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Abstract

In the last decade remarkable progress has been made on combining statistical
machine learning techniques, reasoning under uncertainty, and relational repre-
sentations. The branch of Artificial Intelligence working on the synthesis of these
three areas is known as statistical relational learning or probabilistic logic learning.

ProbLog, one of the probabilistic frameworks developed, is an extension of the
logic programming language Prolog with independent random variables that are
defined by annotating logical facts with probabilities. The separation of the logical
and probabilistic part of the model is based on the distribution semantics. Driven
by the demand for models that are able to handle continuous values and can be
automatically optimized on training data, this thesis introduces several algorithms
and extensions to the ProbLog language. Continuous-valued data arise naturally
in robotics, human activity recognition and bio-medical applications. Moreover,
the models used are complex and the available data is often noisy and incomplete.
Hence tuning a model towards the specifics of the environment can hardly be
done manually. This poses two crucial challenges for probabilistic programming
languages such as ProbLog: processing continuous values and being able to learn
from training data.

This thesis makes four main contributions to the field of probabilistic logic learning.
Hybrid ProbLog is an extension for ProbLog with continuous facts that allows for
exact inference. Distributional Programs combine elements of ProbLog, Hybrid
ProbLog and CP-Logic into a very expressive language for dealing with continuous
distributions. A sampling-based inference algorithm is used to answer conditional
queries, while the deterministic information in the program guides the sampling
process. LFE-ProbLog is able to learn the parameters of a ProbLog program
from queries and proofs, while LFI-ProbLog is optimized to learn the parameters
from partial interpretations. Together they cover the standard learning settings
considered in PLL. All learning approaches have been evaluated in several relational
real-world domains.
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Chapter 1

Introduction

Artificial Intelligence, or simply AI, is concerned with building systems that are
able to act rationally [Russell and Norvig, 2003]. While the early AI researchers’
dream – to create systems with human-level intelligence – seems to be out of reach,
remarkable progress has been made on solving individual subtasks such as image
recognition, voice recognition, and planning to name only few. The Stanley project
[Thrun et al., 2006], which resulted in an autonomously driving car that was able to
navigate through unknown off-road terrain and won the DARPA Grand Challenge,
illustrates this. Another example is Watson [Ferrucci et al., 2011], a computer
system that has beaten the reigning human champion in a TV quiz show. To
facilitate research and make results usable across different application domains,
AI uses the concept of so-called rational agents to characterize systems that act
rationally. This allows for studying individual subtasks, such as speech recognition,
face recognition or planning, and combining them later. In this thesis, we focus on
two key requirements of such a rational agent: knowledge representation and the
ability to learn.

In order to make rational decisions, an agent needs to possess knowledge, which in
turn needs to be stored such that it is accessible and can be used for reasoning.
Knowledge is stored in form of a so-called knowledge representation language,
e.g., a variant of first order logic. In order to account for the uncertainty in
the environment, such a language needs to provide constructs for representing
probabilistic information. A system like Watson, for example, needs to know that
there is a city “Toronto” in Canada and a city “Toronto” in the USA. However,
when somebody says “Toronto” it is more likely that they refer to the city in Canada
than to the one in the USA. Probabilistic logic languages offer a combination of
logic with probabilities, which in turn allow one to quantify information with
probabilities that can be used in the reasoning process.
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6 INTRODUCTION

Another requirement for rational agents is the ability to learn, that is, increasing
their performance on a given task with experience. Complex tasks that exceed
the capabilities of traditional handwritten algorithms, such as face recognition,
and domains that can change over time, such as Spam filtering, are best solved
using machine learning methods [Mitchell, 1997; Bishop, 2006]. Often it is easier
to generate a set of training examples than to develop a full model for a particular
task. In case of the Spam filtering task, a training set consists of emails labeled as
“wanted” or “unwanted”. And in the case of face recognition the training set might
contain images of persons annotated with the position of the face on the picture as
well as the name of the person shown. In this thesis we focus on parameter learning,
that is, the model structure is given while the model parameters are unknown and
have to be estimated using the training examples.

Statistical relational learning [Getoor and Taskar, 2007; De Raedt et al., 2008a]
is a branch of AI, that combines the three above mentioned fields: logic is used
to model dependencies between elements, probabilities represent uncertainty in
the domain and learning adds the power to tune the resulting models towards
the specifics of the environment. The advent of statistical relational learning and
probabilistic programming has resulted in a vast number of different representation
languages and systems. While all of them use a relational or logical language for
expressing dependencies, they deviate in how they make use of this information.

To begin with, systems based on the principle of knowledge-based model construction
use the logical part of the model to create a so-called grounded model, which in turn
is used by the inference mechanism to compute probabilities of queries. For instance,
BLPs [Kersting and De Raedt, 2008], LBNs [Fierens, 2010], RBNs [Jaeger, 1997]
and CLP(BN ) [Santos Costa et al., 2008] generate Bayesian networks [Pearl, 1988]
upon grounding the model for answering a particular query. Similar principles are
employed by Markov logic networks [Richardson and Domingos, 2006], relational
dependency networks [Neville and Jensen, 2007] and PRMs [Friedman et al., 1999a].

Probabilistic programming languages emphasize the programming aspect of the
model, that is, they interleave the program execution with sampling random events.
Sato’s [1995] distribution semantics is used by many logic-programming-based
languages such as PRISM [Sato, 1995], ProbLog [De Raedt et al., 2007; Kimmig,
2010] and CP-Logic [Vennekens et al., 2006]. The core of this semantics lies in
splitting the model into a probabilistic and a logical part and using the reasoning
mechanism of the underlying host language, typically Prolog, to combine them.
Furthermore, there are also probabilistic languages such as BLOG [Milch et al.,
2005a], Church [Goodman et al., 2008], IBAL [Pfeffer, 2001] and Figaro [Pfeffer,
2009] that are based on a functional paradigm.
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Thesis Contributions and Roadmap

In this thesis we study the following two questions:

(Q1) How can continuous distributions be integrated in probabilistic
logic programming languages?
(Q2) How can the parameters of probabilistic programming languages
be estimated?

We use ProbLog [De Raedt et al., 2007; Kimmig, 2010] as representation language,
even though the techniques developed here are also applicable to other probabilistic
programming languages. This thesis makes four main contributions with respect
to the above mentioned questions: (1) an extension of ProbLog with continuous
distributions along with an exact inference algorithm, (2) a more expressive language
based on concepts from ProbLog and CP-logic together with an optimized sampling
algorithm, (3) a parameter estimation algorithm for ProbLog that is able to learn
from queries and proofs and (4) a parameter estimation algorithm for ProbLog
that learns from partial interpretations.

Continuous-valued information is critical in many real-world applications. However,
probabilistic programming languages based on Sato’s [1995] distribution semantics
have not yet been extended towards continuous distributions. Specifically, they
employ exact inference techniques that are limited to finite distributions. On
the contrary, probabilistic languages based on a functional paradigm, such as
Church [Goodman et al., 2008], IBAL [Pfeffer, 2001], BLOG [Milch et al., 2005a],
do support continuous distributions but not exact inference. One direction we
follow in this thesis, is the extension of ProbLog’s exact inference algorithm
with continuous distributions. Being able to perform exact inference requires the
underlying representation language to be restrictive, which in turn does limit its
applicability to real-world tasks. This has motivated the work on distributional
programs, where we aim at increasing the expressivity of the language without
imposing restrictions on the use of continuous values. This allows one, for instance,
to specify a model where the parameters of distributions are initialized with sampled
values from another distribution, hence making inference in a Bayesian setting
possible. In turn, this requires an inference algorithm based on sampling.

Another question is how to estimate the parameters of a ProbLog program and
how the standard learning settings known in statistical relational learning be
integrated into ProbLog. Without parameter learning the designer of a model
has to set the parameters manually. Apart from the extra effort, this process can
lead to sub-optimal models and in some cases it is impossible to decide on good
parameters. Parameter learning supports the designer and lets them focus on the
structural part of the model, for instance, the dependency between random variables.



8 INTRODUCTION

By integrating learning techniques in ProbLog we enable many applications, as
providing training examples is typically easier than finding good model parameters.

The thesis is divided into four parts: discussing preliminaries of ProbLog, extensions
of ProbLog with continuous distributions, learning techniques to estimate the
parameters of ProbLog programs, and the conclusions as well as several appendices
with proofs. In the following, we give an outline of each part.

Part I introduces basic concepts and existing work that are required in the
course of this thesis. Chapter 2 discusses the terminology and concepts from
logic programming that form the basis of the probabilistic programming language
ProbLog. Moreover, it reviews Binary Decision Diagrams (BDDs) that are used
by ProbLog’s inference algorithms. Chapter 3 reviews ProbLog, a probabilistic
extension of the logic programming language Prolog.

Part II is about extending ProbLog with continuous distributions. In Chapter 4
we introduce continuous facts and define a semantics that is consistent with Sato’s
[1995] distribution semantics. Our approach, called Hybrid ProbLog, uses an
interval calculus to extract relevant intervals and performs dynamic discretization,
that is, the discretization depends on the query to be evaluated. The resulting
discretization is optimal, that is, any finer discretization would yield the same
result but would require more effort to be evaluated. In Chapter 5 we introduce
distributional programs, which are more expressive and better suited for real-world
applications. We propose a modified rejection sampling algorithm that uses the
well-known magic sets transformation to restrict the size of the samples. Moreover,
the deterministic dependencies in the program are exploited by a lookahead step to
increase the number of samples consistent with the evidence. The work presented
in Part II has been previously published in:

B. Gutmann, M. Jaeger, and L. De Raedt. Extending ProbLog with
continuous distributions. In P. Frasconi and F. Lisi, editors, Proceedings
of the 20th International Conference on Inductive Logic Programming
(ILP-10), volume 6489 of LNCS (Lecture Notes in Computer Science),
pages 76–91. Springer Berlin / Heidelberg, 2011. DOI: 10.1007/978-3-
642-21295-6_12

B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De
Raedt. The magic of logical inference in probabilistic programming.
Theory and Practice of Logic Programming, 11:663–680, 2011. DOI:
10.1017/S1471068411000238

Part III proposes two parameter learning approaches for ProbLog. They differ
both in the format of training examples and in the underlying principle that
guides optimization during learning. The first approach, presented in Chapter 6,

http://dx.doi.org/10.1007/978-3-642-21295-6_12
http://dx.doi.org/10.1007/978-3-642-21295-6_12
http://dx.doi.org/10.1017/S1471068411000238
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learns from training examples given as annotated queries, that is atoms or
conjunctions of atoms together with a target probability. It treats the learning
problem as a regression task, similar to logistic regression. The second approach,
presented in Chapter 7, learns from training examples given in the form of partial
interpretations, that is, sets of atoms that state the truth value for some (or all)
atoms in a logic program. The work presented in Part III has been previously
published in:

B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter
learning in probabilistic databases: A least squares approach. In W.
Daelemans, B. Goethals, and K. Morik, Proceedings of the European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD 2008), volume 5211 of
LNCS (Lecture Notes In Computer Science), pages 473–488, September
2008. Springer Berlin/Heidelberg. DOI: 10.1007/978-3-540-87479-9_49

B. Gutmann, A. Kimmig, K. Kersting, and L. De Raedt. Parameter
estimation in ProbLog from annotated queries. Technical Report CW
583, Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, April 2010.

B. Gutmann, I. Thon, and L. De Raedt. Learning the Parameters of
Probabilistic Logic Programs from Interpretations. In D. Gunopulos, T.
Hofmann, D. Malerba, and M. Vazirgiannis, European Conference on
Machine Learning and Principles and Practices of Knowledge Discovery
in Databases (ECML PKDD 2011), volume 6911 of LNCS (Lecture
Notes in Computer Science), pages 581–596. Springer Berlin/Heidelberg,
2011. Winner of the Best Paper Runner up Award in Machine
Learning (599 submissions). DOI: 10.1007/978-3-642-23780-5_47

Part IV concludes the thesis and discusses possible directions for future work.
Additionally, it contains several appendices with proofs, which were omitted in the
individual chapters for the ease of reading.

Finally, some of work that was performed during my Ph.D. research has not been
included in this thesis. It is briefly summarized below.

Conditional Random Fields (CRFs) are a class of undirected graphical models
that are used for classification tasks in natural language domains such as part-
of-speech tagging. Based on gradient tree boosting [Friedman, 2001; Dietterich
et al., 2004] and the results of my diploma thesis [Gutmann, 2005], we developed
a relational extension of CRFs called TildeCRF that is able to tag sequences of
logical atoms [Gutmann and Kersting, 2006]. We studied several modifications

http://dx.doi.org/10.1007/978-3-540-87479-9_49
http://dx.doi.org/10.1007/978-3-642-23780-5_47
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of the learning algorithm including conjugated gradient search [Kersting and
Gutmann, 2006] and a stratification of the training set that is used for the internal
regression models [Gutmann and Kersting, 2007]. We successfully applied TildeCRF
on different biological tasks such as protein secondary structure prediction and
protein classification [Gutmann and Kersting, 2006], as well as on human activity
recognition tasks based on RFID tags [Landwehr et al., 2008] and on video [Antanas
et al., 2009]. Lastly, we also adopted the technique of relational gradient tree
boosting for learning relational dependency networks [Natarajan et al., 2011], where
we obtained a significant improvement of the predictive accuracy compared to the
state-of-the-art frameworks.

Implementation

The algorithms for exact inference in Hybrid ProbLog, as well as the two
parameter learning algorithms LFI-ProbLog and LFE-ProbLog are implemented
and integrated in the ProbLog system, which is open source and available at
http://dtai.cs.kuleuven.be/problog/. The BDD algorithms are implemented
using SimpleCUDD [Mantadelis et al., 2008] and CUDD [Somenzi, 2009]. For our
experiments we used the YAP Prolog system [Santos Costa et al., 2011]. The
sampling-based inference for distributional programs has been implemented as
proof-of-concept.

http://dtai.cs.kuleuven.be/problog/


Chapter 2

Preliminaries

This chapter reviews existing work and provides the relevant background on
the core concepts used in the course of this thesis. Section 2.1 reviews logic
programming that serves as representation language, while Section 2.2 discusses
Binary Decision Diagrams that are used by the inference and learning algorithms.
Section 2.3 introduces the relevant concepts from probability theory. We conclude
by discussing the key ideas of the distribution semantics in Section 2.4.

2.1 Logic Programming

Logic programming is a declarative programming paradigm based on logic. In this
section we review the terminology and introduce basic concepts needed later on in
this thesis. Prolog is one example of a logic-programming-based language. For a
detailed introduction to logic programming please refer to [Lloyd, 1984; Flach, 1994;
Nilsson and Małuszyński, 1995], and for a detailed discussion of Prolog see [Sterling
and Shapiro, 1994].

Example 2.1. The following program consists of four parts. The first part
enumerates all days starting from day 0, to s(0), s(s(0)) and so on. The second
part specifies that there are two people, John, who wants to eat steak or spaghetti,
and Mary, who wants to eat fish. The third part specifies that there is enough steak
in the fridge for three days, whereas the fish is only available on the first day. Also,
there is an infinite supply of spaghetti available. The last part of the program states
that if a person wants to eat something that is available they will get it.

11
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day(0).
day(s(X)) :− day(X).

wants(john, steak).
wants(john, spaghetti).
wants(mary, fish).

available(steak, 0).
available(steak, s(0)).
available(steak, s(s(0))).
available(fish, 0).
available(spagetthi, Day) :− day(Day).

gets(Person, Product, Day) :− wants(Person, Product),
available(Product, Day).

2.1.1 Syntax

The symbols used in the program in Example 2.1 can be grouped into the following
categories. The symbols 0, john and steak are constants. Uppercase symbols,
such as X, Day, Person, and Product denote variables. The symbol s is a functor of
arity 1. The symbol day is a predicate symbol of arity 1, while wants is a predicate
symbol of arity 2. Symbols can be recursively combined to terms as follows:

• each constant c is a term

• each variable X is a term

• If t1, . . . , tn are terms and f is an n-ary functor, then f(t1, . . . , tn) is a term.

If a is an n-ary predicate and t1, . . . , tn are terms, then a(t1, . . . , tn) is an atom.
An atom is also called a positive literal, while the negation of an atom, for instance
not(day(0)), is called a negative literal.

A clause is a disjunction of literals, for instance i1 ∨ i2 ∨¬i3. A clause with exactly
one positive literal h is called a definite clause. In Prolog notation, such clauses
are denoted by

h :− b1, . . . , bn.

The atom h is called the head of the clause and b1, . . . , bn is the body. The intuitive
meaning of the symbol :− is that of the implication, that is, when the body of
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the clause is true, the head of the clause is also true. If the body is empty, that
is, the clause consists of one positive literal, then it is called a fact. The intuitive
meaning of a fact is, that it is always true. The Prolog notation for facts is the
atom followed by a period:

h.

A set P of definite clauses is called a logic program. Terms, atoms and clauses are
called ground if they do not contain variables. For instance, the atom day(0) is
ground and s(X) is non-ground. A clause is range-restricted if all variables from
the head appear in the body of the clause, i.e., var(h) ⊆ var((b1, . . . , bn)), where
var(·) is the function that maps a term onto the set of variables occurring in the
term.

We will adopt Prolog’s notation when describing logic programs. We use a
fixedfont to mark parts that should be read as Prolog code. Atoms, functors and
symbols start with lowercase letters, while variables start with uppercase letters.
The period marks the end of the clause, while :− separates head and body of the
clause.

A substitution θ = {V1/t1, . . . , Vm/tm} is a mapping of variables to terms. When
applying a substitution onto t, denoted by tθ, each variable in t is replaced
simultaneously by the corresponding term.

Example 2.2. The substitution {Person/john, Product/steak, Day/s(s(0)))}
applied on gets(Person, Product, Day) yields gets(john, steak, s(s(0))).

One can apply substitutions on atoms, terms and clauses. Substitutions do not
necessarily have to map all variables as well as mapped terms do not have to be
ground. Two terms t1 and t2 are called unifiable if there exist substitutions θ1 and
θ2 such that t1θ1 = t2θ2.

Definition 2.1 (Most General Unifier). A substitution θ is a most general unifier
of a and b, denoted by θ = mgu(a, b), if and only if aθ = bθ and for each substitution
θ′ such that aθ′ = bθ′, there exists a substitution γ such that θ′ = θγ.

Example 2.3. A most general unifier of the atom gets(Person, steak, Day) and
gets(P, Product, s(s(0))) is θ = {Day/s(s(0)), Product/steak, P/Person}.

Please note that there can exist more than one most general unifier, and each
MGU yields different variable names in the term instances obtained by applying
it. For instance, the substitution θ = {Day/s(s(0)), Product/steak, Person/P} is
another MGU for the atoms in Example 2.3.
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2.1.2 Semantics And Inference

The Herbrand base of a logic program P contains all ground atoms that can be
constructed by the terms in P . Each subset of the Herbrand base is called a
Herbrand interpretation.
Definition 2.2 (Herbrand Model). A Herbrand interpretation I is called a model
of a clause h :− b1, . . . bn if for every grounding substitution θ, where all biθ ∈ I,
the head element hθ is contained in I. A Herbrand interpretation I is called a
Herbrand model of the logic program P , if it is a model for all clauses in P . The
smallest Herbrand model of P is called the least Herbrand model and denoted as
LH(P ).

A Herbrand model captures the intuitive meaning of a logic program, that is, facts
are always true and whenever the body of a clause is true, the head atom is true
as well. The least Herbrand model captures the intuition that clauses are not
implications but inductive definitions.
Example 2.4 (Least Herbrand Model). The least Herbrand model of the theory
in Example 2.1 is
{ day(0), day(s(0)), day(s(s(0))), . . . , wants(john, steak),

wants(john, spagetthi), wants(mary, fish), available(steak, 0),
available(steak, s(0)), available(steak, s(s(0))), available(fish, 0),
available(spaghetti, 0), available(spaghetti, s(0)),
available(spaghetti, s(s(s0))), . . . , gets(john, steak, 0),
gets(john, steak, s(0)), gets(john, steak, s(s(0))), gets(mary, fish, 0),
gets(john, spaghetti, 0), gets(john, spaghetti, s(0)),
gets(john, spaghetti, s(s(0))), . . .}

A crucial inference task is to decide whether an atom a, called query atom, is true in
the least Herbrand model of a logic program. If the atom is true in LH(P ), one says
the query holds, if not one says the query does not hold or, equivalently, its negation
holds. If the query atom a is non-ground, then one is interested in some, or all,
substitutions θ such that aθ is true in the least Herbrand model. In Example 2.1, for
instance, the query gets(john, steak, s(0)) succeeds and gets(mary, fish, s(0))
fails. There exist different methods to determine LH(P ). One approach, for
instance, is to compute the least fixpoint of the immediate consequence operator
TP .
Definition 2.3 (Immediate Consequence Operator). Let P be a logic program
and I a Herbrand interpretation of P , then the immediate consequence operator is
defined as

TP (I) := {Aθ |there exists θ and a clause h :− b1, . . . bn ∈ P such that

hθ :− b1θ, . . . bnθ is ground and {b1θ, . . . bnθ} ⊆ I} .
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?− gets(john, X, 0)

:− wants(john, X), available(X, 0)

:− available(steak, 0) :− available(spagetthi, 0)

� :− day(0)

�

Figure 2.1: SLD tree for query gets(john, X, 0) in Example 2.1

It can be shown that the least Herbrand model of a definite logic program is
the least fixpoint of TP (cf. Nilsson and Małuszyński [1995]). For programs that
have a finite least Herbrand model, i.e., definite programs with range-restricted
functor-free clauses, one can compute the least Herbrand model by repeatedly
applying the operator on its output until there is no change.

Computing the least Herbrand model is often impractical. In order to answer a
single query one has to compute everything that can be derived from the program.
And for programs where LH(P ) is infinite an explicit computation is not feasible.
Logic programming language like Prolog use a resolution mechanism to decide
whether a query succeeds or not. In difference to computing the least Herbrand
model, resolution algorithms employ backward reasoning starting from the goal,
which in turn avoids deriving irrelevant atoms.

Definition 2.4 (SLD resolution step). Given a logic program P , a goal :−
G1, . . . , Gm and a clause h :− b1, . . . bn ∈ P such that Giθ = hθ where θ =
mgu(h,G1) then SLD resolution yields the new goal :− G1θ, . . . , Gi−1θ, b1θ, . . . , bnθ,
Gi+1θ, . . . , Gmθ.

Prolog uses a variant of SLD resolution called SLDNF. The inference algorithm uses
the clauses in the order they are specified in the program, while selecting always
the leftmost atom of the current goal. Moreover, it assumes negation-as-failure
(NF), that is, the negation of a query is true if there does not exist a refutation
proof for it.



16 PRELIMINARIES

A proof of a query a is a successful refutation, that is, a sequence of resolution
steps starting from :− a and yielding the empty goal :−. One says a proof fails if
there is no sequence of resolution steps resulting in the empty goal.

Example 2.5. One can prove the query gets(john, spagetthi, s(0)) in Exam-
ple 2.1 as follows:

:−gets(john, spagetthi, s(0))

:−wants(john, spagetthi), available(spagetthi, s(0))

:−available(spagetthi, s(0))

:−day(s(0))

:−day(0)

:−

It can be shown that SLD resolution is sound and refutation-complete. For definite
programs, if SLD resolution finds a refutation of a query it is contained in the least
Herbrand model. And if an atom is contained in the least Herbrand model, then
there exists a refutation proof [Nilsson and Małuszyński, 1995]. SLD resolution
traverses the so-called SLD tree by backtracking. Figure 2.1 shows the SLD tree for
the query gets(john, X, 0) in Example 2.1. There are two refutations for the query,
indicated by � in the leaves, and each corresponds to a proof in the program.

2.2 Binary Decision Diagrams

A Binary Decision Diagram (BDD) [Bryant, 1986] is a data structure that represents
Boolean functions. A BDD corresponds to a rooted directed acyclic graph. The
internal nodes represent decisions and they correspond to the variables in the
Boolean function. Each internal node has two outgoing edges, the “high edge”
represents the variable being true and the “low edge” represents the variable being
false. Each BDD has two terminal nodes. The 1-terminal indicates the Boolean
function being true and the 0-terminal indicates it being false. Each path from the
root node to the 1-terminal corresponds to a (partial) assignment of truth values
to variables that results in the function being true. Figure 2.2(a) shows a BDD
that represents the function (a ∧ b ∧ c) ∨ (a ∧ ¬b) ∨ (¬a ∧ b).

We assume the BDDs to be ordered and reduced. This means, that on all paths
the decision nodes occur in the same order. Furthermore, irrelevant sub-BDDs
are removed as explained below. Such a reduced ordered BDD is a canonical
representation of a Boolean formula, which is a key property, for instance, in
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a

b b

c

1 0

(a) Using the vari-
able order a, b, c

a

c

b b

1 0

(b) Using the vari-
able order a, c, b

c

a a

b b

1 0

(c) Using the vari-
able order c, a, b

Figure 2.2: Different binary decision diagrams representing the Boolean function
(a ∧ b ∧ c) ∨ (a ∧ ¬b) ∨ (¬a ∧ b). The number of nodes in the BDD depends on the
variable order and the represented function.

function verification. Please note, that depending on the variable order, one
obtains different BDDs for a Boolean function (cf. Figure 2.2). The variable order
also influences the size of the BDD, that is, the number of decision nodes. While
the differences in size are small in this particular case (5 nodes compared to 4
nodes) it can be exponential in more complex formulae. Finding a good variable
order is crucial for being able to construct the BDD and represent it in memory.
While this is an NP-hard problem, there exist various heuristics that work well
in practice. BDD packages like CUDD [Somenzi, 2009] have built-in reordering
heuristics that are being applied while constructing the BDD. For some functions
such as the multiplication of integers in binary notation, however, even the smallest
BDD is exponentially large [Bryant, 1991]. One can construct a BDD based on
a full binary decision tree as follows. After choosing an order of the variables
in the Boolean formula one constructs a full binary decision tree, which has this
order on each path and where the leaves are labelled with the function value given
the corresponding variable assignment. After that one repeats the following two
operations until no simplification step is possible:

• Subgraph merging: Find two isomorphic sub-BDDs G1 and G2. Delete
G2 and direct the ingoing edges of G2 to the corresponding nodes in G1.

• Node removal: Find a node v whose outgoing edges low(v) and high(v)
point to the same node v′. Delete v and direct the ingoing edges of v to v′.

The resulting BDD solely depends on the function and the chosen variable order,
while the order in which simplification steps are performed does not matter [Bryant,
1986]. Figure 2.3 shows the BDD construction for (a ∧ b ∧ c) ∨ (a ∧ ¬b) ∨ (¬a ∧ b).
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a

b b

c c c c

1 0 1 1 1 1 0 0

(a) A full binary decision tree with the same variable order
(a, b, c) on all paths.

a

b b

c c c c

1 0

(b) After merging all the 1-
terminals into a single node
and all 0-terminals into a single
node.

a

b b

c

1 0

(c) After deleting the redun-
dant c nodes, that is, all but
the dark gray shaded.

Figure 2.3: Constructing a BDD for the Boolean formula (a∧b∧c)∨(a∧¬b)∨(¬a∧b).
Solid lines represent the value of the node being true, dashed lines represent the
value being false. The leaves indicate the formula’s value given the variable
assignment corresponding to the path from the root node. The single c node
remaining in the final BDD has been shaded gray in every step for better visibility.
Please note, the final BDD is isomorphic to the BDD shown in Figure 2.2(a).
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2.3 Probabilistic Inference

A discrete probabilistic model defines a probability distribution p(·) over a set Ω of
basic outcomes, that is, value assignments to the model’s random variables. This
distribution can then be used to evaluate a conditional probability distribution
p(q|e) = p(q∧e)

p(e) , also called target distribution. Here, q is a query involving random
variables, and e is the evidence, that is, a partial value assignment of the random
variables. If e contains assignments to continuous variables, p(e) is zero. Hence,
evidence on continuous values has to be defined via a probability density function,
also called a sensor model. Evaluating the target distribution is called probabilistic
inference. In probabilistic logic programming, random variables often correspond
to ground atoms such that p(·) defines a distribution over truth value assignments.

Probabilistic inference computes the probability of a logical query being true given
truth value assignments for a number of such ground atoms. The probability p(·)
of a query q is in the discrete case the sum over those outcomes ω ∈ Ω where the
query succeeds. In the continuous case, the sum is replaced by an integral and the
distribution p(·) by a product of density function F(·) That is,

p(q) =
∑
ω∈Ω

p(ω)1q(ω) , and p(q) =
∫
· · ·
∫

Ω

1q(ω) dF(ω) , (2.1)

where 1q(ω) = 1 if ω |= q and 0 otherwise. When describing the semantics of
distributional programs in Chapter 5 we will use the notation

∫
x dF (x) as unifying

notation for both discrete and continuous distributions (cf. [Wasserman, 2003]).

The set of outcomes Ω is often very large or even infinite. Hence exact inference
based on the summation in (2.1) quickly becomes infeasible and inference has to
resort to approximation techniques based on samples, that is, randomly drawn
outcomes ω ∈ Ω. Given a large set of such samples {s1, . . . , sN} drawn from p(·),
the probability p(q) can be estimated as the fraction of samples where q is true. If
the task is not to compute p(·) but the conditional probability distribution p(·|e)
given some evidence e, one can estimate the probability as

p̂(q|e) := 1
N

N∑
i=1

1q(si) .

Sampling from p(·|e) can be inefficient or infeasible in practice as the evidence
needs to be taken into account. For instance, if one would use the definition of
conditional probability to draw samples from p(·), all samples that are inconsistent
with the evidence would not contribute to the estimate and would thus have to
be rejected. More advanced sampling methods therefore often resort to a so-called
proposal distribution that allows for easier sampling. The error introduced by
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this simplification then needs to be accounted for when generating the estimate
from the set of samples. An example for such a method is importance sampling,
where each sample si has an associated weight wi. Samples are drawn from an
importance distribution π(·|e), and weights are defined as wi = p(si|e)

π(si|e) . The true
target distribution can then be estimated as

p̂(q|e) = 1
W

N∑
i=1

wi · 1q(si) ,

where W =
∑
i wi is a normalization constant. The simplest instance of this

algorithm is rejection sampling as already outlined above, where the samples are
drawn from the prior distribution p(·) and weights are 1 for those samples consistent
with the evidence, and 0 for the others. Especially for unlikely evidence rejection
sampling suffers from a very high rejection rate. This means many samples that do
not contribute to the final estimate are generated. This is known as the rejection
problem. One way to address this is likelihood weighted sampling, which generates
samples consistent with the evidence but drawn from a different distribution that
is easier to evaluate. This requires corresponding modifications of the associated
weights in order to produce correct estimates.

2.4 Distribution Semantics

Sato’s distribution semantics [Sato, 1995] extends logic programming to the
probabilistic setting by randomly choosing truth values of basic facts. The core of
this language lies in splitting the logic program into a set F of facts and a set R of
rules. Given a probability distribution PF over the facts, the rules then allow one
to extend PF into a distribution over least Herbrand models of the logic program.
Such a Herbrand model is called a possible world.

