban area in the Netherlands. The captured images give
a full 360-degree view from the surroundings of the car at any given position.
The camera itself is fixed and mounted on the top of the roof of the car. The
set has 450 images under daylight conditions. The dataset is used to develop
and fine-tune the used approach.

The second dataset was captured using a LadyBug 2 camera, having a resolution
of 8.000× 4.000 pixels, again mounted on top of the roof of the car, containing
45 images of a train and bus station in Belgium. We used this dataset to prove
that the developed approach is independent of the application-specific settings
like camera set-up and application environment, except for defining the actual
height-position relation used to improve the detection success rate.

All database images were manually annotated to provide ground truth data
for the actual locations of pedestrians. For the first dataset, this led to 240
pedestrian annotations while the second dataset contained 1630 pedestrian
annotations. The large difference is mainly due to the recorded surroundings,
where a train and bus station is likely to have more pedestrians walking around
in each mobile mapping image.

3.3.3 Used approach

The used approach can be split into several processing blocks, as seen in Figure
3.16. We start by creating a limited amount of ground truth annotations for
both datasets, needed for both building the height-position relation used as
application-specific constraint and inferring the colour-specific constraints for
learning the false positive elimination classifiers. The annotations are also used
for validating each additional post-processing step. This block is seen as the
offline processing part since it does not need manual interference except the
initial annotations.

At runtime, the online processing part, we apply a multi-scale pedestrian
detection algorithm on the input image, storing the detection results together

1http://www.eavise.be/MobileMappingDataset
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with their detection probability. We prune the detections using our scene-
specific constraints (a height-location relation and a certainty score thresholding),
resulting in an allowable region reduction. For specific object classes that still
trigger false positive detections, we design specific colour-based false positive
elimination classifiers (modelled as weak Naive Bayes classifiers), which in turn
further improve the average precision.

The main goal is thus to remove as many false positives as possible and to
increase the resulting average precision of our algorithm. The final retrieved
detections are then parsed by a soft-blurring filter to ensure privacy safeguarding,
by removing features that can help to recognize the person detected.

As pedestrian detector in this research, we use an open-source C++
implementation of the cascaded Felzenszwalb latentSVM4 implementation [20],
which uses a part-based object detector for efficient pedestrian detection. The
reason for this is quite straightforward. A part-based detector is non-rigid and
thus captures the different poses of pedestrians more efficiently than a rigid
pedestrian detector. On the other hand we have a fast and optimized C++
implementation available, that is easily integratable in our pipeline. However,
our post-processing step is independent of the pedestrian detector used, so
basically it can be replaced by any out-of-the-box pedestrian detector. This
is one of the major benefits of our system, encouraging cross-dataset and
cross-algorithm evaluation.

Figure 3.16: Block diagram of the used approach.
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A major downside of every pedestrian detector is that one must filter the detector
output based on the object detection probability score, by selecting a probability
threshold and thus locking down on a specific point on the precision-recall curve
of that detection model. If we decide to put the threshold too sloppy (a low
probability threshold), we get an increase in false positive detections, while at
the same time, reducing the number of false negative detections (every single
pedestrian will likely be returned).

This will lead to an enormous amount of privacy masking, also removing a
lot of useful information from the image, which is unacceptable for the mobile
mapping community.

On the other hand, if we put the probability threshold very strict (a high
probability threshold), the amount of false positives will decrease drastically, but
result in an increase in false negative detections, which in our application of
privacy masking would not be acceptable. Therefore, our approach uses a sloppy
threshold for obtaining every possible pedestrian as a true positive detection,
then subsequently using smart post-processing to efficiently remove as many
false positive detections as possible.

Scale-space location relation

When considering our application of mobile mapping using a fixed 360-degree
cycloramic camera, we know that the actual height position of the camera,
compared to the environment, will be fixed, only if we assume a flat ground
plane, and if that ground plane will never change drastically (small bumps in a
road will not generate issues). This is a crucial scene constraint, allowing us to
take into account that every pedestrian in the image, walking on the street or
on the sidewalks, has an average fixed height in relation to the position in the
final cycloramic image. People closer to the car and thus to the camera will be
larger, while people further away will move towards the camera’s vantage points
and thus be smaller. For any given horizontal line in the image, we can state
that all pedestrians on that line will have the same average height, of course
keeping in mind that we have a natural height variance within pedestrians.

Mapping ground truth annotations

In order to model a height-position relation, we start by mapping out the ground
truth annotations collected on the first dataset. The effort of annotating a
smaller part of application-specific data, to be used for deriving scene- and
application-specific constraints, is rather small compared to training a complete
new pedestrian detector (which needs much more annotations and processing
time). The result of these manual annotations can be seen in Figure 3.17(a),
where the height of each annotation is mapped in relation to the position in the
given cyclorama, defined as the centre of mass.
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(a) GT + general and narrow bounds (b) Detections with pruning steps

(c) Applying narrower bounds (d) Score threshold

Figure 3.17: The height-position relation building process.

During the annotation phase, only pedestrians on sidewalks, parks and roads
were annotated.

Model fitting and region reduction

We fit a linear model to the data points in Figure 3.17(a) and search for image
region boundaries. The red curve is the fitted linear relation to the mapped
annotation data, which models the relation between pedestrian height and
pedestrian position, relative to the camera position. The green borders are
based on the assumption that we have a Gaussian data distribution compared to
the fitted model, and that these borders should capture 99.8% of all detections
using the rule of [−3σ,+3σ]. The reasons for allowing this deviation are quite
straightforward. First of all, we have a natural deviation in pedestrian height,
while secondly, due to the car’s suspension, the camera height is not completely
fixed to the ground plane. Thirdly, there is a possible deviation from the flat
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Figure 3.18: Applying borders to minimal and maximal pedestrian height, as
defined by the blue borders in 3.17(a).

ground plane assumption caused by height differences due to sidewalks, defects
in the road, speed bumps, etc. The blue dotted borders define allowed position
regions for pedestrians in the image, assuming the training data covers a wide
variance of available pedestrians specific to the application. This is visualized
in Figure 3.18 and allows us to immediately ignore detections that are outside
these regions, removing about 50% of the image and thus lowering the chance
of false positive detections occurring.

Applying constraints on detection data

Figure 3.17(b) visualizes all detections obtained by our pedestrian detection
algorithm. By applying the realistic pedestrian occurring boundaries, we obtain
the green dots, representing pedestrian detections in reasonable and allowed
positions in the image. We notice that this allows dropping a significant amount
of false positive detections already. Subsequently, we apply the rough deviation
borders (green lines) on top of the green data points, demanding that our
detections also fit the height-position relation. This in return removes a large
part of false positive detections, keeping only the red detections as acceptable
pedestrian detections.

Updating the distribution constraint

We acknowledge that assuming a Gaussian distribution around the fitted linear
height-position relation might not always be the best choice, especially when
you consider the fact that when moving further from the car, differences in
pedestrian height become less obvious to notice, certainly at pixel level, whereas
close to the car height differences are clearly visible. Therefore we updated the
green borders, to closely map the correct distribution of the annotation data,
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which can be seen in Figure 3.17(a) as the magenta borders. Applying these
on the actual detection output, again removes several false positive detections,
resulting in the magenta coloured detections seen in Figure 3.17(c).

Detection certainty score thresholding

We decided initially to put the detection certainty threshold very sloppy, to
ensure that the amount of false negative detections is close to zero. Now
that we automatically removed multiple false positive detections, we can look
back to this setting and adapt it to our application-specific needs. Due to
less cluttered images filled with detections (most false positives are removed
now), it becomes easier to visually select a decent score threshold for our
application. When using pedestrian detectors in the wild, we observed that
the used LatentSVM4 detector almost never returns valid pedestrian detections
when the certainty score is below zero. Of course, this value is application
specific and can change drastically when considering other application fields.
In our application, detections with lower scores mainly resemble objects that
have similar feature descriptions, like a small tree or a traffic sign, but in 99%
of the cases, they do not match actual pedestrians. Since we want to avoid
blurring too much valuable image information, we enforce an extra pruning rule,
demanding a detection certainty score equal to or above zero. This results in
the black detections (see Figure 3.17(d)).

Visually verifying the filtered detections

When visually checking the data, we wonder why very small pedestrians in
the background were ignored by the pedestrian detection interface. As seen
in Figure 3.17(d) we calculate the smallest retrieved detection height by the
DPM detector, which is a height of 105 pixels. Considering this in relation to
the pre-trained pedestrian model, this is actually normal, because the model is
trained with a fixed training sample height of 124 pixels, keeping a small area
of background around the pedestrian, also called padding. At detection time,
the model dimensions always limit the smallest possible detection height, so
if we would like to include these smaller pedestrians, we should first up-scale
the input data. However, we should keep in mind that this introduces image
artefacts which could interfere with the pedestrian detector performance itself.
In our application, this is not a real problem since pedestrians with a height
below 100 pixels are already privacy secure and impossible to recognize when
looking at the complete mobile mapping image of 8.000× 4.000 pixels [111].

Colour-based removal of pedestrian-like detections

Even with all the proposed post-filtering steps applied, we noticed that some
object classes continuously succeeded in triggering false positive detections.
Take for example the case of small traffic signs indicating the traffic flow when
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Figure 3.19: Example of the need for an extra filter for traffic signs still passing
the post-processing steps.

entering a roundabout, as seen in Figure 3.19. As humans, we clearly see the
difference between a pedestrian and this rigid traffic sign. However, due to the
specific nature of pedestrian detection algorithms, it is normal that these false
positive detections occur. First of all, the used DPM algorithm by Felzenszwalb
et al. [31] ignores colour information, since the variety of colour in pedestrians
is enormous. Secondly, as a feature it uses edge information of deformable parts.
And this is exactly where the biggest problem occurs. The mentioned traffic sign
has a top part that is very similar to a head and a middle and bottom part that
have similar feature responses as a human body. Since the body and the head
are parts with a big weight in part-based pedestrian models, it is important to
add an extra pruning step to remove these false positive detections that are
still classified as valid detections by our pipeline. Especially in the context of
mobile mapping, it is important that crucial road information is not blurred
out due to privacy reasons, since clients interested in this data are looking for
exact locations of traffic signs, e.g. to keep an automated index of road signs.

To avoid this kind of problems we propose a simple pruning step using a simple
Naive Bayes classifier. This machine learning technique takes a limited set of
positive and negative training samples and, based on some calculated features
(e.g. very simple colour-based features) from the training data, decides whether
a valid detection should still be classified as pedestrian or not. We prefer using
a machine learning approach towards setting hard thresholds on basic features
because it is more robust in finding the optimal separation between classes
once more training data is supplied. As seen in Figure 3.20, we use a very
small positive and negative training set (both containing only five samples),
where we tried to include as much traffic sign like pedestrians in the negative
set as possible (by looking for matching colours), to avoid that those would
now get filtered out, e.g. when someone is wearing a bright jacket. Finally, we
constructed a small test set to evaluate the success rate of our classifier.
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(a) Positive training set

(b) Negative training set

(c) Test set + Classification result (green = sign / red = pedestrian)

Figure 3.20: Positive, negative training and test set for traffic sign filtering.

From each training sample, a set of simple visual features are calculated. In
this case, the most distinct feature is the bright yellow colour of the ‘body’
part of the traffic sign. We separate the top 30% of the image and then split
up the bottom 70% in 3 equal regions, as seen in Figure 3.21(a). The middle
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(a) (b) (c) (d) (e)

Figure 3.21: Naive Bayes features: (a) original (b) CMY(K) (c) C response (d)
M response (e) Y response.

area is then transferred to the CMYK color space (Figure 3.21(b)) because the
traffic sign has a very low response in the C layer (Figure 3.21(c)), an average
response in the M layer (Figure 3.21(d)) and a high response in the Y layer
(Figure 3.21(e)). This behaviour is not equal for pedestrians. We take the
average CMY values for this smaller window and use that as a feature vector
for each positive and negative sample. The K channel is simply ignored.

Finally, when running the classifier on the provided test set, the samples were all
classified correctly either as a pedestrian or as a traffic sign and thus the simple
classifier proved to work as an effective post-filtering step. Similar behaviour
was detected for specific kind of bushes, so again an extra Naive Bayes classifier
could be constructed for this purpose. The advantage during post-processing is
the execution time of these extra filters is computationally very cheap (~1ms)
due to very simple features used.

Soft-blurring approach

The final step of our proposed pipeline is to obtain the valid detected pedestrian
regions and apply a local privacy-safeguarding filter to them. In agreement with
some mobile mapping companies, we provided the option for both pedestrian
and face region blurring. An intuitive way to apply privacy-safeguarding would
be to apply a standard Gaussian blurring filter. One of the main downsides to
this is the existence of very prominent edge artefacts which cannot be removed,
as seen in the left part of Figure 3.22. We would prefer a blurring filter that is
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Figure 3.22: Blurring filters (left) standard Gaussian blur (right) smooth blurring
filter.

not as strong on the edges, as seen in the right part of Figure 3.22, but which
is strong in the middle and softens up towards the edges of a detection. This
ensures privacy but the end result is visually more pleasing.

Instead of convolving the image region with a Gaussian kernel with a fixed size
and sigma, we propose a convolution with an adaptable Gaussian kernel, where
the sigma (σkernel) is defined as a function of the normalized pixel distance
Ψ to the centre of the detection itself as described in equations 3.3, 3.4 and
3.5. To ensure that the blurring is proportional for differently sized pedestrian
detections, we add an extra size dependency ∆, which takes into account the
area of the detection found compared to the area of the original image. This
ensures that in the end, each detection is equally blurred.

Ψ = 1− d(centerdetection, position)
r

(3.3)

∆ = area(pedestrian)
area(image) (3.4)

σkernel = 0.1 + (∆Ψ2) (3.5)

We apply this soft blurring filter to every pedestrian detection in a given input
image, blur out the detected pedestrians or their associated face region and
make the captured mobile mapping image privacy safe. In our application, we
applied face blurring which can be seen in Figure 3.23 and 3.24. This is simply
passed as an extra parameter to our smooth blurring function. In order to make
the blurring regions more visible, we also visualized the actual detections.
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Figure 3.23: Applying face region soft blurring on filtered pedestrian detections.

Figure 3.24: Close-up of privacy smoothing using only the face region of the
detection.

3.3.4 Obtained results

We applied the same post-processing steps discussed in section 3.3.3 (enforcing
valid pedestrian regions, applying a height-position relation and adding a scoring
threshold) to the second dataset and got similar improvements. The colour-based
Naive Bayes classification was left out since the specific object class does not
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Figure 3.25: Applying all post-processing steps to the output of the LatentSVM
4 INRIA based pedestrian detector applied on dataset 2.

occur inside the dataset. The result of pruning the detection output can be
seen in Figure 3.25, while visual results of applying these constraints can be
seen in Figure 3.26. Especially pay attention to the false positive detections on
the car that are disappearing as well as some of the double detections.

In order to make sure that we actually achieved an improvement over simply
using the out-of-the-box available pedestrian detection algorithm, we evaluated
the number of true positive, false positive and false negative detections after
applying the different post-processing steps discussed in section 3.3.3. The
result of this comparison can be seen in Table 3.4. We lowered the initial DPM
certainty score threshold for this dataset to -1 to get a recall as high as possible.

Using precision-recall curves, we visualized the accuracy gained by applying the
mentioned post-processing steps to the detection results on dataset 2, which can
be seen in Figure 3.27. Notice that an out-of-the-box object detector already

Table 3.4: Comparison of TP, FP and FN values after each post-processing step
for first dataset.

#TP #FP #FN
DPM orig. 928 4159 349

After pruning 928 3182 349
After height-position 852 1015 384
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Figure 3.26: Example of applying post-processing steps to data from the second
dataset. (top) original detections at score threshold -1; (middle) after pruning;
(bottom) after height-position relationship and score > 0.
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Figure 3.27: Precision-Recall curves generated for dataset 2 with all post-
processing steps applied and the reported accuracy using the area under the
curve measurement.

experiences a large accuracy drop when doing a cross-dataset evaluation, which
is called dataset bias [115], and that there is a substantial accuracy gain when
applying our post-processing steps.

Since the detection analysis for dataset 2, shown in Figure 3.25, proves that the
minimum object size found by the used DPM model is 101 pixels, we ignored
possible ground truth annotations on pedestrians smaller than 100 pixels, to
make an as accurate precision-recall curve as possible. The remaining false
negative detections are mainly due to people sitting on benches, riding bikes or
motorcycles, which are less likely to get detected by the used pedestrian DPM
model and which is a known issue. Solving this issue can be done by combining
the pedestrian DPM model with for example a bicyclist DPM model.

We do acknowledge that this solution is far from 100% fail proof. There are
still some bottlenecks that should be taken into account. The overall approach
is generated to improve the output of any available pedestrian detector without
retraining the actual DPM model specific to the application. However, up till
now, there is not yet a single off-the-shelf pedestrian detector which is able
to detect every single pedestrian out there in any given application, especially
when performing cross-dataset validation [115]. While our approach focuses
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mainly on improving the precision rate of our detector, as seen in Figure 3.27,
getting the precision of pedestrian detectors to 100% in any given application is
still a very challenging task and an actively researched topic.

3.3.5 Conclusions on privacy safeguarding

The goal of this sections is to efficiently blur pedestrians in mobile mapping
images to avoid privacy-related issues while safeguarding as much image
information as possible. By using an off-the-shelf pedestrian detector trained
on a different dataset and setting a sloppy confidence threshold, we proved
that applying efficient post-processing filters, based on application-specific
constraints, e.g. a height-position relation, can greatly improve the detection
outcome. In addition to the proposed height-position filtering step, we supply
additional easy-to-train and lightweight Naive Bayes filters for objects that still
trigger false positive detections, e.g. roundabout traffic signs, without the need
of large amounts of annotated training data.

We prove that in a specific situation, we can use pre-trained pedestrian detection
models, but, given a limited amount of manual annotations on a situation-specific
dataset, we can boost the detection accuracy enormously by exploiting scene-
specific constraints, e.g a known ground plane assumption. Finally, we propose
an elegant soft-blurring alternative to a standard Gaussian blurring filter, for
privacy-masking reasons, by adaptively changing the parameters of the Gaussian
kernel used for the convolution with the found pedestrian detections.

Our application focuses on detecting pedestrians walking on the modelled ground
plane, which raises a new problem. People standing on a balcony, sitting on a
bench, lying on the grass or driving a bike, will not fit into this ground plane
assumption and will thus simply be filtered out by our approach. We could
improve our approach by using multiple detection models, for these different
pedestrian classes and then apply separate post-filtering rules for each detector.

Given the current bottlenecks, we are still convinced that this work is valuable
for people handling privacy-sensitive mobile mapping data. This research
allows users to automatically remove privacy sensitive data from their captured
datasets, without the need of manually handling each image (which would be
very costly and time-consuming). Furthermore, the suggested rules for pruning
false positive detections are unrelated to the used pedestrian detector. This
allows other researchers to use their preferred object detector and subsequently
use a limited manual input effort in their application field to derive the correct
post-processing rules.
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3.4 Conclusion: benefits of using scene constraints

Chapter 3 clearly illustrates how we can use scene- and application-specific
knowledge to derive pre- or post-processing filters, designed for improving the
output of existing object detection algorithms. Hereby we mainly focus on using
detectors with a sloppy probability threshold, allowing to have a high recall rate
but ensuring as much objects as possible being detected, at limited precision
meaning we know that the detector keeps triggering false positive detections.
Our filters are designed specifically for reducing these false positive detections,
thus improving the overall average precision obtained by our algorithms.

In section 3.1 we discussed an efficient pipeline for both detecting and classifying
orchids in an automated sorting set-up. By using a boosted cascade of weak
classifiers in combination with a decision tree of binary SVM classifiers, we
succeed in classifying orchids 100% successful at plant level. We achieved the
pre-set goal of detecting enough orchid flowers per plant, without triggering
false positive detections at plant level (thus providing multiple views of the same
orchid flowers), to be able to correctly classify each plant in one of our five
pre-defined texture-based classes.

Section 3.2 illustrates perfectly how object detection models can be built with
a very small amount of data if we only need that model to work in that specific
set-up. While our model is able to detect actual walking aids with an average
precision of only 45%, by combining that with smart post-processing filters
we achieve a high success rate at classifying walking sequences, pointing out
if a walking aid has been used or not. The obtained result clearly helps the
industrial partner to classify whether a walking aid has been used or not, and
that with a high classification accuracy per sequence of 92%. This improves the
research based on top of our classification, taking into account the used walking
aid when analysing the gait speed of the person under investigation.

Finally, section 3.3 shows how any powerful off-the-shelf object detector
can be combined with scene- and application-specific filters and classifiers,
to obtain high average precision rates. This allowed us to build a robust
pedestrian detection pipeline to allow automated blurring of pedestrians in
mobile mapping images, safeguarding privacy as much as possible. However,
this case immediately highlights a possible danger of using scene constraints. If
we set the constraints to strict, we could loose possible detections of objects due
to their strictness. E.g. if we set a constraint on the detection size related to
the position in the image, but that relation is trained on adults only, we might
not be able to detect children with the same interface, although they are also
pedestrians. To cope with this case, one should always consider all possible
conditions of the object class, eventually formulating multiple constraint-based
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rules that cope under these different conditions. For the industrial partner using
this automated privacy blurring solution, the provided solution helps drastically
reducing the amount of manual labour. However, since we cannot guarantee an
average precision of 100% for all types of pedestrians (e.g. children or people in
a wheelchair) and bicyclists, due to the limitations of the used detector, this
system cannot completely remove the need of manual intervention in privacy
safeguarding, which would be the holy grail for the integrator.

