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with Ĺıam and Mathijs. Professor vanden Broucke, Seppe1, an office mate

1the main inspiration for my using the word ‘plethora’2
2and the only person who would ever consider using a footnote inside a footnote

v



vi

for one year and a big influence during my PhD, I also cherish fond memories
of working and general roaming around together during the past three years.
To me, you seem to embody the role model of a researcher: a sharp, fast,
and knowledgeable mind, supplemented by a decent portion of humor and
self-reflection. I also cannot get past the tremendous input and friendship
I received from professor De Weerdt, Jochen, who has been such a great
supporter and advisor. You helped me get my head around the business
process literature and introduced me to the community, and in the end
wound up in an area which was not familiar to you. This, however, did not
prevent you from investing a lot of time in my endeavors nonetheless, which
has allowed me to perform research of at least decent quality. I am sure that
many more students will be able to benefit from this gracious attitude in the
future.

Furthermore, I would like to express my gratitude to the other faculty
of LIRIS. Professor Baesens, Bart, a true pizza connoisseur (although this
applies to anyone at LIRIS), for providing some vital tips on performing
research. I enjoyed working with you on the Master’s thesis projects and
sharing many administrative frustrations, and I cannot thank you enough
for tipping me off on the position in Edinburgh which I will take up next
year. Professor Snoeck, Monique, for providing a strong feminine spirit to
LIRIS, for the numerous intense discussions on the wonderful experience that
is teaching BIS, for helping me out with (Petri net) languages, and for being
a kind person in general. Professor Put, Ferdi, for always being interested
in a chat on the newest developments in hardware and software, and for
teaching the most interesting Information Systems Engineering courses.

Finally, I am also grateful for the support of the external committee
members. My co-promoter, professor Poels, Geert, you provided invaluable
feedback throughout my PhD which often surpassed my general understand-
ing of the topic and helped me position and elaborate my work on a higher
level. Professor Mendling, Jan, thank you for providing me with the most
insightful and comprehensive comments to my work. Your knowledge of the
business process field is remarkable, and shows what a great scholar you are.
I also very much enjoyed my time in Vienna, where you lead a very hos-
pitable group of incredible researchers, Claudio, Andreas, Jonas, Cristina,
Monika, Johannes, Saimir, Giray, and many others, who all helped to make
my stay unforgettable. Professor Reijers, Hajo, who boasts the same busi-
ness process skills as professor Mendling, I would like to thank for your input
during the later stages of my PhD. Your recommendations helped making
the scope of this document more profound.



ACKNOWLEDGMENTS vii

The LIRIS family has seen many changes in lineup and, while I was the
only one who started in 2013, knew an enormous surge in the number of
PhD researchers as of 2014. Therefore I split my acknowledgments in two
parts: pre-, and post-boom. The wonderful people of the pre-boom period
comprise of a collection of persons that set me on my way and introduced me
to the general practices of performing research. First of all my colleague as a
Bachelor and Master student Information Systems Engineering, Véronique,
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Management Summary

The challenging task of managing business processes has become an even
more complex endeavor as companies are required to sustain flexible and ag-
ile business practices. Process management research has proposed numerous
ways of accommodating for this need for flexibility. The declarative process
modeling paradigm, with its shifts towards a constraint-based way of ap-
proaching process behavior, is a prime example. The downside of numerous
languages covered by this paradigm, however, is the complex nature of their
constraints, as well as their interactions. This thesis offers numerous solu-
tions to overcome these impediments for improved usability of declarative
process models.

In the first part, an overview is given of the current landscape of declar-
ative process modeling, extended with the formal basis for the remainder
of the text. A conversion of a common body of process constraints into a
procedural variant is provided as well.

In the second part, an approach to reveal (hidden) dependencies among
constraints in declarative process models is proposed. This contribution
allows users to better grasp the full behavior of such models, for implicit
connections are explicited and added as an extra layer of annotation on
top of the current representation. The effectiveness and usefulness of the
approach is illustrated in a user study and is also used for constructing a
complexity measure for constraint-based models.

In the third part, the comparison with the procedural process model-
ing paradigm is made. Analogies and intricacies to both approaches are
leveraged towards modeling in a mixed-paradigm fashion, as well as to-
wards achieving better automated process discovery results. The findings
are further extended by an approach for checking mixed-paradigm mod-
els for inconsistencies, and a conformance checking approach for assessing
mixed-paradigm mining results.

Finally, the last part provides an outlook for future work.
All examples are elaborated in the Declare framework, which provides a

widely-supported language and body of tools.
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CHAPTER 1

Introduction

“It isn’t necessary to imagine the world
ending in fire or ice – there are two other
possibilities: one is paperwork, and the other
is nostalgia.”

— Frank Zappa

Companies and governmental institutions nowadays face challenging
times that require them to perform in a fast-paced and quickly develop-
ing environment which puts a strong emphasis on technology. The market
is more volatile than twenty years ago and the agility to cope with this
change has become a paramount cornerstone for the modern organization.
Meanwhile, many aspects of information systems (ISs) have advanced to ac-
commodate this shift by offering new architectural approaches, better data
handling and analysis techniques, and so on. A key part of the modern IS
is the business process that drives all the actions, both on a higher level
as well as on a more operational level to capture the dynamic aspects that
are tied to executing business practices in a structured, controlled, and doc-
umented manner. Throughout the years, research has adopted its efforts
towards business process management accordingly, which has led to a shift
to approaches that put flexibility in the center of attention. This shift has
been made in numerous ways, either by extending traditional approaches or
by introducing new modeling languages. This thesis performs an in-depth
analysis of one of the most prevalent solutions towards introducing flexibil-
ity, namely declarative process modeling. It has been recognized as a true
paradigm shift with the earlier procedural modeling approach.

In this work, a comparison of both paradigms is made in various ways
and the synergies that arise when using a mixed approach are uncovered.

3
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Furthermore, a more in-depth analysis of some of the features of declarative
process models are studied. First, however, this chapter provides a review
of the most important concepts used in this work.

1.1 Business Process Management

This section introduces the basic definitions and concepts that are prevalent
in Business Process Management.

1.1.1 Definitions

The area of Business Process Management (BPM) has seen a vast surge in
research attention over the last two decades. For a comprehensive overview
of its purposes and definitions, as well as its history, the survey in [155]
is highly recommended. A widely used definition of a business process is
adopted from [179]:

“A business process consists of a set of activities that are per-
formed in coordination in an organizational and technical envi-
ronment. These activities jointly realize a business goal. Each
business process is enacted by a single organization, but it may
interact with business processes performed by other organiza-
tions.”

which is very similar to the one of [44]:

“An entire chain of events, activities, and decisions that ulti-
mately add value to the organization and its customers.”

Clearly, the key components of a process are the activities and their instanti-
ations called events, the organizations in which the activities are performed,
and the decisions which are supported.

The definition of a business process clears the road towards defining busi-
ness process management [179]:

“Business process management includes concepts, methods, and
techniques to support the design, administration, configuration,
enactment, and analysis of business processes.”

BPM encompasses everything and everyone that surround the business pro-
cess from its conception, all the way through the implementation, execution,
refinement, monitoring, and so on.
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1.1.2 BPM lifecycle

To enable a structured approach of dealing with a process, the BPM lifecycle
is often used to frame the efforts towards achieving a successful process
management system [44]. The lifecycle can be depicted as in Figure 1.1. It

Figure 1.1: The BPM lifecycle as interpreted in [44].

consists of six stages with each corresponding to a different stage of maturity.
First of all, process identification consists of the primordial task of finding

the scope of the business process, i.e., where the process fits in the overall
information system and how it is connected with other processes, hence fo-
cusing on the architectural viewpoint. When the process is situated, the
actual specification can take place in the process discovery phase. The ac-
tivities that need to be performed are delineated and a control flow, the
ordering of activities, is constructed. The stakeholders and process owners
are assigned, and relevant data that is part of the process and that is manip-
ulated by the activities are all condensed into one process model, which is
often depicted as a flowchart-like artifact. Many languages exist to express
process models, which range from the typical procedural ones such as Busi-
ness Process Model and Notation (BPMN) [114] to declarative languages
such as Declare [119]. Ideally, they are easily transferable to a BPM system,
or Process-Aware Information system (PAIS) which serves as an execution
environment later in the process implementation phase. The model is either
constructed through observing the current process, the automated discovery
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of the current process management system, or from scratch. It serves as a
tool to discuss and prepare the next steps, which are process analysis and
process redesign. The former takes the AS-IS process and finds ways to opti-
mize it. This can include measuring the efficiency in terms of turnover time,
the amount of flexibility, the complexity, and so on. All these dimensions can
be improved upon in the redesign phase by reducing waiting times, increas-
ing flexibility, downsizing the process, or redefining roles to perform certain
activities. Once the process is deemed fit for use, it can be implemented
and executed. This real-life instantiation introduces the possibility to start
tracking and monitoring the process, which results in the last stage before
closing the loop, namely process monitoring and controlling. Its purpose is
to track all activities, actors, and process key performance indicators and
indicates whether disruptions are present in the system. This delivers ac-
tionable data for stakeholders which can be used to traverse the whole loop
and adjust the as-is process accordingly, update the analysis, and eventually
invoke re-engineering and implementation.

While every phase of the lifecycle is indispensable to obtain process man-
agement of a high quality, this thesis will focus on two phases in particular,
i.e., process discovery and implementation. First of all, process discovery is
a cornerstone of the thesis, as a strong emphasis is put on the modeling and
understanding of declarative and mixed-paradigm processes, as well as the
discovery of models from historic event data. The latter can also be consid-
ered as a part of process analysis and redesign, however, in the context of
this work it resides close to the languages and constructs of models used for
representing a process. Second of all, process implementation in the form of
executable process models is present, especially in the context of executable
declarative and mixed-paradigm models. Hence, the majority of the lifecy-
cle phases are covered or at least touched upon in some way, except for the
identification phase. Since the discovery phase is situated on a higher, archi-
tectural level, there is often no real need for models that adhere to a certain
paradigm. There is less focus on the expliciting of processes, but rather on
the holistic view. In some respect, this thesis will also reflect upon the ideas
of combining processes that are modeled according to different paradigms,
however, this is considered to be rather a challenge for the process discovery
phase.

1.2 Procedural and Declarative Process Dis-
covery

In this section, a brief overview of procedural and declarative process dis-
covery is introduced. First, the act of manually constructing a model is
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reviewed. Next, the task of the automated discovery of a process model
with mining techniques is introduced. Both form an important building
block for positioning the subjects dealt with in this thesis.

1.2.1 Process Modeling

To guide the reader in understanding the basic concepts of business process
modeling, an example of a simple process model is given in the BPMN no-
tation. Consider Figure 1.2. A simple paper writing process is depicted.
It contains some of the major elements of a business process, i.e., activi-
ties (depicted as rounded rectangles), actors and organizations (depicted as
rectangular pools and lanes), and routing elements (depicted as arcs and
diamond-shaped connectors).

In this process, a researcher writes a paper and sends the end product
to a conference. A message flow is used to represent the fact that a pa-
per is sent to the program committee of the conference. After reviewing
the paper, the committee sends a notification regarding the successfulness
of the submission. This is processed by the researcher, after which she/he
acts accordingly. Either the paper is rejected and she/he asks the promoting
professor for another project, or the paper is accepted, which leaves the re-
searcher preparing the final version and (hopefully) spending a lot of money
on flight tickets, conference registration fees, and hotels. After these actions,
the process ends. Notice that there exist many more aspects and accompa-
nying symbols that are not used here. For example, exceptions and timers
can be introduced to capture that the researcher employs a backup plan in
case the notification is not received timely.

Notice that there is a strong emphasis on the control flow aspect of the
process, i.e., the arcs and connectors take up a central role in modeling and
understanding the process. The declarative way of modeling a process is dif-
ferent in this regard. In analogy with declarative (logic) programming [80],
the declarative process modeling paradigm aims at specifying the relation-
ships between activities without envisioning an underlying control flow. Ac-
cording to [119], the focus is shifted from how a process should be performed,
to what should be performed. In Chapter 2, a more in-depth overview of
what a typical declarative process model constitutes is given. For now, a
slimmed-down variation of the paper writing process is given to establish an
intuition. Consider the declarative process model in Figure 1.3. It is modeled
in Declare [118], one of the most widely used declarative process modeling
languages, at least in terms of citations. Rather than fixing the order in
which the activities have to be performed, it applies a constraint-based ap-
proach. There are five activities, which are linked through constraints that
each have a different impact on when and how they can be executed, but not
every constraint is aimed at defining a sequence relationship. The intersec-
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Figure 1.2: A simple business process representing the writing of a paper in stan-
dard BPMN notation.

tion of all the implications that the rules impose on the activities then forms
the behavior that is allowed for by the model. First, sending a paper to a

response chain
response

exclusive
choicealternate

precedence

alternate
precedenceSend Paper to

Conference

init

Ask for
Other Project

Prepare
Camera-ready

Give Credit
Card

Receive
Notification

Figure 1.3: A simple business process representing the writing of a paper in stan-
dard Declare notation.

conference is required. Afterwards, the notification can be received, but also
a new paper can be sent to the conference. The response constraint implies
that a paper can be sent all the time, and notifications can be received, but
in the end, there needs to be at least one notification before the process ends
and after the last occurrence of the sending of a paper. This means that
there is very little structure in the way these two activities can occur, hence
it is very hard to capture this in a procedural workflow. The same holds for
the activity Give Credit Card. The credit card can only be given right after
the preparation of a camera-ready paper. While this sounds rather proce-
dural, consider that in the case of concurrency and active parallel branches
in a procedural model, it is hard to clearly indicate this without some extra
symbolism or even duplication of the pair of activities throughout the con-
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trol flow. The rest of the description and semantics of the constraints can be
found in Chapter 3. The exact behavior is not further explained, however,
as this model also serves as an interesting example to be tested with the
execution environment introduced in Chapter 4. The constraint-based ap-
proach also inherently offers the possibility to monitor the constraints during
execution and check for violations. In general, more flexibility in terms of
execution order is available, which shifts the decision of what the next step to
execute is towards the user. This is particularly interesting in environments
where it is necessary to leave many options open for execution, or where
the user actually better knows how the process needs to be executed in, for
example, very knowledge-intensive processes such as medical examinations.

Nevertheless, every approach has its merits. It would perhaps not be very
interesting to model a simple, straightforward model such as the writing of
a paper with Declare. The difference between when and how each paradigm
can excel is one of the main topics in this thesis.

1.2.2 Automated Process Discovery

When processes are implemented in an information system, they leave a trail
of executions, called traces. They contain the enactment of activities in the
form of events. In Table 1.1, an example of a possible implementation of the
paper writing process is shown. The log contains three different straight-

case id time event resource attributes
1 05/07/’15 15:20 Send Paper to Conference Johannes 5pages
1 05/07/’15 15:38 Send Paper to Conference Johannes 5pages
1 15/10/’15 15:21 Receive Notification Johannes accept
1 13/12/’15 16:45 Prepare Camera-Ready Johannes 14pages
2 18/09/’15 14:01 Send Paper to Conference Estefańıa 13pages
2 31/12/’15 14:58 Receive Notification Estefańıa accept
2 21/02/’16 15:02 Ask for Other Project Estefańıa 2years
3 23/03/’16 09:43 Send Paper to Conference Jasmien 29pages
3 05/04/’16 23:19 Give Credit Card Jan 1.300euro

Table 1.1: An overview of a simple event log, which might have resulted from the
paper writing process.

forward executions of activities bundled by the case ids and pertaining to
the writing of one or more papers by multiple researchers. The log also
contains other information, depending on which activity is executed, such
as the number of pages, the outcome of the notification, and the amount of
money received. The field of process mining [152] deals with the automated
retrieval of process models from such event logs. There exist many types of
algorithms for this purpose, which can also be tailored towards discovering
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procedural or declarative models. Procedural approaches typically retrieve
a holistic process model that describes the full behavior of the log, although
fragmented approaches exist as well. On the other hand, declarative ap-
proaches often test all the entries in the set of constraints over all possible
combinations of activities to verify whether they hold over the behavior ob-
served in the event log. In the example log, it is not possible to retrieve the
model from Figure 1.2, as multiple papers are sent in case 1. The declarative
model, however, will aptly rediscover the behavior, but might also include a
lot of constraints that are not informative as no counter evidence is found.
Each paradigm has its drawbacks in this respect, which will be investigated
in the thesis.

Next to discovering models from data, process mining also investigates
the act of reconstructing the execution log over a process model. This is
called conformance checking [133, 169]. Many techniques exist for this pur-
pose and are available for both paradigms. They are useful in order to check
whether there were violations in the implemented system that were, e.g.,
not anticipated by the reference as-is model. Correspondingly, companies
can act upon these insights in order to re-engineer the process according to
unsupported behavior, or underperforming parts in a model. Consider for
example case 3 over the model in Figure 1.3. Clearly, after executing the
trace, the response constraint is not fulfilled, as no notification was received.
This can be due to bad monitoring, exceptions, or manual overriding of the
process.

1.3 Methodology and Research Questions

This thesis situates itself on the verge between Information Systems and
Computer Science research. On the one hand, formal definitions and tech-
niques for modeling checking, machine learning, etc. are used towards busi-
ness purposes such as process modeling. Research in general requires the
researcher to perform some elementary activities, including generating new
ideas and new practices which should also support enterprises in their gen-
erating new products, or new business [41].

This thesis makes use of the design science research paradigm applied
to an information systems context research [70]. Design science differs from
the typical natural sciences in the fact that there is an emphasis on creat-
ing things, typically called artefacts, rather than on describing (reality) [99].
There exist 4 such artifacts, i.e., constructs, models, methods, and instanti-
ations. Constructs provide vocabulary and symbols, e.g., the set of symbols
used in BPMN, models provide abstractions and representations, e.g., a busi-
ness process model uses these constructs to give a holistic overview of tasks
performed in an organization, methods provide algorithms and abstractions,
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e.g., the BPM lifecycle offers a structured way to deal with processes in en-
terprises, and instantiations provide implementations and prototypes, e.g.,
a BPMN model is implemented in an information system.

This thesis adheres to this framework by offering new methods to combine
business process modeling constructs, an approach to analyze declarative
process models, and new algorithms for automated discovery and verifica-
tion. Design science was later presented as a three cycle approach [69] that
connects the research to its environment and the current knowledge base,
as depicted in Figure 1.4. The purpose of this is to ensure that research is
indeed performed in answer to actual problems that exist in the application
domains which is reflected by the relevance cycle, though grounded in the
current body of existing work. The research performed in this thesis ad-
dresses the need that exists in organizations for solid approaches in Process-
Aware Information Systems (PAIS) that support flexibility and agility. It
was observed from the body of literature that the declarative process mod-
eling paradigm has been one of the primordial approaches to address this
need, however, there are some impediments regarding understandability and
scope. Hence, it was first studied how they relate to currently existing and
successful procedural techniques, and in a second and third iteration the
issues with understandability were studied and later reevaluated with users.
The different iterations are reflected in the different parts that exist in the
thesis and have all been published in scientific outlets to add to the current
body of knowledge.

Throughout the different design science cycles, the following research
questions were answered:

I How can declarative process models be improved in order to raise their
usefulness and applicability?

i How can declarative process models be made more understand-
able?

ii How can we provide better analysis and learning techniques for
declarative process models?

II How do declarative and procedural process models relate to each other,
and how can they be leveraged towards better process modeling and
mining techniques?
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1.4 Outline and Contributions

An overview of the structure of this dissertation can be found in Figure
1.5. The rest of this thesis is structured as follows. In the rest of Part
I, “The Current Landscape of Declarative Process Modeling”, two chapters
will introduce extra insights into declarative process modeling. First of all,
the existing declarative process modeling paradigm literature is positioned
along the different phases of the BPM lifecycle in Chapter 2. This exercise
gives an idea of how this approach has matured over the years, and which
challenges exist. Finally, it also frames the problems that are solved in this
thesis.

To avoid notational issues and to ensure consistency, the main concepts
regarding process models and their semantics are elaborated in Chapter 3.
Also, it offers a full conversion of Declare into R/I-net constructs [174]. This
has been published as a technical report in:

– Johannes De Smedt, Seppe K. L. M. vanden Broucke, Jochen De
Weerdt, and Jan Vanthienen. A full R/I-net construct lexicon
for declare constraints. Technical report, KU Leuven, 2015.

Part II, “Towards A Better Understanding of Declarative Process Mod-
eling”, deals with the work on understanding the interplay of constraint in
constraint-based declarative process models. In Chapter 4, the approach to
retrieve the connections that exist between constraints is elaborated on.

In Chapter 5, the applications that are made possible by uncovering de-
pendencies between constraints are presented. They include a user-study
that reports on the increased understandability of the models when anno-
tated with extra information regarding the constraints, the construction of a
suitable complexity measure for constraint-based process models, the gam-
ification of declarative models, the refactoring of such models, and the im-
plications for semantics. The work has been published in:

– Johannes De Smedt, Jochen De Weerdt, Estefańıa Serral, and Jan
Vanthienen. Gamification of declarative process models for
learning and model verification. In Business Process Manage-
ment Workshops - BPM 2015, 13th International Workshops, Inns-
bruck, Austria, August 31 - September 3, 2015, Revised Papers, pages
432–443, 2015.

– Johannes De Smedt, Jochen De Weerdt, Estefańıa Serral, and Jan Van-
thienen. Improving understandability of declarative process
models by revealing hidden dependencies. In Advanced Infor-
mation Systems Engineering - 28th International Conference, CAiSE
2016, Ljubljana, Slovenia, June 13-17, 2016. Proceedings, pages 83–98,
2016.
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– Johannes De Smedt, Jochen De Weerdt, Estefańıa Serral, and Jan Van-
thienen. Discovering hidden dependencies in constraint-based
declarative process models for improving understandability.
Inf. Syst. In submission.

In Part III, “Modeling and Enacting Mixed-Paradigm Process Models”,
the connection with the procedural process paradigm is established in three
chapters. First, in Chapter 6 the comparison and construction of mixed-
paradigm modeling is investigated. This yields insights in the similarity of
modeling constructs, as well as insights into which characteristics are the
most desirable in each paradigm. Next, an automated discovery approach is
presented in Chapter 7. It leverages the best of both paradigms towards a
better process mining technique. Finally, Chapter 8 illustrates how mixed-
paradigm models can be checked and used towards a smart discovery ap-
proach. The findings have been published in the following works:

– Johannes De Smedt, Jochen De Weerdt, Jan Vanthienen, and
Geert Poels. Mixed-paradigm process modeling with inter-
twined state spaces. Business & Information Systems Engineering,
58(1):19–29, 2016.

– Johannes De Smedt, Jochen De Weerdt, and Jan Vanthienen. Multi-
paradigm process mining: Retrieving better models by com-
bining rules and sequences. In OTM Conferences, volume 8841 of
Lecture Notes in Computer Science, pages 446–453. Springer, 2014.

– Johannes De Smedt, Jochen De Weerdt, and Jan Vanthienen. Fusion
miner: Process discovery for mixed-paradigm models. Deci-
sion Support Systems, 77:123–136, 2015.

– Johannes De Smedt, Claudio Di Ciccio, Jan Vanthienen, and Jan
Mendling. Model checking of mixed-paradigm process models
in a discovery context. In Business Process Management Work-
shops, Lecture Notes in Business Information Processing. Springer,
2016.

In the last part, the Epilogue, Chapter 9 summarizes the main conclu-
sions that can be drawn from this work and provides a quick glance at
possible future work.

Besides these works, the PhD project has yielded the following works as
well:

On Context-Aware Petri nets:

– Estefańıa Serral, Johannes De Smedt, and Jan Vanthienen. Making
business environments smarter: A context-adaptive Petri net
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approach. In UIC/ATC/ScalCom, pages 343–348. IEEE Computer
Society, 2014.

– Estefańıa Serral, Johannes De Smedt, and Jan Vanthienen. Extend-
ing CPN tools with ontologies to support the management of
context-adaptive business processes. In Business Process Man-
agement Workshops, volume 202 of Lecture Notes in Business Infor-
mation Processing, pages 198–209. Springer, 2014.

– Estefańıa Serral, Johannes De Smedt, Monique Snoeck, and Jan Van-
thienen. Context-adaptive Petri nets: Supporting adaptation
for the execution context. Expert Syst. Appl., 42(23):9307–9317,
2015.

On decision modeling and mining:
– Johannes De Smedt, Seppe K. L. M. vanden Broucke, Josue Obregon,

Aekyung Kim, Jae-Yoon Jung, and Jan Vanthienen. Decision min-
ing in a broader context: an overview of the current landscape
and future directions. In Business Process Management Workshops,
Lecture Notes in Business Information Processing. Springer, 2016.

– Laurent Janssens, Johannes De Smedt, and Jan Vanthienen. Mod-
eling and enacting enterprise decisions. In CAiSE Workshops,
volume 249 of Lecture Notes in Business Information Processing, pages
169–180. Springer, 2016.

– Laurent Janssens, Ekaterina Bazhenova, Johannes De Smedt, Jan Van-
thienen, and Marc Denecker. Consistent integration of decision
(DMN) and process (BPMN) models. In CAiSE Forum, volume
1612 of CEUR Workshop Proceedings, pages 121–128. CEUR-WS.org,
2016.

– Jan Vanthienen, Caron, Filip, and Johannes De Smedt. Business
rules, decisions and processes: five reflections upon living
apart together. In Proceedings SIGBPS Workshop on Business Pro-
cesses and Services (BPS’13), pages 76–81, 2013.

On learning analytics:
– Seppe K. L. M. vanden Broucke, Jan Vanthienen, and Johannes De

Smedt. Student journey mapping: Learning analytics in ac-
tion. In Data Analytics Applications in Education, 2015.

– Johannes De Smedt, Seppe K. L. M. vanden Broucke, and Jan Van-
thienen. Data Analytics Applications in Education, chapter Im-
proved Student Feedback with Process and Data Analytics.
Taylor and Francis. In submission.



CHAPTER 2

A Comprehensive Survey of
Declarative Approaches in Busi-
ness Process Management

“An original idea. That can’t be too hard.
The library must be full of them.”

— Stephen Fry

In recent years, the introduction of the Declarative Process Modeling
(DPM) paradigm has brought a new perspective to the Business Process
Management community for topics such as process modeling, execution,
monitoring, and so on. It marks a departure from modeling fixed process
sequences but rather poses different restrictions on how to execute the activ-
ities within a workflow, typically in the form of constraints. Many aspects
are hence revised, from supporting flexibility and maintenance over under-
standability, to expressiveness, and even integration with procedural models.
This chapter summarizes the current situation of declarative process models
(DPMs) in the light of the business process management lifecycle to address
how mature the field has become in the last decade. The main findings
include that, indeed, the declarative process management field has adopted
a wide range of concepts from the lifecycle while providing alternative in-
terpretations that are tailored towards its inherent properties such as the
support of flexibility.

This chapter provides an extensive overview of the relevant works and
problems that exist in DPM, and provides a backdrop for the related work of
the rest of the thesis. It connects with the basic introduction of Chapter 1 in
the sense that it elaborates the DPM paradigm along the BPM lifecycle to

17
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fill in the specifics of this paradigm and elaborates on the challenges that still
exist in a more detailed manner. The published work of the other chapters,
if relevant, is already included in the study, which was performed in March
2016. Consequently, it also constructs a link of the work in this thesis with
the research area and explains which particular problems were addressed.

2.1 Introduction

Recently, major contributors to the BPM community have analyzed the state
of the research area by reviewing the works published in the proceedings of
the influential BPM conference [125]. One of the results that followed from
the assessment, was the insight into how skewed the different contributions
were in terms of the BPM lifecycle [44]. The conclusion devised a better
coverage of the underlit phases of that lifecycle, which might greatly improve
the maturity of the field.

Over the last few years, the declarative process modeling paradigm has
seen a vast surge in terms of publications and research interest, with major
contributions only 10 years old. In this chapter, the exercise stated above is
redone with a focus on declarative process models, including all approaches
in which a declarative process model is used for the purposes listed in the
BPM lifecycle in a comprehensive literature review. Given the young age and
the rather niche topic, the magnitude of the amount of papers is still man-
ageable and can offer insights into whether the declarative process paradigm
is maturing in the same way as its parent field is.

In order to establish a full literature overview of the thesis, a digression on
mixed-paradigm models is included as well. This supports the understanding
of Part III of the dissertation.

The contribution of this chapter is to provide a comprehensive overview
and a set of actionable insights to further mature the field of declarative
process modeling, as the research area might greatly benefit from a status
report to reflect upon and to steer the direction of future contributions.

This chapter is structured as follows. First, a comprehensive state-of-
the-art of the research area is provided in Section 2.2. Next, in Section 2.3
the works are framed within the BPM lifecycle phases to get an overview
of the maturity of the field. Finally, a roadmap is discussed based on the
findings of Sections 2.2 and 2.3 in Section 2.4, followed by a conclusion and
future work in Section 2.5.
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2.2 A Comprehensive State-of-the-art of the
Declarative Process Paradigm Literature

One of the first works that explicitly mentions to pursue a declarative ap-
proach for workflows, was Freeflow [43], a framework that incorporated
constraint-based process modeling and declarative dependency relationships
between activities. The first works, however, that mention the term ‘declar-
ative process model’ are [118] and [55]. From then on, they became the
standards to which nearly all other papers referred to, next to [156]. Be-
sides, in many works Declare often became synonymous with declarative
process models altogether. These early works, however, based themselves
on ideas and works on flexible workflows such as the approach of Sadiq et
al. [135], ADEPT [126], and the case handling paradigm [159], where a tra-
ditional workflow is revised to incorporate more flexibility in the sense that
less of the process is defined in the model, but rather remains underspeci-
fied to support different execution scenarios at runtime in order to achieve
adaptability.

The aim of this section is to construct a comprehensive overview of works
that relate directly to declarative process models and as such explicitly claim
to offer a framework which includes a complete idea for modeling, or a lan-
guage that is tailored specifically towards executing in an underspecified
fashion and for which this approach is either proposed, altered, extended,
applied, and so on. All of this should be defined in a context of business
processes and BPM, hence, works on the declarative scheduling of abstract
sequences of events or non-process-oriented goals (such as the scheduling
of, e.g., processor or computation steps, a common problem in declarative
modeling) were not included.

Besides [59], the authors are not aware of any other comprehensive study
of the declarative process modeling field. This work also has become some-
what obsolete, as the latest works included date back to 2012. Furthermore,
it focuses not strictly on capturing all works that use declarative process
models, but rather gives an overview of the approaches that are capable of
incorporating flexibility into a process’ workflow.

2.2.1 Methodology

The literature review is started from searching in three popular academic ref-
erence database systems, i.e., Scopus1, Google Scholar2, and DBLP3. Each
of these search engines has its advantages and disadvantages and churn out

1http://www.scopus.com/
2http://scholar.google.com/
3http://dblp.uni-trier.de/

http://www.scopus.com/
http://scholar.google.com/
http://dblp.uni-trier.de/
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different results depending on indexation and hence outlets [51]. By com-
bining the results of these three sources and a further search within the
documents itself, a very comprehensive overview of the field of declarative
process modeling and languages is believed to have been established. The
search terms used were ‘Declarative process model’, and ‘Declarative pro-
cess’, in combination with the mentioning of ‘Business’, ‘Declarative process
mining’, and ‘Declarative process’ in combination with ‘Business Process
Management’. A manual test was performed that left out the search terms
to ensure that no works from, e.g., declarative modeling, an area within com-
puter science dedicated to modeling in logic, and other non-related works,
e.g., dealing with declarative programming, would be included in the result.
A final subset of 188 papers was produced, which was further downsized
to 169. The final list is not included in appendix, as most of the papers
can be found in the reference section of this thesis. However, a digital ver-
sion can be found at http://perswww.kuleuven.be/~u0092789/BPM2016/,
which includes the encoding and the benefit of offering easy filter capabilities.

The choice was made not to include technical reports, master, and PhD
theses, for it was assumed that the most influential parts are published in
an academic outlet. In case there were multiple entries due to a conference
proceeding that was later extended into a journal paper, the latter was in-
cluded. Finally, if there were important insights in these works, they were
included anyway to obtain a complete coverage. For the sake of brevity, in
this chapter only the most relevant works are referred to.

2.2.2 Common Definitions

In order to be able to capture the scope of the research area, it is important
to delineate the actual idea that is inherent to declarative process models.
For this purpose, the definitions from the most important works are stated
below. Many works have proposed a definition or notion for declarative
process models. The most prevalent one is the underspecification of the
control flow of activities, which can be altered either through time ordering-
or data-dependencies.

In [118] declarative process models are defined as models that specify
what should be done without specifying how it should be done, referring to
the nature of the control flow which is not fixed before run-time, in contrast
with procedural approaches that rather overspecify the control flow up front.
This is said to be an ‘outside-in’ approach, as depicted in the well-known
figure in [119].

In [71], declarative process languages are defined as languages in which
the control flow is defined implicitly rather than explicitly.

In [77] and other artifact-centric approaches, the notion of a declarative
process model reflects the unspecified execution of lifecycles of entities, which

http://perswww.kuleuven.be/~u0092789/BPM2016/
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can stem from not only temporal execution dependencies, but also data-
dependencies.

In [49, 50, 127] the comparison with procedural and declarative program-
ming languages is made in order to frame the concept, suggesting that the
difference is the shift in predefining the control flow of a process.

Finally, in [56], a framework is proposed for marking the difference be-
tween procedural and declarative approaches, which is repeated in Table 2.1.
It does not only summarize the more control flow-oriented aspects, but the
general concept of any declarative system, either activity or artifact-based.

Procedural models Declarative models
Business concerns Implicit Explicit
Rule enforcement What, when, and how What
Communication What, how What
Execution scenario Design-time Run-time
Execution mechanism State-driven Goal-driven
Model granularity Process-centric Activity-centric
Modality What must What must, ought, and can
Assumption bias Overspecified Underspecified
Alteration Design time Design and run-time
Coordinator/Worker Human-machine Agent
Coordinator/Activity Coordination 6= activity Coordination = activity
Activity lifecycle Single event Multiple lifecycle events

Table 2.1: Main difference of characteristics between procedural and declarative
process models [56].

Clearly, there is no real disagreement on the nature of what a declarative
process model is. Generally, there has not been any evolution in the way
researchers have approached the topic either. This also backs the choice of
not including any procedural works that incorporate declarative concepts
only partially, unless the goal is to find a fit between both paradigms. The
subject of mixed-nature models [184, 144] is gaining traction in literature
and hence also forms one of the subjects in the declarative process modeling
domain as explained below.

2.2.3 Bibliometrics

In this section, some key figures regarding the contributors, the number of
publications over time, and the most prevalent case studies are given.