More precisely, it is assumed that DB = F ∪R is ground and denumerable, and that
no atom in F unifies with the head of a rule in R. Each truth value assignment to F
gives rise to a unique least Herbrand model of DB. Thus, a probability distribution
PF over F can directly be extended into a distribution PDB over these models.
Furthermore, Sato shows that, given an enumeration f1, f2, . . . of facts in F , PF
can be constructed from a series of finite distributions P (n)

F (f1 = x1, . . . , fn = xn)
provided that the series fulfills the so-called compatibility condition, that is,

P
(n)
F (f1 = x1, . . . , fn = xn) =

∑
xn+1

P
(n+1)
F (f1 = x1, . . . , fn+1 = xn+1) . (2.2)



Chapter 3

ProbLog∗

This chapter reviews ProbLog, the probabilistic logic programming language used in
this thesis. We begin by outlining the basic concepts of the ProbLog language and
its semantics in Section 3.1. We review the exact inference algorithm in Section 3.2
and discuss the mapping of annotated disjunctions to ProbLog in Section 3.3.

3.1 Syntax And Semantics

ProbLog is a simple probabilistic extension of the logic programming language
Prolog (cf. [De Raedt et al., 2007; Kimmig, 2010]). One of its key properties is
the separation of the model into a probabilistic part F and a logical part BK,
which is akin to the distribution semantics (cf. Section 2.4). In this chapter we use
a simplified version of the ALARM domain (adopted from [Russell and Norvig,
2003]) to explain the syntax and the basic concepts of the ProbLog language.

Example 3.1. Consider the ALARM-2 program, which states that there is a
burglary with probability 0.1, an earthquake with probability 0.2 and if either of
them occurs the alarm will go off. If the alarm goes off, a person X will be notified

∗This chapter mainly reviews existing work on ProbLog (cf. De Raedt et al. [2007]; Kimmig
[2010]). The results on mapping annotated disjunctions into ProbLog are joint work of the author
with Luc De Raedt, Ingo Thon and Angelika Kimmig.
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and will therefore call with the probability of hears_alarm(X), that is, 0.8.

F = {0.1:: burglary, 0.2:: earthquake, 0.8:: hears_alarm(X)}

BK = {person(mary),

person(john),

alarm :− burglary

alarm :− earthquake

calls(X) :− person(X), alarm, hears_alarm(X)}

This example illustrates the separation between probabilistic and logical elements
in a ProbLog program T = F ∪BK. The probabilistic facts

F = {p1 :: f1, · · · , pn :: fN} (3.1)

are a finite set of probabilistic facts and BK is a finite set of definite clauses called
background knowledge. The probabilistic facts pn :: fn in F are annotated with the
probability pn stating that fnθ is true with probability pn for all substitutions θ
grounding fn. We assume that probabilistic facts do not subsume one another,
that is, the following case is not allowed:

0.8 :: hears_alarm(X).

0.9 :: hears_alarm(bob).

Furthermore, we assume that no head of a clause in BK can be unified with a
probabilistic fact and, lastly, that the program T has the finite support condition.
This condition holds if each atom in the Herbrand base of T has a finite SLD tree.
Intuitively, this implies that the probability of an atom can only be influenced by
finitely many ground probabilistic facts. The finite support condition is crucial
for inference as it guarantees finiteness of the part of the ground program that is
relevant for answering a query. Furthermore, it allows us to restrict the probability
distributions and algorithms in this chapter to a finite set of ground probabilistic
facts, which are assumed to be given in terms of a finite set of substitutions.

A ProbLog program T and a finite set of substitutions Θ = {θnk, . . . θnKn | k =
1, . . .Kn} for the variables in the probabilistic facts F = {p1 :: f1, · · · , pN :: fN}
define the maximal set of ground facts that can be generated from F

LT := {f1θ11, f1θ12, . . . , fNθNKN } , (3.2)

where Kn is the number of substitutions for fact fn, Similarly, the maximal set of
ground probabilistic facts is defined as

FT := {p1 :: f1θ11, p1 :: f1θ12, . . . , pN :: fNθNKN } . (3.3)
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In the ALARM-2 program, for example, these sets are

LT = {burglary, earthquake,

hears_alarm(john), hears_alarm(mary)}

FT = {0.1 :: burglary, 0.2 :: earthquake,

0.8 :: hears_alarm(john), 0.8 :: hears_alarm(mary)}

A ProbLog program defines a probability distribution over subsets of the ground
facts L ⊆ LT as follows

PT (L) :=
∏

fnθnk∈L

pn
∏

fnθnk∈LT \L

(1− pn) . (3.4)

In terms of logic, L is a complete interpretation stating that all atoms contained
in L are true and the rest is false. The interpretation L = {burglary}, for
instance, expresses that a burglary and not an earthquake has occurred, while
neither John nor Mary heard the alarm. The probability of this is PT (L) =
0.1× (1− 0.2)× (1− 0.8)× (1− 0.8) = 0.0032.

A partial interpretation I specifies for some but not necessarily for all atoms the
truth value. We represent partial interpretations as I = (I+, I−), where I+ contains
all true atoms and I− all false atoms and I+ ∩ I− = ∅. For instance, the partial
interpretation

I+ = {burglary}

I− = {hears_alarm(mary)}

states that there was a burglary and Mary did not hear an alarm. However, it
does not specify the truth value of earthquake and hears_alarm(john). Hence
when we calculate the probability of the partial interpretation I = (I+, I−) of the
probabilistic facts being sampled by a ProbLog program, we need to marginalize
out all ground probabilistic facts LT \ (I+ ∪ I−) whose truth value is unknown,
which results in

PT (I) =
∏

fnθnk∈I+

pn
∏

fnθnk∈I−
(1− pn) . (3.5)

ProbLog also defines a probability distribution PTw over possible worlds, that is
Herbrand interpretations. Each subset of ground facts L ⊆ LT can be extended to
a possible world by computing the least Herbrand model of L. This possible world
is assigned the probability PTw (L) = PT (L).
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The distribution PT can be extended towards the success probability of a query q

PTs (q) :=
∑
L⊆LT :
L∪BK|=q

PT (L) . (3.6)

Intuitively, the success probability is the probability that q is provable in a randomly
sampled logic program. As there are exponentially many subprograms L ⊆ LT , it
is computationally infeasible to enumerate all of them. As shown by De Raedt
et al. [2007], this problem can be solved by reducing it to that of computing the
probability of the monotone DNF formula

PTs (q) = P

 ∨
(I+,I−)∈ExplT (q)

( ∧
bi∈I+

bi ∧
∧

bi∈I−
¬bi
) , (3.7)

where ExplT (q) denotes the set of explanations of the query q. This set contains
all minimal partial interpretations (I+, I−) ⊆ LT supporting q:

ExplT (q) :=
{
I ⊆ LT

∣∣ ((I+, I−) |=BK q
)
∧

¬
(
∃I ′ : I ′ 6= I ∧ I ′ ⊆ I ′ ∧ I ′ |=BK q

)}
(3.8)

For instance, the set of explanations for calls(john) in the ALARM-2 program is

I+
1 = {hears_alarm(john), burglary}

I−1 = ∅

I+
2 = {hears_alarm(john), earthquake}

I−2 = ∅ .

3.2 Inference

In the following we discuss the core elements of ProbLog’s exact inference
mechanism [Kimmig et al., 2011] and illustrate them using the query calls(john)
in the ALARM-2 program. Given a query q the goal is to compute the success
probability of the query in the program T = F ∪ BK (cf. Eq. 3.6). It is clear
that computing this probability by enumerating all possible subprograms L ⊆ LT
is infeasible since there are exponentially many. On the contrary, the number
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hears_alarm(john)

burglary

earthquake

1 0prob= 1 prob= 0

prob= 0.2 · 1 + (1− 0.2) · 0
= 0.2

prob= 0.1 · 1 + (1− 0.1) · 0.2
= 0.28

prob= 0.8 · 0.28 + (1− 0.8) · 0
= 0.224

Figure 3.1: The BDD used by ProbLog to compute the probability of the query
calls(john) in the ALARM-2 program. The annotations in the dashed boxes
represent the intermediate values computed by Algorithm 2 when traversing the
BDD. The probability of the query 0.224 is returned at the root node.

of proofs for a query is typically much smaller. For instance, the ALARM-2
program defines 24 = 16 subprograms L ⊆ LT , while there are only 2 proofs
for the query calls(john). Based on this observation the inference algorithm
computes the success probability of the query based on the set of proofs instead.
The main inference steps are: (1) finding all proofs for the query, (2) constructing
a Boolean formula, (3) translating this into a BDD and (4) evaluating the BDD
(cf. Figure 3.1).

As ProbLog is tightly integrated with the underlying Prolog system YAP [San-
tos Costa et al., 2011], it is possible to interact with the SLD resolution step
(cf. Section 2.1.2) that searches for the proofs of a query. From an imperative
programmer’s point of view finding all ProbLog proofs corresponds to iterating
over all possible proofs in BK and extracting the set of ground facts that is used
by each proof as shown in Algorithm 1. The query calls(john) has two proofs (or
explanations) in the ALARM-2 program using the set of probabilistic facts

e1 = {hears_alarm(john), burglary}

e2 = {hears_alarm(john), earthquake}

While each of these explanations can be assigned a probability, it is incorrect to
sum them up in order to compute the success probability. The probability of e1,
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Algorithm 1 Exact Inference in ProbLog by collecting all proofs for a query,
building a Boolean formula and evaluating the BDD corresponding to that formula.
1: function SuccessProb(query q, theory T )
2: E ← ∅ . Set of explanations for q
3: initialize SLD resolution for q in BK ∪ LT
4: while SLD resolution finds another proof do
5: e←ProbabilisticFacts(proof)
6: E ← E ∪ {e}
7: end while
8: BDD ←GenerateBDD(E)
9: return BBDProb(root(BDD))
10: end function

for instance, is 0.8× 0.1 and the probability of e2 is 0.8× 0.2 . The sum of these
two is 0.24, while 0.224 is the success probability of calls(john). The reason for
this phenomenon is simple: e1 and e2 are not statistically independent. Hence one
has to compute the probability of the joint event as

P (e1 ∨ e2) = P (e1) + P (e2)− P (e1 ∧ e2) .

In other words, the explanations overlap and one has to disjoin them when
computing the probability. Furthermore, if there are several explanations one
has to consider all possible combinations of them. This so-called disjoint-sum of
product (DSOP) problem is known to be #P -complete [Valiant, 1979].

ProbLog inference solves this task by mapping it onto building a Binary Decision
Diagram. To this end, ProbLog translates the set of explanations into a Boolean
formula in disjunctive normal form, which is in turn represented compactly as a
BDD. In our example, the formula(

hears_alarm(john) ∧ burglary
)
∨
(
hears_alarm(john) ∧ earthquake

)
is represented by the BDD shown in Figure 3.1. Lastly, the BDD is traversed by
the function BDDProb shown in Algorithm 2. This step computes for each node
the probability that the sub-BDD starting at that node is true. The probability
of the root note 0.224 then corresponds to the success probability of the query.
Algorithm 2 is linear in the number of BDD nodes when intermediate results are
cached. For the ease of reading this was omitted in the algorithm’s pseudocode.

The Shannon expansion [Shannon, 1948] of the Boolean formula, which is employed
during the BDD construction, results in the high and low child of each node being
disjoint. Namely, following the edge to the high child corresponds to assigning the
value true to the variable, while following the edge to the low child corresponds
to the value false. Therefore, the probabilities computed by Algorithm 2 on the
two sub-BDD can be summed up as the corresponding events are statistically
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Algorithm 2 Evaluating the BDD by traversing it top-down starting at the root.
When caching intermediate results, the algorithm is linear in the size of the BDD.
1: function BDDProb(node n)
2: if n is the 1-terminal of the BDD then return 1 . Base Case
3: if n is the 0-terminal of the BDD then return 0 . Base Case
4: let h and l be the high and low children of n . Inductive Case
5: ph ← BDDProb(h)
6: pl ← BDDProb(l)
7: return p · ph + (1− p) · pl
8: end function

independent. Constructing a BDD might still result in an exponential blow-up of
the number of nodes. This requires one to employ so-called reordering heuristics,
which try to find an order that minimizes the size of the BDD such that it becomes
representable in memory.

Constructing the BDD is typically the limiting factor in large programs. In
particular for the parameter estimation algorithms we develop in Part III of the
thesis, where we need to repeatedly evaluate several queries, we hence need to be
able to limit the size of the BDDs. Reducing the size of the BDD in turn allows us
to apply parameter learning on large-scale real world datasets such as the Biomine
graph [Sevon et al., 2006] ; cf. Section 6.5.1 for a description.

We therefore introduce the k-probability PTk (q), which approximates the success
probability by using the k best explanations, that is the k most likely ones, instead
of all proofs when building the DNF formula used in Equation (3.7)

PTk (q) := P

 ∨
(I+,I−)∈ExplT

k
(q)

( ∧
bi∈I+

bi ∧
∧

bi∈I−
¬bi
) , (3.9)

where ExplTk (q) is limited to the k most likely explanations (cf. Eq. 3.8). There
are two special cases: (1) if k is set to ∞, all proofs will be taken into account,
which is similar to the success probability; (2) if k is set to 1 the most likely proof –
which can be seen as the best explanation – is used.

Algorithm 1 can be used for computing the k-probability as well. Instead of
collecting all proofs for the query, one has to modify step (1) of the algorithm
towards returning the k best. This can be realized using a simple branch-and-bound
approach (cf. also [Poole, 1993]).

We illustrate the k-probability using the probabilistic graph shown in Figure 3.2
and compute the k-probability for the query path(a, d). This query has four proofs,
represented by the conjunctions ac∧cd, ab∧bc∧cd, ac∧ce∧ed and ab∧bc∧ce∧ed,
with probabilities 0.72, 0.378, 0.32 and 0.168 respectively. For k = 1, one obtains the
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(a) Probabilistic graph

F = {0.8:: edge(a, c), 0.7:: edge(a, b),

0.8:: edge(c, e), 0.6:: edge(b, c),

0.9:: edge(c, d), 0.5:: edge(e, d)}

BK = {path(X, Y) :− edge(X, Y)

path(X, Y) :− edge(X, Z), path(Z, Y)}
(b) Encoding in ProbLog

Figure 3.2: This probabilistic graph represents unsure dependencies between nodes.
Each edge is part of the graph with the probability attached to it. It can be
modeled in ProbLog by the program shown on the right side.

probability of the most likely proof P1(path(a, d)) = 0.72, the so-called explanation
probability. For k = 2, overlap between the two best proofs has to be taken
into account: the second proof only adds information if the first is disconnected.
As they share the edge cd, this means that edge ac has to be missing, leading to
P2(path(a, d)) = P ((ac∧cd)∨(¬ac∧ab∧bc∧cd)) = 0.72+(1−0.8) ·0.378 = 0.7956.
Similarly, we obtain P3(path(a, d)) = 0.8276 and for all k ≥ 4 the probability
Pk(path(a, d)) = 0.83096 for since there are only four proofs.

Some of the algorithms developed in this thesis are variants of the BDD traversal
algorithm for computing the probability. In Chapter 4 we extend the computation
on the BDD towards exact inference with continuous distributions. In Chapter 6
we compute the gradient of the success probability using the BDD representation,
which is in turn used to optimize the parameters of the program with respect
to a training set. LFI-ProbLog(cf. Chapter 7) introduces a variant of the BDD
representation that allows for so-called deterministic nodes. The function Alpha
(cf. Algorithm 14) used there is a variant of BDDProb that accounts for such
type of node. Its pseudocode description (cf. Algorithm 14) shows how caching the
intermediate results can be integrated.

Next to exact inference, ProbLog also provides sampling algorithms for approximat-
ing the success probability of a query. The algorithm of Kimmig et al. [2011]
interleaves SLD resolution with sampling from the probabilistic facts, which
corresponds to sampling proofs for a query. Another possibility is to sample
at the level of the DNF representation [Shterionov et al., 2010]. ProbLog inference
can also be combined with tabling [Mantadelis and Janssens, 2010]. This technique
is used in logic programming to avoid revisiting similar parts of the SLD tree. Next
to the performance improvement due to avoiding redundant proof steps, tabling
can also be used to ensure termination of the proof procedure in cyclic programs.
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3.3 Annotated Disjunctions

Annotated disjunctions (ADs) are a generalization of probabilistic facts with two
elements: a condition in the form of a clause body and the exclusive choice between
alternatives. They are defined as

p1 :: h1; . . . ; pN :: hN :− b1, . . . , bM

where h1, . . . , hN are atoms, the body b1, . . . , bM is a possibly empty conjunction
of atoms and pi are probabilities such that

∑N
i=1 pi ≤ 1. Furthermore, we assume

the head to be range-restricted, that is, all variables in h1, · · · , hN do appear in
the body as well. Lastly, we assume that no hi can be unified with another head
atom hj , i 6= j.

An annotated disjunction states that if the body b1, · · · , bM is true then at most
one of the hi is true as well, where the choice is governed by the probabilities.
The annotated disjunction 0.6 :: sunny(0); 0.4 :: rainy(0), for instance, states that
the weather is either sunny or rainy with the corresponding probability. As for
probabilistic facts, a non-ground AD denotes the set of all its groundings, and
for each such grounding, choosing one of its head atoms to be true is seen as an
independent random event. If the probabilities pi in the head of the AD do not
sum to 1, there is also a chance that nothing is chosen. The probability of this
event is 1−

∑N
i=1 pi. The following example illustrates how ADs can be used for

representing Hidden Markov Models [Rabiner, 1989].

Example 3.2 (Hidden Markov Model). A Hidden Markov Model (HMM)
represents the dependency of random variables over time. The HMM shown in
Figure 3.3, for instance, models the weather depending on the weather the day
before. The weather can be either rainy or sunny and a person will or will not take
an umbrella when leaving the house in the morning. Using annotated disjunctions,
this HMM can be written as follows:

0.6 :: sunny(0); 0.4 :: rainy(0) // initial state

0.8 :: sunny(s(X)); 0.2 :: rainy(s(X)) :− sunny(X) // state transition

0.3 :: sunny(s(X)); 0.7 :: rainy(s(X)) :− rainy(X) // state transition

0.2 :: umbrella(X) :− sunny(X) // observation

0.9 :: umbrella(X) :− rainy(X) // observation

Annotated disjunctions can be translated into a set of equivalent probabilistic facts
and background knowledge in ProbLog. However, probabilistic facts represent
independent random variables, while two different atoms in the head of an AD
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weather(0) weather(s(0)) weather(s(s(0)) ...

umbrella(0) umbrella(s(0)) umbrella(s(s(0))

u(0)
w(0) t f

sunny 0.2 0.8
rainy 0.9 0.1

u(s(0))
w(s(0)) t f
sunny 0.2 0.8
rainy 0.9 0.1

u(s(s(0)))
w(s(s(0))) t f

sunny 0.2 0.8
rainy 0.9 0.1

w(s(0))
sunny rainy

0.6 0.4

w(s(0))
w(0) sunny rainy

sunny 0.8 0.2
rainy 0.3 0.7

w(s(s(0)))
w(s(0)) sunny rainy
sunny 0.8 0.2
rainy 0.3 0.7

Figure 3.3: A hidden Markov model; the rounded boxes represent the random
variables, the edges represent the dependencies among them and the squared boxes
contain the conditional probability table (CPT) for each node.

are dependent in the sense that at most one of them can be true in each possible
world. Hence we need to modify the AD’s body when translating it to ProbLog
such that an AD

p1 :: h1; . . . ; pN :: hN :− b1, . . . , bM

is translated into the set of probabilistic facts

F =
{
p̃1 :: msw(1, V1, . . . , VK), . . . , p̃N :: msw(N, V1, . . . , VK)

}
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where V1, . . . , VK are all variables appearing in the AD. Furthermore, for each head
atom hi one clause is added to the background knowledge BK as follows:

h1:−b1, · · · , bM, msw(1, V1, . . . , VK).

h2:−b1, · · · , bM, msw(2, V1, . . . , VK), not(msw(1, V1, . . . , VK)).

h3:−b1, · · · , bM, msw(3, V1, . . . , VK), not(msw(2, V1, . . . , VK)),

not(msw(1, V1, . . . , VK)).

...

hN:−b1, · · · , bM, msw(i, V1, . . . , VK), not(msw(i− 1, V1, . . . , VK)),

...

not(msw(1, V1, . . . , VK)).

The probability p̃1 is defined as p1 and for i > 1 it is

p̃i :=

pi ·
(

1−
∑i−1
j=1 pj

)−1
if pi > 0

0 if pi = 0
. (3.10)

Please note that the resulting probabilistic facts msw require an extra argument that
identifies the AD, for instance, a unique number. We omitted this argument for the
ease of reading. If the pi sum to 1, it is possible to omit the last probabilistic fact
msw(i, V1, . . . , VK) from the translation since its probability p̃n is 1. The correctness
of this mapping is shown in Appendix A.

Although we assume definite programs in this thesis, the introduced mapping of
annotated disjunctions to ProbLog uses negation, i.e., not(msw(i− 1, V1, . . . , VK)).
Please note that this is a special kind of negation, provided by the ProbLog inference
algorithm, that is restricted to ground probabilistic facts only. This type of negation
can be represented in the distribution semantics by two distinct probabilistic facts f
and fnot that are governed by a joint distribution: P (f∧fnot) = P (¬f∧¬fnot) = 0,
P (f ∧ ¬fnot) = p and P (¬f ∧ fnot) = 1− p.

It is worth mentioning that one can recover the original probabilities from p̃
by setting p1 := p̃1 and iteratively applying the following transformation for
i = 2, 3, . . . , N

pi := p̃i ·

1−
i−1∑
j=1

pj

 . (3.11)
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Hence Equation 3.10 and 3.11 define a bijection between p and p̃. This allows one
to apply the parameter learning techniques we develop in Part III of this thesis on
the ProbLog representation of the ADs such that the estimated parameters can be
mapped back onto the corresponding ADs.
Example 3.3. Using the above defined mapping of annotated disjunctions, the
HMM defined in Example 3.2 is translated into a ProbLog theory as follows.

F = {0.6 :: msw(1, 1), 0.8 :: msw(2, 1, X), 0.3 :: msw(3, 1, X),

0.2 :: msw(4, 1, X), 0.9 :: msw(5, 1, X)}

The first argument of each msw atom identifies the corresponding annotated
disjunction. This is necessary as there exist more than one AD.

BK = {sunny(0) :− msw(1, 1),

rainy(0) :− not(msw(1, 1)),

sunny(s(X)) :− sunny(X), msw(2, 1, X),

rainy(s(X)) :− sunny(X), not(msw(2, 1, X)),

sunny(s(X)) :− rainy(X), msw(3, 1, X),

rainy(s(X)) :− rainy(X), not(msw(3, 1, X)),

umbrella(X) :− sunny(X), msw(4, 1, X),

umbrella(X) :− rainy(X), msw(5, 1, X)}

Since no AD has a head with more than two elements in this example, the resulting
translation is rather simple. Moreover, the probabilities in the ADs that govern the
weather do sum up to one. Hence we can omit the last auxiliary fact in these cases,
i.e., msw(1, 2), since the attached probability is one. Please note, that the bodies
of the resulting clauses are disjoint. For instance, in each possible world there is
exactly one proof for each ground sunny/1, rainy/1 and umbrella/1 atom.

Annotated disjunctions are the building blocks of other probabilistic programming
languages closely related to ProbLog. CP-logic uses ADs to express causal
dependencies between probabilistic events [Vennekens et al., 2009]. CPT-L is
a variant of this formalism that uses ADs to represent sequential models over
interpretations [Thon et al., 2008, 2011]. The multi-valued switches in PRISM [Sato,
1995] and the distributions in Poole’s [2008] independent choice logic (ICL) enable
one to define finite distributions over more than two elements. In Chapter 4 we
introduce Hybrid ProbLog that allows for the use of continuous distributions in the
form of so-called continuous facts. It is worth mentioning that the exact inference
algorithm we develop for that language employs a mapping similar to that of ADs.
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Outline of Part II

In this part of the thesis we study how ProbLog can be extended with continuous
distributions.

Chapter 4 extends ProbLog with continuous facts that contain a logical variable
representing a continuous random variable. The resulting language, Hybrid
ProbLog, is designed such that exact inference is tractable and can be performed
by a dynamic query-dependent discretization approach.

Chapter 5 introduces a more expressive extension of ProbLog in the form of
distributional programs. The building blocks of such a program are distributional
clauses, which are a generalization of annotated disjunctions (cf. Section 3.3). It is
possible to use finite, discrete as well as continuous distributions in the head of such
clauses. We propose a sampling-based inference mechanism that combines elements
of rejection sampling and likelihood weighted sampling. It uses lookahead to
identify inconsistencies with the evidence early in the sample generation. Moreover,
we adapt the well-known magic sets transformation towards distributional clauses
in order to restrict the sampling to the relevant parts of the program.
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Chapter 4

An Exact Inference Approach
to Continuous Distributions∗

Continuous distributions are essential for building a natural model in many
applications. Probabilistic logic programming languages, such as ProbLog and
CP-Logic [Vennekens et al., 2006], have, so far, largely focused on modeling discrete
distributions and typically perform exact inference. The PRISM [Sato, 1995]
system provides primitives for Gaussian distributions but requires the exclusive
explanation property, which complicates modeling. Furthermore, many of the
functional probabilistic programming languages, such as BLOG [Milch et al., 2005a]
and Church [Goodman et al., 2008], are able to cope with continuous distributions
but perform only approximate inference based on Markov Chain Monte Carlo
sampling. Statistical relational learning systems such as Markov Logic Networks
[Richardson and Domingos, 2006] and Bayesian Logic Programs [Kersting and
De Raedt, 2007] have also been extended with continuous distributions. The key
contribution of this chapter is a simple probabilistic extension of Prolog based on
Sato’s [1995] distribution semantics with both discrete and continuous distributions.
This is realized by introducing a novel type of probabilistic fact where arguments
of the fact can be distributed according to a continuous distribution. Queries can
then be posed about the probability that the resulting arguments fall into specific
intervals. We introduce the semantics of using continuous variables in combination
with comparison operations and show how ProbLog’s inference mechanism, based
on Binary Decision Diagrams (BDDs) [Bryant, 1986], can be extended to cope
with these distributions. The resulting language is called Hybrid ProbLog as it is
essentially an extension of ProbLog.

∗This chapter presents joint work with Manfred Jaeger and Luc De Raedt previously published
in [Gutmann et al., 2010a].
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Similarly to Hybrid ProbLog, Hybrid Markov Logic Networks (HMLNs) [Wang and
Domingos, 2008] aim at integrating Boolean and numerical random variables in a
probabilistic-logic modeling framework. While one can specify the distribution of
continuous values directly in Hybrid ProbLog programs, one defines it indirectly in
HMLNs by formulating equations that function as soft constraints for relationships
among numerical and logical variables. For example, one could express that
the temperature on day d is typically around 20◦ Celsius using the weighted
equality w temperature(d) = 20, where larger weights w lead to a larger penalty
for deviations of temperature(d) from 20. All weighted formulae containing
temperature(d), together, implicitly define a probability distribution for the random
variable temperature(d) due to HMLN semantics. However, one cannot directly
specify this distribution to be Gaussian with, for example, mean 20 and standard
deviation 5. No exact inference methods have yet been developed for HMLNs.

Hybrid ProbLog can be related to Hybrid Bayesian networks [Murphy, 1998] as
they are both upgrading an existing framework with continuous elements. To
begin with, Hybrid ProbLog uses logic as representation language, while Hybrid
Bayesian networks are based on directed graphs with annotations on each node.
Another major difference lies in the interaction between continuous and discrete
random variables permitted in the models. In Hybrid Bayesian Networks, the
distributions of continuous variables (usually Gaussian) are typically conditioned
on discrete variables, though continuous variables cannot be parents of discrete
ones. In Hybrid ProbLog this order is reversed: continuous variables are at the
roots of the directed model, and the discrete (Boolean) variables are conditioned
on the continuous ones. Thus, Hybrid ProbLog provides modeling capabilities
and exact inference procedures that, for the propositional case, are in some sense
complementary to Hybrid Bayesian networks.

This chapter has three core contributions: (1) an extension of ProbLog with
continuous distributions, (2) a formal study of its semantics and (3) an efficient
inference algorithm based on dynamic discretization.

The remainder of this chapter is organized as follows. Section 4.1 introduces the
syntax and semantics of Hybrid ProbLog. Section 4.2 describes our exact inference
algorithm. Before concluding, we evaluate the algorithm in Section 4.3.

4.1 Hybrid ProbLog

A Hybrid ProbLog theory T = F ∪ F c ∪BK is described by a set of probabilistic
facts F , a set of continuous facts F c and a set of definite clauses BK. The
continuous facts are of the form

F c = {(X1, φ1) :: f c1 , · · · , (Xm, φm) :: f cm} , (4.1)
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Figure 4.1: The probability density function of a Gaussian distribution for different
mean µ and standard deviation σ.

where Xi is a Prolog variable, appearing in the atom f ci and φi is a density function.
The continuous fact (X, gaussian(2, 8)) :: temp(D, X), for example, states that the
temperature for day D is Gaussian-distributed with mean 2 and standard deviation
8. The probability density function for a Gaussian distribution with mean µ and
standard deviation σ is defined as

ϕµ;σ(x) := 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

. (4.2)

The graph for ϕ2;8 in Figure 4.1 shows the probability density function for the
variable X in the continuous fact (X, gaussian(2, 8)) :: temp(D, X).

The probabilistic facts F and the background knowledge BK are akin to ProbLog
(cf. Chapter 3), hence each ProbLog theory is a valid Hybrid ProbLog theory
with F c = ∅ but not vice versa. In this chapter, we denote facts, values, and
substitutions related to the continuous part of T by the superscript c. We refer to
variables that are unified with values stemming from continuous fact as numerical
variables. Other variables will be called logical variables. In the atom temp(D, X),
for instance, D is a numerical variable while X is logical.

From the user’s perspective, continuous facts are queried like normal Prolog facts,
and the value of the numerical variable is instantiated with a value drawn from
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the underlying distribution. Hybrid ProbLog adds the following predicates to the
background knowledge BK of the theory to process numerical variables:

• below(X,c) succeeds if X is a numerical variable, c is a number constant, and
X < c,

• above(X,c) succeeds if X is a numerical variable, c is a number constant, and
X > c,

• ininterval(X,c1,c2) succeeds if X is a numerical variable, c1 and c2 are
number constants, and X ∈ [c1, c2].

Unification with number constants is not supported for numerical variables, i.e.,
the call temp(d, 0) fails. But one can express the same using

temp(d, T), ininterval(T, 0, 0) .

Similarly, standard Prolog comparison operators are not supported and one has to
use the corresponding comparison predicate from the background knowledge:

temp(d1, T), T > 5

has to be written as

temp(d1, T), above(T, 5) .

Arithmetic expressions are not supported, i.e, the query

temp(d1, T), Fahrenheit is 9/5 ∗ X + 32, above(Fahrenheit, 41)

is incorrect. In this particular example it is possible to rewrite the expression such
that it does not require an arithmetic expression:

temp(d1, T), above(T, (41− 32) ∗ 5/9) .