In the following chapter, we will go one step further, integrating scene knowledge
into our existing object detection pipeline based on a boosted cascade of weak
classifiers, in order to mimic the behaviour of more advanced techniques like
the Integral Channel Features detector of Dollár et al. [26]. We will prove that
we can get equal or better results on several industrial applications by smartly
combining all constraints into the object model training pipeline.





Chapter 4

Enhancing simple detection
algorithms by integrating
scene knowledge

The work presented in this chapter was published at the IPTA 2016 conference
[93] and the GEOBIA 2016 conference [91].

In chapter 3 we introduced the concept of scene- and application-specific
constraints. Furthermore we proposed several techniques that used these
constraints as the basis for efficient pre- and post-filtering techniques. As
discussed in section 2.1 several techniques tried integrating extra knowledge
(e.g. colour) into the actual training process. Therefore we investigate in this
chapter how we can integrate our scene- and application-specific knowledge into
the actual training process. For achieving this task, we create our own feature
channel(s), by transferring expert knowledge from scene constraints, onto the
actual training data. This data can then, in turn, be used with our existing
back-end, directly forcing the AdaBoost to select features that are related to
our scene- and application-specific conditions.

The biggest difference between using ICF [26] as an algorithm directly and
our proposed approach is as follows. ICF adds several feature channels to the
training pipeline, basically telling the user ‘the more the merrier’. They use
an adapted boosting algorithm that looks over all possible feature channels for
the most discriminative features and selects those to form the actual detection
model. However, it still requires to calculate a huge amount of possible features
during training, from which many can be discarded by intuition (e.g. looking
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for red coloured regions if we know the object’s colour is actually green). By
adding our scene constraints as processing steps on the training data, we help
our AdaBoost system in the selection of strong and descriptive features, and
explicitly tell the boosting where to look for them. This speeds up the training
process and achieves similar accuracies as simply letting the AdaBoost system
consider every possible feature in every possible feature channel. The only
pre-requisite is that you know which kind of scene constraint will improve the
training because adding specific filters can also remove valuable information
that one might not have considered before. If you do not have scene-specific
constraints available, then using the ICF algorithm directly for training would
probably be a better approach.

We will investigate all these possibilities through three industrial relevant
cases. In section 4.1 we will discuss our suggested integration approach for the
application of robotic harvesting and harvest estimation and more specific to
the cases of strawberry and apple picking. Following up on that, section 4.2
describes a similar approach for detecting photovoltaic installations in aerial
footage. It continues on the integration approach and compares against several
other techniques presented in the literature. Finally, section 4.3 formulates a
conclusion on using this approach of integrating scene- and application-specific
knowledge in the training process of object detection algorithms.

4.1 Automated visual fruit detection for harvest
estimation and robotic harvesting

Autonomous robotic harvesting is a rising trend in agricultural applications, like
the automated harvesting of fruit and vegetables. Farmers continuously look for
solutions to upgrade their production, at reduced running costs and with less
personnel. This is where harvesting robots come into play. While the mechanics
of grabbing objects is a well-documented problem with many proposed solutions,
robustly localizing objects stills seems to be very challenging, due to natural
variations in shape and size, occlusion and uncontrolled lighting conditions.
Multiple solutions, discussed in more detail in section 4.1.1, tried tackling the
detection and localisation of single objects, yielding only moderate success.

Aside from investigating object detection as a localisation mechanism of fruit
instances, we also improve the detection of single object instances within
clusters, by suggesting two approaches for separating clusters into individual
object instances. Of course, this complete pipeline is speeded-up using scene
specific knowledge, which is the main theme of this dissertation.
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4.1.1 Related work on visual fruit detection

The state-of-the-art in automated fruit localisation focusses either on 2D
segmentation based approaches, like the work of Stajnko et al. [107], or adds
extra information to the problem using either a thermal LWIR camera [108],
a hyperspectral sensor [79] or even the power of 3D scanning techniques [123]
to add an extra layer of knowledge to the object detection approach. The
downside of adding extra layers of information is the increase in computational
complexity and thus these techniques become quite time-consuming, especially
when the approach includes calculating a full high-density 3D point cloud.
Using hyper-spectral imaging also demands expensive hardware, with only
limited resolution at reasonable prices. Therefore one of the main goals of
this section is to prove that 2D information can be sufficient for robust object
localisation. Many of these additive techniques are quite depending on very
controlled (lab) environment settings, that are impossible to achieve in the
open air or greenhouse agricultural set-ups, and thus they are not usable in our
application.

The segmentation based approach, suggested by Stajnko et al. in [108] uses
thermal imaging (LWIR) for the counting and analysis of apple cultivars in
orchards. Their research is based on the different IR radiation patterns between
fruit and leafs. To ensure a decent detection accuracy, images need to be
acquired in the afternoon, to achieve a large temperature gradient between the
apples and the background. This is a downside when creating a universally
applicable approach since fruit exposed to less direct sunlight, results in partial
and incomplete apple detections. Subsequently, a simple colour channel based
segmentation approach is used, requiring the definition of hard thresholds,
which could vary over time. This approach is further improved by Stajnko
et al. [107], where the possibility of using pure RGB based colour and shape
segmentation for apple detection and analysis is investigated. Wherever the
basic segmentation does not work, specific image transformations on separate
colour channels are applied to achieve a better contrast between leafs and fruit.
Finally, they apply a parameter based blob analysis to identify fruit instances.
This works fine for fully visible object instances but fails when objects get
partially occluded and the resulting blob no longer has the correct parameters.
In comparison with our approach, object categorization techniques are able to
detect partially occluded instances, since these variations are also included in
the training data, and thus ensure that more objects will be found.

Yang et al. [123] use a 3D stereo set-up, applying colour based segmentation
on the intensity image, successfully separating clusters on tomato plants. We
would like to retrieve individual objects, which is impossible for this cluster
based segmentation approach, mainly due to the fact that separate instances in
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a cluster share a similar depth profile.

Finally, Feng et al. [33] propose a fruit detection and classification method for
a strawberry harvesting robot, closely related to one of our test cases. They
introduce the use of OHTA colour spaces [78], on which they apply segmentation
based algorithms to extract strawberries from the background, which is proved
to work in single object instances. However, expanding this to a harvesting
set-up on a real robot, is nearly impossible, because the segmentation will most
likely not work due to object clusters, occlusions of leafs and different lighting
conditions. Similar research in lab conditions is performed by Dubey et al. on
individual object instances, against a clean background, successfully segmenting
and analysing the apple region [28].

The downsides of segmentation based approaches can be solved by the proposed
object detection algorithms. The work of [106] on recognising and counting
peppers in cluttered greenhouses, based on a bag of visual words combined
with a sliding window approach, is a first attempt of using more advanced
computer vision techniques for solving the task. They start by locating fruit
in individual images, then aggregate the estimates from multiple images using
a novel statistical approach to cluster repeated and incomplete observations.
Compared to our technique, where only a single view from the set-up is needed,
this approach can only work successfully if multiple views are provided to
support the different observation hypothesis.

4.1.2 Collected strawberry and apple datasets

Since no publicly available annotated datasets of fruit in unconstrained
conditions exist, the first step in implementing our object detection algorithm is
gathering the necessary data for training and testing the specific object models.
We focus on two separate cases: strawberry picking and apple harvest estimation.
Positive training data is gathered by collecting different representations of
the strawberries and apples (e.g. different illumination conditions, different
orientations, partially occluded by branches and leafs, different viewpoints, ...)
whereas for the negative training data the objects are removed and the remaining
image pixels are used as background information, maintaining application-
specific background knowledge. This does limit the ability to use the trained
models outside the intended set-up but it decreases the training time immensely
compared to learning a set-up independent object model.

For the strawberry picking case, the goal is to localise all ripe strawberries given
an RGB input image of the scene. A trinocular stereo set-up is used in order
to grab different viewpoints (bottom-up- and side-views) of the strawberries.
For the apple harvesting estimation application, two apples cultivars are tested:
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Table 4.1: Data overview for both applications: number of images, number of
annotations, model dimensions and the number of negative window samples.

strawberry appleGala appleRedDelicious
train test train test train test

pos
#images 205 750 30 30 32 32
#labeled 1500 / 1595 625 1075 1160

dimensions 35x38 65x65 62x66

neg #images 200 / 30 / 30 /
#windows 5000 / 4000 / 3000 /

Gala and Red Delicious. For both cultivars, a training dataset is gathered using
side-views of the apple trees inside the orchards. For evaluation of the apple
models, images with a thirty degrees angle inclination were used, giving us a
clear separate test set, maintaining the objectivity in evaluating the models.

Table 4.1 gives a detailed overview of the train and test images collected, the
number of annotated objects, the model dimensions and the number of negative
samples used at each boosted stage of weak classifiers. All annotations are
manually made by a domain expert, to ensure the correctness between ripe
and unripe strawberries. In the strawberry case, images were captured with
two AVT Manta cameras both having a 1.292 × 964 pixel resolution. In the
apple cultivar case, images were captured in the field by a third party using a
Samsung NX3000 with a 3.648× 5.472 pixel resolution.

4.1.3 Suggested strawberry and apple detection approach

In this subsection, we describe the complete pipeline for building both the
strawberry and the apple detector models. We also prove that using scene
constraints either during or after the training process increases the accuracy of
the detection output. The approach itself is developed using the data of the
strawberry case, whereas the data of the apple case is used as validation, to
verify the approach for similar agricultural cases.

A boosted cascade of weak classifiers on original data

To start off we build a boosted cascade classifier using AdaBoost [120] with local
binary patterns (LBP) [64] as local feature descriptor. Furthermore, each input
sample, evaluated by the learned model during both training and validation
phase, is pre-processed using histogram equalisation to account for varying
lighting conditions. For each captured image from the trinocular stereo set-up,
a set of manually positioned annotations is supplied, for which the LBP features
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Figure 4.1: Strawberry model trained with both ripe and unripe strawberries.

are learned and used by the boosting process to optimally separate the positive
and negative training samples in that given LBP feature space.

We train two models using the strawberry training data. We start with a model
using all strawberries (both ripe and unripe) annotations. This results in a
model, able to separate strawberries from the background and the plant with
mediocre results, as shown in Figure 4.1.

Since our focus is to separate ripe from unripe strawberries, this model does
not suffice, because it would still need a second colour based classification step.
To cope with this we train a second model where the unripe strawberries are
used as negative training samples. This approach does not yield decent results,
since colour information is simply ignored by the proposed boosting process
based on the LBP feature descriptor, and thus no feature based separation can
be made between ripe and unripe strawberries.

We tested a similar approach on the apple case since ripeness was not an issue
here. We noticed that training a model on LBP features yielded quite a lot of
false positive detections while missing actual apples. This is mainly due to the
simple shape and structure of an apple, yielding feature descriptors that are
not unique enough compared to the background information. This problem can
only be solved by adding more scene- or application-specific information, like
for example the known colour of the ripe fruit.
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Adding Scene Specific Information to Improve The Detector

To avoid valuable colour information being ignored and in the meantime trying
to reduce false positive detections, we investigate possibilities to include colour
information as an extra scene- and application-specific filter. This idea is
inspired by the work of Dollár [26], and was already proven successful in chapter
3. The addition of colour information should make it possible to separate
between dark red ripe and green unripe strawberries and to post-filter valid red
apple detections, in order to drop the amount of false positive detections. To
incorporate colour information into our set-up, we derive an application-specific
colour transformation from the fact that both ripe and unripe strawberries have
unique separable colours, as seen in equation 4.1. Furthermore, a hyperspectral
study of the fruit showed that the best separation between ripe and unripe
strawberries was obtained by comparing two spectral bands close to the red
and green colour spectrum.

IRG =
{

0 if IR − IG < 0
IR − IG if IR − IG > 0 (4.1)

The derived equation supports red coloured regions, while it punishes the
greener regions, by subtracting the green channel IG from the red channel IR

and clipping negative values. This basically boils down to projecting the RGB
colour cube on an axis connecting these two colours G(0,1,0) (representing leafs,
branches and unripe strawberries) and R(1,0,0) (representing ripe strawberries).

The general idea can be applied to any coloured object with a distinct colour
difference to the background. Applying the equation results in an image with
a visible difference between ripe and unripe strawberries on the one hand and
background information on the other hand. This is visualised in Figure 4.2 and
only applies if the background does not consist of bright reddish colours, similar
to ripe strawberries (greenhouse conditions).

Figure 4.3 illustrates the different ways we can integrate this extra colour based
knowledge. The original model trained on RGB data, only looking at LBP
features, can be seen in Figure 4.3(a). Using the information as a post-processing
filter after applying a general colour ignorant object detector, is seen in Figure
4.3(b). This works in case of the strawberries, where building a cascade classifier
for ripe strawberries only is not feasible, as shown in Figure 4.1. After each
colourless detection, a post-processing filter can define if in the IRG image the
response is high enough to decide if the detection is an actual ripe strawberry.
We apply an Otsu thresholding [80] on the IRG image to receive a binary image
and calculate the number of white pixels.
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Figure 4.2: IRG colour transformation applied to the RGB input data, which
is used to segment ripe strawberry areas. (normalized visualisation over full
[0-255] pixel range)

If more than 50% of the detected pixels yield a response in the binary map, we
allow the detection as a ripe strawberry.

This post-detection candidate removal leads to an increase in processing time
due to an extra filter step but reduces the amount of false positive detections.
To avoid this increase in processing time, we can also apply the colour based
knowledge as a pre-filtering of the training data, by retraining the object model
on both IRG transformed positive and negative datasets. Compared to using a
post-processing filter this results in faster processing, a higher amount of true
positive detections and a lower amount of false positive detections, as visualised
in Figure 4.3(c).

Since our object detection model is applied on a multi-scale basis, we restrict
the object size search range of the object detector, due to the known distance
of the camera set-up compared to the object itself. This again results in a
speed-up and a decrease in false positive detections, since multiple layers of
the processed scale pyramid during multi-scale detection can be ignored in the
search for object candidates. As seen in Figure 4.3, it only makes sense to detect
apples in a certain range, depending on the distance to the camera, removing
any false positives of undesired scales.
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Splitting object clusters into separate object instances

A reoccurring issue during fruit localisation is the existence of fruit clusters.
Segmentation based approaches are in most cases unable to find the small borders
between connecting objects. This is where our object detection framework comes
in handy. Since overlapping and partially occluded objects are also part of the
positive training set, the model is able to identify single objects within clusters.

This means that the output of the detector can be used to successfully separate
clusters. We suggest two possible approaches following our object detection
pipeline, that use the location of the found detections to segment object clusters.

1. Watershed-based segmentation

Applying Otsu thresholding on top of the IRG image results in a binary mask
with possible ripe strawberry pixels. Next, the object detection returns regions
of interest containing individual strawberry detections. White pixels in the

(a) RGB input data (b) RGB input data + IRG

post-processing.
(c) IRG pre-processed input

data.

Figure 4.3: Adding scene knowledge either as separate processing filter or
integrated into model training through training data preprocessing. (top row)
actual detections (bottom row) detections shown as TP (green), FP (red), FN
(magenta).
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Figure 4.4: Watershed-based segmentation for separating object clusters.

mask, falling together within a single object detection bounding box, are first
of all merged together. This copes with the negative effect of the colour
transformation, where clutter covering parts of the object, splits single object
instances into separate binary blobs. Once a merged binary image is produced,
the centres of all detections are used as initialization positions for a watershed-
based segmentation [11], combined with a separate randomly positioned seed
point for the background. The watershed splits larger blobs into separate objects
and identifies them with a unique ID, as illustrated in Figure 4.4. The borders
of each region are defined by the merged binary image, pinpointing areas with
possible strawberry pixels. A downside of the technique is the harsh boundaries
between two objects, however, this depends on the implementation used.

2. Trinocular stereo triangulation based segmentation

To avoid the harsh boundaries of the watershed based segmentation we propose
a second solution, based on a calibrated trinocular stereo set-up, like in our
strawberry case. By performing the strawberry detector in all three camera
views we know where strawberries are located in the given 2D images. We then
apply a Difference of Gaussians (DoG) filter on the found detections (see Figure
4.5), which locates the strawberry seeds. By performing 3D triangulation on
those seed locations, a local 3D map of the strawberries is generated. Combined
with the segmentation data from the IRG image, the depth edges can then be
used to separate strawberries in clusters.

Evidently, this approach only works for objects that have identifiable unique
textures, yielding enough unique points for the 3D triangulation. In case of
flat texture-less objects, the watershed based segmentation approach will still
achieve better results.
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Figure 4.5: Applying DoG filtering to identify seed positions inside detections.

4.1.4 Results

Results on the strawberry test case

Due to the lack of decent ground truth data provided on the strawberry test
sets, producing objective accuracy results on the produced object detectors is
not that straightforward. One of the main challenges lies in defining what we
have to classify as a ripe strawberry and what not. This differs from strawberry
to strawberry cultivar, and thus introduces a bias when people start annotating
ripe strawberries. Even application experts have troubles uniquely defining a
ripe strawberry using objective criteria.

Visual results, as seen in Figure 4.6, clearly show that we are able to accurately
detect visible and partially covered strawberries. Furthermore, all ‘pick-able’
strawberries are clearly located. Much depends on the extent of the used
training set, and the quality of the annotation inside that given set of images.
We clearly notice that using application-specific colour information improves the
detection output and that we are able to uniquely identify objects inside object
clusters, which can be used as seed points for our segmentation approaches.
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Figure 4.6: Visual detections for the strawberry picking case in both viewpoints.

Results on the apple cultivar test case

In contrast to the strawberry case, the apple cultivars test sets are accompanied
by a complete set of manually provided object annotations. This allows us to
perform a qualitative accuracy analysis in the form of precision-recall curves,
as seen in Figure 4.7. For both apple cultivars, Gala and Red Delicious, we
evaluated both grayscale (striped curves) and IRG (filled curves) models on the
available test data.

We clearly prove that adding the IRG colour transformation to the model
training pipeline improves the detection performance of the model compared to
using the raw grayscale input image data, pushing the average precision higher.
We compare this to a pure segmentation based approach, seen as the black
curve inside Figure 4.7. For this we apply a hard threshold on the IRG image,
followed by erosion and dilation operators to remove noise and a blob detection
algorithm. Each detected blob is evaluated on its dimensions, ensuring that
only blobs inside a specific scale range are allowed. Visual results in Figure 4.8
clearly show a well-performing algorithm in challenging conditions like occlusion,
background clutter, etc.
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Figure 4.7: Precision - Recall curves for both apple cultivars.

4.1.5 Discussion and conclusion on the fruit detection cases

While existing segmentation based object detection approaches seem to work
for agricultural applications in very constrained ‘lab’ conditions, they tend to
fail when the environment gets more challenging. Adding extra sensors like
IR, hyperspectral or 3D sensors could cope with this, but have proven to work
less efficiently in outdoor conditions than 2D image processing. This was our
motivation for developing a robust and promising algorithm for agricultural
object detection. By smartly combining an object detection framework based
on a boosted cascade of weak classifiers, with scene- and application-specific pre-
filtering and efficient cluster segmentation, we created a promising pipeline for
applications like strawberry picking, apple harvest estimation, . . . Furthermore,
the lack of publicly available and annotated datasets limits the possibility of
comparing to existing techniques in the field.
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Figure 4.8: Visual detection results for Gala (first row) and Red Delicious
(second row) test images. All detections indicated with a bounding box and a
filled detection circle.

We discover the problem of annotation bias, whereas the annotator and the
person in charge of training the object detector need to agree on how the
objects in the image should be annotated. If not, different shaped annotations,
covering more or fewer object pixels, can lead to very misleading results on the
precision-recall curves, showing worse results than the actual accuracy of the
trained object detector. It also became clear that defining the actual objects to
be found can be very challenging, even for domain experts.
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4.2 Detection of photovoltaic installations in RGB
aerial imaging

In this section, we discuss another case where we compare a boosted cascade
combined with constraints approach against a channel-based approach. To prove
the power of these object detection based approaches, we also compare against
several more naive approaches like colour-based segmentation and maximally
stable regions (MSER).

Solar panels provide a plausible solution for generating energy from non-
polluting resources and therefore placing a solar panel installation is subsidized
and encouraged by governments and electricity grid administrators. However,
due to the given funding and tax reduction, these ‘greener‘ energy-generating
alternatives also give rise to malicious fraud. Our client, an electricity grid
administrator wants to use the power of computer vision to track down these
fraud cases to ensure that no financial benefits are given to people that are not
correctly registered at the grid administrator with their solar panel installation.