Top Contributors

The main authors in the field are listed in Table 2.2. Comparable with the
parent domain BPM, many contributors are specialized in business process
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mining and verification, rather than process modeling. The larger half of
all papers is provided with a very formal component to express modeling
constructs and their semantics.

Author Number of works

Maggi F.M. 34
van der Aalst W.M.P. 21
Di Ciccio C. 25
Weber B. 19
Zugal S. 14
Montali M. 14
Slaats T. 13
Mendling J. 12
Pinggera J. 11
Vanthienen J. 10
HildeBrandt T.T. 10

Table 2.2: Top contributors to the research area.

Timeline

In Figure 2.1, an overview is given of the number of works published in the
area over the past decade. Clearly, the field has gained a lot of traction since
the appearance of [156, 55, 118], but now the interest level seems to have
leveled off. It even shows somewhat of a decline in the last two years. Since
many of the works originate from conference proceedings and workshops,
the scope of these outlets might have influenced this result, e.g., BPM 2013,
an important outlet for BPM research, saw a great number of works being
published on the topic of declarative process modeling.

Case Studies and Empirical Evaluation

Since many works offer a research artifact in the form of a new modeling
construct, procedure, or analysis approach, they provide synthetic examples
or real-life cases to support the claim of being useful and effective. In total,
54 works include a real-life example, 32 provide a synthetic example, and 15
works provide a user study.

For process mining, many commonly-used event logs are included for
benchmarks and evaluation, including the logs provided by the BPI workshop
series, e.g., [165]. Process modeling approaches often resort to synthetic
examples, and many of them stick to the same example to offer a clear view
on the evolution or extension that is provided.
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Figure 2.1: Overview of the number of papers published between 2006 and 2016.

Finally, there are many user studies to evaluate the user-friendliness and
understandability of, e.g., Declare [187], as well as comparisons with other
paradigms [120]. These empirical insights offer useful information on how
to improve the approaches, however, the sizes of the studies remain rela-
tively small and are performed in an academic context [143], rather than a
professional context with business users, with the exception of [127].

2.2.4 Languages, Approaches, and Frameworks

In this section, an overview of the most widely accepted declarative process
modeling frameworks, languages, approaches, etc. is given. It starts off with
the most widely-used framework in terms of citations, and ends with the less
commonly-cited ones.

Declare

Declare [119] is the most prevalent framework for modeling, executing, ana-
lyzing, and controlling declarative process models. It was initially proposed
as ConDec and DecSerFlow [118, 156], which were comprised of a set of Lin-
ear Temporal Logic (LTL)-based constraints. The framework was tailored
towards these purposes, however, it was eventually also used for process min-
ing [93], scheduling and resource management [9], and conformance checking
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[34, 35], and has been used in an extended or supplemented form as indi-
cated in Table 2.3. These forms range from extensions to incorporate data,
resource awareness, and extended support for model checking.

Declare aims at offering a generic framework for declarative process mod-
els, which does not limit itself to a type of semantics. Next to LTL, also finite
state machine representations [22, 23, 185] were used. The template base
used for the constraints is also not fixed, although it was never extended
beyond the initial set. Very few papers support the exact same subset of
the template base either, which conflicts with the target of being a general
framework. Improvements and considerations on LTL for declarative pro-
cess models were made in [180, 32]. Nevertheless, the rest of this thesis
will use Declare for it has seen a wide-spread acceptance throughout the re-
search community for various topics and numerous applications. This makes
assessing, comparing and applying the findings in this thesis more straight-
forward. A more detailed discussion on the semantics and setup of Declare
can be found in Chapter 3.

DCR graphs

DCR graphs [71, 72, 73] has a similar setup to Declare, however, the contrib-
utors claim that by offering a smaller subset of only four constraints rather
than a big constraint set as provided in Declare, the execution is based
on the direct translation of the semantics over transitions between mark-
ings of the graph, rather than on a conversion to LTL. Hence, it resembles
marking-based models such as Petri nets [113] and offers a faster translation
to executable automata. The framework has been extended to include other
aspects, such as timing information [75], hierarchy [38], concurrency [40],
and data in the form of context variables [74].

Guard-Stage-Milestone

The Guard-Stage-Milestone (GSM) approach [77, 78, 148, 30] originated
from the artifact-centric Business Entities with Lifecycles approach. It sup-
ports the lifecycle of entities by providing them execution semantics based
on Event-Condition-Action (ECA) rules [85]. While it does not aim to offer
as rich an approach as Declare or DCR graphs in terms of expressing se-
quence constraints, it does provide a more powerful way to incorporate data
into the process model as it stems from an enterprise modeling perspective.
This way, it was actually used for the foundation of the Case Management
Model and Notation (CMMN) standards’ semantic core [100].
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Other Approaches and Languages

As can be seen in Table 2.2, the works of the authors of the three previous
approaches already cover more than half of all the work in the domain. Also
Figure 2.2 indicates that the majority of works stem from Declare. Other
languages that appear in literature, including the different variants of Declare
as listed in Table 2.3, are not widespread, or do not seem to have the same
impact.

Most notably, one of the first approaches that was proposed, is PENE-
LOPE [55], a language that defines temporal deontic assignments over the
places in a Petri net to model the control flow declaratively. Later, the
authors also proposed EMBRACE, a framework for expressing business vo-
cabulary, based on Semantics of Business Vocabulary and Rules (SBVR)
[116, 57], with Colored Petri nets (CPNs) [83] providing the execution en-
gine.

Also the Declarative Process Intermediate Language (DPIL) framework
[138] has become an important approach for modeling and executing agile,
resource-aware declarative process models.

Finally, declarative specifications can also be achieved by using behav-
ioral profiles [177, 121, 122].

Mixed-paradigm Approaches

Besides efforts focusing solely on DPM, there exist many techniques on
the verge between DPM and the traditional procedural process modeling
paradigm. While the initial efforts on Declare already provide a basis for
constructing mixed models with atomic subprocesses [119] containing De-
clare and Yet Another Workflow Language (YAWL) [157], recent efforts
extend upon this concept to obtain a more general approach towards hybrid
process modeling and mining in [141, 98, 39]. The benefit of such approaches
is the possibility to use the most appropriate paradigm in a hierarchical way.
Hence, flexibility can be achieved where necessary.

Next to atomic subprocesses, the works on mixed-paradigm modeling
and mining with intertwined state spaces by using Petri nets and Declare
[184, 142, 144], and BPMN and Declare [33] rather provide an approach
for using languages of both paradigms over all activities at once to obtain
a global semantics consisting of multiple languages. The difference is that
activities move in both models at the same time, hence influencing and
requiring an update of the semantics of either paradigm throughout the
length of the execution.
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2.2.5 Limitations

Evidently, it is possible that this study is still not comprehensive, and as
stated above, tried to be as representative, rather than complete. The reader
is also encouraged to provide any works that he/she feels are missing and
could provide better or different insights into the domain of study.

2.3 Declarative Process Modeling Along the
Business Process Management Lifecycle

In this section, the maturity of the declarative process modeling area is
determined by positioning the works along the different phases of the BPM
lifecycle. Often, many of the topics are intertwined. The strength of many
DPM languages is that they combine modeling, verification, and execution
often in one language or framework because of their constraint- or rule-
based nature and formal background. Petri nets also exhibit this property
and it forms one of the main reasons for their widespread use in the realm
of concurrent systems [151]. In Figure 2.2, the number of works for every
phase and every approach is given. Clearly, there is a big bias towards
process discovery and implementation, while the other phases are relatively
untouched. This is a trend that was also observed in [125]. Every phase
is going to be reviewed for the current state, the opportunities, and future
work that might enrich the lifecycle.

2.3.1 Process Identification

Current State

The phase of process identification encompasses finding relevant processes
and their relations and churns out an appropriate architecture. This step
forms the foundation on which a process management system builds and re-
quires an in-depth study of the company’s situation. For declarative process
modeling, very few works actually try to support this phase in an elaborate
way, with the works on CMMN being the closest to providing a methodology
to perform process identification. Given the high-level and holistic nature
of this phase, the works that deal with process identification also do not
discuss paradigms as such, but rather delineate which parts of the process
architecture requires flexibility and adaptability, hence paving the way for
declarative modeling techniques to be used in the further lifecycle. In this
respect, delineating paradigms might be one of the most prevalent process
identification techniques available [119, 144].
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Figure 2.2: Overview of the number of papers published for the different languages
and phases of the BPM lifecycle.
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Opportunities and Future Work

Clearly, this phase of the lifecycle is not well-supported and can use ex-
tra attention in future research. The big question remains how declarative
process models would influence the act of setting up the architecture and
overall setup of an information system. For example, artifact-centric ap-
proaches have a wider impact than the process, while control-flow centric
approaches typically have an execution-oriented impact.

For improving the incorporation of DPM in this phase, future process
identification exercises should clearly state how paradigms can provide extra
possibilities into constructing a process architecture and a global process
outline.

2.3.2 Process Discovery/Modeling

Current State

In line with the findings of [125], most of the research focuses on the dis-
covery of process models, including modeling and mining. This holds for all
languages and approaches. Many works focus on either new extensions to
existing approaches, as indicated in Section 2.2.4, or tackling more advanced
problems in discovering process models from event logs, such as noise and
errors [24, 21] or data-aware logs [97]. Process mining, however, is almost
solely performed by Declare-related approaches [19, 93], while this compo-
nent is absent for DCR graphs and was only recently introduced for GSM
[123].

Opportunities and Future Work

Many frameworks are available for declarative process modeling, however,
the question remains in which situation each of them excel. On the one
hand, Declare and DCR graphs are focused on abstracting the control flow,
occasionally enriched with data extensions, while GSM is artifact-centric
with less attention dedicated to expressing control flow. Meanwhile, each of
the languages can theoretically be used for mining models.

A full comparison framework for declarative discovery techniques should
be established, focusing on understandability and expressiveness to assess
which techniques are better suited towards different applications and differ-
ent users.
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2.3.3 Process Analysis

Current State

Almost no works provide in-depth insights into process analysis, being the
systematic reviewing of a process according to well-defined performance mea-
sures. A notable exception is [100], providing metrics for CMMN models.
Also, many works focusing on optimizing the execution of a workflow, such
as [11] provide insights into which quantitative metrics can be used to ana-
lyze processes. However, efforts on qualitative analysis such as valued added
and root-cause analysis are absent.

Opportunities and future work

Since the approach for analyzing processes is not dependent of the process
model itself, there is no real need for adapting process analyses to DPM,
especially for qualitative approaches. However, it remains to be seen whether
DPM can support analyses such as calculating throughput time, due to the
flexible nature of the process which entails many different outcomes. It
remains to been seen whether these metrics still remain useful in such a
context. Furthermore, it still needs to be seen whether there are other
metrics that can be introduced, such as the number of scenarios still possible
in respect to the remaining execution steps, to provide tailored metrics that
make use of the properties of DPMs. Metrics tailored towards flexibility
and adaptability could improve the analysis and the impact that declarative
approaches have.

2.3.4 Process Redesign

Current State

Few works address the concept of declarative process redesign and solely
focus on the construction or discovery of new models. Much like process
analysis and identification, it may require to change and adapt the whole
process on a higher level of abstraction. For DPM, model-driven or behav-
ioral approaches that introduce hierarchy and restructure process models
[190, 38, 47], are a common way to deal with redesign, as well as extending
models by analyzing past behavior [167].

Opportunities and Future Work

The phase of redesigning addresses many aspects of the process, many of
which are less focused on behavioral aspects, e.g., customer interactions or
the resource perspective [44]. However, declarative process models could
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vastly improve processes in terms of flexibility, maintainability, and hence
cost. In this respect, this phase is intertwined with the analysis phase.
The more tailored metrics exist to evaluate DPMs, the more interesting it
becomes to elaborate on redesigning for DPMs. Next to this, an interesting
future study could entail researching whether shifting design from procedural
to declarative process models would actually improve the process system via,
e.g., a business case.

2.3.5 Process Implementation and Execution

Current State

Next to the process discovery phase, the implementation and execution
phases receive most of the attention in literature. Many approaches in-
corporate both the modeling as well as the execution part in the works by
default. Since a strong emphasis is put on the formal background of most
approaches, these concepts typically are considered the focusing point of
many works.

Besides providing execution semantics, two subjects that are prevalent
for this phase of the BPM lifecycle, are model verification and confor-
mance/compliance checking, which are often intertwined with the execution
semantics due to the nature of constraint-based process models.

Opportunities and Future Work

The implementation and execution phase of BPM is well-understood and
elaborated in DPM. Still, comparable to discovery, there exists no frame-
work to compare, e.g., scalability, usefulness, and user-friendliness of the
different approaches both between different languages (Declare vs. DCR
graphs vs. GSM,...) as well as between different applications (e.g., SCIFF
vs. a-posteriori checking [14] vs. conformance checking [35]).

2.3.6 Process Monitoring and Control

Current State

The benefit of declarative languages is that they are often rule-based, making
them inherently tailored towards verification and monitoring. This phase of
the lifecycle therefore is adequately represented by works such as [92, 94,
111], while DCR graphs and GSM are also tailored towards monitoring but
have less works explicitly addressing the topic. Therefore, only the works
that narrowed their scope to the monitoring applications itself were included
in Figure 2.2. A case study of the application of CMMN in a hospital context
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[68] shows the capabilities of case management and a declarative approach
in a real-life setting for monitoring.

Opportunities and Future Work

The field of monitoring and complex event processing requires a substantial
process system to be in place in order to validate the usefulness and power
of the approaches used. For now, little real-life empirical evidence of moni-
toring with declarative process models in a large-scale environment has been
offered. Performing such studies would greatly benefit the application set
that different approaches offer. Again, a comprehensive framework for which
approaches offer a more in-depth or more scalable solution is desirable in the
future.

2.4 A Roadmap for Declarative Process Mod-
eling

In this section the insights condensed from Sections 2.2 and 2.3 are used to
form a body of future directions which are opportune for the DPM area.

2.4.1 Comparison Framework

As illustrated in the previous section, there exist a plethora of techniques for
modeling, mining, and executing declarative process models, however, there
is no framework to compare them, nor have their been any attempts at a full
comparison between different aspects. Therefore the following dimensions
are of interest for a comparison framework:

1. User-acceptance: Are DPMs tailored towards the needs of the users?
Are they understandable or overly-convoluted and too academic to be
used in a practical setting? Are they solving common problems better
or rather providing new solutions?

2. Scalability: Which techniques are particularly fast in doing tasks
such as verification and conformance checking? Are they suitable for
monitoring and discovery in large-scale operations?

3. Functionality: What makes the unique characteristics of one DPM
approach better over the others? Which situations benefit from either
the extensive expressiveness for workflows of Declare or DCR graphs,
compared to artifact centric situations where ECA rules are used in
GSM? Is the elaborate execution component necessary in every situa-
tion or does CMMN provide a good alternative for sketching processes?
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2.4.2 Declarative Process Modeling as a Mature Ap-
proach to Support the BPM Lifecycle

The state-of-the-art shows that there still remains a huge difference in terms
of coverage of the BPM lifecycle. While this is due to the fact that the life-
cycle is an all-encompassing framework not solely focusing on the modeling
and behavioral aspects of a process model, DPM still misses out on work in
substantial parts of the lifecycle that should be addressed in order to become
mature along the full spectrum. Especially the way in which DPM can be
incorporated as a genuine part of the identification phase is still missing in
current literature.

Furthermore, few works have addressed how DPM can be used for process
analysis and redesign. This is somewhat surprising, especially since these
concepts typically rely on behavioral properties which are very well elabo-
rated for declarative process models and hence can straightforwardly borrow
insights of existing approaches that are used for procedural techniques. Next
to this, tailored approaches making use of the intricate properties of declar-
ative process modeling languages should be found for process analysis and
redesign. It would also be interesting to indicate how it is easier or exclu-
sively possible to express flexibility and agility metrics for analysis purposes
compared to procedural models.

2.4.3 Empirical Evaluations and Advanced Case Stud-
ies

Few works show advanced empirical evaluation based on a holistic study
throughout the whole BPM lifecycle. While there is plenty of evidence of
discovery and execution approaches, few examples center around a case study
and elaborate on the specifics that were solved and why declarative process
models were, e.g., superior to each other or to other paradigms. Especially
successful case studies where the full lifecycle is traversed with DPM in mind
would vastly mature the usefulness of the approaches. While approaches such
as GSM and DCR Graphs are particularly tailored towards the support of
business needs, still, it would be beneficial to see how they can support a
large-scale process environment. With the introduction of CMMN an indus-
try standard is now available which is gaining traction among practitioners,
as observed from a simple Internet lookup for the term. This could vastly
increase the significance and importance of the formal research background
of DPM, as a growing interest might bring along a greater need for analysis,
model discovery and checking, and so on.
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2.4.4 Towards Modeling Guidelines for Declarative
Process Models

There exist numerous languages to model DPM and although there is a vast
amount of papers that put the emphasis on constructing models, none of
them has any specific guidelines for constructing them. This clashes with
the fact that the understandability of the constraints is often low. For now,
the works that offer the best reconciliation are [189, 65, 143]. These works
provide descriptive studies that could be the starting point for condensing
a full body of declarative process modeling guidelines that tailor existing
guidelines [103] to the flexible and rule-based nature of the models, while
taking into account previous efforts on procedural models [102, 175, 191].
This can bridge the gap that exists between comprehensibility and expres-
siveness, e.g., CMMN provides easy to understand models with simple se-
mantics, while Declare has no limits in terms of expressiveness, while having
very intricate semantics and possibly unclear visualizations [63].

2.4.5 Integration with Decision Modeling

The recent surge of work dedicated to decision modeling in BPM [12, 82, 13],
especially in the context of the new Decision Model and Notation standard
[146], has introduced a new way of shifting attention away from the control
flow towards the decision layer of a process model. Often, decisions are hard-
coded into a process model [173, 149], while it would be more appropriate
to model them as a chain of decisions.

By combining the decision and declarative process modeling paradigm, a
multi-perspective declarative process model can be constructed. Preliminary
work of [105] provides a proof-of-concept for Declare and DMN, however,
strong semantics that deal with the considerations of, e.g., [110], can provide
a better and more holistic view that joins artifact- and control flow-based
declarative approaches in a general concept.

2.5 Conclusion and Future Work

In this chapter, the state-of-the-art of the declarative process paradigm was
established by performing a comprehensive literature study. The BPM life-
cycle was used as a reference to frame the contributions in terms of the topics
they address. It was shown that, comparable to the parent domain BPM,
the same tendency to support modeling and execution exists, and the span
of the field is still providing a rather narrow scope on the research. This calls
for a more mature approach in research, as stated in the research agenda
provided. Although many principles of BPM apply to DPM, there are still
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mismatches or gaps for the main efforts in BPM research were previously fo-
cusing on procedural languages for constructing, analyzing, and redesigning
process models.

For future work, a roadmap was constructed which can be used to steer
future research. Five actionable considerations were made that address dif-
ferent gaps in literature. The main focus should be on finding mature as-
sessment frameworks for different approaches, a wider support of the BPM
lifecycle, more empirical research, the introduction of tailored guidelines and
analysis criteria, and the integration with decision modeling.

Finally, it was illustrated how the work in this thesis addresses current
issues in DPM. Chapters 4 and 5 introduce approaches to overcome the
convoluted and hard-to-understand semantics of the Declare language, while
Chapters 6 through 8 make the comparison with the procedural process
mining paradigm to infuse both methods with concepts of one another for
both modeling and mining.





CHAPTER 3

Preliminaries: Formal Aspects
and Constraint Conversions

“Is that everything?
It seemed like he said quite a bit more than
that.”

— Bill Murray, Lost in Translation

This chapter provides the thesis with the formal semantics for the process
models throughout the work. More specifically, the semantics of the Declare
language and Petri nets with its extensions for reset and inhibitor arcs are
given to illustrate how the models can be executed, and provide the back-
ground to the formal aspects of the later chapters. The choice for these two
languages is founded on the widespread use of both, each being a forefront
for their respective paradigm. Petri nets provide a wide range of analysis
techniques that are used to analyze workflows, and even other languages
such as BPMN. Declare on the other hand, as illustrated in Chapter 2, is
also adopted in many works as the prime declarative process language. Fi-
nally, previous work on combining these two languages for mixed-paradigm
semantics [184] exists, confirming that they are an appropriate choice for this
work. The introduction of this chapter also serves as a quick overview of the
state-of-the-art regarding the conversion and mixed-paradigm approaches
that exist for both languages.

Next to the separate semantics, a template-based conversion is proposed
for every Declare constraint into a single Petri net fragment with weighted
reset and inhibitor arcs, i.e., a weighted R/I-net. As such, a formalization
of the execution semantics of Declare is obtained, similar to linear temporal
logic or regular expressions, but now expressed in the form of Petri nets.

37
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Equivalence of Declare constraints and the respective Petri net templates are
analyzed at the theoretical level and by means of a simulation experiment.

3.1 Introduction and Related Work

Petri nets are a widely used language to express concurrent systems [113].
They are highly expressive and have clear execution semantics due to sound
mathematical underpinnings, which results in a wide availability of robust
analysis techniques. Therefore, in the context of business processes, Petri
nets are extensively used for model design and verification [151], so that even
more user-centric languages such as Business Process Modeling and Notation
(BPMN) [20] and Event-driven Process Chains (EPCs) [150] are frequently
converted to some form of Petri net for checking model properties such as
soundness [44, 151].

As explained in the previous chapters, the need for flexibility in business
processes, however, has led to an increased popularity of declarative models.
An overview of the existing declarative approaches can be found in Chap-
ter 2. Most notably, Declare has become the de facto standard for model-
ing flexible workflows by using an event-driven, constraint-based approach.
Mixed forms of both paradigms are also gaining ground. YAWL [157], a
language which extends Petri nets with more flexible constructs such as re-
setting capabilities, can include Declare constraints in subworkflows [160],
a more advanced version of ad-hoc subprocesses in BPMN. A real mix of
state-spaces of Petri nets and Declare is proposed and implemented in [184].
More recently, the incorporation of Declare constraints into BPMN was also
investigated in [33].

In this chapter, the formal aspects of both Petri nets and Declare are
presented, as well as a template-based approach that converts every Declare
constraint into a weighted R/I-net, i.e., a Petri net with weighted reset and
inhibitor arcs. This conversion results in a formalization of Declare, similar
to Linear Temporal Logic (LTL) [29] or regular expressions [185], but one
expressed with Petri nets. As such, a Petri net template lexicon is obtained
that expresses the same behavior as the collection of Declare constraints
originally described in the seminal work of Pesic [119].

The conversion of Declare models to Petri nets has been touched upon
in [48], proposing R/I-net constructs for a subset of DecSerFlow constraints
[156], the predecessor of Declare. Also, the synthesis to a Petri net without
R/I-constructs is proposed in an example. The approach in this chapter dif-
fers from this by putting forward a full lexicon of conversions and a thorough
analysis of their applications. A full synthesis approach is proposed in [124],
where Declare constraints are redefined as regular expressions, converted to
finite state machines and finally synthesized into Petri nets with the theory
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of regions [28, 27]. The conversion strategy of [124] differs from the one
proposed in this chapter in several ways. First, it relies on a full executable
Declare model, being a finite state machine. The upside is that there are no
conflicting states in the model, which is superior over having the separate
constraints that still might contain inconsistencies. The downside, however,
is that it is computationally very expensive to synthesize such a model. Even
for a few constraints and activities, this might already be computationally
intractable. Second, synthesis will provoke a duplication of tasks (i.e. tran-
sitions with the same label) which results in (i) nets that are arguably even
harder to read than automata, (ii) increased complexity for analysis tasks
such as conformance checking, and (iii) impediments for the straightforward
plugging in of Petri net fragments that could be obtained by synthesizing
every constraint separately with the technique presented in [124]. Third, the
use of inhibitor arcs to withhold an ending activity from firing when a con-
straint is violated as done in this work makes the specification and keeping
track of violation easier. In addition, every violation can be traced back to
a certain place and activity.

The remainder of this chapter is structured as follows. First, Section 3.2
contains a description of the semantics of both Declare (in LTL and regular
expressions) and weighted R/I-nets. Section 3.3 describes in full the conver-
sion lexicon of all Declare constraints into Petri net constraints. Section 3.4
contains an analysis of equivalence and empirical validation, followed by the
conclusion in Section 3.5.

3.2 Preliminaries

This section provides a brief overview of formal concepts and definitions used
throughout the thesis. First, a general notion of constraint-based declarative
process models is given, after which the specific case of Declare is dealt with.
Next, Petri nets and their extensions are introduced.

3.2.1 Constraint-Based Declarative Process Models

Many declarative approaches, such as Declare, DCR Graphs, and DPIL,
each apply a constraint-based approach, i.e., the models consist of activities
for which the behavior is applied by adding constraints over sets of them. A
constraint-based declarative process model DM = (A,Π) can be defined as
follows.

– A is a set of activities or atomic propositions from the alphabet Σ,

– Π(A) is a set of constraints defined over the activities,



40 3.2. PRELIMINARIES

– §(π), π ∈ Π is a function assigning semantics to a constraint, and

– Φ =
∧
π∈Π §(π) is the model comprised of the conjunction of con-

straints, given that the language used to express the constraints is
closed for common properties such as concatenation, intersection,
Kleene star, and so on, as is the case for automata-based languages
such as regular expressions and LTL.

3.2.2 Declare Constraints and Their Characteristics

Declare models are typically constructed by using the set of constraints of
Table 3.1 of which the descriptions can be found in Table 3.2. They range
from unary constraints, indicating the position and cardinality of an activ-
ity, to n-ary constraints, which capture typical sequence behavior such as
precedence and succession relationships. A Declare model is the conjunction
of its constraints, φDM =

∧
π∈Π §Declare(π), where §Declare corresponds to

the semantics available in Table 3.1. The constraints can be represented in
more detail as follows:

– Π1(a, P ) is the set of unary constraints with P its properties indicating
cardinalities or position, and

– Π2(a, b) where a, b ∈ A is the set of binary constraints that follow an
activation/resolution strategy.

In literature, a and b are, depending on the constraint, typically referred
to as antecedent and consequent [14, 26, 95]. In general a serves as the
antecedent, except for precedence constraints, where this relation is reversed.
For some constraints, both a and b serve as antecedent and consequent at
the same time, i.e., for (not) responded/co-existence, (exclusive) choice, and
succession. There also exist constraints that use a set for a or b called
branched constraints [117], most notably the target/consequent-branched
constraints [26]. In this case, multiple consequents can resolve the status of
a constraint. For, e.g., response(a,B), the LTL-formula becomes 2(a =⇒
�(
∨
b∈B b)) and any b ∈ B can resolve the temporary violation caused by

an occurrence of a. The automata of the separate constraints expressed in
Finite State Machines/Automata (FSM/A) can be found in Section 3.4.

Finally, for an activity a ∈ A it is defined:

– •a = {π |π(b, a) ∈ Π2 ∨ π(a, P ) ∈ Π1} all prefix constraints (and
unaries) of an activity, and

– a• = {π |π(a, b) ∈ Π2} all postfix constraints of an activity.
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Declare constraints exhibit a hierarchy, which is well-explained in
[117, 22]. For unary constraints, existence(a,n) and absence(a,n) together
form exactly(a,n). Binary constraints are divided in different classes, for
which every class is an extension of its predecessors. Unordered constraints
include responded existence(a,b) and co-existence(a,b), of which the latter
is the two-way version of the former. The simple ordered constraints in-
clude precedence (p), response (r), and succession (s)(a,b), of which prece-
dence(a,b) and response(a,b) are both extensions of responded existence(a,b).
Alternating ordered constraints include alternate p,r,s(a,b), and chain or-
dered constraints include chain p,r,s(a,b). Next to these constraints, there
exist negative versions for three of them, i.e., not co-existence(a,b), not suc-
cession(a,b), and not chain succession(a,b). Finally, the choice(a,b) con-
straint exists, which is comparable with a branched unary constraint exis-
tence({a,b},1). For binary constraints, (alternate/chain) response(a,b) and
(alternate/ chain) precedence(a,b) form (alternate/chain) succession respec-
tively. When a property is discussed for, e.g., precedence/response, this
hence also includes (chain/alternate) succession. In the remainder of the
text, the set of, e.g., precedence constraints is denoted as Πprec ⊆ Π with
Πchaiprec ⊆ Πaltprec ⊆ Πprec.

A constraint can have multiple states. First of all, a constraint can be
in an accepting state, i.e., the constraint is satisfied. In the automaton rep-
resentation, accepting states are indicated with a double circle. Secondly,
a constraint can be violated, i.e., it cannot get satisfied anymore. In the
automaton representation, this is not included, as this state should not be
reachable. Consider for example precedence(a,b). Firing b before a would
render that constraint violated. Finally, a constraint can be temporarily
violated, i.e., it is not in an accepting state, but it can still reach that state.
In the automaton representation, this is represented by a regular circle for
which there still exists a path to an accepting state. Consider for example re-
sponse(a,b). Firing a brings this constraint to a temporarily violated status,
however, firing b afterwards brings the constraint to an accepting state.

There exists a graphical notation for each of the constraints, for which
we refer to [183] and [117]. All graphical instantiations of Declare models in
this thesis will be accompanied by their corresponding name. In Figure 3.1,
a small Declare model is introduced of which the description is as follows.
Two binary and three unary constraints are present. First of all, you can
only pay a bill after receiving one, and receive one only after you have paid
the previous one. Eventually, you always have to pay the bills you receive.
You have to receive at least one bill, and you can only end the subscription
right after you paid a bill. Unsubscribing is only possible once, at the end of
the execution. The corresponding FSM of the whole model is displayed next
to the standard graphical notation. In essence, the behavior is quite straight-
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alternate 
succession

chain 
precedence

Receive 
bill

Pay bill

1..*

End
subscription

last1

Receive bill

Pay bill

End subscription

Receive bill

Figure 3.1: Example of a small Declare model describing a payment process in
Declare standard notation on the left and its corresponding finite state machine
to the right.

forward, with only four states. The initial state of an FSM is indicated with
an incoming arrow not connected to a previous node, and accepting states
are indicated with a double circle.

3.2.3 Weighted R/I-nets

In this chapter, a formalization to express Declare constraints in the form of
weighted Petri nets with reset and inhibitor arcs is proposed and in Chap-
ter 6, the same formalization is used to compare Declare with Petri nets.
Finally, in Chapter 8, Petri nets are also used to verify the behavior of
mixed-paradigm models. Therefore, the basic principles of Petri nets are
introduced.

Petri nets [113] are a mathematical modeling language used to de-
scribe distributed, concurrent systems. A weighted Petri net with re-
set and inhibitor arcs is a directed graph, expressed as a tuple, PN =
(P, T, F,R, I,W ), with P a finite set of places (visually represented as
circles), T a finite set of transitions (visually represented as boxes) with
P ∩ T = ∅, and F ⊆ (P × T ) ∪ (T × P ) the set of normal arcs (shown as
arcs with a single arrow). Let W : F → N determine a weighting function
which associates a weight to each arc. Let R : T → P(P ) define the reset
places (with P(P ) the powerset of P ) and I : T → P(P ) the inhibitor places
for each transition, which also implicitly define the reset arcs (shown as an
arc ending with double arrows) and inhibitor arcs (shown as an arc ending
with a circle) respectively. The set of input nodes of a node x ∈ P ∪ T is
denoted as •x = {(y ∈ P ∪ T | (y, x) ∈ F ) ∨ (x ∈ T ∧ y ∈ R(x) ∪ I(x))}, and
the output nodes similarly as x•.

The state of a Petri net is called marking M ∈ P → N, indicating the
number of tokens contained in each place. A transition t is said to be enabled,
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1

1

Receive 
bill

Pay bill

End 
subscription

1

Figure 3.2: Example of a small R/I-net describing the same payment process. Note
that the model is both representation and execution at the same time.

denoted as M [t〉 ⇐⇒ M(p) > 0,∀p ∈ •t : [(p, t) ∈ F ∨ p ∈ R(t)] ∧M(p) =
0,∀p ∈ I(t). Firing an enabled transition results in a new marking M ′ so that
M ′(p) = M(p)− (M(p) iff p ∈ R(t),W (p, t) ⇐⇒ (p, t) ∈ F, 0 otherwise) +
(W (t, p) ⇐⇒ (t, p) ∈ F, 0 otherwise). That is, tokens are removed from
input places according to arc weights. Places which act as reset places for
a fired transition are emptied completely. Subsequently, the token count
of output places is incremented according to arc weights to obtain the new
marking. The initial state of the model is called the initial marking, denoted
M0. For more details, the interesting reader is referred to [113].

An over-convoluted approximation of the example in Section 3.2.2 is given
in Figure 3.2 to illustrate the constructs of R/I-nets. The figures next to the
places indicate the initial marking, or the number of tokens present in the
place in the initial state of the net.

3.3 Conversion of Declare Constraints to
Weighted R/I-nets

This section describes the conversion of each Declare constraint into their
dedicated weighted R/I-nets. First, the general setup is explained, next
each constraint is reviewed independently, and finally it is illustrated how
multiple constraints can be used in a model. Despite the fact that elements
from a set are indicated in lower case and sets in upper case throughout the
thesis, activities A, B, and C used in the examples in the following sections
are also instantiations.
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3.3.1 Conversion templates

The purpose of the conversions is to capture constraints which are usually
expressed in Büchi automata that yield ω-regular languages, or finite state
automata, which yield regular languages. This means that the Petri net
templates, if behaviorally equivalent, produce the same (type of) languages.
However, the benefit of high-level Petri nets such as R/I-nets, are that they
are Turing complete [147]. Still, the Petri nets that are constructed here
produce regular languages. This is the case when the net is in clean standard
form [62]. Hence, the following guiding principles are followed.

For every letter in the Declare template/model alphabet, one is defined
in the Petri net alphabet as well ΣPN = Σdec∪{λInvisible, λStart, λEnd}, with
labeling function δ : T → ΣPN . As such, PN has a non-lamda free language
Lλ. Invisible transitions (labeled λInvisible) are used for two constraints and
are referred to λStart and λEnd as Start and End respectively. Their corre-
sponding nodes are referred to as tsource and tsink with δ(tsource) = λStart
and δ(tsink) = λEnd. tsource is used to start the net by filling helper places
used for the constraints, which need tokens to inhibit constraints which are
(temporarily) violated by default. For example, an existence(a,n) constraint
puts the model in a temporarily violated state when initialized, only to
reach an accepting state after activity a has fired at least n times. tsink
empties the net completely and functions as an indicator for the state of
the net as well. If tsink is enabled, this means the net is in an accepting
state, otherwise, there are places tied to constraints inhibiting it from fir-
ing. The end transition empties all places upon firing by using reset arcs,
leaving the net in its final marking, comprising of only one token in the
final place psink. Hence PN has an L-type ending. According to [62], as
all template nets are in clean standard form, they yield a regular language.
Indeed, unless the net is in a violated state (marking) which cannot reach
an accepting state anymore (permanent violation), there exists a firing se-
quence reachable from that marking which ends with the sink transition.
tsink empties the net and is the sole terminal on the right hand side of that
marking. Also, since none of the binary constraints contain any cardinality-
based execution patterns, none of the Declare Petri nets need context-free
grammar constructs such as anbn. The R/I-net constructs for each tem-
plate can be found in Table 3.1. In the construct templates, it is assumed
that T = {tsink, tA(, tB , tC), tsink}, tC = T \ {tA, tB , tsource, tsink}, P =
{psource, psink, p1(, p2, p3, p4)}, and F = {(psource, tsource), (tsink, psink)}.