Handling arithmetic expressions in Hybrid ProbLog requires the functions to be
invertible. The expressions together with the comparison operators in BK define
a system of inequality equations that has be solved. In the example above, the
function is linear, which resulted in a straight-forward translation of the program
since linear functions are bijective. In the general case, the translation can result
in a more complex program the requires disjunctions. For instance

temp(d1, T), T2 is T ∗ T, above(T2, 2)

has to be translated into

temp(d1, T), (below(T,−sqrt(2); above(T, sqrt(2)) ,
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since the inequality T 2 > 2 is true for T >
√

2 and T < −
√

2. It is clear that solving
a set of inequalities involving arbitrary functions quickly becomes intractable and
one has to use approximation algorithms for finding solutions such as Newton’s
method. As this counters our goal of developing an exact inference algorithm we
hence exclude arithmetic expressions.

Furthermore, if several numerical variables are used in one arithmetic expression
they get “coupled”. As a result there is a dependency that requires one to always
consider the values of both variables simultaneously, which in turn complicates
the inference algorithm. For the same reason, the comparison of two numerical
variables is not supported, i.e., the query

temp(d1, T1), temp(d2, T2), above(T1, T2)

is incorrect. Despite these restriction, Hybrid ProbLog can handle non-trivial
programs such as finite mixtures of Gaussian distributions.

Example 4.1 (Gaussian Mixture Model). The following theory encodes a Gaussian
mixture model. The atom mix(X) can be used later on as if it were a simple
continuous fact, which means the variable X can be processed using above/2,
below/2 and ininterval/3.

0.6::heads. tails :− not(heads).

(X, gaussian(0, 1))::g(X). mix(X) :− heads, g(X).

(X, gaussian(5, 2))::h(X). mix(X) :− tails, h(X).

Please note, the clauses for heads and tails represent the annotated disjunction
0.5 :: heads; 0.5 :: tails after translation to ProbLog (cf. Section 3.3).

The following theory shall be used as running example throughout the chapter to
define the semantics of Hybrid ProbLog and to explain the inference algorithm.

Example 4.2 (Weather). This theory models weather during the winter time. The
background knowledge states that a person catches a cold when the temperature is
below 0◦ Celsius or when it is lower than 5◦ Celsius while it also rains.

0.8::rain. catchcold :− rain, temp(T), below(T, 5).

(T, gaussian(2, 8))::temp(T). catchcold :− temp(T), below(T, 0).

The semantics of Hybrid ProbLog theory T = F ∪F c ∪BK is given by probability
distributions over subsets of the facts fi (called subprograms), and over sample values
for the numeric variables in the continuous facts f ci (called continuous subprograms).
The subprograms L ⊆ LF are distributed as in ProbLog (cf. Equation (3.4)), and
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the continuous subprograms are distributed as described in Section 4.1.1. Combining
both gives one the success probability of queries in a Hybrid ProbLog theory as
described in Section 4.1.2.

4.1.1 Distribution Over Continuous Subprograms

Let Θc = {θcj1, . . . θcji′
j
|j = 1, . . . ,m} be a finite set of possible substitutions for

the logical variables in the continuous facts (Xj , φj) :: f cj where i′j is the number
of substitutions for fact j. Each substitution instance f cj θcjk is associated with
a random variable Xjk with probability distribution φj . The Xjk are assumed
to be independent. Let X denote the |Θc|-dimensional vector of the random
variables, and f(X) their joint density function. A sample value x for X defines
the continuous subprogram Lx := {f cj θcjk{Xjk ← xjk} | j = 1, . . . ,m; k = 1, . . . i′j}
where {Xjk ← xjk} is the substitution of Xjk by xjk.

Example 4.3 (Continuous Subprogram). Consider the following set of continuous
facts where the second fact is non-ground. That is, one can obtain several ground
instances where each instance has a value drawn independently from the same
distribution.

(X, gaussian(1, 2)) :: h(X). (X, gaussian(4, 3)) :: f(X, Y).

When one applies the substitutions θc1,1 = ∅, θc2,1 = {Y ← a}, θc2,2 = {Y ← b}
together with the point x1,1 = 0.9, x2,1 = 2.3, x2,2 = 4.2, one obtains the continuous
subprogram Lx = {h(0.9), f(2.3, a), f(4.2, b)}.

The joint distribution of X thus defines a distribution over continuous subprograms.
Let X = (x1, . . . , XM ) be the value of the continuous facts (M = |Θc|), let I =
[l1, h1]× . . .× [lM , hM ] be a |Θc|-dimensional, and let fi be the probability density
function attached to the continuous fact identified by xi. Then the probability of
the set of continuous subprograms with values in I is defined as

PT (X ∈ I) :=
h1∫
l1

· · ·
hM∫
lM

f(x1) · f(x2) · . . . · f(xM ) dx1 dx2 . . . dxM . (4.3)

Example 4.4 (Joint Density). In Example 4.3, the joint density function is
f(x) = f(x1,1, x2,1, x2,2) = ϕ1;2(x1,1) · ϕ4;3(x1,2) · ϕ4;3(x2,2) where ϕµ;σ is the
density of a Gaussian distribution (cf. Eq. 4.2).

It is worth mentioning that the multi-dimensional interval I in (4.3) may be open or
half-open in every dimension, that is, due to the integral the probability PT (X ∈ I)
is independent of the openness of the intervals. One can exploit this property to
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simplify the inference algorithm for computing the success probability, for instance,
by ignoring endpoints and always generate right-open intervals. However, if one
is not interested in the success probability of a query but in testing whether a
particular query succeeds in the program, one has to mind the interval endpoints
as the following program illustrates.

(X, gaussian(1, 2)) :: h(X).

a1 :− h(X), ininterval(X, 2, 3).

a2 :− h(X), above(X, 2), below(X, 3).

b1 :− h(X), ininterval(X, 2, 2).

b2 :− h(X), above(X, 2), below(X, 2).

The success probability of a1 is equal to the success probability of a2 because
PT (X ∈ [2, 3]) = PT (X ∈ (2, 3)) =

∫ 3
2 ϕ1;2(x) dx. Similarly, the success probability

of b1 is equal to the one of b2 because PT (X ∈ [2, 2]) = PT (X ∈ (2, 2)) = 0.
However, while the query b1 succeeds, there does not exist a proof for b2.

4.1.2 Success Probabilities of Queries

The success probability PTs (q) of a query q is the probability that q is provable
in L ∪ Lx ∪ BK, where L is distributed according to PT (L) (cf. (3.4)), and x
according to f(x) respectively. The key to computing success probabilities is the
consideration of admissible intervals, as introduced in the following definition.
Definition 4.1. An interval I ⊆ R|Θc| is called admissible for a query q and a
theory T = F ∪ F c ∪BK iff

∀x, y ∈ I, ∀L ⊆ LT :
(
L ∪ Lx ∪BK

)
|= q ⇔

(
L ∪ Ly ∪BK

)
|= q (4.4)

If (4.4) holds, we can also write L ∪ LI ∪BK |= q.

A partition A = I1, I2, . . . , Ik of R|Θc| is called admissible for a query q and a
theory T iff all Ii are admissible intervals for q and T .

In other words, an admissible interval I is “small enough” such that the values of
the numerical variables, as long as they are in I, do not influence the provability of
q. Within an admissible interval, the query either always fails or always succeeds
for any sampled subset L ⊆ LT of probabilistic facts.
Example 4.5 (Admissible Intervals). Consider the Hybrid ProbLog theory
consisting out of a single continuous fact:

(X, gaussian(1, 2)) :: h(X)
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For the query h(X), ininterval(X, 5, 10), the interval [0, 10] is not admissible in this
theory. The reason is that for x = 4 ∈ [0, 10] the query fails but for x = 6 ∈ [0, 10]
it succeeds. The intervals [6, 9), [5, 10], or (−∞, 5), for example, are all admissible.
Note, that the inference engine allows one to evaluate conjunctive queries and that
the predicate ininterval/3 is automatically added to the background knowledge.

We now introduce the discretized theory. Instead of evaluating the distributions
and instantiating the numerical variables with numbers, the discretized theory
unifies such variables with the atom defined in the continuous fact. Hence instead
of resulting in infinitely many proofs for each continuous fact, one for each possible
instantiation of the numerical variable, the discretized theory contains only one
proof. Please note that the discretized theory is constructed such that it simplifies
the subsequent correctness proofs and the algorithms for exact inference.

Definition 4.2 (Discretized Theory). Let T = F ∪ F c ∪BK be a Hybrid ProbLog
theory, then the discretized theory TD is defined as

F ∪ {f c{X ← f c} | (X,φ) :: f c ∈ F c}

∪BK

∪ {below(X, C), above(X, C), ininterval(X, C1, C2)}

where f c{X ← f c} is the atom resulting from substituting the variable X by the
term f c.

The substitutions simplify the inference process. Whenever a numerical variable is
used in a comparison predicate, the variable will be bound to the original continuous
fact. Therefore, one can use a standard proof algorithm without keeping track of
numerical variables. The discretized theory still contains probabilistic facts if F is
not empty, thus it is a ProbLog theory. Each continuous fact results in an infinite
number of proofs, one for each possible instantiation of the numerical variable. The
discretized theory allows one to merge all these proofs into a single proof. This
property is needed for computing admissible intervals efficiently and for defining
the success probability.

Example 4.6 (Proofs in the discretized theory). The discretized theory TD for
Example 4.2 is

0.8::rain. catchcold :− rain, temp(T), below(T, 5).

temp(temp(T)). catchcold :− temp(T), below(T, 0).

below(X, C). above(X, C). ininterval(X, C1, C2).

The discretized theory contains two proofs for the query catchcold. For each proof,
one can extract
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• fi the probabilistic facts used in the proof

• ci the continuous facts used in the proof

• di the comparison operators used in the proof

The proofs of catchcold can be characterized by:

f1 = {rain} c1 = {temp(temp(T))} d1 = {below(temp(T), 5)}

f2 = ∅ c2 = {temp(temp(T))} d2 = {below(temp(T), 0)}

It is possible, though not in Example 4.6, that the same continuous fact is used
by several comparison operators within one proof, i.e., fi = {below(f(X), 10),
above(f(X), 0)}. In such cases, one has to build the intersection of all intervals
to determine the interval, in which all comparison operators succeed, i.e., fi =
{ininterval(f(X), 0, 10)}. If that intersection is empty, the proof will fail in the
original non-discretized theory. Building the intersections can also be interleaved
with proving the goal.

The following theorem guarantees that an admissible partition exists for each query
that has finitely many proofs in the discretized theory.

Theorem 4.1. Let T be a Hybrid ProbLog theory; let q be a query in T that has
only finitely many proofs in TD and let Θ and Θc be finite sets of substitutions
for the probabilistic and continuous facts respectively. Then there exists a finite
partition of R|Θc|that is admissible for q in the theory obtained by grounding the
probabilistic facts and continuous facts using Θ and Θc respectively.

Proof. This follows from the fact that conditions defined by below/2, above/2, and
ininterval/3 are satisfied by intervals of sample values, and finite combinations
of such conditions, which may appear in a proof, still define intervals.

Algorithm 4 can be used to find admissible partitions. However, it has to be
modified as described in Section 4.2 to respect the points at the interval boundaries.
Given an admissible partition A one obtains the success probability of a query q
as follows

PTs,A(q) :=
∑
L⊆LT

∑
I∈A:

L∪LI∪BK|=q

PT (L) · PT (X ∈ I) . (4.5)

The following theorem shows that the values of PTs are independent of the partition
A and therefore we can write PTs (q) instead of PTs,A(q).
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Theorem 4.2. Let A and B be admissible partitions for the query q and the theory
T then PTs,A(q) = PTs,B(q).

Proof. Proven directly, by showing that for two admissible partitions one can
construct a third partition that returns the same success probability. Using the
definition for the success probability (4.5) we get:

PTs,A(q) :=
∑
L⊆LT

∑
I∈A:

L∪LI∪BK|=q

PT (L) · PT (X ∈ I) (4.6)

PTs,B(q) :=
∑
L⊆LT

∑
I∈B:

L∪LI∪BK|=q

PT (L) · PT (X ∈ I) (4.7)

Since A and B are both finite, one can construct a partition C such that it subsumes
both A and B, that is

∀I ∈ A : ∃I1, . . . , In ∈ C : I = I1 ∪ . . . ∪ In and

∀I ∈ B : ∃I ′1, . . . , I ′n′ ∈ C : I = I ′1 ∪ . . . ∪ I ′n′

Because A is admissible and by construction of C, we can represent any summand
in (4.6) as a sum over intervals in C. That is, for each L ⊆ LT and each I ∈ A
there exist I1, . . . , In ∈ C such that

PT (L) · PT (X ∈ I) =
n∑
i=1

PT (L) · PT (X ∈ Ii) . (4.8)

Because A is a partition and by construction of C, the intervals needed to cover
I ∈ A are disjoint from the intervals needed to cover I ′ ∈ A if I 6= I ′. Therefore∑

I∈A:
L∪LI∪BK|=q

PT (L) · PT (X ∈ I) =
∑
I∈C:

L∪LI∪BK|=q

PT (L) · PT (X ∈ I) (4.9)

for any subprogram L ⊆ LT . From (4.9) and the definition of the success
probability (4.5) follows

PTs,A(q) = PTs,C(q) .

Similarly, one can show that

PTs,B(q) = PTs,C(q) .
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Theorem 4.1 and 4.2 guarantee that the semantics of Hybrid ProbLog, i.e., the
fragment that restricts the usage of numerical variables, is well-defined. The
imposed restrictions provide a good balance between expressivity and tractability.
They allow one to discretize the space Rn of possible assignments to the continuous
facts in multidimensional intervals such that the actual values within one interval do
not matter. In turn, this makes efficient inference algorithms possible. Conversely,
comparing two numerical variables against each other couples them. This requires
a more complicated discretization of Rn in the form of polyhedra, which are harder
to represent and to integrate over. Finally, allowing arbitrary functions to be
applied on numerical variables eventually leads to a fragmentation of the space in
arbitrary sets. This makes exact inference virtually intractable.

4.2 Exact Inference

In this section we present an exact inference algorithm for Hybrid ProbLog. Our
approach generalizes De Raedt et al.’s BDD algorithm [De Raedt et al., 2007]
and generates a BDD [Bryant, 1986] that is evaluated by a slight modification
of the original algorithm. The pseudocode is shown in Algorithm 3, 4 and 5. In
the remainder of this section, we explain the inference steps on Example 4.2 and
calculate the success probability of the query catchcold using Algorithm 3.

1. All proofs for catchcold are collected by SLD resolution (Line 2 in
Algorithm 3).

f1 = {rain} c1 = {temp(T)} d1 = {T ∈ (−∞, 5)}

f2 = ∅ c2 = {temp(T)} d2 = {T ∈ (−∞, 0)}

Each proof is described by a set of probabilistic facts fi, a set of continuous
facts ci, and an interval for each numerical variable in ci. When a continuous
fact is used within a proof, it is added to ci and the corresponding variable
X is added to di with X ∈ (−∞,∞).
When later on above(X,c1) is used in the same proof, the interval I stored
in di is replaced by I ∩ (c1,∞), similarly for below(X,c2) it is replaced by
I ∩ (−∞, c2), and for ininterval(X, c1, c2) it is replaced by I ∩ [c1, c2],

2. The set of proofs we obtained uses one continuous fact (|Θc| = 1), hence
we partition R1. The loop in Line 3 of Algorithm 3 iterates over this set
of continuous facts (∪1≤i≤mci) = {temp(T)}. When calling the function
CreatePartition({d1, d2}) (cf. Algorithm 4) we obtain the admissible
partition {(−∞, 0), [0, 5), [5,∞)} that is used to disjoin the proofs with
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Algorithm 3 The inference algorithm collects all possible proofs and partitions
the Rn space according to the constraints imposed by each proof. The intermediate
variables f ′u and c′u are superfluous and have been added to simplify the explanations
in this section.
1: function SuccessProb(query q, theory T )
2: {(fi, ci, di)}1≤i≤m ← FindAllProofs(T, q) . SLD resolution
3: for cθ ∈ ∪1≤i≤mci do . Iterate over used ground continuous facts
4: let dcθ1 , . . . , dcθm be the intervals attached to cθ in each proof
5: Acθ ←CreatePartition({dcθ1 , . . . , dcθm})
6: {bcθ,I}I∈Acθ ←CreateAUXBodies(Acθ)
7: end for
8: u← 0 . # disjoint proofs
9: for i = 1, 2, . . . ,m do . Go over all proofs
10: let (ĉ1θ̂1, . . . , ĉtθ̂t) be the continuous facts ci used in proof i
11: let (d̂1, . . . , d̂t) be the domains di for all continuous facts used in proof i
12: for (I1, . . . , It) ∈ Aĉ1θ̂1

× · · · ×Aĉtθ̂t
do . Go over all possible intervals

13: if (d1 ∩ I1 6= ∅) ∧ . . . ∧ (dt ∩ It 6= ∅) then
14: u← u+ 1 . Increase counter for # disjoint proofs
15: f ′u ← fi . Probabilistic facts stay the same
16: c′u ← ci . Continuous facts stay the same
17: d′u ← {dom(ĉ1θ̂1) = I1, . . . ,dom(ĉtθ̂t) = It} . Adapt domains
18: f ′′u ← fi ∪ {bcθ,I |cθ ∈ c′u, I ∈ d′u} . Add aux. bodies to the facts
19: end if
20: end for
21: end for
22: BDD ←GenerateBDD(

∨
1≤i≤u

∧
f∈f ′′

i
f) . cf. [Kimmig et al., 2008]

23: return BDDProb(root(BDD)) . cf. [De Raedt et al., 2007]
24: end function

respect to the continuous facts (Line 9-21 in Algorithm 3):

f ′1 = {rain} c′1 = {temp(T)} d′1 = {T ∈ (−∞, 0)}

f ′2 = {rain} c′2 = {temp(T)} d′2 = {T ∈ [0, 5)}

f ′3 = ∅ c′3 = {temp(T)} d′3 = {T ∈ (−∞, 0)}

3. We create one auxiliary fact per continuous fact and interval. They are
dependent, i.e., temp(T)[−∞,0) and temp(T)[0,5) cannot be true at the same
time. We have to make the dependencies explicit. Conceptually, this
corresponds to adding an annotated disjunction to the program and replacing
calls to continuous facts and background predicates by calls to the atom that
corresponds to the interval defined by the background predicate. On our
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example, the compiled AD (cf. Section 3.3) contributes the following clauses
to BK:

call_temp(T)(−∞,0) :− temp(T)(−∞,0)

call_temp(T)[0,5) :− ¬temp(T)(−∞,0), temp(T)[0,5)

call_temp(T)[5,∞) :− ¬temp(T)(−∞,0), ¬temp(T)[0,5), temp(T)[5,∞)

The function CreateAUXBodies used in Line 6 of Algorithm 3 constructs
the body these auxiliary clauses. The output is identical to the translation
used for annotated disjunctions (cf. Section 3.3). Only one of the clauses
can be true at the same time. The bodies encode a linear chain of decisions.
The probability attached to an auxiliary fact temp(T)[l,h) is the conditional
probability that the sampled value of T is in the interval [l, h) given it is not
in (−∞, l)

P
(

temp(T)[l,h]

)
:=

 h∫
l

ϕ2;8(x) dx

 ·
1−

l∫
−∞

ϕ2;8(x) dx

−1

, (4.10)

where ϕ2;8(x) is the density function of the Gaussian attached to temp(T)
in the program. Akin to the encoding used for representing annotated
disjunctions in ProbLog (cf. Section 3.3), this encodes that only one of the
intervals can be true at a time and the success probability of call_temp(T)[l,h]

is exactly
∫ h
l
ϕ2;8(x) dx. To evaluate the cumulative density function, we

use the function Phi as described in [Marsaglia, 2004]. If we want to use
any other distribution, we have to only replace the evaluation function of
the density, as the rest of the algorithm does not depend on the particular
distribution. Adding the bodies of the auxiliary clauses to f ′i yields the final
set of proofs (Line 18 in Algorithm 3):

f ′′1 = {rain, temp(T)(−∞,0)}

f ′′2 = {rain,¬temp(T)(−∞,0), temp(T)[0,5)}

f ′′3 = {temp(T)(−∞,0)}

The proofs are now disjoint with respect to the continuous facts. That is,
either the intervals for numerical variables are disjoint or identical. With
respect to the probabilistic facts, they are not disjoint and summing up the
probabilities of all proofs would yield an incorrect result. One would count
the probability mass of the overlapping parts multiple times [De Raedt et al.,
2007].
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Algorithm 4 This function returns a partition of R by creating intervals touching
the given intervals. Partitions of Rn can be obtained by building the cartesian
product over the partitions for each dimension. This is feasible due to the restrictions
imposed in Section 4.1. The resulting partition is not necessarily admissible as
it ignores the interval endpoints, that is, intervals are right-open. However, for
computing the success probability this is irrelevant (cf. Section 4.1.1).
1: function CreatePartition(Set of intervals D = {d1, . . . dm})
2: C ←

⋃m
i=1{lowi, highi} . lowi and highi are interval endpoints of di

3: C ← C ∪ {−∞,∞} . add upper and lower limit of R
4: (c′1, . . . , c′k)←SortAndIgnoreDuplicates(C)
5: Result← { (−∞, c′2], (c′k−1,∞) } . c′1 = −∞ and c′k =∞
6: for i = 3, . . . , k − 1 do
7: Result← Result ∪ { [c′i−1, c

′
i) }

8: end for
9: return Result
10: end function

Algorithm 5 To evaluate the BDD we run a modified version of De Raedt et
al.’s algorithm that takes the conditional probabilities for each continuous node
into account. For Gaussian-distributed continuous facts we use the function
Phi [Marsaglia, 2004] to evaluate

∫ hn
ln

ϕµn;σn(x) dx which performs a Taylor
approximation of the cumulative density function (CDF). If the program requires
distributions other than Gaussians, the user has to provide the corresponding code
to compute the value the the CDF.
1: function BDDProb(node n)
2: if n is the 1-terminal then return 1
3: if n is the 0-terminal then return 0
4: let h and l be the high and low children of n
5: ph ← BDDProb(h)
6: pl ← BDDProb(l)
7: if n is a continuous node with interval [ln, hn] and density φn then
8: p←

[∫ hn
ln

φn(x) dx
]
·
[
1−

∫ ln
−∞ φn(x) dx

]−1

9: else
10: p← pn . the fact probability defined in the ProbLog program
11: end if
12: return p · ph + (1− p) · pl
13: end function
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temp(T)(−∞,0)

rain

temp(T)[0,5)

01

1 0

1 0

1 0

prob = 1 prob = 0

p =
( 5∫

0
ϕ2;8(x) dx

)
·(

1−
0∫
−∞

ϕ2;8(x) dx)
)−1

≈ 0.409

prob = 1 · 0.409 + 0 · (1− 0.409) ≈ 0.409

p = 0.8
prob = 0.409 · 0.8 + 0 · (1− 0.8) ≈ 0.327

p =
(

0∫
−∞

ϕ2;8(x) dx
)
·(

1−
−∞∫
−∞

ϕ2;8(x) dx)
)−1

≈ 0.401

prob = 1 · 0.401 + 0.327 · (1− 0.401) ≈ 0.597

Figure 4.2: This BDD encodes all proofs of catchcold in the theory from
Example 4.2. The dashed boxes show the intermediate results while traversing the
BDD with Algorithm 5. The probabilities p correspond to the fact probability and
are used to compute prob, the probability of the sub-BDD starting at the particular
node. The success probability of the query is returned at the root and is 0.597.

4. To account for that, we translate the proofs into a Boolean expression in
disjunctive normal form (cf. Line 22 in Algorithm 3) and represent it as BDD
(cf. Figure 4.2). This step is similar to ProbLog’s inference mechanism(

rain ∧ temp(T)(−∞,0)

)
∨
(

rain ∧ ¬temp(T)(−∞,0) ∧ temp(T)[0,5)

)
∨
(

temp(T)(−∞,0)

)
5. We evaluate the BDD with Algorithm 5 and get the success probability of

catchcold. This algorithm is a modification of that of De Raedt et al. [2007]
that takes into account the continuous nodes (cf. Alg. 2 in Section 3.2).
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The function CreatePartition (cf. Algorithm 4) does not necessarily return
an admissible partition as it ignores the interval endpoints by creating right-open
intervals. For example, if one obtains two proofs that restrict a numerical variable
to the interval [1, 2] and [2, 3) respectively, the minimal admissible partition is

{(−∞, 1), [1, 2), [2, 2], (2, 3), [3,∞)} .

The function CreatePartition, however, returns the inadmissible partition

{(−∞, 1), [1, 2), [2, 3), [3,∞)} .

With respect to the interval [2, 3), the first proof succeeds for x = 2 but fails for any
other value in [2, 3), which is not allowed for admissible intervals (cf. Definition 4.1).
When calculating the success probability, one can ignore the interval boundaries.
Since the calculation involves integrals of the form

∫ hi
li
φ(x) dx, it is irrelevant

whether intervals are open or closed (cf. Equation (4.10)). Also, an integral over a
single point interval has the value 0.

However, when one wants to know whether there is a proof with specific values for
some or all continuous facts, one has to be precise about the interval boundaries and
use a modified algorithm. Admissibility can be ensured, for instance, by creating
for each pair of constants the open interval (li, hi) and the single point interval
[li, hi]. For the former example this is

{(−∞, 1), [1, 1], (1, 2), [2, 2], (2, 3), [3, 3], (3,∞)} .

4.3 Experiments

We set up experiments to answer the following question:

How does the inference algorithm (cf. Algorithm 3) scale in the size of
the partitions and in the number of ground continuous facts?

In domains where exact inference is feasible, the number of continuous facts and
comparison operations is typically small compared to the rest of the theory. Our
algorithm is an intermediate step between SLD resolution and BDD generation.
Therefore, it is useful to know how much the disjoining operations cost compared
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Figure 4.3: The query s(5, 2) succeeds if both values f(Val1, 1) and f(Val2, 2)
lie in one of the intervals [0, 1

1 ], [0, 1
2 ], . . ., [0, 1

5 ]. These areas correspond to the
thick-lined squares starting at (0, 0). Since they overlap one has to partition the
space R2 in order to disjoin the proofs. Due to the restrictions of Hybrid ProbLog
program, i.e., numerical variables cannot be compared against each other, one
can obtain an admissible partition for each dimension independently. Algorithm 4
returns the partitions shown by the dotted lines. The horizontal lines partition the
space of f(Val2, 2) and the vertical the space of f(Val1, 1).

to the other inference steps. We tested our algorithm on the following theory:

(Val, gaussian(0, 1)) :: f(Val, ID).

s(Consts, Facts) :− between(1, Facts, ID), between(1, Consts, Top),

High is Top/Consts,

f(Val, ID),

ininterval(Val, 0, High).

The query s(Consts, Facts) has Consts×Facts many proofs where both arguments
have to be positive integers. The first argument determines the number of partitions
needed to disjoin the proofs with respect to the continuous facts and the second
argument determines how many continuous facts are used. The query s(5, 2), for
instance, uses two continuous facts, f(Val1, 1) and f(Val2, 1), and compares them
to the intervals [0, 1], [0, 1

2 ], · · · [0, 1
5 ]. Figure 4.3 shows the resulting partitioning

when proving the query s(5, 2). In general, one obtains (Consts + 1)Facts many
partitions of the space RFacts.
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Figure 4.4: Runtimes for calculating the success probability of s(Consts, Facts)
for varying the number of constants s(1, 1), · · · s(100, 1). As the graphs show, most
of the time is spent on disjoining the proofs, that is partitioning the domains. The
time spent on building an traversing the BDD stays more or less constant. This is
due to the simplicity of the resulting Boolean expression, i.e., ¬s(Val, 1)(−∞,0) ∧(

s(Val, 1)[0, 1
n ) ∨ s(Val, 1)[ 1

n ,
1

n−1 ) ∨ . . . ∨ s(Val, 1)[ 1
2 ,1)

)
, which can be detected and

exploited by the BDD package.

The success probability of s(Consts, Facts) is independent of Consts. That is, for
fixed Facts and any c1, c2 ∈ N

PTs (s(c1, Facts)) = PTs (s(c2, Facts))

We ran two series of queries1. In the first run we used one continuous fact and
varied the number of constants from 1 to 100. As the graph in Figure 4.4 shows,
the disjoin operation – which is finding all partitions, generating the auxiliary
bodies and rewriting the proofs – runs in O(Consts2) when everything else stays
constant. In this case, due to compression and pruning operations during the
BDD script generation [Kimmig et al., 2008] (the input for the BDD package),

1The experiments were performed on an Intel Core 2 Quad machine with 2.83GHz and 8GB
of memory. We used the CUDD package for BDD operations and set the reordering heuristics to
CUDD_REORDER_GROUP_SIFT. Each query has been evaluated 20 times and the runtimes
have been averaged.
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Figure 4.5: Runtimes for calculating the success probability of s(Consts, Facts)
for varying the number of dimensions s(5, 1), . . . , s(5, 100). In this setting, most
of the time is spent on BDD operations, that is, building the BDD based on the
script and traversing it. The runtime for our disjoin operation grows only linearly.
This is due to the fact that the partitions of Rn can be factorized into independent
partitions for each dimension since comparison of two numerical variables is not
allowed.

building and evaluating the BDD runs in linear time. In the second run we varied
the number of continuous facts by evaluating the queries s(5, 1), · · · , s(5, 100). As
Figure 4.5 shows, our algorithm (depicted by the Disjoin graph) runs in linear time.
The runtime for the BDD operations grows exponentially due to the reordering
heuristics used by the BDD package.

4.4 Conclusions And Future Work

We extended ProbLog with continuous distributions and introduced an exact
inference algorithm. The resulting Hybrid ProbLog language imposes several
restrictions that preclude some use cases and complicate the modeling process.
The by far most severe restriction is the inability of comparing two random values
against one another. In order to allow such comparisons, the disjoining algorithm
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has to be extended towards n-dimensional polytopes as the resulting areas are not
intervals but sets bounded by arbitrary planes. In turn, the computation of the
cumulative density function will require some modification. Namely, it has to be
extended towards computing the n-dimensional volume integral. Introducing linear
constraints in the clauses, that is, expressions of the form

c1 · x1 + . . .+ cn · xn > c ,

increases the expressivity even further. Another useful extension are bivariate or
multivariate distributions. Already now, the syntax allows for the representation
of a bivariate Gaussian as

((X1, X2), gaussian([m1, m2], [[c1, c2], [c3, c4]]) :: someatom(X1, X2)

based on the mean vector and the covariance matrix of the distribution. Multivariate
distributions will require a joint treatment of all related variables. Allowing arbitrary
functions to be applied on numerical variables is rather involved. The resulting
areas of interest (akin to admissible intervals, cf. Definition 4.1) are not plain
geometric objects, they can be arbitrary sets in Rn. Consequently handling such
sets and computing the volume integral, will, most likely, require sampling and
other approximation techniques, which diverges from the original idea of using
exact inference.