Fully automated solar panel detection in RGB images yields major challenges,
as seen in Figure 4.9. First of all, a solar panel is an object shape with only
a few distinct visual features like shape and colour, due to its simple shape
and colour distribution. Secondly the images that are freely available on the
FGIA (Flanders Geographical Information Agency) portal have a very limited
resolution (only 25cm/pixel) resulting in a solar panel size of only 9× 7 pixels,
which is very limited for training a detection model based on the boosted
cascade principle and visible in Figure 4.9(a). Due to the material properties
of solar panels, specular reflections tend to change the visual properties of the
panels, depending on the position of the sun. This could lead to solar panels

Figure 4.9: Challenges when dealing with solar panel detection.
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occurring as a flat white overexposed part of the image. This difference can be
seen in Figure 4.9(b) and 4.9(b′). The orientation in which the solar panels are
placed also varies (south, south-east, south-west), raising the need for a full 360◦
rotational search of the image for object instances. However, if one can ensure
symmetry in the solar panels, a 180-degree range can be more than enough.
Combined with the different roof slants (30◦, 45◦, 60◦, etc.), panels get optically
deformed and thus appear shorter or longer in 2D images, despite the fixed
physical size, as seen in Figure 4.9(c). Finally, solar panels come in different
materials (mono- and polycrystalline, full black, etc.) introducing, even more,
intraclass variance into the problem. For example, due to the small resolution
per panel, full black installations appear as a black square, yielding no visual
features to train computer vision techniques, as seen in Figure 4.9(d).

Our goal is to develop a fully-automated computer vision based approach that
is able to automatically detect solar panels in aerial imagery and return the
location of these installations with a high probability. This, in turn, can avoid
putting in huge amounts of manual labour to locate solar panel installations for
fraud detection.

4.2.1 Related work on the detection of photovoltaic
installations

The automated analysis of solar panel installations from aerial images using
techniques of the computer vision field, limits itself to the analysis of solar panel
efficiency and defects, using RGB and thermal cameras [100, 60, 116], while
automated solar panel detection and localisation seem to be unexplored territory.
While object detection is a well-studied problem in the field of computer vision,
many other fields still have not discovered the power of these state-of-the-art
techniques in autonomous object detection and localisation. The community of
computer vision has however already performed object detection research in the
field of aerial imagery, focussing on roads [44], buildings [72] or vehicles [39],
always using state-of-the-art computer vision algorithms and thus giving perfect
example cases that can be expanded to solar panel detection and localisation.

While the intuitive way would be to use segmentation based approaches, where
the RGB input image is transformed to a colour space where separating object
pixels from background pixels using strict (learned) thresholds is easier, they
tend to fail when a wide range of other objects in the images have similar colour
ranges. Furthermore, these techniques only take into account object colour
information.
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4.2.2 Datasets

For developing and testing our approaches, we use the freely available medium-
scale aerial footage from FGIA (Flanders Geographical Information Agency)
covering the grid area of Flanders where our electricity grid administrator is
active. From this publicly available dataset, a set of 2.500 individual solar
panels are manually annotated and a set of more than 150.000 random negative
samples (containing everything except solar panels) are collected and used to
learn the object detection models.

To test the four suggested approaches an aerial image of four square km of the
city centre of Sint-Truiden is obtained. At a resolution of 25cm/pixel this results
in a 8.000× 8.000 pixel image, which is up-scaled using a bi-cubic operator to
16.000× 16.000 pixels to ensure the solar panels are covered by enough pixels
per panel. We reckon that this is mainly due to the software back-end used
and not due to the fact boosting cannot learn a model based on fewer pixels
per object. Inside this test image 313 solar panel installations are manually
annotated, by drawing polygons around the installations, to use as ground truth
when validating the fully automated object detection techniques suggested in
this work. Due to the existing layout of solar panel installations, retrieving
single solar panel annotations from these polygons is quite straightforward. The
complete dataset, including training data, test data and annotations can be
found for research purposes at http://www.eavise.be/SolarPanelDataset/.

4.2.3 Used approach

To find an optimal solution for fully automated solar panel detection in aerial
images, a comparative study was performed. In the following subsection, each of
the four state-of-the-art approaches is discussed in detail. Subsection 4.2.4 takes
a closer look at the accuracy and time complexity of each individual technique.

Pixel-based colour classification using support vector machines

Our pixel-based colour classification, as seen in Figure 4.10, uses the internal
coloured area of each solar panel (blue-grey colour range) without looking at the
bright edges of the panel, in order to ensure that the pixel colour distribution
of the training pixels is separable in the HSV colour space. We manually collect
1.000 internal solar panel pixels and 2.000 randomly selected non-solar panel
background pixels. Both solar panel and non-solar panel pixels are transformed
to the HSV colour space, where separating colours is easier than inside the RGB
colour space.

http://www.eavise.be/SolarPanelDataset/
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Figure 4.10: Example of pixel-based colour classification using shallow learning
as the learning tool. (left) original image (middle) pixel classification result
(right) cleaned up segmentation.

Based on this training data, a support vector machine classifier with a linear
kernel is trained, able to autonomously separate solar panel from non-solar
panel pixels. When a test image is presented to the support vector machine
classifier, each pixel is processed and is given a probability score, indicating how
certain we are that the pixel is actually part of a solar panel installation. This
probability score allows us to set a minimal certainty threshold, generating a
binary image as seen in Figure 4.10. On top of that, binary image opening and
closing operators are applied to remove noise, followed by contour detection
and contour filling to achieve a cleaner result.

MSER based colour segmentation and shape analysis

Maximally stable extremal regions (MSER) [69] is a technique used to detect
blobs inside any given image. By systematically increasing the threshold on
a given grayscale input image, from very sloppy to very strict, we create a
set of sequential binary images. Inside those images, the algorithm looks for
regions that stay stable over the different thresholds and then approximates
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(a) MSER detected blobs (b) Area restriction

(c) Ratio restriction (d) Colour restriction

Figure 4.11: MSER based colour segmentation.

those regions by their fitted ellipse. Applied in the case of solar panels, this
generates a selection of candidate blobs, as seen in Figure 4.11(a).

Due to the higher response of solar panels in the blue channel compared to the
red and green channels, we only process the blue channel data, removing the
need to explicitly convert into a greyscale image. However, we could directly
plug in the previous technique, and use the range of auto-learned pixel values,
to define which pixel range to take into account, rather than selecting a single
colour channel. To further filter candidate regions, we start by discarding blobs
of an incorrect size (see Figure 4.11(b)), then look for blobs with an axis ratio
that deviates maximally 30% of the ideal 1.5 : 1 ratio (see Figure 4.11(c)).
Finally, we apply HSV colour based segmentation on the remaining blobs, using
the previously discussed technique.

The known size range of the blobs can be explained by the fact that aerial
imagery is taken on a constant height, while the limited ratio deviation is
explained by the fixed physical size of the solar panels. Finally since our
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training set contains solar panels with a known and shared colour range in the
HSV colour space, we can allow colour based segmentation for further filtering.

Boosted cascade of weak classifiers

The previous techniques require a very limited training time since most
processing is done on the fly when providing new test samples. This is different
for object detection techniques, where a model is learned from a set of positive
object samples and a large set of negative random background samples. From
each training sample, a set of specific features is learned that are smartly
combined into a model, able to separate objects from non-object patches.

Our first object detection approach is built upon the framework of Viola and
Jones [120], using a boosted cascade of weak classifiers (simple decision trees).
This technique is originally developed for efficient face detection, but recent
advances in computer vision [85, 89] prove that this technique still achieves
top-notch results in other application fields, focussing on more general object
detection test cases.

Since solar panels have a colour range that has a higher response in the blue
channel, we decided not to use a grayscale image, but the blue channel instead,
explicitly forcing the framework to use colour information and thus forcing
colour properties into the training of the object model. The framework trains a
model for a fixed orientation, so we explicitly rotated all solar panel examples to
a horizontal position, resulting in a model able to detect horizontal solar panels

Figure 4.12: Detection of solar panels using a boosted cascade of weak classifiers.
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only. However solar panels occur in different orientations, so we rotate the input
image over different angles, with a predefined angle step, and then warp back
the retrieved detections. This allows us to build a full 360-degree capable solar
panel detector using a single orientation model. Running the detector on a test
image, the detector will apply a fully rotational sliding window based evaluation
of the image, triggering a detection at each position that gets classified as an
object by the trained model. An example of such a detection output can be
seen in Figure 4.12.

Aggregate channel features

The ‘Aggregate Channel Features’ - algorithm suggested by Dollár et al. [24]
is, in fact, an extension to the Viola and Jones technique, incorporating colour
information effectively in the training process instead of discarding it. This is
one of the main reasons why we decided to test this framework for our solar
panel detection case. Besides that, we also have an internally developed C++
implementation of this framework available, introduced in [18].

Running this more recent object detector on top of a given test image generates
similar output as the previous technique, as seen in Figure 4.13. However, keep
in mind that both Figure 4.12 and 4.13 are a sample detection output at specific
detection thresholds of the algorithms. Deciding which algorithm performs
better is done thoroughly in subsection 4.2.4.

Figure 4.13: Detection of solar panels using the ACF algorithm.
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4.2.4 Results on the detection of photovoltaic installations

We started out with comparing our four state-of-the-art algorithms in processing
time, as seen in Table 4.2. We see a clear difference in training time between the
more basic HSV pixel segmentation and the MSER approaches, and the object
detection approaches. While the boosted cascade and the aggregate channel
features approaches take quite a bit longer to train on the given dataset, this
task should only be done once because a trained model can be reused as many
times as we desire. However, when looking at detection time, we notice a steady
increase in processing time when computational complexity of the algorithm
increases. Where the standard pixel based segmentation takes only 10 seconds
for a 16.000 × 16.000 pixel image, the basic object categorization framework
already takes 600 times that long.

These timings should be interpreted with caution because they are highly depend
on the available infrastructure, which is also specified in Table 4.2 and the input
resolution of the images. Furthermore, the implementation of the aggregate
channel features technique is developed in-house and is not yet optimized for
parallel processing, and thus processes everything in a sequential order.

One of the main reasons why object detection techniques take a lot more time,
is that they are trained for a specific orientation. In order to be able to detect
objects in every possible orientation, we rotate the original image for a full
360-degrees, with a single degree step. However, if computational efficiency is
the end goal, we can reduce the amount of angles on which we evaluate the
solar panel detector. We know a single model is robust to slight variations of
about 20-degrees. This can already reduce the amount of steps to eighteen. On
top of that we can argue that if we know where the north is given our image,
we can exclude several orientations, since they will never be used for solar panel
installations. This can probably again reduce the amount of evaluation by half,
to about 9 different angles that need to be tested. If we can then integrate
symmetry, we can even further reduce the amount of verified orientations.

Table 4.2: Comparison of training and detection times combined with the
complete system configurations used.

Algorithm Training Detection Cconfiguration
HSV + SVM 10 sec 10 sec Intel Core CPU i7-4500U

MSER 0 sec 100 sec Intel Core CPU i7-4500U
Boosted Cascade 3.5 hour 10 min Intel Xeon CPU E5-2630

ACF 36 min 6 hour Intel Xeon CPU E5-2630
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Figure 4.14: Precision - Recall curves for all techniques tested and validated on
the 16.000× 16.000 test image of the Sint-Truiden city centre.

To evaluate the accuracy of the implemented algorithms, we suggest to use
precision-recall curves, used to compare the actual detection output with the
manually obtained ground truth polygons. To generate these curves, seen in
Figure 4.14, the generated detection maps are first downscaled to a 4.000×4.000
pixels, combining scores of the detections obtained on the same locations. On
top of the resulting score map, a threshold is applied (which is the varying
parameter used to generate the different precision-recall values). This is followed
by a dilation (to make detection centres as large as solar panel dimensions)
and erosion (to remove detections that are lonely and not grouped) operations
resulting in a clear binary image. This binary image is then analysed to calculate
the true positives (TP), false positives (FP) and false negatives (FN).

Figure 4.15 shows the comparison of the binary output which is in turn compared
to the manual annotations. By using the three channels of an RGB image,
knowledge of both results can be visually combined.
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Figure 4.15: Score processing map for both boosted cascade and aggregate
channel features algorithm. (left) original input image (middle) boosted cascade
result (right) aggregate channel features result. (pixel classification based
colouring: cyan = TP | black = TN | blue = FP | green = FN)

Detection centres are visualised as dots on the red channel, the ground truth
is visualized on the green channel and finally the detection output regions are
visualised on the blue channel. Combining those three colour channels yields
a set of pixel based classification labels. Cyan labels indicate true positive
detections, black labels indicate true negative detections, blue labels indicate
false positive detections and green labels indicate false negative detections. The
visualisation is done for both the boosted cascade and the aggregate channel
technique.

The precision-recall curves clearly show that object categorization techniques
outperform the other, more basic computer vision techniques. We notice that
the boosted cascade technique performs still a bit better than the aggregate
channel technique, which indicates that adding extra feature channels like colour
and other gradient filters is overkill for solar panel detection. To test this theory
we added HSV pixel based segmentation as a post-processing step to our boosted
cascade detector, displayed as the red curve in Figure 4.14. We see almost no
increase in efficiency which made us to decide to drop this extra processing,
obtaining a smaller computational complexity and thus a faster running time.
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4.2.5 Discussion and conclusion on the detection of
photovoltaic installations

Our goal is to compare techniques for automatically detecting photovoltaic
solar panel installations in RGB aerial images, considering very challenging
conditions due to the limited resolution, a limited amount of visual features,
specular reflections and different orientations of the solar panel object class.

Using pixel-based segmentation for solar panel detection yields only moderate
results. In any given test image, it is impossible to only separate blobs that
are pure solar panels, since the colour distribution of the panels, also tends to
return in many background patches. Furthermore, there are several solar panel
types that tend to deviate from the average colour distribution, like the full
black type, generating even more missed detections.

Applying smarter feature-based techniques, like the MSER based approach,
seems promising and even yields decent results in specific areas, but still has
quite a fast drop in accuracy when considering larger regions where solar panels
need to be detected, as seen from the resulting precision-recall curve based on
the 2× 2 km area of Sint-Truiden. However, our tests clearly prove that object
categorization techniques like boosted cascades and aggregate channel features
can outperform more basic techniques with the only downside that training
data needs to be collected and that the single training set-up for building the
model takes a bit longer.

We prove that computer vision is a working solution for fully automated solar
panel detection in RGB based aerial imagery for fraud detection. For a fully
automated system, we achieve a precision of 93% at a recall of 80%. Due to
the heavy deformations to the solar panel object caused by the slant angle of
the roof, training multiple models to cope with the missed detections could be
the first improvement. Furthermore, we perform the research on mid-resolution
images, at 25cm/pixel. However, there are already recordings of the same area
at a resolution of 8cm/pixel, which would again yield an accuracy increase.
Since our training set consists mainly of industrial solar panel arrays, it is
also quite understandable that the model is not able to cope with the larger
deformations found on solar panels placed on domestic housing. Improving the
training dataset offers solutions here.

Finally, fully automated system should not be able to detect 100% of the solar
panels with 100% precision. In most set-ups, an operator is still available. Lower
probability yielding detections can be sent to the operator and in case of doubt
be solved by manual inspection. This semi-automated approach would still
reduce the manual labour drastically and reduce the time needed to process
larger datasets.
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4.3 Conclusion: benefits of integrating scene con-
straints

In this chapter, we explained how scene- and application-specific knowledge
and constraints can be integrated into the actual object detection model, by
training models on actual pre-processed data. This allows us to force detection
models to look for a specific property of an object, instead of letting the training
algorithm decide by itself if the feature is valuable for detection or not. By
doing so, we force more basic object detection algorithms to more advanced
object detection algorithms.

To prove our point, we provide solutions for three industrially-relevant
applications as study cases. The first and second case focuss on fruit detection
and localisation in agricultural applications in subsection 4.1, more specifically
providing object detection models for strawberries and apple cultivars. This
enables to create an automated harvesting robot, or harvest estimation system.
We prove that our boosted cascade of weak classifiers with integrated scene
specific knowledge in the training data can obtain highly accurate detection
results. As shown in chapter 9 these fruit-based detectors are industrially used in
the case of robotic strawberry picking, where the robot replaces human pickers
whenever no-one is around in the greenhouse (e.g. during night conditions or
weekends). The combination of both robotic and human pickers leads to a faster
collection of ripe strawberries without damaging the product. The robotic
picker is mostly used for picking the clearly visible strawberries, whereas human
pickers are used whenever the robot is failing, since we could not guarantee a
100% average precision, meaning that every single strawberry is detected.

Subsection 4.2 implements the third industrially-relevant application, where a
similar approach for automated solar panel detection is used with the goal of
obtaining an automated fraud detection system. Here we prove once again that
introducing extra channels (e.g. when using the ACF approach), is not always
the best way to go. We rather suggest considering scene-specific knowledge to
improve more stable and reliable detectors (e.g. using the adapted Viola&Jones
approach). While this system is not yet actively used by the electricity grid
administrator who tasked us with the case itself, other parties showed interest
into using our technique for a European project, focussing on robustly locating
solar panel installations in aerial photography.

In chapter 5 we set the scene- and application-specific constraints part aside and
look for possible solutions to reduce to amount of manual labour needed when
training these powerful object detection algorithms. In doing so we investigate
the possibility of using a technique called active learning and illustrate its use
in efficiently training object detectors with minimal manual input.



Chapter 5

Integrating active learning to
improve industrial object
detection

The work presented in this chapter was published at the VISAPP 2017 conference
[87].

In the previous chapters, we focussed mainly on integrating scene- and
application-specific constraints into existing object detection pipelines. Although
this already adds a lot of possibilities in training effective object detection models
for industrial applications, scene- and application-specific constraints will never
solve all the issues with object detection on their own.

One of the issues that still remains is that in many academically developed
applications, high average precisions are reached by providing the learning
systems with huge amounts of positive and negative training data. All things
considered, this is not a big issue when the application is a class that is
represented a lot in the existing large public datasets. In that case, it is simply
a job of collecting all the relative images and their ground truth annotations.

However if your object class is different from the many that have off-the-
shelf available models, which is the case in about every real specific industrial
application, then basically the task of collecting and annotating training data
has to be included in the design process. Collecting multiple thousands, even
up to millions, of training samples and letting a user manually annotate all
those images, is a time consuming and not to mention very expensive process.

97
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This is one of the reasons why many small- and medium-sized industrial
enterprises refrain from learning classification models. Luckily the academic
community is aware of this problem and introduced the concept of active
learning as a possible solution to the problem. The idea is that, when training
a machine-learned classifier, the only training samples that really matter are
the ones that shape the separation plane in the given feature space. So instead
of simply providing millions of images, hoping that the crucial examples are
included by providing numbers, active learning tries to actively look for training
samples that actually matter. (for a more detailed discussion on the active
learning technique itself we refer to section 2.3)

The remainder of this chapter is organized as follows. Section 5.1 applies the
concept of active learning using our boosted cascade of weak classifiers back-
end in order to generate improved open source face detection models. This
is followed by section 5.2.2 discussing how we can apply this approach to our
previous cases in order to obtain better industrial object detectors. It also
highlights many of the benefits of active learning, in relation to these scene-
and application-specific conditions. Finally, section 5.3 concludes this chapter.

5.1 Improving open source face detection by com-
bining an adapted cascade classification pipeline
and active learning

Face detection (see Figure 5.1) is a well-studied problem in computer vision,
and good solutions are presented in the literature. However, we notice that
open source computer vision frameworks like OpenCV [12], offer face detectors
based on existing learning techniques, which are yet unable to yield equally
high accuracies on the available public datasets as those reported in academic
publications. The main cause for this can be the fact that most of these models
have been created in the earlier ages of computer vision, when academic research
was still interested in older cascade classifier based techniques, like the proposed
algorithm of Viola & Jones [120].

Academic research evolved and moved on, discovering more promising techniques
and losing interest in well established and proven-to-work algorithms. In the
case of OpenCV, this resulted in a well-known computer vision library still
providing quite a basic face detector, achieving only average detection results
on any given dataset, without more state-of-the-art face detectors.
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Figure 5.1: Example of CascadeClassifier.detectMultiScale() in OpenCV3.1
framework (OpenCVBaseline model).

On the other side, users from the industry interested in turning these open
source computer vision frameworks into working applications, get stuck at
improving the existing performance of the face detection algorithms, because
it seems the models already reach their maximal potential. Furthermore, the
internal organizational structure of many companies does not allow to put efforts
into research that tries to boost the performance of current algorithms. Two
of the main issues when trying to improve these existing detection models are
the availability of large amounts of training data and the achievable accuracy
limitation reported by academic research, using this basic detection model.

In order to fill the gap, we decided to investigate how the on Viola & Jones
based cascade classification pipeline for training a face detector inside OpenCV
could be adapted to achieve a higher detection accuracy. We do this by:

1. Using an active learning strategy to iteratively add hard positive (positive
windows classified as negatives in the previous iteration) and hard negative
(negative windows classified as positives in the previous iteration) samples
to the object detector training process. This is immediately our most
influential change to the training pipeline and also the focus of this chapter.

2. Improve the gathering of training sample collection, to make it more
intuitive and remove the overburden of samples of which we know they
do not add any more knowledge to the detector.

3. Adjusting the face annotations to focus on the inner-face rather than
focussing on the outer-face and thus removing undesired information.
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We experienced that industrial applications of face detection tend to fail due to
false positive detections, as seen in Figure 5.1, because post-detection processing
steps depend on an actual face being available. In the case of a face recognition
application, the face detection can be the basis for gathering training and test
annotations [58, 121]. Therefore we aim at improving the available face detection
model of OpenCV3.1, based on AdaBoost [35] and local binary patterns [64],
aiming for a very high precision at an acceptable recall.

The remainder of this section is structured as follows. Subsection 5.1.1 presents
related research, while subsection 5.1.2 discusses the used framework and
datasets. This is followed by subsection 5.1.3 discussing the proposed approach
in detail. Finally, subsection 5.1.4 elaborates on the obtained results while
subsection 5.1.5 sums up conclusions.