Note that the activities constraint by init and last cannot be substituted
by tsource and tsink, unless the activities these constraints refer to also have to
be executed exactly once. Otherwise, they would recreate the initial marking
over and over again (Init, as tsource initializes the net), or be inhibited from
firing multiple times (last, as tsink empties the net). As such, init(a) is
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instead modeled as a fragment containing a single place which is filled by
tsource and inhibits every transition but tA. The last(a) constraint is enforced
by a single place which gets filled by tA and is reset by all the other transitions
but tA.

Many helper places are introduced which are used to enforce and indicate
the state of the constraints in a one-to-one fashion. This means that one can
trace back every constraint in the net to a certain Declare template. This
is not possible for example, in the approach of [124], but yields benefits for,
e.g., model and conformance checking, where in an execution the violation
can be traced back to a certain constraint and the activities involved.

Figure 3.3 provides an example of converting a full Declare model in
standard notation to its converted Petri net counterpart in Figure 3.4. For
this purpose, a Declare model is included with three unary and three binary
constraints. Deposit money is executed first, and at least once. Request
credit card can only occur exactly after Deposit money and exactly once.
Deposit money precedes Withdraw money. Every new occurrence of Print
statement must be preceded by at least one new occurrence of Withdraw
money. Note that opportunities exist for simplifying the resulting Petri net
model, which was not done here for the sake of understandability of the
separate converted constraints; in the following paragraphs, we discuss the
conversion of each of the Declare constraint types to their corresponding
Petri net templates and how to create a model out of a full Declare model.

chain
precedence

alternate
precedence

precedence

Deposit
money

1..*

Request
credit card

1

Withdraw
money

Print
statement

Figure 3.3: Simple Declare model containing 3 unary and 3 binary constraints.
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p2

p1

p7

p4

p6

p3

1

p5

Deposit
money

Request
credit card

Withdraw
money

Print
statement

Start

End

Figure 3.4: The same model as in Figure 3.3 converted into an R/I-net. The
net contains 7 places (besides psource and psink) of which 6 are used for the con-
straints and one, p5, which adds a self-loop for Deposit Money. p1 is used for ex-
actly(Request credit card,1), p2 for init(Deposit money), p3 for precedence(Deposit
money, Withdraw money), p4 for chain precedence(Deposit money, Request credit
card), p6 for alternate precedence(Withdraw money, Print statement), and p7 for
existence(Deposit money,1). Many reset arcs are connected from these places to
tsink to empty the net upon firing this transition.

Unary Constraints

Unary constraints (shown in Figure 3.5) focus mainly on the enforcement of
cardinalities of the activity involved. In these scenarios, the source and sink
transitions prove useful already. Existence(A,n) requires an activity A to be
executed at least n times. Therefore, a helper place p1 is installed, that can
only fire after n tokens are collected in p1, by introducing an arc with weight
n connected to tsink.

Absence(A,n) translates into putting n−1 tokens in p1, which will prevent
the activity from firing n or more times. The exactly(A,n) constraint is
similar, but p1 inhibits tsink from firing until the activity has happened at
least n times.

Binary Existence Constraints

These constraints (shown in Figure 3.6) are the hardest to capture in a Petri
net template, as they require some sort of memory to keep track of the fact
whether the antecedent and consequent have occurred before. For responded
existence, the net cannot end before a first occurrence of the consequent
when the antecedent fires. The net thus has to keep track whether the
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existence(A,n)

absence(A,n)

exactly(A,n)

p1

p1

p1A

2..*

A

0..2

A

2

A

A

A

Start

Start End

End

n-1

n

n

Figure 3.5: The mapping of unary constraints existence(A,n), absence(A,n), and
exactly(A,n). Note that the tsource and tsink transitions (labeled Start and End)
are only shown when necessary in this and following figures.

consequent has fired already, in case a termination is sought after the firing
of the antecedent. For this purpose, an invisible activity is used which, when
fired, leaves no transition enabled but the last one, acting as a placeholder
for tsink. The same principle can be applied for co-existence, which is the
two-way version of responded Existence.

responded
existence

co-
existence

p1

p3

p1

p2

p2

p3

p4

A

B End

A B

A B

A

B

End

Figure 3.6: The mapping of the binary existence constraints responded, and co-
existence.
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Simple Ordered Constraints

Response requires a helper place that inhibits tsink as long as the consequent
of the constraint is not fired after an occurrence of the antecedent. Prece-
dence also needs an additional input place for the antecedent, which serves
to enable it after the firing of the consequent. Afterwards, the consequent
keeps itself enabled indefinitely. Succession is, similar to the LTL formula,
the combination of both constraints. The constraints are shown in Figure
3.7.

response

precedence

succession

p1

p1

p2

p1

A B

A B

A B

A B

A B

End

A B

End

Figure 3.7: The mapping of the simple ordered constraints Response, Precedence,
and Succession.

Alternating Ordered Constraints

Alternating constraints (shown in Figure 3.8) are a variant of the simple or-
dered constraints to express loops. Modeling alternate response is somewhat
tedious. First of all, two helper places need to be introduced, p1 and p2.
p1 is an input place of tsource, resulting in an initial marking of 1. Next,
it serves both as an input for the antecedent, and also a reset place. The
consequent can fire any time, but whenever the antecedent is fired, tsink is
inhibited until the occurrence of the consequent, which frees p2 with a reset
operation. Also, the consequent delivers a new token to the input place of
the antecedent. Alternate precedence is much more straightforward. When-
ever the antecedent is fired, it resets its input place, which models the fact
that it can only occur after any new occurrence of the consequent. Again,
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alternate succession is a combination of the two, but can be reduced to a
smaller mapping. Two places are required, one as an input place for the
antecedent, enabled by default (marking of 1), and another one serving as
an input place for the consequent, which will also inhibit tsink, avoiding a
violation of the rule.

alternate
response

alternate
succession

alternate
precedence

p1

p2

p2

p1
1

p1
1

A B

A B

A B

A B

A B

A B

End

End

Figure 3.8: The mapping of the alternating ordered constraints alternate response,
precedence, and succession. Start is omitted, but provides the initial marking of
the helper places (e.g. one token in p1 for alternate response).

Chain Ordered Constraints

The chain constraints (shown in Figure 3.9) extensively make use of the next
LTL operator. To incorporate the setup in which whenever the antecedent
is fired, the consequent needs to be next, a helper place is introduced which
inhibits every other activity in the net but the consequent. The other ac-
tivities (besides the antecedent) are indicated in Figure 3.9 as C. The chain
precedence constraint in its turn requires a helper place that inhibits the
execution of the antecedent, which can only fire right after an execution of
the consequent, which frees the inhibiting place with a reset arc and gets
filled by any other activity. The combination of both constraints allows only
the execution of the antecedent, and afterwards inhibits every other activity
but the consequent, resulting in a strict ABAB... pattern.
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chain
response

chain
precedence

chain
succession

p1

1

p1

p1 p2

1

A B

A B

A B

C

A B

A B A B

C

C

Figure 3.9: The mapping of the chain ordered constraints chain response, prece-
dence, and succession.

Negative Constraints

The negative constraints (shown in Figure 3.10) also use inhibitor places to
model violation. Not co-existence uses two helper places, one for each ac-
tivity, which, when containing a marking, block the execution of the other
activity. Not succession uses one place to inhibit the consequent from exe-
cuting after the antecedent is ever fired. Not chain succession inhibits the
consequent from happening exactly after the execution of the antecedent.
Again, all the other activities need to be connected to the inhibiting place
with a reset arc, freeing the consequent from the marking imposed by the
antecedent.

Choice Constraints

The simple choice template inhibits tsink as long as not one of the two
involved activities have fired, modeled with two reset arcs, linking both ac-
tivities to the place. The exclusive choice, is similar to the not co-existence
constraint, but inhibits tsink from firing as long as not one of the two (which
is the only possibility) has fired. The helper places in both constraints are
marked with a token by default, and are linked to tsource. The constraints
are shown in Figure 3.11.
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not chain
succession

not co-
existence

not
succession

p1

p1

p1

p2

A

B

A B

A B A B

A B

A B

C

Figure 3.10: The mapping of the negative constraints not co-existence, succession,
and chain succession.

choice

exclusive
choice

p1

1

p3

p1

p2

1

A B

A B

B

A End

A

B

End

Figure 3.11: The mapping of the choice constraints choice, and exclusive choice.

Merging Constraints into a Model

As indicated previously and as shown in the example model (Figure 3.4),
it is possible to merge a set of constraints, having converted these to sepa-
rate Petri net templates, into one single model as follows. First, note that
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p0

1

pA

pE1

pB

pE2

A B

End

Start

Figure 3.12: Example of the response constraint in a model. The constructs specific
to the constraint are in black, the ones used for the model are in gray.

since the constraints are modeled as separate regions, the overlap of places
is void. Second, transitions are merged so that the input and output arcs
for each transition form the union of all input and output arcs in the sepa-
rate templates respectively. Third, activity transitions that do not have an
input place with corresponding input arcs (not a reset or inhibitor arc) after
performing the steps above, are connected with tsource with an extra place,
which also keeps these transitions enabled after firing by means of a self-loop
(i.e. an arc from the transition to this extra place is also added). When tsink
does not have an input place, the same rule applies (i.e. also connected with
tsource, but without a self-loop. Fourth, a unique source and sink place,
psource and psink, are added, and every place in the model except psource
and psink are reset by firing tsink (by adding reset arcs). Note that these
steps also need to be performed when only dealing with the conversion of one
single Declare constraint. For the sake of clarity, however, the adding of
these extra constructs is not shown in the separate constraints listed above,
but is done in the example model in Figure 3.4.

An additional example of how a sole constraint fits into a model is given
in Figure 3.12. The constructs used for the response(A,B) constraint are
depicted in black and are supplemented by p0, tsource, pA and pB which act
as the self-loops places of A and B, and the input place pE1

and output
place pE2

of End. These constructs are indicated in gray and are only used
once, even when merging multiple constraints between A and B, while the
constructs indicated in black are specific to response(A,B). Two reset arcs
are connected to the self-loop places to empty the net after firing tsink.

n-Ary and Target-Branched Declare Constraints.

Some Declare constraints, such as choice, have multiple variants such as
choice1of3(A,B,C), choice2of3(A,B,C), etc. These variants can be easily
expressed in R/I-nets as well. One has to simply add multiple transitions to
p1 in Figure 3.11, one for every activity. Choice2of3 can be modeled with
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two places, etc.
Target-branched constraints, as explained in Section 3.2.2, can also be

modeled with R/I-nets. We do not elaborate on this for every constraint but
rather give an example in the form of response(A,{B,C}). Both B and C
can resolve the response constraint, hence the addition of C to response(A,B)
would simply require an extra reset arc from p1 to tC .

3.4 Equivalence Analysis

In this section, it is shown how the separate Declare constraint conversions
to R/I-nets are behaviorally equivalent to the FSAs. First, the notion of
state spaces is explained. Next, each constraint is analyzed by simulating
it for a vast number of executions and subsequently mining the generated
event log.

3.4.1 State Spaces and Automata

A Petri net’s reachability graph is an exhaustive enumeration of all states in
the net that can be reached from the initial marking [128]. The reachability
graph of a bounded Petri net is a transition system constructed as follows.
The initial marking is the initial state. Every reachable marking from M0

is a state. Transitions between pairs of states represent the transitions that
lead from a marking to another by means of a firing. A state in which
no transitions are enabled anymore is called a final state. The reachability
graph can be represented as a Kripke structure. We define such structures
as follows. A Kripke structure is a tuple KS = (S, I,R, L) with

– S a finite set of states

– I ⊆ S a set of initial states

– R ⊆ S × S the transition relations which are left-total (∀s ∈ S , ∃ s′
s.t. (s, s′) ∈ R)

– L a labeling function L : S → P(ΣAP ) for alphabet ΣAP , with P
denoting the powerset.

Translated to a Petri net, every state s ∈ S is a marking in the net,
S = M , with an outgoing arc for every enabled transition in that marking.
Hence ΣAP = ΣPN , L : M → P(ΣPN ). Since a dedicated source place and
transition is used, I = M0 with M0(psource) = 1. We use C to represent
all other activities ΣAP \ {A(, B), λ, λStart, λEnd}, of which the latter are
indicated as Begin and End.
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Figure 3.13: Example of the conversion of a Petri net fragments’ state
space to an equivalent FSA for the not co-existence constraint. To the
left, the state space for the not co-existence Petri net template is de-
picted with S = {S1, S2, S3, S4, S5}, AP = {Begin,A,B,C,END},
R = {(S1, S2), (S2, S3), (S2, S4), (S2, S5), (S3, S5), (S4, S5)},
L = {(S1, {BEGIN}), (S2, {A,B,C,END}), (S3, {A,C,END}),
(S4, {B,C,END}), }, and I = {S1}. To the right, the equivalent FSA is
given.

In order to match this with Declare automata, the reachability graph of
every Petri net is converted into a finite state automaton. Since the con-
straints yield regular languages, this conversion also yields a regular language
model. The automaton is defined as a tuple, ΦPN = (Q,Σc, Q0,∆, Ac) with:

– Q the finite set of states,

– Σc the finite alphabet,

– Q0 ⊆ Q the initial states,

– ∆ ⊆ Q × σ × Q the transition
relations,

– Ac ⊆ Q a set of accepting
states.

Then:

– Q = M ∪ I,

– Q0 = I,

– Σc = ΣPN ,

– ∀s, s′ ∈ Q, a ∈ Σc : (s, a, s′) ∈
∆ ⇐⇒ L(s′) = a ∧ (((s, s′) ∈
R) ∨ (s = si ∧ s′ = s0)),

– ∀a ∈ Ac, λEnd ∈ a.

This can be done for every Petri net template included in the previously
introduced conversions. The same principle can also be applied for Büchi
automata, as used in [117]. An example is included for the not co-existence
template in Figure 3.13, which displays the state space to the left, and the
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corresponding finite state automaton to the right. Every automaton includes
all the accepting and temporarily violated states in the Declare automata, as
for example included in [185]. Hence, the Petri nets’ languages are equal to
the Declare automata’s languages. The other templates are included below
in Figures 3.14 to 3.20.

Figure 3.14: Conversion of existence1, absence, and exactly1 constraints.

3.4.2 Empirical Validation by Simulation

The validity of the conversions was discussed in the previous section. Now
it is shown how the conversions can be used in a practical setting by means
of simulation as follows. First, traces of all the different Petri net templates
are simulated separately and mined with Declare Maps Miner [95], a De-
clare process mining algorithm introduced in Chapter 2. Hence traces that
are generated from the R/I-net are mined to a Declare model. Next, traces
from different Declare constraints are simulated and replayed over the corre-
sponding Petri net conversions, addressing the other direction by going from
Declare model traces to replaying over a Petri net. It is assumed that the
finite state and Büchi automata yield the same language over finite traces.

The basic setup for the first direction (traces generated from R/I-net
mined to a Declare model) is performed by constructing a regular Petri net
with a simple sequential process placed in a loop, which is then supplemented
by one or two activities (unary vs. binary) that are constrained by a chosen
Petri net template following a Declare conversion. The same considerations
are used to create the model, i.e., tsource, tsink and self-loops are added.
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Figure 3.15: Conversion of responded, and co-existence constraints.

Figure 3.16: Conversion of response, precedence, and succession constraints.

CPN Tools [182, 181] is used to produce models, simulate them, and create
an event log, in a fashion similar to [37]. An example for simulating alter-
nate response(B,Z) is given in Figure 3.21, in which a straightforward loop
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Figure 3.17: Conversion of alternate response, precedence, and succession con-
straints.

Figure 3.18: Conversion of chain response, precedence, and succession constraints.

is supplemented with the matching Petri net template. The places used for
the self-loops insert the trace ID (indicated as the i variable in the Colored
Petri net) with a colored token and the trace identifier is incremented every
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Figure 3.19: Conversion of not co-existence, not succession, and not chain succes-
sion constraints.

Figure 3.20: Conversion of choice, and exclusive choice constraints.
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time tsink is fired. Every simulated event log contains 100,000 traces. The
resulting log is then mined with Declare Miner1 afterwards. It is expected
that, for each of the Petri net templates, the corresponding Declare con-
straint was found by the miner to be either present and supported 100%,
or exhibiting a confidence of 100% [93], thus confirming the validity of the
technique for this direction. Next, the simulation is performed the other

INT INT INT INT INTINT

1`1

INT

INT

A

B

C D EStart

End

Z

i i i

i

i i ii ii

i

i+1

i

i

i

i

i

i

i

i

Figure 3.21: Example of the verification simulation for alternate Response(B,Z).
The transition actions for writing the log are omitted for clarity. Note that, again,
Start and End serve the purpose of tsource and tsink respectively, while also sup-
porting the simulation by initiating and ending a new trace.

way around (Declare model traces replayed over Petri net). A regular ex-
pression simulator is used, which uses the expressions in Table 3.1, in which
the .-wildcard is substituted by C. The simulated traces are then replayed
over the Petri net conversions in ProM using the conformance checking plu-
gin used in [2]. When no tokens need to be inserted, the net is not too
restrictive for discovering a certain Declare constraint.

Both simulation strategies yield positive results. Declare Miner indeed
reports a support and confidence of 100% for every process log generated
from the conversions, making sure that they are at least as strict as their
Declare counterparts. The replaying algorithm fittingly executed every single
trace generated for the Declare constraints over the Petri net conversions,
proving that the conversions are not looser (resulting in more behavior)
than their Declare counterparts. The simulated Declare constraints could be
replayed over the Petri net conversions without violation and token inserts,
which means the conversions are not stricter than their regular expression

1Declare Miner is available in the ProM process mining framework, see:
http://www.processmining.org/
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counterparts. All the data generated and models used for the simulation
have been made available online2. They are pluggable and can be used in
different settings such as constructing Declare or mixed-paradigm models.

3.4.3 Bisimilarity of Converted Models

Although the separate constraints are bisimilar to their regular and ω-regular
counterparts, the R/I-net conversions do not enjoy the same closure prop-
erties as finite and Büchi automata. Consider for example the model in
Figure 3.22. The model contains just two constraints, response(A,B) and
existence(B,1). When executing B once, the sole time it can appear, the
End transition is enabled, indicating an accepting state. Firing A after
firing B for the last time renders the response constraint to a temporarily
violated state. However, B cannot get fired anymore to resolve the tempo-
rary violation. This behavior is not enforced by the model, although this
would be the case in the global automaton of the conjoined LTL formulas
or regular expressions. The interrelations between the constraints are not
taken into account by the conversions, as they are template-based, however,
in Chapter 4, they will be studied in detail.

A BStart

End

1

Figure 3.22: Example of a Petri net model that is not bisimilar to its FSA equiv-
alent.

2http://j.processmining.be/dec2pet

http://j.processmining.be/dec2pet
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3.5 Conclusion

This chapter presented the necessary formal introduction to the languages
and their concepts used throughout the thesis. First, Declare was intro-
duced with its various semantics. Next, Petri nets and its extensions were
reviewed to give an overview of its capabilities as a modeling and execution
language. Finally, the conversion of separate Declare constraints into R/I-
nets was achieved and explained by means of examples and the intuition for
bisimilarity on constraint level. The main use case of converting the models
is the easy interchangeability of Declare and procedural languages. This is
interesting for, e.g., mixed-paradigm models, as will be illustrated in Chap-
ter 6, or the template-based use of R/I-nets, which embeds them in a more
declarative approach towards process modeling, i.e., a constraint-based ap-
proach. Finally, it is also interesting to use R/I-nets for expressing Declare
constraints in order to achieve greater expressiveness. As R/I-nets are Tur-
ing complete, they can enact more interesting constraints of the type anbn,
as counting in (weighted) Petri nets in general is better possible compared to
regular languages. The downside, however, is that the R/I-net conversions
cannot be used for recreating the behavior of models of multiple constraints
if no inconsistencies are allowed, unless no constraint interdependencies exist
as will be explained in Chapter 5.
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CHAPTER 4

Uncovering Hidden Dependen-
cies in Constraint-Based Declar-
ative Process Models

“The meteorite is the source of the light
And the meteor’s just what we see
And the meteoroid is a stone that’s devoid of
the fire that propelled it to thee.”

— Joanna Newsom, Emily

In the next part of this thesis, the properties of constraint-based declara-
tive process models are studied in-depth in order to achieve new applications.
More specifically, the underlit subject of the interplay between different con-
straints is studied. First, in this chapter, a detailed methodology is explained
to retrieve the interaction of constraints in Declare models. Next, the appli-
cations of this approach are examined in Chapter 5.

The declarative process modeling approach has become a mature alterna-
tive to the procedural one, as proven in Chapter 2. The constructed models
are well-capable of representing flexible behavior, as everything that is not
allowed by the constraints in the model is possible during execution. The
behavior that results from this setup, however, is more difficult to compre-
hend and requires a higher level of mental effort of both the modeler and
the reader. Like procedural process models, the constraints still impose a
certain sequence on the activities, but the current choice might have an im-
pact on later execution possibilities, especially when multiple constraints are
combined around one activity. Since constraints can be added to the model
freely, it is often overseen what impact the combination of them has on the

67
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global behavior, i.e., the behavior supporting all the constraints at once.
This is often referred to in literature as the problem of hidden dependen-

cies, i.e., dependencies that are not explicitly modeled or visualized. Espe-
cially in the context of the understandability of declarative process models
it is interesting to make these dependencies explicit.

This chapter addresses the interplay of constraints used in order to get
a grasp on the way different combinations convolute a model and inflict
these hidden dependencies. By considering a Declare model as a graph and
relying on the constraints’ characteristics, it is delineated when and how
such dependencies establish themselves. Then, it becomes possible to show
users which constraints are related and hence the cognitive effort needed
for comprehending the models can be lowered. This will be illustrated in
Chapter 5, besides other applications including measuring the complexity,
and re-engineering of a declarative process model.

4.1 Introduction

Instead of modeling predetermined paths of activities, declarative process
models typically use constraints or rules to express what can, cannot, and
must happen. Every execution sequence that is not strictly forbidden by
the constraints can be enacted by the model, which makes it very flexible.
Many outcomes are possible due to the interaction of the constraints over
the activities. However, each type of constraint can have distinct effects on
the enabledness of an activity, creating dependencies that are not explicit or
visible in the graphical model and even in the execution semantics. These
dependencies between constraints and activities that are not explicit or vis-
ible in the model [60, 64, 188] are so called hidden dependencies and make
declarative models difficult to comprehend [64, 49].

This chapter introduces a technique capable of revealing hidden dependen-
cies in constraint-based declarative process models by propagating the con-
straints’ properties through the activities of a model. Every constraint can
be assessed for these properties and used to build dependency structures
for the whole model. In this way, it is aimed to address three out of four
suggestions for improvement that were found in the user study performed in
[64], i.e., ‘Simplify combination on constraints’, ‘Make hidden dependencies
explicit’, and ’Use modularization’.

The structure of the rest of the chapter is as follows. First, Section 4.2
formalizes the idea of activities’ upper and lower bounds and the concept of
hidden dependencies in constraint-based declarative process models. Next,
in Section 4.3, the construction of constraint dependency structures is elab-
orated on. Finally, the conclusion is presented in Section 4.4.
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4.2 Hidden Dependencies

As explained in Section 3.2.2, the execution of a constraint-based declara-
tive process model can be realized by constructing an automaton (either a
Büchi [117] or finite state automaton [22, 185] for Declare) by conjoining
the different constraints’ automata to obtain the behavior that is allowed for
by all of them. This conjunction actually abolishes the notion of the sepa-
rate constraints and thus throws away the information of how the separate
constraints interact. Consider for example the model in Figure 4.3 and its
corresponding FSA displayed in Figure 4.4. One technique that exists to
mitigate this is the coloring of the global automaton with violation infor-
mation of the separate constraints [92], which is made possible by updating
both the global and separate automata during execution. Nevertheless, even
when using this technique, the interactions are untraceable. Similarly, the
ReFlex framework [31] also offers a rule engine that only provides users with
states that do not end up in a deadlock, however, a motivation for why
certain activities are disabled in order to avoid a deadlock is not given.

A hidden dependency is defined as an interaction between constraints
and their activities that are not made explicit as such in the model and its
executable counterpart, in line with the definitions of [60] and [65]. Each
constraint has specific characteristics that cause these dependencies over
activities:

– Some constraints have an impact on the temporary violation aspect of
the model as they can be in a non-accepting state and require an ac-
tivity to resolve this temporary violation, i.e., for Declare this includes
existence, response, and choice constraints.

– Some constraints can disable activities for the remainder of the ex-
ecution, i.e., the absence, not succession, exclusive choice, and not
co-existence constraints.

– Some constraints can temporarily block all other activities, i.e., all
chain constraints.

When these characteristics are applied simultaneously over an activity,
the enabledness of the activity gets influenced in many ways which re-
quires foresight regarding the resolution of a constraint in the future.
E.g., consider the model in Figure 4.1 consisting of A = {a, b, c} and
Π = {πresp(a, b), πresp(b, c), πexa(c, 2)}. It contains a hidden dependency
between exactly(c,2) and response(a,b). When c is fired once (and hence
can only fire one more time), and a has fired without b firing already, c
should not fire before b resolves the temporary violation of response(a, b).
Since after firing c, c cannot resolve response(b, c) anymore (as it can only
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fire two times) and b should not fire to avoid another temporary violation
of response(b, c). A hidden dependency between exactly(c,2) and the two
response constraints is therefore present, caused by exactly(c,2) over all the
activities in the model.

response response
a b c

2

Figure 4.1: An example of a small Declare model with hidden dependencies.

In order to be able to better reflect how the constraints interact, an extra
annotation layer for the model should be constructed that brings all these
characteristics together. In the next section, it will be shown how dependency
structures built on top of the model can clarify the interplay of constraints.

4.3 Dependency Structures

This section discusses how dependency structures retrieved from constraint-
based models can be constructed (Section 4.3.2) and how they can aid the
interpretation of the model regarding the way in which constraints interact
(Section 4.3.3). The formalization heavily relies on the formal definitions of
Section 3.2.2.

4.3.1 Activity Bounds

In order to establish the notion of hidden dependencies formally, the upper
and lower bound on the number of occurrence of an activity during the model
execution are expressed as follows. For every activity a ∈ A and timestamp
t ∈ N, the following functions are defined:

– L : (a, t) → N the lower bound of the amount of occurrences of an
activity at time t,

– U : (a, t) → N the upper bound of the amount of occurrences of an
activity at time t,

– E : (a, t) → {0, 1} a function keeping track of the enabledness of an
activity at time t,

– O : (a, t) → {0, 1} a function indicating whether an activity fired at
time t, and
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– #A(a, t) =
∑t
i=0O(a, i) the number of times an activity has occurred

up until time t.

For every constraint π ∈ Π the following function can also be defined

– C : (π, t) → {0, 1}, a function keeping track of the satisfaction status
of the constraint at time t.

4.3.2 Construction

Hidden dependencies are caused by the implications that constraints pose
on activities and the propagation of these implications through other con-
straints connected to that activity. To indicate these properties, the func-
tions L and U are used: its constraints can require the activity to either fire
at least a number of times still (L), or to stop firing after a limited amount
of times (U). An activity a is not enabled anymore when U(a, t) = 0,
or U(a, t) = 0 =⇒ E(a, tl) = 0, ∀tl > t. In Table 4.1, an overview is
given for all constraints and how they propagate these bounds, as well as
their impact on the enabledness on a certain time E(a, t). Again, all state-
ments formulated for, e.g., precedence(a,b) also hold for (chain/alternate)
precedence/succession. In case a declarative process model is not in a per-
manently violated state, it holds that U(a, t) ≥ L(a, t), ∀a, t, as the lower
bound is always calculated as the maximum of the old and newly assigned
value, and the upperbound is the minimum of the old and newly assigned
value. E and C are determined by the outcome of the operationalization of
the separate constraints, e.g., an FSA, and the outcome of applying the rules
in the table iteratively over all activities. E(A, t+ 1|π(a, b)) is calculated as
in Algorithm 1 where π(a, b) is the constraint for which the rule is applied,
i.e., chain response or not chain succession. The procedure checks whether
the activity is enabled and whether it will become enabled through firing the
antecedent of the constraint in question which may serve as a consequent in
a precedence relationship.

For a branched response(a,B) constraint, the implications on the activity
bounds become:

–
∑
b∈B U(b, t) = 0 =⇒ U(a, t) = 0,

– ∃b ∈ B, U(b, t) = 1 ∧
∑
bo∈B\b U(bo, t) = 0 ∧ L(a, t) > 0

=⇒ E(b, t+ 1) = 0, and

– (L(a, t) > 0 ∨ CA(t) = 1) ∧
∑
bo∈B\b U(bo, t) = 0 =⇒ L(b, t) =

max(L(b, t), 1).

The same exercise can be repeated for other branchable constraints as well.
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Algorithm 1 Calculating E(c, t+ 1|π(a, b)).
Input: c . An activity c ∈ A
Input: π(a, b) . A constraint π ∈ Π
Output: {0, 1}
1: procedure E(c, t+ 1|π(a, b))(c, π(a, b))
2: if E(c, t) = 1 then . c is enabled
3: for πi(ai, bi) ∈ •c do
4: if πi ∈ ΠPD ∪ Πnotchaisuc ∧ a = ai) then . Check whether c
5: return 0 . will not be disabled by a
6: end if
7: end for
8: else
9: for πi(ai, bi) ∈ •c do

10: if πi ∈ Πprec then . Only a precedence constraint can enable c
11: if CA(πi) = 0 ∧ a = ai then
12: return 0 . c will not be enabled by a
13: end if
14: end if
15: end for
16: end if
17: return 1
18: end procedure

By propagating all these dependencies whenever a change is made to
an activity until all bounds are set, the dependencies can be made explicit
throughout the model. To explain how the constraints relate exactly, depen-
dency structures are constructed to link parts of the model into constraint
groups. Each constraint has different implications, and from Table 4.1, the
following types are derived:

– Backward-propagating constraints: all response-type constraints
require that the consequent resolves the temporary violation that might
be triggered by the antecedent. Hence, all constraints that have the
antecedent working as a consequent, being ‘on the left hand side’ di-
rectly influence the consequent, for it needs to resolve any outstanding
temporary violations and hence has its lower bound raised:
ΠBW = Πrespex ∪Πcoex ∪Πresp/suc

– Forward-propagating constraints: all precedence-type constraints
require that the consequent fires to activate the antecedent. Hence,
all constraints that require the antecedent to act as a consequent to
resolve a violation rely on this type of constraints:
ΠFW = Πcoex ∪Πprec/suc

– Permanently-disabling constraints : not succession(a,b), not
chain succession(a,b), and exclusive choice(a,b) all permanently dis-
able either both a and b, or only b, as the cumulative function #A is
used to set the bounds. Once the activities are disabled, they can-
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not become enabled again. The same holds for the absence and hence
exactly constraint:
ΠPD = Πnotsuc ∪Πnotcoex ∪Πexclchoi

Now the set of dependency structures DP is constructed for DM with
a dependency structure being a tuple DS = (πDS ,ΠDS

dep, DS
DS
dep), DS ∈ DP

with

– πDS the constraint triggering the structure,

– ΠDS
dep the set of dependent constraints, and

– DSDSdep the set of nested dependency structures dependent of πDS .

To fill ΠDS
dep and DSDSdep , Algorithm 2 creates a dependency structure

for every activity that is involved in at least one of the five constraints
that can permanently disable it. Hence, a structure is created for a in
absence/exactly(a,n), a and b in exclusive choice/not co-existence(a,b), and
for b in not succession(a,b) as can be seen in Algorithm 2, lines 7-25.

First, all backward-propagating constraints are considered (ΠBW ⊆ Π)
and used for recursive search, as well as stored in Πdep (Algorithm 3, lines 1-
22) as they have a direct impact on πDS . During this procedure, all incoming
existence and choice constraints are stored as well (Algorithm 3, lines 16-18).
They also need to be fulfilled, but do not propagate due to their unary nature.
When responded existence is encountered, a new dependency structure DL ∈
DSDSdep is constructed because when the constraint becomes satisfied (by
firing its consequent), it is satisfied indefinitely (unlike, e.g., response which
can become temporarily violated again) and its propagation is also abolished
(Algorithm 3, lines 6-10).

For every activity that is encountered by the algorithm, a forward-
dependency search is performed for all forward-propagating constraints
ΠFW ⊆ Π, which includes all (alternate/chain) precedence constraints and
co-existence. These constraints need to be activated (the antecedent has to
be fired, in the case of alternating versions even multiple times) to resolve
dependencies from backward-propagating constraints. The constraints de-
pendent on them are linked to them through a separate, nested dependency
structure DL ∈ DSDSdep (Algorithm 3, lines 23-36).
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Algorithm 2 Retrieving dependency structures
Input: DM = (A,Π)
Input: ΠBW ← Πresp/coex ∪ Πresp . Backward-propagating constraints
Input: ΠFW ← Πcoex ∪ Πprec . Forward-propagating constraints
Output: DP . The set of dependency structures for DM

1: procedure ReturnDepTrans(DM,ΠBW ,ΠFW )
2: DP ← ∅ . The set of all dependency structures of the model
3: for π ∈ Π do
4: DS ← ∅ . The dependent structure for π
5: V l ← ∅ . Set of visited activities for left search
6: V r ← ∅ . Set of visited activities for right search
7: if π ∈ Πabs ∨ π ∈ Πexa then
8: πDS ← π
9: DS ← SeaLe(πa, V

l, DS) ∪ SeaRi(πa, V r, DS)
10: DP ← DS
11: end if
12: if π ∈ Πnotsuc then
13: πDS ← π
14: DS ← SeaLe(πb, V

l, DS) ∪ SeaRi(πb, V r, DS)
15: DP ← DS
16: end if
17: if π ∈ Πexclchoi ∨ π ∈ Πnotcoex then
18: πDS ← π
19: DS ← SeaLe(πa, V

l, DS) ∪ SeaRi(πa, V r, DS)
20: DP ← DS
21: DS2 ← ∅
22: πDS2 ← π
23: DS2 ← SeaLe(πb, V

l, DS) ∪ SeaRi(πb, V r, DS2)
24: DP ← DS2

25: end if
26: end for
27: return DP
28: end procedure

4.3.3 Interpretation

First, the definition of a hidden dependency is reinterpreted in light of the
previous formalization:

All the updates that are performed throughout the model which
change the upper and lower bounds of an activity because of unary
propagation, and which are caused by other activities and con-
straints not directly connected to that activity, are externaliza-
tions of hidden dependencies.