Chapter 5

An Approximate Inference
Approach to Continuous
Distributions∗

Sampling-based inference approaches that can handle evidence have received little
attention in logic programming based systems such as ProbLog and PRISM [Sato,
1995]. In this chapter, we investigate the integration of such approaches into
probabilistic logic programming frameworks to broaden their applicability to real-
world models. Particularly relevant in this regard are the ability of Church and
BLOG to sample from continuous distributions and to answer conditional queries
of the form p(q|e), where e is the evidence. To accommodate (continuous and
discrete) distributions, we introduce distributional clauses, which define random
variables together with their associated distributions, conditional upon logical
predicates. Random variables can be passed around in the logic program and the
outcome of a random variable can be compared with other values by means of
special built-ins. To formally establish the semantics of this new construct, we
show that these random variables define a basic distribution over facts (using the
comparison built-ins) as required in Sato’s distribution semantics [Sato, 1995],
and thus induces a distribution over least Herbrand models of the program. This
contrasts with previous instances of the distribution semantics in that we no longer
enumerate the probabilities of alternatives. Instead, we use arbitrary densities and
distributions.

From a logic programming perspective, BLOG [Milch et al., 2005b] and related
∗This chapter presents joint work with Ingo Thon, Angelika Kimmig, Maurice Bruynooghe,

and Luc De Raedt previously published in [Gutmann et al., 2011b].
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languages based on a functional paradigm perform forward reasoning. Hence the
samples needed for probability estimation are generated starting from known facts
and deriving additional facts, thus generating a possible world. PRISM and related
languages follow the opposite approach of backward reasoning, where inference
starts from a query and follows a chain of rules backwards to the basic facts, thus
generating proofs. This difference is one of the reasons for using sampling in the first
approach – exact forward inference would require all possible worlds to be generated,
which is infeasible in most cases. Based on this observation, we contribute a new
inference method for probabilistic logic programming that combines sampling-
based inference techniques with forward reasoning. On the probabilistic side,
the approach uses rejection sampling [Koller and Friedman, 2009], a well-known
sampling technique that rejects samples that are inconsistent with the evidence.
On the logic programming side, we adapt the magic set technique [Bancilhon et al.,
1986] towards the probabilistic setting, thereby combining the advantages of both
forward and backward reasoning. Furthermore, the inference algorithm is improved
along the lines of the SampleSearch algorithm [Gogate and Dechter, 2011], which
avoids choices leading to a sample that cannot be used in the probability estimation
due to inconsistency with the evidence. We realize this by using a heuristic based on
backward reasoning with limited proof length. This approach to inference creates
a number of new possibilities for applications of probabilistic logic programming
systems, including continuous distributions and Bayesian inference, which are
essential in typical robotics tasks such as localization and people tracking [De Laet,
2010].

This chapter has three core contributions: (1) a probabilistic language that allows
for finite, discrete and continuous distributions and that is expressive enough
for real-world problems, (2) a formal study of its semantics, and (3) an efficient
inference algorithm based on rejection sampling enhanced by a lookahead step.

The remainder of this chapter is organized as follows. Section 5.1 introduces the
new language and its semantics, Section 5.2 presents a novel forward sampling
algorithm for probabilistic logic programs. Before discussing the related work, we
evaluate our approach in Section 5.3.

5.1 Distributional Programs

Sato’s [1995] distribution semantics provides the basis for most probabilistic logic
programming languages including PRISM [Sato and Kameya, 2001], ICL [Poole,
2008], CP-logic [Vennekens et al., 2009] and ProbLog [De Raedt et al., 2007]. The
precise way of defining the basic distribution PF differs among languages, though
the theoretical foundations are essentially the same. The most basic instance
of the distribution semantics, employed by ProbLog, uses so-called probabilistic
facts. Each ground instance of a probabilistic fact directly corresponds to an
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independent random variable, which takes the value of either “true” or “false”.
These probabilistic facts can also be seen as binary switches, cf. [Sato, 1995], which
again can be extended to multi-ary switches or choices as used by PRISM and ICL.
For switches, at most one of the probabilistic facts belonging to the switch is “true”
according to the specified distribution. Finally, in CP-logic, such choices are used
in the head of rules leading to the so-called annotated disjunction (cf. Section 3.3).

In Chapter 4 we introduced Hybrid ProbLog that also extends the distribution
semantics with continuous distributions. To allow for exact inference, we had to
impose severe restrictions on the distributions and their further use in the program.
Two sampled values, for instance, cannot be compared against each other. Only
comparisons that involve one sampled value and one number constant are allowed.
Moreover, using sampled values in arithmetic expressions or as parameters for
other distributions is not supported. Hence Hybrid ProbLog cannot be applied on
typical robotics tasks such as localization and tracking, where Bayesian inference is
essential [De Laet, 2010]. It is also not possible to reason over an unknown number
of objects as BLOG [Milch et al., 2005a] does, though this is the case mainly for
algorithmic reasons.

Here, we alleviate these restrictions by defining the basic distribution PF over
probabilistic facts based on both discrete and continuous random variables. We
use a three-step approach to define this distribution. First, we introduce explicit
random variables and corresponding distributions over their domains, both denoted
by terms. Second, we use a mapping from these terms to the terms denoting
(sampled) outcomes, which are then used to define the basic distribution PF on
the level of probabilistic facts. For instance, assume that an urn contains an
unknown number of balls, where the number is drawn from a Poisson distribution
and we say that this urn contains many balls if it contains at least 10 balls. We
introduce a random variable number and define many :− dist_gt('(number), 9).
Here, '(number) is the Herbrand term denoting the sampled value of number, and
dist_gt('(number), 9) is a probabilistic fact whose probability of being true is
the expectation that this value is actually greater than 9. This probability then
carries over to the derived atom many as well. We will elaborate on the details in
the following.

5.1.1 Syntax

In a logic program, following Sato, we distinguish between probabilistic facts that
are used to define the basic distribution and rules that are used to derive additional
atoms.1 Probabilistic facts are not allowed to unify with any rule head. The
distribution over facts is based on random variables whose distributions we define
through so-called distributional clauses.

1A rule can have an empty body, in that case it represents a deterministic fact.
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Definition 5.1 (Distributional clause). A distributional clause is a definite clause
with an atom h ∼ D in the head, where ∼ is a binary predicate used in infix
notation.

For each ground instance (h ∼ D :− b1, . . . , bn)θ, with θ being a substitution over
the Herbrand universe of the logic program, the distributional clause defines a
random variable hθ and an associated distribution Dθ. In fact, the distribution
is only defined when (b1, . . . , bn)θ is true in the semantics of the logic program.
These random variables are terms of the Herbrand universe and can be used as
any other term in the logic program. Furthermore, a term ' (d) constructed
from the reserved functor '/1 represents the outcome of the random variable
d. These functors can be used inside calls to special predicates in dist_rel =
{dist_eq/2, dist_lt/2, dist_leq/2, dist_gt/2, dist_geq/2}. We assume that there
is a fact for each of the ground instances of these predicate calls. These facts
are the probabilistic facts of Sato’s distribution semantics. Note that the set of
probabilistic facts is enumerable since the Herbrand universe of the program is
enumerable. A term '(d) links the random variable d with its outcome. The
probabilistic facts compare the outcome of a random variable with a constant
or the outcome of another random variable and succeed or fail according to the
probability distribution(s) of the random variable(s).

Example 5.1 (Distributional clauses).

nballs ∼ poisson(6). (5.1)

color(B) ∼ [0.7 : b, 0.3 : g] :− between(1,'(nballs), B). (5.2)

diameter(B, MD) ∼ gamma(MD/20, 20):− between(1,'(nballs), B),

mean_diameter('(color(B)), MD).
(5.3)

The defined distributions depend on the following logical clauses:

mean_diameter(C, 5):− dist_eq(C, b).

mean_diameter(C, 10):− dist_eq(C, g).

between(I, J, I):− dist_leq(I, J).

between(I, J, K):− dist_lt(I, J), I1 is I + 1, between(I1, J, K).

The distributional clause (5.1) models the number of balls as a Poisson distribution
with mean 6. The distributional clause (5.2) models a discrete distribution for
the random variable color(B). With probability 0.7 the ball is blue and green
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otherwise. Note that the distribution is defined only for the values B for which
between(1,'(nballs), B) succeeds. Execution of calls to the latter one gives rise
to calls to probabilistic facts that are instances of dist_leq(I,' (nballs)) and
dist_lt(I,'(nballs)). Similarly, the distributional clause (5.3) defines a gamma
distribution that is also conditionally defined. Note that the conditions in the
distribution depend on calls of the form mean_diameter('(color(n)),MD) with
n a value returned by between/3. Execution of this call finally leads to calls
dist_eq('(color(n)), b) and dist_eq('(color(n)), g).

The syntax of distributional programs as introduced above is constructed to
simplify the theoretical considerations and algorithms in this chapter. For an
implementation of this language, particularly for convenience, it will be necessary
to allow ' (d) terms everywhere and having a simple program analysis insert
the special predicates in the appropriate places by replacing < /2, > /2, ≤ /2,
≥ /2 predicates by dist_rel/2 facts. Though extending unification is a bit more
complex: as long as a '(h) term is unified with a free variable, standard unification
can be performed; only when the other term is bound an extension is required.
In this chapter, we assume that the special predicates dist_eq/2, dist_lt/2,
dist_leq/2, dist_gt/2, and dist_geq/2 are used whenever the outcome of a
random variable needs to be compared with another value and that it is safe to
use standard unification whenever a '(h) term is used in another predicate.

For the basic distribution on facts to be well-defined, a program has to fulfill a set
of validity criteria that have to be enforced by the programmer.

Definition 5.2 (Valid program). A program P is called valid if:

(V1) In the relation h ∼ D that holds in the least fixpoint (w.r.t. the STP (S)
operator, cf. Def. 5.3) of a program, there is a functional dependency from h
to D, such that there exists a unique ground distribution D for each ground
random variable h.

(V2) The program is distribution-stratified, that is, there exists a function rank(·)
that maps ground atoms to N and that satisfies the following properties: (1)
for each ground instance of a distribution clause h ∼ D :− b1, . . . bn holds
rank(h ∼ D) > rank(bi) (for all i); (2) for each ground instance of another
program clause: h :− b1, . . . bn holds rank(h) ≥ rank(bi) (for all i); (3)
for each ground atom b that contains (the name of) a random variable h,
rank(b) ≥ rank(h ∼ D) (with h ∼ D the head of the distribution clause
defining h).

(V3) All ground probabilistic facts or, to be more precise, the corresponding
indicator functions (cf. (5.4)) are Lebesgue-measurable.

(V4) Each atom in the least fixpoint can be derived from a finite number of
probabilistic facts (finite support condition [Sato, 1995]).
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Together, (V1) and (V2) ensure that a single basic distribution PF over the
probabilistic facts can be obtained from the distributions of individual random
variables defined in P . The third requirement (V3) is crucial. It ensures that
the series of distributions P (n)

F needed to construct this basic distribution is well-
defined. Particularly, it ensures that the probability of the indicator functions can
be computed using the Lebesgue integral (cf, [Bartle, 1995]). Finally, the number
of facts, over which the basic distribution is defined, needs to be countable. This is
true, as we have a finite number of constants and functors: those appearing in the
program.

The syntax of distributional programs deviates from that of Hybrid ProbLog
introduced in Chapter 4. It is possible to translate a Hybrid ProbLog
program into an equivalent distributional program. The continuous fact
(X, gaussian(2, 8)) :: temp(X), for instance, can be represented as the distributional
fact temp ∼ gaussian(2, 8). In turn, each appearance temp(X) and the subsequent
places, where the variable X is used, have to be replaced by ' temp and calls to
dist_rel/2 respectively. While it is possible to translate distributional clauses
into continuous facts and annotated disjunctions, it is impossible to translate the
comparison operators dist_rel/2 in Hybrid ProbLog, as we excluded them to
allow for exact inference.

5.1.2 Distribution Semantics

We now define the series of distributions P (n)
F where we fix an enumeration f1, f2, . . .

of probabilistic facts such that i < j =⇒ rank(fi) ≤ rank(fj) where rank(·) is
a ranking function showing that the program is distribution-stratified. For each
predicate rel/2 ∈ dist_rel, we define an indicator function as follows:

I1
rel(X1, X2) :=

{
1 if rel(X1, X2) is true
0 if rel(X1, X2) is false

. (5.4)

Furthermore, we define I0
rel(X1, X2) := 1.0 − I1

rel(X1, X2) such that negation of
comparison operators, i.e., not(dist_rel(X1, X2)), can be mapped on it. We then
use the expected value of the indicator function to define probability distributions
P

(n)
F over finite sets of ground facts f1, . . . , fn. If {rv1, . . . rvm} is the set of random

variables these n facts depend on, ordered such that if rank(rvi) < rank(rvj), then
i < j (cf. (V2) in Definition 5.2). Furthermore, let fi = reli(ti1, ti2), xj ∈ {1, 0},
and θ−1 = {'(rv1)/V1, . . . ,'(rvm)/Vm}. The latter one replaces all evaluations of
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random variables, on which the fi depend, by variables for integration.

P
(n)
F (f1 = x1, . . . , fn = xn)

:= E[Ix1
rel1

(t11, t12)× . . .× Ixnreln(tn1, tn2)]

=
∫
· · ·
∫ (

Ix1
rel1

(t11θ
−1, t12θ

−1)× . . .× Ixnreln(tn1θ
−1, tn2)θ−1

)
× dDrv1(V1) · · · dDrvm(Vm) (5.5)

Example 5.2 (Basic Distribution). Let f1, f2, . . . = dist_lt('(b1), 3), dist_lt('
(b2),'(b1)), · · · . Then the second distribution in the series is

P
(2)
F (dist_lt('(b1), 3) = x1, dist_lt('(b2),'(b1)) = x2)

= E[Ix1
dist_lt('(b1), 3), Ix2

dist_lt('(b2),'(b1))]

=
∫∫ (

Ix1
dist_lt(V 1, 3)× Ix2

dist_lt(V 2, V 1)
)
dDb1(V 1) dDb2(V 2)

Proposition 5.1. Let P be a valid program. P defines a probability measure PP
over the set of fixpoints of the TP operator. Hence P also defines for an arbitrary
formula q over atoms in its Herbrand base the probability that q is true.

Proof sketch. It suffices to show that the series of distributions P (n)
F over facts

(cf. (5.5)) is of the form that is required in the distribution semantics, that is, these
are well-defined probability distributions that satisfy the compatibility condition
(cf. (2.2)). This is a direct consequence of the definition in terms of indicator
functions and the measurability of the underlying facts required for valid programs.

5.1.3 TP Semantics

In the following, we give a procedural view onto the semantics by extending the
TP operator (cf. Definition 2.3) to handle probabilistic facts dist_rel(t1, t2). To
do so, we introduce a function ReadTable(·) that keeps track of the sampled
values of random variables to evaluate probabilistic facts. This is required because
interpretations of a program only contain probabilistic facts, but not the values
of the associated random variables. Given a probabilistic fact dist_rel(t1, t2),
ReadTable returns the truth value of the fact based on the values of the random
variables h in the arguments, which are either retrieved from the table or sampled
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according to their definition h ∼ D, as included in the interpretation and stored in
case they are not available yet.

Definition 5.3 (Stochastic TP operator). Let P be a distribution-stratified program
and ground(P ) the set of all ground instances of clauses in P . Starting from a set
of ground facts S the STP operator returns

:=
{

h
∣∣∣ h :− b1, . . . , bn ∈ ground(P ) and ∀ bi : either bi ∈ S or(

bi = dist_rel(t1, t2) ∧ (tj ='(h)→ (h ∼ D) ∈ S)∧

ReadTable(bi) = true
)}

ReadTable ensures that the basic facts are sampled from their joint distribution
as defined in Sec. 5.1.2 during the construction of the standard fixpoint of the logic
program. Thus, each fixpoint of the STP operator corresponds to a possible world
whose probability is given by the distribution semantics.

5.2 Forward Sampling Using Magic Sets And Back-
ward Reasoning

In this section we introduce our new method for probabilistic forward inference.
Towards this aim, we first extend the magic set transformation to distributional
clauses. We then develop a rejection sampling scheme using this transformation.
This scheme also incorporates backward reasoning to check for consistency with
the evidence during sampling and thus reduces the rejection rate.

5.2.1 Probabilistic Magic Set Transformation

The disadvantage of forward reasoning in logic programming is that the search
is not goal-driven, which might generate irrelevant atoms. The magic set
transformation [Bancilhon et al., 1986; Nilsson and Małuszyński, 1995] focuses
forward reasoning in logic programs towards a goal, to avoid the generation of
uninteresting facts. It thus combines the advantages of both reasoning directions.

Definition 5.4 (Magic Set Transformation). If P is a logic program, then we use
Magic(P ) to denote the smallest program such that if A0 :− A1, . . . , An ∈ P then

• A0 :− c(A0), A1, . . . , An ∈Magic(P ) and

• for each 1 ≤ i ≤ n: c(Ai) :− c(A0), A1, . . . , Ai−1 ∈Magic(P )
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The meaning of the additional c/1 atoms (c=call) is that they “switch on” clauses
when they are needed to prove a particular goal. If the corresponding switch for
the head atom is not true, the body is not true and thus cannot be proven. The
magic transformation is both sound and complete [Kemp et al., 1995] for stratified
programs. Furthermore, if the SLD tree of a goal is finite, forward reasoning in
the transformed program terminates. The same holds if forward reasoning on the
original program terminates.

We now extend this transformation to distributional clauses. The idea is that the
distributional clause for a random variable h is activated when there is a call to a
probabilistic fact dist_rel(t1, t2) depending on h.

Definition 5.5 (Probabilistic Magic Set Transformation). For program P , let PL be
P without distributional clauses. M(P ) is the smallest program s.t. Magic(PL) ⊆
M(P ) and for each h ∼ D:− b1, . . . , bn ∈ P and rel ∈ {eq, lt, leq, gt, geq}:

• h ∼ D :− (c(dist_rel('(h), X)); c(dist_rel(X,'(h))), b1, . . . , bn ∈M(P )

• c(bi) :− (c(dist_rel('(h), X)); c(dist_rel(X,'(h))), b1, . . . , bi−1 ∈M(P ).

Then PMagic(P ) consists of:

• a clause a_p(t1, . . . , tn) :− c(p(t1, . . . , tn)), p(t1, . . . , tn) for each built-in
predicate (including dist_rel/2 for rel ∈ {eq, lt, leq, gt, geq}) used in
M(P ).

• a clause h :− b′1, . . . , b
′
n for each clause h :− b1, . . . , bn ∈ M(P ) where

b′i = a_bi if bi uses a built-in predicate and else b′i = bi.

Note that every call to a built-in b is replaced by a call to a_b; the latter predicate is
defined by a clause that is activated when there is a call to the built-in (c(b)), which
effectively calls the built-in. The transformed program computes the distributions
only for random variables whose value is relevant to the query. These distributions
are the same as those obtained in a forward computation of the original program.
Hence we can show:

Lemma 5.1. Let P be a program and PMagic(P ) its probabilistic magic set
transformation extended with a seed c(q). The distribution over q defined by P and
by PMagic(P ) is the same.

Proof sketch. In both programs, the distribution over the query q is determined
by the distributions of the atoms dist_eq(t1, t2), dist_leq(t1, t2), dist_lt(t1, t2),
dist_geq(t1, t2) and dist_gt(t1, t2), on which q depends in a forward computation
of the program P . The magic set transformation ensures that these atoms are
called in the forward execution of PMagic(P ). In PMagic(P ), a call to such an
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Algorithm 6 Main loop for sampling-based inference to calculate the conditional
probability p(q|e) for query q, evidence e and program L.
1: function Evaluate(L, q, e, Depth)
2: L∗ ←PMagic(L)∪{c(a)|a ∈ e ∪ q}
3: n+ ← 0
4: n− ← 0
5: while Not converged do
6: (I, w)←STPMagic(L∗, L, e,Depth)
7: if q ∈ I then . Query q is true in sample I
8: n+ ← n+ + w . Add sample weight to positive count
9: else
10: n− ← n− + w . Add sample weight to negative count
11: end if
12: end while
13: return n+/(n+ + n−)
14: end function

atom activates the distributional clause for the involved random variable. As this
distributional clause is a logic program clause, soundness and completeness of the
magic set transformation ensures that the distribution obtained for that random
variable is the same as in P . Hence also the distribution over q is the same for
both programs.

5.2.2 Rejection Sampling With Heuristic Lookahead

As discussed in Section 2.3, sampling-based approaches to probabilistic inference
estimate the conditional probability p(q|e) of a query q given evidence e by
randomly generating a large number of samples or possible worlds (cf. Algorithm 6).
The algorithm starts by preparing the program L for sampling by applying the
PMagic transformation. In the following, we discuss our choice of subroutine
STPMagic (cf. Algorithm 7) that realizes likelihood weighted sampling. It is used
in Algorithm 6, line 6 to generate individual samples. It iterates the stochastic
consequence operator of Definition 5.3 until either a fixpoint is reached or the current
sample is inconsistent with the evidence. Finally, if the sample is inconsistent with
the evidence, it receives weight 0.

Algorithm 8 details the procedure used in line 12 of Algorithm 7 to sample from a
given distributional clause. The function ReadTable returns the truth value of
the probabilistic fact together with its weight. If the this truth value has not been
tabled yet, it is computed and stored in the table. Note that false is returned
when the outcome is not consistent with the evidence. Involved distributions,
if not yet tabled, are sampled in line 5. If the distribution is infinite, Sample
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Algorithm 7 Sampling one interpretation together with an associated sample
weight from the program L∗ (used in Algorithm 6); the original program L is
subsequently used by the functions MaybeProof and MaybeFail to ensure that
the evidence e is consistent with the sample
1: function STPMagic(L∗, L, e,Depth)
2: Tpf ← ∅, Tdis ← ∅, w ← 1, Iold ← ∅, Inew ← ∅
3: repeat
4: Iold ← Inew
5: for all (h :− body) ∈ L∗ do
6: split body in BPF (prob. facts) and BL (the rest)
7: for all grounding substitution θ such that BLθ ⊆ Iold do
8: s← true
9: wd ← 1
10: while s ∧ (BPF 6= ∅) do
11: select and remove pf from BPF
12: (bpf , wpf )←ReadTable(pfθ, Iold, Tpf , Tdis, L, e,Depth)
13: s← s ∧ bpf
14: wd ← wd · wpf
15: end while
16: if s then
17: if hθ ∈ e− then return (Inew, 0) . check negative evidence
18: Inew ← Inew ∪ {hθ}
19: w ← w · wd
20: end if
21: end for
22: end for
23: until Inew = Iold ∨ w = 0 . Fixpoint or impossible evidence
24: if e+ ⊆ Inew then return (Inew, w) . check positive evidence
25: else return (Inew, 0)
26: end if
27: end function

simply returns the sampled value. This case covers both continuous distributions,
i.e., Gaussians, and infinite discrete distributions such as the Poisson. In the
finite case, the algorithm aims at generating samples that are consistent with
the evidence. Firstly, all possible choices that are inconsistent with the negative
evidence are removed. Secondly, when there is positive evidence for a particular
value, only that value is left in the distribution. Thirdly, it is checked whether
each left value is consistent with the rest of the evidence. This consistency check is
performed by a simple depth-bounded meta-interpreter. For positive evidence, it
attempts a top-down proof of the evidence atom in the original program using the
function MaybeProof. Subgoals for which the depth bound is reached, as well as
probabilistic facts that are not yet tabled, are assumed to succeed. If this results
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Algorithm 8 Evaluating a probabilistic fact pf and storing the sampled value for
subsequent calls. The function ComputePF(pf, Tdis) returns the truth value and
the probability of pf according to the information in Tdis.
1: function ReadTable(pf, I, Tpf , Tdis, L, e,Depth)
2: if pf /∈ Tpf then
3: for all random variable h occurring in pf where h /∈ Tdis do
4: if h ∼ D /∈ I then return (false, 0)
5: if not Sample(h,D, Tdis, I, L, e,Depth) then return (false, 0)
6: (b, w)← ComputePF(pf ,Tdis)
7: end for
8: if (b ∧ (pf ∈ e−)) ∨ (¬b ∧ (pf ∈ e+)) then
9: return (false, 0) . inconsistent with evidence
10: end if
11: extend Tpf with (pf, b, w)
12: end if
13: return (b, w) as stored in Tpf for pf
14: end function

in a proof, the value is consistent, otherwise it is removed. Similarly for negative
evidence: in MaybeFail, subgoals for which the depth bound is reached, as well
as probabilistic facts that are not yet tabled, are assumed to fail. If this results
in failure, the value is consistent, otherwise it is removed. The Depth parameter
allows one to trade the computational cost, associated with this consistency check,
for a reduced rejection rate. Note that the modified distribution is normalized and
the weight is adjusted in each of these three cases. The weight adjustment takes
into account that the removed elements cannot be sampled. The adjustment is
required as it can depend on the distributions sampled so far what elements are
to be removed from the distribution sampled in Sample (the clause bodies of the
distribution clause are instantiating the distribution).

5.3 Experiments

We set up experiments to answer the following questions:

Q1 Does the lookahead-based sampling improve the performance?

Q2 How do rejection sampling and likelihood weighting compare?

To answer the first question, we used a program that models an urn containing a
random number of balls. The number of balls is uniformly distributed between 1
and 10 and each ball is either red or green with equal probability.
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Algorithm 9 Sampling the value of h from the distribution D. The function runs
a meta interpreter in the program L to identify values that are inconsistent with
the evidence e and the part of the interpretation that has been sampled so far.
1: procedure Sample(h,D, Tdis, I, L, e, Depth)
2: wh ← 1, D′ ← D . Initial weight, temp. distribution
3: if D′ = [p1 : a1, . . . , pn : an] then . finite distribution
4: for pj : aj ∈ D′ where dist_eq(h, aj) ∈ e− do . remove neg. evidence
5: D′ ← Norm(D′ \ {pj : aj})
6: wh ← wh × (1− pj)
7: end for
8: if ∃v : dist_eq('(h), v) ∈ e+ and pj : aj ∈ D′ then . pos. evidence
9: D′ ← [1 : aj]
10: wh ← wh × pj
11: end if
12: for pj : aj ∈ D′ do . remove choices that make e+ impossible
13: if ∃b ∈ e+: not MaybeProof(b,Depth, I ∪{dist_eq(h, aj)}, L) or
14: ∃b ∈ e−: not MaybeFail(b,Depth, I∪{dist_eq(h, aj)}, L) then
15: D′ ← Norm(D′ \ {pj : aj})
16: wh ← wh × (1− pj)
17: end if
18: end for
19: end if
20: if D′ = ∅ then return false . no element in D is consistent with evidence
21: sample x according to D′ and extend Tdis with (h, x)
22: return true
23: end procedure

numballs∼ uniform([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).

ball(M):− between(1, numballs, M).

color(B)∼ uniform([red, green]) :− ball(B).

drawnball(D)∼ uniform(L) :− draw(D), findall(B, ball(B), L).

draw(N):− between(1, 8, N).

nogreen(0).

nogreen(D):− dist_eq(' (color(' (drawnball(D)))), red),

D2 is D− 1, nogreen(D2).
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Figure 5.1: Sample acceptance rate when estimating the conditional probability
P (dist_eq(' (color(' (drawnball(1)))), red) | nogreen(D)) for D = 1, 2, . . . , 8
and for Depth = 1, 2, . . . , 10 using Algorithm 6. The acceptance rate is calculated
by generating 200 samples and counting the number of samples that have non-zero
weight (Q1).

We draw a ball eight times with replacement from the urn and observe
its color. We also define the atom nogreen(D) to be true if and only if
we did not draw a green ball in draw 1 to D. We evaluated the query
P (dist_eq(' (color(' (drawnball(1)))), red) |nogreen(D)) for D = 1, 2, . . . , 8.
Note that the evidence implies that the first ball drawn is red, hence the probability
of the query is 1. However, the number of steps required to prove that the evidence
is inconsistent with drawing a green ball first increases with D. The larger the
value of D is, the larger Depth is required to reach a 100% acceptance rate for the
sample as illustrated in Figure 5.1. It is clear that by increasing the depth limit,
each sample will take longer to be generated. The Depth parameter allows one to
trade off convergence speed of the sampling and the time each sample needs to be
generated. Depending on the program, the query, and the evidence there is an
optimal depth for the lookahead.

To answer the second question, we used the standard example for BLOG [Milch
et al., 2005a]. An urn contains an unknown number of balls, where every ball
can be either green or blue with p = 0.5. When drawing a ball from the urn, we
observe its color but do not know what ball it is. When we observe the color of a
particular ball, there is a 20% chance to observe the wrong one, e.g. green instead
of blue. We have some prior belief over the number of balls in the urn. If ten balls
are drawn with replacement from the urn and we saw the color green ten times,
what is the probability that there are n balls in the urn? We consider two different
prior distributions: in the first case, the number of balls is uniformly distributed
between 1 and 8, in the second case, it is Poisson-distributed with mean λ = 6.
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Figure 5.2: Results of the urn experiment with forward reasoning when using
different priors over the number of balls in the urn. In each experiment ten balls
with replacement were drawn and each time color green was observed. The graphs
show the estimated posterior distribution over the number of balls in the urn
together with true posterior and the prior distribution (Q2).
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One run of the experiment corresponds to sampling the number N of balls in the
urn, the color for each of the N balls, and for each of the ten draws both the
ball drawn and whether or not the color is observed correctly in this draw. Once
these values are fixed, the sequence of colors observed is determined. This implies
that for a fixed number N of balls, there are 2N · N10 possible proofs. In case
of the uniform distribution, exact PRISM inference can be used to calculate the
probability for each given number of balls, with a total runtime of 0.16 seconds for
all eight cases. In the case of the Poisson distribution, this is only possible up to 13
balls, with more balls PRISM runs out of memory. For inference using sampling,
we generate 20,000 samples with the uniform prior and 100,000 with Poisson prior.
We report average results over five repetitions. For these priors, PRISM generates
8,015 and 7,507 samples per second respectively, ProbLog backward sampling 708
and 510, BLOG 3,008 and 2,900, and our new forward sampling (with rejection
sampling) 760 and 731. The results using our algorithm for both rejection sampling
and likelihood weighting with Depth = 0 are shown in Figure 5.2. As the graphs
show, the standard deviation for rejection sampling is much larger than the one for
likelihood weighting.

The result of our experiments confirm that the lookahead step in the sampling
algorithm increases the ratio of accepted samples and increases the performance
of rejection sampling. However, We also found that running MaybeProof and
MaybeFail in every sample step is too inefficient as the number of accepted
samples per second in fact decreases with larger Depth values. However, in our
experiments we compared a prototype implementation of our sampling algorithm
with fully-developed and optimized implementations.

5.4 Related Work

Distributional clauses allow one to represent continuous variables and to reason
about an unknown number of objects. In this regard this construct is related to
languages such as BLOG and Church, however it is strongly embedded in a logic
programming context. This embedding allowed us to propose also a novel inference
method based on the combination of importance sampling and forward reasoning.
This contrasts with the majority of probabilistic logic programming languages,
which are typically based on backward reasoning (possibly enhanced with tabling
[Sato and Kameya, 2001; Mantadelis and Janssens, 2010]). Furthermore, only
few of these techniques employ sampling; see [Kimmig et al., 2011] for a Monte
Carlo approach using backward reasoning. Another key difference with the existing
probabilistic logic programming approaches is that the described inference method
is able to handle evidence. This is due to the magic set transformation that targets
the generative process towards the query and evidence by instantiating only the
relevant random variables.
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P-log [Baral et al., 2009] is a probabilistic language based on Answer Set Prolog
(ASP). It uses a standard ASP solver for inference and it is thus based on forward
reasoning, but without the use of sampling. Magic sets are also used in probabilistic
Datalog [Fuhr, 2000], as well as in Dyna [Eisner et al., 2005], a probabilistic logic
programming language that is based on rewrite rules and uses forward reasoning.
However, neither of them uses sampling. Furthermore, Dyna and PRISM require
the exclusive-explanation assumption. This assumption states that no two different
proofs for the same goal can be true simultaneously, that is, they have to rely
on at least one basic random variable with a different outcome in each proof.
Distributional clauses (and the ProbLog language) do not impose such a restriction.
Other related work includes MCMC-based sampling algorithms such as the approach
for SLP [Angelopoulos and Cussens, 2003]. Church’s inference algorithm is based
on MCMC as well, and also BLOG is able to employ MCMC.