5.1.1 Why wanting to improve old OpenCV functions?

The OpenCV framework is an open source computer vision framework providing
a collection of techniques ranging from basic image segmentation to complex 3D
model generation. It steadily grows in size by contributions from a community
of both academic researchers and industrial partners, adding recent advances
in the computer vision community, while trying to maintain the quality of the
existing back-end. We notice that once the new functionality is integrated for
a longer period of time and heavily used by the community, investments in
improving the functionality tends to stop. This could be explained by the fact
that the computer vision community has no interest in actual relevant industrial
implementations, but rather in pushing the state-of-the-art even further.

Recent advances in computer vision solve face detection by using complex
techniques like multi-task cascaded convolutional neural networks [125],
convolutional neural networks combined with 3D information [63] or recurrent
convolutional neural networks [51]. These techniques yield very promising
results but tend to be fairly complex to implement in actual applications. There
is still a lack of well documented and supported open-source software libraries
that are easy to use.

Furthermore, we noticed OpenCV is paving the way of integrating these newer
techniques, but up till now, their performance inside the OpenCV framework is
still not as bug and error-free as desired by industrial companies.

The work of Viola and Jones [120] on face detection using a boosted cascade of
weak classifiers has been around for quite some time. It is the standard frontal
face detector for many industrial applications so far, like e.g. digital photo
cameras. A downside is that many companies use the available software to train
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Table 5.1: Training data overview for trained models.

Model #pos #neg #stages #stumps
OpenCVBaseline xxx xxx 20 139
BoostedBaseline 1.000 750k 26 137

IterativeHardPositives 1.250 750k 19 146
IterativeHardPositives+ 1.500 750k 19 149

their own more complex face detection models, without sharing the models back
with the community. This is mainly due to the fact that OpenCV operates
under a BSD license, allowing companies to use the code without sharing back
any critical adaptations or changes. With our work, we aim at improving the
currently available frontal face model based on local binary patterns (used as
a baseline in this publication) and achieve a model that is able to accurately
detect frontal faces in a large variety of set-ups.

One could argue that working on such an old technique is basically a waste
of time invested. However, several recent research papers like [126, 34, 103]
prove the importance of such well-established techniques for specific cases of
industrial object detection.

5.1.2 Framework and dataset

For building our approach we depend on the OpenCV3.1 framework,
provided and maintained by Intel. We focus on using the CascadeClassifier
object detection functionality in the C++ interface together with the
opencv_traincascade application, containing all functionality for building a
boosted cascade of weak classifiers using the approach of Viola & Jones [120].

Since the training data of the current OpenCV face detection models are no
longer available, we collected a set of face images for training our own frontal face
detection model. The images are collected from various sources like YouTube
videos and by using a bulk image grabber on social media, image boards and
google image search results. Remark that all of these images are unaccompanied
by ground truth face labels. On top of that, we created a multi-threaded tool
that can use an existing face detection model to efficiently search for valuable
face data (hard positive and hard negative data samples) in any given video,
by running the detector over the video, retrieving all detections and letting an
annotator decide whether they are faces or not.



102 INTEGRATING ACTIVE LEARNING TO IMPROVE INDUSTRIAL OBJECT DETECTION

For training our new models, we manually annotate 1.000 face regions as positive
training windows and combine this with 750.000 negative training windows,
automatically grabbed from large resolution negative images not containing faces.
As shown in Table 5.1, we increase the positives dataset for each new iteration
with 250 extra hard positive samples, gathered from a large set of positive
images, in which we know faces occur (by ensuring we only collect video data
with faces in all kind of conditions), using our active learning strategy. Whenever
the initial detector is not able to find a face region, a manual intervention is
required, asking for a face label, and adding it as a hard training sample for
the following training iteration.

For validating our newly trained models and comparing them to the existing
OpenCV baseline, we use the Face Detection Data Set and Benchmark (FDDB)
dataset [49]. This dataset contains 5.171 face annotations in 2.845 images
collected from the larger Faces in the Wild dataset [9]. The dataset focuses
on pushing the limits of unconstrained face detection. In order to be able to
obtain a decent baseline, we converted the existing image annotations into the
OpenCV used format and made them publicly available at http://eavise.be/
OpenSourceFaceDetection/. Since we have this complete dataset available
and since we can compare to an OpenCV baseline detector, this dataset is ideal
for testing our active learning strategy.

5.1.3 Used approach

In this subsection, we will discuss the different adaptations made to the existing
cascade classifier training pipeline, leading to an overall increase in performance,
as discussed in section 5.1.4.

Figure 5.2: Changing the annotations from full-face to inner-face: (green)
OpenCV (red) ours.

http://eavise.be/OpenSourceFaceDetection/
http://eavise.be/OpenSourceFaceDetection/
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Changing the Face Region of Interest During Annotation

When taking a closer look at the output of the OpenCV LBP frontal face detector,
we notice that in many cases the detection output contains the complete head,
including ears, hair and sometimes even background information. This is due
to the OpenCV training data annotations. Figure 5.2 indicates that OpenCV
aimed to include as much facial information as possible to feed to the training
algorithm. Since a face detector needs to be generic, we focus on the face part
containing the most general features over any given face dataset. In order to
reduce the amount of non-trivial face information, we decided to annotate faces
as the inner face region only, seen as the red annotations in Figure 5.2, and as
previously suggested by Mathias et al. [70] for similar face detection techniques.
This approach has several benefits. It removes tons of features from the feature
pool of the boosting algorithm, reducing the number of features that need to be
evaluated during model training. Furthermore, the inner face is more robust to
a rotation (both in-plane as out-of-plane). We elaborate more on these in-plane
and out-of-plane rotations later in this subsection.

Adapting the negative training sample collection

OpenCV offers an automated way of collecting negative samples from a set of
random background images not containing the object. The algorithm rescales
the given negative images to different sizes and uses a sliding window based
sequential collecting of negative windows, without any overlap between sub-
sequential windows. Once the set of negative images is completely processed,
the process is repeated by adding a pixel offset in each image, to obtain slightly
different samples (at pixel level). If a set is traversed multiple times, increasing
the offset each time, this process equals applying a pixel shifting sliding window
approach, as illustrated in Figure 5.3. While the basic idea of capturing slight
differences in your data might be a good starting point, this approach generates a
huge amount of negative samples which do not add extra meaningful knowledge
to the process and can thus not be seen as unique samples.

Looking at the boosting process used to train the cascade classifier (by default
AdaBoost [35]), we notice that each new negative window can only be allowed
as a negative training sample for a new stage if the previous stages do not
reject it. If there is only a slight pixel shift for different negatives, then
this rejection phase will just evaluate a lot of windows, of which we already
know that they will be rejected. Therefore we adapted the interface and
removed the pixel offset procedure. By removing this procedure and having no
overlap between subsequent negative windows, we introduce a possible loss of
valuable information shared around the borders of subsequent samples. This
lost information might contain critical knowledge for building a robust detector.
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Figure 5.3: The original process for collecting negative training samples.

Figure 5.4: The adapted process for collecting negative training samples as
suggested in this work.

To reduce this loss of information we refine the scale generation in the image
pyramid. Where OpenCV generates an image pyramid with a scale parameter
of 1.4, we decided to lower this scale parameter value 1.1 to ensure that negative
samples gathered on different pyramid scales are diverse enough while keeping
as much valuable information as possible. This is illustrated in Figure 5.4. By
doing so, lost information on sample borders on one scale will be captured by
either the previous or the subsequent scale. An extra benefit of refining the
scale pyramid is that the resulting object detection model is more robust to
scale changes of the object, able to capture smaller variations in size.
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Based on these adaptations it is quite straightforward to collect a large set of
negative data samples, something necessary to create a robust face detection
model for in the wild applications. Considering a high-resolution image of
1.080× 1.920 pixels, we can already collect 30.000 negative training samples.
This allows us to increase the number of negative samples per stage in our
trained cascade classifier to multiple hundred thousands of samples, trying to
model the background as well as possible. This will increase training time per
stage but will reduce the number of stages, and thus make the model faster and
less complex. Since we also have more negative training samples available, we
can select better features to separate training data and achieve a model that is
more accurate at detection time.

Iterative active learning strategy for collecting quality samples

Supplying heaps of data to machine learning algorithms allows learning very
complex object detection models. The downside is that both in gathering
positive and negative training data, it is very difficult to tell which new sample
will actually improve the efficiency of the detection model. In order to decide
which samples are actually valuable to be added to the process, we apply a
technique called active learning. The idea is to use the model trained by the
previous iteration and use that model to tell us which samples are valuable (close
to the decision boundary) and which are not (no ambiguity in labelling), when
adding them to the next iteration training process, as previously visualized in
Chapter 2, Figure 2.9. We make a distinction between hard negatives and hard
positives as explained below. Furthermore, the advantage of active learning is
that we limit the amount of manual labour drastically since we only need to
provide labels to new training samples that add extra knowledge to the trained
classifier.

1. Hard negative samples

Hard negative samples are gathered by collecting a set of negative images and
running our previously trained face detector on them. All detections returned
are in fact negative windows that still trigger a detection, and are thus not
assigned to the background yet by our current model. Basically, these samples
contain information that was not yet captured by the previously collected set of
negative samples and thus provide valuable information to the training process.

2. Hard positive samples

Hard positive samples are gathered by collecting a large set of unlabelled images
containing faces. We only know the images contain one (or more) faces, but
we do not have a labelled location. On these images, the current face detector
is executed (with a low detection certainty threshold) and a piece of software
keeps track of images that do not trigger a detection. In that case, an operator
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is asked to manually select the face region for those triggered images and thus
provide labels. This region is stored as a hard positive sample that can still
give the model learning interface enough extra valuable knowledge on how it
should be learning its model.

Halting training when negative dataset is consumed

The original OpenCV implementation uses pixel-wise offsets in the negative
sample grabbing to avoid the training to halt when the originally provided
dataset is completely consumed in a first run. We do not allow this and halt the
training when the negative dataset is completely consumed. Once that happens
we give the operator two possibilities. Either we allow to add extra images to
the negative image dataset, or we return the number of negative samples that
was grabbed in the last stage before the training was halted. This allows the
operator to finalize the last stage with this exact amount of samples and thus
train a model using every single negative sample window, completely consuming
the available negative dataset.

Using the adaptations to train different face detection models

By smartly combining all these adaptations we train different face detection
models where we iteratively try to improve the accuracy of the obtained model.
Table 5.1 describes the training data used for these models, in combination
with the number of model stages and the number of features (each forming a
stump/binary decision tree) selected by the boosting process. One might argue
that using more complex decision trees is more profitable but previous research
shows that using more complex trees actually slows the detection process [99],
because more features need to be evaluated in early stages.

Our first model (referred to as ‘BoostedBaseline’) can be seen as the baseline
we iteratively try to improve by applying the active learning strategy. For
each boosted learning model, the increase in performance when adding features
should outweigh the complexity and thus the processing time.

For the second model, referred to as ‘IterativeHardPositives’, we add 250 hard
positive training samples collected through the active learning procedure, trying
to improve the recall rate of the detector. We also gather a limited set of hard
negatives and add those to the training set. We noticed that adding these extra
quality samples pushes the recall further drastically while slightly increasing the
precision. The third and final model, referred to as ‘IterativeHardPositives+’,
is again improved by providing 250 extra hard positive samples, in an attempt
to push the reported recall even further.



OPEN SOURCE FACE DETECTION WITH ACTIVE LEARNING 107

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall = TP / (TP + FN)

P
re

c
is

io
n

 =
 T

P
 /

 (
T

P
 +

 F
P

)

 

 

OpenCVBaseline

BoostedBaseline

IterativeHardPositives

IterativeHardPositives+

Figure 5.5: Precision-Recall for all models on FDDB dataset.

5.1.4 Results after active learning

Performance of trained models

Figure 5.5 compares the trained models (BoostedBaseline, IterativeHardPositives
and IterativeHardPositives+) from section 5.1.3 to the OpenCVBaseline detector
on the FDDB test dataset. Performance is measured using precision-recall plots.
We notice a generally large improvement of our self-trained models (green, red
and blue curve) over the OpenCV baseline (black curve). The OpenCV baseline
model is only able to achieve a recall of about 40% (meaning 4 out of 10 objects
are detected) at a precision of 40% (of all the detections returned, only 4 out of
10 are actual objects) for its optimal point. Of course, one can make a trade-off
and decide to sacrifice recall for a higher precision. Nonetheless, the current
OpenCV model is not able to detect objects with a certainty over 50% on the
given FDDB dataset, containing a wild variety of faces in challenging conditions.

Compared to the OpenCVBaseline detector, at the optimal recall of 40% for that
model, our BoostedBaseline detector already increases the precision towards
99.5%, almost completely removing the existence of false positive detections.
Furthermore, each of our subsequent models, as seen in the close-up in Figure
5.6, increases the recall further without sacrificing the very high precision rate.
At a recall value of 60%, a 50% increase compared to the OpenCVBaseline
detector, our IterativeHardPositives+ detector only has a slight drop to 99%
precision. As an optimal working point, our IterativeHardPositives+ model
reaches a precision of 90% at a recall of 68%.
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Figure 5.6: Close-up of PR curves of our detection models.

While many papers on face detection use precision-recall curves to compare
detection models efficiently, the official FDDB evaluation criteria are based on
the true positive rate compared to the number of false positive detections.
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Figure 5.7: Evaluation on the FDDB dataset, comparing our algorithm to
neural network based approaches.
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We include this comparison for both the OpenCVBaseline detector and our
IterativeHardPositives+ detector, as seen in Figure 5.7. We also compare our
technique to some state-of-the-art face detection algorithms based on neural
networks like FastRCNN [51], ConvNet3D [62] and MultiTaskCNN [125]. This
clearly shows that we already close the gap between cascade classifiers and
neural networks a lot, while still having room for improvement.

Influence of adaptations to processing time

One must make sure that adding all this extra training data does not make the
model overly complex and slow during detection time. As shown in Table 5.1 we
have only a limited increase in used features as stump classifiers, while adding
50% more valuable positive training data. Furthermore, the model complexity,
expressed in number of stages, drops with our models. Since processing time is a
key feature for many computer vision approaches applied in embedded systems,
we take the liberty of measuring processing time over the complete FDDB test
set, which can be seen in Table 5.2. We average the timings to receive a timing
per image, given the average resolution of the test images is 400× 300 pixels.
These timings are performed on an Intel(R) Xeon(R) CPU E5-2630 v2 system
set-up. Our OpenCV build is optimized using the Threading Building Blocks
for parallel processing. We clearly see, although we are using more features in
our model, that the processing time of our IterativeHardPositives+ model does
not exceed the processing time of the OpenCVBaseline model. Furthermore,
if we use our BoostedBaseline or IterativeHardPositives detector, we process
images remarkably faster than the OpenCVBaseline detector.

A visual confirmation

Figure 5.8 shows some visual detection output of our algorithm. We start by
selecting a low detection certainty threshold (Figure 5.8(a)) which clearly shows
that both models are able to find faces, but immediately shows the downside of
the OpenCV model, which generates a lot of false positive detections.

Table 5.2: Timing results comparing both OpenCV baseline and self-trained
models for the FDDB dataset.

Model Whole Set Per Image
OpenCVBaseline 9 min 30 sec 0.20 sec
BoostedBaseline 6 min 8 sec 0.13 sec
IterativeHardPos 7 min 7 sec 0.15 sec
IterativeHardPos+ 9 min 6 sec 0.19 sec
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(a) Detection results with low detection certainty threshold.

(b) Detection results with medium detection certainty threshold.

(c) Detection results with high detection certainty threshold.

(d) Cases where both detectors fail (high certainty threshold) or where OpenCV finds a
detection while we do not.

Figure 5.8: Detection results and failures on FDDB dataset for (red)
OpenCVBaseline and (green) IterHardPos+ model.

We increase the detection certainty threshold to a mediate level (Figure 5.8(b))
and notice that both OpenCV and our own trained model are able to find faces,
but gradually OpenCV starts to miss faces that are still detected by our model.
Finally, when setting a high detection certainty threshold (Figure 5.8(c)), we
see that OpenCV misses a lot of faces that are still found by our model. But
even in the case that our model detects more faces than OpenCV we still find
cases where both models fail or where OpenCV actually finds a face that our
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Figure 5.9: Testing out-of-plane rotational robustness for both OpenCVBaseline
and the IterativeHardPositives+ detector.
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models do not capture, as seen in Figure 5.8(d). These undetected faces could
be used as hard positive training samples but then we would need to search
for a new database for evaluation purposes in order not to lose the benefits
of dataset bias, where we prove that our model is independent on the dataset
conditions where it was trained on.

Testing out-of-plane rotation robustness

As stated before, reducing the annotation region, which directly influences the
face region that the detector will return, helps to improve the out-of-plane
rotation of the face detector. To test this, we evaluated the OpenCVBaseline
and the IterativeHardPositives+ detector on the Head Pose Image Database
[40], as seen in Figure 5.9.

This dataset contains a set of 30 sequences (15 persons, 2 sequences per person)
where people sequentially look at different positions, each associated with a
pan (in the range [-90°,+90°]) and a tilt angle (in the range [-60°,60°]). At
each position, we execute both detectors and return the detection certainty
of the models. averaged over the 30 sequences. We use the highest returned
detection score on the dataset as the outer bound of our score range and
normalize all other values for this maximum. We see that in both pan and tilt
angle evaluations our IterativeHardPositives+ detector clearly outperforms the
OpenCVBaseline detector. Especially in the tilt angle range, we see a large
increase in efficiency. This extra test also confirms that at a full frontal face,
the IterativeHardPositives+ detector has about double the detection certainty
as for the OpenCVBaseline detector, which was clearly noticeable in Figure 5.5.

5.1.5 Conclusion on active learning for object detection

In this subsection, we suggest adaptations to the current existing cascade
classification pipeline in the open-source computer vision framework OpenCV
with the eye on improving its frontal face detection model. We aim at reducing
the huge amount of false positive detections, by guaranteeing a high precision,
while maintaining the recall as high as possible, to detect as many faces as
possible. We test our approach on the publicly available FDDB face dataset
and prove that our adaptations to the pipeline generate an enormous increase
in performance. Using our IterativeHardPositives+ detector, we achieve an
increase in recall to 68% while maintaining a high precision of 90%. Compared to
a 40% precision at 40% recall for the OpenCV baseline, this is quite impressive.

The suggested adaptations to the framework and the model clearly have benefits
over the currently available model. Imagine a case where the output of the
face detector is used to perform face recognition. In such cases, we aim at a
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precision that is as high as possible since we want to ensure that the pipeline
following on the actual detection, is not provided with rubbish but with an
actual face. Furthermore, our model is able to find more faces in the wild and is
more robust to out-of-plane rotations compared to the OpenCV baseline model.

We should take into account that we will never hit a 100% recall on datasets
like FDDB, due to some high out-of-plane rotations, as seen in Figure 5.8(d).
However one could argue that faces with an out-of-plane rotation of more than
45 degrees should be found by a profile face detector and combine both detectors
together, as suggested by Hulens et al. [46].

5.2 Benefits, challenges and possible expansions

The previous section discusses in detail how we implement an active learning
strategy for training robust object detector with the boosted cascade of weak
classifiers algorithm. We consider it important to highlight why this developed
approach is useful for our specific task of industrial object detection in subsection
5.2.1. We also investigate what approaches could be used to further limit the
manual input needed for building robust object detectors in 5.2.2.

5.2.1 Advantages and challenges of active learning

Active learning provides several benefits for our industrial relevant object
detection applications. Besides the fact that we can already limit the number
of needed training samples by building scene and application specific object
detection models, and the fact that we can use scene- and application-specific
constraints to reduce this even further, some of our detection models still need
a couple of thousand manual annotations. Active learning proved in section 5.1
that it can literally move through several thousands of training samples and
only provide those samples that actually contain an object instance that can
actually introduce extra knowledge into the detection model.

Reducing the number of training samples that need manual annotation as much
as possible is the biggest benefit of using active learning. In an industrial set-up,
one can do the model learning overnight, or sequentially work on other tasks,
and thus not lose time waiting for the actual algorithm. The active learning
algorithm can collect samples on the go where it needs more direction until it
reaches enough samples and then asks for limited manual input.
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In this idea we can separate three different cases where the active learning
algorithm needs new input:

1. An object instance is found with a small probability of being background.

2. An object instance is found with a small probability of being an object.

3. An object instance is not retrieved from the dataset but randomly selected.

The first two cases are directly related to the nature of active learning. It
looks for samples that are able to define a cleaner separation plane in the high
dimensional feature space. Thus low probability scoring samples are actually
close to that border and could be wrongly classified. In principle we want these
samples to be checked by the user. Of course, this is less invasive than asking
for actual annotation because it can simply be a ‘agree’ or ‘change’ option which
allows quick surfing through the generated samples.

The third case is actually a safety net we need to build in ourselves. The initial
set of samples for training our first weak classifier is very critical in this process.
If specific object instance conditions are not provided to the learning system,
the system will be unable to incorporate this knowledge into the model. There
is no way of telling how the process will react if these samples are presented in
an active learning iteration. Therefore we force the system to randomly sample
images from our dataset, which we annotate explicitly with a bounding box.
By evaluating these extra regions, we can look for current outliers with a high
probability that should, in fact, be at the other side of the separation plane.