By discovering and calculating all these updates, the approach of using the
propagation and the dependency structures give a complete overview of the
hidden dependencies.

While the unary propagations provide the rationale for explaining hidden
dependencies, dependency structures are used to visualize them. Although
constructing dependency structures can already give extra information by
displaying them in a graph showing which constraints interact with the main
constraint (πDS) in the structure, they can also be expressed in extra de-
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Algorithm 3 Searching for dependent constraints

1: procedure SeaLe(a, V,DS) . Search the left hand side of the activity
2: if ¬(a ∈ V ) then . Do if a is not visited yet, avoids infinite loops
3: V ← a
4: for π ∈ •a do . Scan all incoming Declare constraints of activity a
5: if π ∈ ΠBW then
6: if π ∈ Πrespex then
7: DL← ∅ . Create new nested dependency structure
8: πDL ← π
9: DL← SeaLe(πa, V,DL) ∪ SeaRi(πa, V,DL)

10: DSDSdep ← DL . Add nested structure to main structure DS

11: else
12: ΠDSdep ← π

13: DS ← SeaLe(πa, V,DS) ∪ SeaRi(πa, V,DS)
14: end if
15: end if
16: if π ∈ Πexis ∨ π ∈ Πexa ∨ π ∈ Πchoi then
17: ΠDSdep ← π

18: end if
19: end for
20: end if
21: return DS
22: end procedure

23: procedure SeaRi(a, V,DS) . Search the right hand side of the activity
24: if ¬(a ∈ V ) then
25: V ← a
26: for π ∈ a• do . Scan all outgoing Declare constraints of activity a
27: if π ∈ ΠFW then
28: DL← ∅
29: πDL ← π
30: DL← SeaLe(πb, V,DL) ∪ SeaRi(πb, V,DL)

31: DSDSdep ← DL

32: end if
33: end for
34: end if
35: return DS
36: end procedure

scriptions to annotate the model in order to help understand why constraints
are related and what combined impact they have. These descriptions can be
provided next to the model and are based on the following principles.

First of all, for exclusive choice(a,b) and not co-existence(a,b), the struc-
tures reflect that whenever an activity from either structure is fired (either
one in the structure containing a or b), the activities in the other structure
become disabled permanently (UB(a)/UB(b) = 0). Indeed, firing any ac-
tivity in the dependency structure of a or b requires a or b to fire, hence
activating exclusive choice or not co-existence. If the structures of a and b
share activities, this means the net is not deadlock-free.

Secondly, for not succession(a,b), a becomes disabled whenever a con-
straint π ∈ ΠDS

dep is temporarily violated and needs b to resolve it (i.e.
LB(b) > 0). Also, dependent structures in d ∈ DSDSdep cannot contain
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any violations in their Πd
dep unless the antecedent of the main constraint

πd ∈ DSddep is activated and can execute a minimum number of times re-
quired. For unary constraints, absence(A,n) and exactly(A,n), this applies
as well, with the exception that a becomes disabled when a constraint relies
upon it to become satisfied again (UB(a) = 1 but there exist activities in
ΠDS
dep for which the lower bound is higher than 0).

Finally, every execution of activities in chain constraints should be
checked. For each of them, it is checked whether the consequent is avail-
able to fire for chain response, or is the only one available for not chain
succession in order to avoid deadlock.

4.3.4 Example

Consider the model in Figure 4.3 and its dependency structure in Figure
4.2. The lower and upper bounds and the enabledness of the activities are
added for clarification. Not succession(f,d), so any occurrence of f cannot
be followed eventually by d, causes the algorithm to construct a dependency
structure for d. Backward searching will yield no constraints, however, a for-
ward search adds a new dependency structure for alternate precedence(d,e).
If d cannot fire anymore (UB(d) = 0 through not succession(f,d)), any ac-
tivity that still relies on d to enable it will become permanently disabled
as well, or have an upper bound of 1 when the alternate precedence is ac-
tivated. A backward search for e adds alternate response(b,e) to the set
of dependent constraints, then the operation continues until the following
structure is constructed: DS = {πDS = πnotsuc(c, b),Π

DS
dep = ∅, DSdep =

{πDS = πaltprec(d, e),Π
DS
dep = {πaltresp(b, e), πaltresp(a, b)}, DSdep = {πDS =

πaltprec(b, c),Π
DS
dep = πexis(c, 2), DSdep = ∅}}}. The dependency structure

can also be visualized as in Figure 4.2.
In this model, situations with very tricky implications can occur because

of the interplay of constraints. As long as the lower bound of e does not
reach 1 and alternate precedence(d,e) is not activated, f cannot fire. When
c has fired once and a has fired, b needs to fire only once more to enable c
for a second time. Hence e has to fire only once more afterwards to resolve
alternate response(b,e), and f can fire. If e would fire before reaching a lower
bound of 1, d would have to fire in order to make e enabled again, hence
disabling f . In a case where d would fire for the last time and e can fire
only once more, e becomes disabled in case a fires, as this would require
b to resolve alternate response(a,b) first and hence e to resolve alternate
response(b,e) afterwards. Since e can only fire once more, it cannot use
its last execution until all previous constraint violations have been resolved
before it can resolve the violations directly connected to it.
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c existence(c,2)

b

alternate precedence(b,c)

e

alternate response(b,e) existence(b,2)

a

alternate response(a,e) existence(a,1)

d

alternate precedence(e,d)

existence(d,2)

f

not succession(d,f)

Figure 4.2: The corresponding dependency graph of the model in Figure 4.3.

4.4 Conclusion and Future Work

This chapter reported on the in-depth analysis of declarative process models
which yields an approach that renders users and modelers able to discover
the dependencies that exist between constraints defined over the activities
in a model. The approach is based on the propagation of characteristics re-
garding the upper and lower bound on the occurrence of activities and their
effect on the enabledness of activities. The results include an overview of
all propagation properties of the constraints on a template-level, as well as
algorithms to construct dependency structures, which are a tree-like visual-
ization of all the connections that exist between the constraints.

The uncovering aims at improving the understanding of how constraints
are related and to relieve users from the impediment of not being able to
grasp the full behavior that the constraints impose on the activities. There-
fore, in the next chapter, an overview of a user study in which the dependency
structures are calculated and used for extra textual annotations is reported.
Finally, the approach is also a valid tool that can be used to understand the
impact of conjoining certain types of constraints for executable models such
as FSAs and R/I-nets.
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CHAPTER 5

Applications of Uncovering Hid-
den Dependencies

“Eighty percent of success is showing up.”
— Woody Allen

In the previous chapter, Chapter 4, it was shown how dependencies in
constraint-based declarative process models can get uncovered and repre-
sented as a series of bound propagations visualized through dependency
structures. In this chapter, the applications that are enabled by this un-
covering are researched in four forms.

First, it is scrutinized how the complexity of a declarative process model
can be measured by making use of the dependency information of constraints
used in a model. At the moment, very little research has been conducted on
this subject. Even though declarative process models are often regarded as
difficult to understand, no effort has been made towards quantifying the com-
plexity of them. It is the goal to obtain a scoring mechanism for declarative
process models to inform the user and modeler regarding their complexity.

Next, the implementation of the approach discussed in Chapter 4 is
shown. This tool, called the Declare Execution Environment, was used for
a user study with 193 novice process modelers that was performed to as-
sess whether annotating a Declare model with dependency information can
actually improve the understanding of the reader. Results show that, in-
deed, modelers are better capable of grasping the full behavior of the model
because of the help that was provided through the tool.

Subsequently, an initial approach towards a different representation of
declarative models is introduced, based on structuring the model according
to dependency structures and their carrying activities. This is useful to offer
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a different angle that might better reveal the impact of certain activities on
the further execution of the model.

Finally, a short digression along the connection of the dependencies to
the R/I-net conversions of Chapter 3 is made by showing how the knowledge
base used for explaining the bounds propagation can be used together with
separate R/I fragments.

5.1 The Complexity of Constraint-Based Pro-
cess Models

In this section, a complexity metric for declarative process models is pro-
posed based on the insights provided by the dependency structures. First,
the existing approaches used in traditional procedural models are discussed
and evaluated for declarative models. Next, a new metric is proposed that is
tailored towards the characteristics of constraint-based declarative process
models.

5.1.1 Complexity

The complexity of software programs encompasses many aspects. In the
classification of complexity proposed by [15], a distinction is made between
psychological, computational, and representational complexity. It is argued
that the former is the most important for cognitive complexity, which it-
self is comprised of problem complexity, programmer characteristics, and
structural complexity. While the former two are either fixed (program com-
plexity) or hard to control (programmer skills), the latter is often quantified
by means of characteristics of code [66] or graph properties [101].

One of the most widely used metrics in traditional BPM is based on the
cyclomatic complexity [101], which is defined for a strongly connected graph
as v(Φ) = e− n+ p with

– e the number of edges,

– n the number of vertices, and

– p the number of connected components, being the begin state and
accepting states.

This metric reflects the number of execution paths possible in the model.
It was adopted for (procedural) process models as the Control-Flow Com-
plexity by [16, 54], which extends the cyclomatic complexity with typical
routing constructs such as (X)OR splits and joins. Although it is possible
to use this metric to give an estimate of how complex a declarative process
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model is, because v can be calculated on FSAs, it is hard to motivate the out-
come as the link between execution model and constraint model is missing.
Consider the example of Figure 4.3 of Section 4.3.4 on page 77. By con-
structing its execution automaton and applying Huffman reduction [76], a
cyclomatic complexity of 243 is found. Removing not succession(f,d), hence
removing the hidden dependencies, reduces this number to 181. However,
downsizing the hidden dependency structure by removing alternate prece-
dence(b,c), which causes an extra dependency structure nested in the main
one, instead results in a score of 150. Removing alternate response(a,b) and
thus removing part of a nested structure, results in a score of 190. Removing
all existence constraints reduces the score drastically to 71, not surprisingly
reflecting the fact that counting in FSAs is a tedious task.

For another illustration, the examples used in the experiment (for details
see Section 5.2) were converted into executable finite state machines based
on regular expressions and again Huffman reduction was applied. The com-
plexity scores can be found in Table 5.1. Unfortunately, while the scores
confirm the intuition that bigger models suffer from higher complexity, it is
hard to explain from the FSM which factors actually influence the score. By
performing a leave-one-out strategy, it is assessed which constraints drive
the complexity, as can be seen in the table. However, while this might give
an idea of how the constraints interact with that particular constraint, it re-
mains to be seen how groups of constraints actually drive complexity. Also,
this does not necessarily line up with the perceived complexity of the con-
straints. From these rolling experiments, it appears that mainly precedence
and unary constraints blow up the automaton.

Clearly, there is a diverse impact on cyclomatic complexity. It is also
questionable whether this metric is appropriate for measuring complexity in
the end. First of all, the magnitude of the number is hard to interpret, espe-
cially since declarative process models are typically designed to underspecify
the control flow. This results in models with a high score although the be-
havior is described with only a few constraints and activities. Secondly, the
link between the magnitude of the model and the complexity of the behavior
is not obvious. Constraints that reduce the size of the execution model, such
as absence, still introduce complex behavior, as restricting the amount of
times an activity can be executed has a big impact on the surrounding ac-
tivities as well. The existence constraint on the other hand increases the size
of the execution model significantly and is conceptually not much different
and harder to understand.
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Transitions States Accepting States Cyclomatic complexity
Model 1 15 6 3 13
Response(a,b) 9 4 3 9
Precedence(b,c) 13 5 3 12
Not co-existence(b,e) 26 8 2 21
Response(d,e) 11 5 3 10
Model 2 65 25 1 42
Exactly(a,2) 84 30 2 57
Existence(c,2) 70 25 2 48
Exactly(b,2) 75 25 3 54
Absence(d,3) 65 25 1 42
Alternate precedence(a,c) 141 45 1 98
Alternate response(b,d) 141 45 3 100
Model 3 198 44 3 158
Response(a,b) 106 28 3 82
Response(b,c) 258 54 3 78
Exactly(c,2) 118 25 3 97
Precedence(b,e) 164 35 2 132
Response(d,e) 101 27 3 78
Alternate precedence(e,g) 148 34 2 117
Response(f,g) 106 27 3 83
Model 4 60 18 4 47
Response(a,b) 37 13 4 29
Existence(b,1) 60 18 4 47
Alternate precedence(b,c) 36 12 2 27
Not succession(e,b) 45 13 2 35
Existence(c,1) 60 18 4 47
Response(d,c) 101 30 4 76
Existence(d,2) 32 10 4 27
Model 5 800 144 6 663
Response(a,b) 616 112 6 511
Response(b,c) 979 168 6 818
Exactly(c,2) 501 84 6 424
Precedence(b,e) 640 112 4 533
Response(d,e) 425 88 6 344
Alternate precedence(e,g) 614 112 4 507
Response(f,g) 441 88 6 360
Choice(a,j) 440 88 6 359
Not succession(i,j) 380 72 3 312

Table 5.1: Comparison of the cyclomatic complexity scores for the different models
of Section 5.2, with and without each constraint. The hidden dependency-inducing
constraints are colored blue, while the complexity scores that are higher than the
baseline model are indicated in red.
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5.1.2 A Metric for Complexity of Declarative Process
Models

In this section, an appropriate complexity metric for constraint-based declar-
ative process models is constructed, based on various metrics that are avail-
able in literature.

In many works, the importance of the interconnectedness of activities
is put forward as one of the most important contributors that raise com-
plexity [136, 52, 53], which also holds for declarative models as illustrated
by the user-study in [64]. The discourse in Section 4.3 explains how con-
straints exhibit coupling behavior, which can be derived from a model by
using dependency structures of a hierarchical nature. This corresponds with
the chunking and tracing landscape graphs as proposed in [15] to express
processing different levels of a varying number of steps in a computer pro-
gram, which was later adapted for process models by applying it to process
structure trees [172] as used in [52]. Hence, the concept of interconnectivity
is used as a central notion for the metric.

The declarative process model complexity metric DC for a model DM
is proposed as follows.

DC(DM) = Σa∈A(| • a|+ |a • |) + Σds∈DSS(ds, 1)

S(DS, l) = 1 + |Πds
dep|+ Σdsdep∈DSDSdep l × S(dsdep, l + 1)

It tackles the relationships of the constraints in various ways. First of
all, all constraints are counted and binary constraints are counted twice
(Σa∈A(| • a| + |a • |), for every activity they involve). This lies in line with
the fan-in, fan-out principle of [67], which is designed to measure the connec-
tion of an activity to its environment. Next, all the dependency structures
are scored Σds∈DSS(ds, 1). For each structure, the sum is made over the
main constraint (1), the number of dependent constraints (|Πds

dep|), and the
scores of the nested structures (Σdsdep∈DSDSdep l× S(dsdep, l+ 1)). The deeper
a structure is nested, the higher the score to reflect the fact that the depen-
dency is very long and hence hard to grasp. Activities that are not connected
to any other activity are not taken into account, as they do have no influ-
ence on the behavior through propagation and they are only directly affected
by constraints that have a global impact on the activities such as the ones
including the LTL next-operator, init, and last constraints. This contrasts
with the activity complexity defined in [17], where the amount of activities
is seen as a process model equivalent to the lines-of-code metrics [84]. The
proposed metric here provides a constraint-centric approach.

Nevertheless, in this way all the relations of the model are summed into
one number that serves as a complexity metric. For the example from Section
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4.3.4, this would result in a score of 33. If the same exercise of leaving out
constraints is repeated, the following scores are outputted:

– DC(DM) = 33

– DC(DM(A,Π \ πnotsuc(f, d))) = 10

– DC(DM(A,Π \ πaltprec(b, c))) = 19

– DC(DM(A,Π \ πaltres(a, b))) = 27

– DC(DM(A,Π \ {πexis(a, 1), πexis(c, 2)})) = 23

These scores are better capable to compare the impact of the interaction of
the constraints through propagation, compared to, e.g., cyclomatic complex-
ity because they reflect the size of the model, as well as the distance and
interconnectedness of the constraints.

5.2 Empirical Evaluation Through User
Study

In this section, it is empirically investigated whether the cognitive effort that
hidden dependencies [60] cause in declarative process models can be relieved
by making them explicit. Hence, the hypothesis to be rejected is ‘Annotating
declarative process models with information about hidden dependencies does
not yield better understandability’. The level of understanding is measured
by the score that participants received for answering questions regarding the
models they had to interpret.

5.2.1 Tool Support

The construction of the dependency structures has been implemented in
the Declare Execution Environment, of which the implementation can be
found at http://processmining.be/declareexecutionenvironment. The
tool can read a Declare model saved from Declare Designer [183], which,
during execution, is supported by descriptions for the hidden dependencies.
A screenshot and an example can be found in Figure 5.1.

Furthermore, the dependency structures can be visualized next to the
model as a directed graph as well. Finally, the trace created over the model
by the user is displayed below the model, aiding the user in understanding
the history of the current situation displayed over the model.

The execution semantics are provided by dk.brics.automaton [106] and
consist of the product of the separate Declare automata expressed in regular
expressions, as can be found in [22], [185], and Table 3.1.

http://processmining.be/declareexecutionenvironment
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Finally, the tool is capable of calculating the declarative process model
complexity measure of Section 5.1.

5.2.2 Experimental Setup

In the experiment, 193 students (see Table 5.3) enrolled in KU Leuven’s
Business Analysis course, in which they learn about both procedural and
declarative process modeling, were asked to solve five questions for each
of five different Declare models in a timespan of two hours. The students
had the same modeling experience and background and can be considered
novice business process modelers. The models are summarized in Table 5.2.
Although not the main goal of the experiment, the models were constructed
to test for different complexity scores (DC(model1)= 13, DC(model2)= 15,
DC(model3)= 33, DC(model4)= 22, DC(model5)=40). They were chosen
in order to have a good representation of the different constraints that can
cause hidden dependencies, and their interaction.

– Model 1: focuses on the impact of the not co-existence constraint.
The model contains a not co-existence constraint which disables a, b,
and c after firing d or e. Because e disables b, c cannot fire anymore
and a should not fire in order to prevent an unresolvable activation
of response(a,n). If d fires, e has to fire eventually and has the same
effect. The other way around, firing a or b has the same effect on d
and e.

– Model 2: focuses on the impact of unary constraint propagation. a
and c are connected by an alternate precedence constraint and can
happen exactly twice and at least twice respectively. Since for every
occurrence of c a new occurrence of a is needed and a can only fire
twice, c can also only happen exactly twice. Therefore, if a occurs, it
has to wait for c to occur, as otherwise it has fired its maximum amount
of times and cannot guarantee fulfilling the existence constraint of c.
The same goes for b and d, connected by alternate response. Here, d
can happen at most twice and b has to happen exactly twice. b can
only happen again after the next d, hence d has to be able to occur at
least as many times as b still has to happen.

– Model 3: focuses on the impact of simple forward and backward
dependencies induced by exactly(c,2). In the states where c can hap-
pen only once more, all dependencies it has with its dependent con-
straints need to be resolved: it has to be able to fire after activating
response(a,b) and response(b,c). Also, if f fires, response(f,g) needs
to be resolved. This happens by firing g, which is only possible after
activating constraints alternate precedence(g,e) and precedence(b,e). If
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c fires twice before b has fired, it can never happen anymore as fir-
ing b leads to activating response(b,c), which cannot be resolved by c
anymore.

– Model 4: focuses on the impact of more advanced forward and back-
ward dependencies induced by not succession(b,e). b has to be able to
activate alternate precedence(b,c), so c can resolve the inevitable acti-
vation of response(d,c), because d has to fire at least 2 times. Firing c
before resolving existence(d),2 will disable e, as b has to fire again to
activate the alternate(b,c) constraint. Once e is fired (and c can fire), c
becomes disabled as it can fire only one time more, until existence(d,2)
is resolved and it can resolve response(d,c). After this, both c and d
become disabled.

– Model 5: focuses on the same impact as models 3 and 4, with extra
choice and not succession constraints. This model is an extension
to model 3, although containing two dependency structures. In this
example, the extra choice constraint requires either a or j to fire. If
i has fired and j has never fired and cannot fire anymore (due to not
succession(i,j)), a has to be able to fire. If c can only fire once more, it
becomes disabled until a fires and response(a,n) and response(b,c) can
be resolved. If a is disabled after firing c twice (rendering it disabled
due to the response constraints), i becomes disabled until j resolves
choice(j,a).

The exercises intentionally included overlaps to see whether participants
progressed and learned to recognize the hidden dependencies when viewed
from different angles. E.g., in model 5, all the different types of dependencies
were brought together (in separate questions).

At the start of the test, students were provided instructions by making
use of the example in Section 4.2, a model which was used as a foundation for
models 3-5, but without the additional constraints and activities added. As
such, the idea behind hidden dependencies was explained but not introduced
explicitly as the subject of study. Furthermore, the introduction served as a
tutorial for the participants to use the tool they were provided with.

The time participants needed to solve the questions was recorded. It was
checked whether the questions that were answered in less than 20 seconds
were incorporated into the final results, however, this was not the case. The
students all correctly indicated that they ran out of time. There were partic-
ipants that occasionally answered in less than 20 seconds based on previous
answers, however, often this led to an incorrect answer as the difference often
remained subtle. The students were urged to try to answer as correctly as
possible, rather than to rush towards the end to fill in all questions. This
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Model 1 Model 2 Model 3
Response(a,b) Exactly(a,2) Response(a,b)
Precedence(b,c) Existence(c,2) Response(b,c)
Not co-existence(b,e) Exactly(b,2) Exactly(c,2)
Response(d,e) Absence(d,3) Precedence(b,e)

Alternate precedence(a,c) Response(d,e)
Alternate response(b,d) Alternate precedence(e,g)

Response(f,g)

Model 4 Model 5
Response(a,b) Response(a,b) Choice(a,j)
Existence(b,1) Response(b,c) Not succession(i,j)
Alternate precedence(b,c) Exactly(c,2)
Not succession(b,e) Precedence(b,e)
Existence(c,1) Response(d,e)
Response(d,c) Alternate precedence(e,g)
Existence(d,2) Response(f,g)

Table 5.2: The different Declare models used during the experiments. The figures
of the models used in the experiment can be found by following the link to the
tool site.

meant that the questions of model 4 were left unanswered in 2 cases, the
questions of model 5 in 19 cases.

In order to measure the impact of handing natural language descriptions
and the visualization of dependency graphs, the students were divided into
three groups which received a different version of the Declare Execution En-
vironment. Group A could only see the Declare model and the constraint
descriptions, but no color annotation nor dependency structure visualiza-
tions. Group B received a tool in which the enabled activities were colored
green, and temporarily violated constraints were colored red, in a fashion
described in [92] and similar to Declare Designer [183]. Also, the constraint
descriptions were given. Finally, group C was given an environment with the
same functionality as group B, but with extra descriptions concerning hid-
den dependencies, as well as the possibility to open a dynamic visualization
of the dependency structures. These groups are represented in the results
by the session variable.

The questions were aimed at uncovering to which extent the participants
grasped the full impact of the blend of different constraints. They were asked
to indicate which activities were enabled after firing a certain sequence, and
why or how to reach a certain firing sequence. Since two out of three groups
knew which ones were enabled, they could focus more on the second part of
the question. An example question used for model 1 is ‘After firing d, which
activities are still enabled? Explain.’. A full list of questions can be found in
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Gender Program
Group Participants Male Female IS Business Others

A 65 45 20 6 57 2
B 64 37 27 6 57 1
C 64 37 27 11 52 1

Table 5.3: The students were selected from 3 different study programs, however,
it was made sure their distribution could not skew the results.

Appendix A.
Each question was scored on a 0 to 1 scale, where incomplete answers

(usually because of overlooked hidden dependencies or incorrect use of con-
straints) were still awarded a score higher than 0. E.g., a student from group
B who provides the correct set of enabled activities but fails to state that
activity c in model 3 is not enabled because of hidden dependencies was still
awarded 0.6. The explanation was taken into account so as to make a fair
comparison with students in group A, who got no extra information, and
therefore many times missed even these basic answers. Group C students
that just copied extra descriptions provided by the tool also did not receive
a grade of 1, as they did not prove to understand the model.

5.2.3 Results

In this section, the results are discussed for both the statistical analysis, as
well as the insights gathered from the text-based answers students gave to
the questions.

Quantitative Results

Given this setup, an experimental analysis can be conducted to investigate
the impact of the environment students were given (i.e. session) on the score
with a higher score indicating a better level of understanding. Figure 5.2
shows boxplots of the average scores over 5 questions, per model and per
session. From the figure, it can be seen that for each model, an increase is
observed in terms of the score when students are provided with additional
annotations. Note that the data is available on the tool’s web site.

The scores are skewed to the right, as it was easier to obtain a grade
above 0.5 when answering correctly, and significantly more people passed
than failed. The Shapiro-Wilk normality test [132] rejects that the score
follows a normal distribution with a p-value smaller than 0.0001. Hence, for
statistical analysis, non-parametric tests need to be used. In this case, the
aligned-rank transformation approach for non-parametric ANOVA [186] was
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chosen for it provides a good alternative to the Kruskal-Wallis and Friedman
tests as it can process interaction effects as well. Furthermore, the response
variable is continuous and cannot make use of logistic regression without
binning. The results can be found in Table 5.5.

Next to the session and model variables, it was tested whether program
and gender had any explanatory power by performing an ANOVA analysis
for score = session + model + gender and all interaction effects as well as
score = session + model + program. In both cases, the main effects with
the variables were not significant on a p-threshold of 0.05, as can be seen
in Table 5.5. However, some interaction effects were significant. Judging
from a full regression performed on all variables and their interactions on
the whole dataset, however, the effect sizes can be considered very small.

In Table 5.4, a pairwise mean comparison is done for the sessions and
models. Clearly, there is a big difference between the three sessions, offering
proof to reject the hypothesis that tooling has no impact on the way the par-
ticipants score for the questions. When comparing the models, the results
also show very strong differences in the estimated values, except for the dif-
ference between models 2-3 and 3-4 on a 0.05 significance level. Although the
complexity scores for these models differ, the impact of the order of questions
might have had an impact on the score. Furthermore, models of different
sizes and with and without hidden dependencies need to be investigated to
truly capture the validity of the complexity measure.

estimate Std. Err. df t.ratio p.value
A-B -722.729 126.1137 189.99 -5.731 <.0001
A-C -1140.8 126.0914 189.86 -9.047 <.0001
B-C -418.07 126.6632 190.34 -3.301 0.0033

1-2 701.1825 51.33051 4494.3 13.66 <.0001
1-3 588.4953 51.41334 4494.94 11.446 <.0001
1-4 490.6006 51.60979 4497.52 9.506 <.0001
1-5 866.8739 53.05569 4508.16 16.339 <.0001
2-3 -112.687 51.23619 4493.66 -2.199 0.18
2-4 -210.582 51.43256 4496.24 -4.094 0.0004
2-5 165.6915 52.87533 4506.67 3.134 0.015
3-4 -97.8947 51.51686 4496.96 -1.9 0.3172
3-5 278.3787 52.95978 4507.42 5.256 <.0001
4-5 376.2734 53.03212 4503.69 7.095 <.0001

Table 5.4: Comparison of the means of the different estimates, first for the three
sessions, next for the models.

To evaluate the impact of each variable, a linear regression (Score =
α×model+ β × session+ γ × session×model+ ε) was fitted on the data.
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F Df Df.res Pr(>F)
session 41.959 2 190.06 8.07E-16
model 78.5 4 4499.81 <2.22E-16

session:model 17.728 8 4499.78 <2.22E-16

session 7.4034 2 268.41 0.000742
model 7.0401 4 4475.07 1.20E-05

program 2.6998 2 243.96 0.069224
session:model 2.5618 8 4479.42 0.008726

session:program 2.0129 4 226.39 0.093563
model:program 3.9536 8 4479.96 0.000113

session:model: program 1.6487 15 4481.58 0.054136

session 37.2567 2 187.21 2.39E-14
model 69.36555 4 4488.33 <2.22E-16

gender 2.90195 1 187.2 0.090132
session:model 16.47918 8 4488.39 <2.22E-16

session:gender 0.64492 2 187.22 0.525869
model:gender 3.5061 4 4488.37 0.007277

session:model: gender 2.08561 8 4488.41 0.033791

Table 5.5: Three non-parametric ANOVA analyses with interaction effects. First
including program, next including gender, and finally only between session and
model.
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Coefficients Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.64357 0.0164 39.237 <2.00E-16 ***

model2 -0.20942 0.02309 -9.07 <2.00E-16 ***
model3 -0.17773 0.02309 -7.698 1.68E-14 ***
model4 -0.14204 0.02309 -6.152 8.30E-10 ***
model5 -0.30587 0.02346 -13.037 <2.00E-16 ***

sessionB 0.11611 0.02327 4.99 6.27E-07 ***
sessionC 0.14768 0.02318 6.371 2.05E-10 ***

model2:sessionB 0.02755 0.03277 0.841 0.400526
model3:sessionB 0.06929 0.03277 2.115 0.034506 *
model4:sessionB 0.05505 0.03283 1.677 0.093664 .
model5:sessionB 0.19091 0.03369 5.667 1.54E-08 ***
model2:sessionC 0.18004 0.0327 5.505 3.88E-08 ***
model3:sessionC 0.11822 0.03277 3.608 0.000312 ***
model4:sessionC 0.07797 0.03285 2.374 0.017655 *
model5:sessionC 0.22634 0.03338 6.78 1.35E-11 ***
Residual standard error: 0.293 on 4683 degrees of freedom
Multiple R-squared: 0.1688
Adjusted R-squared: 0.1663
F-statistic: 67.92 on 14 and 4683 DF, p-value: < 2.2e-16

Table 5.6: Linear regression model based on the data gathered from the experiment
with significance scores ‘***’ 0, ‘**’ 0.001, and ‘*’ 0.01.

From the results in Table 5.6, it is clear that the impact of both the model as
well as the session (and hence tool) is highly significant. Post-tests to check
the assumptions for linear regression included running a Durbin-Watson-
test [45] which rejected the hypothesis for correlation among the residuals.
Finally, it was tested whether the error terms were distributed normally, as
can be seen in Figure 5.3. Observe that the data was also fitted for models
with gender and program included. These models did not raise the R-squared
values much (<0.18), hence hinting at little extra explanation power. Again,
the same results can be observed. The results suggest that the proportion
of the model for which the hidden dependencies hold affects the complexity,
or at least the intricacies of counting the lower and upper bound, because
the scores for model 2 were significantly lower for all groups, where group C
enjoyed the biggest surge in terms of scoring.

Nevertheless, the participants of sessions 2 and 3 performed significantly
better than the ones in session 1. Session 3 students performed best, al-
though the gap is somewhat smaller. Hence, it can be concluded that anno-
tating Declare models with extra dependency information improves the ability
of model users to correctly interpret the model.
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Figure 5.2: Boxplot of the average scores of 5 questions per model (1-5) and per
session (A-C).
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Figure 5.3: Q-Q plot of the error terms showing they are close to a normal distri-
bution.
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Figure 5.4: Time (in seconds) needed to answer the 5 questions for the models
(1-5) per session (A-C).
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Qualitative Results

Since the participants did not just give an answer in the simple form of
‘a is now enabled’ but had to motivate their answers, some extra observa-
tions could be made concerning the results. Although it was the case that
the two groups with the more elaborate tool were better capable of seeing
which activities were enabled and which constraints were violated, they still
seemed to ignore these annotations. Especially group B sometimes ignored
the coloring of the model as they did not understand some implications of the
constraints. Participants often also bended the descriptions of the Declare
constraints towards their understanding, hence starting to discuss irrelevant
parts of the model. For the third group, this behavior was still present,
although to a much lesser extent. Group A participants often found the
hidden dependencies in the easier examples. Because they had no support
they thought harder about the model, but nevertheless failed to find any
(hidden) dependencies in the more elaborate examples. Furthermore, it was
obvious from results that any type of response constraint was very hard to
grasp for students in general. Especially the constraint description that was
adopted from Declare tool [183] (’Whenever a happens, there needs to be
a b...’) seemed to cause confusion when used in a different context than in
class. Some students started to interchange response and alternate response
because of the ”Whenever A...” part.

The effects of the duration were not significant for a particular combina-
tion of session and model, however, for the last two models there seems to
be a difference in the amount of time needed to solve the questions as can
be seen from Figure 5.4. Students from the first session spent less time on
answering them, indicating either a lack of motivation, or just a clear lack
of understanding leading them to believe that the questions had the same
answers so they could rush towards the end. Since the models at first do
not seem to be much more advanced than the previous examples, students
missed the interplay of constraints and regarded them as non-existing.

Remarks

As in all empirical experiments, there are threats to validity that need to be
addressed, the main ones in this case are:

– Construct validity: The experiment was threatened by the hypothe-
sis guessing threat because students might figure out what the purpose
of the study is, which could affect their guesses. We minimized this
threat by hiding the goal of the experiment. Furthermore, it was only
possible to test 5 models, which does not cover all the different depen-
dencies. However, all the constraints that cause hidden dependencies
were used in the questions to cover them at least once. To test the
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complexity measure, however, too few different models of different sizes
were tested to make a fixed conclusion.

– Internal validity: The experiment had the maturation threat be-
cause subjects may react differently as time passes (because of bore-
dom or fatigue). We solved this threat by dividing the experiment into
different questions per model. Also, it was made sure there could be
no interaction between the students of different sessions.
The questions were always asked in the same order, mainly due to
technical restrictions, and also to capture whether the participants
progressed and learned from the previous examples. Not only over
exercises, but within an exercise series the questions built upon each
other to some extent. However, students received the base concept of
how they needed to interpret a model with hidden dependencies during
the introduction, giving them a clue for models 1 and 3-5.

– External validity: The experiment might suffer from interaction of
selection and treatment: the subject population is limited to students.
Although the number of subjects is quite high and their profiles quite
balanced, the results can only be generalized to students, but the sub-
jects might not be representative to generalize the results to profes-
sional modelers as well. It is, e.g., not possible to claim that the tool
can help or improve Declare modeling efforts for more experienced
users.

5.3 Refactoring Declarative Process Models

Hidden dependencies in process models are often built into the model because
of a lack of experience. Modelers are not aware of all the consequences that
the semantics of different constraints have, especially not when viewed in
a bigger picture. Next to uncovering the dependencies in order to raise
understanding of the interplay of constraints or reporting on the complexity
of a model as done in the previous sections, another possible solution is to
restructure a model in order to take away the dependencies, or to delineate
them in a fixed part of the model. In this section, an initial approach to do
so is devised by means of two examples.