5.5 Conclusions And Future Work

The inference algorithm we use for distributional programs can be extended in
many ways. Currently, the algorithm does not store the dependencies identified by
the lookahead step for subsequent sample generations. For instance, if the evidence
can be generated by the program in exactly one possible way, the algorithm has to
repeat the lookahead step for each sample in order to identify this determinism.
Hence the algorithm does not retain all information it possibly could. The main
challenge in this context is to find a representation that can efficiently store such
information without grounding the whole program. Furthermore, it is interesting
to apply standard logic programming techniques to translate the program into
an equivalent program, which is maybe more suitable for sampling. Program
transformation and program specialization, for instance, could be used to rule out
parts of the program that are inconsistent with the evidence. This preprocessing
operation minimizes the work in each sampling step, which in turn increases the
sampling speed. Apart from focusing on the logical aspect of the model, one can
exploit more efficient sampling techniques. Currently, the inference mechanism
is based on likelihood weighting, although using adaptive importance sampling
methods is also worth investigating. In addition, using an inference algorithm
from the class of Markov Chain Monte Carlo approaches (MCMC) is interesting to
explore. Such MCMC approaches are widely used in probabilistic programming
languages that are not based on logic programming such as Church [Goodman et al.,
2008] or BLOG [Milch et al., 2005a]. Together these enhancements will enable one
to apply distributional programs on typical robotics tasks such as localization and
tracking, which require a fast inference mechanism in a Bayesian setting [Thrun
et al., 2005; De Laet, 2010].





Conclusions of Part II

In this part of the thesis we studied how ProbLog can be extended with continuous
distributions.

In Chapter 4 we introduced Hybrid ProbLog. This extension of ProbLog allows one
to define the continuous distribution over ground instances of so-called continuous
facts. We developed an exact inference algorithm that is able to identify the
relevant areas of the Rn needed for an automatic query-dependent discretization.
In order to make exact inference tractable, the number of possible operations on
the continuous facts are limited. This language is best suited for domains that have
only a few continuous values and where the model does not require comparison
operators between the values.

In Chapter 5 we introduced a more expressive extension of ProbLog in the form
of distributional programs. The building blocks of this formalism are so-called
distributional clauses, a generalization of annotated disjunctions (cf. Section 3.3).
In order to calculate the conditional probability of queries, we propose an inference
algorithm based on rejection sampling. We used the magic sets transformation
to guide the sampling process to the relevant parts of the program, i.e., avoiding
the instantiation of ground atoms that do not influence the probability. Moreover,
we exploit the deterministic information in the program to remove choices that
contradict the evidence from the distributional clauses. With regard to future
work, it would be interesting to consider evidence on continuous distributions as it
is currently restricted to finite distributions. Program analysis and transformation
techniques would further optimize the program with respect to the evidence and
query could be used to increase the sampling speed.

It is worth noting that the syntax of Hybrid ProbLog and distributional clauses
slightly deviate. The former aims at extending ProbLog and hence keeps the
syntax close to that of ProbLog, while the latter one is a synthesis of different
language concepts. It is possible to translate a Hybrid ProbLog program into an
equivalent distributional program but not vice versa. Distributional programs are
more expressive, which also explains why they require a sampling-based inference
algorithm.
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Part III

Parameter Learning
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Outline of Part III

This part of the thesis is devoted to learning the parameters of a ProbLog theory.
We introduce two different approaches to this task. Together they cover the
three main learning settings from the logical and relational learning literature:
learning from entailment, learning from interpretations and learning from proofs
(cf. [De Raedt, 2008]).

Chapter 6 introduces LFE-ProbLog that is able to learn from entailment as well as
from proofs (cf. Figure 5.3(a) and 5.3(c)). The key idea is to translate the learning
task into a logistic regression problem and to use a standard gradient search for
finding an optimal parameter configuration.

Chapter 7 introduces LFI-ProbLog that learns from complete as well as from
partial interpretations (see Figure 5.3(b)). This learning approach assumes a
generative model that allows us to use the well-known EM algorithm for training.
The advantage of this setting over logistic regression is the fact that the resulting
parameters can be interpreted, while logistic regression treats the model as a “black
box” and merely optimizes the prediction of the model.

(a) Learning from entail-
ment

(b) Learning from inter-
pretations

(c) Learning from proofs

Figure 5.3: One can classify the learning settings in probabilistic logic learning
(PLL) by the amount of information each training example contains; dotted elements
are not contained in the example (adapted from [Kersting, 2006, Figure 2.6]).
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Chapter 6

Learning from Probabilistic
Entailment∗

Many real-world applications involve managing vast volumes of uncertain data.
Such databases arise, for example, when integrating data from various sources or
when analyzing social, biological, and chemical networks. They can occur within
privacy-preserving data mining where only aggregated data is available as well as
within pervasive computing. These are only some of the applications showing the
abundance of uncertain data residing in databases. Traditional databases do not
allow one to deal with uncertainty. Hence probabilistic extensions of databases are
crucial for managing and mining uncertain data.

In the last years, the statistical relational learning community has devoted a
lot of attention to learning both the structure and parameters of probabilistic
logics, cf. [Getoor and Taskar, 2007; De Raedt et al., 2008a]. Conversely, little
attention was directed towards learning in a probabilistic database setting, that is,
a database setting where probabilities are associated to facts or tuples, indicating
the probability with which the tuple is in the database [Dalvi and Suciu, 2004;
De Raedt et al., 2007]. These probabilistic annotations are then used to define and
compute the probability of derived facts, given background knowledge specifying
further relationships or predicates. As an example, consider an image processing
system that generates high-level relational state descriptions of, for instance, traffic
situations. The output of such a system could consist of a set of facts, each holding
with a particular probability [Antanas et al., 2009]. These facts might state, for
example, the probability that a certain object in the scene is a pedestrian who is

∗This chapter presents joint work with Angelika Kimmig, Kristian Kersting and Luc De Raedt
published in [Gutmann et al., 2008, 2010b]. The gradient derivation and the presentation of the
algorithms have been extended and adopted towards non-ground facts.
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walking in a particular direction. The task could then be, for instance, recognizing
certain types of traffic violations. Background knowledge might be used to specify
different forms of traffic rules. As second example, imagine a life scientist mining
and exploring a large network of biological entities, such as Biomine [Sevon et al.,
2006], in an interactive querying session. The biological network in this case is a
probabilistic network where edges are represented by probabilistic facts about the
biological entities [Sevon et al., 2006; De Raedt et al., 2007]. Questions can then
be asked about the probability of the existence of a connection between two nodes
or the most reliable path between them. The answers to these questions should
provide life scientists with better insights into the mutual relationships between
the queried entities.

This introduces a novel probabilistic database setting for parameter learning from
examples together with their target probability (cf. Definition 6.1). The task is
to find parameters that minimize the least squared error with respect to these
examples. The examples themselves can be either queries or proofs, where a proof is
a conjunction of all facts in the database needed to prove a query. Although ProbLog
is a probabilistic programming language, it can be considered as a generalization of
a probabilistic database. Both the problem setting introduced in this chapter and
the solution developed can easily be integrated in other probabilistic databases.
Furthermore, this chapter introduces an efficient learning algorithm, LFE-ProbLog.1

This chapter has three core contributions: (1) a novel probabilistic database setting
for parameter learning from examples together with their target probability, (2)
detailed study of the intuitive meaning of the gradient and (3) an efficient learning
algorithm to evaluate the gradient based on BDDs.

We proceed as follows. We formally introduce the parameter estimation problem
for probabilistic databases in Section 6.1. Section 6.2 contains the derivation of the
gradient, which is used in Section 6.3 to construct the parameter learning algorithm
LFE-ProbLog. In Section 6.4 we discuss how the error function can be modified
to account for imbalanced datasets. Before concluding, we present the results of
an extensive set of experiments on real-world data sets in Section 6.5 as well as
related work in Section 6.6.

6.1 Parameter Learning in Probabilistic Databases

Within probabilistic logical and relational learning [De Raedt and Kersting, 2003;
De Raedt, 2008], the problem of parameter estimation can be defined as follows:
Definition 6.1 (Parameter Learning in Probabilistic Databases). Given is a set
of examples E, a probabilistic database or probabilistic logic theory D, a probabilistic

1Stands for “learning from probabilistic entailment for ProbLog”. In previously published
papers it had been called LeProbLog but it was renamed for consistency reasons.
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coverage relation P (e|D) that denotes the probability that the database D covers
the example e ∈ E and a scoring function. The goal is to find parameters of D
such that the scoring is optimal.

The key difference with purely logical learning approaches is that the coverage
relation becomes probabilistic. Furthermore, within probabilistic logical and
relational learning the following three settings are typically considered: learning
from queries, learning from proofs and learning from interpretations (cf. Figure 5.3).
From a database or logic programming perspective, a query corresponds to a formula
that is entailed by the database, and hence learning from queries corresponds to
learning from entailment. Conversely, a proof does not only show what was proven
but also how it was realized.

As an example consider a probabilistic context-free grammar. The parameters of
such a grammar can be learned starting from sentences belonging to the grammar
(learning from entailment/from queries), or alternatively, from parse trees (learning
from proofs), cf. the work on tree-bank grammars [Charniak, 1996; De Raedt et al.,
2005]. The former setting is typically a lot more complex than the latter one because
one query may have multiple proofs, which introduces hidden parameters into the
learning setting. When learning from parse trees, however, these parameters are
no longer hidden.

The third classical setting uses interpretations as examples. While interpretations
provide the most informative examples to the learner, they are often impractical
to use. Indeed, as an interpretation states the truth value of all ground atoms in
an example, it is complex to apply this to models such as grammars or biological
networks. For a grammar, an example would have to contain essentially all sentences
and constituents that could be constructed with the words in the grammars, possibly
an infinite number of them. When considering substructures or paths in a network,
the sheer number of them makes explicitly listing them virtually impossible.

In the setting considered in this chapter, the examples themselves have associated
probabilities. Such examples naturally arise in various applications. For instance,
text extraction algorithms return the confidence, experimental data is often averaged
over several runs. As one illustration consider populating a probabilistic database
of genes from MEDLINE2 abstracts using off-the-shelf information extraction
tools, where one might extract from a paper that gene a is located in region b and
interacting with gene c with a particular probability denoting the degree of belief; cf.
[Gupta and Sarawagi, 2006]. This requires one to deal with probabilistic examples
such as 0.6 : locatedIn(a, b) and 0.7 : interacting(a, c). Also, in the context of the
life sciences, Chen et al. [2008] report on the use of such probabilistic examples,

2MEDLINE (Medical Literature Analysis and Retrieval System Online) is a bibliographic
database of life sciences and biomedical information compiled by the United States National
Library of Medicine. It is available through PubMed http://www.ncbi.nlm.nih.gov/pubmed/.

http://www.ncbi.nlm.nih.gov/pubmed/
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where the probabilities indicate the percentage of successes in an experiment that
is repeated several times.

Let us now investigate how we can integrate those two ideas, that is, the notion
of a probabilistic example and learning from entailment and proofs, within the
ProbLog formalism. When learning from entailment, examples are atoms or clauses
that are logically entailed by a theory. Transforming this setting to ProbLog
leads to examples that are logical queries with associated target probabilities.
When learning from proofs in ProbLog, a proof corresponds to a set of facts, or a
conjunction of propositional variables, again with associated target probabilities.
It is easy to integrate both learning settings in ProbLog because the logical form of
the example will be translated to a monotone DNF formula and it is this last form
that will be employed by the learning algorithm. In ProbLog the key difference
between learning from entailment and learning from proofs is that the DNF formula
for a proof is a conjunction of literals, while it is general DNF formula in the case
of learning from queries. To the best of our knowledge, this is the first time that
learning from proofs and learning from entailment are integrated in one setting.

The setting considered in this chapter differs from the usual statistical relational
learning setting with respect to the characteristics of the underlying generative
model. Both stochastic logic programs (SLPs) [Cussens, 2001] and PRISM
programs [Sato and Kameya, 2001] define a generative model at the level of
proofs or derivations since they are variants of probabilistic context-free grammars.
As a consequence, they implicitly define a generative model at the level of queries
as well. Learning procedures for those models, therefore, often rely on the fact that
ground atoms for a single predicate (or in the grammar case, sentences belonging
to the language) are sampled and that the sum of the probabilities of all different
atoms, obtainable in this way, is at most 1 (or exactly 1 for loss-free grammars).
ProbLog’s generative model, however, lies at the level of interpretations, and hence
does not meet these conditions, as several different facts for the same background
knowledge predicate can be true in any possible world. Working with probabilistic
training examples has been recently proposed by Chen et al. [2008]. However, in
their work, the probabilities associated with examples are viewed as specifying the
degree of being sampled from some distribution, thus employing a generative model
at the level of examples or queries, which does not hold in our case. Furthermore,
Chen et al. consider only learning from entailment and not from proofs.

By now we are able to formally define the learning setting addressed in this chapter:

Definition 6.2 (Learning from probabilistic entailment). Given a ProbLog theory
T = F ∪ BK, where the probabilistic facts F have unknown parameters p =
〈p1, ..., pN 〉 and a set of training examples {qi, p̃i}Mi=1, where each qi is a query or
proof and p̃i is the k-probability of qi, find probabilities p̂ = 〈p̂1, . . . , p̂N 〉 such that
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the Mean Squared Error of the program on the training set is minimized, where

MSE(T ) := 1
M

M∑
i=1

(
PTk (qi)− p̃i

)2
. (6.1)

Note that in this definition we have chosen the k-probability (cf. Eq. (3.9)) as
probabilistic coverage relation since this allows for maximal flexibility. For k = 1, it
is the probability of the best explanation of the query q, for k =∞ it corresponds to
the success probability of q. Intermediate values can be used to trade off accuracy
for speed. We assume the target probabilities p̃i to be given by a domain expert
and do not make any explicit assumption as of how they were sampled based on a
generative process from the ProbLog theory T .

Our setting is related to the one considered by Kwoh and Gillies [1996] to the
degree that we learn from examples, where not everything is observable and that
we assume a distribution over the result (that is, whether a query fails or succeeds)
and where the examples are independent of one another. While in our case all
the observations are binary, Kwoh and Gillies use training examples that contain
several variables. They show that minimizing the squared error for this type of
problem corresponds to finding a maximum likelihood hypothesis, provided that
each training example (qi, p̃i) is disturbed by an error term. The actual distribution
of this error is such that the observed query probability is still in the interval [0, 1].

Gradient descent is a standard way of minimizing a given error function. The
tunable parameters are initialized randomly. Afterwards, as long as the error does
not converge, the gradient of the error function is calculated, scaled by the learning
rate η, and then subtracted from the current parameters.

An unconstrained gradient descent search based on (6.1) cannot be used since
the algorithm does not take into account that the search has to be confined to
probabilities only. Hence adding the gradient vector to the current probability
vector might result in values outside the [0, 1] interval. This can be resolved, for
instance, by using a constrained gradient descent search and project the values
after each gradient step onto the [0, 1]N space (cf. [Rosen, 1960, 1961]).

We use a different technique that allows for an unconstrained gradient search: we
apply a sigmoid function σ : R → (0, 1) to the search space similarly to logistic
regression. Such a function has an s-shaped graph as shown in Figure 6.1. We will
use the function

σs(a) := 1
1 + exp(−s · a) , (6.2)

where the parameter s determines the slope of the curve. For small s, the slope is
flat, which in turn can cause a slow convergence. While for large s, the slope is
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Figure 6.1: The sigmoid function σs(a) = (1 + exp(−s · a))−1 with different slope
parameter s > 0. All graphs pass through the point (0, 0.5).

steep, which makes the gradient search more susceptible to local optima. In the
rest of this chapter, we assume s = 1 and write σ(a) whenever the choice of s is
clear. In order to apply the sigmoid transformation, we represent the probability
of each probabilistic fact pj :: fj as pj = σ(aj), that is, aj = σ−1(pj). In turn, we
have to propagate this representation in the definition of the k-best probability
and to the probability of a possible world. Please note that σs(a) is symmetric
with respect to the point (0, 0.5). This allows one to express the complementary
probability 1− σs(a) more compactly as

1− σs(a) = σs(−a)

The proof for this property can be found in Appendix B. Before proceeding with
deriving the gradient of the MSE, we use the following example to illustrate the
learning setting we study in this chapter.
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Example 6.1 (Parameter learning for the ALARM-4 program). Consider the
ALARM-4 program, where the fact probabilities pi are unknown.

F = {p1:: burglary, p2:: earthquake, p3:: hears_alarm(X)}

BK = {person(mary),

person(john),

person(alice),

person(bob),

alarm :− burglary

alarm :− earthquake

calls(X) :− person(X), alarm, hears_alarm(X)}

The goal is to estimate p1, p2, p3 from the training set comprised of the following
examples:

q1 = alarm p̃1 = 0.4

q2 = calls(john) p̃2 = 0.2

q3 = calls(mary) ∨ calls(john) p̃3 = 0.3

q4 = burglary ∧ hears_alarm(john) p̃4 = 0.15

After translating the fact probabilities using the σ(·) function, the goal is to estimate
a1, a2, a3 ∈ R where

F = {σ(a1):: burglary, σ(a2):: earthquake, σ(a3):: hears_alarm(X)}

As this example illustrates, one can use atomic queries as well as conjunctions
and disjunctions of atoms as training data. This is due to ProbLog’s inference
algorithm based on SLD resolution. The training example (q4, 0.15) shows how
one can use a conjunctive query for encoding the proof of calls(john) that uses
the clause calls(X) :− person(X), alarm, hears_alarm(X) and then the clause
alarm :− burglary.

In the following section we formally derive the gradient of the MSE and give an
intuitive meaning of the resulting values. Afterwards, in Section 6.3, we introduce
an efficient algorithm based on BDDs to compute the gradient and use it in a
standard gradient-descent scheme to solve the learning task for a ProbLog program.
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6.2 Deriving The Gradient

We derive the gradient of the MSE in three steps. Starting from the gradient
of the possible world probability in Lemma 6.1, we derive the gradient of the
success probability of a query in Lemma 6.2. This implicitly yields the gradient
of the k-best probability, which we then use to obtain the gradient of the MSE in
Theorem 6.1. To simplify the notation we introduce the following symbols

δ+
j,L :=

∣∣{all ground instances of fj} ∩ L
∣∣ (6.3)

δ−j,L :=
∣∣{all ground instances of fj} \ L

∣∣ (6.4)

where L ⊆ LT is a possible world and j is the index of the probabilistic fact fj . In
other words, δ+

j,L counts the true ground instances of fj in L and δ−j,L counts the
false ground instances of fj in L.

Example 6.2 (Meaning of δ+
j,L and δ−j,L). The probabilistic fact f3 in the ALARM-

4 program has four ground instances hears_alarm(mary), hears_alarm(john),
hears_alarm(alice), and hears_alarm(bob). For the possible world L1 =
{hears_alarm(john), burglary}, for instance, the count δ+

3,L1
is 1 as there is

only one ground instance of f3 true in L1. Hence δ−3,L1
= 4− δ+

3,L1
= 3. For the

possible world L2 = {hears_alarm(john), hears_alarm(alice)} the count δ+
3,L2

is 2 and δ−3,L2
= 2.

6.2.1 Gradient of Possible World Probability

Lemma 6.1 (Gradient of Possible World Probability). Given a possible world
L ⊆ LT one can compute the gradient of the probability of L with respect to aj as
follows

∂

∂aj
PT (L) =

[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
︸ ︷︷ ︸

Factor 1

· PT (L)︸ ︷︷ ︸
Factor 2

(6.5)

where σ(aj) = pj governs the probability of the probabilistic fact fj.

Please note that the δ in (6.5) ensure the parameter-tying between different ground
instances of a probabilistic fact. Instead of considering individual ground instances,
one compresses them into two numbers: the positive and the negative counts.

Before proving Lemma 6.1, let us highlight some properties of the gradient (6.5),
which give a more intuitive meaning to the resulting values. Each root of the
gradient3 points to a local optima in PT (L). As the gradient consists of two factors,

3A value x is called a root of a function f(x) if f(x) = 0
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we can find the gradient’s roots by finding roots of either factor. Due to the sigmoid
function, Factor 2 is always larger than 0. Hence the local optima of PT (L) solely
depend on Factor 1.

1. If δ+
j,L > 0 and δ−j,L > 0

Factor 1 is zero if and only if σ(aj) = δ+
j,L/(δ

+
j,L + δ−j,L). Hence any gradient

ascent algorithm tends to set aj such that the resulting probability σ(aj) is
the relative frequency of true ground atoms of fj over all ground atoms of fj .

2. If δ+
j,L > 0 and δ−j,L = 0

Factor 1 is larger than 0 for all aj . Hence any gradient ascent algorithm
tends to increase the value of aj towards∞. In turn, the resulting probability
σ(aj) will be set closer to 1 in each iteration.

3. If δ+
j,L = 0 and δ−j,L > 0

Factor 1 is smaller than 0 for all aj . Hence any gradient ascent algorithm tends
to decrease the value of aj towards −∞. In turn, the resulting probability
σ(aj) will be set closer to 0 in each iteration.

Probabilistic facts that do not have any ground instances (δ+
j,L = δ−j,L = 0) can be

removed from the program without changing the probability of a possible world.
The shape of the gradient’s graph is a mirrored “s” as can be seen in Figure 6.2.
The slope of the graph depends on the slope of the sigmoid function (in our case it
is always 1) and the total number of ground instances of fj . The function value is
limited and converges to δ+

j,L for aj → −∞ and to −δ−j,L for aj →∞.

Example 6.3 (Gradient of Possible World Probability). The probabilistic fact f3 =
hears_alarm(X) in the ALARM-4 program has four possible ground instances.
Figure 6.2 shows the graph of Factor 1 for all configurations of these ground
instances. If δ+

3,L = 4, i.e., there are only true ground instances, the value is always
larger than 0. For δ+

3,L = δ−3,L = 2, the graph crosses the x-axis at 0, that is, the
probability of a possible world has a local optimum at a3 = 0, that is, a gradient
search will set p3 = σ(0) = 0.5. For δ+

3,L = 3 and δ−3,L = 1, the graph crosses the
x-axis at σ−1(3/(3 + 1)) ≈ 1.01.

Proof. We prove Lemma 6.1 by replacing PT (L) with its definition (cf. (3.4)
in Chapter 3) and write the complementary probability 1 − σ(aj) as σ(−aj)
(cf. Lemma B.1).

∂

∂aj
PT (L) = ∂

∂aj

 ∏
fiθik∈L

σ(ai)
∏

fiθik∈LT \L

σ(−ai)
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Figure 6.2: The graph of Factor 1 in Lemma 6.1 for all possible combinations of 4
ground instances of the probabilistic fact f3 in the ALARM-4 program. Notice
that δ+

3,L + δ−3L is always 4.

After rearranging the products where δ+
j,L and δ−j,L are chosen accordingly, the

products that do not depend on aj can be treated as constant factor.

=
(

∂

∂aj
σ(aj)δ

+
j,L · σ(−aj)δ

−
j,L

) ∏
fiθik∈L
i 6=j

σ(ai)
∏

fiθik∈LT \L
i 6=j

σ(−ai) (6.6)

We have to distinguish three cases for the gradient. Case 1 is δ+
j,L > 0, δ−j,L > 0,

case 2 is δ+
j,L > 0, δ−j,L = 0 and case 3 is δ+

j,L = 0, δ−j,L > 0. If both would be
0, we could remove the probabilistic fact aj from the program as there are no
ground instances. Please note that the gradient of σs(a) can be expressed as
∂/∂a σs(a) = s · σs(a) · (1− σs(a)) (cf. Lemma B.1).

Case 1, δ+
j,L > 0, δ−j,L > 0: applying the product and chain rule on (6.6) yields

=
[
δ+
j,L · σ(aj)δ

+
j,L
−1 · σ(−aj)δ

−
j,L · 1 · σ(aj) · σ(−aj)

− δ−j,L · σ(aj)δ
+
j,L · σ(−aj)δ

−
j,L
−1 · 1 · σ(aj) · σ(−aj)

]
·∏

fiθik∈L
i 6=j

σ(ai)
∏

fiθik∈LT \L
i 6=j

σ(−ai)
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Now we simplify the term in the parentheses,

=
[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
· σ(aj)δ

+
j,L · σ(−aj)δ

−
j,L ·∏

fiθik∈L
i6=j

σ(ai)
∏

fiθik∈LT \L
i 6=j

σ(−ai)

reorganize the products

=
[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

] ∏
fiθik∈L

σ(ai)
∏

fiθik∈LT \L

σ(−ai)

and apply the definition of PT (L) again

=
[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
· PT (L) .

Case 2, δ+
j,L > 0, δ−j,L = 0: applying product and chain rule on (6.6) yields

=
[
δ+
j,L · σ(aj)δ

+
j,L
−1 · 1 · σ(aj) · σ(−aj)

]
·∏

fiθik∈L
i6=j

σ(ai)
∏

fiθik∈LT \L
i 6=j

σ(−ai)

which can be simplified, similarly as in Case 1, to

=
[
δ+
j,L · σ(−aj)

]
· PT (L)

Since δ−j,L = 0, subtracting δ−j,L · σ(aj) does not change the value. Hence

=
[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
· PT (L) .

Case 3, δ+
j,L = 0, δ−j,L > 0 is analogous to Case 2.
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6.2.2 Gradient of Success Probability

The intuitive meaning of the gradient ∂/∂aj PTs (qi) is as follows. Each possible
world, where the query qi is true and which has more positive than negative ground
instances of fj , contributes positively to the gradient. In turn, this “pushes” the
gradient search towards increasing aj . Similarly, each possible world, where the
query qi is true and which has more negative than positive ground instances of fj ,
“pushes” the gradient search towards decreasing aj . Possible worlds where qi is
false do not influence the gradient.

The success probability PTs (q) of a query q is the sum of the probabilities of all
possible worlds, where the query is true (cf. (3.6)). Hence we can easily derive the
gradient of PTs (qi) using Lemma 6.1.

Lemma 6.2 (Gradient of Success Probability). After applying the sigmoid
transformation, the gradient of the success probability with respect to aj is

∂PTs (qi)
∂aj

=
∑
L⊆LT
L|=qi

[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
· PT (L) , (6.7)

where δ+
j,L and δ−j,L are defined as in Lemma 6.1.

Proof.

∂PTs (qi)
∂aj

= ∂

∂aj

∑
L⊆LT
L|=qi

PT (L) by (3.6)

=
∑
L⊆LT
L|=qi

∂

∂aj
PT (L) by sum rule

=
∑
L⊆LT
L|=qi

[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
· PT (L) by Lemma 6.1

Note that one cannot obtain the gradient of the k-best probability PTk (qi) (cf. (3.9))
in a similar manner since bestproofsk(qi, T ) depends on the current values of the
fact probabilities. In turn, the index set over which the sum in PTk (qi) iterates can
change when the value of aj is changed. We propose an approximation for this
gradient where we assume the set of best proofs to be fixed and computed using
the fact probabilities obtained in the previous gradient descent step.
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Example 6.4 (k best proofs). Consider the following ProbLog theory that contains
two proofs for the query alarm:

F = {σ(a1):: burglary,

σ(a2):: earthquake}

BK = {alarm :− burglary,

alarm :− earthquake} .

The best proof (k = 1) depends on the current values of the fact probabilities σ(a1)
and σ(a2), that is,

bestproofs1(qi, T ) =
{
{burglary} if a1 ≥ a2

{earthquake} otherwise
.

If k is large enough, in this case for k = 2, the result of bestproofsk is independent
of the aj since all possible proofs are obtained.

Since bestproofsk(qi, T ) is a step function (it is step-wise constant) its gradient
can have discontinuities at the borders where the set of proofs change. Computing
this gradient is computationally expensive and we avoid it by approximating the
true gradient of the k-best probability of a query as follows:

∂PTk (qi)
∂aj

= ∂

∂aj

∑
L⊆LT

L∈bestproofsk(qi, T )

PT (L) .

We treat bestproofsk(qi, T ) as constant, that is, independent of aj while it is
actually depending on aj . We assume the set of best proofs to be computed using
the aj values obtained in the previous iteration of the gradient descent search. On
the one hand, this step in the derivation introduces an error. On the other hand,
it simplifies the next steps and allows us to apply the sum rule and to proceed as
in the proof of Lemma 6.2:

≈
∑
L⊆LT

L∈bestproofsk(qi, T )

∂

∂aj
PT (L)

=
∑
L⊆LT

L∈bestproofsk(qi, T )

[
δ+
j,L · σ(−aj)− δ−j,L · σ(aj)

]
· PT (L) .
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Algorithm 11, which computes the gradient of the MSE, compensates for this
error by repeatedly searching the set of k best proofs in every iteration before
computing the gradient of PTk . This raises the questions as to what extent this
approach is justified and whether is it necessary to perform this expensive step in
every iteration. As the experimental results show, keeping the set of proofs fixed
(respectively the BDDs representing this set) does not change the results when k is
sufficiently large such that there is an overlap between the proofs.

6.2.3 Gradient of Mean Squared Error

By now we are ready to derive the gradient of the MSE. In the next section we
will then show how to compute it efficiently based on binary decision diagrams.

Theorem 6.1 (Gradient of MSE). The gradient of the MSE with respect to aj is

∂

∂aj
MSE(T ) = 2

M

M∑
i=1

(
PTk (qi)− p̃i

)︸ ︷︷ ︸
Part 1

· ∂ P
T
k (qi)
∂aj︸ ︷︷ ︸

Part 2

. (6.8)

Proof. One can derive the gradient (6.8) starting from the definition of the mean
squared error (cf. (6.1)) as follows:

∂

∂aj
MSE(T ) = ∂

∂aj

(
1
M

M∑
i=1

(
PTk (qi)− p̃i

)2)

= 1
M

M∑
i=1

(
∂

∂aj

(
PTk (qi)− p̃i

)2) by sum rule

= 2
M

M∑
i=1

(
PTk (qi)− p̃i

)︸ ︷︷ ︸
Part 1

·
(
∂PTk (qi)
∂aj

)
︸ ︷︷ ︸

Part 2

by chain rule

Part 1 is the k-best probability of the training example qi under the current
model parameters compared to the target success probability. Intuitively, this
factor weights the influence of each query gradient (cf. Part 2), that is, for small
differences the influence of Part 2 on the gradient of the MSE is small, while for
larger differences the influence of the query gradient grows. Hence for training
examples (qi, p̃i), where the predicted probability PTk (qi) is close to the target p̃i,
the gradient is close to 0, while it is larger for those examples, where the prediction
deviates more. Part 2 is the partial derivative of the k-best probability (cf. (3.9)).