5.2.2 Expansions

Active learning already helps to build industrial object detectors a lot. However,
there are still advances in computer vision that could expand the capabilities of
active learning in our perspective and that are worth investigating further.

Reinforcement learning

The biggest profit of reinforcement learning, suggested by Sutton et al. [109],
compared to purely supervised learning would be that it directly incorporates
the concept of exploration versus exploitation. In the explanation phase, it
directly looks at current knowledge and uses that knowledge to decide on newly
given samples, which is the same as in supervised learning.
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However, remember the fact that we had to add manually random samples, to
avoid over-fitting to the given dataset, and to explore new parts of the data
that have never been seen before. Reinforcement learning implements this
exploration part besides the classical exploitation approach.

Reinforcement learning is also something that is not new in the field of object
detection. Peng et al. [83] already suggested using reinforcement learning for
closed-loop object recognition in 1998. More recently Paletta and Pinz [81]
combined reinforcement learning with active view selection for similar tasks.

A downside of reinforcement learning has been the fact that it was
computationally quite heavy. However, since the rise of deep learning and
affordable GPGPUs, researchers again picked up the concept of reinforcement
learning for deep neural networks, like in [74, 75].

One-shot learning

The holy grail for industrial computer vision is one-shot learning, as suggested by
Fei-Fei in [30]. In this work, they create a system for learning object categories
based on only one to five samples per class. If we could integrate this into
object detection pipelines, then this would almost completely remove the need
for manual annotation. Since the rise of deep learning, this one-shot approach
has gained again a lot of attention for both object recognition [53] and object
detection [10] tasks. There are even several attempts at creating zero-shot
learners for visual object categories [57, 105] but accuracies are far from the
minimal requirements, posed by industrial object detection tasks.

5.3 Conclusion: benefits of using active learning

In this chapter, we presented an efficient solution for reducing the amount of
manual work needed when training and fine-tuning object detection models to
reach the high accuracy standards, by using a proposed active learning approach
in section 5.1. By applying this approach we generated a new, open-source face
detection model, with a higher detection accuracy than the currently embedded
ones in the OpenCV framework. Since official integration into the framework,
we clearly notice a higher usage of the new model compared to the older existing
ones, getting a lot of positive feedback from the community on the contribution.
Furthermore, we noticed several other open-source contributors took the general
guidelines presented and used them to further improve other detection models
in the framework.
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In section 5.2.2 we discussed why active learning is actually useful for our
industrial applications and we suggest techniques that need to be further
investigated in the future to improve our current pipeline.

In the following chapter, we switch our baseline object detection algorithm
towards a deep learning based approach. We discuss in detail the several
approaches that we tried and how we tried to efficiently reduce the amount
of training data needed, without sacrificing on the reported accuracy of deep
learning based approaches.



Chapter 6

Usability of deep learning for
industrial object detection

The work presented in this chapter will be published at the VISAPP 2018
conference [86, 92].

When we started our research, the state-of-the-art in object detection simply
did not contain any deep learning approaches. The main reasons behind this
were the lack of large training datasets, the availability of affordable GPGPU
hardware, and the tremendous amount of time needed for training a deep
learning model from scratch. These three reasons obviously made deep learning
not a suitable approach for real-world industry-specific object detection tasks.

However, in latest years, the rise of affordable deep learning hardware, as well
as the reduction of data actually needed to train a deep learning algorithm
efficiently, changed the field of object detection completely. Nowadays it is hard
to find a single object detection algorithm, in the recent academic literature
that is, not using any sort of deep learning architecture.

This shift in algorithms kind of insinuated our performed research might be a
waste of time. In order to be able to compare our research efforts to the current
state-of-the-art in object detection, we decided to apply several deeply learned
object detection algorithms on top of some new research cases. By doing so we
investigate the possibility of using deep learning as an approach for industrial
relevant object detection model learning, instead of sticking to older machine
learning approaches like the boosted cascade of weak classifiers.

117
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We started out by using off-the-shelf deep learned object detection architectures,
but quickly noticed this only works in the case you have an object class for
which the model was already trained for (e.g. pedestrians, cars, bicycles, . . . ).
In many of our industrial applications this is not the case, so using a pre-trained
model is simply out of the question. Section 6.1 discusses our first experiences
and contacts with deep learning in the context of industrial relevant object
detection. We investigate the possibility of using transfer learning as a way of
benefiting the power of pre-trained deep learning architectures while adding
scene- and application-specific knowledge, generating robust and accurate deep
learned object detectors, while simultaneously reducing the amount of manual
input needed by the algorithm. All of this is done on top of three cases, of which
one is a demo case of the game rock-paper-scissors, followed by two industrial
relevant cases, one being the detection of promotion boards in stores and the
other being the detection and classification of packages in supermarkets.

Section 6.2 takes a step back and investigates if deep learning is a worthy
competitor to the previously used boosted cascade algorithms like the
Viola&Jones and ACF approach. Furthermore, we notice that the approaches
applied in section 6.1 fail on the very specific case of coconut tree detection in
aerial imagery, due to the very different nature of our input data, compared to
the data on which the pre-trained models are learned. We investigate the use
of more pure-classification-based deep learned architectures for this problem
and combine these efficiently with a multi-scale sliding window based approach
to achieve our set goals.

Finally, section 6.3 draws conclusions on using deep learning for industrial
object detection and makes some suggestions on promising future techniques
and possible expansions.

6.1 Building robust industrial applicable object
detection models using transfer learning and
single-pass deep learning architectures.

Several drawbacks have kept deep learning in the background for quite a while.
Until recently deep learning had a very high computational cost, due to the
thousands of convolutions that had to process the input data from a pixel
level to a more content based level. On high-end systems, reporting processing
speeds of several seconds on VGA resolution has long been the state-of-the-art.
This limits the use of these powerful deep learning architectures in industrial
situations such as real-time applications and on platforms with limited resources.
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Figure 6.1: Examples of our cases: (top) Rock-Scissors-Paper (bottom left)
Promotion Board (bottom right) Cigarette Packs.

Furthermore, deep learning needed a dedicated and expensive general purpose
graphical processing unit (GPGPU) and an enormous set of manually annotated
training data, both things that are almost never available in industrial
applications. The frameworks for deep learning lacked documentation and
guidelines, while pre-built deep learning models were not easily adaptable to
new and unseen classes. Nowadays, these issues no longer exist, and deep
learning has made a major shift towards usability and real-time performance.
With the rise of affordable hardware, large public datasets (e.g. ImageNet [21],
Microsoft COCO [66], VOT [13], Pascal VOC [29], . . . ), pre-built model zoos
(e.g. Caffe model zoo [50]) and techniques like transfer learning, deep learning
took a step closer towards actual industrial applications. Together with the
explosion of available open-source, stable and well documented deep learning
frameworks (e.g. Caffe [50], Tensorflow [2], Chainer [114], MatConvNets [118],
Darknet [95], . . . ) this opens up a whole new world of possibilities.
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Industrial object detection applications are typical cases where we have a lack
of training data. Many applications do not focus on existing classes from
academically provided datasets and thus do not contain publicly accessible
training data. Gathering those tremendous amounts of training data (up to
millions of training samples) and providing manual labelling, is a time-consuming
and thus expensive process. Luckily transfer learning [8] provides possibilities
in this case. Given a small set of manually annotated training samples, it
retrains an existing off-the-shelf deep learning models and adapts its existing
layer weights so that it is able to detect a completely new object class.

In this chapter, we apply this transfer learning methodology on three cases. We
start with a dummy case of rock-scissors-paper (as seen in Figure 6.1(left)) to
have a look at how we can fine-tune existing deep learning models to learn a
new task it has never seen before. Simultaneously we focus on using a small set
of training data for the new classes, to prove we do not need huge datasets to
achieve this task. At the same time, we try to ensure real-time performance, a
hard constraint in many industrial applications.

This is followed by a first industrially relevant application, where we detect
promotion boards in eye-tracking data, allowing companies to analyse shopping
behaviour, as seen in Figure 6.1(middle). This case is used to verify the
approaches of the dummy cases on top of an industrial relevant application,
proving that we can achieve average precisions that can compete with our
existing algorithms, without putting in too much extra effort. We investigate
both the possibility of training a single class detector, as well as training
multi-class detectors.

Furthermore, we explore the limits of these multi-class object detection networks,
in order to be able to skip the subsequent classification step and push everything
into a single combined detection and classification pipeline.

The third case, detecting and recognizing packages of warehouse products for
augmented advertisement purposes (as seen in Figure 6.1(right)), allows us to
look for the limits of using a deep learning object detection architecture for both
detection and classification at once. We start by building a general cigarette
box detector, followed by a 14-class detection model which directly detects and
classifies the 14 different kinds of cigarette brands, instead of running a separate
classification pipeline after the general cigarette box detector.

The remainder of this section is organized as follows. In subsection 6.1.1 we
discuss related work and highlight the state-of-the-art in deep object detection.
Subsection 6.1.2 discusses the collected dataset for training and validating the
object detection models. This is followed by subsection 6.1.3 discussing the
selected deep learning framework and the deep learning model architecture
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which we used for fine-tuning. Subsection 6.1.4 goes over each application case
in detail. In subsection 6.1.5 we discuss the obtained average precisions and
execution speeds. Finally, we discuss the used algorithms in subsection 6.1.6,
while in subsection 6.1.7 we draw some meaningful conclusions.

6.1.1 Related work on deeply learned object detection

Since convolutional neural networks basically process image patches, doing a
multi-scale and sliding window based analysis takes a lot of time, especially if
image dimensions increase. Combine this with the fact that deeper networks
achieve a better detection accuracy, very deep networks like VGG19 [104] and
InceptionV3 [110] can easily take several seconds for a VGA resolution images.
To increase the execution speed of these algorithms, researchers introduced the
concept of region proposal techniques. These techniques are fast and lightweight
filters that pre-process images, looking for regions that might have promising
content. Instead of supplying the convolutional chain with multiple millions
of windows, by using a naive multi-scale sliding window approach, the region
proposal algorithms reduce this to only several thousand of windows. Adding
an extra region proposal network improved processing time, but still introduces
an extra network which can lead to an undesired overhead.

If your industrial application concerns a class that is previously trained on
any given public dataset, the above techniques provide off-the-shelf solutions.
However, when your object class does not come in any of the pre-trained
networks, one needs all at once a huge dataset and a lot of processing time
to come up with a new model. That is why Yosinski et al. [124] investigated
the transferability of deep learning features and discovered that the first
convolutional layers of any deep learning architecture actually stick to very
general feature representations and that the actual power resides in the linking
of those features by finding the correct convolutional weights for each operator.
This allowed applying the concept of transfer learning [17] onto deep learning.

Basically one needs to initialize the weights of the convolutional layers that
provide a general feature description, using the weights of any pre-trained model,
then using a small set of annotated application specific training samples to
update the weights of all layers for the new object class. Combined with data
augmentation [37], a small set of these training samples can introduce enough
knowledge for fine-tuning an existing deep model onto a new class.
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6.1.2 Dataset and framework

For this work, we create three datasets that we use for training and evaluation
of our deep learned object detector models. In all cases we provide manual
annotations, allowing for qualitative evaluation using precision-recall curves in
the practical industrial cases where a validation set is provided.

For our dummy case of rock-paper-scissors, we provide respectively 61, 57
and 60 training samples for fine-tuning a model into a 3-class detector. All
samples are manually annotated with ground-truth labels. As validation for
this dummy case, we simply use a webcam interface and visual confirmation to
check whether the produced model actually does something useful and is able
to classify correctly the 3 classes with minimal errors.

The first industrially relevant dataset contains videos of an eye-tracker
experiment in a Belgian shop. Data is collected by normal costumers, that are
approached when entering the shop and asked to go shopping, equipped with
an eye-tracker to record the experience. Users are not made aware that the
experiment was actually for investigating if customers notice promotion boards
placed at specific locations in the shop. Two classes of promotion boards (as seen
in Figure 6.4) are manually annotated in each frame of the eye-tracker videos,
providing robust ground truth data. We separate the obtained dataset into
training and validation data, as seen in Table 6.1. For the training data, specific
frames containing the actual advertisement board are manually extracted and
annotated. For validation data, from 2 remaining videos frames are captured at
a one-second interval, and manually annotated for validation purposes.

The second industrially relevant dataset contains 376 images of cigarette
packages. In each image, the location of the cigarette package is manually
annotated using a rectangular bounding box. In total 14 brands of cigarette
classes are included, allowing us to both provide labels of a cigarette box and the
associated brand, useful for training multi-class object detection models. On top
of this training dataset, a separate validation dataset is generated, existing of
26 videos (@30FPS) of around 15 seconds, containing different views of similar
cigarette packages. In total 4.279 images are added to the validation dataset.

Table 6.1: Number of promotion board samples per class.

Label Training Validation
small_sign 75 420
large_sign 65 960
TOTAL: 140 1380
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Table 6.2: Number of cigarette samples per brand.

Label Training Validation
marlboro_red 63 163
marlboro_blue 14 149
marlboro_gold 29 157
marlboro_touch 14 167
chesterfield_red 75 157
chesterfield_blue 15 222

heets_gold 15 185
heets_red 15 188
heets_blue 15 229
lm_red 46 183
lm_blue 30 146
lm_gold 15 179

philip_morris_yellow 15 178
philip_morris_red 15 179

TOTAL: 376 4279

Table 6.2 contains a detailed overview of the specific amounts of training and
validation samples per cigarette brand.

As deep learning framework, we decide to use Darknet [95], a lightweight
deep learning library, based on C and CUDA, which achieves state-of-the-art
performance with the YOLOv2 architecture [97] on well known public datasets
for object detection. Moreover, it reaches real-time processing speeds raising up
to 120 FPS at limited resolutions.

Furthermore, the framework allows for nice integration with our existing C++
based software platform based on OpenCV3.2 [12]. The YOLOv2 architecture
does not require explicit negative training samples in order to be able to train
an object detection model. It uses areas in the image that are not labelled as an
object as negative training data automatically, by requiring a class probability
of 0% for those pixels. However one can add explicit hard-negative training
data if desired, by simply adding unannotated training images to the training
dataset. How this influences the training and average precision is discussed in
subsection 6.1.7.

Since the existing Darknet framework seems to be missing some functionality
that we require to be able to robustly evaluate our object detection models, we
build our customized version of the framework, which is publicly available at
https://gitlab.com/EAVISE/darknet.

https://gitlab.com/EAVISE/darknet
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Our biggest adaptations are the possibility of extracting specific output formats,
generating precision-recall data points and allowing to validate models with a
variable score threshold. Furthermore, several small changes are made to make
the output result visually more pleasing, like adding the probability scores next
to the detection labels.

6.1.3 Used approach

One thing that immediately comes to mind when talking about deep learning,
is that deep learning algorithms need giant amounts of training data and a
lot of processing time to be able to converge to an optimal configuration. For
the suggested deep learning architecture, the YOLOv2 architecture, this is
also the case. The default network configuration needs 800.000 floating point
operations per given image. To optimize the weights assigned to each operation,
one literally needs millions of training samples. For industrial applications this
is not manageable, certainly if, for each new object detection model, you need
new and annotated training data.

By making use of transfer learning, we only need a small amount of application-
specific training data to use the incorporated knowledge of existing deep learning
architectures, trained for a specific dataset, to be able to create a new case
specific object detection model. For our object detection models, we start from
a YOLOv2 architecture (as seen in Figure 6.2), previously trained on the Pascal
VOC 2007 dataset. To be able to fine-tune this model onto a new object class
several adaptations had to be made to the network.

1. First of all, we need to physically change the architecture of the network.
To make sure the convolutional layers output the correct format for the
detection layer, we need to adapt the total number of filters in the last
convolutional layer (the orange coloured convolutional layer in Figure
6.2) equalling (Nclasses + 5)×Nanchors. In doing so we ensure that the
detection layer is able to convert the final layer activations into useful
detections for our case specific problem. In the case of a three-class
detector, with the default number of five anchors, this would mean the
number of filters of the last convolutional layer should be changed to 40
to be able to generate a correct detection output.

2. Secondly, we need to adapt the anchor ratios to our class-specific problem.
These anchor ratios are extracted from our training data and represent
the possible rectangle ratio dimensions a bounding box can have. This
ensures that in the detection layer, prediction boxes are generated fitted
in a ratio that agrees to our actual fine-tuning data from our new object
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Figure 6.2: YOLOv2 architecture visualised with its different layers and in-
between layer connections.
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class. By default YOLOv2 uses five different ratios, to allow for slight
variations due to natural variance, viewpoint deformation, . . . This value
should be lowered to one anchor ratio if we desire a fixed bounding box
ratio and can be increased if the variance in the data increases also.

3. We need to grab the pre-trained weights from training the architecture on
the PASCAL VOC 2007 dataset. We take the weights of all except the final
convolutional layers and leave the weights of the final convolutional layer
and the detection layer uninitialized because we changed the architecture
of those and desire to train class specific weights for these.

Keeping these changes in mind, we train a new object model for our new object
class, using the concept of transfer learning. We allow the weights of all layers
to update (including the ones assigned weights of the pre-trained model) and
thus converging towards the optimal solution given our new training data. This
is, of course, a process that is slower than simply freezing layers, but the longer
training time results in a more precise model. By using these pre-trained weights
we assume that the model already learned some useful feature descriptions and
constellations from the more general dataset, that will also be useful for training
our application- and scene-specific object model.

Aside from using the power of a previously trained model, we also use the power
of data augmentation to ensure we create a robust object detection model. A
model generally fine-tunes for multiple thousands of iterations, providing a
batch of 64 samples at each iteration to the model for updating the weights
and reducing the loss rate on those given samples. Imagine our model would
train for 10.000 iterations, this would mean the model needs more than 640.000
training samples. Given we only have around 400 training samples available this
would mean that each sample is shown over a thousand times to the network,
risking to completely over-fit the model to the training data. Data augmentation
applies specific transformations to the image to generate a large set of data
from a small set of training samples. During our training we allow the following
augmentation:

• A random rescaling of the input size of the first convolutional layer, making
the detector more robust for multi-scale detections. This is limited to
30% of up- and downscaling in relation to the default input layer size of
416× 416 pixels.

• With each training sample, the algorithm randomly decides to flip around
the vertical axis.
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• The algorithm itself already transforms input images also to the HSV
colour space and allows to variate the hue value. We allow a 10% deviation
from the input value.

• The average saturation and exposure of the input image can deviate 50%
from the input value.

• We allow the annotations of the training samples to jitter for 20% in
relation to the original size. This means we can adapt the bounding box
of the object annotation, as long as the cropped or moved annotation still
contains 80% of the original annotation area. Besides adding training
data, this also ensures a more robust model against partial occlusion and
multi-scale detection.

In general, we notice that any object model we train is able to converge towards
a stable model overnight, maximally taking a full day, on a Titan X (Pascal)
and with a default architecture input resolution of 416× 416 pixels. We halt the
training when the loss-rate on the provided training samples seems to drop under
0.5, which given the initial tests with deep learning we did, seems to yield models
with promising visual results, without over-fitting on the training data. That
reference model can then be used to further look around that point if a better
configuration might exist, as shown in section 6.1.5. Continuing the training
from that point, let’s say for example up to 50.000 iterations, introduces training
data over-fitting and thus a model that loses its generalization properties. Keep
in mind however that this is a fine-tuned model forced to work in a specific
application, and thus the reported efficiencies from subsection 6.1.5 are not
guaranteed in a completely different context.

6.1.4 Practical cases

Before we move on to the qualitative and quantitative evaluation of our object
models in subsection 6.1.5, we elaborate on how we built object detection models
for our cases. We also elaborate our choices in specific configuration set-ups.

Rock-scissors-paper

Rock-scissors-paper is a simple hand based game where two opponents count to
three and then use their hand to execute one of the three hand-based motions.
A fist represents a rock, a flat palm represents paper, while two V-shaped fingers
represent scissors, as seen in Figure 6.3. We train a three-class model that is
able to robustly separate these classes in a lab-conditioned webcam stream,
meaning we have a limited amount of possible background clutter.
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Figure 6.3: Rock-paper-scissors: an example of hand gestures.

By doing so we prove that given a limited set of training data (only ±60 samples
per class) we are able to fine-tune an existing deep learning model on top of a
new multi-class object detection task.

Detecting promotion boards in shops

For our promotion boards, we look into deep learning for two specific reasons:

1. We want to analyse complete eye-tracker experiments, removing the need
for complete manual annotation of what is being looked at in the videos,
linking detections to the actual eye-tracking data.

2. We want to reduce the number of annotations as much as possible without
losing too much average precision on the obtained object detector.

Figure 6.4: Two promotion board classes (left) small_sign (right) large_sign.
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As discussed in subsection 6.1.2 we manually annotate a small set of training
samples, which are then passed to our deep learning fine-tuning system. Using
this limited training set, we build two application specific object detection
models. First, we build a single class detection model, able to detect the small
red promotion board as seen in Figure 6.4(left). However, since the same shop
also contains a second board of interest, seen as the large red promotion board
in Figure 6.4(right), we explore the possibilities of building a two-class detector,
able to detect both signs at the same time, giving us both a localization and a
classification in a single run through the deep learning pipeline.

Detecting and classifying warehouse product packages

Our second application is the robust detection and classification of warehouse
product packages for augmented advertisements. In this application, it is our
task to firstly robustly locate the packages in any given input image (as seen in
Figure 6.5), but if possible we would like to try and classify each specific brand
in the same run of our deep learning classifier. We investigate the possibilities
using the cigarette package class, subdivided into fourteen separate brands.