5.3.1 Staged Declarative Models

Hidden dependencies that are caused by the constraints listed in Section
4.2 all have a common denominator in the fact that they only take effect
after the occurrence of a certain activity, as detailed in Section 4.3. For not
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Figure 5.5: A small Declare model centered around an exclusive choice constraints.

succession(a,b) the dependency holds before a fires, for exclusive choice(a,b)
and not co-existence(a,b) the dependency holds before either activity and
their dependent activities are fired, and for absence(a,n), the dependency
holds while a has not fired n − 1 times yet. Hence, in the models in which
the dependencies are present, different stages exist that can be used to re-
engineer the way the model is represented.

5.3.2 Example 1

Consider for example the small model in Figure 5.5. It contains an exclusive
choice constraint which incurs the behavior that is detailed in Section 5.2
under Model 1. When a or b fire, d and e cannot fire anymore, while when
d or e fire, a and b cannot fire anymore, and c will never be able to fire.
Hence, the model is completely separated into two distinct parts that can
never occur together. In Figure 5.6, the two separate models that exist next
to each other are displayed. In the initial state, depicted as a green circle,
the first activity is chosen. Depending on this choice, one of the two models
that reside in the global model is activated. When no constraints are in a
temporarily violated state, the model can end in a final, accepting state,
depicted as the red circle. Here, the model is two-staged, as the first stage
determines in which model the overall model resorts to after firing the first
activity.

For absence, a similar procedure can be followed. The difference is that
the model is not necessarily split up in the first stage, but rather that the
split can occur at any given time in the process. This also implies that
the intermediate constraint violation statuses influence which stage can be
obtained or not.

5.3.3 Example 2

Consider the model in Figure 5.7. After g fires twice, e and f are disabled
permanently as well, and the other activities’ enabledness depends on the
previous occurrence of f , as explained in Section 5.2 under Model 3. The
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Figure 5.6: An alternative view on the model displayed in Figure 5.5.
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Figure 5.7: A small Declare model centered around an absence constraints.

first stage exists up until g fires the first time. Then, depending on which
activities fire in the meantime, the next stages can be reached, but first all
temporarily violated constraints that still exist in the e-f -g chain need to be
resolved. Then, according to whether f has fired or not, the upper part of
the model consisting of a, b, c, and d is still enabled.

Figure 5.8 displays the different stages of the model. g is considered in
isolation, since only two occurrences of g occur. In Stage 1, if f or an activity
from inside the dependency structure DSprecedence(d,f) occurs followed by f ,
the model sheds the dependency structure. The same holds for Stage 3.
When g occurs in Stage 1, Stage 2 is reached. Both Stage 2 and 3 share
that the response constraint between e and f needs to be in an accepting
state before g can fire for the final time. If the dependency structure has
become independent of f , the four activities remain enabled, otherwise, no
other activity is enabled and the model transitions to its final state.
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Figure 5.8: An alternative view on the model displayed in Figure 5.7.

5.4 Global Semantics

In previous discourses on the nature of the global semantics of constraint-
based models, it was shown that constraints could not be executed separately
without conjunction to avoid deadlocks and unresolved violations. However,
now that all the interdependencies between constraints have been formalized
and can be calculated on-the-fly, it is possible to steer the separate automata
by the knowledge base of activity bound propagations that was discussed in
Section 4.3.

This is especially useful for combining separate constraints without mak-
ing the intersection of the behavior. The constraints are instantiated but
provided with lower and upper bounds which illustrates how they interact
at a given moment. Consider the example in Figure 3.22 on page 62, in a
stripped down version modeled as a Colored Petri net which is behaviorally
equivalent and augmented with a knowledge base transition, in Figure 5.9.
The knowledge base should ideally be connected with every activity and col-
lect information on all the states of the constraints (which are stored in the
places), to propagate the correct upper and lower bounds to the activities.
More precisely, the lower and upper bound can be replaced by a color set of
a single integer, which can enable or disable an activity temporarily.

However, this approach cannot replace model checking in general, as
the knowledge base can only avoid inconsistencies on the go. Hence, a full
analysis is only reported after running a full state space exploration, unless
an error has occurred sooner. Nevertheless, the information of upper and
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Figure 5.9: The example of Figure 3.22, now connected to a knowledge base which
is able to provide the correct upper and lower bounds for the activities.

lower bounds can also be integrated with the bounds information of a Petri
net in a mixed-paradigm model. By performing state space analysis, the
bounds of transitions can be calculated. Combining the information of both
analysis techniques can be used towards finding inconsistencies between both
models, and can also intersect the behavior during execution.

Consider for example the mixed-paradigm model in Figure 5.10 to achieve
a final marking where a single token is delivered to p5. The lower bound of
a, b, c, and d is 1. The upper bound of a and d is 1 as well, while the other
activities are unbounded upwards. On the other hand, the Declare model
has a restriction where f and g cannot co-occur, hence b and c cannot co-
occur. Clearly, the lower bounds are in conflict as when running the model,
either the lower bound of b or c is not met. In Chapter 8, a full mixed-
paradigm model checking approach is proposed. However, using the bounds
provides activity- and constraint-granular feedback during execution can,
according to the type of model checking that is required, be preferred over
the constraint-granular feedback that is provided by conjoining automata.

5.5 Conclusion and Future Work

This Chapter reported on the implementation and applications of uncov-
ering dependencies between constraints in declarative process models. The
first complexity metric tailored towards declarative process models was in-
troduced by making use of the interdependency of constraints, rather than
of control flow complexity, and was inspired by the current body of research
on the cognitive effort required to interpret (declarative process) models.
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Figure 5.10: An example of a mixed-paradigm model that has conflicting behavior
between both parts of the model.

The presented user-study with novice process modelers was carried out
to investigate whether the effort of understanding a declarative model was
lowered in case of hidden dependencies by uncovering them. Furthermore it
was tested whether the scores combined with the complexity metric lie in line
with the intuition used for the metric. Results suggest that the understand-
ability was raised significantly by showing the information regarding the
interplay of events, however, for determining a complexity measure further
research needs to be performed to fine-tune the elements used for calculation.

Next, the refactoring of declarative process models was briefly touched
upon, showing how constraints inflicting hidden dependencies have an impact
on the global behavior by displaying them in a staged-like fashion. This
approach can aid future modelers in constructing models and avoiding too
convoluted behavior.

Finally, the usefulness of calculating the bounds on the occurrence of
an activity was used in a model checking context, and the connection with
Chapter 3 was made to illustrate how a global semantics can be established
without making a full intersection of the different constraints that are used
to construct the model.
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CHAPTER 6

Mixed-Paradigm Process Mod-
eling with Intertwined State
Spaces

“They love to tell you
Stay inside the lines
But something’s better
On the other side.”

— John Mayer, No Such Thing

This part of the thesis deals with the comparison and simultaneous use
of the declarative and procedural process (modeling) paradigms. The three
chapters deal with the modeling, mining, and verification of mixed-paradigm
models respectively.

First, mixed-paradigm process modeling is dealt with in this chapter.
BPM in general often deals with the trade-off between comprehensibility
and flexibility. Many languages have been proposed to support different
paradigms to tackle these characteristics, as reviewed in Chapters 2 and 3.
Procedural languages are often regarded as rather comprehensible, as the
control flow can be understood from following the arcs and routing con-
structs, but have a harder time to support flexibility and ad-hoc changes.
Declarative languages, on the other hand, offer a good way to model flexi-
ble processes, but face understandability challenges as extensively studied in
Part 2. This chapter investigates in detail the scenarios in which combining
both approaches is useful. It provides a scoring table for Declare constructs
to capture their intricacies and similarities compared to procedural ones,
and offers a step-wise approach to construct mixed-paradigm models. Such
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models are especially useful in the case of environments with different layers
of flexibility and go beyond using atomic subprocesses modeled according to
either paradigm.

6.1 Introduction

To be effective, process models need to be both expressive and understand-
able. To achieve a good balance, numerous languages have been proposed,
each adding a certain aspect to the BPM language and tool sphere. The two
main control-flow paradigms, extensively discussed in Chapters 2 and 3, and
[59], both deal with the trade-off between comprehensibility and flexibility.
The procedural paradigm is characterized by the use of explicit activity flows
to express the activity paths through a process model, while the declarative
paradigm is typified by a focus on curtailing behavior with activity-level
rules rather than specifying entire activity paths, thus leaving many options
for possible enactment. On the one hand, procedural models are regarded
as rigid, but comprehensible, as they present the reader with what is pos-
sible in the process in a rather deterministic way. Declarative models on
the other hand, leave much unspecified and therefore are harder to read, as
the activity sequences allowed by the model remain implicit until they be-
come visible during execution. Each paradigm also has solutions to leverage
its issues with flexibility and comprehensibility. For example, in procedural
process models one can loosen the typically explicit paths around a certain
activity in, e.g., ad-hoc subprocesses, and in declarative models one can
overly restrain a process path by using strong constraints such as the chain
constraints, to obtain a stricter workflow.

This chapter investigates the possibilities of combining constructs of both
paradigms in an intertwined model, supported by the semantics of both lan-
guages at the same time. More specifically, a combination of Petri nets with
Declare is sought after. Mixed forms have already been discussed in [119]
and [184], mainly focusing on execution. This chapter, however, rather fo-
cuses on the modeling effort itself and the constructs used for that task. Since
many real-life processes are not completely flexible, nor completely fixed, the
setup of mixing both paradigms offers business process modelers many ap-
plications. The contributions are as follows. Scenarios in which such models
are useful are identified and the benefits they offer are explained. Also, the
overlap and interplay of mixed-models’ semantics and syntax is scrutinized
by constructing a scoring table for Declare constructs. Constraints that
obtain a higher score are more difficult to represent with Petri net-based
constructs and hence are of a greater need in a mixed model. Finally, a
step-wise approach is proposed for constructing mixed-paradigm models for
future users, taking into account the different characteristics of both models.
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Again, Petri nets and Declare are used to represent their respective
paradigms. The R/I-net conversions of Chapter 3 are used to represent
and score Declare constraints. In case they are used in a mixed-paradigm
model, the converted model of separate constraints is behaviorally equivalent
to a full conjoined model, as no interactions are present.

The remainder of this chapter is structured as follows. Section 6.2 gives
a brief overview of both paradigms as well as the mixed form, and repre-
sents the different approaches graphically. Next, an example and use case
for combining both paradigms is given in Section 6.3, after which Section
6.4 compares model constructs and different characteristics that are of high
importance when mixing different paradigms. Finally, Section 6.5 provides a
step-wise mixed-modeling approach and is followed by the conclusion which
outlines future work in Chapter 6.6.

6.2 Procedural Versus Declarative BPM

The overview given in Chapters 2 and 3 is further extended with informa-
tion that is of interest to elaborate on a mixed-paradigm approach. First,
the procedural paradigm is briefly reiterated, followed by the declarative
paradigm, and finally an overview of mixed approaches is established.

6.2.1 Procedural BPM

Process modeling has gained ground as a methodology to represent activities
in a directed graph-like manner in order to capture and discuss business flows
such as an ordering process, a customer journey, etc. [131]. For this purpose,
many languages have been proposed, most notably Business Process Model
and Notation [20], Petri nets [113], Event-Driven Process Chains [150], and
Yet Another Workflow Language [157]. BPMN and EPC are often used
in a business context and have been enhanced with numerous constructs
supporting, e.g., message flows and ad-hoc processes. YAWL can be seen
as an extension and effort to improve the stripped down Petri net execution
semantics. Due to the simple, yet effective way Petri nets can capture flows
and concurrency, they are widely used in numerous application domains.
Their properties are well-studied and as such they remain very popular with
researchers as well. Furthermore, the analysis techniques such as state space
generation and soundness checks [151] make them the preferred language to
which BPMN models and EPCs are translated to in order to provide firm
execution semantics and model checking [42, 150].
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6.2.2 Declarative and Flexible BPM

Flexibility has numerous forms, such as flexibility by design, deviation, un-
derspecification, and change, which are described in [137]. Flexible process
models tend to make use of these concepts, mostly in certain parts of the
model, e.g., pockets of flexibility [134] and worklets [1]. These are approaches
for enabling procedural models to include flexible behavior by postponing
and underspecifying execution decisions until run-time.

The major difference between procedural and declarative modeling is
the way in which one approaches the model: either a specification of what
has to happen (procedurally) is made, leaving no room for non-modeled
behavior, compared to specifying what can happen, where everything that
is not prohibited is possible (declaratively). Hence, declarative models leave
more room for non-modeled behavior and thus are regarded as allowing
more flexibility in the process execution. Declarative process models, and
the event- and rule-driven Declare framework [118, 119] in particular, have
gained attraction amongst researchers as a provider of a completely flexible
solution.

The differences and characteristics of how modelers and users apply both
paradigms, have been researched extensively by [127, 65, 49]. The outcomes
suggest that, overall, it is very difficult to read Declare models due to the
invisible execution of accepting and non-accepting behavior, the lack of clear
sequences in the beginning and ending, the subtleties of the constraints, and
especially the complex interaction of the different templates, as discussed
in Part 2. Literature often suggests to model very sequential information
with procedural languages, and to model flexible processes with declarative
languages instead, in analogy to procedural and declarative programming.

The different types of behavior of the two paradigms can be depicted as
in Figure 6.1. To the left, Figure 6.1a shows the traditional representation
of both paradigms as in [119]. Usually, Declare is referred to as the model
type that constraints behavior by activity-level rules, leaving options open for
more flexible specification and execution, thus accommodating for everything
that is not forbidden. Procedural models are depicted as very rigid process
flows, containing only strictly regulated and delineated behavior.

6.2.3 Mixed Forms and Conversion

Modeling languages incorporating both paradigms also exist, but still focus
rather on separate subworkflows, modeled with either procedural or declara-
tive constructs, in order to keep the state spaces and execution semantics of
these subworkflows separated. This has been proposed for, e.g., YAWL and
Declare [160]. This approach is similar to pockets of flexibility. Thus, flexi-
bility is introduced into some parts of the process in a hierarchical way. This
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(a) The behavior allowed by the pro-
cedural model is depicted as the dark
square, the behavior allowed by the
declarative model as a trapezoid.

(b) This figure shows a procedural
model which is relaxed on one side
where the behavior is restricted only
by the declarative model.

(c) The model is a pentagon using
both model paradigms to account for
the different levels of flexibility.

(d) This figures shows a procedural
model which is even further restricted
by declarative constraints.

Figure 6.1: Three layers indicating all the possible behavior of the activities and
flow constructs contained in a model. The dotted line represents the outcome of a
combination of declarative and procedural constructs in (b), (c), and (d).

is depicted in Figure 6.1b. Typically, a certain part of the model is loosened,
e.g., the procedural model loosens a certain part which is now constrained
by activity-level rules. The opposite is also possible, in that a very flexible
main process contains some fixed sequences which can be easily captured by,
e.g., a small Petri net fragment.

Execution semantics for truly intertwined state spaces exist as well. In
[184], execution semantics for Petri nets and Declare automata are presented.
Intertwined state spaces can also be constructed by mixing converted Declare
constraints expressed in Petri net constructs with other Petri nets, thus
obtaining a mixed-model. In [48], the possibility of converting a subset of
DecSerFlow constraints, the predecessor of Declare, has been investigated.
A full conversion is sought after in Chapter 3. The conversion of Declare
constraints based on regular expressions has been researched in [124]. By
making use of synthesizing finite state machines into Petri nets with the
theory of regions [28], Declare constraints can be converted to Petri nets.
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This technique is similar to enumerating all possible execution scenarios, as
many duplicate activities are required to do so.

A process with mixed layers of flexibility which spread throughout the
whole state space of the model cannot be captured by using solely subwork-
flows, as this setup requires the models to synchronize to a state before and
after executing the sub-workflow. For instance, an activity which can ap-
pear to be rather flexible, i.e., without a fixed place in a sequence, but which
still affects a procedural part of the model cannot be modeled outside of
its subworkflow. In a true mixed-paradigm approach with intertwined state
spaces, process behavior is restricted by making use of the most appropriate
combination of subsets of both models, thus combining modeling constructs
that restrict the process behavior in some directions, but relax behavioral
constraints in other directions. This is depicted in Figure 6.1c, where a
subset of both models constitutes the mixed-paradigm model. Still, one
paradigm can dominate the other (e.g. the example in Figure 6.6 where the
declarative part clearly dominates the procedural part), however, they can
also have equal influence on activities. Furthermore, not only flexibility can
be achieved, but also an especially strict specification. In Figure 6.1d, the
Declare constraints cut into the procedural model, resulting in a less flexible
model as sequence rules impose even further restrictions on the workflow.

6.3 Running Example of a Mixed Model

Consider the mixed-paradigm model in Figure 6.2 which contains a proce-
dural backbone that is supplemented with a flexible component containing
activities Call customer and Start logging. The flexible part starting with
activity Start logging can execute irrespective of the behavior modeled in the
procedural backbone, but still influences the main process. The inclusion of
chain response(Start logging, Call customer) (i.e. after Start logging, Call
customer has to happen next) disrupts the global model, as every activity
but Call customer becomes disabled after firing Start logging. Call customer
has to happen before Send invoice can ever occur (due to the precedence con-
straint), and Close order can only fire again after a new occurrence of Call
customer (due to the alternate precedence constraint).

The combined use of procedural and declarative constructs results in an
effective alternative solution, in-between solutions that would use declarative
or procedural model constructs exclusively. By explicitly capturing the loop
with Petri nets and reducing the amount of Declare constraints, readers and
modelers can easily grasp the token game while a few verbose sequence rules
(which can be found in Table 3.2) can explain the interplay of the flexible
activities with the procedural net.

Modeling the same scenario with a procedural language such as Petri
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Precedence

1
Order
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admin

last

Call
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logging

Figure 6.2: A very straightforward AND-split and -join based process model rep-
resented in a mixture of Petri nets and Declare in standard notation.

nets, results in either a model with many duplicate activities, or reset and
inhibitor constructs, as depicted in Figure 6.3. Especially capturing chain
response severely disrupts the main process which needs the incorporation
of many (inhibitor) arcs that clutter up the model completely.

1
Open
order

Send
goods

Send
invoice

Close
order

Finalize
admin

Call
customer

Order
intake

init

Start 
logging

Figure 6.3: The same model as in Figure 6.2, but now solely in R/I-net constructs.

Using Declare, it is hard to capture the procedural backbone in a straight-
forward and comprehensible way. To capture the same behavior as the loop
does, one needs many alternate succession constraints in which the loop
remains hidden. Also, a chain precedence constraint is required to model
the XOR-split at the end of the loop. By providing readers solely with the
standard constraint description, interpreting the model requires a significant
amount of cognitive effort. In the end, a Declare model is not executable
unless transformed into an automaton. The FSA of the running example
is displayed in Figure 6.5. The flexible activities are indicated in red. The
state space is the same for all the models and in the automaton, it is clearly
visible how the state spaces are intertwined. The procedural behavior only
needs a few state transitions, while the flexible behavior requires the inclu-
sion of many of them, even though only three Declare constraints are used in
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Figure 6.4: The same model as in Figure 6.2, but now solely in Declare standard
notation.

the case of the mixed model in Figure 6.2. It shows just how much influence
the flexible part of the model has over the global behavior in terms of the
number of execution paths it invokes.

Observe that using a subworkflow for Call customer and Start logging is
not possible. Since both activities affect the main workflow, one cannot sim-
ply model these activities in a concurrent subworkflow as, e.g., the impact
of the chain response is global and not restricted to both activities involved.
Therefore, mixed-paradigm modeling attempts that only allow a combina-
tion of paradigms by making use of fully separated subprocesses modeled
with either type of constructs, are not able to model the desired behavior
appropriately.

6.4 Constructs and Characteristics

Incorporating both modeling syntaxes and semantics into a single model
requires carefully scrutinizing the different constructs and avoiding over-
lap as much as possible. In this section, a scoring mechanism for Declare
constraints is presented according to different characteristics, which makes
it possible to assess how straightforward it is to express them in R/I-net
constructs, whether the constraint impacts global concurrency and global
timing, and whether they inflict hidden dependencies. These characteris-
tics play an important role for merging procedural and declarative process
models.
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6.4.1 Construct-based Similarities and Differences

Declare consists of many constraint templates which have distinct features
that require a large amount of Petri net constructs to mirror their behavior,
as can be seen in the R/I-net construct column of Table 3.1. However,
many other templates exist that can be straightforwardly represented with
only a few Petri net constructs. Therefore, these constraints can be easily
interchanged in mixed-paradigm models to avoid using different syntaxes.
The advantage of R/I-net constructs is that the syntax immediately yields
execution semantics. Each constraint is thus scored for the amount of places
(P) and occasionally transitions (T), arcs (A), reset arcs (R), and inhibitor
arcs (I) that is needed to express them. Each construct is scored for 1 point.

6.4.2 Impact on a Global Concurrency Level

Constraints can force activities, not directly related to them by other con-
straints, to be disabled. Hence they have a direct impact on global concur-
rency. Most notably, the chain constraints exhibit this behavior, as they
can stop any activity from executing until a certain other activity has fired.
Not only does this require many constructs such as inhibitor arcs or prior-
itized Petri nets to model this in a procedural model, they also impact the
execution semantics of, e.g., a Petri net mixed with a Declare model con-
taining chain constraint(s). This makes it harder to model and understand
the behavior of such mixed-models. This is scored with 2 points in Table
6.1.

6.4.3 Impact on a Global Temporal Level

The concept of temporary violation is typical for rule-based approaches. It
can be compared to (non-)final markings in a Petri net. In the R/I-net, a
dedicated sink transition tsink is used to indicate the current violation status
of the model (firing it leads to the accepting marking of a single token in
psink). If the transition is enabled, no temporary violations are present (per-
manent violations cannot appear by default). Adding this explicit monitor
helps users grasp the status of the net. Many constraints make use of this
construct. However, introducing it increases the total number of constructs
needed and also requires a procedural model mixed with a Declare model
to be able to also resolve the same temporary violation(s). This raises the
efforts needed to model correctly. Since this has a major impact, especially
on the possibility to synchronize Declare with any other models in terms of
temporal consistency, this is scored with 5 points in Table 6.1.
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6.4.4 Permanently Disabling

Some Declare constraints require activities to become permanently disabled
when they become activated. Most notably, absence, exactly, not succession,
not co-existence, and exclusive choice disable at least one activity for the
rest of the execution, as illustrated in Chapter 4. The dependencies that are
caused and propagated through the net have a vast impact on how separable
the declarative process model is. Hence, it should always be checked how far
the reach of the dependency structures extends over the activities, especially
in mixed-paradigm models. Again, the activity bounds of a Petri net model
can be verified next to the dependency structures of the Declare model, as
illustrated in Section 5.4. Nevertheless, executing models containing these
constraints is extra precarious. Hence, constraints inflicting such behavior
are hard to incorporate in two semantics at the same time, thus a high score
of 10 is given to such constraints.

6.4.5 Overview

Taking into account all these different aspects of the constraints, a final
score is assigned. The lower the score, the better. Constraints with a score
below ten are easily pluggable into a procedural model. Between ten and
twenty, considerable care must be taken. For constraints with a score above
20, it becomes very tedious to include them in a procedural model. E.g.,
the chain response constraint template requires one place, one Petri net arc,
one reset arc, and inhibitor arcs connected to all other transitions in the
net but one (|T | − 1). Hence, the constraint impacts global concurrency, as
it can stop all activities in the net but one, and impacts global timing as
it can be in a temporarily violated state. In the end, it receives a score of
(1 + 1 + 1 + |T | − 1) + 2 + 5. Since |T | is included, using this constraint
in bigger models with more transitions becomes tedious to the extent that
every other transition should be checked for the way its behavior is related
to the activities embedded by the constraint.

As can be seen from the last column in Table 6.1, only a few constraints
are considerably straightforward to model, comprehend, and use in a mixed-
paradigm model:

– The simple and alternating ordered constraints are not impeded by
the fact that they do not expose sophisticated behavior nor many con-
structs. This is especially true for precedence constraints.

– Every constraint that impacts global concurrency or inflicts hidden
dependencies causes severe synchronization problems. This includes,
among others, the chain, absence, and existence constraints.
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– Although their principle is simple, not co-existence and especially ex-
clusive choice are very hard to incorporate in a mixed-paradigm model
due to their impact on the enabledness of activities.

6.5 A Step-wise Approach for Mixed-
paradigm Modeling with Intertwined
State Spaces

The insights gathered from the previous section, as well as Chapters 4 and 5,
a step-wise approach to mixed-paradigm process modeling is devised. The
method is also illustrated with a well-known BPM example.

6.5.1 Step-Wise Mixed-Paradigm Modeling Approach

Table 6.1 can be used by mixed-paradigm modelers to assess the influence
of certain constraints on the model and what the consequences of using
them might entail. By applying the scores, it now also becomes possible
to objectively start measuring different mixed-paradigm solutions in terms
of comprehensibility (in terms of the amount of model constructs), and the
semantic difficulties that are introduced. A step-wise approach to leverage
the insights of the scores is as follows.

1. Determine for each activity whether its behavior can be con-
tained in a procedural workflow, or rather requires a looser
setup with rules. By indicating where in the process an activity
can and should occur, it will reveal the extent to which it requires
flexibility.

– If the position of the activity is not fixed within the workflow, it
is better to exclude it from the procedural model.

– If the activity occurs a predefined number of times, Petri nets
might be used, or a Unary Declare constraint. Otherwise, it may
prove hard to use a token game around the activity, as an unde-
sired amount of tokens might be pushed down the model, which
could require adding silent transitions to model skipping steps.
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2. Determine which relationships are needed between the dif-
ferent model types. In a mixed-model, there are 4 different types
of relationships, given that activities are labeled ’Declarative’ or ’Pro-
cedural’ in step 1:

– Declarative-Declarative,

– Declarative-Procedural,

– Procedural-Declarative,

– and Procedural-Procedural.

The second and third types constitute the real mixed cases. In the case
of using them, it is advisory to consult Table 6.1 to check for character-
istics towards violation and temporal issues. Generally, it is advised to
avoid using binary Declare rules between activities solely present in the
procedural part of a mixed-model. Although it is possible to do this, it
is better to approach the procedural part from the outside to avoid in-
ternal anomalies such as deadlocks. Only the construction of the state
space of a Petri net can show whether the resolution of, e.g., tempo-
rary violations is still possible. Hence, it is advised to avoid constraints
that have, e.g., a global impact on concurrency and timing. Also, hid-
den dependencies propagate through the procedural model. Therefore,
these constraints are best used in isolation within a declarative model.
Safe connections between procedural and declarative parts are mainly
precedence relations, and any constraint that does not impact global
timing and hidden dependencies.

3. Synchronize beginning and end points of both model types
if possible. By using init and last constraints in combination with a
Petri net source and sink transition, the models are intertwined in a
proper way. The inclusion of separate sink activities might be required.

4. Check whether it is necessary to use two types of language
constructs. According to the scores in Table 6.1, several constraints
are easy to model in Petri nets with R/I-net constructs. Replacing
them, while still referring to them with their Declare constraint name,
avoids multiple modeling notations. Furthermore, R/I-net constructs
yield executable syntax, hence making the construction of an automa-
ton obsolete in many cases (not, however, where there are hidden de-
pendencies or multiple violation states).
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6.5.2 Reworking an Existing Example with the Ap-
proach

In this section, it is shown how to transform a procedurally modeled order
fulfillment process ([44], page 77), and expand it with declarative constructs.
Also, it is shown where gaps still exist between the two approaches.

The setup of the order fulfillment process, however, is interpreted slightly
differently than in [44]. In the scenario presented here, multiple orders can
be made and at least three product shipments and payments have to have
happened before the archiving of an order. Furthermore, the requests for
raw materials can now only be done directly after checking their stock level,
and obtaining the materials always has to happen directly after requesting
them.

1. In the original model, every activity is rather fixed within the sequence.
Due to the unspecified amount of occurrences of Receive order and its
successors it becomes more interesting to use declarative constructs,
as they are better capable of mixing different strings of activities while
maintaining a somewhat structured process. Hence, everything up to
Confirm order is rather declarative, while the shipping and invoicing
processes are kept procedural.

2. Some relationships, as indicated in Table 6.1, are easier to express
in Declare. Most notably, the use of chain relationships to indicate
directly follows parity, and the use of alternate precedence for an un-
specified amount of occurrences of activities around Receive order are
more convenient and avoid the model from becoming too convoluted.
It is more tedious to express that Archive order needs at least three
occurrences of Ship product and Receive payment in Declare, as it is
harder to count in regular languages than in Petri nets. Also, it is
clearer to do so by keeping track of the tallying with tokens. Finally,
some Declare constraints are used to connect the material and invoicing
and shipping parts.

3. Beginning and end points are synchronized through the init and last
constraints. In this case, the last constraint for Archive order has a
global impact on the declarative part of the model as well, most notably
on Manufacture product.

4. As can be seen in Table 6.1, the precedence constraints can be expressed
with R/I-net constructs. Not succession, however, requires special care
in this case, as it has an impact on dependent activities both in the
declarative part as well as in the procedural part due to propagation
of dependency (disabling Receive order also disables all succeeding
activities in a precedence relationship).
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In the end, using different syntaxes in mixed-paradigm models is also of
interest as it can better indicate which parts of the model are procedural,
and which ones are declarative. A trade-off is present between applying
different representations and coloring, and making the model as uniform as
possible in terms of syntax as well.

6.6 Conclusion and Future Work

This chapter explored the gap and similarities that exist between procedural
and declarative process modeling approaches, focusing on understandability,
syntax, and execution semantics. More specifically, it was researched which
possibilities arise when both paradigms are combined when state spaces be-
come intertwined, as opposed to previous approaches that only use separate
atomic sub-workflows. It was found that there is a trade-off between syntax
that yields execution semantics, and verbose Declare constraints with many
implications for execution. A scoring table for Declare constraints was pre-
sented, which can be used for objectively assessing the complexity of mixed-
models, enabling the comparison of different mixed-paradigm solutions and
guiding modelers when faced with the challenge of selecting appropriate
constructs. Finally, a step-wise approach was proposed for mixed-paradigm
modeling, which consolidated the insights from the scoring table. An ex-
ample was elaborated in which the trade-offs that arise when constructing
mixed-paradigm models are illustrated and made explicit by making use of
the step-wise method.





CHAPTER 7

Fusion Miner: Process Discovery
for Mixed-Paradigm Models

“Wait I know you can love your sons and your daughters
And no one will tell you it’s a wrong thing to do
But if you try to give your love
To more than one woman
The whole damn world is gonna look down on you.”

— Paul Gilbert, One Woman Too Many

After spending a great deal of scrutiny on the human-driven type of pro-
cess discovery, process modeling, this chapter shifts its focus to the automated
discovery of processes from historic data logs.

As illustrated in Chapter 1, process mining is an interesting venture that
has gained a lot of attention from the BPM research community in recent
years. A strong emphasis lies on the automatic discovery of models for which
numerous algorithms have been proposed already. Also for the declarative
process paradigm, many techniques have been designed, which comprise a
large part of all research on DPM as mirrored by the number of publications
on the subject that were described in Chapter 2. So far, most discovery
algorithms were limited to the derivation of single-paradigm models, which
contain either procedural or declarative constructs, targeting the mining of
strict and flexible processes respectively. This chapter proposes the first
fully-automated mining technique to discover procedural workflows combined
with Declare templates to capture processes that are difficult to mine with
only a single paradigm, i.e., workflows with different layers of flexibility.

This approach provides process analysts with new discovery capabilities,
including the retrieval of better fitting and more precise models with high
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comprehensibility. The main contribution consists of the Fusion Miner algo-
rithm, which has been implemented in the process mining framework ProM
as a plug-in.

7.1 Introduction

The field of process mining has gained a lot of traction in the last decade.
Its main focus lies on the automatic retrieval and subsequent analysis of
business process models and insights from data logs containing events [152].
As such, process mining can be a powerful approach for decision makers in
terms of assessing and improving business processes.

As explained in Section 1.2.2, the three pillars of process mining focus on
process discovery, enhancement and conformance checking. The former can
be considered the primordial task in a process mining exercise, supporting
the two latter pillars that are typically built on top of it. The goal of process
discovery is to learn a process model from data in the form of an event log
in the most comprehensive, comprehensible and correct way. In order to do
so, many mining algorithms have been proposed, including, amongst oth-
ers, Alpha Miner [158] and Heuristics Miner [178]. Generally, these miners
retrieve procedural models, containing strict sequence information, such as
Petri nets [113] and Causal nets [162].

More recently, declarative process modeling and mining has gained pop-
ularity and several discovery techniques such as, e.g., Declare Miner [95]
have been implemented for discovery purposes. These miners derive rules
from event logs to create models with a more flexible view on the informa-
tion contained in the log, as any behavior that is not strictly forbidden is
allowed.

In accordance with the “maps” view on process models proposed in [154],
one retrieves different information by mining for different paradigms. Simi-
lar to reading maps with different perspectives which cover multiple layers of
an area, it is possible to retrieve different paradigms at once to gain comple-
mentary insights from the information retrieved from the log. For example,
combining street maps with altitude information can provide a deeper un-
derstanding of the explored area.

In line with this metaphor, this chapter presents an approach based on
combining procedural model fragments and declarative constraints in one
map. As such, a new way of mining and representing process models is pro-
posed. This process mining approach exploits the different characteristics of
both process paradigms, with each paradigm better capable of representing
distinct behavioral aspects of an event log. In the literature, the combi-
nation of both paradigms into one discovery algorithm has received very
little attention so far. Nonetheless, the prospect of learning richer, mixed-
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paradigm process models seems promising, especially in the context of semi-
or unstructured processes. The proposed approach has been implemented
in ProM1 as a plug-in and borrows some key principles of the two most fre-
quently used process mining techniques for each paradigm, Heuristics Miner
and Declare Miner. The results show models that are fitting and precise
for event logs that contain different layers of flexibility, meaning they show
behavior consisting of both strict event sequences and rather loosely de-
fined event occurrences. This improves current single-paradigm approaches
regarding both conformance and comprehensibility.

The remainder of this chapter is structured as follows. Section 7.2 covers
the related work on process mining in more detail. This is followed by Section
7.3, which reiterates the different blends of the procedural and declarative
paradigm, applied to a mining context. Section 7.4 reveals the algorithm
to mine mixed-paradigm models and discusses criteria to evaluate them.
Section 7.5 then evaluates two simulated examples and one real-life case by
comparing current techniques and the outcome of Fusion Miner. Section 7.7
concludes the chapter with a discussion of the contributions and results.