COMPUTING THE GRADIENT BY MEANS OF BDDS 95

Algorithm 10 Evaluating the gradient of a query by traversing the corresponding
BDD, calculating partial sums and adding only relevant ones. The algorithm
returns the probability of the query and the gradient with respect to the target
fact nj . We use the sigmoid function σ(·) to translate an ∈ R into a probability.
1: function Gradient(node n, target fact nj)
2: if n is the 1-terminal then return (1, 0) . Base Case
3: if n is the 0-terminal then return (0, 0) . Base Case
4: let h and l be the high and low children of n . Inductive Case
5: (prob(h), grad(h))← Gradient(h, nj)
6: (prob(l), grad(h))← Gradient(l, nj)
7: prob← σ(an) · prob(h) + σ(−an) · prob(l)
8: grad← σ(an) · grad(h) + σ(−an) · grad(l)
9: if n ⊆θ nj then . Current node n is a ground instance of nj
10: grad← grad+ (prob(h)− prob(l)) · σ(an)σ(−an)
11: end if
12: return (prob, grad)
13: end function

It is computationally infeasible to loop over all subprograms L ⊆ LT when
computing the gradient as there are exponentially many L. As shown in Chapter 3,
there is an efficient algorithm to compute PTk (qi) relying on BDDs [De Raedt et al.,
2007]. In the following section we update this towards computing the gradient and
integrate it with a standard gradient descent search to learn the parameters of a
ProbLog program based on a training set.

6.3 Computing the Gradient By Means of BDDs

As discussed in Section 3.2, the algorithm of [De Raedt et al., 2007] (cf. also
Algorithm 1) computes the success probability PTs and the k-best probability PTk
for a query q efficiently by collecting all proofs and compactly representing them
as a Binary Decision Diagram (BDD) [Bryant, 1986]. When the BDD is built,
Algorithm 2 calculates the probability of a Boolean formula by traversing the
BDD bottom-up, in each node summing the probability of the high and low child,
weighted by the probability of the node’s variable being assigned true and false
respectively. When the BDD represents the Boolean formula corresponding to the
k best proofs the resulting probability is the k-best probability.

This algorithm can be extended to compute the gradient with respect to a particular
aj as shown in Algorithm 10. Gradient(n, nj) calculates the gradient with
respect to nj in the sub-BDD rooted at n. It returns two values: the gradient
on the sub-BDD and the probability of the sub-BDD. The symbol ⊆θ denotes
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prob=σ(0) · 1 + σ(−0) · 0 = 1
2
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4
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Figure 6.3: Intermediate results when calculating the gradient ∂PTk (calls(mary)∨
calls(john))/∂a3(X) using Algorithm 10. The parameter a3 governs the probability
of the probabilistic fact hears_alarm(X). The result is returned at the root node
of the BDD.

theta-subsumption that expresses an is-an-instance-of relation. In terms of first
order logic, a ⊆θ b holds if there exists a substitution θ such that a = bθ. For
instance hears_alarm(john) ⊆θ hears_alarm(john), hears_alarm(john) ⊆θ
hears_alarm(X) but hears_alarm(john) 6⊆θ hears_alarm(mary). The correct-
ness proof for Algorithm 10 can be found in Appendix D.

Example 6.5 (Gradient of a query probability). For the ease of calculation let
us assume that the Learn algorithm (cf. Line 2 in Alg. 11) initialized all fact
parameters of the ALARM-4 program from Example 6.1 with the value 0, that is,

F = {σ(0):: burglary, σ(0):: earthquake, σ(0):: hears_alarm(X)} .

In order to calculate the gradient of the MSE (cf. (6.8)) the algorithm evaluates the
partial derivative for every probabilistic fact and every training example. Figure 6.3
illustrates how the partial derivate ∂PTk (calls(mary) ∨ calls(john))/∂a3(X) is
obtained by running Algorithm 10. As one can see, the gradient is 3

16 > 0, which
indicates that the probability of the query can be increased by increasing the value
of a3. This is plausible, as it is more likely that somebody calls about an alarm
when the likelihood of hearing the alarm is increased.
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Algorithm 11 Gradient descent for ProbLog minimizing the MSE on the training
data; T is a ProbLog program with unknown fact probabilities, {(qj , p̃j)|1 ≤ j ≤M}
is the training set containing queries qj and their target probabilities p̃j , η is the
learning rate, and k ∈ N is the number of proofs used to build the BDDs.
1: function LFE-ProbLog(T, {(qj , p̃j)|1 ≤ j ≤M}, η, k)
2: initialize all aj randomly
3: while not converged do
4: ∆a← 0 . Set gradient to 0
5: for 1 ≤ i ≤M do . Loop over training examples
6: BDDi ←find k best proofs for qi generate BDD . See Equation 3.9
7: y ← 2

M ·
(
PTk (qi)− p̃i

)
. cf. Part 1 in (6.8)

8: for 1 ≤ j ≤ N do . Loop over probabilistic facts
9: ∆aj ← ∆aj + y · ∂P

T
k (qi)
∂aj

. Call Gradient(BDDi, nj)
10: end for
11: end for
12: a← a − η ·∆a . Update model
13: end while
14: return {σ(aj) :: cj | cj ∈ F} ∪BK
15: end function

To obtain the final learning algorithm LFE-ProbLog, the BDD-based gradient
calculation is combined with a standard gradient descent search. Starting from
parameters a = a1, . . . , an initialized randomly, the gradient ∆a = ∆a1, . . . ,∆an
is calculated, parameters are updated by subtracting the gradient, and updating
is repeated until convergence. When using the k-probability with finite k, the set
of k best proofs may change due to parameter updates. After each update, we
therefore recompute the set of proofs and the corresponding BDD. Algorithm 11
shows the pseudocode of this gradient descent search.

6.4 Imbalanced Data Sets

In some applications the probabilities of the training examples are limited to 1
and 0. We refer to them as positive and negative examples respectively. If in
such domains, the training set is imbalanced, in the sense that the number of
positive training examples significantly differs from the number of negative training
examples, the MSE as defined in Equation 6.1 performs poorly in terms of area
under the precision-recall curve as we discovered in our experiments. To account
for this we use a weighted MSE

MSEcost(T ) := 1
M

M∑
i=1

cost(p̃i) ·
(
PTk (qi)− p̃i

)2
, (6.9)
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where cost(1) := 1 and cost(0) := α. Thus negative training examples have only α
times the influence on the MSE compared to positive training examples. When
deriving the gradient (cf. Theorem 6.1) the cost(·) factor can be treated as constant
resulting in

∂MSEcost(T )
∂pj

= 2
M

M∑
i=1

cost(p̃i) ·
(
PTk (qi)− p̃i

)
· ∂ P

T
k (qi)
∂pj

. (6.10)

Introducing the cost(·) factor corresponds to an asymmetric loss matrix[
PTk (qi)

1− PTk (qi)

]T
·
[
0 α
1 0

]
·
[

p̃i
1− p̃i

]
. (6.11)

This technique is often used for classification problems with non-uniform class
distributions [Bishop, 2006]. Since the cost(·) factor introduces an additional
parameter it is reasonable to ask what value to use for α. We suggest to set

α = Mp

Mn
, (6.12)

where MP and Mn are the numbers of positive and negative training examples
respectively. This particular value ensures that both the positive and the negative
examples have in total the same influence on the gradient. If the ratio of Mp to Mn

is approximately 1, then α ≈ 1.0. Whereas if Mp is much smaller than Mn then α
is very low, which in turn degrades the influence of a single negative example. The
experimental results indicate that this choice is justified (cf. Figure 6.9).

6.5 Experiments

In this section we empirically evaluate the proposed approach to parameter
estimation. The experiments are designed to get insights into:

A the quality of the estimated parameters,

B the influence of using approximations in the algorithm (such as choosing a low
k in Pk and not updating BDDs in every iteration)

C the interplay between learning from proofs and learning from entailment, and

D the performance of the approach compared to state-of-the-art statistical
relational learning systems such as Alchemy.

Before presenting the results of our experimental investigation of the four questions
outlined above, we will now describe the datasets, the evaluation criteria used as
performance measure and the initialization of the parameters.
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6.5.1 Datasets

We consider three different datasets in our experiments:

• The Biomine graph [Sevon et al., 2006] is a large biological network extracted
from various sources. The nodes correspond to entities such as genes, diseases,
or medical papers. The edges indicate dependencies and they are labeled
with probabilities. As working with the full Biomine graph would involve
estimating several millions of parameters, we extracted two subgraphs, one
around Alzheimer disease and another one around Asthma. For each disease,
we obtained a set of related genes by searching Entrez for human genes with
the relevant annotation (AD or Asthma); corresponding phenotypes for the
diseases are from OMIM. Other relations stem from EntrezGene, String,
UniProt, HomoloGene, Gene Ontology, and OMIM databases. Weights were
assigned to edges as described in [Sevon et al., 2006]. In our experiments, we
used a fixed number of randomly chosen (Alzheimer disease or Asthma) genes
for graph extraction. Subgraphs were extracted by taking all acyclic paths of
length not more than four, with a probability of at least 0.01, between any
given gene and the corresponding phenotype. Some of the genes did not have
any such paths to the phenotype and are thus disconnected from the rest of
the graph. The resulting graph around Alzheimer contains 122 nodes and
259 edges, the one around Asthma 127 nodes and 241 edges.

• The UW-CSE dataset [Richardson and Domingos, 2006] comprises informa-
tion about the computer science department of the University of Washington.
It contains 12 different predicates, such as yearsInProgram/2, advisedBy/2,
taughtBy/3 and so on. The predicates are typed, where possible types are for
instance person, course, publication, etc. The database contains in total
3880 tuples. It was obtained by crawling the web pages of the computer science
department of the University of Washington4 and the BibServ database5. The
database is split into five subdatabases, each containing tuples of a particular
area of the CS department: AI, Graphics, Programming Languages, Systems,
and Theory.

• The WebKB dataset [Craven and Slattery, 2001] contains the link structure of
the web pages of four universities: Cornell, Texas, Washington and Wisconsin.
Next to the links, each page is annotated with the words occurring in the
page’s text. Each page is labeled with a subset of the possible classes person,
student, faculty, professor, department, research project, and course. The goal
is to predict the class of an unseen page by using the information on words
and links.

4http://www.cs.washington.edu
5http://www.bibserv.org

http://www.cs.washington.edu
http://www.bibserv.org
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6.5.2 Evaluation Metrics

We use the following metrics to assess the results

• The mean squared error (MSE), cf. Equation (6.1), measures the difference
between the distributions defined by two sets of probabilities with respect to
a set of datapoints. If the MSE is zero, the distributions agree on the data,
if the MSE is greater than zero they differ. We report

√
MSETest, the root of

the MSE on the hold-out dataset, averaged over all folds.

• The mean absolute difference of the fact probabilities MADfacts defined as

MADfacts := 1
n

n∑
j=1

∣∣pj − ptrue
j

∣∣
measures how close the estimated fact probabilities pj are to the ground
truth probabilities ptrue

j . We use this measure on the Biomine dataset since
the ground truth probabilities are known there.

• The area under the precision-recall curve (AUC) is used for the UW-CSE
and WebKB datasets. We report the average AUC as well as the standard
deviation on the hold-out dataset, which we calculate in the same way as
Richardson and Domingos [2006].

6.5.3 Methodology

Before the gradient descent algorithm can be used, all the fact probabilities
need to be initialized with some values. In our experiments, we sampled The
initial fact probabilities randomly as follows. For the Biomine and UW-CSE
dataset we sampled uniformly in the interval [−0.5, 0.5] and applied the sigmoid
function that yielded probability values in the interval [0.43, 0.57]. For the WebKB
dataset we sampled the initial fact probabilities uniformly in [0.03995, 0.04005].
We experimentally found that this improved the convergence of the gradient search
in terms of iterations compared to sampling from [0.43, 0.57]. However, it did not
influence the predictive performance of the model. The learning rate η was always
set to the number of training examples. We performed 10-fold cross validation
on the Biomine dataset and leave-one-out cross validation on the UW-CSE and
WebKB dataset. On the Biomine dataset we ran the experiments with a time
limit of 24 hours per fold. Depending on the number of training example, this
led to different numbers of iterations of gradient descent due to the maximum job
duration on the PC cluster. On the UW-CSE dataset we ran 200 iterations of
gradient descent and on the WebKB we ran 60 iterations of gradient descent.
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6.5.4 Quality of Estimated Probabilities

The first set of experiments is meant to answer the following questions:

Q1 Does LFE-ProbLog reduce the MSE both on training and test set?

Q2 Can LFE-ProbLog recover the original parameters?

These questions serve as an initial sanity check for both the algorithm and the
implementation. To answer them, we employed the Asthma and Alzheimer datasets,
both subgraphs of the Biomine graph. We sampled 500 random node pairs (a, b)
in these graphs, estimating the query probability for path(a,b) using PT5 , the
probability of the five best proofs. We used the same approximation k = 5 in
the LFE-ProbLog, where the set of proofs to build the BDD is determined anew
in every iteration, as stated in Algorithm 11. We repeated the experiment using
a total of 100, 300 and 500 examples, which we each split in ten folds for cross
validation. We thus use 90, 270 and 450 training examples. The more training
examples are used, the more time each iteration of gradient descent takes. In the
same amount of time, LFE-ProbLog therefore performs less iterations when using
more training examples.

The right column of Figure 6.4 shows the change of
√

MSETest during learning.
LFE-ProbLog reduces the MSE on both training and test data, with significant
differences in all cases (two-tailed t-test, α = 0.05). These results affirmatively
answer Q1.

Also, theMADfacts error is reduced as can be seen in the right column of Figure 6.5.
Again, all differences are significant (two-tailed t-test, α = 0.05). Using more
training examples results in faster error reduction. These results affirmatively
answer Q2. It should be noted, however, that in other domains, especially with
limited or noisy training examples, minimizing the MSE might not reduceMADfacts,
as the MSE is a non-convex non-concave function with local minima.
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Figure 6.4:
√

MSETest for Asthma and Alzheimer using the 5 best proofs (k = 5);
when the BDDs and proofs are not updated (left column); when they are updated
every iteration (right column) (Q2 and Q3)
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6.5.5 Influence of Approximations

LFE-ProbLog relies on several compute-intensive operations. First, recomputing
the proofs and constructing the associated BDDs for each query in each iteration is
expensive (see Line 6 in Algorithm 11). Conversely, BDDs can easily be saved and
reevaluated with updated parameters, providing an approximation of the results
obtained using the true best proofs. Second, using the exact success probability P∞
may result in large, computationally intractable BDDs. Choosing Pk with a smaller
k as an approximation would again result in significant computational savings. To
get insights into the influence of such approximations, we set up experiments to
answer the following questions:

Q3 Can we obtain good results even though we do not update the set of k best
proofs in each iteration?

Q4 Can we obtain good results approximating P∞ by Pk for finite (small) k?

To answer Q3, we used the same series of experiments as before, but now without
updating the set of proofs used for constructing the BDDs. The change of

√
MSETest

as well as of MADFacts are plotted in the left column of Figures 6.4 and 6.5
respectively. The plots for the Asthma graph are hardly distinguishable and there
is indeed no significant difference (two-tailed t-test, α = 0.05). However, the
runtime decreases by orders of magnitude, since searching for proofs and building
BDDs are expensive operations that had to be done only once in the current
experiments. Retaining the initially-created BDDs gave a speedup of 10 for the
Alzheimer graph. In this graph there is no significant difference for the MSEtest
(two-tailed t-test, α = 0.05), but MADfacts is reduced a little slower (in terms of
iterations) when the BDDs are kept constant. When compared against runtime,
though, this is clearly not the case. These results indicate that BDDs can safely
be kept fixed during learning in the Biomine domain, which answers Q3. However,
this result might be due to characteristics of the dataset and the theory, e.g., the
amount of “overlap” between proofs and the amount of probability mass in shorter
proofs. For the general case we suggest to evaluate the influence of keeping the
BDDs fixed on a hold-out dataset prior to training the final model.

To answer Q4, we sampled 200 random node pairs (a, b) from the Asthma
graph and estimated the probability P∞(path(a, b)) using the lower bound of
the approximative inference algorithm [De Raedt et al., 2007] with interval width
δ = 0.01. During learning, however, we employ Pk to approximate probabilities. We
ran parameter learning for ProbLog on this dataset, varying k between 10 and 5000.
We thus aim at learning parameters using an underestimate of the true function,
as k best proofs may ignore a potentially large number of proofs. Figure 6.6 shows
the results for this experiment after 50 iterations of gradient descent. The average
absolute error per fact (MADfacts) decreases slightly with higher k. The difference
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Figure 6.6: MADfacts and
√

MSETest after 50 iterations of LFE-ProbLog for
different k (number of best proofs used) on the Asthma graph where training
examples carry P∞ probabilities (Q4)

is statistically significant for k = 10 and k = 100 (two-tailed t-test, α = 0.05),
but using more than 200 proofs has no significant influence on the error. The
MSE also decreases significantly (two-tailed t-test, α = 0.05) when comparing the
values for k = 10 and k = 200. Increasing k beyond 200 proofs has no significant
influence the MSE. It takes more time to search for more proofs and to build
the corresponding BDDs. These results indicate that using only 100 proofs is a
sufficient approximation in this domain and hence answer Q4. For the general case
we suggest to find a good value for k on a hold-out dataset prior to training the
final model.

6.5.6 Learning From Entailment And From Proofs

LFE-ProbLog is able to simultaneously learn from proofs and queries as training
examples. Hence we are interested in the following question:

Q5 Do proofs carry more information than queries?

To answer this question, we created mixed data sets containing both proofs and
queries. This was realized by sampling 300 random node pairs (a, b) and computing
PT1 for path(a,b), the probability of the best path between a and b from the
Asthma graphs. We then constructed several sets, where different proportions
of the examples where given as proof, the edges of the best path, instead of the
path(a,b) query. Learning uses k = 1. We used proofs for 0, 50, . . . , 300 examples
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and queries for the remaining ones and performed stratified 10-fold cross validation,
that is, the ratio of examples given as queries and as proofs was the same in every
fold. We updated BDDs in every iteration. Figure 6.7 shows the average value
of MADfacts and

√
MSETest after 40 iterations of gradient descent. The graphs

confirm that both error measures decrease as the fraction of proofs in the training
data is increased. Figure 6.8 shows the learning curve for MADfacts in the same
experiment and indicates that the convergence is faster when the fraction of proofs
in the training data is increased. These results confirm that proofs do carry more
information and answer Q5.
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Figure 6.7: MADfacts and
√

MSETest after 40 iterations of gradient descent using
LFE-ProbLog on the Asthma graph for different fractions of the training data
given as proofs (Q5).
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106 LEARNING FROM PROBABILISTIC ENTAILMENT

6.5.7 Comparison to State-Of-The-Art

So far the experiments were designed to study various aspects of the learning
algorithm and the system itself, while the performance of the trained model was of
secondary interest. This brings us on to the following question:

Q6 Does LFE-ProbLog perform as well as Markov Logic Networks in terms of
prediction?

To answer this question, we provide a comparison to Markov Logic on the UW-
CSE dataset, which was introduced by Richardson and Domingos [2006]. The
goal is to predict the advisedBy relation given the other predicates. To apply
our algorithm on this dataset, we translated the Markov logic network (MLN)
used by Richardson and Domingos into ProbLog clauses using Algorithm 16 (see
Appendix C). The ProbLog theory contained 113 probabilistic facts whereas the
original MLN contained 94 clauses. The translation yielded a ProbLog program
with unknown fact probabilities, which were then learned using LFE-ProbLog
and leave-one-department-out cross validation. Given n person constants in a sub-
database, we generated n2 training examples, one for every possible grounding of
advisedBy(X,Y). The examples got the probability 1 if the particular advisedBy
tuple was contained in the sub database, otherwise 0. The resulting training sets
are imbalanced. Averaged over all departments, the ratio MP /Mn of positive to
negative examples was ≈ 0.00756. Test runs with the standard MSE showed poor
performance, namely all fact probabilities were set to values close to zero. Hence we
minimized MSEcost with α = 0.00756 to account for the imbalance (cf. Section 6.4).

The clauses generated by converting the MLN contain cycles that are incompatible
with Prolog’s depth-first inference mechanism. We therefore imposed a depth-limit
of four, that is, only proofs with at most 4 probabilistic facts were incorporated in
calculating the probability of a query. Using k = 1000 to approximate probabilities,
we observed that no query had more than 100 proofs obeying the depth limit, that
is, all proofs were contained in the initial sets of proofs. We therefore reused initial
BDDs during learning to speed up the algorithm. We ran 200 iterations of gradient
descent with the learning rate η set to the number of training examples. For the
prediction we ran the ProbLog inference algorithm to calculate PTs (advisedBy(X, Y))
for every possible grounding of advisedBy(X,Y), using all person constants from
the test set. We then chose a threshold τ and classified those atoms as true that
had a success probability of at least τ . Others were classified as negative. We
obtained the precision-recall curve by varying τ from 0 to 1.

We repeated this experiment twice. In the All Info setting, all predicates were
available during learning, whereas for Partial Info, we removed the student(X)
and professor(X) predicates, which in turn made learning and inference more
difficult. Table 6.1 shows the results of this experiment. We used the same setup
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System All Info Partial Info

ProbLog 0.260± 0.0223 0.223± 0.0182
MLN(KB) 0.215± 0.0172 0.224± 0.0185
MLN(KB+CL) 0.152± 0.0165 0.203± 0.0196

Table 6.1: Area under the precision-recall curve when predicting advisedBy(X,
Y) when all other predicates are known (All Info) and when student(X) and
professor(X) are unknown (Partial Info) (Q6).

of Richardson and Domingos and computed the AUC and the standard deviation
using their evaluation scripts. In their experiments MLN(KB) and MLN(KB+CL)
performed best. We extracted the graphs for those two systems from their plots
and included them in our plots (Figure 6.10-6.15). The difference between ProbLog
and MLN(KB) is statistically significant in the All Info case (two-tailed t-test,
α = 0.05), whereas it is not significant for the Partial Info case (Q6).

To assess the influence of the α parameter in MSEcost on the outcome, we repeated
the experiment with different values (cf. Figure 6.9). For α = 1 we get the standard
MSE that performs worst. For α = MP /MN (cf. Equation 6.12) we get the best
result in the All Info setting and fairly good results in the Partial Info setting.
There is a strong correlation between both graphs, with an optimum value around
α = MP /MN for the All Info case and with a rather good value in the Partial Info
case. This result indicates that our choice of α is justified. The results also suggest
to use a hold-out dataset to tune α for increasing the performance.
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Figure 6.9: The area under the PR curve for different α values when everything
is available (All Info, left graph) and when student(X) and professor(X) are
unknown (Partial Info, right graph). The horizontal lines indicate the results
obtained with MLNs reported in [Richardson and Domingos, 2006] (Q6).
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Figure 6.10: Precision and recall for all areas: All Info (left) and Partial Info (right)
(Q6).
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Figure 6.11: Precision and recall for the AI area: All Info (left) and Partial Info
(right) (Q6).
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Figure 6.12: Precision and recall for the Graphics area: All Info (left) and Partial
Info (right) (Q6).
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Figure 6.13: Precision and recall for the Languages area: All Info (left) and Partial
Info (right) (Q6).
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Figure 6.14: Precision and recall for the Systems area: All Info (left) and Partial
Info (right) (Q6).
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Figure 6.15: Precision and recall for the Theory area: All Info (left) and Partial
Info (right) (Q6).
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As second test case for question Q6 we considered the WebKB dataset [Craven and
Slattery, 2001]. The ProbLog program we used for this problem is related to the
MLN used by Lowd and Domingos [2007]. In comparison to their model we ignore
words that are absent on a page, while they explicitly take them into account. Our
model consists of two parts. The first part captures the dependencies between
words appearing on a particular page and the class of the page. The program
contains one probabilistic fact word_class(Word,Class) for each combination of
Word and Class, resulting in 774 · 6 = 4644 probabilistic facts (774 word stems, 6
possible class labels).

pWord,Class :: word_class(Word,Class).

class(Page, C, Depth) :− word_class(W, C), has_word(Page, W).

The class person always co-occurs with faculty, student or staff. Therefore we
treated it separately by not generating link_class/4 and word_class/2 facts for
person. Instead, we used the following clauses to express that if a page is classified
as student, staff or faculty page, it should also be classified as a person page.

class(Page, person, D) :− class(Page, student, D).

class(Page, person, D) :− class(Page, staff, D).

class(Page, person, D) :− class(Page, faculty, D).

The second part of our model captures the dependencies between pages. We
generated one non-ground probabilistic fact link_class(P1, P2,Class1,Class2)
for every combination of two classes – except person. The variables P1 and P2 get
instantiated by the identifiers of the two pages involved in a link. Using non-ground
facts, yields independent facts for every ground instance – namely every link. The
counter Depth is decreased every time a link is followed in a proof to prevent
endless cycles. During learning and inference we set Depth = 1 that restricts the
search to the direct neighborhood of each page.

pClass1, Class2 ::link_class(P1, P2,Class1,Class2).

class(Page, C, Depth) :−Depth > 0,

Depth2 is Depth− 1,

links_to(OtherPage, Page),

class(OtherPage, COther, Depth2),

link_class(OtherPage, Page, COther, C).

We ran 60 iterations of gradient descent and performed leave-one-out cross
validation. We repeated this experiment twice. In the first run we used only
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Figure 6.16: Area under the PR curve (AUC) after each learning step for WebKB
(left), PR curve after 50 iterations of gradient descent (right) (Q6)

the first part of our model that considers the words appearing on a page. In
the second run we used the full model that considers both words and links. We
refer to the runs as words and words+links respectively. The results are shown in
Figure 6.16. As expected, the words+links model outperforms the version restricted
to words. It reaches its maximum AUC of 0.606± 0.003 in iteration 50 and then
slightly overfits. This result is in the same range as the one obtained by Lowd and
Domingos [2007] using a voted perceptron algorithm (≈ 0.605) and the contrastive
divergence algorithm (≈ 0.604). Lowd and Domingos were able to improve the
AUC up to ≈ 0.73 using second-order gradient techniques such as scaled conjugated
gradients. These results answer Q6 and show an interesting direction for future
work: applying second order gradient techniques for LFE-ProbLog.

6.6 Related Work

Probabilistic relational models (PRMs) [Friedman et al., 1999b] and Bayesian
logic programs (BLPs) [Kersting and De Raedt, 2008] are relational extensions
of Bayesian networks using entity relationship models or logic programming
respectively. Similarly to ProbLog, both frameworks define generative models
on the level of interpretations, and learning methods for PRMs and BLPs thus
use interpretations as examples. However, while learning from full interpretations
is theoretically possible and straightforward in ProbLog, it suffers from practical
limitations, especially in applications where interpretations are large. Indeed,
consider the probabilistic network, where full interpretations would contain
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information on edges (the probabilistic facts) as well as paths (as following from the
background knowledge), whereas natural examples would typically focus on some
specific paths only and often not include edges at all. It is unclear how different
paths could be sampled and, clearly, the sum of the probabilities of such paths do
not need to be equal 1. These difficulties explain, partially, why so far only few
learning techniques for probabilistic databases have been developed.

The ALLPAD system [Riguzzi, 2008] for learning ground LPADs is related to the
work presented here since it also uses training examples with associated probabilities.
However, the training examples in this setting are interpretations. The focus of his
work lies on learning the structure of an LPAD by combining a complete search for
clauses with finding an approximate solution to a constraint satisfaction problem.
The parameters for a given structure can be obtained directly from the probabilities
of the training examples.

Within the probabilistic database community, parameter estimation has received
surprisingly little attention. Nottelmann and Fuhr [2001] consider learning
probabilistic Datalog rules in a setting with underlying distribution semantics
similar to ProbLog’s. However, their setting and approach also significantly differ
from ours. First, a single probabilistic target predicate is estimated, whereas we
consider estimating the probabilities attached to definitions of multiple predicates.
Second, their approach uses the training probabilities differently: they generate
training examples randomly labeled with “0” or “1” according to the observed
probabilities, whereas we use the observed probabilities directly. Finally, there
are also differences in the algorithmic approach. Our learning algorithm follows a
principled gradient approach, while they follow a two-steps bootstrapping approach;
first estimating parameters as empirical frequencies among matching rules and then
selecting the subset of rules with the lowest expected quadratic loss on a hold-out
validation set. Gupta and Sarawagi [2006] also consider a closely related learning
setting but only extract probabilistic facts from data.

Darwiche [2002] uses arithmetic circuits (ACs) for probabilistic inference in belief
networks. A multi-linear function encoding the belief network is first represented in
d-DNNF, a generalization of BDDs, and then translated into an AC. Probabilistic
queries are answered by calculating partial derivatives of the multi-linear function
on the AC, which can be done in one pass through the AC similar to the gradient
calculation on BDDs for ProbLog parameter estimation.

In a sense, keeping the BDD fixed when using the k-probability for learning exploits
a similar idea as Friedman’s [1997] structural EM learning for Bayesian networks,
as it also reuses structures computed for similar problems. However, in contrast
to structural EM, we do not evaluate the changes and use the old structure as an
approximation of the new one.

Finally, the new setting and algorithm compromise a natural and useful addition
to the existing learning algorithms for ProbLog. It is most closely related to the
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theory compression setting of De Raedt et al. [2008b]. The task there was to
remove all but the k best facts from the database (that is, to set the probability
of such facts to 0), which realizes an elementary form of theory revision. The
present task extends the compression setting in that parameters of all facts can
now be tuned starting from evidence. This realizes a more general form of theory
revision [Wrobel et al., 1996], albeit that only the parameters are changed while
the structure is fixed.

6.7 Conclusions And Future Work

We have introduced a novel setting to learn parameters of probabilistic databases
that integrates the classical settings of both learning from entailment and learning
from proofs with the use of probabilistic examples. Probabilistic databases pose
new challenges for parameter learning, as they define a distribution on the level of
interpretations, though interpretations are typically too large to be used as training
examples for parameter learning.

The LFE-ProbLog algorithm relies on gradient descent to find optimal parameters.
While the approach works well in the domains we used in our experiments, there
might be cases where the convergence speed is too slow. To account for that, we
implemented a line search algorithm that tries to scale the gradient in order to
find an optimal learning rate. This computation is almost as costly as computing
the gradient itself, as it involves repeated evaluations of the BDDs. A more
promising approach to increase the convergence speed would be the use of second-
order gradient methods. They have been proven to be very efficient for Markov
Logic Networks [Lowd and Domingos, 2007] and it is straightforward to adopt the
gradient computation towards a second order gradient by using existing libraries
like libLBFGs [Okazaki, 2007].

Another interesting extension is the combination with Hybrid ProbLog in order
to learn the parameters of distributions governing the continuous facts. The
first step, that is, deriving the gradient of the success probability with respect
to the parameters has already been made (cf. Appendix E). A proof-of-concept
implementation showed the feasibility of this approach.



Chapter 7

Learning from Interpretations∗

Statistical relational learning [Getoor and Taskar, 2007] and probabilistic logic
learning [De Raedt et al., 2008a; De Raedt, 2008] have contributed various
representations and learning schemes. Popular approaches include BLPs [Kersting
and De Raedt, 2007], ICL [Poole, 2008], Markov Logic [Richardson and Domingos,
2006], PRISM [Sato and Kameya, 2001], PRMs [Getoor et al., 2001] and
ProbLog [De Raedt et al., 2007; Gutmann et al., 2008]. These approaches differ
not only in the underlying representations but also in the learning settings they
employ.