The packages all have general cigarette box properties, while the print on the
box distinguishes the brand. Therefore we start with building a robust cigarette
package detector, able of localizing packages with a very high average precision
in newly provided input images. Once we succeed in building a robust cigarette
pack detector, we try pushing our luck and generate a fourteen-class cigarette
pack detector, which is able to both localize and classify the cigarette packs in
a single run, completely removing the need of a separate classification pipeline.
The difference in both approaches can be seen in Figure 6.6.

Figure 6.5: Example images of warehouse products, in this case, cigarette
packages of different brands under different lighting conditions.
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Figure 6.6: Separate versus combined processing pipeline: (top) Detection
and classification as separate steps (bottom) Detection and classification steps
combined.

6.1.5 Experiments and results

This section discusses in more detail the achieved results with each trained
object detector. Furthermore, it highlights some of the issues we have when
training these object detection models and discusses some of the limits of using
the YOLOv2 architecture.

Since all our models are fine-tuned from the same YOLOv2 architecture trained
on Pascal VOC 2007 [29], we have an equal size for each model. The actual
model size for storing the weights of the convolutional layers is 270MB, while
the GPU memory footprint of our model equals about 400MB.

Stopping the pre-trained model fine-tuning on the given dataset

When fine-tuning our new object models on top of the existing YOLOv2
detection model for the Pascal VOC 2007 dataset, we need a way of defining
when our training algorithm reaches an optimal solution.

At the same time, we need to avoid over-fitting the model to the training data,
keeping a model that generalizes well to never seen before data. In order to
check the training progress, we continuously monitor the loss rate on the given
training data. This is monitored for every new batch of samples given to the
training algorithm, together with the average loss rate over all batches.
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Figure 6.7: An example loss rate and average loss rate curve for single class
advertisement board detector, in function of the number of iterations (with 64
sample batches per iteration, subdivided into 8 passes).

Once the average loss rate no longer drops, we halt the training process.
Continuing the model training would result in a model that drops very little
in loss rate on the training set, but which would increase in loss rate when
evaluated on a given validation set.

An example of tracking the loss rate for one of our fine-tuned models can be
seen in Figure 6.7. In general, we notice that a loss rate just below 0.5 seems
optimal for any model, depending on the model context, yielding top-notch
results when generalizing over a validation set.
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Figure 6.8: Precision-recall curves for the promotion boards single class (top)
and the two-class (bottom) object detection models.
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Evaluating the rock-scissors-paper detector as proof-of-concept

Our rock-scissors-paper detect achieves an optimal point at 20.000 iterations
(considering batches of 64 samples per iteration). Training of the model on
an NVIDIA TitanX took around 6 hours, while the detector itself works at
36 FPS for a 1600 × 1200 pixel resolution on the same hardware. Reducing
the resolution by half already pushes the detector to 60 FPS. Finally resizing
the image to the dimensions of the first convolution layer, being 416 × 416
pixels, results in a new speed-up, achieving 90FPS. A video can be found at
https://youtu.be/VqN8XBT_q2o.

Evaluating the promotion board detectors

Figure 6.8(top) and 6.8(bottom) show the precision-recall curves for the
promotion board models. For both models, we run the training overnight
halting the training at 30.000 iterations. We evaluate the precision, recall and
average precision performance of each detection model at 1.000, 5.000, 10.000,
15.000, 20.000, 25.000 and 30.000 training iterations.

Initially, we see an increase in average precision when raising the number of
iterations for each model. However, once the average precision (calculated on the
validation set) starts dropping and the loss rate of the model on the validation
set increases again, we select the previous model as best fit, in order to keep
the model that generalizes best on the given validation set.

For the single-class detector, this means a model of 15.000 iterations at an
average precision of 59.98% while for the two-class detector we select the model
of 30.000 iterations at an average precision of 59%. Looking at these curves it
seems that the two-class model might still be converging to an optimal solution
and thus continuing training with more iterations might be worthwhile.

We notice that our models seem to be under-performing, seeing their optimal
configuration only achieves a 65% precision for a 50% recall. Several reasons
for this can be found. First of all we are aware that the eye-tracker data suffers
a lot from motion blur in the validation set while there is no motion blur in
the training set. Secondly, we know that the YOLOv2 architecture is only
able to detect the range of object scales it has seen at training time. Several
of the validation scales, annotated by a human annotator are different from
the training size, mostly due to promotion boards further away or closer by to
the customer wearing the eye-tracker than during the training data capturing.
Finally, YOLOv2 has problems with detecting objects that are relatively small
in comparison with the image dimensions. While this is not an issue for a human
annotator, who carefully selects these boards using the human vision system,
the author of the YOLOv2 algorithm already discusses that this remains an
issue for grid-based single shot deep learning architectures.

https://youtu.be/VqN8XBT_q2o
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However having these precision and recall values is actually more than enough,
given the context where we are using these detectors. We only need to signal
when a customer has seen a promotion board, related to the gaze-cursor location.
If we are not able to find a promotion board on a smaller scale, once the customer
comes closer to the sign, we are able to robustly detect it with a high probability
of detection. It is thus always important to put these precision-recall values in
perspective within the context of the application.

Looking at the execution speeds of the trained models, we notice that both the
single class and the two-class model perform around 55 FPS on an NVIDIA
TitanX for a 1.280× 720 pixel resolution. A video of the single class promotion
board detector can be found at https://youtu.be/dQIdRSDm6Jc. Again we
guarantee a real-time performance on full resolution images, which can increase
if resolution decreases.

The same case was also processed using an ACF model trained on the same
training data. To compare this algorithm to the obtained deep learned models,
we plotted the precision-recall curve of the ACF model in Figure 6.8(top). We
clearly see that ACF outperforms our deep learned models with an average
precision of 72.33% for this case, but we already discussed previously why our
deep learned models seem to fail in this case.

Evaluating the cigarette package detectors

For our general single-class cigarette pack detector, we perform model fine-
tuning for 5.000 iterations, while for our fourteen-class cigarette pack is trained
for 15.000 iterations. Both of these settings lead to a convergence in loss rate,
just below the 0.5 threshold, as previously defined as an optimal setting with
our first industrial relevant application.

Figure 6.9 gives us an overview of the produced precision-recall curves for the
trained models. At the bottom left part of the figure we observe the performance
on the complete validation dataset (so all fourteen brands together).

Our general single-class cigarette box detector is able to robustly detect every
single object instance in the large validation set, obtaining an average precision
of 100% and thus being the optimal solution for the task of accurately localizing
cigarette boxes. The fourteen-class object detection model is as promising,
obtaining an overall average precision of 99.87%, however directly providing the
correct brand label in combination with an accurate localisation.

Further investigation in the small accuracy difference between both models
indicates that the Heets Gold brand is the sole cause, not able to reach a
class-specific average precision of 100% like all other brands, only obtaining a
95.66% average precision.

https://youtu.be/dQIdRSDm6Jc
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Figure 6.9: Precision-recall curves for our cigarette brand case, showing a per
brand evaluation, a combined evaluation and a small extra investigation for the
HeetsGold brand.

Training the model further to 50000 iterations, in the hope this class also
converges to 100% average precision failed, rather leading to over-fitting of the
training data, noticeable in the drop in average precision.
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Figure 6.10: Box-plot of the Heets brands probability scores.

As a deeper investigation into the issue with the Heets Gold class, we compared
the performance of the three different Heats classes (Blue, Red and Gold), as seen
in Figure 6.10, evaluated on validation data only containing Heets Gold cigarette
packages with the goal of uncovering where it goes wrong. The detections are
processed at the 0.4 probability threshold which seems the optimal threshold
for the Heets Gold class, given its precision-recall curve.

This clearly shows that given only Heets Gold data for validation, there is still
a large amount of data that gets classified as Heets Red or Heets Blue, and
this with a high class-probability. All other brand classes were discarded from
the box-plot because they did not trigger meaningful detections given the 0.4
probability threshold.

When visually inspecting the Heets class this behaviour is kind of expected,
and actually, the detectors are already performing better than expected, since
there are only very subtle visual changes between these three sub-brands, as
seen in Figure 6.11. Even a person labelling a validation set can easily make
mistakes in these classes, which have limited visual differences.
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Figure 6.11: Examples of the different Heets brands: (left) Heets Blue, (middle)
Heets Red, (right) Heets Gold.

Keeping in mind that our network resizes the input data to a fixed 416× 416
resolution (on which the model was trained to fit into GPU memory during
training) this can lead to information loss of these very small details. This
results in a deep learning architecture that is even more challenged in finding an
optimal separation between the sub-brand classes. Given that this architecture
is basically a localiser and not a classifier, and that a human annotator makes
equally similar mistakes, we decided that the lower average precision of 95.66%
for this single class is actually acceptable.

Looking at the execution speeds of the trained models, we notice that both the
single-class and the fourteen-class cigarette package detector are running at 70
FPS for a 720 × 1.280 pixel resolution on an NVIDIA TitanX. Some sample
validation frames of the generic single class cigbox detector can be seen in
Figure 6.12, while a selection of validation frames of our brand-specific cigarette
package detector can be seen in Figure 6.13.

Figure 6.12: Example validation frames for the single-class cigbox detector.
A video of the complete validation set can be found at https://youtu.be/
mwR6duCwKXw.

https://youtu.be/mwR6duCwKXw
https://youtu.be/mwR6duCwKXw
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Figure 6.13: Example validation frames for the multi-class brand specific
detector. A video of the complete validation set can be found at https:
//youtu.be/qqdbythvgTE.

6.1.6 Discussion on using transfer-learned deep learning for
industrial applications

In this subsection, we want to discuss some restrictions of the current YOLOv2
framework, shed a light on some issues that still arise when using our models
and finally draw some conclusions on our used approach. Finally, we suggest
ways for further improving the current pipeline.

Drawbacks using YOLOv2

We have to keep in mind that using the YOLOv2 architecture does have some
drawbacks. Due to chosen internal construction of convolutional layers and
the final detection layer where YOLO is combining its probability maps, it is
unable to robustly detect objects that are small in relation to the size of the
input frame. This is something that happens quite frequently in our promotion
board detection case, resulting in seemingly worse detection results. However,
the research of Tijtgat et al. [112] already proves that resizing the input layer
of the deep learned network helps in detecting smaller objects in the image,
increasing the average precision of the detector, however at the same time
increasing processing time.

Other deep learning architectures or other trained object detection models might
have fewer problems with this. Looking at our cigarette packages detection
pipeline, once the object instances cover more than 20-30% of the total image
pixels, this issue is completely gone.

Due to the way YOLOv2 groups its activations, neighbouring detections, get
frequently melted together in a single detection, which makes precision-recall
evaluations looking worse since several objects get localised as one detection.

https://youtu.be/qqdbythvgTE
https://youtu.be/qqdbythvgTE
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Figure 6.14: Detection triggered by our multi-class cigbox model on general
rectangular boxes, like a box of chocolate chips.

The architecture has a non-maxima suppression parameter that can be tweaked
for this, but we think investigating this further is out of the scope here.

Finally, any deep learning separates given training data based on a combination
of convolution filters, trying to find an optimal solution. However, we do not
tell it how it should do its task, which sometimes has undesired effects. For
example in the case of our general and multi-class cigarette box detector, when
presented a similar rectangular shape (e.g. a box of chocolate chips) the model
also triggers a detection, as seen in Figure 6.14. This is normal since a cigarette
package is first off all a rectangular box. Still, it is undesired that other boxes
trigger similar detections.

Avoiding detections on general rectangular shapes

To remove the effect of other rectangular packages triggering the cigarette
package detector, we investigate the detection probability range. Given a set of
cigarette packs and some random other packs (containing both random market
packages and other cigarette brands), we noticed that there is a large probability
gap between known and unknown packages. Simply placing a probability
threshold of 65% already results in the removal of all detections on non-cigarette
packs and other brands on cigarette packages.

We are interested in other possible solutions to this problem, that do not include
setting a specific hard threshold on the probability output since new unseen
data could screw up this approach and yield probabilities for actual objects
that are lower than the given score.
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Figure 6.15: Training a cigarette box detector with a generic box as an extra
class, leading to a loss rate explosion.

1. Adding a negative class to the multi-class detector

Our first attempt exists of adding an extra class containing all negative
rectangular object candidates we do not want to detect. By doing this we
basically want to force the deep learning network to learn all cigarette classes
and on top of that an extra general box detector, which gives a more generic label
that can be ignored. For this, we add extra negative training data, collected
from twelve household rectangular boxes and started training again.

Figure 6.15 shows that the initial iterations show a promising drop in loss rate,
however, at a certain moment we experience a training loss rate explosion, and
the model is not able to recover from this.

An explanation can be found in the network architecture. First of all, we force
our architecture to learn possible backgrounds (seen as negatives) as an actual
class. The variation in those generic boxes is so large, so it will be very difficult
to converge to a low loss rate. Secondly, the network architecture does not allow
to learn more than 1.024 different objects as a single class, which is based on
the final convolutional layer. We could increase these dimensions, but this will
make a more complex model and will have no guarantee of success.
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Figure 6.16: (top) Examples of classes that are unseen and untrained, yielding
clearly lower probabilities than (bottom) classes that have been trained, allowing
for easier separation between allowed and unallowed detections based on class
probability.

Furthermore, the training of the model would possibly no longer fit in our
GPU memory. Simply said if we label many different objects as one class
named ‘other_packages’, then the negative class will occupy more weights of
the resulting network, and thus the remaining objects will have less weight
for memorizing their object properties. This, in turn, will greatly worsen the
memorization of the classes we need.

2. Adding hard negative training images

A second attempt is made by adding hard negative training images, images
containing generic boxes that are not annotated, without changing the number
of classes to learn. The architecture will force the learning process to try
and make the response of those hard negative images zero and thus hopefully
improve the ignoring power of the model for generic packages.
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This approach works and yields a fine-tuned model with a low loss-rate. The
influence of this hard negative data is not removing the generic box detection
properties from the model, which it still needs for detecting the actual classes,
but when looking at the probabilities for the classes, we clearly notice a larger
gap in probability between object class instances and generic box detections,
allowing us to easier set a threshold on this detection probability.

Caution should be used here. This only worked when using a limited set of
hard negatives samples in relation to the number of training samples per class.
Adding too much hard negative samples adds the risk of generating batches of
training samples that contain almost no actual object annotations. This, in
turn, forces a model to fine-tune on basically detecting nothing and ends up
with a model which reaches an optimal loss rate, on exactly that task, but is
unable to detect any kind of cigarette pack.

Examples of generic packages or cigarette packages of untrained brands, yielding
low probabilities compared to actually trained cigarette brands can be seen
in Figure 6.16. Knowing that trained classes trigger detections almost always
above a probability of 85% ensures us that there is still a margin for defining
the most optimal threshold.

6.1.7 Conclusion on using transfer-learned deep learning for
industrial applications

We prove that using deep learning for industrial object detection applications is
no longer infeasible due to computational demands and unavailable hardware.
By using an off-the-shelf deep learning framework and model fine-tuning we
succeed in building several robust object detection models running on the GPU.
Furthermore, we have shown that this deep object detection can be applied
to toy examples, e.g. the game of rock-scissors-paper, allowing to fairly easily
obtain highly accurate object detectors in lab conditions without any large
effort and with minimal training data.

Our application of promotion board detection proves that the complete pipeline
is also valid for industrially oriented cases, using a very limited training dataset
and thus minimal manual effort, yielding models that achieve moderate average
precisions. At the same time we express the fact that not all cases actually
need a 100% average precision model, in order to do its job, like in the case of
eye-tracker analysis.

Finally, the application of cigarette package detection and classification tries to
push the limits of deep learning and model fine-tuning on industrial cases.
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By using again very limited datasets (keep in mind some classes have only
15 labelled image samples) we achieve a perfect solution for our application,
achieving a 100% average precision when it comes to cigarette box detection.
Furthermore, if we directly incorporate the classification in the detection pipeline,
we achieve a remarkable 99.87% average precision. This perfectly proves that
deep object detection could be a valid solution to several industrial challenges
that are still around nowadays.

6.2 Comparing Boosted Cascades to Deep Learn-
ing Architectures for Fast and Robust Coconut
Tree Detection in Aerial Images

Getting a robust and accurate location of any object in a given input image is
a key part of solving many automation tasks. In most cases the localization is
only a small part of the complete pipeline, thus requiring a very high accuracy,
in order to reduce the propagated error as much as possible.

Figure 6.17: Example input image with coconut trees.
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Figure 6.18: Example of an aerial image containing manually annotated coconut
trees.

In the field of aerial image analysis, we notice that many tasks are still done by
manual labour. Several large companies use workers in low-cost countries to
manually analyse the image data and locate specific object classes in the given
data. In our application of coconut detection in aerial images (see Figure 6.17),
the workers are asked to click on the coconut tree centres, after which a circle
with a predefined diameter is placed as an annotation on top of the coconut
tree, which is seen in Figure 6.18. Not only is this a costly process, it is also
very cumbersome and time-consuming. Furthermore, to avoid bias introduced
by a single annotator, we need to build-in redundancy, by averaging multiple
annotations of the same object made by different annotators. Additionally,
manual annotation is prone to mistakes when performing these repetitive tasks.

Many of these tasks could be automated given the possibilities of state-of-
the-art object detection. These systems can, given pre-trained models, locate
objects in the input image with human-like accuracy using the power of machine
learning. Compared to human annotators these repetitive tasks are just perfect
for automated systems, which can heavily parallelize these tasks and look for
multiple object instances at once.

The challenging part lies in finding the correct algorithm for training these
accurate machine-learned detectors. This is where we locate our research on
finding the best algorithms for automated coconut tree detection. We are
convinced that several proven object detection algorithms based on boosted
cascades of weak classifiers [120, 26, 25] are a perfect solution for the task.

On the other hand, deep learning algorithms have introduced a new wave of
state-of-the-art object detectors, capable of achieving top-notch accuracy results.
Combined with the fact that the required hardware is becoming affordable
and the fact that many pre-trained networks already exist, it seems a valid
alternative to the cascade classifier based approaches.



BOOSTED CASCADES VERSUS DEEP LEARNING 145

In this section, we compare these well-known cascade classifier object detection
algorithms to these new and powerful deep learned object detection algorithms.
We evaluate the trained detection models both in achieved accuracy and
execution speed, keeping in mind that achieving real-time performance is in
many cases a hard constraint for actual applications. Furthermore, we give
recommendations on how to efficiently use deep learning algorithms in the
context of aerial image object detection and propose some general rules to keep
in mind when building these models.

The remainder of this section is organized as follows. Related work on the
state-of-the-art in object detection was already discussed in chapter 2. We
start with section 6.2.1 where the collected data for training and validating our
object detection solutions are discussed. Subsection 6.2.2 and 6.2.3 discuss the
different approaches we suggest for coconut tree detection. The achieved results
using these techniques are discussed in subsection 6.2.4, followed by conclusions
in subsection 6.2.5.

6.2.1 Dataset and framework

As training and validation data for our used approaches, we make use of a
10.000×10.000 pixel aerial image covering a partial coconut plantation provided
in RGBA format. Inside the image, all coconut trees are manually annotated
using their centre position. The average size of a patch covering the whole tree
is 100× 100 pixels, so this size is used as annotation patch around the centre
position. The image contains 3.798 coconut tree patches, while the remaining
image parts are used as background information.

In all cases we split the provided data into parts, using one part for model
learning and the other part for model validation, to ensure the detector is not
validated on training data. Specific data splits are discussed at each technique
specific subsection.

To train our object detection models we use three publicly available frameworks.
The first boosted cascade approach, based on the principle of Viola&Jones
with LBP features [120], is trained using the implementation of the OpenCV3.2
framework [12]. The second boosted cascade approach, based on the principle
of integral channels introduced by Dollár [25], is trained using the author’s
MATLAB toolbox [23]. For our deeply learned models, we start by using an
implementation of the InceptionV3 architecture in Tensorflow [1], but obtained
unsatisfying results using that framework. Therefore, we switched to the C and
CUDA based framework Darknet [95], which includes both the classification
(Darknet19,Densenet201) and detection architectures (YOLOv2) we further test
in our research.
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Table 6.3: Training data for the Viola&Jones based detection models and the
model complexity.

# pos # neg # stages
Model 1 1000 2500 16
Model 2 1000 5000 15
Model 3 1000 10000 15
Model 4 2000 8000 16

6.2.2 Approaches with boosted cascades

In this subsection, we will discuss both the different boosted cascade approaches
we used for training our coconut tree detectors, and the specific amounts of
training and validation data used.

Adaptive boosted cascade of weak classifiers

Our first approach is a boosted cascade of weak classifiers [120] using the
adaptive boosting algorithm [68] for learning the weak classifiers, based on the
local binary pattern (LBP) feature representation [4]. This invariant feature
representation ignores colour information and works directly on a grayscale
image, focusing on local differences in pixel intensities.

For training, we split the image into four equal parts. The annotations of the top
left image part are used as positive training samples, while the remaining image
parts are used for validation. As background training patches we randomly
sample patches at the model size, from the image, not containing actual coconut
trees. We increase the number of negative samples with each model, to obtain
a more accurate detector with less false positive detections.

On top of the gathered training samples, we apply data augmentation for our
final model, by randomly flipping the training patches around their vertical
or horizontal axis. The number of training samples used for each model can
be seen in Table 6.3, together with the number of stages of weak classifiers,
indicating the model complexity. All weak classifiers are represented as single
depth binary decision trees on top of the selected LBP features.