7.2 Related Work

Within the field of process mining, a strong emphasis is put on the automatic
retrieval of business process models from event logs. The algorithms offer
mining solutions that deal with aspects such as the trade-off between recall,
precision, generalization, and the presence of noise in the event log [168]. Ini-
tially, procedural process mining approaches were put forward. Some well-
known and widely used ones are the initial techniques of Hwang [79] and
Agrawal [8], Alpha Miner [158], Heuristics Miner [178], Fuzzy Miner [61],
ILP Miner [164], Inductive Miner [91], and Fodina [166]. They capture se-
quence constraints and parallelism by incorporating information supporting
adjacency and (direct) succession in a process log, extended with (X)OR-
and AND-split and —join information. Most of the constructs that are
sought after have local semantics with some extensions for long-distance de-
pendencies, but are calculated on log level. Approaches for stochastic Petri
nets exist as well [130], which can be used for predicting future execution
steps [129].

The declarative process paradigm quickly picked up on mining as well,
and soon after its conceptualization DecMiner was introduced [89, 19, 18].
This mining algorithm learns SCIFF models by using inductive logic pro-
gramming and is able to transform the output into DecSerFlow. Later, the
Declare Maps Miner was introduced in [93] and improved in [95]. The al-

1http://www.processmining.org/
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gorithm starts from finding frequent activity sets based on Apriori learning
[7], for which instantiated Declare templates in LTL are made to replay the
traces in the event log. Hence, the outcome is a set of Declare constraints
with a certain support and confidence to express the usefulness of the re-
sults. Competing techniques that rather use regular semantics are MIN-
ERful++ [22] and UnconstrainedMiner [185], both achieving considerable
performance improvements by relying on temporal statistics to construct a
knowledge base to derive constraints, and a mixture of superscalarity and
symmetry reduction respectively. They also rely on support and confidence
and output Declare models.

There exist some approaches on the verge between both paradigms, such
as Fuzzy Miner [61], UnconstrainedMiner [185], and AGNEs Miner [58].
The former captures flexible processes by incorporating multiple perspec-
tives such as social network and control flow information (note that this
is different form of a mixed-paradigm approach). The algorithm makes it
possible to visualize process models, called Fuzzy models, that highlight the
sequences within the log that have the highest impact on these perspec-
tives, which enables the capturing of flexible models better than, e.g., Alpha
Miner. UnconstrainedMiner approaches the mixed-paradigm perspective the
other way around, starting from a declarative rule mining implementation
which can incorporate any constraint based on regular expressions. As such,
the technique is able to incorporate very procedural constraints. A similar
approach is used in [58], where the authors propose a discovery algorithm
based on NS (No-Sequel), a declarative predicate which can be used to derive
constructs that form a Petri net. A genetic variant was introduced in [170].

A real mixed-paradigm outcome, however, has not been pursued yet as
such, with the very recent exception of [98] in which the authors break down
the event log into a hierarchy and mine the different subprocesses accord-
ing to the appropriate paradigm. While the purpose is somewhat similar
to the one pursued in this chapter, there are some noticeable differences.
First of all, the authors assume atomic subprocesses, which are still disjoint.
This restricts synergies between both paradigms in terms of state space, as
they cannot interact to mine and represent process behavior. Furthermore,
while the authors propose an approach based on counting predecessors and
successors which is somewhat comparable to direct succession in Section
7.4, applying a threshold on the exact number of predecessors and succes-
sors seems rather coarse for deciding on the structured versus unstructured
nature of activities, especially for smaller logs. Therefore, the approach pro-
posed here includes a configurable threshold based on the concept of entropy,
which allows for making a more versatile trade-off between structured and
unstructured behavior. In addition, the mandatory hierarchical structure of
the mined hybrid model in [98] puts a limitation on its application to event
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logs where structured and unstructured behavior are much more intertwined.
The approach presented in this chapter does not presume such a hierarchical
structure. Finally, the approach in [98] is not setup as a discovery algorithm
and rather serves as a log preprocessor.

7.3 Mixed-Paradigm Models for Mining

The models mined by Fusion Miner are built out of dependency graphs and
Declare constraints. For modeling purposes, mixed-paradigm models have
already been proposed for, amongst others, logic and procedural patterns
[87], YAWL and Declare [119] and Petri nets and Declare [184], as docu-
mented in Chapter 6. The execution semantics of the first approach are
based on calculating process trees and applying change operations on the
tree for the constraints afterwards. The semantics used in the second one
are not described explicitly, but they are handled by ensuring atomicity of
execution by using subprocesses of either paradigm. The last approach pro-
vides an in-depth analysis of executing Declare rule automata and Petri nets.
The authors suggest three ways of enactment (the last one only applicable
to data-aware nets), of which the first approach called Simple Simulation
is used in CPN Tools [181]. It boils down to constructing the automaton
for each Declare constraint separately and updating them during execution.
Making the conjunction of all separate Declare constraints, as described in
Chapter 3, is called Smart Simulation, and merged on-the-fly with the Petri
net it is combined with. In this chapter, it is assumed to execute mixed
models of Declare and Petri nets as described in the last approach.

The choice for dependency graphs and Declare is founded on their ap-
plication in two very well-known and supported mining algorithms, namely
Heuristics Miner and Declare Miner (and other declarative process miners).
The dependency graphs can be converted to Causal nets or Petri nets after-
wards, as some examples in this paper show. Numerous techniques exist for
this purpose and are incorporated in, e.g., Heuristics Miner. Declare models
were defined previously in Chapter 2. However, here the set of activities in
the Declare model are referred to as the set D ⊆ AMPM , constituting the
model DM = (D,Π), as AMPM represents the finite set of activities present
in the mixed-paradigm model. A dependency net DN is defined as a tuple
of activities or nodes B and the flow in the net Z = B × B, constituting a
directed graph DN = (B,Z), with B ⊆ AMPM .

The different behavior of the models over activities AMPM can be rep-
resented as proposed in [119]. Figure 7.1a shows the declarative behavior in
the trapezoid-like, dotted shape and the procedural behavior in light gray.
While the figure was proposed for modeling, it is now applied to mining.
Therefore, the behavior contained in the log should be included. It is repre-
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sented by the checkered, unstructured polygon.

(a) This figure represents the different
kinds of behavior. The procedural model
is depicted as a gray square, the declar-
ative model as the dotted trapezoid, and
the log behavior as a checkered polygon.

(b) This figure shows the intersection of
the behavior of both models in the dark
gray area. Both models restrict each
others behavior to provide a stricter
outcome.

(c) This figures shows one possible sub-
set of the union of the behavior of both
models in dark gray, which is a possible
outcome of the Fusion Miner approach
as will be illustrated below.

Figure 7.1: Graphical representation of the behavior allowed by the models and
present in the log.

We propose a mixed-paradigm model as follows: let MPM be a tuple
MPM = (B,Z,D,Π). As such, both rules and sequences are defined over
the activities. The outcome of the model is then any part of DN and DM ,
MPM ⊆ DN ∪ DM , which constricts the behavior of AMPM in different
ways:

– A more narrow result: DN ∩DM : by taking the intersection of the
behavior allowed by both models, it becomes possible to more strictly
describe the process flow. This is represented by Figure 7.1b, where
the intersection is indicated as the dark gray part.
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– A mixed result: DN ∪ DM : by taking the union of all behavior,
it becomes possible to capture behavior in the log that previously re-
mained undiscovered (typically in the procedural model) or was too
broadly captured (typically in the declarative model). By taking sub-
sets of this union, one can more closely retrieve the behavior in the log.
This is shown in Figure 7.1c, where one possible subset is indicated in
dark gray.

The basic idea behind the mining algorithm explained below is the divi-
sion of the set of activities Alog in the event log into the two sets introduced
above, namely the procedural activities B and the so-called entropic activ-
ities D. We define entropic activities as activities of which the behavior is
hard to capture in a strict procedural process flow. Arcs in mixed-paradigm
models can be of the following type:

– DD ⊆ D×D: arcs between entropic activities are represented by De-
clare constraints.

– DB ⊆ D×B and BD ⊆ B×D: arcs between entropic and procedu-
ral activities are either expressed in Declare constraints or present in
the dependency net, with a prioritization of the former.

– BB ⊆ B×B: arcs between procedural activities are represented by
the dependency graph.

As such, there exist activities that are either completely captured in the
Declare model, ADD ∈ D, only captured in the dependency net, ABB ∈ B,
and activities present in both models, ADBD/BDD ∈ D and ADBB/BDB ∈ B.
Note that D = ADD ∪ ADBD ∪ ABDD and B = ABB ∪ ABDB ∪ ADBB . An
overview is given in Table 7.1. It has to be avoided that the paradigms
become too convoluted, as the mining of both model types simultaneously
is based on heuristics and cannot assure that there are no contradictions in
the state spaces of both models. In Chapter 8 a technique for checking the
compatibility of the separate models is discussed. There exist other model
checking techniques as well, such as the one described in [46], which can
convert both models into automata. The synchronous product could yield
errors which can be taken into account during process discovery. However,
the overhead introduced by these techniques is significant. A further digres-
sion on how this can be used for discovery will be further elaborated on in
Chapter 8 as well.

However, in order to keep both model types somewhat separated, De-
clare constraints are prioritized as mining and representation form, as the
semantics of LTL formulae are richer than a relationship in a dependency
graph. Declare constraints are mined for all activities, except the ones in
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ABB . If no constraints are discovered for an activity in D, the algorithm is
resilient and puts the activity in B.

Activities D B

D D ×D D ×B
Declare constraints Declare Constraints

(Dependency graph connection)
Contains ADD ADBD ∪ADBB
B B ×D B ×B

Declare Constraints Dependency graph
(Dependency graph connection)

Contains ABDD ∪ABDB ABB

Table 7.1: The four different types of connections in a mixed-paradigm process
model.

7.4 Fusion Miner

The Fusion Miner implementation2 is based on the combination of Heuristics
Miner [178] and Declare Miner [96]. Starting from dependency information,
it identifies activities that are connected to a relatively higher number of
other activities in the dependency graph, as these can be considered a causal
factor of the increase in potential process behavior. As such, they are tar-
geted for inclusion in the set of activities that are subject to Declare mining
in the second part of the discovery process. Finally, the Declare model can be
pruned optionally and the mining result is displayed in a model containing
both paradigms.

7.4.1 The algorithm

The algorithm starts off by calculating dependency measures for log L con-
taining the activity alphabet AL with Heuristics Miner. This results in a
tuple (DG,DS,B2B,LDD) with DG = AL × AL the flow relations in the
dependency graph, DS the direct succession values between AL, B2B the
level 2-loop values, and LDD long distance dependency values. By ana-
lyzing the strength of the direct succession metric (which is controlled by
a threshold d called Dependency threshold) between activities AL, one can
retrieve the activities that are closely related in a small window containing
local neighbors in the log. Activities that are connected to many others for a
considerable number of times, or are somewhat but not strongly connected,

2The implementation and high resolution figures can be found at http://www.

processmining.be/fusionminer/.

http://www.processmining.be/fusionminer/
http://www.processmining.be/fusionminer/
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are candidates to be placed in the set of declarative activities D ⊆ AL.
Others that have few but strong connections to neighboring activities, are
candidates to remain in the procedural part of the model B ⊆ AL. Phrased
differently, activities with unclear direct succession relations are targeted, as
this can be an indication of the ad-hoc all-over-the-place occurrence of this
activity, which results in non-structured and cluttered up sequential process
models. Note that this approach also often captures the activities that can-
not be fitted into the model and hence puts tasks that are connected only
when the “All activities connected” option is chosen in Heuristics Miner in
D.

Algorithm 4 displays the details of the calculations. It first checks for
entropic activities and for this purpose a metric called Activity Entropy (AE)
is proposed. It is calculated as the average of the direct succession (DS)
values between an activity and the others in the log where the dependency
threshold d is not met (lines 3-4), stored in set AE. In other words, it
captures weak dependencies. Procedural activities in a log will have a very
low activity entropy, as most of the connections will be either strong (> d)
or non-existing (d ≈ 0). Based on a given entropy level threshold 0 ≤ e ≤ 1
which is an input parameter of Fusion Miner, a proportion of the log is
withheld. The different values aea ∈ AE are ranked and b|AL| × (1 − e)c
activities are kept in the sorted set E (lines 5-6). Furthermore, if there is a
gap of 1/e between the values aei, aej , i, j ∈ E, the activities ranked below
the gap are removed from E (lines 7-9). This procedure avoids introducing
too many activities in D and as a consequence possibly too many rules
between them. Note, however, that a fully declarative model can be obtained
by using 1 for e. Declare rules mined for single activities (Π1) are always
included in the log.

7.4.2 Pruning and Constraint Choice

After the results of both miners are retrieved, an optional manipulation of the
outcome is performed which cuts and adds some constraints, extending the
approach proposed by [96]. (Alternate) precedence and response constraints
are transformed into succession constraints when the antecedents and con-
sequents involved appear exactly once, and co-existence is removed when
both activities appear at least once. The alternate precedence constraints
are reduced to precedence when the consequent only appears once, etc. Af-
ter this pruning phase, a check for transitivity is performed, as, for example,
newly introduced precedence constraints might be in a transitive relation
with other precedence constraints, while their superior alternate precedence
predecessors were not.

Also, since the Declare rule set contains over 20 entries and this set is
combined with a procedural model, some constraints become obsolete or less
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Algorithm 4 Fusion Miner algorithm
Input: L, AL . The event log L with activities AL
Input: PRHM . The parameters for Heuristics Miner
Input: e . The entropy parameter value

1: procedure MineMixed-ParadigmModel(L, AL, PRHM , e)
2: (DG,DS,B2B,LDD)← HeuristicsMiner(L, PRHM ) . Mine dependency info
3: for a ∈ AL do

4: aea ←
∑AL
b,a6=b DS(a,b)

|A|−1
, ∀DSab < PRHM .dependencyThreshold()

5: AE ← aea
6: end for
7: sort(AE)
8: E ← AE.top(AL × (1− e)) . Take the |AL| × (1− e) activities with highest ae value
9: for ei ∈ E do

10: if
aeei
aeei+1

< 1
e then . Stop when gap between entropy values is too big

11: D ← ei . Add i to the set of entropic activities D
12: elsebreak
13: end if
14: end for
15: decMap = DeclareMiner(L, D) . Mine the Declare constraints
16: Optional: decMap = prune(decMap) . Optional pruning of the Declare model
17: mixedParadigmNet = MergeModels(decMap,D)
18: return mixedParadigmNet
19: end procedure

20: procedure MergeModels(DM,D)
21: for π(a, b) ∈ Π do
22: if a ∈ D ∧ b ∈ D then
23: DD ← {a π−→ b} . → represents a dependency connection,

24: else . with
π−→ a labeled Declare connection.

25: if a ∈ D then
26: DB ← {a π−→ b}
27: else
28: if b ∈ D then
29: BD ← {a π−→ b}
30: else
31: BB ← {a→ b}
32: end if
33: end if
34: end if
35: end for
36: return DD ∪DB ∪ BD ∪ BB
37: end procedure
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relevant:

– The Choice() constraints are captured by the XOR- and AND-joins
and -splits in the procedural model. Furthermore, Declare rules often
implicitly invoke such constraints.

– Negative constraints are left out by default, but can be included. These
constraint templates tend to introduce a lot of behavior as everything
that is not supported is captured by these constraints, but often add
little extra insight into the model.

7.4.3 Fitness and Precision of Mixed-Paradigm Models

In order to fully assess the results of Fusion Miner, the fitness and precision
of models derived from event logs should be evaluated to show how well the
algorithm is capable of not only retrieving, but also narrowing down the
behavior as described in the previous sections. Conformance metrics have
been studied extensively, and numerous techniques exist. For a comprehen-
sive overview of conformance metrics and techniques, the reader is referred to
[169]. Typically, four metrics are considered for evaluating the conformance
of a model:

– Recall/Fitness: scores how well the model is capable of replaying the
events of the log without introducing any deviating procedures, such
as skipping events in the log (move-on-log), or in the model (move-on-
model),

– Precision: scores how accurately the behavior in the log is represented
by the model, i.e., if the model allows for any behavior, it is very
imprecise and underfitting,

– Generalization: scores whether the model still allows for behavior
that is not seen in the event log, i.e., if the model only exactly cap-
tures the behavior in the log, it is very overfitting and scores low on
generalization, and

– Simplicity: which scores the model for interpretability and readabil-
ity.

As previously explained, Fusion Miner tries to fit the event log with dif-
ferent explanatory models. The overall fitness is often high, with a precision
score which outperforms techniques that are commonly used to achieve a
fitness or recall of 1, such as ILP Miner [164]. Note that, when the Declare
model is able to capture most of the flexible behavior which was hard to
represent in a procedural net with a high Declare rule support, the model
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will naturally end up with a high fitness value, oftentimes also reaching a
perfect value of 1/100%.

In Chapter 8, a full conformance checking procedure will be presented
and elaborated on. However, to illustrate the strengths of Fusion Miner in
terms of fitness and precision, an initial conformance checking approach is
put foward here to establish an intuition.

First, the model is replayed by using the Smart Simulation semantics of
CPN Tools. This indicates whether the model is fitting or not, by using
a one-step look-ahead strategy. Next, the conformance checking approach
based on artificially generated negative events is applied. This technique was
proposed by [58] and later improved by [171]. The metric that is used for
precision is called Behavioral Precision pB . The basic setup consists of the
generation of artificial negative events, which, simply put, are inserted when
there can be no evidence found in the log for their occurrence at a certain
trace index. The evidence is based on the prefix of the event, which can
be configured to take into account a certain window size. Afterwards, the
well-known precision evaluation metric of statistical and data mining models
can be applied, and pB = TruePositives

TruePositives+False Positives .

7.5 Experimental Evaluation

To illustrate the problems that traditional single-paradigm miners face, three
event logs are mined and analyzed below to illustrate where improvements
can be achieved by Fusion Miner. Some basic metrics regarding the event
logs are provided in Table 7.2. The first log contains a straightforward work-
flow which is distorted by the nearly random occurrence of an activity. The
second example deals with a textbook case of a log with different layers of
flexibility. The last one is a real-life log, previously used in [169, 176], which
contains an incident-management process. The main insights are summa-
rized at the end of this section in a list of contributions the Fusion Miner
algorithm offers.

The first two logs are simulated using CPN Tools [181], which is able to
execute mixed-paradigm models as indicated above, and recorded by using
a technique based on [37]. The logs were checked afterwards for temporary
violations of Declare rules to ensure that all constraints were fulfilled at the
end of the simulation runs.

Mixed-paradigm models displayed in the text are represented as a com-
bination of a dependency graph and Declare constraints. However, the con-
version method that allows to convert dependency graphs into Petri nets,
which is available in ProM, is used to retrieve the corresponding Petri net to
obtain an executable mixed-paradigm model. The corresponding Petri net
is also offered as an output by Fusion Miner. In the examples used in this
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Event Log Loosely connected activity PhD Process Incident Management Log
Number of activities 7 6 20
Number of cases 20 30 956
Number of events 786 402 9306
Number of distinct traces 10 30 212

Table 7.2: Basic metrics describing the event log used for the evaluation of Fusion
Miner.

paper, the following representation is used in the figures:

– The full arcs represent the procedural behavior as introduced by
Heuristics Miner. They form the dependency net of the model.

– The checkered activities exceed the entropy threshold.

– The activities filled with a dark (red) shade fulfill the exactly1 con-
straint.

– The activities filled in light gray fulfill the existence constraints.

– The striped arrows represent Declare constraints, which are labeled
with the template’s name.

– The squared activities represent activities fulfilling the init and last
constraints.

7.5.1 Example 1: Process Containing a Loosely Con-
nected Activity

The first log, of which the simulation model can be found in Figure 7.2,
represents a standard process with AND-split and -join which is repeated.
Procedural discovery algorithms such as Alpha Miner and Heuristics Miner
are perfectly capable of retrieving such procedural process behavior. How-
ever, introducing an activity which is only roughly tied to a strict position
in the workflow such as Z, leaves the procedural miners guessing at its lo-
cation in the process, as explained below. The activity is only connected to
activity C with a precedence constraint, and to activity D with an alternate
precedence constraint.

Issues with Currently Available Miners

Heuristics Miner places Z in a separate self-loop before the last activity, as
can be seen in Figure 7.3. The Petri net derived from the dependency net,
is shown in Figure 7.4, which contains concurrency information and thus
more closely represents the original, simulated model. Note, however, that
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Figure 7.2: A Petri net containing a procedural workflow based around an AND-
split and -join, extended with activity Z which can occur in numerous positions
in the process. It is connected to activity C with a precedence constraint, and to
activity D with an alternate precedence constraint.

Heuristics Miner is better capable of mining such flexible behavior by the
introduction of invisible events. Furthermore, the settings can be changed
to, e.g., take into account a lower dependency threshold. This results in a
more fitting (and correct) model, but one with very loose workflows that
capture all possible connections at any time. Still, the result includes only
a very general way of enabling Z in the form of a loop, an outcome that is
also seen for Inductive Miner in Figure 7.5.

Mining a log with Declare Miner would result in a correct deriving of
temporal relationships, however, the strict control flow that is present be-
tween the activities other than Z is very hard to discern as can be seen in
Figure 7.6. The overall readability of a declarative process model is one of
its main drawbacks, as extensively discussed in the previous chapters.

Figure 7.3: Result of Heuristics Miner (default settings) for the log of example 1.

Discovery with Fusion Miner

Fusion Miner is capable of mining a dependency graph and merge it with
Declare constraints. This way, it enlightens the unclear sequence information
of activity Z, which was not possible in Heuristics Miner and Inductive Miner,
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Figure 7.4: Petri net, derived from the dependency net in Figure 7.3.

Figure 7.5: The first log mined with Inductive Miner (for a fitness of 100%).

Figure 7.6: Result of Declare Miner for a support of 100 % for the log of example
1. The not chain succession constraints are excluded for readability.

and still retain the very procedural behavior of the rest of the net, which was
hidden in the Declare model due to the large amount of constraints. Much
like the explaining of extra residual value in statistics, Fusion Miner tackles
the unknown by fitting the data selectively by using characteristics of both
process model types. In this example, the infinite loop enabling activity Z
all the time was better explained by introducing Declare constraints with
Fusion Miner to reduce the state space of the model around Z, resulting in a



140 7.5. EXPERIMENTAL EVALUATION

more precise model as illustrated in Figure 7.7. The Petri net resulting from
the dependency net in the mixed-paradigm model is shown in Figure 7.8.

Figure 7.7: Result of Fusion Miner for example 1 with a rule support of 100% and
e = 0.4.

Figure 7.8: Petri net derived from the dependency net in Figure 7.7, containing
the procedural behavior in the model.

Fitness and Precision

The results of Heuristics Miner, Inductive Miner, Declare Miner, and Fusion
Miner all fit the log 100%. A trace in the log is selected that clearly shows
where the result of Fusion Miner improves upon the three other ones. The
results for both Heuristics Miner and Fusion Miner are included and can be
found in Table 7.3. The cases for which Fusion Miner will be more precise
than the outcome of Heuristics Miner are the appearance of Z before C, due
to the precedence constraint and especially the appearance of Z before D, due
to the alternate precedence constraint. For example, because Z does not show
up until just before the second D, there are less false positives compared to
the Petri net. If the behavioral precision scores are scrutinized, the following
results are obtained: pBHM = 18

32 = 0.5625 and pBFM = 18
30 = 0.6. A slight

increase is achieved by using Fusion Miner, while improving vastly in terms of
comprehensibility compared to Declare Miner. Since Z occurs in an almost
random fashion, there is not a huge gain in terms of precision, but Fusion
Miner is still better capable of representing all the information that can be
extracted from the log.
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Ind. Act. Enabled in MPM Enabled in HM Negative events
1 Start Start Start D E A B C Z
2 A Z A A Z D E Start B C
3 Z Z B Z B C D E Start A C
4 C Z B C Z B C D E Start A B
5 Z Z B Z B D E Start A B C
6 B Z B Z B D E Start A C Z
7 Z Z D Z D D E Start A B C
8 D Z D Z D E Start A B C
9 A Z A E Z A E D E Start B C Z
10 B Z B C Z B C D E Start A C Z
11 C Z C Z C D E Start A B Z
12 Z Z Z D D E Start A B C
13 D Z D Z D E Start A B C Z
14 E Z E A Z E A D Start A B C Z

Table 7.3: The precision calculation for model 1 for both mining outcomes, based
on artificially generated negative events. The false positives are indicated in bold.
The mixed-paradigm model clearly enables less activities throughout the replaying
of the trace, while still retaining maximal fitness.

7.5.2 Example 2: PhD Process

As another example, a simple mixed-paradigm process model is provided in
Figure 7.9. Both Declare constraints and Petri nets are combined to resem-
ble the progress of a PhD student throughout his career, which contains the
strict chain of activities containing a first and second seminar followed by
a defense. Meanwhile, he/she creates content which is subsequently pub-
lished in journals or presented at a conference, resembled by the alternate
precedence constraints. This constraint expresses that both Journal Paper
and Conference can happen after Content Creation, and again only after the
next occurrence of the Content Creation activity. The first seminar cannot
happen before a first contribution to a conference and the second seminar
has to be preceded by a journal publication. Note that, while the mixed-
paradigm model is fairly simple and understandable, the simulated event log
presents characteristics that are typically found in real-life logs originating
from complex processes.

Issues with Currently Available Miners

If one mines the log with Heuristics Miner, the algorithm is unable to retrieve
the exact position and relation of the three activities Content Creation, Con-
ference and Journal Paper as shown in Figure 7.10. While Heuristics Miner
captures loops and invisible events to support the quite random appearance
of Content Creation, it fails to capture the relation of Journal Paper and
Second Seminar. Furthermore, the model is cumbersome to read due to the
large number of invisible tasks needed to express the flexible nature of the
relations. A similar result is found with the block-structured approach of
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Figure 7.9: Workflow with different layers of flexibility representing the progress
of a PhD student.

Inductive Miner, as can be seen in Figure 7.11.
Note that for Heuristics Miner it is possible to use other configurations,

e.g., one with a lower dependency threshold. This would result in a model
that better captures the behavior in the event log, but this solution would
include a very generic model in which every transition can be executed in
any order. The result would be similar to the one of Inductive Miner. The
algorithm uses many silent transitions to model the arbitrary skipping of
transitions. Flexible parts of a log that are not captured (well) by proce-
dural models (as they remained either too restrictive or too general) can be
represented with declarative constraints to retrieve them in a more correct
and readable way. Although capturing flexible behavior might be possible
with procedural models, the sequential information would end up in a very
convoluted and unstructured graph of loops, splits and joins, and arrows
pointing every direction due to the ad-hoc appearance of activities as can be
seen in Figure 7.10. Since most Declare rules represent behavior that can be
labeled as non-trivial token games (as was made evident by the conversions
in Chapter 3), they are better able to represent such parts of an event log.
For example, expressing alternate response in a Petri net is a challenging
task, leading to the usage of artificial model constructs or different arc types
to approximate the same state space.

Again, Declare Miner mines a fitting (for a rule support of 100%) model
with low comprehensibility. The result is shown in Figure 7.12.

Discovery of the PhD process with Fusion Miner

Figures 7.13 and 7.14 show the discovered mixed-paradigm models in ProM.
An overview of the different activity entropy values can be found in Table 7.4.
Even for a small entropy value e = 0.2, and due to the A×(1−e) pruning step
and a rule support of 100%, the activity Content Creation becomes subject
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Figure 7.10: Result of Heuristics Miner for log 2 in Figure 7.9 (Default settings
and with reduced invisible activities).

Figure 7.11: Result of Inductive Miner for log 2 (fitness set to 100%).

Figure 7.12: Result of Declare Miner for log 2. The rule support used is 100%.

to Declare constraint mining (Figure 7.13). By its constant enabledness it
can appear anywhere in the workflow and clutter up the sequential process.
By retrieving a few rules for the activity, Fusion Miner is able to represent
it in a sense-making way in a mixed model. The model is already capable
of capturing the initial model more correctly, as the relationships between
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Activity Activity En-
tropy

Eligible for e =
0.2

Eligible for e =
0.5

Content Creation (CC) 0.561 Yes Yes
Journal Paper (JP) 0.557 No Yes
Conference (CO) 0.52 No Yes
Second Seminar (SS) 0.38 No No
First Seminar (FS) 0.242 No No
Defense (DE) 0 No No

Table 7.4: The activity entropy values for the PhD example to illustrate the work-
ings of the algorithm. For e = 0.2, only CC is taken into account, due to the
A× (1− e) pruning step of AE. For e = 0.5, JP and CO are also included in D.

Content Creation and the other activities are correct. The arc between
Second Seminar and Journal Paper is still incorrect.

By raising the entropy level (Figure 7.14), more activities are added to
the declarative set D, in this case Conference and Journal Paper. This
makes sense given the model. Only constrained by the appearance of Con-
tent Creation, these activities are also rather unpredictable. Note that the
procedural part of the model is becoming smaller and smaller, while the
Declare constraints offer the same behavior and more.

If this approach is positioned in Figure 7.1, it would be categorized as
an attempt to mine behavior more closely by retrieving the intersection of
both outcomes, depicted in Figure 7.1b.

Figure 7.13: Result of Fusion Miner with e = 0.2 for log 2. The activity on the
left is the only entropic one and is connected with Declare constraints to the other
five. The arrow between Second Seminar and Journal Paper is still incorrect, but
the alternate precedence constraints are better capable of capturing the behavior
in a clear way.

Fitness and Precision

In Table 7.5, the second result (for e = 0.5) of Fusion Miner (represented
as Declare and Petri net in Figure 7.15) is compared to ILP Miner’s result
for the PhD example, which can be found in Figure 7.16. ILP Miner is
chosen as it generally guarantees a fitness of 1 and does not introduce in-
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Figure 7.14: Result of Fusion Miner with e = 0.5 for log 2. When raising the
entropy level in the miner, Conference and Journal Paper get included in the
declarative part of the model. The relations between the activities are now all
captured correctly.

visible transitions that blow up the number of possibilities to check for the
most fitting path (as in cheapest alignment [4]). Inductive Miner faces this
challenge, though it achieves reasonable fitness/precision balance after ex-
ploring the combination of invisible transitions that keep the lowest number
of transitions enabled throughout the execution. Again, the false positives
are indicated in bold. Notice that, even for a dependency measure of 0,
Heuristics Miner is unable to derive a perfectly fitting model for the event
log and is not used in the comparison.

For this trace in particular, the precision scores are pBILP = 22
13+22 =

0.629 and pBMPM = 19
19+5 = 0.792 for e = 0.5.

As shown in Table 7.5, it is clear that ILP Miner’s Petri net keeps a
lot more activities enabled throughout the replay of the trace, while Fu-
sion Miner’s result enables less activities and thus triggers less false posi-
tives, resulting in a higher precision value. Note that, since this trace is
short, the prefix window for negative event generation is small, resulting
in artificial negative event generation only after some activities, punishing
ILP Miner only towards the end. For longer traces, ILP Miner’s outcome
would produce even more false positives throughout the trace. The out-
come of Inductive Miner is comparable. Nevertheless, it is clear that Fusion
Miner outperforms traditional procedural mining algorithms especially for
logs with different layers of flexibility. Compared to the first example, Fu-
sion Miner is now much better capable of offering better results in terms of
fitness/precision/comprehensibility.

The result of Declare Miner, as shown in Figure 7.12, also guarantees
a fitness of 1 and a high precision, but the comprehensibility is really low.
Furthermore, while Declare models usually aim for high flexibility, the out-
come of this model is very strict, surpassing the purpose of Declare. Finally,
the precision result of Fusion Miner as depicted in Table 7.5 is the same as
the one of Declare Miner, as the resulting Declare model enables the same
activities as the mixed-paradigm model during replay.
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Figure 7.15: Mixed-paradigm model with e = 0.5 from Figure 7.14, for which the
dependency graph is translated into a Petri net.

Figure 7.16: Result of ILP Miner for the PhD example log (default settings).

7.5.3 Example 3: Incident Management Process

This real-life example contains different steps of an incident management
process, which starts off with the assignment of a help desk resource with
Status Assigned. This activity can be succeeded by numerous other activities,
such as the installment of a Status Work In Progress status, a Pending status,
or the use of a special resource such as Group GPC CORK or Group ORS
MS BACKOFFICE.

Issues with Currently Available Miners

The result of Heuristics Miner with default settings is given in Figure 7.17.
The dependency net is large, as it tries to fit most of the log variants, which
results in a spaghetti-like model. The result of Declare Miner is not included,
as it was unreadable due to the enormous amount of constraints (over 100
constraints for a rule support of 100% and 150 for a support of 75%), which
cannot be represented easily in a process map. Furthermore, it did not con-
tain a lot of sequential information, such as (alternate) precedence/succession
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Ind. Act. Enabled ILP Enabled MPM Negative events
1 CC CC CC CO JP FS SS DE
2 CO CC CO JP SS CC CO JP
3 JP CC JP FS SS CC JP FS CO
4 CC CC FS CC FS CO JP
5 CO CC CO JP FS SS DE CC CO JP FS SS
6 FS CC JP FS SS DE CC JP FS CO SS DE
7 SS CC JP FS SS DE CC JP SS CC CO JP FS DE
8 JP CC JP FS SS DE CC JP DE CC CO FS SS DE
9 DE CC FS DE CC DE CC CO JP FS SS

Table 7.5: The precision calculation for the PhD example for ILP Miner (default
settings) and Fusion Miner. As can be seen in the Enabled columns, there are
a lot of activities enabled all the time in the Petri net of ILP Miner, resulting
in lower precision, which is punished by the high false positive rate (negative
events indicated in bold). Fusion Miner’s model enables much less activities while
retaining the same fitness value. The abbreviations of the activities can be found
in Table 7.4.

constraints, but rather many choice and not chain succession constraints.
Declare Miner oftentimes has a hard time dealing with real-life logs, which
is supported by the fact that UnconstrainedMiner (correctly) found numer-
ous such constraints. However, the result of UnconstrainedMiner includes
all supported rules, hence not a Declare model for a certain support.

Discovery with Fusion Miner

Fusion Miner depends on Declare Miner’s result, which did not include many
Declare templates kept for mining in the Fusion Miner algorithm. However,
by using various Declare rule support values, it becomes possible to quickly
derive various well- and less-supported flows in the dependency graph. The
result shown in Figure 7.18, for a support of 75% and e = 0.5, shows many
activities only executed once. In combination with the Succession constraints
which yield the obligatory execution of the consequent, the main flow can be
read from the figure. This highlights another benefit of using Fusion Miner:
scrutinizing the log for frequent and less frequent workflow behavior.