For learning knowledge-based model construction approaches (KBMC), such as
Markov Logic, PRMs and BLPs, one usually employs relational state descriptions
as training examples. This setting is also known as learning from interpretations.
For training probabilistic programming languages one typically uses learning from
entailment [De Raedt and Kersting, 2004; De Raedt et al., 2008a]. PRISM and
ProbLog, for instance, are probabilistic logic programming languages that are based
on Sato ’s [1995] distribution semantics. They use training examples in the form
of labeled facts, where labels are either the truth values of these facts or target
probabilities.

In the learning from entailment setting, one usually starts from observations for
a single target predicate. In the learning from interpretations setting, however,
the observations specify the value for some of the random variables in a state
description. Probabilistic grammars and graphical models are illustrative examples
for each setting. Probabilistic grammars are trained on training examples in the
form of sentences. Each training example states whether a particular sentence was
derived or not, but it does not explain how it was derived. In contrast, Bayesian

∗This chapter presents joint work with Ingo Thon and Luc De Raedt published in [Gutmann
et al., 2010c, 2011a]
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networks are typically trained on partial or complete state descriptions, which
specify the value for some random variables in the network. This also implies that
training examples for Bayesian networks can contain much more information. These
differences in learning settings also explain why the KBMC and PLP approaches
have been applied to different kinds of data sets and applications. Entity resolution
and link prediction are examples of domains where KBMC has been successfully
applied (cf. [Singla and Domingos, 2006]). This chapter aims at bridging the gap
between these two types of approaches to learning. We study how the parameters
of ProbLog programs can be learned from partial interpretations.

This chapter has two core contributions: (1) a parameter estimation algorithm
for learning from partial interpretations for ProbLog and (2) an optimization that
identifies independent parts of the theory such that learning in real-world domains
becomes feasible.

The chapter is organized as follows: Section 7.1 formalizes the problem of learning
the parameters of ProbLog programs from interpretations. Section 7.2 introduces
LFI-ProbLog for finding the maximum likelihood parameters. We report on
experimental results in Section 7.3. Before concluding, we discuss related work in
Section 7.4.

7.1 Learning From Interpretations

Learning from (possibly partial) interpretations is a common setting in statistical
relational learning that has not yet been studied in its full generality for probabilistic
programming languages. The semantics of a ProbLog program does not encode a
generative process at the level of individual predicates. Hence one cannot learn
in a generative setting from individual queries. Thus we needed to formulate the
learning task for LFE-ProbLog (cf. Chapter 6) as a regression problem. At the
level of interpretations, however, ProbLog does encode a generative model as we
argued in Chapter 3. It follows from the fact that each total choice generates a
unique possible world through its least Herbrand model. Therefore, it is much more
natural to learn from interpretations in ProbLog; this is akin to typical KBMC
approaches. In a generative setting, one normally is interested in the maximum
likelihood parameters given the training data. This can be formalized as follows.

Definition 7.1 (Max-Likelihood Parameter Estimation). Given a ProbLog
program T = F ∪ BK where the probabilistic facts F have unknown parameters
p = 〈p1, . . . , pN 〉 and a set of partial or complete interpretations D = {I1, . . . , IM}
(the training examples). Find probabilities p̂ = 〈p̂1, . . . , p̂N 〉 such that

p̂ = arg max
p

P (D|T ) = arg max
p

M∏
m=1

PTw (Im) .
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Thus we are given a ProbLog program and a set of partial interpretations and
the goal is to find the maximum likelihood parameters. We use the previously
introduced ALARM-2 program to illustrate the concepts and algorithms in this
chapter:

F = {0.1:: burglary, 0.2:: earthquake, 0.8:: hears_alarm(X)}

BK = {person(mary),

person(john),

alarm :− burglary

alarm :− earthquake

calls(X) :− person(X), alarm, hears_alarm(X)}

A partial interpretation I specifies the truth value for some but not necessarily
for all atoms. We represent partial interpretations as I = (I+, I−), where I+

contains all true atoms and I− all false atoms and I+ ∩ I− = ∅. The probability
of a partial interpretation is the sum of the probabilities of all possible worlds
consistent with the known atoms. This is the success probability of the query
(
∧
aj∈I+ aj) ∧ (

∧
aj∈I− ¬aj). In the ALARM-2 program the probability of the

following partial interpretation

I+ = {person(mary), person(john), burglary, alarm,

hears_alarm(john), calls(john)}

I− = {calls(mary), hears_alarm(mary)}

is PTw ((I+, I−)) = 0.1× 0.8× (1− 0.8)×
(
0.2 + (1− 0.2)

)
as there are two total

choices that result in this partial interpretation.

For instructive reason we first discuss the fully-observable case in the following
section. For complete interpretations, where everything is observable, one can
compute p̂ by counting. In the more complex case of partial interpretations,
one has to use an approach that is capable of handling partial observability
(cf. Section 7.1.2).

7.1.1 Full Observability

In the fully-observable case the maximum likelihood estimators p̂n for the
probabilistic facts pn :: fn can be obtained by counting the number of true ground
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instances in every interpretation, that is,

p̂n = 1
Zn

M∑
m=1

Km
n∑

k=1
δmn,k where δmn,k :=

{
1 if fnθmn,k ∈ Im
0 else (7.1)

and θmn,k is the k-th possible ground substitution for the fact fn in the interpretation
Im and Km

n is the number of such substitutions. The sum is normalized by
Zn =

∑M
m=1K

m
n , the total number of ground instances of the fact fn in all training

examples. If Zn is zero, i.e., no ground instance of fn is used, p̂n is undefined and
one must not update the fact probability pn.

Before moving on to the partially-observable case, let us consider the issue of
determining the possible substitutions θmn,k for a fact pn :: fn and an interpretation
Im. To resolve this, we assume that the facts fn are typed and that each
interpretation Im contains an explicit definition of the different types in the
form of fully-observable unary predicates.1 In the ALARM-2 example, the
predicate person/1 can be regarded as the type of the (first) argument of
hears_alarm(X) and calls(X). This predicate may have different ground atoms
in each interpretation. One person, i.e., can have john and mary as neighbors,
another one ann, bob and eve.

7.1.2 Partial Observability

In many applications the training examples are partially observed. In the ALARM-
2 example, we may receive a phone call but we may not know whether an earthquake
has in fact occurred. In the partially-observable case – similar to Bayesian networks
– a closed-form solution of the maximum likelihood parameters is infeasible. Instead,
one has to replace in (7.1) the term δmn,k by ET [δmn,k|Im], that is, the conditional
expectation under the current model T given the partial interpretation Im,

p̃n := 1
Zn

M∑
m=1

Km
n∑

k=1
ET [δmn,k|Im] . (7.2)

The p̃n values can then be used by the EM algorithm described in the following
section to compute the maximum likelihood estimates p̂n. Before we describe
this algorithm, we highlight a crucial property of (7.2) that allows us to ignore
irrelevant ground facts in order to speed up the computation. Consider the
partial interpretation I+ = {person(mary), person(john), alarm} and I− = ∅
for the ALARM-2 example. Only the atoms in {burglary, earthquake,
hears_alarm(john), hears_alarm(mary)} ∪ I+ are relevant for calculating the

1This assumption can be relaxed if the types are computable from the ProbLog program and
the current interpretation.
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marginal probability (expected counts) of all probabilistic facts. This is due to the
fact that the remaining atoms {calls(john), calls(mary)} are not used in any
proof for the facts observed in the interpretations. Therefore, they do not influence
the probability of the partial interpretation. Such atoms play a role similar to that
of barren nodes in Bayesian networks [Jensen, 2001]. This motivates the following
definition.

Definition 7.2 (Dependency Set of Atom). Let T = F ∪BK be a ProbLog theory
and x a ground atom then the dependency set of x is defined as

depT (x) := {f ground fact | a ground SLD-proof in T for x contains f} .

Thus, depT (x) contains all ground atoms that appear in any possible proof of the
atom x. This can be generalized to partial interpretations:

Definition 7.3 (Dependency Set of Interpretation). Let T = F ∪BK be a ProbLog
theory and I = (I+, I−) a partial interpretation then the dependency set of the
partial interpretation I is defined as

depT (I) :=
( ⋃
x∈I+

depT (x)
)
∪

( ⋃
x∈I−

depT (x)
)

.

Our goal is to restrict the probability calculation to the dependent atoms only.
Before doing so, we first need the notion of the restricted ProbLog theory.

Definition 7.4 (Interpretation-Restricted ProbLog theory). Let T = F ∪BK be
a ProbLog theory and I = (I+, I−) a partial interpretation. Then we define the
interpretation-restricted ProbLog theory T r(I) as follows

T r(I) := F r(I) ∪BKr(I) .

The set of facts F r(I) is defined as {p :: fθ | p :: f ∈ F ∧fθ ∈ depT (I)} and BKr(I)
is obtained by computing all ground instances of clauses in BK in which all atoms
appear in depT (I).

In other words, the interpretation-restricted theory T r(I) grounds the part of the
original theory T that is relevant for generating I. The rest, that is, ground atoms
that do not appear in any proof for any atom in I, is ignored. In turn, this allows
one to apply the learning algorithm on programs that otherwise would not fit in
memory. More importantly, T r(I) is always finite as we assume T having the finite
support property.

Example 7.1 (Interpretation-Restricted ProbLog theory). For the partial
interpretation I = ({burglary, alarm},∅), for instance, F r(I) is {0.1 :: burglary,
0.2 :: earthquake} and BKr(I) is {alarm :− burglary, alarm :− earthquake}.
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It can be shown that the conditional probability of ground instances of the
probabilistic fact fn given I calculated in the theory T is equivalent to the
probability calculated in T r(I)

ET [δmn,k|Im] =
{
ET r(Im)[δmn,k|Im] if fn ∈ depT (Im)
pn otherwise

. (7.3)

This property guarantees that the subsequent steps of the learning algorithm yield
the correct result when applied on the interpretation-restricted theory. The proof
for (7.3) can be found in Appendix F.

Non-ground probabilistic facts such as 0.8 :: hears_alarm(X) have a parameter-
tying between all ground instances. For instance, both hears_alarm(john) and
hears_alarm(mary) are true with probability 0.8, independently of each other.
When learning the probabilities, this parameter-tying has to be taken into account
after grounding the theory. LFI-Problog enforces parameter-tying by aggregating
the δmn,k counts per non-ground fact (cf. Eq. 7.1), where k identifies the ground
instances of the probabilistic fact fn.

7.2 The LFI-ProbLog Algorithm

We now develop the LFI-ProbLog algorithm for finding the maximum likelihood
parameters p̂ defined in (7.1). One of the key ideas is the transformation of the
program T into an equivalent Boolean formula by Clark’s completion. In order to
yield correct results, this step requires T to be acyclic. A definite logic program is
acyclic if there exists a mapping function from atoms to natural numbers, such
that for each clause the mapping of the head is larger than the mapping of all body
atoms (cf. [Apt and Bezem, 1991]).

Example 7.2. The following program is acyclic

day(0). day(s(X)) :− day(X).

and a possible mapping function is f(day(0)) := 0 and f(day(s(X))) := 1 +
f(f(day(s(X)))). The program

q :− p. p :− q.

is cyclic as there exists no mapping function.

Algorithm 12 shows the main loop of LFI-ProbLog. In Line 3, each training example
Im, that is, each partial interpretation is translated into a Binary Decision Diagram
and atoms with known truth value using the GenerateBDD(T, Im) function.
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Algorithm 12 The main loop of LFI-ProbLog. Each training example (I+
m, I

−
m) ∈ I

is represented as a BDD together with the set of ground probabilistic facts that
are known to be true or false. After the initialization of the BDDs, the algorithm
follows an EM update scheme, that is, using the current model to complete the
data and then estimating the new model parameters from this until convergence.
1: function LFI-ProbLog(T = F ∪BK, I)
2: for 1 ≤ m ≤M do . Loop over training examples
3: (bbdm, knowntruem , knownfalsem )←GenerateBDD(T, (I+

m, I
−
m))

4: end for
5: initialize all fact probabilities fn in F randomly
6: while not converged do . EM algorithm
7: for 1 ≤ m ≤M do . Loop over training examples
8: αm ←Alpha(bbdm) . E Step
9: βm ←Beta(bbdm) . E Step
10: end for
11: compute ET [δmn,k|Im] for all m, k and n using Eq. 7.4 . E Step
12: for 1 ≤ n ≤ N do . Loop over probabilistic facts
13: p̃n ← 1

Zn

∑M
m=1

∑Km
n

k=1ET [δmn,k|Im] . cf. Eq. 7.2 M Step
14: end for
15: Replace all pn with p̃n . Update model parameters
16: end while
17: return {pn :: fn | fn ∈ F} ∪BK
18: end function

This information is then used in Line 5-16 to estimate the fact probabilities using
the expectation maximization (EM) algorithm (cf. [Dempster et al., 1977]). After
randomly initializing the model parameters, the EM algorithm repeatedly performs
the following two operations until the parameters have converged:

• E Step: Use the current model to determine the conditional distribution of
the unobserved random variables.

• M Step: Use the observed random variables together with the distribution of
the unobserved random variables to estimate the model parameters.

We now discuss the details of the auxiliary functions used by LFI-ProbLog. In
the following section we describe the details of this translation employed by
GenerateBDD while Section 7.2.2 explains the computation of the expected
counts based on Alpha and Beta. Please note that we employ two optimizations
to minimize the size of the resulting BDDs. Firstly, we use unit propagation to
identify ground probabilistic facts that are certainly true or false and do not add
them to the formulae represented as BDD. Secondly, we use an algorithm that
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Algorithm 13 This algorithm translates a ProbLog theory T and a set of evidence
atoms I = (I−, I+) into a BDD. Unit propagation is used in the Simplify step
to identify atoms with known truth values. Such atoms are not contained in the
BDD but returned separately.
1: function GenerateBDD(T, I)
2: dep← depT (I) . Find the dependency set of I (cf. Definition 7.3)
3: F ← ∅ . Set of Boolean formulae to encode T and I
4: for a ∈ dep where a is not a probabilistic fact do
5: (a↔ bodya)←ClarksCompletion(a,dep, T )
6: F ← F ∪ {a↔ bodya}
7: end for
8: (F, knowntrue, knownfalse)←PropagateEvidenceAndSimplify(F, I)
9: bdd←ConstructBDD(φ1 ∧ φ2 ∧ . . . ∧ φk) . the φi ∈ F are formulae
10: return (bdd, knowntrue, knownfalse)
11: end function

exploits independencies in the Boolean formulae to split the BDD into smaller
parts. The details of this splitting algorithm are discussed in Section 7.2.3.

7.2.1 Computing the BDD For An Interpretation

In this section we describe how LFI-ProbLog translates a partial interpretation
I together with a ProbLog theory T into a BDD. We shall do this by executing
Algorithm 13 on the partial interpretation I+ = {alarm}, I− = {calls(john)}
and the ALARM-2 program.

1. The algorithm computes depT (I) in Line 2 by executing a tabled meta-
interpreter for all atoms in I and collecting all ground atoms in all proofs.
The set depT (I) contains all atoms that may have an influence on the
probability of the partial interpretation I.

depT (alarm) = {alarm, earthquake, burglary}

depT (calls(john)) = {alarm, earthquake, burglary, person(john)

hears_alarm(john), calls(john)}

Based on this, one can obtain the interpretation-restricted theory (cf.
Definition 7.4) by generating all ground clauses from BK and probabilistic
facts that can be constructed by replacing the atoms with matching ground
instances from depT (I) = depT (alarm) ∪ depT (calls(john)). In terms of
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logic programming this step is called grounding. It yields the following theory:

F r(I) = {0.1 :: burglary,

0.2 :: earthquake,

0.8 :: hears_alarm(john)}

BKr(I) = {person(john),

alarm :− burglary,

alarm :− earthquake,

calls(john) :− person(john), alarm,

hears_alarm(john)}

The algorithm does not explicitly generate the interpretation-restricted theory.
Instead, it performs the grounding simultaneously with Clark’s completion
in the next step.

2. The algorithm computes Clark’s completion of BKr(I) in Line 5–7. This
is a well-known transformation (cf. [Nilsson and Małuszyński, 1995]) that
translates a logic program into a Boolean formula. This step requires the
program to be acyclic in order to be sound. If the program is cyclic, it can be
the case that the Boolean formula can be satisfied by a truth value assignment
that is not a model of the original program.
Clark’s completion of BKr(I) is computed by replacing all clauses with
the same head h :− body1, . . . , h :− bodyn by the corresponding formula
h↔ body1 ∨ . . . ∨ bodyn. The result in our example is the conjunction of

person(john)↔ true

alarm↔ (burglary ∨ earthquake)

calls(john)↔ person(john) ∧ alarm ∧ hears_alarm(john)

Clark’s completion allows one to propagate values from the head to the bodies
and vice versa. It states that the head is true if and only if at least one of
its bodies is true, which captures the least Herbrand model semantics when
the logic program is acyclic.
Note that we generate Clark’s completion for the background knowledge BK
but not for probabilistic facts, for instance, we do not generate burglary↔
true. If we would do that, the following unit propagation algorithm could
simplify the formula and remove all probabilistic facts. Doing so, we make
the open world assumption for the probabilistic facts.
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3. The function PropagateEvidenceAndSimplify in Line 8 propagates the
evidence into the formulae φi ∈ F , that is, all atoms that occur in I+ get
replaced by true and all atoms that occur in I− get replaced by false:

person(john)↔ true

true↔ (burglary ∨ earthquake)

false↔ person(john) ∧ true ∧ hears_alarm(john)

Then the function simplifies the Boolean formula by applying basic term-
equivalent operations, for instance, removing true from conjunctions and
De Morgan’s laws. Moreover, the function employs unit propagation to replace
atoms by true or false if their value is certain, i.e., the atom person(john)
in the example above.
It is worth noting that the simplification step is not mandatory and one could
stop after propagating the truth values from I. In addition, the simplification
is expensive as it requires repeated operations on terms represented in the
form of trees. Nonetheless, it is crucial for performance of BDD operations
later on. By using unit propagation to identify atoms that are certainly true
or false, we minimize the amount of variables the BDD has to represent. In
turn, it can be build faster and less memory is required.
When no more simplification is possible the algorithm returns the conjunction
of the formulae φi ∈ F as well as the ground probabilistic facts with known
true value:

(burglary ∨ earthquake)

knowntrue = ∅, knownfalse = {hears_alarm(john)}

While the resulting formula in this example contains only atoms that are also
probabilistic facts, it can be the case that it also contains derived atoms from
BK. In turn, such atoms will then be represented in the BDD and we shall
refer to nodes that correspond to such atoms as deterministic nodes since
they represent atoms in the deterministic background knowledge BK.

4. In Line 9 the algorithm constructs the BDD shown in Figure 7.1. This data
structure represents the Boolean formula and is used by Algorithm 14 and 15
to compute the expected counts of the probabilistic facts.

In the following section, we show the computation of the expected counts
ET [δmn,k|Im] using the BDD and the knowntrue and knownfalse sets. Based on the
counts, one can then compute the estimated fact probabilities p̃n (cf. Eq. 7.2).
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burglary

earthquake

1 0
α = 1
β = 0.1 · 1 + 0.2 · 0.9

= 0.28

α = 0
β = (1− 0.2) · 0.9 = 0.72

α = 0.2 · 1 + (1− 0.2) · 0
= 0.2

β = (1− 0.1) · 1 = 0.9

α = 0.1 · 1 + (1− 0.1) · 0.2
= 0.28

β = 1

Figure 7.1: The BDD generated by LFI-ProbLog for the partial interpretation
I+ = {alarm}, I− = {calls(john)} of the ALARM-2 program. The α and β
values are computed in Algorithm 14 and 15 and are used for calculating the
expected counts of the probabilistic facts.

7.2.2 Calculating Expected Counts

We compute the expected counts ET [δmn,k|Im] by a dynamic programming algorithm
on BDDm. The computation is similar to the forward-backward algorithm for
Hidden Markov Models (cf. [Rabiner, 1989]) or Baker’s [1979] inside-outside
algorithm for probabilistic context-free grammars. Our algorithm computes the
upward probability α(N) as well as the downward probability β(N) for each node N
in the BDD. These values are then used to compute the expected count of the kth
ground instance of the probabilistic fact pn :: fn given the interpretation Im as

ET [δmn,k|Im] = 1
P (BDD)

∑
N∈BDDm

N represents fnθmn,k

β(N) · pn · α(h(N)) . (7.4)

We have to take into account that we removed ground probabilistic facts due to unit
propagation and they are not represented in the BDD. Thus if fnθmn,k ∈ knowntruem

then ET [δmn,k|Im] = 1 and if fnθmn,k ∈ knownfalsem then ET [δmn,k|Im] = 0. We also
have to consider the probabilistic facts that are neither represented in the BDD nor
in the known sets. Their expected count is the prior probability of the fact itself,
that is, ET [δmn,k|Im] = pn (cf. Eq. 7.3). In the remainder of this section we discuss
the details of the α(·) and β(·) values and the algorithms for computing them.

The intuitive meaning of (7.4) is as follows. Each path from the root of the BDD to
the 1-terminal corresponds to an assignment of values to the variables that satisfies
the Boolean formula underlying the BDD. The probability that such a path passes
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α(N) = α(T1) · pπNN + α(T2) · (1− pN )πN

N

T1 T2

α(T1) α(T2)

(a) Upward probability

β(N) =
∑
β(pa(N))

N

T1 T2

(pN )πN · β(N) (1− pN )πN · β(N)

(b) Downward probability

Figure 7.2: Information flow in the BDD when calculating α(·) and β(·). Solid
lines represent high edges and dashed lines represent low edges. The direction of
the information flow is indicated by the double-lined arrows.

through the node N can be computed as α(N) · β(N) · (P (BDD))−1, where α(N)
is the probability that a random walker starting from N will reach the 1-terminal
and β(N) is the probability that a random walker starting at the root will reach N .
Hence in (7.4) we compute the probability of “a random walker starting at the root
reaches N , and ends up in the 1-terminal when leaving N trough the high child”.

The α(·) probabilities express the likelihood of reaching the 1-terminal when starting
from a particular node N and proceeding to the high child h(N) with probability
pN and to the low child with probability 1 − pN . For the terminal nodes this
upward probability is defined as

α(0) := 0 α(1) := 1

and for inner nodes, it is defined as

α(N) := α(h(N)) · pπNN + α(l(N)) · (1− pN )πN ,
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Algorithm 14 Calculating the upward probability α(·) for each node in a BDD
1: function Alpha(bdd)
2: Global α, visited . Global Variables
3: α← 0̂, visited← 0̂ . Array of 0’s with one entry per BDD node
4: α(1)← 1, α(0)← 0, visited(1)← 1, visited(0)← 1 . Base Cases
5: AlphaTraverse(root(bdd))
6: return α
7: end function
8: function AlphaTraverse(N)
9: Global α, visited . Global Variables
10: if visited(N) = 0 then
11: visited(N)← 1
12: Let h(N) and l(N) be the high and low child of N respectively
13: AlphaTraverse(h(N))
14: AlphaTraverse(l(N))
15: α(N)← (pN )πN · α(h(N)) + (1− pN )πN · α(l(N))
16: end if
17: end function

where πN is an indicator function that takes the value 1 for probabilistic nodes
and 0 for deterministic nodes and pN is the fact probability of the fact represented
by the node N . The α(·) values can be computed for each node in the BDD by
a level-wise algorithm starting from the terminal nodes (cf. Algorithm 14). The
intermediate values are propagated upwards as illustrated in Figure 7.2(a).

The downward probabilities β(·) express the likelihood of reaching a node N when
starting from the root node and following edges, similarly to α(·), according to
their probability. It is defined as β(Root) := 1 for the root node of the BDD. For
any other node N it is defined as:

β(N) :=

 ∑
M∈nodes(BDD)

N=h(M)

β(M) · (pM )πM

+

 ∑
M∈nodes(BDD)

N=l(M)

β(M) · (1− pM )πM


The first sum considers all possible parent nodes M of N that are connected by
a high edge. When being in M the random walker will choose this edge with
probability pM . The second sum considers all possible parents nodes that are
connected to N by a low edge, where the random walker will proceed from M
to N with probability 1 − pM . The β(·) values can be computed for each node
in the BDD by a level-wise algorithm starting from the root node as shown in
Algorithm 15. It uses a priority queue for the BDD nodes to ensure that the values
are computed level-wise starting from the root. This is crucial as the values on
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Algorithm 15 Calculating the downward probability β(·) for each node in a BDD
1: function Beta(bdd)
2: β ← 0̂ . Array of 0’s with one entry per BDD node
3: q ←EmptyPriorityQueue() . Sort according to BDD variable order
4: Enqueue(q, root(bdd)) . Base Case
5: β(root(bdd))← 1 . Base Case
6: repeat
7: N ←Dequeue(q)
8: Let h(N) and l(N) be the high and low child of N respectively
9: β(h(N))← β(h(N)) + β(N) · (pN )πN
10: β(l(N))← β(l(N)) + β(N) · (1− pN )πN
11: EnqueueIfNotYetContained(q, h(N))
12: EnqueueIfNotYetContained(q, l(N))
13: until q is empty
14: return β
15: end function

level n depend, due to the sum over all parent nodes, on the values level n − 1.
The intermediate values are propagated downwards as illustrated in Figure 7.2(b).

The upward probabilities α(·) are identical to the values computed for inference in
ProbLog by Algorithm 2 (cf. Chapter 3). Hence the probability P (BDD) that is
needed in Equation 7.4 is identical to α(Root). Furthermore, one can also show
that P (BDD) = β(1) and 1− P (BDD) = β(0).

Moreover, for computing the expected counts, we also need to consider the nodes
that have been removed in the construction of the reduced BDD. For instance, the
probabilistic fact earthquake in Figure 7.1 is represented by the node on the left
side, while the high edge of the root directly points to the 1-terminal. Implicitly,
the fact earthquake is also represented on that path and we have to take this
into account for the expected counts. Hence the sum in (7.2) needs to consider
the removed nodes. If we would not consider such nodes, we would underestimate
the expected counts. In the algorithms for computing α(·) and β(·), we have to
treat the missing atoms at a particular level as if they were there as illustrated in
Figure 7.3. Since the BDD is ordered, that is, variables appear on all paths in the
same order, we can easily detect missing nodes and output their probability. For
the ease of notation, this step is not contained in the pseudocode of the algorithms.
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a level l − 1

level l

b level l + 1

⇒

a level l − 1

c level l

b level l + 1

Figure 7.3: The algorithms need to compute α(c) and β(c) even though the node
c has been removed when reducing the BDD during its construction. It can be
shown that β(c) = β(a) and α(c) = α(b).

7.2.3 Automated Theory Splitting

For large ground theories the corresponding BDDs are often too big to fit in
memory. BDD tools use heuristics to find a variable order that minimizes the size
of the BDD. The runtime of this step is exponential in the size of the input, which
is prohibitive for parameter learning. We propose an algorithm that identifies
independent parts of the grounded theory clark(BKr(I)). The key observation is
that the BDD for the Boolean formula A ∧B can be decomposed into two BDDs,
one for BDD for A and one for B respectively, if A and B do not share a common
variable. Since each variable is contained in at most one BDD, the expected counts
of variables can be computed as the union of the expected count calculation on
both BDDs.

This property can be exploited by the following algorithm that constructs an
undirected graph as follows:

1. Add one node per clause in clark(BKr(I)).

2. Add an edge between two nodes if the corresponding clauses share an atom.

3. Identify the connected components in the resulting graph.

4. Build for each of the connected components one BDD representing the
conjunction of the clauses in the component.

The connected components of a graph can be computed in linear time [Hopcroft
and Tarjan, 1973]. The experimental results show that the splitting is crucial for
the applicability of LFI-ProbLog on large real-world datasets.
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7.3 Experiments

We used two datasets to evaluate LFI-ProbLog. The WebKB dataset serves as test
case to compare with state-of-the-art systems. The Smokers dataset is used to test
the algorithm in terms of the learned model, that is, how close the parameters are
to the original ones. The experiments were run on an Intel Core 2 Quad machine
(2.83 GHz) with 8GB RAM.

7.3.1 WebKB

The goal of this experiment is to answer the following questions:

Q1 Is LFI-ProbLog competitive with existing state-of-the-art frameworks?

Q2 Is LFI-ProbLog insensitive to the initial probabilities?

Q3 Is the theory splitting algorithm capable of handling large data sets?

In this experiment, we used the WebKB [Craven and Slattery, 2001] dataset. It
contains four folds, each describing the link structure of websites from one of the
following universities: Cornell, Texas, Washington, and Wisconsin. WebKB is
a collective classification task, that is, one wants to predict the class of a page
depending on the classes of the pages that link to it and depending on the words
used in the text. To allow for an objective comparison with Markov Logic networks
and the results of Domingos and Lowd [2009], we used their version of WebKB,
where each page is assigned exactly one of the classes “course”, “faculty”, “other”,
“researchproject”, “staff” or “student”. Furthermore, the class “person”, present in
the original version, has been removed.

We use the following model that contains one non-ground probabilistic fact for
each pair of Class and Word. To account for the link structure, it contains one
non-ground probabilistic fact for each pair of Class1 and Class2.

P:: pfWoCla(Page,Class,Word).P:: pfLiCla(Page1, Page2,Class1,Class2).

The probabilities P are unknown and have to be learned by LFI-ProbLog. As there
are 6 classes and 771 words, our model has 6× 771 + 6× 6 = 4662 parameters. In
order to combine the probabilistic facts and predict the class of a page we add the
following background knowledge.

cl(Pa, C) :−hasWord(Pa, Word), pfWoCla(Pa, Word, C).

cl(Pa, C) :−linksTo(Pa2, Pa), pfLiCla(Pa2, Pa, C2, C), cl(Pa2, C2).
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This program is cyclic since the underlying graph formed by the linksTo/2
predicate is cyclic. However, during learning the cl/2 atoms are fully observable
such that the resulting ground program is acyclic. This is due to the fact that our
grounding algorithm replaces evidence atoms with their respective truth values
before Clark’s completion is computed.

We performed a 4-fold cross validation, that is, we trained the model on three
universities and then tested it on the fourth one. We repeated this for all four
universities and averaged the results. We measured the area under the precision-
recall curve (AUC-PR), the area under the ROC curve (AUC-ROC), the log
likelihood (LLH) and the accuracy after each iteration of the EM algorithm. Our
model does not express that each page has exactly one class. To account for this,
we normalize the probabilities per page.

Figure 7.4 (middle) shows the AUC-ROC plotted against the average training
time. The initialization phase, that is running steps 1-4 of LFI-ProbLog, takes
≈ 330 seconds, and each iteration of the EM algorithm takes ≈ 62 seconds. We
initialized the probabilities of the model randomly with values sampled from the
uniform distribution between 0.1 and 0.9, which is shown as the graph for LFI-
ProbLog [0.1-0.9]. After 10 iterations (≈ 800 s) the AUC-ROC is 0.950± 0.002,
the AUC-PR is 0.828± 0.006, and the accuracy is 0.769± 0.010.