Aggregate channel features

In comparison to the Viola&Jones algorithm, the algorithm of Dollár et al.
[25] proposes to add more than a single invariant feature representation to the
boosting process. By adding colour, gradient filters, Gabor wavelets, . . . the
accuracy of the trained detectors increases compared to a single feature channel.
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We first train a model using a similar amount (2000 samples) of positive training
data to the best performing model of the previous technique. However, we note
that the negative data might be gathered from patches that are also validated
afterwards since the single top left corner did not contain enough background
patches to use in the Viola&Jones approach. Therefore, two extra ACF models
were trained, splitting the dataset into a lower (1.741 training samples) and an
upper (1.914 training samples) image half. We train a model using one half
and validated the model using the other half of the image. In general, the ACF
algorithm uses a lot more negative training samples gathered from the same
image as the positive training, leading up to 150.000 patches.

6.2.3 Approaches with deep learning

After training our boosted cascade models, we switch to the deeply learned
models. We first try learning a complete model without initialized weights,
then apply several transfer learning approaches, where existing weights of a pre-
trained deep model are fine-tuned towards application-specific weights, resulting
in a model that can detect the new object class. Finally, we investigate the
difference between classification and detection architectures in deep learning
and their applicability on coconut tree detection in aerial imagery.

Learning a complete new deep model

Although literature [94] advises not to train deep models if you do not have
large datasets available, we train a completely new model on the available
case-specific data, where no weights are initialized by using a pre-trained model.
This model seems to converge, looking at the loss-rate over the number of
training iterations, but in subsection 6.2.4 we discuss why this converged model
is misleading.

Freezing (n-1) layers and fine-tuning final layer weights

A second approach is to freeze the weights of the pre-trained convolutional
layers, and only re-train the final layer and its connections. This forces the
deeply learned model to make new constellations of existing features for a new
object class. We apply this approach to the existing InceptionV3 model inside
TensorFlow and try to fine-tune the final layer to be able to classify coconut
trees in aerial image patches while freezing all other convolutional layers.

One major advantage of this approach is that the amount of data needed for
this kind of transfer-learning is very small. Sample cases in the TensorFlow
framework prove that only 75 samples per class can already be enough for
satisfying results.
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This approach only works if the object class to be detected is somehow related
to the data contained in the initial dataset on which the model was trained. If
the data is however drastically different, like in the case of aerial imagery, then
obtaining satisfying results using this approach is quite hard, as illustrated in
subsection 6.2.4 and other approaches should be considered.

Fine-tuning weights of all layers

Instead of freezing the weights of all the pre-trained layers, we can also tolerate
slight adaptations of the pre-trained weights of the convolutional layers. This
allows to change the learned features to be more specific to our desired detection
task and then learn a constellation of those new fine-tuned features on top
of that. When doing so, setting a small learning rate is mandatory, else the
initial weights will be changed too drastically too fast, prohibiting the model to
converge on an optimal solution.

Using Darknet, we apply transfer learning using this complete fine-tuning
approach on both the Darknet19 and the Densenet201 architecture, trained on
ImageNet, with the goal of obtaining a deep-learned classifier for our new case
of coconut tree classification, using a smaller set of case-specific annotations.

From classification towards detection architectures

Since we are aware that using a classification network implies that we need to
provide a multi-scale sliding window based approach for gathering image patches,
we try training a single pass detection based model (YOLOv2 architecture).

Unfortunately, due to the coarse grid-based region proposals, the proposed
architecture is not able to cope with dense object-packed scenes, where object
instances are closely together and slightly overlapping. This triggers detections
that cover multiple object instances, instead of retrieving single object instances
and furthermore doesn’t allow the model to converge to an optimal configuration.
This is a problem in our application of coconut tree detection in aerial imagery
and thus this approach was abandoned.

6.2.4 Results

This section discusses the various results we obtain with the different object
detection approaches focusing on our case of robust and accurate coconut tree
detection.
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Viola&Jones-based object detection

Figure 6.19 displays the obtained precision-recall curves for the Viola&Jones
boosted cascades of weak classifiers using local binary pattern features. For
each detector, we also report the average precision (AP), which is calculated as
the area-under-the-curve for the given precision-recall curve.

The closer the precision-recall curve lies to the top right corner, the better the
detector. Increasing the number of negative samples, which gives the model a
better descriptive power for its negative class, seems to work well. This should
in principle also mean a higher average precision, but we reckon our graph does
not directly represent this. Our OpenCV based implementation does not allow
to generate more precision-recall points for the given data, and since we do not
want to guess the curvature, we do not take the non-existing area into account.
This might give a wrong AP impression.
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Model 1: 1000 pos 2500 neg, AP = 84.52%
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Figure 6.19: Precision-Recall curves for different Viola&Jones based detection
models with the number of training samples and the average precision.
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We conclude that given a fairly limited set of case-specific annotated training
data, and a limited training time of only 2 hours, we obtain a detector that is
able to detect coconut trees with 90% precision at a recall of 80%. Furthermore,
we notice that applying data augmentation helps to boost the generalization
properties of our boosted cascade models. The final model performs detections
on a 10.000× 10.000 pixel image within ten minutes.

ACF-based object detection

Figure 6.20 shows the obtained precision-recall curves for the ACF boosted
cascades. We immediately notice that this framework is able to draw power from
multiple feature channels and is thus able to obtain higher average precisions.
Our best scoring model, trained on the bottom half of our dataset image and
validated on the top part, achieves an average precision of 94.55%.

The optimal point of the best model, and thus the optimal setting of our
detector, achieves 96% precision at a recall of 90% which is quite amazing given
the very limited training time of only 30 minutes. The best performing model
performs detections on the 10.000× 10.000 pixel image within five minutes.
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ACF trained on top left corner, AP = 92.44%

ACF trained on bottom half − test on top half, AP= 94.55%
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Figure 6.20: Precision-Recall curves for different ACF based detection models
with their average precision.
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Figure 6.21: Precision-Recall comparison between the best Viola&Jones and
ACF models on the same validation dataset.

Viola&Jones versus ACF

Since both detectors are validated on different amounts of data, we decide
to perform an additional comparative study. Figure 6.21 shows the result of
validating the best performing Viola&Jones and ACF detector trained on the
top left quarter and then validated on the same remaining image as validation.
This clearly shows that ACF outperforms Viola&Jones with a 7.5% higher
average precision.

Deeply learned object classification

Our initial attempt at training a complete deep learning classification model
from our limited set of training data did not produce usable results, although
the model seems to converge. With a top1-accuracy for classification of only
33% given a two-class problem (coconut tree or background), this trained model
performs worse than random guessing on the class label, which given a large
enough dataset, should eventually converge to 50% top1-accuracy.
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1. Transfer learning with frozen layers

The transfer learning using TensorFlow is done with only 75 coconut tree samples
and 75 background samples, randomly sampled from the dataset, because
retraining the final convolutional layer is computationally less demanding. All
other layers are frozen in this set-up, meaning their weights cannot be changed.
The remaining image content is used for validation and compared to the ground
truth annotations. The trained classification model achieves a top1-accuracy of
77%, a validation metric used in large-scale classification benchmarks.

To be able to compare this accuracy to the accuracy of our previously trained
boosted cascades we calculate the precision and recall at pixel level. This results
in a precision of 72% at a recall of 52%. Compared to the results obtained
with our boosted cascades we decide that his approach does not yield satisfying
results, and thus this approach was abandoned.

2. Transfer learning by fine-tuning all layers

Following the frozen-layer-model approach, we suggest using pre-trained weights
as initialization for model fine-tuning. However, instead of freezing the weights of
all but the last convolutional layers, we allow the complete network to fine-tune
its weights.

We started with the default Darknet19 network, existing of 19 convolutional
layers and then tried a similar approach with the more complex Densenet201
network, containing 201 convolutional layers. The reason for testing both
architectures is the fact that the author of the Darknet framework illustrated
that using an even deeper network achieves higher top1-accuracy while being
slower at inference time [95]. We decided to verify if this behaviour was
reproducible using our coconut tree dataset.

Figure 6.22 displays the loss rate versus the number of training iterations for
both models. As seen both models seem to be able to converge to a stable
model given enough iterations. In order to avoid over-fitting to our training
data, we evaluated our deep learned classification models at several iteration
intervals to determine the best model weights for our coconut tree classification
task. The fast drop in loss rate is explained by the fact that we increase the
batch size for training these models. This allows to take larger learning rate
steps and at once is some sort of safety measurement against outliers. For our
fine-tuned Darknet19 model we find that using 10.000 iterations seems optimal
at a top1-accuracy of 95.2%, while for the fine-tuned Densenet201 model using
20.000 iterations gives us the best performance at a top1-accuracy of 97.4%.
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Figure 6.22: Loss-rate and average loss-rate curves during training for (top)
Darknet19 and (bottom) Densenet201 model.
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Table 6.4: Execution speeds for a full 10.000× 10.000 pixel image for both deep
learning models (Darknet19 and Densenet201 ), at different step sizes.

step #patches Darknet19 Densenet201
5px 3.924.361 4h 20h30m
25px 157.609 9m5s 50m20s
50px 39.601 2m30s 12m35s

3. Execution speed and memory footprint of deep learning

Since we are using the classification architectures of Darknet instead of using
detection architectures, we are aware that we need to apply a sliding window
based evaluation on our large input image to perform coconut tree localisation.

We evaluate our models using a single NVIDIA TitanX GPU. The Darknet19
model evaluates our 100 × 100 pixel input patches at 265 FPS while our
Densenet201 model evaluates patches at 52 FPS. Table 6.4 gives an overview
of the step size in relation to the execution time of our models.

Due to the nature of our images, performing a multi-scale analysis is useless,
since images are captured on a constant flight height. Given the fact that deep
learning is quite robust to slight size changes, we stick to a 100× 100 patch.

Considering a 50-pixel overlap between patches in both directions and thus at a
50-pixel step size, the complete image can be evaluated in only two and a half
minutes using our Darknet19 model. While this does increase when a smaller
step size is selected, one can argue if this smaller step size is actually needed,
since there is already a 50% overlap of patches in both dimensions. Given the
fact that there are several more optimization possibilities (e.g. using multiple
GPUs) makes us believe that we can achieve even faster processing speeds.

If we compare this to our boosted cascade based approaches, our Viola&Jones
model takes 10 minutes for a 10.000× 10.000 pixel image, while the ACF model
takes 5 minutes for the same resolution. However, both models have a pixel
step size of 5 pixels and thus perform in that case much faster than the deep
learning frameworks. Given the high top-1 accuracy obtained with the deeply
learned models, one could definitely consider switching to these more advanced
algorithms, but considerations for speed optimisations should be taken.

Finally, taking a look at the memory footprint of our deep learning models
might be interesting for future research. For training on our NVIDIA TitanX
instance, we made the batch sizes as large as possible to fill the complete 12GB
of dedicated memory. However, at runtime, we process image patch per image
patch and thus the footprint is only 400MB for both models, which means the
model can also be run on a low-end GPU, albeit slower.
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Figure 6.23: Visual results for the (top) VJ boosted cascade model
[P=90.46%,R=81.12%], the (middle) ACF boosted cascade model
[P=90.55%,R=86.43%] and the (bottom) deep learned Darknet19 model
[P=97.31%,R=88.58%] showing: (green) TP (red) FP (purple) FN.
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Visual Results

Precision-recall curves or top1-accuracy results give a quantitative evaluation
of the trained models, but for customers, it is always interesting to see visual
results of the trained models. Therefore we developed a visualisation tool that
allows visualising the output detections of any given model with a specific colour
code as an overlay on top of the original input image, as seen in Figure 6.23.
Here we see the output of our VJ and ACF boosted cascade algorithms and for
our deep learning classification output. For visualisation purposes, we need to
select a fixed point on the precision-recall curve. In our case, we selected the
most optimal configuration for each detector, as seen in Table 6.5.

The threshold is set at a precision of 90.46% and a recall of 81.12% for the
Viola&Jones model, a precision of 90.55% and a recall of 86.43% for the ACF
model and a precision of 97.31% and a recall of 88.58% for the deep learning
approach. Green patches are true positive detections (patches classified as
coconut tree by the model and actually containing a coconut tree), red patches are
false positives (patches classified as coconut tree by the model but not containing
a coconut tree) and purple patches are false negatives (patches classified as
background by the model but actually containing a coconut tree).

Comparing the different output images, we clearly see some expected behaviour.
The Viola&Jones model suffers from a higher false positive rate than the
ACF model. This can be explained by the fact that VJ does not take into
account colour information and thus triggers several detections on coconut tree
shadows, whereas ACF is more robust to this. Comparing the ACF model to
the Darknet19 model, we see that the Darknet19 model has almost no false
positive detections, hence the high precision at a high recall rate. However, the
approach still suffers from false negative detections. We are convinced that this
is partly due to the step size of 50 pixels, used for this evaluation. Decreasing
the step size towards 25 or even 10 pixels, should further reduce the number of
false negative detections. It is also possible to take a look at region proposal
networks, to combine with our classification deep learning networks. This would
reduce the number of image patches drastically, immediately decreasing the
number of false positives, ensuring an even faster pipeline.

Table 6.5: Configurations for the visual output, including precision, recall,
training and inference time (for a 10.000× 10.000 pixel image).

Model Precision Recall Training Inference
Viola&Jones 90.64% 81.12% 2h 10m

ACF 90.55% 86.43% 30m 5m
Darknet19 97.31% 88.58% 24h 2m30s
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6.2.5 Conclusions on coconut tree detection in aerial imagery

With this research, we have proven both the capabilities of boosted cascade as
well as deeply learned detection models for coconut tree localisation in aerial
images. Our best boosted cascade performs at an average precision of 94.56%
while our best deep learning model achieves a top1-accuracy of 97.4%. Although
our deep learning pipeline evaluates two times as fast, we reckon that boosted
cascades are still in the race, especially given the lower computational complexity
demands, but the high classification accuracy and speed of deep learning can
simply not be ignored.

Hitting a top1-accuracy of 33% on a deep model learned without initialized
weights proves again that given a limited set of data training your own model
without transfer learning is not feasible. We are convinced that this model is
heavily over-fitted on the augmented limited training data and thus unable to
generalise over a larger validation dataset. Alternatively, the training might be
stuck in a sub-optimal local minima instead of a global minimum on the loss-rate
surface, and unable to exit this minima without more qualitative training data.

6.3 Conclusion: benefits of using deep learning
approaches for object detection

In this chapter we took a look at the possibilities of using deep learning
for industrially oriented object detection, certainly given the availability of
large public datasets, available pre-trained deep learned models and of course
affordable hardware. Section 6.1 illustrated the use of transfer learning, where
we use a pre-trained deep learned model and a small set of application-specific
training data to build a new case-specific deep learned model for accurate
and robust object detection. Furthermore, we demonstrated this approach on
several relevant applications gaining a high average precision for each detector.
In the case of the promotion board detector we did not succeed in detecting
all promotion boards, nevertheless, we succeeded in achieving our goal, which
is notifying if a persons has looked a specific promotion board. All boards
trigger at least one detection in a specific viewpoint, making the instance based
detection accuracy 100% even with an average precision that is far lower. For
the cigarette box detector, we achieve a flawlessly detection and classification
system, which is by the moment being integrated by our industrial partner into
their augmented commercial application.
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Finally, this section clearly illustrates when using deep learning, the difference
between using a classification and a detection based approach can be very small
and thus double pipelines can be easily integrated into a single robust solution.

Section 6.2 investigated the use of deep learning for object detection in aerial
imagery, but furthermore compared the possibilities of deep learning towards
boosted cascade based object detection approaches. We proved that although
boosted cascades are still a valid and accurate solution for many industrial
problems, that we simply cannot ignore that achieved accuracies when throwing
deep learning into the battle.



Chapter 7

Lessons learned for industrial
object detection tasks

The work presented in this chapter was partially published in the co-authored
‘OpenCV 3 Blueprints’-book, chapter 5: ‘Generic object detection for industrial
applications.’ [45].

After 5 years of research in the field of object detection and more specifically
in industrially relevant object detection, we reckon that we have learned some
critical insights in how new industrially relevant object detection tasks should
be tackled. This chapter discusses the general lessons learned and gives an
overview of the decision process we take whenever being faced with a new object
detection challenge by an industrial partner.

7.1 Does the problem need object detection?

Since our research is demand-driven based on actual issues in the industry, we
generally experience that the first task we are faced with is actually analysing if
the problem statement can actually be solved by object detection. We notice that
many industrial partners get lost in the difference in concepts between object
classification, object recognition and object detection. It is quite important to
get that difference clear from the start, in order not to develop any solutions
that might prove to be conceptually broken in the long run.

159
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Figure 7.1: Decision tree defining the actual approach needed for the problem.

Figure 7.1 explains the decisions needed to define whether or not our proposed
object detection algorithms should be used or not. We start with the actual
problem statement and the input image. If one wants to label a complete image,
we apply image recognition if we know the exact content of the image or we
apply image classification if we know the image class, e.g. some sort of tomato.
However, this will only tell you what object instance or what object class is
in the entire image, but not where it is located in relation to the complete
image view. If we want to specify which part of the image contains the object,
we need object localization. In that case, we need to ask another question. If
we look for an exactly known object (e.g. looking for the Mona Lisa in the
Louvre) then we use object recognition algorithms. However, if we want to
identify a class of objects (including all possible variations in shape, lighting
conditions, perspective transformations, colour, texture, etc.) and accurately
locate them in the given input image, then we need object detection as a solution
to our problem. Making sure that this is clear from the beginning, right at the
problem statement, clearly helped in finding the correct solution for many of
our industrial cases.

7.2 Selecting boosted cascades or deep learning?

In this dissertation, we discussed two main approaches for solving industrially
relevant object detection tasks. First, we introduced the concept of boosted
cascades of weak classifiers, being dependent on one or more feature channels
for training the actual object model.

Secondly, we introduced deep-learned algorithms for the same task, and more
specifically the use of either a combination of sliding window and convolutional
neural networks focussing on classification or a single-shot deep-learned object
detector.
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If a new object detection task comes up, we suggest looking at some specific
elements that can point you to the actual decision of which approach to test.
In the following cases, given our experience, we suggest that one should always
use the more advanced deep-learned approaches.

1. If you have a large set of annotated and case-specific training data available.
Training data is the key to successful deep learned approaches, even though
we proved that using transfer-learning it is possible to make robust object
detectors with limited data. However, having the data allows you to train
complete specific models to your case that will probably push accuracy
even higher than transfer-learned models can achieve.

2. If using GPGPU hardware is an option in your set-up, do so. Their
costs have dropped drastically in recent years and they are worth the
investment.

3. If you simply want the highest accuracy possible, without caring about
the actual processing speeds. In that case, fine-grained sliding-window
based approaches combined with deeply learned classification networks
will probably beat every other approach.

4. If you do not need to know what your network is doing internally, or
at least not every single detail. We still notice that, although all the
academic investments in visualizing the internals of deep-learned networks,
this is still a breaking point for many industrial partners, who are not
yet convinced that we can explain why a deep-learned model is actually
working.

However, as already proven in chapter 6, boosted cascades are still a valid
alternative in many situations, where guaranteeing the above conditions is simply
impossible. Therefore we generally consider these more classical approaches as
a valid alternative in the following cases.

1. If explain-ability and understandability are key in the solution, then
boosted cascades have a huge advantage over neural networks. It is
perfectly possible to tell which features are exactly used to build up the
weak classifiers. Furthermore, the type of features fed to the boosting
process is in most cases manually crafted features that actually tell us
something we can grasp as humans, as compared to the convolutional
filters used by deep-learned networks.
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2. If you have a very constrained scene, using those constraints can drastically
reduce the complexity of the detection task (as proven in chapter 3 and 4).
In those situations training a boosted cascade classifier and performing
inference is less complex, faster and eventually achieves similar accuracies.

3. If you have an embedded application (e.g. a vision-navigated drone), then
in many cases it is not feasible to add a heavy and power-consuming
GPGPU. It will drastically reduce the battery lifespan for a single
flight, reducing the applicational field. This is one of the main reasons
why boosted cascades are still frequently used on multi-core embedded
platforms.

4. Even if your mobile platform is able to add a GPGPU (e.g. the NVIDIA
Jetson TX2) that is more power efficient, we notice that the performance
speed at inference time for deep models drastically drops, to a couple of
frames per seconds. In many cases, this might be enough, but there is a
wide range of cases where obtaining real-time performance is mandatory
(e.g. when implementing obstacle avoidance on a high-speed drone). In
those cases using boosted cascades is a feasible alternative.

5. If extreme execution speeds is more important than achieving top-notch
accuracy (e.g. when you need to process millions of images a day), then
boosted cascades easily beat deep learned models, certainly when moving
to high-resolution images. In those cases missing a few objects will be
acceptable if we can manage to increase the number of processed images.

We reckon that in all other cases, where these guidelines do not explicitly give
you an idea on what to do, a fair comparison between both techniques is needed,
both in training complexity, training time, inference time. Only then one will
be able to decide which algorithm actually defeats the other.