Fitness and Precision

Since the model does not fit the log for 100%, the replaying algorithm can-
not enact the model as calculating all the moves-on-model and moves-on-log
manually requires a great deal of time and might not yield a good approx-
imation of the best alignment. Through visual inspection, however, it was
clear that for certain Declare rule support values, the result was very precise,
as the combination of exactly1 and succession constraints clearly delineated
the workflow.
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7.6 Summary

The previous examples have shown the main issues that traditional miners
face when dealing with different layers of flexibility. The benefits that can
be provided by Fusion Miner and its main use cases are:

– More precise models: Fusion Miner provides more precise models
because:

– Declare constraints have different semantics that are better suited
to capture flexible behavior. They provide, e.g., richer semantics
for loops (e.g. the alternate constraints) and duplicate tasks.

– Declare constraints are derived via rule support on trace level. As
such, they are, reinforced by their non-local sequence semantics,
better capable of capturing long-distance relationships. Further-
more, they are mined for a certain support level which ensures
the presence of the constraint, while many procedural miners use
heuristics which cannot guarantee the end result to be a true
reflection of the behavior in the event log.

As shown in Figure 7.1b, the Declare model cuts off parts of the proce-
dural model to make a more precise representation of the log behavior.
While there is always a trade-off between precision and generalization,
i.e., precise models are not always preferred, Fusion Miner offers pa-
rameters that can mitigate overfitting. Most notably the entropy level
parameter allows to avoid overfitting flexible parts of a model to avoid
introducing too many constraints.

– More fitting models: As illustrated in paragraph 7.3, Declare mod-
els often capture only the rough part of the workflow, depending on
the support level they are granted and the templates that are used.
While procedural models such as Petri nets can be relaxed to include
more behavior by introducing extra connections and, e.g., invisible ac-
tivities, resulting in an overly general model, Declare constraints can
still capture rough or even very fitting information about the parts
of the log that are rather flexible and would result in a very generic
procedural model. Figure 7.1c illustrates this as the dark gray mixed
model, which represents the combination of a procedural and declara-
tive model, can cover extra parts where the light gray procedural model
was not able to go. By combining both, thus using Declare constraints
where flexibility is needed while retaining procedural fragments, Fusion
Miner can keep a high fitness value by relaxing procedural models with
(precisely) fitting Declare rules.
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– More comprehensible models: Model comprehension is influenced
by numerous factors [104, 54]. By combining paradigms suited for
different granularities of flexibility, mixed-paradigm models are capa-
ble of representing processes in the form most suited to their nature.
For example, parts of an event log which would typically be captured
by a Petri net containing invisible activities, can perhaps better be
explained by using some Declare constraints. Furthermore, Declare
models can be presented in a simpler way for readers with procedural
constructs which offer stricter models where possible. As shown in the
previous examples, mined Declare models are often incomprehensible
and use a vast amount of rules of which many are redundant.

The basic idea boils down to the exploitation of the stronger semantics of
Declare constraints in procedural models in order to introduce more flexi-
bility, while maintaining a procedural part in which strict sequences are still
present where the process in the log does not need extra flexibility. Very
loose or very procedural logs are not the target of the approach, but can be
mined by choosing the correct settings. E.g., by choosing an entropy level
e of 0 or 1, one mines a fully procedural or fully declarative process model
respectively. As such, Fusion Miner provides an approach to incorporate any
level of flexibility, which can also be used for log exploration.

More specifically, Fusion Miner is actually a mining framework rather
than a discovery algorithm altogether. As will be illustrated in Chapter 8,
Fusion Miner is not limited to using only Heuristics Miner for procedural
models, and Declare Miner for declarative models. The algorithm is almost
mining technique agnostic, and can cope with other Petri net-mining and
Declare-mining algorithms as well.

7.7 Conclusion and Future Work

In this chapter, the challenge of mixed-paradigm process mining was ad-
dressed. Fusion Miner was proposed, a framework to mine for procedural
and declarative process model constructs simultaneously to represent work-
flow behavior in an event log. For now, the framework incorporates two of
the most widely used process mining algorithms that can be found in litera-
ture. Results show that this approach yields more precise models, especially
in environments with multiple layers of flexibility, and more comprehensive
models, as recapitulated in Section 7.6. The evaluation technique is still
preliminary however, and will be further elaborated in Chapter 8, together
with a different version of Fusion Miner capable of automatically learning
the level of flexibility in a log.





CHAPTER 8

Model and Conformance Check-
ing of Mixed-Paradigm Process
Models in a Discovery Context

“Truth and honesty
Can be two very different things
But truth can be carelessly confessed
And honestly the truth I do not ask
For fear it’s what I’ll get.”

— Blake Mills, Three Weeks in Havana

In the previous chapters, approaches for modeling and mining of mixed-
paradigm models were constituted by using execution semantics based on
Petri nets and Declare. However, there still might be friction between the
two models, as modelers and mining algorithms cannot guarantee to have
created a deadlock-free model where the Petri net and Declare constraints
do not agree on the enabledness of activities and the possibility to reach a
final accepting state. This chapter provides a way to offer an unified en-
actment model that can be used to verify the correctness of the models by
checking (i) whether the behavior is aligned, and (ii) where the model can
be improved according to errors that arise along the respective paradigms.
The approach is based on intersecting both parts of the model by conjoining
their state spaces to obtain a global automaton. Furthermore, the func-
tionality of Fusion Miner is extended in a way to inspect which amount of
flexibility is right for the event log, based on whether the models align for
a certain entropy level. Finally, a conformance checking algorithm based
on alignments is proposed that allows to take any Fusion Miner outcome

153
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as an input, i.e., both procedural, declarative, and mixed-paradigm models
can be evaluated and compared for fitness, precision, and generalization. All
the procedures are demonstrated with an implemented model checker and
verified on real-life event logs.

8.1 Introduction

As illustrated in Chapters 6 and 7, mixed-paradigm models consist of a blend
of procedural and declarative process models. More precisely, this comprises
models which on the one hand contain fixed execution paths, while on the
other hand incorporate activity-based rules. Constructing such models is not
always straightforward, as one has to be able to grasp the intricacies of both
parts, as well as the effect they have on one another. Because both models are
mined or modeled separately, though over the same alphabet, many conflicts
can occur. Especially for process discovery, a consistency problem regarding
the internal behavior can occur. For instance, the procedural model might
allow for an activity to be enabled, while the declarative model does not, or
vice versa. In this case, the activity has to conform to the most restricting
model and become disabled. This might cause deadlocks for the other model
later on, where the activity is not enabled or did not enable another activity
that is needed to reach the final state(s) of the model.

8.1.1 Motivational Example

Consider the model of Figure 5.10, repeated in Figure 8.1. A procedural
Petri net model is combined with multiple Declare constraints. In order
to reach a marking containing p5, precedence(g,c) and not co-existence(f,g)
cannot reside in the model together, as b requires f to fire first, which means
that c can never be executed as g cannot fire anymore and c is in a precedence
relation with g.

The challenge is to find whether the behavior of both models is com-
patible and can be used as a whole, and if not, where the discrepancies
reside. This might lead to insights into how the model types interact, e.g.,
the procedural model might be too restrictive to allow for the more flexible
behavior of the declarative model. By pinpointing which constraints are not
working out with the procedural model, the modeler or miner might react
accordingly. This is the principle that is used by the model checking ap-
proach proposed in this paper. By incrementally matching both models, the
maximal conjoined behavior is sought after, ideally yielding a full match of
behavior. Furthermore, Fusion Miner is adopted to also recognize procedu-
ral models with a vast state space, i.e., Petri nets for which the reachability
graph does not exhibit finite behavior. This reflects the presence of either
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Figure 8.1: An example of a mixed-paradigm model containing inconsistencies.

a vast model, or of a model with many routing constructs for achieving a
wide array of execution paths. The latter indicates that the model is either
overfitting, or tries to capture a vast deal of the flexibility still, which con-
flicts with the aim of the approach to capture flexibility with the declarative
process model. Hence, the algorithm adapts itself automatically to revise
its outcome to shift the balance of the model towards the declarative part.
Finally, as a global automaton is provided, it becomes possible to calculate
the optimal alignments [4] which can be used to assess the conformance of
event logs over mixed-paradigm models.

To achieve the results, Fusion Miner is adapted to use MINERful [22], a
very efficient declarative constraint miner, rather than Declare Maps Miner
in order to improve performance and to incorporate model checking capa-
bilities. The new version is called FusionMINERful.

This chapter is organized as follows. Section 8.2 introduces the for-
malisms which are further used to explain the model checking and mining
techniques in Section 8.3. Section 8.4 evaluates the approach on a real-life
data log, which is followed by an in-depth conformance checking approach
in Section 8.5, and the conclusion in Section 8.6.

8.2 Preliminaries

Declare and Petri nets were formalized in Chapter 3. However, some ad-
ditional concepts are refreshed and put into context of a mixed-paradigm
model. First, the alphabet of the Declare model previously defined as Σ is
again denoted as Σdec, for which holds Σdec = D. This means the open-
world assumption of Declare is not followed [117]. Secondly, the alphabet of
the Petri net consists of all transitions, including the invisible λ transitions,
ΣPN = ΣT ∪ {Tλ}. A partial function α : ΣPN 9 B exists, assigning tran-
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sitions to the activities in the procedural model, with t ∈ ΣPN , t /∈ Dom(α)
the invisible transitions. Note however, that all elements of ΣPN are uniquely
distinguishable when constructing the state space, i.e., all invisible transi-
tions are also incorporated in the alphabet ΣPN used in the state space ΦPN .
They will also be present in the global automaton ΦMPM in case of conjunc-
tion, i.e., ΦMPM = ΦDM ⊗ ΦPN . The alphabet of the mixed-paradigm
model is then ΣMPM = ΣPN ∪ Σdec.

8.3 Model Checking Approach

In the following section, the approach to check the consistency of a mixed-
paradigm model is described. Thereafter, it is shown that it can be used in
the context of mining to reduce the required computational expensiveness.

8.3.1 Model Checking

The model checking approach is based on automaton multiplication, as in-
spired by [25]. In order to verify whether a mixed-paradigm model does not
have any conflicting states, both models are brought to the same execution
model, being a finite state automaton. The algorithm starts from a mixed-
paradigm model, being a Declare model DM and a Petri net PN possibly
retrieved from Fusion Miner, and delivers the final FSA ΦMPM . It is as-
sumed that both models adhere to the activity topology of Table 7.1, i.e.,
there exist four different activity types, and all activities are subset of the
global alphabet A. For the Petri net, the reachability graph is calculated
(Algorithm 5, line 2), which is a transition system that can get converted to
an FSA. The initial state is determined by the initial marking M0, and the
accepting states by either a given final marking, or a state in which there are
no transitions anymore. Next, all the constraints in the declarative model Π
are checked for compatibility with the reachability automaton by conjoining
its executable form, also an FSA, with the procedural model (line 21). The
semantics used for the Declare constraints are the regular expressions from
Table 3.1, and are denoted as §sync(π), π ∈ Π. In case the full declarative
model does not conflict, the result ΦMPM will contain the full behavior of
both models without the conflicting states. If not, the declarative model with
the most non-conflicting constraints will be returned (line 7-11). Another
possibility is to check the declarative model up front with the approach dis-
cussed in [25] and available in the MINERful framework1, which also checks
for constraint redundancy.

Iteratively conjoining constraints to get the biggest set of non-conflicting
Declare constraints might be computationally inefficient in case of very big

1https://github.com/cdc08x/MINERful

https://github.com/cdc08x/MINERful
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Algorithm 5 Model checking procedure for mixed-paradigm models.
Input: DM . Declare model
Input: PN . Petri net model
Output: ΦMPM
1: procedure calculateModel(DM,PN)
2: ΦPN ← calculateReachabilityGraph(PN)
3: ΦMPM = ∅ . Start with an empty model
4: b = 0 . b is the size of the currently largest constraint set found
5: V ← ∅ . Current constraint set
6: for π ∈ Π do . Π is the set of declarative constraints
7: Φsync, V ← checkConstraintForConflicts(ΦPN ,Π, π, V )
8: if V = Π then . If all constraints are contained in V , output model
9: ΦMPM ← Φsync

10: break
11: end if
12: if |V | > b then . If the current constraint set found is larger than
13: b← |V | . the largest set found so far, save the model
14: ΦMPM ← Φsync
15: end if
16: end for
17: return ΦMPM
18: end procedure

19: procedure checkConstraintForConflicts(Φ,Π, π, V )
20: V ← π
21: if Φ⊗ §regex(π) 6= ∅ then . Check whether π conflicts with Φ
22: Φres ← Φ⊗ §regex(π)
23: for g ∈ Π \ V do
24: checkConstraintForConflicts(ΦPN ,Π, g, V )
25: end for
26: end if
27: return Φres, V
28: end procedure

constraint sets. This can be resolved by introducing a priority scheme that
checks unary and negative constraints (e.g. exactly2 and not succession) last,
because they often impose a high degree of interaction with other constraints
[143]. Furthermore, this can also help to resolve the issue of choosing one
constraint set over the other in the case of equal sizes.

Example

Consider the model in Figure 8.1 again. The reachability graph of the pro-
cedural model is relatively small and is presented in Figure 8.2. The initial
marking is M0(p1) = 1. The algorithm iteratively tests whether the con-
straints in the declarative part of the model can be intersected with this
state space. Clearly, not co-existence(f,g) and precedence(f,b) cannot co-
exist in this model, as c can never be executed when g is prohibited from
firing through not co-existence(f,g). Therefore, one of these constraints is
disregarded by the model checker to provide a final execution automaton for
the model. According to the priority strategy, this is the case for not co-
existence(f,g).
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Figure 8.2: The state space of the Petri net and the Declare constraints’ automata
from Figure 8.1.

8.3.2 Better Mining with Model Checking Iterations

Next to checking models, the algorithm can also be used to guide the discov-
ery of process models in event logs towards a better solution in the following
way. Since calculating the reachability graph can be computationally ex-
pensive, the algorithm can be adapted as follows. Starting from the initially
assigned value, the entropy level e is subsequently raised to increase the size
of the declarative part versus the procedural one. In the extreme case, the
algorithm resorts to mining solely a declarative model, for which the model
checker is guaranteed to finish [25]. Hence, the algorithm actually checks
the amount of flexibility that is present in the log and adapts itself accord-
ingly to the amount of ‘declarativeness’ that is needed. This is called the
self-learning capability of the approach.

The full details can be found in Algorithm 6. It keeps going while no
model is found. First, Fusion Miner is used to mine for a mixed-paradigm
model. Note that both DM and PN might be void, in case e is 0 or 1
respectively. In that case, it might be that the output is the state space
automaton of either the declarative or procedural model on its own. In
case e = 1, the same procedure to obtain an as large as possible set of
constraint is sought after, for which the algorithm starts from an automaton
that accepts the full alphabet A, as an empty one would not accept any
conjoined constraints. In order to achieve the self-learning capability, the
Fusion Miner algorithm (as documented in 7.4) is adapted to check whether
the reachability graph of the procedural model can be calculated, containing
less than a certain number of states (Algorithm 6, line 5). This number is
calculated based on a threshold n, a model size multiplication coefficient,
and the size of the procedural model, i.e., n × |SPN | × 1, 000. If the graph
cannot be calculated, the entropy measure is raised by another threshold
called resilience coefficient, r, to reiterate the process towards with an intent
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Algorithm 6 FusionMINERful algorithm.
Input: L . L an event log
Input: e . Initial entropy level value
Input: n . Model size multiplication coefficient
Input: r . The resilience measure value
Output: ΦMPM
1: procedure calculateModel(L, e, n, r)
2: ΦMPM ← ∅
3: while ΦMPM = ∅ ∧ e ≤ 1 do
4: DM,PN,D ← FusionMiner(L, e) . Calculate models with FusionMiner
5: ΦPN ← calculateReachabilityGraph(PN, n) . Returns an empty set after
6: V ← ∅ . n× |S| × 1, 000 states
7: b← 0
8: if ΦPN 6= ∅ ∨ e = 1 then
9: if ΦPN = ∅ then . If the Petri net is empty,

10: ΦPN = ΦA . make an automaton that accepts the full alphabet
11: end if
12: for π ∈ Π do
13: Φsync, V ← checkConstraintForConflicts(ΦPN ,Π, π, V )
14: if V = Π then
15: ΦMPM ← Φsync
16: break
17: end if
18: if |V | > b then
19: b← |V |
20: ΦMPM ← Φsync
21: end if
22: end for
23: else
24: e← e+ r
25: end if
26: end while
27: return ΦMPM
28: end procedure

to retrieve a model consisting of a bigger declarative part and a smaller
procedural one (Algorithm 6, line 20).

Example

Consider the procedural model produced by Fusion Miner for an entropy
level of 0.4, a support of 100%, and a confidence of 50%, depicted in Figure
8.3. The procedural part of the model has to take into account many dif-
ferent ways of enabling d in between the other activities, introducing many
silent transitions. Calculating the reachability graph will yield an enormous
automaton, requiring computationally expensive conjoining operations. Be-
cause the reachability graph calculation is stopped after 32,000 (2×16×1000
when n = 2) states, the algorithm repeats its main procedure with an en-
tropy level e which is increased by r. For e = 0.4 and r = 0.1, the resulting
model eliminates the need for invisible transitions by removing d from the
procedural workflow, as depicted in Figure 8.4.
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8.4 Implementation and Evaluation

In this section, the implementation in FusionMINERful is introduced. Next,
this process mining tool is used to evaluate the approach on the 2012 BPI
Challenge [165] event log.

8.4.1 Implementation

Mining a mixed-paradigm model with intertwined state spaces was intro-
duced by Fusion Miner [142]. This mining algorithm uses the notion of
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Figure 8.4: Mixed-paradigm output of FusionMINERful for the same event log
after the entropy level was raised to 0.5.
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entropy to find activity types in the log that do not fit a strict workflow
well, based on the dependency information of Heuristics Miner [178]. Activ-
ities are divided into D, S, DD, and SS. FD, FDS , and FS are mined, while
FSD is not considered to avoid too convoluted models that have a high risk
of inconsistencies. For this work, a new version called FusionMINERful is
used. This algorithm uses MINERful [22] to derive FD and FDS and Heuris-
tics Miner to mine FS . It also relies on the state space analysis tools which
can be found in ProM. The implementation is compatible with ProM and
can be found at http://www.processmining.be/fusionminerful/.

The final output model is represented as a dependency graph with De-
clare constraints [142], which can be converted to a Petri net with Declare
constraints. This serves as the basis for the model checking approach. In the
output, removed constraints are colored differently, and the implementation
also includes the self-learning capability. Blue arcs comprise the procedu-
ral model, while black annotated arcs contain Declare constraints. Negative
constraints are yellow, while constraints removed during verification are red.
Declarative activities use dashed outlines, and gray and red coloring indi-
cates existence(A,1) and exactly(A,1) respectively.

8.4.2 Application to the 2012 BPIC

The approach of model checking with FusionMINERful has been tested on
the 2012 BPI Challenge event log (BPIC 2012) [165]. This log consists of
three distinct subprocesses which will be treated separately, in analogy with
the approach followed in [3]. The goal is to find out whether the model that
is discovered is sound, and how well FusionMINERful can determine the
level of flexibility that is needed for mining an informative process model.
To test the self-learning capabilities of the algorithm, the initial entropy level
is always kept at 0, giving the algorithm the chance to adapt itself according
to whether a procedural finite state space can be constructed. The model
size multiplicator level was set to 10, and the resilience measure at 0.1.

The first subprocess, X, does not contain any behavior that is too un-
structured to handle in a procedural model, hence the algorithm does not
raise the entropy level. In this case, the full model of Heuristics Miner is
outputted, as can be seen in Figure 8.5. The second subprocess, subprocess
Y , shows a low level of flexibility. In this case, two iterations finally churned
out the process that can be seen in Figure 8.6. Finally, the last subprocess,
Z, reaches the maximal entropy level of 1, indicating that the process can
be considered very unstructured. Only the Declare model is outputted, as
can be seen in Figure 8.7, which contains many negative constraints and one
conflicting constraint which is removed from the model.

Overall, the approach is capable of detecting inconsistencies, although
few appeared. This is in line with the intuition established in [25]. Further-

http://www.processmining.be/fusionminerful/
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Figure 8.5: Output of FusionMINERful for the X subprocess of BPIC 2012. The
set-up is: initial entropy level e of 0, resilience r of 0.1, and model size multipli-
cator n of 10. The entropy-level remains unchanged, indicating the log to contain
procedural behavior.

Figure 8.6: Output of FusionMINERful for the Y subprocess of the BPIC 2012.
The set-up is: e = 0, eventually raised to 0.2, r = 0.1, and n = 10.

more, FusionMINERful is also capable of finding different levels of flexibility
which approaches the results from Heuristics Miner and ILP Miner. These
mining techniques also resort to imprecise many-to-many connections to re-
flect the unstructuredness that is present in the event logs, especially for Y
and Z.

8.5 Conformance Checking

In the previous sections it was shown how an executable, consistent mixed-
paradigm model can be retrieved both from modeling and mining efforts.
This allows for applying conformance checking based on the insights of [4],
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Figure 8.7: Output of FusionMINERful for the Z subprocess of the 2012 BPIC
log. The set-up is: e = 0, eventually raised to 1.0, r = 0.1, and n = 10.

and especially the replaying suite of [35], which uses Büchi automata to
analyze Declare models. Since the same principles can be applied to FSAs,
this section will provide a tailored technique for mixed-paradigm models,
and a comparison between the results of both procedural and declarative
process mining algorithms.

8.5.1 Alignments

Starting from a mixed-paradigm model with alphabet ΣMPM , an alignment
is defined over the alphabets A�L = AL∪{�} the log alphabet, and Σ�MPM =
ΣMPM ∪ {�} the model alphabet, where � represents the skipping of an
event in either the log or model respectively. Hence, there are four types
of moves, being pairs of activities, possible when aligning log and model
(x, y) ∈ A�L × Σ�MPM :

– (x, y) is a move in log if x ∈ AL and y =�,

– (x, y) is a move in model if x =� and y ∈ ΣMPM ,

– (x, y) is a synchronous move if x ∈ AL and y ∈ ΣMPM ,

– (x, y) is an illegal move in other cases.

All the legal moves that can be found in an alignment are Aleg = (A�L ×
Σ�MPM )\{�,�}. An alignment of a log and model trace σ′L, σ”

MPM respec-
tively, is a sequence γ = 〈(x′1, y”

1), ..., (x
′

n, y
”
n)〉 ∈ Aleg. An alignment can be
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assigned a cost, which is defined by the function K(γ) =
∑

(x′ ,y”)∈γ κ(x
′
, y”),

where κ : Aleg → R+
0 the cost of an individual step in the alignment. For

the sake of simplicity, it is assumed that:

– κ(x, y) = 0 when x = y,

– κ(x, y) = 0 when x =� and y ∈ Σλ,

– κ(x, y) = 1 when x =� and y ∈ ΣMPM \ Σλ,

– κ(x, y) = 1 when x = AL and y =�.

The set of all optimal alignments is denoted Γ = {γ1, ..., γn}, and the cor-
responding model alignments ΓΦMPM = {γM1 , ..., γMn } with γMi = {(x, y) ∈
γi | y 6=�}, being the alignments without moves on log. It is assumed
that all traces are unique, and that there is no need to adjust for trace type
frequencies in the calculations.

There are many different ways to calculate alignments, e.g., A∗-based
methods for Petri nets [4, 5], and Declare automata [35], which typically
lead to an exploration of the complete state space in order to find the most
optimal alignments. To illustrate the conformance of the mixed-paradigm
models, however, a simple best-first algorithm is used to find the alignments
Γ with the lowest cost. The one-alignment strategy is performed, for which
not all optimal alignments are stored, but rather the first one with the lowest
cost that is encountered. This is done in order to avoid computationally
expensive operations that have to travel throughout the full search space. It
was shown that in cases where few moves on log and model are present, this
does not skew the result in a significant way [6]. Especially in this context,
i.e., finding models with mining algorithms that achieve high fitness, it is
not unreasonable to make that assumption.

The fitness of a trace σL ∈ L can then be defined as

Fitness(σL,ΦMPM ) = 1− K(γσL)

K(γrefσL,σMPM )
,

where γrefσL,σMPM is the reference alignment that only contains moves in the
log or in the model.



CHAPTER 8. MIXED MODEL AND CONFORMANCE CHECKING 165

To obtain precision and generalization, an alignment automaton
(Σaa, Saa, σaa, δaa, Faa) is constructed as follows:

– Σaa = ΣMPM ∪ � is the alphabet of the automaton,

– Saa is the set of prefixes of all model alignments in ΓΦMPM ,

– σ0
aa is the initial state, being an empty sequence,

– δaa : Saa × Σaa → Saa is a function that connects the prefix states,
i.e., it is defined when δaa ⊗ 〈s〉 ∈ Saa 6= ∅,

– Faa ⊆ Saa is the set of final states.

The automaton represents all unique paths traveled by the alignments
throughout the model. They can be leveraged towards precision by pitching
the set of possible executions in the model (i.e. enabled activities) after ex-
ecuting a trace σ, avMPM (σ) = {s ∈ Σaa | σ ⊗ 〈s〉 ∈ Φ∗MPM} with Φ∗MPM

all allowed traces by the model (Kleene operator), compared to the set of
activities that have been actually executed for constructing the alignment
automaton after replaying σ, exL(σ) = {s ∈ Σaa | δ(σ, s) 6= ∅}. Hence,

Precision(ΦMPM ,L) =

∑
σ∈Saa\Faa |exL(σ)|∑

σ∈Saa\Faa |avΦMPM (σ)|
.

For generalization, the same alignment automaton is used. A generaliza-
tion metric tries to estimate to what extent a model is capable of allowing
for other behavior than the one seen in the event log. It is typically dif-
ficult to accurately capture generalization, for it is hard to define unseen
behavior. However, the following approach is typically used for processes
[163, 35]. All the points in the event log where an activity can happen are
scrutinized. For this, the set of non-final states in the alignment automaton
X = Saa \Faa, and grouped in equivalence classes, for which holds that they
represent the same state in the process model. If the automaton of ΦMPM

is represented as such, two classes σ′, σ” ∈ X are considered equivalent iff
δ∗ΦMPM (σ0

ΦMPM
, σ′) = δ∗ΦMPM (σ0

ΦMPM
, σ”). By comparing the number of

times a particular state Xi ∈ X was visited during replay ω(Xi), and the
number of activities actually executed in that state ∆(Xi) , the following
probability metric can be used to estimate the likelihood of a new activity
occurring:

pnew(n,m) =

{
n(n+1)
m(m−1) if m ≥ n+ 2

1 otherwise
.

Generalization is then defined as:

Generalization(ΦMPM ,L) = 1− 1

|X |
∑
χi∈X

pnew(∆(χi), ω(χi)).
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8.5.2 Experimental Setup

The alignment replay technique will now be applied on three different event
logs. First of all, the event logs used for the examples in Section 7.5.1 (called
log 1) and Section 7.5.2 are mined (called log 2). Secondly, the 2012 BPI
Challenge log is analyzed and replayed according to the strategy outlined
in Section 8.5, where a random sample of 1,000 traces was used in order to
speed up calculations.

For the mining part, Inductive Miner [91] was used, more specifically the
variant tailored towards infrequency, IMf, because it offers a threshold f that
allows for regarding infrequent behavior as noise. Initially, the classic setup
of Declare Miner and Heuristics Miner was considered, however, Heuristics
Miner rarely churns out perfectly fitting models, and often resulted in low
fitness scores, especially when paired with Declare Miner. Inductive Miner in
this respect is better suited, as it churns out sound, block-structured Petri
nets that are better compatible with Declare constraints. Next to f , the
entropy e was altered to achieve different blends in FusionMinerFul. The
support for mining Declare constraints was kept at 100%. The influence of
both the support and confidence for retaining constraints, as well as the in-
clusion of negative constraints into the declarative mining result were tested
without any significant differences in the results. Since FusionMINERful
has a built-in checker, constraint sets that do not yield an executable model
are disregarded, hence near-maximum support and confidence are typically
always achieved. For the tests, a fixed threshold of 80% was used for con-
fidence. The inclusion of negative constraints also does not influence the
results, for they are also typically disregarded when the constraint set does
not constitute an executable model, and they also often contain superfluous
information as explained in 7.4.2. Finally, the following heuristic was used to
suppress too long of a calculation time. First, once intermediate alignment
results were longer than half of the trace, the algorithm was not allowed
to find alignments shorter than that length. Secondly, a maximum of 10
seconds and 30.000 saved states was imposed on the calculations.

The results can be found in the graphs in Figures 8.8 through 8.10. On
the left fitness is indicated in blue, precision in green, and generalization
in red, and on the right the number of Petri net arcs is indicated in blue,
the number of constraints in green, and the number of constructs used by
FusionMINERful is indicated in red. On the left hand side of the graphs,
the result of Inductive Miner is displayed, while on the right hand side,
the result of MINERful is displayed. Everything in between is a produce
of FusionMINERful. A detailed overview of the results can be found in
Appendix B.
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Figure 8.8: Conformance results for log 1.
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Figure 8.9: Conformance results for log 2.
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Figure 8.10: Conformance results for the 2012 BPI Challenge log.
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8.5.3 Discussion of Results

First of all, this experiment is, to the best of the author’s knowledge, the
first comparison of conformance results of both procedural and declarative
process mining results. Second of all, it also shows in what ways mixed-
paradigm solutions can offer different results. Lastly, it also offers extra
insights into the conformance results churned out by declarative process
miners with more examples and more extensive models than in [35].

In terms of fitness, it is clear that when f is set to 0, Inductive Miner finds
a perfectly fitting model. Overall, the difference with the results of MINER-
ful in terms of precision and generalization are small for log 1. In this case,
FusionMINERful is able to achieve a slight bump in precision and general-
ization at an entropy level of 0.2. For log 2, MINERful achieves a slightly
higher precision and lower generalization. FusionMINERful approaches the
same values, when only a small part of the model is kept procedural as can
be seen from the number of Petri net arcs present. For the BPI log, Inductive
Miner yields a perfect fitness and generalization, and a low precision score.
MINERful clearly underperforms in terms of precision, as can be expected
from such a low number of constraints that were found. FusionMINERful
achieves the same scores as Inductive Miner for a low entropy level, which
retains the procedural model and adds some declarative constraints that do
not influence the scores as they do not add any extra information. This is
the effect of the low precision of the declarative model.

When the f value is raised, the story changes somewhat. Inductive Miner
does not achieve 100% fitness, but also requires fewer Petri net constructs
to fit the net except for f = 0.5 for the BPI log. For log 1, FusionMIN-
ERful does yield 100% fitness and achieves higher precision, and at higher
entropy levels approaches MINERful’s results which contain the best scores
for all three metrics. Similar observations are made for f set to 1. For log 2,
MINERful achieves the same precision and generalization scores as Inductive
Miner, but for a fitness score of 1 instead of 80%. For higher entropy levels,
FusionMINERful not surprisingly also achieves the same scores as MINER-
ful. On the BPI log, Inductive Miner consistently outperforms MINERful,
although for a higher level of f the conformance checking algorithm was
not capable of replaying the traces within a reasonable amount of time. In
this respect, the finite behavior of Declare actually provides a smarter way
to mine and evaluate the behavior and the model. FusionMINERful again
tries to incorporate best of both worlds, performing insignificantly better or
similar to the best of both algorithms.

In the end, it is indeed easier for Inductive Miner to mine the rather pro-
cedural behavior of log 1, while MINERful copes better with the behavior of
log 2. FusionMINERful achieves results in between the two algorithms. It
is also confirmed that the self-learning feature of FusionMINERful achieves
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the expected level of entropy for all logs. For log 1, a lower entropy level
is more appropriate, while for log 2 a higher one constitutes a better blend.
Hence, it shows that the entropy level is actually a valid way to approach the
level of flexibility that is present in the log. An important takeaway is that
MINERful consistently churns out the lowest number of constructs, although
Petri nets require at least two arcs for the same connection (as it connects
transitions through places). In a way, there is not a huge difference between
procedural and declarative process mining algorithms after all, although they
are each slightly more inclined to perform well for a level of flexibility which
is tailored towards their supporting paradigm. Nevertheless, the intuition
established in [35] that declarative process models typically achieve a lower
precision cannot be observed directly. On the contrary, since Declare con-
straints achieve different levels of constraining power in terms of behavior,
they even are prone to overfitting, possibly explaining the lower general-
ization scores. The prime reason higher generalization scores are achieved
with Petri nets is the presence of many invisible transitions that constitute
a larger number of distinct traces that can be played over the net compared
to the finite number of traces generated by FusionMINERful’s FSAs. It also
explains the timeouts that were witnessed during replay, as a greater number
of possibilities needed to be checked upon finding an alignment.

8.6 Conclusion and Future Work

In this chapter, a model checking approach for mixed-paradigm models was
proposed based on automaton multiplication. Furthermore, it was shown
how this notion can be used in a mining environment to find a fit between
procedural and declarative models to achieve models that accurately describe
the log with the right level of granularity in terms of flexibility. This was
implemented as the FusionMINERful algorithm.

Also, an alignment-based conformance checking algorithm was used in
combination with FusionMINERful to compare the strengths and weaknesses
of process mining algorithms making use of either the procedural and declar-
ative process paradigm, or both. Although all types of miners achieve good
results, they still tend to outperform the other on behavior that is more in
line with the underlying paradigm. FusionMINERful is capable of slightly
improving or approaching the best of either algorithm in the form of a mixed-
paradigm model.

This chapter concludes the comparison and intertwined use of both
paradigms.
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CHAPTER 9

Conclusions and Future Work

“I’m not saying these eventualities are
exactly a picnic, but neither are they a
picnic onto which a jumbo jet has
accidentally fallen.”

— David Mitchell

The previous chapters have dealt with various aspects of declarative pro-
cess models and their accompanying subjects of discovery, execution, and
verification. Next to that, the comparison and connection with procedural
models was made for both modeling and mining.

This chapter aims to summarize the results, and to provide an overview
of all future work that can be performed as follow-up studies in succession
of this thesis.

9.1 Lessons Learned, Future Work: An
Overview

This thesis started off with an in-depth study of the available literature on
declarative processes produced by researchers since roughly 2006 in Chapter
2. The ten-year mark is a good time to reflect upon the insights achieved
and the progress that was made. Hence, these chapters compared topics, fre-
quently used techniques, languages, data, and applications and condensed
them into useful insights. From there, it was pointed out that research up
until now has mainly focused on very technical and narrowly-scoped top-
ics, a trend prevalent in the whole field of BPM. The next step in this story
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should clearly focus on the usefulness of declarative languages in real-life set-
tings. The semantics are defined, many problems were addressed, however,
comparing existing declarative and procedural approaches in situations that
require flexible, agile processes will greatly improve the value of the current
body of work. On a personal note, the incorporation of (a slimmed down
version of) the declarative semantics of the likes of Declare and DCR Graphs
in CMMN/GSM models, might provide the best future path to investigate.
This would serve the best opportunity to achieve a fit with data-aware, and
decision modeling approaches.