7.3 The importance of the correct training data

Selecting the correct training data is important for many computer vision tasks,
but we notice that for object detection, that it is even more so. In this section,
we will discuss how selecting the correct training data influences each algorithm
because it slightly differs. Furthermore, we will also highlight some dangers of
using techniques like data augmentation to generate more data than you have
actually available.
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Object detection depends on training data, it’s as simple as that. And in general,
when building object detectors that have to work in every single situation, adding
more training data to the process results in better performing object detection
models. However, this is not the case for application-specific object detection
models. Due to the scene- and application-specific constraints, building a model
with limited data is actually feasible, keeping in mind that this model will only
achieve its maximum performance in that given application and will probably
not generalize that well. However for many industrial applications, this is
exactly the case and we do not focus on generic models, like in academics.

7.3.1 Training data when using boosted cascades

To gather positive and negative training samples for training boosted cascades,
we suggest to follow a set of simple rules:

1. For the positive object samples only use natural occurring samples that
have a relation to your application. Collecting samples in for example
lab-like conditions will never result in an accurate detection model in the
application itself. In our opinion, it is better to use a small set of decent
high-quality object samples, rather than using a large set of low-quality
non-representative samples for the application.

2. For the negative background samples there are two possible approaches,
but both start from the principle that you collect negative samples in the
situation where your detector is going to be used, which is very different
from the normal way of training object detects, where just a large set of
random samples not containing the object are being used as negatives.

(a) Either point a camera at your scene and start grabbing random
frames to sample negative windows from.

(b) Or use your positive images to your advantage. Cut out the actual
object regions and use the rest of the image content as negatives for
window sampling. Keep in mind that in this case the ratio between
background information and actual object occurring in the window
needs to be large enough.

3. If your background is constant and not that many variations can occur,
then restrain yourself trying to collect many negatives. E.g. in the case of
a constant background colour, as in the case of our orchid flower detector,
use only background samples of that specific background.
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In some cases, this might seem contradictory to drop data in the goal of achieving
better detectors, but using case-specific training data will allow you to build
models that are very robust in that specific application. Furthermore, it will
also allow dropping training time drastically together with a reduced amount of
manual annotations needed for training these models.

Finally, we noticed that data augmentation for training boosted cascades is
dangerous. Data augmentation can generate that many variations of your initial
training data, leading to a model that over-fits to those artificially changed
images, instead of focussing on modelling the actual object. A lot of online
object detection tutorials for boosted cascades use a single image-based approach,
generating many images on top of those with slight deformations. However, we
notice that this only works for very simple toy samples with a simple background,
but for actual industrial applications this seems to fail. E.g. in the case of trying
to detect a banana on a clean white table, taking one annotated banana image
and then using data augmentation to generate 100 views of that specific banana,
will make a good banana detector, as long as no clutter and other objects are
introduced in the system. This is mainly because the features calculated on
the object pixels and background pixels are easily separable in this context. In
industrial cases where clutter, illumination changes, shadows, etc. are common,
this approach will trigger tons of false positive detections on the background
information and give a serious drop in true positive detections.

7.3.2 Training data when using deep-learned approaches

When collecting training data for deep learning approaches, in principle the
suggestions in the above subsection still hold. Even in the case of deeply learned
models, it is wise to build case-specific models and use case-specific data for
training. Of course, there are some differences that should be highlighted.

1. If you want to train a completely new architecture and you do not have
pre-trained weights on which you can apply transfer learning, then you
will have to collect a lot of manually annotated training data. Even with
data-augmentation applied, you will still need multiple ten-thousands of
annotated training samples to be able to converge to a good performing
detection model.

2. If you base your model on an existing architecture and you have pre-
trained weights on a larger more general dataset, you can easily build
robust, application-specific deep learned models with as less as 50 training
samples. So before annotating more, try using a small amount and see
where that gets you.
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3. Watch out for data augmentation when it comes to deep learning. Since
deep learning applies this in various ways by default, you need to ensure
which data augmentation steps your pipeline implements exactly and see
if that is desired in your case. E.g. if your scene constraints allow for any
kind of colour-based filtering, make sure that your deep learned detector
does not apply colour transformations that generate samples outside the
allowed range.

7.4 Algorithm specific parameters

In our five years of research working on this dissertation, we collected some
insights and no-go’s when training detection models. In this last section, we
want to quickly highlight some crucial things to keep in mind when training
your own detectors. Again we will discuss boosted cascades and deep-learned
architectures separately.

7.4.1 Parameter tuning for boosted cascades

Boosted cascades have several parameters that can greatly affect the performance
of the detection model. The summation beneath is just an overview of some
parameters we experimented with and on which we have some valuable insights,
given the used OpenCV 3 framework and its boosted cascade implementation.

• Your model can be quite compact. Knowing that the original Viola &
Jones face detector only had a 24x24 pixel dimension, we suggest not to
make it too big. The dimensions of the model immediately define the
smallest possible object you are able to detect without up-scaling your
image, so keep this in mind. In general, we suggest to take half of the
average object dimensions in your training samples and keep your final
model dimensions smaller than 100 pixels.

• We clearly noticed that LBP features, due to their binary nature, are
faster both at training and inference, compared to HAAR-like wavelet
features, without dropping much of accuracy. For proof-of-concept testing
we thus suggest using these LBP features.

• The depth of your weak classifiers directly influences the complexity of
your model and thus the inference time of your detection model. From
experience, we suggest using stumps, which are simple binary decision
trees, which seem to be more than capable of modelling robust and
accurate cascades.
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• You need to define the minimal hit rate on the positive samples for each
weak classifiers. We noticed many times that user set this value too
strict, resulting in a detector that is not able to converge. Whenever this
happens, try lowering this value with small steps at a time.

7.4.2 Parameter tuning for deeply learned detectors

For deep-learned detection models using Darknet and the YOLOv2 architecture,
we also experienced some specifics that are worth mentioning and considering
when training new models.

• When using transfer learning to create case-specific object detectors we
know the learning rate is critical. In order to ensure that our model does
not lose its learned properties from the pre-trained weights, we suggest
setting the learning rate lower than the learning rate of the pre-trained
weights.

• From our limited experience, we notice that our retrieved deep learned
models converge towards a stable configuration once the returned average
loss-rate drops below 0.5. For new cases, we use this as a default setting
to halt the training. In order to achieve the best configuration one still
needs to cross-validate with a separate validation set.

• Since in transfer learning data augmentation is applied to generate
thousands of samples from a very limited manually annotated training set,
we stress the importance of making sure that those limited annotations
are done correctly. Due too the data augmentation one or two wrong
annotations can already have a big influence on the accuracy of the final
detection model.

7.5 A conclusion on lessons learned

In this chapter, we produced a valuable list of learned lessons. We explained
the key difference between recognition and detection, gave valuable insights in
the data collection process (which is specific for each type of algorithm) and
proposed several hints on how to choose your parameter settings wisely when
using the object detection algorithms as we proposed them.



Chapter 8

Conclusion and future work

8.1 General conclusion on this dissertation

In this dissertation, we investigated how we could use scene- and application-
specific constraints and knowledge, to improve the performance of state-of-the-
art object detection algorithms for industrial applications. The research was
motivated by the fact that academic research tries to focus on robust detection
in in-the-wild conditions using expensive hardware and large datasets (which is
not feasible in industrial, application-specific object detection situations), while
many industrial applications are constrained or have conditions where several
external influences are removed due to the set-up specific conditions.

We clearly proved that scene- and application-specific constraints allow us to
achieve highly accurate detection accuracies, using a very limited set of training
data. Like seen in chapter 3 and 4 we do this by either using the constraints as
efficient pre- or post-filtering options, or by directly integrating the constraints
in the training process of the object detection models themselves. In doing
so we lower the number of needed training samples drastically, allowing to
continuously build new and robust object detection models for the versatile
object detection tasks we solved in this dissertation.

Besides looking at the scene- and application-specific constraints we also took a
look at the enormous amount of manual labelling work. By smartly integrating
an active learning approach in chapter 5 we succeed in supplying only a very
small amount of meaningful training samples to the human annotator, drastically
reducing time and cost of the manual labelling task of training data.
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We succeeded in significantly dropping the number of training samples from
multiple thousands to a couple of hundreds, still achieving top-notch detection
accuracies and thus making object detection feasible for robust and accurate
industrial solutions.

Finally we took a look at the currently state-of-the-art object detection
algorithms using deep learning in chapter 6 and conclude that we can no longer
ignore this new range of powerful object detection algorithms for industrial
applications. With very limited sets of only ±50 training samples and by smartly
integrating data augmentation and transfer learning, we succeed in retraining
existing deep learning architectures for a case-specific object detection task.

In comparing deep learning architectures to more classical computer vision
algorithms for object detection we acknowledge that deep learning can give that
extra gain in accuracy, but also agree that classical approaches still achieve
top-notch comparable results, many times at higher inference speeds than deep
learning. This makes them still very suitable for industrial object detection
solutions.

In the end, we conclude that we succeeded in proving the benefits of integrating
scene- and application-specific knowledge to get robust and easy to use object
detection algorithms. Furthermore we succeed in proposing several solutions for
reducing the amount of manual annotation drastically while still guaranteeing
high accuracies. All the time we kept real-time (varying from 10 to 30FPS
at a minimum for different applications) processing as a hard constraint and
achieved in doing so.

8.2 Future work and possible expansions

We acknowledge that not all issues are yet solved. Many of our solutions need
more application specific research to further improve the gained accuracies and
obtain the optimal solution to the problem.

In general, we urge that future research should perform a comparative study of
adding more training data to the training process and trying to automatically
define an ideal setting for a given detection task. This would allow giving an
initial guess in advance of how many training samples should be used for a
specific detection task, probably directly related to the complexity and the
constraints of the given application.
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We would also want to revisit some of the solutions we proposed in the initial
chapters with scene-constraints and compare them to detectors build with deep
learning based approaches, even taking it one step further and integrating all the
found scene- and application-specific constraints directly into the deep learning.

In the case of our orchid flower detection system, developed in chapter 3, we want
to apply a similar object detection pipeline for detecting flower buds to ensure
that similar results can be achieved and to further expand the automatic analysis
of orchid plants. In the same chapter, we discussed the application of detecting
walking aids. Here we discovered that having enough pixel information for an
object class is vital in obtaining satisfying accuracies. Therefore we suggest a
study of the number of pixels per object instance compared to the obtained
accuracies, to see if we can find a meaningful and scalable relation. In the
case of a walking cane, we are convinced that by simply increasing the video
resolution, where the cane at least covers 10-15 pixels in its smallest dimension,
we could easily detect walking canes with our used approach so far.

In our dissertation, we built a specific object detection model in relation to
the application. One thing that we did not investigate is the difficulties of
training an object model that generalizes better within a set of similar cases.
For example with the walking aid detector, building a more generic walker
model that allows detecting multiple walker types by just one generic object
class model, could certainly open up new solutions. Of course, in this case, we
would need more training data and probably the limitation of a short training
time should then be discarded.

One thing we never really found the time for during this PhD was a deep study
of the parameters of our boosted cascades and deep learning algorithms, to
further fine-tune our obtained results. The tremendous amount of parameters
that can be selected (e.g the complexity of the weak classifiers, the number of
feature channels, . . . ) allow for further investigation trying to identify key parts
of the algorithms that could use improvements.

Since we only spent around six months on deep learning, we reckon this is the
first place to continue our quest for the optimal solution. First of all, we should
investigate why some of our deep learned object detection models yield only
moderate average precisions, while others seem to sky-rocket. Localizing the
exact reasons for this could give us a better insight at where to improve these
object detection pipelines. We can only guess towards the actual reasons, but
we are convinced that one of the issues could well be the sampling of the video
material, which in several cases contains huge amounts of motion blur (e.g. the
eye-tracker experiments in chapter 6).
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Better capturing hardware could be a possible solution here, or replacing the
validation data with only clear non-blurred data, removing the actual motion
blurred evaluation frames. We reckon our current models will never detect
motion blurred objects probably since we never used them as actual training
data. Adding them to the training data set might improve the generalization
capabilities of the deep-learned models.

A challenge in deep learning still lies in expanding the multi-class models. For
now, our model still needs an overnight training step. For most applications
this is feasible, but there are still applications where this is too long. We should
thus investigate how we can optimally expand existing models with an extra
class, at a minimal processing cost. This research field is called incremental
learning and already has several application domains, like object detection in
video sequences, as described by Kuznetsova et al. [56].

Finally, quite lately in our research, we discovered that data augmentation
can actually worsen the performance of the detection model if it applies
transformations that generate training samples that break our scene- and
application-specific conditions. E.g. when you are integrating a specific
colour-based filtering like suggested in section 4.1, we do not want our data
augmentation to apply colour-based transformations, as suggested in section
6.1.3, because that would actually break our application-based constraint.
We, therefore, suggest carefully evaluating each technique for performing data
augmentation and consider if these augmentations actually make sense for any
specific application.

We acknowledge that the holy grail for object detection in industrial applications
would be a one-shot-learning approach, as suggested by Fei-Fei et al. [30]. This
would allow us to quickly build several robust solutions for industrial applications.
However reported accuracies on these techniques are, for now, still quite low
and thus still not usable in our specific contexts. Also taking a look at object
discovery approaches like the technique proposed by Abbeloos et al. in [3] could
be a logical next step in this research.



Chapter 9

Valorisation

In this chapter, we focus on the industrial valorisation of this dissertation. Since
the research is performed at EAVISE, a research group that tries to close the
gap between academics and the industry, much of the research was directly
returned as valuable content for the cooperating companies. This means that
the valorisation of the research discussed in this dissertation is happening right
now. Most of the developed software is demand-driven, starting from an actual
issue within an industrial application, that we then tackle using computer vision
and artificial intelligence algorithms.

We discuss several applications that are inspired by the performed doctoral
research, as discussed in previous chapters, and which made it to actual
implemented industrial realisations. Aside from the successful technology
transfers from academics to the industry (which basically happened for each
publication and thus each specific problem we solved), we also touch upon the
small consultancy projects in computer vision and machine learning, which
are related to the PhD research work done. These are most of the time small
side-projects, assigned by our supervisor and based on the capacities of the
PhD student, directly using the obtained experience and knowledge from the
doctoral research, to quickly turn small issues into solved problems.

Finally, we organised several workshops and symposia to share the gained
knowledge among industrial and academic partners and provided several publicly
available datasets, in order to allow other researchers and industrial partners to
reproduce the achieved results and mimic them on their own data.
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Figure 9.1: Phaleonopsis sorting and grading system by Aris BV.

9.1 Implemented industrial realisations

9.1.1 Automated orchid detection and classification system

In chapter 3, section 3.1, we discuss how we developed a fully automated
pipeline for orchid detection and classification into rough texture-based classes.
Combined with an analysis of the colour histogram of the flower, this provided
enough information to create a fully automated species classification pipeline.
This research, performed for Aris BV, was further developed inside the
company and integrated into their automated orchid analysis and sorting system.
Furthermore, the system is since then actively deployed on several locations in
The Netherlands, as seen in Figure 9.1.

9.1.2 Strawberry picking robot

In chapter 4, section 4.1, we discuss an effective computer vision pipeline for
detecting and classifying ripe strawberries. The developed software and the used
approaches for cluster separation were combined with approaches developed by
other research institutes, in order to obtain a full robotic strawberry picking

Figure 9.2: Strawberry picking robot by Octinion (version 2017).
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robot, as seen in Figure 9.2. This robot is still under heavy development, but a
first prototype was introduced to the public in 2016. This robot allows farmers
to guarantee production, using robots to harvest strawberries during the night
and use manual labour to retrieve the remaining strawberries during the day.
This will optimize cost and production and help to cope with the issue of finding
personnel.

In September 2017, the first complete version of the strawberry picking robot
was presented at the International Strawberry Congress in Antwerpen (Belgium),
organized by Hoogstraten, a co-operative company that offers healthy, safe and
sustainably produced food.

9.2 Consultancy projects

9.2.1 KNFB Reader: helping blind people read

Together with Sensotec, a Belgian company developing hardware, software
and applications for the (nearly-)blind and people with reading disorders, we
worked on an application called the KNFB Reader. This application allows
(nearly-)blind people to point their mobile phones towards a piece of text, which
is automatically located and parsed with an optical character recognition (OCR)
interface, speaking the text out loud. This helps disabled people to interact
better with their surroundings.

Several computer vision related sub-tasks were performed during this
consultancy:

1. I developed an algorithm that localizes and classifies (does the page contain
actual printed content) printed pages.

2. I generated software that automatically takes a picture from the moment
no movement is detected, which can be used in combination with a
cardboard scanning device stand, for scanning multiple pages.

3. I developed software for defining page orientation and correction.

4. I developed software for efficient text segmentation and de-skewing using
the stroke width transform approach.

The application has won several prices and multiple Golden Apple awards. It
is available for iOS, Android and Windows10. It has been downloaded over
100.000 times so far aiding visually impaired people all over the world.
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9.2.2 Optidrive: automation through computer vision

For a Belgian robotics company, Optidrive, we developed several proof-of-
concept software solutions for robotics and computer vision related problems
they wanted to see solved.

1. I developed an algorithm that does a surface analysis of large marked stone
panels, in order to guide a sanding robot towards the correct location.

2. I developed a pipeline for concrete drilling core analysis, looking for an
automated way of separating and classifying the actual layers.

3. I developed a highly accurate doughnut localization algorithm, needed for
robotic arm positioning on plastic plates before processing them.

The core idea of this consultancy task was trying to maintain real-time
performance in combination with sub-millimetre accuracy in the localization
process. Besides doing the algorithm development, we also looked into usable
camera hardware.

9.2.3 OneUp: automatic ticket analysis

For a small Belgian start-up company, OneUp, we did some OpenCV based
computer vision consultancy. The task existed of robustly localizing, and
analysing tickets from a variety of consumer shops, using a mobile phone
application, while coping with challenging scene- and application-specific
conditions like different orientations, sizes, illuminations, . . .

9.3 Workshops and symposia

In order to optimally spread the developed research output, I organized several
hands-on workshops and symposia, where I tried to disperse my experience
towards industrial partners. At each event, industrial partners were allowed to
bring their own specific computer vision related problems to discuss possible
solutions.
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9.3.1 Hands-on workshops for industrial object detection

In the context of the IWT-TETRA project TOBCAT Industrial applications
of object categorization, I organized a workshop on object detection techniques
using the OpenCV embedded Viola and Jones framework for generic industrial
object detection. Three workshops were organized during the period of February
and March 2014, in order to make industrial partners aware of the possibilities
of object detection techniques. The workshops, accompanying place to 40
participants, were a perfect place for bringing theory and practical examples
together forming concrete solutions for industrial related problems.

9.3.2 First edition of the AAA Vision symposium

The first edition of the Symposium on industrial Applications of Advanced
computer vision Algorithms, organized in September 2014, was the closing
symposium of the IWT TETRA project TOBCAT discussing the project end-
results in detail. The symposium, with 150 participants, was combined with a
computer vision based demo fair containing more than 25 vision based demo set-
ups, from both academic and industrial partners. More info on this symposium
can be found at http://www.eavise.be/AAAVision/.

9.3.3 Deep learning workshop

When focussing the final months of our doctoral research on deep learning,
we discovered that several industrial partners showed great interest in the
possibilities of deep learning. Therefore I organized an introductory workshop
on deep learning, covering the general principles of deep learning and the
possible applications, especially related to the field of my research, being object
detection. The four-hour-long workshop was requested by Aris BV, a company
from the Netherlands, and was held for 25 participants in May 2017.

Figure 9.3: Logo of the first edition of the AAA Vision Symposium.

http://www.eavise.be/AAAVision/
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9.4 Public datasets

During the PhD research, several datasets were collected, annotated and made
publicly available in order to allow people to reproduce our obtained results.
Below you can find an overview of those datasets.

• EAVISE Mobile Mapping Dataset

– The EAVISE Mobile Mapping Dataset consists of two annotated
mobile mapping datasets, existing of mobile mapping cycloramic
images, captured using a LadyBug 1 and LadyBug 2 camera set-
up. The first set is captured in a quiet and calm urban area in the
Netherlands and contains 450 images under daylight conditions with
a resolution of 4.800× 2.400 pixels. The second dataset is captured
in a train and bus station area in Belgium and contains 45 images
with a resolution of 8.000× 4.000 pixels.

– Found at: http://eavise.be/MobileMappingDataset/

• EAVISE Solar Panel Dataset

– The EAVISE Solar Panel Dataset contains 2.500 solar panel
annotations and a larger image 16000x16000 aerial image with solar
panels blacked out, containing the 150.000 negatives random samples
collected for model training. We provide a test image of a single
2 × 2km urban area (Sint-Truiden, Belgium) with a resolution of
25cm/pixel combined with solar panel installation annotations. The
image has an original resolution of 8000× 8000 pixels but was up-
scaled using bi-cubic interpolation to a resolution of 16.000× 16.000
pixels to provide enough pixel information per individual solar panel
(19× 14 pixels).

– Found at: http://www.eavise.be/SolarPanelDataset/

• EAVISE Open Source Face Detection Dataset

– EAVISE Open Source Face Detection Dataset consists of several items
that were used to generate the improved frontal face detection model
using LBP features and AdaBoost for OpenCV3.2. It contains the
annotation of the FDDB dataset, converted to the correct OpenCV
format. Furthermore, it contains the final trained model which is
included in OpenCV3.2.

– Found at: http://www.eavise.be/OpenSourceFaceDetection/

http://eavise.be/MobileMappingDataset/
http://www.eavise.be/SolarPanelDataset/
http://www.eavise.be/OpenSourceFaceDetection/
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