Next, Chapter 3 introduced all formalities tied to Petri nets, and
constraint-based declarative process models. In this chapter, all constraints
that currently reside in the body of Declare templates were converted to
R/I-net fragments. The benefits are twofold. First of all, it brings the
two paradigms to the same process language. This makes it easier to in-
tegrate them in mixed-paradigm situations. In case intricate dependencies
arise, they can be added by the dependency structures that were discussed
in Chapters 4 and 5. Secondly, it shows that, for now, a declarative process
model is a process model constituting of constraints, regardless of the way
they are formalized. In this regard, even languages that are regarded as
very procedural can be used in this way. In the end, flexibility is mainly
achieved by modularity and underspecification. Hence, constraints ordered
within fixed parts of a model, overarched by a small set of other constraints
that provide global guidance to the behavior, are the most tailored towards
actually achieving this goal.

The second part of this dissertation focused on understanding and uncov-
ering (hidden) dependencies in constraint-based declarative process models.
The main motivation that drives this research is the fact that understanding
such models is in general regarded as cognitively challenging. Also, un-
derstanding the interrelations of constraints renders a modeler and analyst
better capable of assessing the models which are constructed in order to build
and verify processes that are too convoluted. In Chapter 4, an algorithm
based on a knowledge base of propagations of activity bounds along con-
straints was proposed, which presents its findings in dependency structures
that form an extra layer of annotation to an existing constraint-based model.
The various applications were discussed in Chapter 5, which included a large
user study that confirmed that the annotations actually relieved the impedi-
ment of hidden dependencies to a large extent. Also, formalizing dependency
structures enabled the composition of the first cognitive complexity metric
that is tailored specifically towards declarative process models. By mak-
ing use of the different degrees of interrelations that are distinguishable in
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dependency structures, it is possible to provide a constraint-centric metric
which aptly captures the peculiarities that make a model hard to grasp. Fi-
nally, an initial approach to refactor declarative process models according
to the key execution points that cause hidden dependencies was introduced
and an addendum concerning the use of the knowledge base in combination
with R/I-nets was reported.

The three latter topics provide a considerable amount of future research
tracks to be pursued. First of all, an extensive user study that is not only
limited to models which contain hidden dependencies should be used to ver-
ify whether the proposed metric can actually reflect the cognitive effort that
users face when constructing and reading a declarative process model. Fur-
thermore, it should also be compared to the cyclomatic complexity in order
to truly write off this metric as a valid quantification of complexity. Sec-
ondly, a fully-fledged and automated version for refactoring constraint-based
declarative process models can be constructed. In the end, the impediments
of hidden dependencies will then be abolished, and the behavior of the mod-
els will become more clear. Finally and foremost, it would be interesting to
reevaluate the uncovering algorithm in order to incorporate data dependen-
cies. It is not trivial to include data and especially decisions into processes
[81]. As the output of one decision is sometimes directly related to the input
of another one, data and decision dependencies also impose an ordering on
the activities in a process. It is very hard to keep the decision and process
compatible, especially in declarative process models where there exist de-
pendencies that are not always visible on the surface. Nevertheless, it would
be a challenging though rewarding task to merge pre- and post-conditions
on activities, which are used for incorporating data into declarative process
models [110]. The bounds propagation can be used to achieve a better un-
derstanding of how data that is included in a declarative process can be
interpreted and managed. This would also greatly support techniques such
as the combination of Declare and DMN [105].

The final part of this thesis compared the different approaches that
are comprised of different blends of the declarative and procedural process
paradigms. It was shown what constructs and scenarios are particularly ben-
efiting from a mixed-paradigm approach in Chapter 6, and an automated
process discovery algorithm was proposed in the form of Fusion Miner in
Chapter 7. A self-learning version of Fusion Miner called FusionMINERful,
was later proposed in Chapter 8, which also provided a comparative study
of conformance results of both procedural, declarative, and mixed-paradigm
models over three different event logs. There indeed exist situations in which
one paradigm fits process behavior better than the other, although contrary
to previous reporting, it is not the case that declarative process models ex-
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hibit low precision due to their flexible nature. Hence, one might regard
DPMs as a strong alternative to procedural models in terms of a repre-
sentation form for process mining results, for they can provide comparable
conformance scores and user-friendly textual annotations of (part) of the
event log. In this respect, mixed-paradigm models might even be regarded
as the ultimate way to leverage the representational bias in process mining
[153, 161] by providing both procedural parts and textual descriptions at
once.

For the third time, it is worth mentioning that the incorporation of data
into processes is a paramount topic for future research. Incorporating data
in a mixed-paradigm model would already pose a challenging task, and is
perhaps also one of the prime occasions on which using a (Colored) R/I-net
for Declare constructs would deliver considerable benefits. Also, introducing
data into a mixed-paradigm net might shift the focus of either paradigm,
hence requiring an updated version of Figure 6.1. As mentioned earlier, it
might be that the data is structured in a procedural way, hence imposing
an order on the activities, where the rest of the connections can be patched
up together with some overarching Declare rules, or this setup might get
reversed as well.

For automated discovery, a lot of ground was covered in terms of confor-
mance checking results. Still, many more factors can be studied. Since Fu-
sion Miner/FusionMINERful is actually a mixed-paradigm framework rather
than a fixed mining approach, it can be used with a multitude of Petri net-
and Declare model-mining process discovery algorithms. In the latter case,
there is no big difference in terms of outcome, rather than in performance, as
it is not possible to find a different result for the same set of constraint tem-
plates. In the former case, however, there is still a big difference in terms
of types of models that can be discovered from an event log. Hence, an
even broader experiment can be set up to find the ultimate mixed-paradigm
process mining blend. Also, this line of research should aim for calculating
all optimal alignments to verify whether the divergence in terms of confor-
mance metrics is not significantly different, as assumed in the current results.
Notwithstanding the insights that might be gathered from doing so, this will
inevitably lead to very expensive calculations.
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9.2 A Final Word

After reading this long and final text, I (hopefully this is the first time in this
document you are addressed in first person) hope that you enjoyed reading
this thesis and have gained some actual and actionable insights. Now it is up
to you. It is always possible to start over. As indicated in Figure 1.5 there
is no last constraint and the precedence relationships leave room for plenty
of repetitions. Indeed, those peculiar-looking arcs were not formatted like
that by coincidence.

Thank you.





APPENDIX A

User Test Questions

Below, the questions asked during the experiment reported in Chapter 5 are
listed. A mix of open and multiple choice questions was used. Participants
had to answer the questions regarding the behavior of the model by detailing
the possible execution scenarios, while the other, more general questions were
offered in a multiple choice fashion with a 5 point range. At the beginning
of the sessions, an example model, referred to as ‘Model 0’, was used to
illustrate the tooling and setup of the test.

1. Indicate the session you are in below.

2. In what Master program are you?

3. Do you have any background in process modeling?

4. Open file Model 0 and answer the following question: Can C fire after
executing the sequence C-A? Explain.

5. Still for Model 0 answer the following question: Can C fire after exe-
cuting the sequence A-C? Explain.

6. Open file Model 1 and answer the following question: After firing B as
the first activity, which activities are still enabled? Explain.

7. Still for Model 1, answer the following question: After firing E as the
first activity, which activities are still enabled? Explain.

8. Still for Model 1, answer the following question: After firing A as the
first activity, which activities are still enabled? Explain.

9. Still for Model 1, answer the following question: After firing D as the
first activity, which activities are still enabled? Explain.
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10. Still for Model 1, answer the following question: Can C ever fire after
firing D? Explain.

11. How difficult was it to comprehend the model?

12. How useful was the tool for comprehending the model?

13. Open file Model 2 and answer the following question: After firing B as
the first activity, which activities are enabled? Explain.

14. Still for Model 2, answer the following question: After firing A as the
first activity, which activities are enabled? Explain.

15. Still for Model 2, answer the following question: After firing D as the
first activity, which activities are enabled? Explain.

16. Still for Model 2, answer the following question: After firing A - B - C
- D, which activities are enabled? Explain.

17. Still for Model 2, answer the following question: Give at least 5 se-
quences that can be produced by this model.

18. How difficult was it to comprehend the model?

19. How useful was the tool for comprehending the model?

20. Open file Model 3 and answer the following question: After firing the
sequence A - C, which activities are enabled? Explain.

21. Still for Model 3, answer the following question: After firing the se-
quence F - D - D - C, which activities are enabled? Explain.

22. Still for Model 3, answer the following question: After firing the se-
quence A - C - D, which activities are enabled? Explain.

23. Still for Model 3, answer the following question: After firing the se-
quence A - C - B - D, which activities are enabled? Explain.

24. Still for Model 3, answer the following question: After firing the se-
quence C - C, which activities are enabled? Explain.

25. How difficult was it to comprehend the model?

26. How useful was the tool for comprehending the model?

27. Open file Model 4 and answer the following question: Initially, which
activities are enabled? Why?
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28. Still for Model 4, answer the following question: After firing the se-
quence B - E, which activities are enabled? Explain.

29. Still for Model 4, answer the following question: Give an example of a
sequence for which all constraints are satisfied. Explain.

30. Still for Model 4, answer the following question: After firing the se-
quence B - E, how many times can C still fire? Explain.

31. Still for Model 4, answer the following question: After firing the se-
quence B - E, how many times can D still fire? Explain.

32. How difficult was it to comprehend the model?

33. How useful was the tool for comprehending the model?

34. Open file Model 5 and answer the following question: After firing the
sequence I - C, which activities are enabled? Explain.

35. Still for Model 5, answer the following question: After firing the se-
quence C - C, which activities are enabled? Explain.

36. Still for Model 5, answer the following question: After firing the se-
quence D - A - C - F, which activities are enabled? Explain.

37. Still for Model 5, answer the following question: After firing D - A -
C, can you make C enabled again? Explain.

38. Still for Model 5, answer the following question: After firing the se-
quence C - C, can you make I enabled again? Explain.

39. How difficult was it to comprehend the model?

40. How useful was the tool for comprehending the model?

41. Overall, how useful was the tool for answering the questions?

42. Overall, how useful was the option to open the constraint descriptions
for answering the questions?

43. Overall, how useful was the coloring for answering the questions?

44. Overall, how useful was the option to execute the model and tracking
the execution for answering the questions?

45. Overall, how useful were the extra remarks explaining some extra de-
pendencies for answering the questions?
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46. Overall, how useful were the extra dependency graphs for answering
the questions?

47. How can the tool be expanded in order to help you answer the questions
better?



APPENDIX B

Conformance Checking Results

This appendix contains the detailed results of the conformance checking
experiments performed in Chapter 8, Section 8.5.
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IM (f) Entropy (e) Fitness Precision Generalization #PN arcs #Constraints

0 0 1.000 0.475 0.786 34 0

0 0.1 1.000 0.475 0.759 34 9

0 0.2 1.000 0.533 0.821 20 13

0 0.3 1.000 0.484 0.694 18 17

0 0.4 1.000 0.484 0.694 18 17

0 0.5 1.000 0.505 0.656 10 18

0 0.6 1.000 0.474 0.496 8 19

0 0.7 1.000 0.474 0.496 8 19

0 0.8 1.000 0.474 0.496 8 19

0 0.9 1.000 0.499 0.786 2 20

0 1 1.000 0.508 0.728 0 20

0.5 0 0.665 0.863 0.810 30 0

0.5 0.1 0.665 0.863 0.789 30 9

0.5 0.2 1.000 0.533 0.821 20 13

0.5 0.3 1.000 0.484 0.694 18 17

0.5 0.4 1.000 0.484 0.694 18 17

0.5 0.5 1.000 0.505 0.656 10 18

0.5 0.6 0.719 0.625 0.942 4 19

0.5 0.7 0.719 0.625 0.942 4 19

0.5 0.8 0.719 0.625 0.942 4 19

0.5 0.9 1.000 0.499 0.786 2 20

0.5 1 1.000 0.508 0.728 0 20

1 0 0.665 0.863 0.810 30 0

1 0.1 0.665 0.863 0.789 30 9

1 0.2 1.000 0.533 0.821 20 13

1 0.3 0.749 0.587 0.725 14 17

1 0.4 0.749 0.587 0.725 14 17

1 0.5 1.000 0.505 0.656 10 18

1 0.6 0.719 0.625 0.942 4 19

1 0.7 0.719 0.625 0.942 4 19

1 0.8 0.719 0.625 0.942 4 19

1 0.9 1.000 0.499 0.786 2 20

1 1 1.000 0.508 0.728 0 20

Table B.1: Conformance checking results of FusionMINERful for log 1.
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IM (f) Entropy (e) Fitness Precision Generalization #PN arcs #Constraints

0 0 1.000 0.406 0.934 34 0

0 0.1 1.000 0.410 0.742 34 9

0 0.2 1.000 0.327 0.343 28 12

0 0.3 1.000 0.327 0.343 28 12

0 0.4 1.000 0.378 0.526 20 14

0 0.5 1.000 0.504 0.764 6 16

0 0.6 1.000 0.504 0.764 6 16

0 0.7 1.000 0.480 0.775 2 18

0 0.8 1.000 0.450 0.543 14 18

0 0.9 1.000 0.480 0.775 2 18

0 1 1.000 0.504 0.764 0 18

0.5 0 0.807 0.475 0.986 26 0

0.5 0.1 0.801 0.510 0.892 26 9

0.5 0.2 0.788 0.558 0.595 20 12

0.5 0.3 0.788 0.558 0.595 20 12

0.5 0.4 0.856 0.494 0.609 16 14

0.5 0.5 1.000 0.504 0.764 6 16

0.5 0.6 1.000 0.504 0.764 6 16

0.5 0.7 1.000 0.480 0.775 2 18

0.5 0.8 1.000 0.480 0.775 2 18

0.5 0.9 1.000 0.480 0.775 2 18

0.5 1 1.000 0.504 0.764 0 18

1 0 0.786 0.520 0.937 30 0

1 0.1 0.786 0.520 0.922 30 9

1 0.2 0.796 0.713 0.698 16 12

1 0.3 0.796 0.713 0.698 16 12

1 0.4 0.859 0.612 0.684 8 14

1 0.5 1.000 0.504 0.764 6 16

1 0.6 1.000 0.504 0.764 6 16

1 0.7 0.718 1.000 0.951 2 18

1 0.8 1.000 0.480 0.775 2 18

1 0.9 1.000 0.480 0.775 2 18

1 1 1.000 0.504 0.764 0 18

Table B.2: Conformance checking results of FusionMINERful for log 2.
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IM (f) Entropy (e) Fitness Precision Generalization #PN arcs #Constraints

0 0 1.000 0.326 1.000 86 0

0 0.1 1.000 0.326 1.000 86 5

0 0.2 1.000 0.326 1.000 86 6

0 0.3 1.000 0.326 1.000 86 7

0 0.4 1.000 0.326 1.000 86 7

0 0.5 1.000 0.258 1.000 86 8

0 0.6 1.000 0.258 1.000 86 11

0 0.7 1.000 0.130 0.984 74 15

0 0.8 0.949 0.084 0.949 88 18

0 0.9 1.000 0.095 0.944 58 19

0 1 1.000 0.071 1.000 0 27

0.5 0 0.794 0.365 0.987 114 0

0.5 0.1 0.794 0.365 0.987 114 5

0.5 0.2 0.792 0.363 0.989 114 6

0.5 0.3 0.789 0.361 0.988 114 7

0.5 0.4 0.792 0.362 0.990 114 7

0.5 0.5 0.693 0.283 0.979 106 8

0.5 0.6 0.697 0.282 0.997 106 11

0.5 0.7 0.669 0.109 0.904 74 15

0.5 0.8 NA NA NA 36 18

0.5 0.9 0.571 0.075 0.031 32 19

0.5 1 1.000 0.071 1.000 0 27

1 0 NA NA NA 66 0

1 0.1 NA NA NA 66 5

1 0.2 NA NA NA 66 6

1 0.3 NA NA NA 66 7

1 0.4 NA NA NA 66 7

1 0.5 NA NA NA 74 8

1 0.6 NA NA NA 72 11

1 0.7 NA NA NA 40 15

1 0.8 NA NA NA 28 18

1 0.9 NA NA NA 26 19

1 1 1.000 0.071 1.000 0 27

Table B.3: Conformance checking results of FusionMINERful for the 2012 BPI
Challenge log.



List of Figures

1.1 The BPM lifecycle as interpreted in [44]. . . . . . . . . . . . . . . . 5

1.2 A simple business process representing the writing of a paper in
standard BPMN notation. . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 A simple business process representing the writing of a paper in
standard Declare notation. . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 The three-phased design science cycle as proposed by Hevner [69],
applied to the research performed in this thesis. . . . . . . . . . . . 12

1.5 An overview of the structure of this dissertation. . . . . . . . . . . 13

2.1 Overview of the number of papers published between 2006 and 2016. 23

2.2 Overview of the number of papers published for the different lan-
guages and phases of the BPM lifecycle. . . . . . . . . . . . . . . . 28

3.1 Example of a small Declare model describing a payment process in
Declare standard notation on the left and its corresponding finite
state machine to the right. . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Example of a small R/I-net describing the same payment process. 45

3.3 Simple Declare model containing 3 unary and 3 binary constraints. 47

3.4 The same model as in Figure 3.3 converted into an R/I-net. . . . . 48

3.5 The mapping of unary constraints existence(A,n), absence(A,n),
and exactly(A,n). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 The mapping of the binary existence constraints responded, and co-
existence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 The mapping of the simple ordered constraints Response, Prece-
dence, and Succession. . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 The mapping of the alternating ordered constraints alternate re-
sponse, precedence, and succession. . . . . . . . . . . . . . . . . . . 51

3.9 The mapping of the chain ordered constraints chain response, prece-
dence, and succession. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 The mapping of the negative constraints not co-existence, succes-
sion, and chain succession. . . . . . . . . . . . . . . . . . . . . . . . 53

3.11 The mapping of the choice constraints choice, and exclusive choice. 53

3.12 Example of the response constraint in a model. . . . . . . . . . . . 54

189



190 LIST OF FIGURES

3.13 Example of the conversion of a Petri net fragments’ state space to
an equivalent FSA for the not co-existence constraint. . . . . . . . 56

3.14 Conversion of existence1, absence, and exactly1 constraints. . . . . 57

3.15 Conversion of responded, and co-existence constraints. . . . . . . . 58

3.16 Conversion of response, precedence, and succession constraints. . . 58

3.17 Conversion of alternate response, precedence, and succession con-
straints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.18 Conversion of chain response, precedence, and succession constraints. 59

3.19 Conversion of not co-existence, not succession, and not chain suc-
cession constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.20 Conversion of choice, and exclusive choice constraints. . . . . . . . 60

3.21 Example of the verification simulation for alternate Response(B,Z). 61

3.22 Example of a Petri net model that is not bisimilar to its FSA equiv-
alent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 An example of a small Declare model with hidden dependencies. . 70

4.2 The corresponding dependency graph of the model in Figure 4.3. 78

4.3 An example of a small Declare model with hidden dependencies with
an example execution. . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Finite state automaton of the model in Figure 4.3. . . . . . . . . . 80

5.1 An example of a small Declare model with hidden dependencies and
the corresponding dependency graph for Exactly(c,2). . . . . . . . 88

5.2 Boxplot of the average scores of 5 questions per model (1-5) and per
session (A-C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Q-Q plot of the error terms showing they are close to a normal
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Time (in seconds) needed to answer the 5 questions for the models
(1-5) per session (A-C). . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 A small Declare model centered around an exclusive choice constraints. 99

5.6 An alternative view on the model displayed in Figure 5.5. . . . . . 100

5.7 A small Declare model centered around an absence constraints. . . 100

5.8 An alternative view on the model displayed in Figure 5.7. . . . . . 101

5.9 The example of Figure 3.22, now connected to a knowledge base
which is able to provide the correct upper and lower bounds for the
activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.10 An example of a mixed-paradigm model that has conflicting behav-
ior between both parts of the model. . . . . . . . . . . . . . . . . . 103

6.1 Three layers indicating all the possible behavior of the activities and
flow constructs contained in a model. . . . . . . . . . . . . . . . . . 111

6.2 A very straightforward AND-split and -join based process model
represented in a mixture of Petri nets and Declare in standard no-
tation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 The same model as in Figure 6.2, but now solely in R/I-net constructs.113



LIST OF FIGURES 191

6.4 The same model as in Figure 6.2, but now solely in Declare standard
notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 The automaton for the Declare model with the flexible activity tran-
sitions in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 A well-known fulfillment process model reworked according to the
step-wise approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1 Graphical representation of the behavior allowed by the models and
present in the log. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2 A Petri net containing a procedural workflow based around an AND-
split and -join, extended with activity Z which can occur in numer-
ous positions in the process. . . . . . . . . . . . . . . . . . . . . . . 138

7.3 Result of Heuristics Miner (default settings) for the log of example 1.138

7.4 Petri net, derived from the dependency net in Figure 7.3. . . . . . 139

7.5 The first log mined with Inductive Miner (for a fitness of 100%). . 139

7.6 Result of Declare Miner for a support of 100 % for the log of example
1. The not chain succession constraints are excluded for readability. 139

7.7 Result of Fusion Miner for example 1 with a rule support of 100%
and e = 0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.8 Petri net derived from the dependency net in Figure 7.7, containing
the procedural behavior in the model. . . . . . . . . . . . . . . . . 140

7.9 Workflow with different layers of flexibility representing the progress
of a PhD student. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.10 Result of Heuristics Miner for log 2 in Figure 7.9. . . . . . . . . . . 143

7.11 Result of Inductive Miner for log 2 (fitness set to 100%). . . . . . . 143

7.12 Result of Declare Miner for log 2. The rule support used is 100%. . 143

7.13 Result of Fusion Miner with e = 0.2 for log 2. . . . . . . . . . . . . 144

7.14 Result of Fusion Miner with e = 0.5 for log 2. . . . . . . . . . . . . 145

7.15 Mixed-paradigm model with e = 0.5 from Figure 7.14, for which the
dependency graph is translated into a Petri net. . . . . . . . . . . . 146

7.16 Result of ILP Miner for the PhD example log (default settings). . . 146

7.17 The result of Heuristics Miner (default settings) for the real-life log. 148

7.18 The mixed-paradigm result of Fusion Miner for the real-life example
with e = 0.5 and a rule support of 75%. . . . . . . . . . . . . . . . 149

8.1 An example of a mixed-paradigm model containing inconsistencies. 155

8.2 The state space of the Petri net and the Declare constraints’ au-
tomata from Figure 8.1. . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3 Mixed-paradigm output of FusionMINERful for an entropy level of
0.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Mixed-paradigm output of FusionMINERful for the same event log
after the entropy level was raised to 0.5. . . . . . . . . . . . . . . . 160

8.5 Output of FusionMINERful for the X subprocess of BPIC 2012 . . 162

8.6 Output of FusionMINERful for the Y subprocess of the BPIC 2012.
The set-up is: e = 0, eventually raised to 0.2, r = 0.1, and n = 10. 162



192 LIST OF FIGURES

8.7 Output of FusionMINERful for the Z subprocess of the 2012 BPIC
log. The set-up is: e = 0, eventually raised to 1.0, r = 0.1, and
n = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.8 Conformance results for log 1. . . . . . . . . . . . . . . . . . . . . . 167
8.9 Conformance results for log 2. . . . . . . . . . . . . . . . . . . . . . 168
8.10 Conformance results for the 2012 BPI Challenge log. . . . . . . . . 169



List of Tables

1.1 An overview of a simple event log, which might have resulted from
the paper writing process. . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Main difference of characteristics between procedural and declara-
tive process models [56]. . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Top contributors to the research area. . . . . . . . . . . . . . . . . 22

2.3 All extensions or complementary approaches of Declare. . . . . . . 25

3.1 An overview of Declare constraint templates with their correspond-
ing LTL formula, regular expression, and R/I-net constructs. . . . 43

3.2 An overview of Declare constraint templates with their correspond-
ing textual descriptions. . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Table explaining the relation of every constraint towards the bounds
of its activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Comparison of the cyclomatic complexity scores for the different
models of Section 5.2, with and without each constraint. . . . . . . 84

5.2 The different Declare models used during the experiments. . . . . . 90

5.3 The students were selected from 3 different study programs, how-
ever, it was made sure their distribution could not skew the results. 91

5.4 Comparison of the means of the different estimates, first for the
three sessions, next for the models. . . . . . . . . . . . . . . . . . . 92

5.5 Three non-parametric ANOVA analyses with interaction effects. . . 93

5.6 Linear regression model based on the data gathered from the exper-
iment with significance scores ‘***’ 0, ‘**’ 0.001, and ‘*’ 0.01. . . . 94

6.1 Scorecard of Declare constraints for the number of R/I-net con-
structs needed, and semantic characteristics. . . . . . . . . . . . . . 116

7.1 The four different types of connections in a mixed-paradigm process
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Basic metrics describing the event log used for the evaluation of
Fusion Miner. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

193



194 LIST OF TABLES

7.3 The precision calculation for model 1 for both mining outcomes,
based on artificially generated negative events. . . . . . . . . . . . 141

7.4 The activity entropy values for the PhD example to illustrate the
workings of the algorithm. . . . . . . . . . . . . . . . . . . . . . . . 144

7.5 The precision calculation for the PhD example for ILP Miner (de-
fault settings) and Fusion Miner. . . . . . . . . . . . . . . . . . . . 147

B.1 Conformance checking results of FusionMINERful for log 1. . . . . 186
B.2 Conformance checking results of FusionMINERful for log 2. . . . . 187
B.3 Conformance checking results of FusionMINERful for the 2012 BPI

Challenge log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



List of Algorithms

1 Calculating E(c, t+ 1|π(a, b)). . . . . . . . . . . . . . . . . . . . . . 73
2 Retrieving dependency structures . . . . . . . . . . . . . . . . . . . 75
3 Searching for dependent constraints . . . . . . . . . . . . . . . . . 76
4 Fusion Miner algorithm . . . . . . . . . . . . . . . . . . . . . . . . 134
5 Model checking procedure for mixed-paradigm models. . . . . . . . 157
6 FusionMINERful algorithm. . . . . . . . . . . . . . . . . . . . . . . 159

195





Bibliography

[1] Michael Adams, Arthur H. M. ter Hofstede, David Edmond, and Wil M. P. van der
Aalst. Worklets: A service-oriented implementation of dynamic flexibility in work-
flows. In OTM Conferences, pages 291–308, 2006.

[2] Arya Adriansyah. Replay a Log on Petri Net for Performance/Conformance Plug-in.
Technical report, Technische Universiteit Eindhoven, 2012.

[3] Arya Adriansyah and Joos C. A. M. Buijs. Mining process performance from event
logs. In Business Process Management Workshops - BPM 2012 International Work-
shops, Tallinn, Estonia, September 3, 2012. Revised Papers, pages 217–218, 2012.

[4] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M. P. van der Aalst. Confor-
mance checking using cost-based fitness analysis. In Proceedings of the 15th IEEE
International Enterprise Distributed Object Computing Conference, EDOC 2011,
Helsinki, Finland, August 29 - September 2, 2011, pages 55–64, 2011.

[5] Arya Adriansyah, Boudewijn F van Dongen, and Wil M P van der Aalst. Memory-
efficient alignment of observed and modeled behavior. Technical report, Technische
Universiteit Eindhoven, 2013.

[6] Arya Adriansyah, Jorge Munoz-Gama, Josep Carmona, Boudewijn F. van Dongen,
and Wil M. P. van der Aalst. Measuring precision of modeled behavior. Inf. Syst.
E-Business Management, 13(1):37–67, 2015.

[7] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In VLDB’94, Proceedings of 20th International Conference
on Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile, pages
487–499, 1994.

[8] Rakesh Agrawal, Dimitrios Gunopulos, and Frank Leymann. Mining process models
from workflow logs. In Advances in Database Technology - EDBT’98, 6th Inter-
national Conference on Extending Database Technology, Valencia, Spain, March
23-27, 1998, Proceedings, pages 469–483, 1998.

[9] Irene Barba and Carmelo Del Valle. A constraint-based approach for planning and
scheduling repeated activities. In COPLAS 2011 - Proceedings of the Workshop on
Constraint Satisfaction Techniques for Planning and Scheduling Problems, pages
55–62, 2011.

[10] Irene Barba, Andreas Lanz, Barbara Weber, Manfred Reichert, and Carmelo Del
Valle. Optimized time management for declarative workflows. In Enterprise,

197



198 BIBLIOGRAPHY

Business-Process and Information Systems Modeling - 13th International Con-
ference, BPMDS 2012, 17th International Conference, EMMSAD 2012, and 5th
EuroSymposium, held at CAiSE 2012, Gdańsk, Poland, June 25-26, 2012. Pro-
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tal and fixpoint semantics for business artifacts with guard-stage-milestone lifecy-
cles. Inf. Syst., 38(4):561–584, 2013.
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A framework for outsourcing of declarative artifact systems. Inf. Syst., 46:157–187,
2014.

[48] Dirk Fahland. Towards analyzing declarative workflows. In Autonomous and Adap-
tive Web Services, volume 07061 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Ger-
many, 2007.



BIBLIOGRAPHY 201

[49] Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo A. Reijers, Barbara Weber,
Matthias Weidlich, and Stefan Zugal. Declarative versus imperative process model-
ing languages: The issue of understandability. In BMMDS/EMMSAD, volume 29 of
Lecture Notes in Business Information Processing, pages 353–366. Springer, 2009.

[50] Dirk Fahland, Jan Mendling, Hajo A. Reijers, Barbara Weber, Matthias Weidlich,
and Stefan Zugal. Declarative versus imperative process modeling languages: The
issue of maintainability. In Business Process Management Workshops, volume 43 of
Lecture Notes in Business Information Processing, pages 477–488. Springer, 2009.

[51] Matthew E Falagas, Eleni I Pitsouni, George A Malietzis, and Georgios Pappas.
Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and
weaknesses. The FASEB journal, 22(2):338–342, 2008.

[52] Kathrin Figl and Ralf Laue. Cognitive complexity in business process modeling.
In CAiSE, volume 6741 of Lecture Notes in Computer Science, pages 452–466.
Springer, 2011.

[53] Kathrin Figl and Ralf Laue. Influence factors for local comprehensibility of process
models. Int. J. Hum.-Comput. Stud., 82:96–110, 2015.

[54] Kathrin Figl, Jan Recker, and Jan Mendling. A study on the effects of routing
symbol design on process model comprehension. Decision Support Systems, 54(2):
1104–1118, 2013.

[55] Stijn Goedertier and Jan Vanthienen. Compliant and flexible business processes with
business rules. In BPMDS, volume 236 of CEUR Workshop Proceedings. CEUR-
WS.org, 2006.

[56] Stijn Goedertier, Raf Haesen, and Jan Vanthienen. EM-BrA2CE v0. 1: A vocab-
ulary and execution model for declarative business process modeling. Technical
report, KU Leuven, 2007.

[57] Stijn Goedertier, Christophe Mues, and Jan Vanthienen. Specifying process-aware
access control rules in SBVR. In RuleML, volume 4824 of Lecture Notes in Computer
Science, pages 39–52. Springer, 2007.

[58] Stijn Goedertier, David Martens, Jan Vanthienen, and Bart Baesens. Robust process
discovery with artificial negative events. Journal of Machine Learning Research, 10:
1305–1340, 2009.

[59] Stijn Goedertier, Jan Vanthienen, and Filip Caron. Declarative business process
modelling: principles and modelling languages. Enterprise IS, 9(2):161–185, 2015.

[60] Thomas R G Green. Cognitive dimensions of notations. People and computers V,
pages 443–460, 1989.

[61] Christian W. Günther and Wil M. P. van der Aalst. Fuzzy mining - adaptive process
simplification based on multi-perspective metrics. In BPM, volume 4714 of Lecture
Notes in Computer Science, pages 328–343. Springer, 2007.

[62] Michel Hack. Petri net language. Technical report, 1976.

[63] Cornelia Haisjackl and Stefan Zugal. Investigating differences between graphical and
textual declarative process models. In CAiSE Workshops, volume 178 of Lecture
Notes in Business Information Processing, pages 194–206. Springer, 2014.



202 BIBLIOGRAPHY

[64] Cornelia Haisjackl, Stefan Zugal, Pnina Soffer, Irit Hadar, Manfred Reichert, Jakob
Pinggera, and Barbara Weber. Making sense of declarative process models: Com-
mon strategies and typical pitfalls. In BMMDS/EMMSAD, volume 147 of Lecture
Notes in Business Information Processing, pages 2–17. Springer, 2013.

[65] Cornelia Haisjackl, Irene Barba, Stefan Zugal, Pnina Soffer, Irit Hadar, Manfred
Reichert, Jakob Pinggera, and Barbara Weber. Understanding declare models:
strategies, pitfalls, empirical results. Software and System Modeling, 15(2):325–
352, 2016.

[66] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier New
York, 1977.

[67] Sallie M. Henry and Dennis G. Kafura. Software structure metrics based on infor-
mation flow. IEEE Trans. Software Eng., 7(5):510–518, 1981.

[68] Nico Herzberg, Kathrin Kirchner, and Mathias Weske. Modeling and monitoring
variability in hospital treatments: A scenario using CMMN. In Business Process
Management Workshops, volume 202 of Lecture Notes in Business Information
Processing, pages 3–15. Springer, 2014.

[69] Alan R. Hevner. The three cycle view of design science. Scandinavian J. Inf.
Systems, 19(2), 2007.

[70] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science
in information systems research. MIS Quarterly, 28(1):75–105, 2004.

[71] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative event-based
workflow as distributed dynamic condition response graphs. In PLACES, volume 69
of EPTCS, pages 59–73, 2010.

[72] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing
a cross-organizational case management system using dynamic condition response
graphs. In EDOC, pages 161–170. IEEE Computer Society, 2011.

[73] Thomas T. Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested dynamic
condition response graphs. In FSEN, volume 7141 of Lecture Notes in Computer
Science, pages 343–350. Springer, 2011.

[74] Thomas T. Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and Francesco
Zanitti. Modular context-sensitive and aspect-oriented processes with dynamic con-
dition response graphs. In FOAL, pages 19–24. ACM, 2013.

[75] Thomas T. Hildebrandt, Raghava Rao Mukkamala, Tijs Slaats, and Francesco
Zanitti. Contracts for cross-organizational workflows as timed dynamic condition
response graphs. J. Log. Algebr. Program., 82(5-7):164–185, 2013.

[76] David A Huffman and Others. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[77] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta, Fenno F.
Terry Heath III, Stacy Hobson, Mark H. Linehan, Sridhar Maradugu, Anil Nigam,
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