We compared LFI-ProbLog with Alchemy [Domingos and Lowd, 2009]. Alchemy
is an implementation of Markov Logic networks. We use the model suggested
by Domingos and Lowd, which uses the same features as our model, and we
train it according to their setup.2 The learning curve for AUC-ROC is shown in
Figure 7.4 (middle). Alchemy achieves an AUC-ROC of 0.923± 0.016, an AUC-PR
of 0.788± 0.036, and an accuracy of 0.746± 0.032 Q1.

We tested how sensitive LFI-ProbLog is for the initial fact probabilities by repeating
the experiment with values sampled uniformly between 0.1 and 0.3 and sampled
uniformly between 0.0001 and 0.0003 respectively. As the graphs in Figure 7.4
indicate, the convergence is initially slower and the initial LLH values differ. This is
due to the fact that the ground truth probabilities are small, and if the initial fact
probabilities are also small, one obtains a better initial LLH. All settings converge
to the same results, in terms of AUC and LLH. This suggests that LFI-ProbLog is
insensitive to the start values (cf. Q2).

The BDDs for the WebKB dataset are too large to fit in memory and the automatic
variable reordering is unable to construct the BDD in a reasonable amount of
time. We used two different approaches to resolve this. In the first approach, we
manually split each training example, that is, the grounded theory together with
the known class for each page, into several training examples. The results shown

2Daniel Lowd provided us with the original scripts for the experiment setup. We report on
the evaluation based on the rerun of the experiment.
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in Figure 7.4 are based on this manual split. In the second approach, we used the
automatic splitting algorithm presented in Section 7.2.3. The resulting BDDs are
identical to the manual split setting, and the subsequent runs of the EM algorithm
converge to the same results. Hence when plotting against the iteration, the graphs
are identical. The resulting ground theory is much larger and the initialization
phase therefore takes 247 minutes. However, this is mainly due to the overhead for
indexing, database access and garbage collection in the underlying Prolog system
YAP [Santos Costa et al., 2011]. Grounding and Clark’s completion take only
6 seconds each, the term simplification step takes roughly 246 minutes, and the final
splitting algorithm runs in 40 seconds. As we did not optimize the implementation
of the term simplification, we see a big potential for improvement, for instance by
tabling intermediate simplification steps (Q3).

7.3.2 Smokers

We set up an experiment on an instance of the Smokers dataset (cf. [Domingos
and Lowd, 2009]) to answer the following question

Q4 Is LFI-Problog able to recover the parameters of the original model with a
reasonable amount of data?

Missing and incorrect values are two types of noise occurring in real-world data.
While incorrect values can be compensated by additional data, missing values cause
local maxima in the likelihood function. In turn, they cause the learning algorithm
to yield parameters different from the ones used to generate the data. LFI-ProbLog
computes the maximum likelihood parameters given some evidence. Hence the
algorithm should be capable of recovering the parameters used to generate a set of
interpretations. We analyze how the amount of required training data increases
along with the size of the model. Furthermore, we test for the influence of missing
values on the results. We assess the quality of the learned model, that is, the
difference to the original model parameters by computing the Kullback-Leibler
(K-L) divergence. ProbLog allows for an efficient computation of this measure
due to the independence of the probabilistic facts. The details can be found in
Appendix G.
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Figure 7.4: Results with LFI-ProbLog on WebKB. Area under the PR curve against
the learning time (top); Area under the ROC curve against learning time (middle);
Test set log likelihood against number of EM steps (bottom) (Q1 and Q2).
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In this experiment, we use a variant of the “Smokers” model that can be represented
in ProbLog as follows:

F = {psi ::smokes_i(X, Y), // person X smokes due to smoking friend Y

psp ::smokes_p(X), // person X spontaneously starts smoking

pcs ::cancer_s(X), // person X gets cancer due to smoking

pcp ::cancer_p(X)} // person X spontaneously gets cancer

BK = {smokes(X) :− friend(X, Y), smokes(Y), smokes_i(X, Y)

smokes(X) :− smokes_p(X)

cancer(X) :− smokes(X), cancer_s(X)

cancer(X) :− cancer_p(X)}

This program is cyclic due to the friend/2 relation. As not all relevant atoms are
observed during learning, we cannot rely on the grounder to “break the cycles” and
applying Clark’s completion would yield incorrect results. Hence we used an acyclic
version of this program. The underlying idea is, similarly to the path program used
for probabilistic graphs, to extend each atom with an extra argument carrying the
list of persons that have been visited so far within the current proof and fail the
proof if a person is revisited. The loop breaking constructs have to be added to
each clause, which make the resulting programing rather complex. Hence we use
the path program to illustrate the idea, that is, instead of using the definition

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

one uses

path(X,Y) :- path(X,Y,[X],_).

path(X,X,A,A).
path(X,Y,A,R) :- X\==Y, edge(X,Z),

absent(Z,A), path(Z,Y,[Z|A],R).

absent(_,[]).
absent(X,[Y|Z]) :- X \= Y, absent(X,Z).

The resulting program is acyclic and Clark’s completion can be applied.
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Figure 7.5: K-L divergence of the model trained using LFI-ProbLog on a Smokers
data set with 3, 4 and 5 people (top, middle, bottom). The graphs represent
different amounts of missing values in the training set (Q4).
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This program does not model the friend/2 relation but assumes this predicate to
be given. We set the number of persons to 3, 4 and 5 respectively and sampled
from the resulting models up to 200 interpretations each. From these datasets we
derived new instances by randomly removing 10 − 50% of the atoms. The size
of an interpretation grows quadratically with the number of persons. The model,
as described above, has an implicit parameter tying between ground instances of
non-ground facts. Hence the number of model parameters (4, that is, psi, psp, pcs,
and pcp) does not change with the number of persons. To measure the influence of
the model size, we trained grounded versions of the model, where the grounding
depends on the number of persons. In turn number of ground probabilistic facts
grows with the number of persons. Furthermore, we did not enforce parameter-tying
between ground instances. For each dataset we ran LFI-ProbLog for 50 iterations
of EM. Manual inspection showed that the probabilities stabilized after a few,
typically 10, iterations. Figure 7.5 shows the K-L divergence for 3, 4 and 5 persons
respectively. The closer the K-L divergence is to 0, the closer the learned model is
to the original parameters. As the graphs show, the learned parameters approach
the parameters of the original model as the number of training examples grows.
Moreover, the amount of missing values has little influence on the distance between
the true and the learned parameters. Hence LFI-ProbLog is capable of recovering
the original parameters with a reasonable amount of training data and it is robust
against missing values (Q4).

7.4 Related Work

Existing parameter learning approaches for ProbLog [De Raedt et al., 2007],
PRISM [Sato and Kameya, 2001] and SLPs [Muggleton, 1996] are mainly based on
learning from entailment. Sato and Kameya have contributed various interesting
and advanced learning algorithms that have been incorporated in PRISM. However,
all of them learn from entailment.

Ishihata et al. [2008] consider a parameter learning setting based on Binary Decision
Diagrams (BDDs) [Bryant, 1986]. In contrast to our work, they assume the BDDs
to be given, whereas LFI-ProbLog, constructs them in an intelligent way from
evidence and a ProbLog theory. Ishihata et al. suggest that their approach can
be used to perform learning from entailment for PRISM programs. This approach
has been recently adopted by Bellodi and Riguzzi [2011] for learning CP-Logic
programs.

The BDDs constructed by LFI-ProbLog are a compact representation of all possible
worlds that are consistent with the evidence. LFI-ProbLog estimates the marginals
of the probabilistic facts in a dynamic programming manner on the BDDs. While
this step is inspired by [Ishihata et al., 2008], we tailored it towards the specifics
of LFI-ProbLog, that is, we allow deterministic nodes to be present in the BDDs.
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This extension is crucial as the removal of deterministic nodes can result in an
exponential growth of the Boolean formulae underlying the BDD construction.

Ishihata et al. mention the possibility of using their approach in the context
of parameter learning for PRISM. As they seem to suggest to adopt the BDD
generation of the original ProbLog system towards PRISM, it implies a system
for learning from entailment. On the other hand, it would allow one to relax the
exclusive explanation assumption made by PRISM. This assumption requires that
different proofs for a particular fact are disjoint. It allows the current PRISM system
to avoid the use of BDDs and optimizes both learning and inference algorithms.
Conversely, ProbLog does not make this assumption, which simplifies modeling.

The upward/downward procedure used in our algorithm to estimate the parameters
from a set of BDDs is essentially an extension of that of the approaches of Ishihata
et al. and of Thon et al. [2008, 2011] that have been independently developed. The
algorithm of Ishihata et al. learns the probability of literals for arbitrary Boolean
formulae from examples using a BDD, while that of Thon et al. is tailored towards
learning with BDDs for the sequential logic CPT-L.

Riguzzi [2007] uses a transformation of ground ProbLog programs to Bayesian
networks in order to learn ProbLog programs from interpretations. Such a
transformation is also employed in the learning approaches for CP-logic [Vennekens
et al., 2006] like the setting considered by Meert et al. [2008]. CPT-L is a variant
of CP-Logic tailored towards sequences. Thon et al. [2011] studied how it can
be learned from sequences of interpretations. CPT-L is closely related to LFI-
ProbLog. However, CPT-L is targeted towards the sequential aspect of the theory,
whereas we consider a more general settings with arbitrary theories. Thon et al.
assume full observability, which allows them to split the sequence into separate
transitions. They build one BDD per transition, which is much easier to construct
than one large BDD per sequence. Our splitting algorithm (cf. Sect 7.2.3) is
capable of exploiting arbitrary independence. This improves the applicability
and, when applied on sequential data, it detects the independence between time
steps. Exploiting independence in Boolean formulae is known in the verification
literature, for instance in the Deterministic Decomposable Negation Normal form
(d-DNNF) [Darwiche, 2004].

Our approach can also be related to the work on knowledge-based model
construction approaches in statistical relational learning such as BLPs, PRMs
and MLNs [Richardson and Domingos, 2006]. While the setting explored in this
chapter is standard for the aforementioned formalisms, our approach has significant
representational and algorithmic differences from the algorithms used in those
formalisms. In BLPs, PRMs and CP-logic, each training example is typically used
to construct a ground Bayesian network, on which a standard learning algorithm
is applied. Although the representation generated by Clark’s completion is quite
close to the representation of Markov Logic, there are subtle differences. While
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Markov Logic uses weights on clauses, we use probabilities attached to single
facts. Moreover, our approach has a clear probabilistic semantics. Using BDDs for
performing inference in Markov Logic networks is not entirely obvious. However, it
seems to be an interesting research direction.

7.5 Conclusions And Future Work

We have introduced a novel parameter learning algorithm from interpretations for
the probabilistic logic programming language ProbLog. This has been motivated by
the differences in the learning settings and applications of typical knowledge-based
model construction and probabilistic logic programming approaches. The LFI-
ProbLog algorithm tightly couples logical inference with an EM algorithm at the
level of BDDs. The chapter provides an empirical evaluation which demonstrates
the applicability of the proposed algorithm to the types of problems commonly
tackled by knowledge-based model construction approaches to statistical relational
learning.

The LFI-ProbLog algorithms use Clark’s completion to translate the original
theory into Boolean formulae. This operation requires acyclic programs in order
to guarantee semantic consistency between the theory and the resulting formula.
Using a translation that does not depend on the program to be acyclic will make
LFI-ProbLog better suited for many applications. The transformation by Janhunen
[2004], for instance, is a potential candidate for this task. The intuition behind
it is the augmentation of Clark’s completion with loop-breaking constraints. In
order to improve the performance in terms of speed, one could also use other
data structures apart from BDDs. So-called d-DNNF graphs [Darwiche, 2004], for
instance, represent Boolean formulae similarly to BDDs. They introduce special
nodes that allow them to exploit more and different kinds of independence between
the Boolean variables. For instance, the theory splitting in LFI-ProbLog identifies
parts of the ground theory that are independent given the evidence. This is a
special case of the independencies considered in d-DNNFs and not every theory
contains them. To some extent, these two ideas have already been studied by
Fierens et al. [2011]. While it is theoretically straightforward to transfer the results
to LFI-ProbLog, there are open questions with respect to the implementation.



Conclusions of Part III

In this part of the thesis we studied how the parameters of ProbLog programs can
be estimated using machine learning techniques.

In Chapter 6, we developed the LFE-ProbLog algorithm. It is able to learn from
queries as well as from proofs. The algorithm optimizes the fact probabilities of
the Problog program such that the predictions on the training set match the target
probabilities. A ProbLog program does not specify a generative model at the level
of proofs or queries. Hence we mapped the learning problem for LFE-ProbLog on
a logistic regression problem, which was solved using a gradient descent search.

In Chapter 7, we developed the LFI-ProbLog algorithm that learns from both
complete and partial interpretations. Since a ProbLog program defines a probability
distribution over interpretations, we could solve this learning task by applying an
expectation maximization (EM) algorithm. This algorithm builds a BDD based
on a transformation of the program as a whole, in contrast to the exact inference
algorithm that uses individual proofs.
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Chapter 8

Summary and Future Work

Thesis Summary

We studied two important questions that had previously not received a lot of
attention in the context of probabilistic logic programming languages.

(Q1) How can continuous distributions be integrated in probabilistic
logic programming languages?
(Q2) How can the parameters of probabilistic programming languages
be estimated?

Continuous-valued information is crucial in many real-world applications that can
benefit from using logical representations, such as robotics and human activity
recognition. Spatial and temporal relations in these domains are naturally expressed
using numbers, while the background knowledge is often specified in terms of logical
expressions. Moreover, parameter learning methods allow domain experts to focus
on the qualitative aspects of the model while the strength of dependencies, for
instance, can be tuned by means of parameter learning algorithms.

We used ProbLog as a representative of the probabilistic logic programming
paradigm, although our results can easily be translated into other languages and
frameworks. We introduced two different extensions of ProbLog with continuous
distributions. We deliberately restricted the expressivity of the first extension,
Hybrid ProbLog, in order to allow for exact inference. The second extension
does not impose any restrictions on continuous distributions. Hence the resulting
distributional programs are more expressive and in turn more suitable for real-world
applications. With respect to parameter learning we proposed two algorithms that
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cover all relevant learning settings known in the logical and relational literature
(cf. [De Raedt, 2008]): learning from proofs, queries, and interpretations. In the
following we summarize the four contributions mentioned above.

Contribution 1: Hybrid ProbLog Hybrid ProbLog introduces continuous facts
to ProbLog. One denotes a continuous fact by (X,D) :: Atom, where D specifies
the distribution of the variable X in Atom. For instance, one can model the height
of an average male human as

(H, gaussian(1.78, 0.2)) :: height(male, H) .

While the changes in syntax are rather small when augmenting ProbLog with such
facts, the extra efforts to account for them in the inference algorithms are much
more complex. We had to limit the possible use cases of the values stemming from
continuous facts, i.e., the variable H in the example above. We allowed only for
comparison against number constants but not of two continuous values against one
another. Doing so, we avoided the coupling of two more variables and the resulting
complex integration problems. This allows for an efficient inference algorithm
that uses the number constants occurring in the proofs as the basis for a dynamic
discretization and the subsequent representation as Binary Decision Diagram. To
the best of the author’s knowledge, this technique was not applied on probabilistic
programming languages before.

Contribution 2: Distributional Programs We developed the language of
distributional clauses as an extension of ProbLog, Hybrid ProbLog and CP-
Logic such that its semantics can be mapped onto Sato’s [1995] distribution
semantics. Distributional programs are more expressive than Hybrid ProbLog,
which in turn makes them most suitable for real-world applications. As a result we
needed to rely on an approximate inference algorithm based on rejection sampling.
The additional information given by the structure of the logic program can be
used to guide the sampling process, which allows for a more efficient inference
algorithm compared to naïve rejection sampling. Akin to SampleSearch [Gogate
and Dechter, 2011], we developed a lookahead-based algorithm that locally modifies
the distributions, while checking the evidence globally. Moreover, we adopted
the Magic sets transformation [Bancilhon et al., 1986] to distributional clauses.
This enabled us to restrict the sample generation to the necessary finite part of
the ground program and more importantly, it allows for inference although the
complete ground program is infinite such as in temporal models.

Contribution 3: Learning from Probabilistic Entailment In this setting, we train
a ProbLog theory on examples comprising queries and their target probability. In
biomedical applications, for instance, such an example can be a relation between
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a gene and a disease annotated with the probability that this relation holds.
Additionally, this setting supports learning from proofs, since proofs can be
represented as the conjunction of the probabilistic facts they use. The learning
algorithm optimizes the parameters of the model such that the predicted query
probabilities match the target probabilities. As a ProbLog program does not specify
a generative model on the level of individual queries, we represented the learning
task as a logistic regression problem and solved it using a gradient-descent search.
The gradients can be computed efficiently on the BDDs, which in turn allows one
to use parameter learning in all domains where inference is possible.

Contribution 4: Learning from Interpretations A major drawback of not having
a generative setting, when learning from queries, is that the learner treats the model
as a black box. Hence the estimated parameters, despite fitting the training data
perfectly, do not necessarily have an intuitive meaning. On the contrary, ProbLog
does specify a generative model at the level of interpretations. Such possible worlds
are at the core of Sato’s [1995] distribution semantics. Consequently, it is possible
to estimate the parameters of a model based on a set of complete interpretations;
simply counting the number of true ground instances and dividing by the number of
examples yields the correct estimates. However, complete interpretations, especially
in real-world applications, are often too large to fit in memory and often substantial
parts of the world cannot be observed. Thus, when learning from interpretations
in the context of ProbLog, one actually needs to be able to learn from partial
interpretations. We developed LFI-ProbLog that is able to accomplish this task.
While this learning setting has been considered for other probabilistic relational
frameworks such as PRISM [Sato, 1995], relational Bayesian networks [Jaeger,
2007], and Markov Logic Networks [Richardson and Domingos, 2006], it was not
considered before for ProbLog programs.

Hence the parameters of ProbLog programs can now be estimated in all three
learning settings considered in probabilistic logic programming. The two main ideas
underlying LFI-ProbLog are: translating the theory together with the evidence
into a BDD and using it for estimating the number of ground instances of the
probabilistic facts. The experimental evaluation of the resulting system LFI-
ProbLog demonstrated its performance as being on par with state-of-the-art
frameworks, while having an interpretable model.

Future Work

Currently, the BDDs are the bottleneck in the parameter learning algorithms that
we developed. Evaluating them in every iteration takes a lot of time and for larger
datasets it is impossible to store all of the them in memory. Hence the BDDs have
to be reconstructed anew from the underlying Boolean functions in each iteration.



146 SUMMARY AND FUTURE WORK

In [Fierens et al., 2011], we have started to investigate the use of alternative data
structures such as d-DNNFs and we are currently working on integrating them
into the ProbLog system. However, on challenging and particularly large-scale
real-world tasks the performance improvements in terms of runtime might not be
sufficient as the size of the Boolean functions typically grows exponentially. Lifted
inference algorithms (cf. [Poole, 2003; Milch et al., 2008]) aim at grounding as
few atoms as possible exploiting the fact that most ground atoms share the same
distribution. Adopting lifted techniques for parameter learning is an interesting
research direction that will broaden the applicability of probabilistic logic languages.

More work needs to be done on making the learning algorithms applicable on noisy
training data. Currently, the algorithms implicitly assume the model to take noise
into account. Particularly LFI-ProbLog, which heavily relies on the consistency of
the training data with the theory, requires carefully-designed models. Integrating
noise handling techniques in the learning algorithms will thus simplify the modeling
process and make probabilistic logic languages easier to use. It is interesting to
adopt ideas from Support Vector Regression [Smola and Schölkopf, 2004] and, for
instance, automatically weight the influence of each training example based on the
estimated noise.

Another natural direction to proceed is the development of structure learning
techniques for ProbLog and probabilistic logic languages in general. De Raedt
and Thon [2011] have considered a structure learning approach that generates
non-recursive rules using probabilistic training examples. Continuing this line of
research and upgrading “classical” inductive logic programming algorithms to the
probabilistic languages would be worth investigating.

Using probabilistic logical learning techniques for robotics applications has recently
become popular due to the maturity of the field and the available frameworks. The
problems considered within robotics [Thrun et al., 2005], such as localization and
people tracking, do require continuous-valued information. The models applied to
robotics tasks are often based on the Bayesian principle [De Laet, 2010], that is,
they express the agent’s belief in terms of a posterior distribution computed from
the prior belief and the evidence. To be applicable on such tasks, probabilistic
logic programming languages need to be able to express such regularities and
they need to provide the corresponding inference mechanisms. More work has
to be done, in order to apply Hybrid ProbLog or distributional programs on
such tasks. Exact inference algorithms are often not applicable as the resulting
inference problems are too complex. Conversely, the sampling algorithm we have
developed for distributional programs is currently not able to handle continuous-
valued evidence. An interesting direction for future work is to adopt the ideas
behind dynamic discretization to distributional programs.

One more open question is how to estimate the parameters of continuous
distributions together with the fact probabilities. It is straightforward to extend
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LFE-ProbLog’s gradient descent search towards Gaussian distributions as shown in
Appendix E. Hence it is theoretically possible to apply LFE-ProbLog on continuous
facts. In practice, this will require a second-order gradient algorithm such as
LBFGs due to small values of the gradient in the tail regions of the distributions.
Parameter estimation for distributional programs is conceptually much simpler.
Any MCMC approach for inference also provides a learning algorithm as it can be
used to estimate the parameters of the distributions given the evidence.





Appendix A

Correctness of Mapping
Annotated Disjunctions

In the following we show that the mapping of annotated disjunctions introduced in
Section 3.3 is correct, that is, the success probabilities in the resulting program are
identical to probabilities attached to the head atoms of the AD. For the ease of
notation we assume that the AD is ground, that the body of the AD is empty and
that all atoms in the head are different.

Theorem A.1. Let p1 :: h1; . . . ; pN :: hN :− true be a ground annotated
disjunction; let T = F ∪ BK be a ProbLog theory with the probabilistic facts
F =

{
p̃1 :: msw(1), . . . , p̃N :: msw(N)

}
where p̃1 = p1 and for i > 1

p̃i =

pi ·
(

1−
∑i−1
k=1 pk

)−1
if pi > 0

0 if pi = 0

and the background knowledge BK consisting of the clauses ( for i ∈ {1, . . . , N})

hi :− msw(i), not(msw(i− 1)), . . . , not(msw(1)).

Then PTs (hi) = pi for all i ∈ {1, . . . , N}, that is, the success probability of the query
hi in the ProbLog theory T is equal the probability of the corresponding head atom
in the AD.

Proof. The theory T has exactly one proof for hi. Hence the success probability
of the query is identical to the probability of its single proof, that is, Pi :=(∏i−1

k=1 (1− p̃k)
)
· p̃i. The factors (1 − p̃k) stem from the negated part
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not(msw(i− 1)), . . . , not(msw(1)) and the last factor p̃i stems from the first atom
in the body. It is sufficient to prove that Pi = pi. We show this by induction over
the position of the choice i. For the base case i = 1 we get

P1 =
( 0∏
k=1

(1− p̃k)
)

︸ ︷︷ ︸
product with no factors

· p̃1 = 1 · p1 = p1 .

And for the inductive case i→ i+ 1 we get for p̃i > 0:

Pi+1 =
(

i∏
k=1

(1− p̃k)
)
· p̃i+1

=
(
i−1∏
k=1

(1− p̃k)
)
· (1− p̃i) · p̃i+1

where applying the induction assumption yields

= pi
p̃i
· (1− p̃i) · p̃i+1

=
(
pi
p̃i
− pi

)
· p̃i+1

We use the definition of p̃i from Equation 3.10 and get

=

 pi

pi ·
(

1−
∑i−1
j=1 pj

)−1 − pi

 · p̃i+1

=

1−
i∑

j=1
pj

 · p̃i+1

We use the definition of p̃i+1 from Equation 3.10 and get

= pi+1

If p̃i = 0 then we have to apply the inductive assumption for i − 1, that is, use
Pi−1 for rewriting the term.



Appendix B

Properties of The Sigmoid
Function

In Chapter 6 we develop a gradient-descent method for estimating the fact
probabilities of a ProbLog theory. Akin to logistic regression we represented
probabilities using the sigmoid function

σs(a) = 1
1 + exp(−s · a) , (B.1)

where a ∈ R and s > 0. In the following we show two properties of this function
that we used while deriving the gradient.

Lemma B.1 (Properties of Sigmoid function). ∀a ∈ R ∀s > 0

1− σs(a) = σs(−a) (B.2)

∂

∂a
σs(a) = s · σs(a) · (1− σs(a)) (B.3)

151



152 PROPERTIES OF THE SIGMOID FUNCTION

Proof. Eq. B.2 can be shown as follows:

1− σs(a) = 1− 1
1 + exp(−s · a) by (B.1)

= 1 + exp(−s · a)
1 + exp(−s · a) −

1
1 + exp(−s · a) by reordering

= exp(−s · a)
1 + exp(−s · a) by reordering

= exp(−s · a) · exp(s · a)
exp(s · a) + exp(−s · a) · exp(s · a) expand with exp(s · a)

= 1
exp(s · a) + 1 by reordering

= σs(−a) by (B.1)

Eq. B.3 can be shown as follows:

∂

∂a
σs(a) = ∂

∂a

1
1 + exp(−s · a) by (B.1)

= (−1) ·
(

1
1 + exp(−s · a)

)2
· exp(−s · a) · (−s) by chain rule

= s · 1
1 + exp(−s · a) ·

exp(−s · a)
1 + exp(−s · a) by reordering

= s · σs(a) · exp(−s · a)
1 + exp(−s · a) by (B.1)

= s · σs(a) · 1− 1 + exp(−s · a)
1 + exp(−s · a) by reordering

= s · σs(a) ·
(

1 + exp(−s · a)
1 + exp(−s · a) −

1
1 + exp(−s · a)

)
by reordering

= s · σs(a) · (1− σs(a)) by (B.1)



Appendix C

Translating Markov Logic
Clauses Into ProbLog Clauses

A Markov logic network (MLN) is a set of weighted first-order clauses [Richardson
and Domingos, 2006]. Together with a set of constants representing objects in the
domain of interest, it defines a Markov network with one node per ground atom
and one feature per ground clause. The weight of a feature is the weight of the
first-order clause that originated it. The probability of a state x in such a network
is given by

P (x) = 1
Z

exp
[∑

i

wi · gi(x)
]

= 1
Z

∏
i

fi(x) ,

where wi is the weight of the ith clause, gi = 1 if the ith clause is true and gi = 0
otherwise. Inference can be carried out by generating the ground corresponding
Markov network and running any Markov network inference algorithm such as
belief propagation (cf. [Bishop, 2006]).

To convert the Markov logic clauses into ProbLog clauses (see the experiments
on UW-CSE dataset in Section 6.5), we use the function ConvertMLNClause
shown in Algorithm 16. It takes the clause c as input and returns a set of clauses
and probabilistic facts. The set of positive and negative literals appearing in
c are depicted by c+ and c− respectively. Clause weights are not transformed,
the corresponding fact probabilities are set to pi indicating that they have to be
estimated using parameter learning.
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Algorithm 16 The function ConvertMLNClause translates a clause c, which
is a disjunction of positive c+ and negative c− literals, into a set of clauses and
probabilistic facts. If the clause does not contain positive literals, we use an error
predicate and an additional training example to preserve the meaning of the clause.
1: function ConvertMLNClause(c)
2: if c+ = ∅ then return {error :− c−1 , c

−
2 , . . . , c

−
k }

3: result ← ∅
4: for atom ∈ c+ do
5: n← UniqueNumber()
6: result ← result ∪{pn :: fact(n)}
7: ∪{atom :− fact(n), c−1 , c

−
2 , . . . , c

−
k }

8: end for
9: return result
10: end function

Table C.1 shows some examples of translated clauses. ProbLog cannot represent
clauses that contain only negative literals, i.e., the third example in the table

¬student(X) ∨ ¬professor .

To represent such clauses in ProbLog, one can rewrite them as follows

¬student(X) ∨ ¬professor ∨ ¬false

such that they can be translated into

false :− student(X), professor(X) .

Instead of false, we use the predicate error. In contrast to the other clauses
generated by our algorithm, error clauses do not contain probabilistic facts in
the body. Instead, we have to provide one additional training example for each
department D of the form example(error(D), 0.0). This ensures that the probability
for the error predicate being true stays low.

We restricted the translation to ground probabilistic facts in order to limit the size
of the BDDs and speed up the learning. Every grounding of a non-ground fact
introduces a variable in the BDD, which in turn increases the time to build and
traverse the BDD. Nonetheless, it is possible to use non-ground facts. The first
clause in Table C.1, for instance, can be translated into:

p1 :: fact(1, P, S).
professor(Department, P) :−

advisedBy(Department, P, S),
fact(1, P, S).

Selectively using non-ground facts allows one to trade off between runtime and
memory on the one hand and expressivity on the other hand.



TRANSLATING MARKOV LOGIC CLAUSES INTO PROBLOG CLAUSES 155

Table C.1: Clauses in Markov Logic and their translation using Algorithm 16. Note
that in order to deal with clauses consisting only out of negated atoms, like in
the third example, we have to provide additional training examples. The atoms
contain an argument Department that enables us to store all examples in a single
database.

MLN Clause Resulting ProbLog Code

w1 ¬advisedBy(P, S)
∨ professor(P)

p1 :: fact(1).
professor(Department, P) :−

fact(1),
advisedBy(Department, P, S).

w2 ¬tempAdvisedBy(X, Y)
∨ yearsInProgram(X, 1)
∨ yearsInProgram(X, 2)

p2 :: fact(2).
yearsInProgram(Department, X, 1) :−

fact(2),
tempAdvisedBy(Department, X, Y).

p3 :: fact(3).
yearsInProgram(Department, X, 1) :−

fact(3),
tempAdvisedBy(Department, X, Y).

w3 ¬student(X)
∨ ¬professor(X)

error(Department) :−
student(Department, X),
professor(Department, X).

example(error(Department), 0.0).





Appendix D

Correctness of Gradient
Computation Algorithm

In Chapter 6 we develop the LFE-ProbLog algorithm that trains a ProbLog program
on a given training set by means of gradient descent algorithm. This approach
uses the function Gradient(node n, target fact nj) to compute the gradient of
the k-best probability of a query, see Algorithm 10 and Equation 3.9 respectively.
In the following we show the correctness of this algorithm.

Theorem D.1. Gradient(root(BDDF ), nj) returns the probability P (F = true)
and the partial derivative ∂P (F = true)/∂aj if BDDF is a BDD representing the
Boolean function F .

Proof. In order to prove Theorem D.1 and to show that Algorithm 10 computes the
gradient of the k-best probability it suffices to show that it computes the correct
gradient of the function represented by the BDD. We do this by induction over the
structure of the BDD that is given by the Shannon expansion [Shannon, 1948] of
the underlying Boolean formula F .

Base case 1 If the BDD consists only of the 1-terminal, it represents the function
F = true and the probability that F is true is 1. The partial derivate ∂P (F )/∂aj
is 0.

Base case 2 If the BDD consist only of the 0-terminal, it represents the function
F = false and the probability of F being true is 0. The partial derivative
∂P (F )/∂aj is 0.
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Inductive case Due to the Shannon expansion used by the BDD, the function F
is represented as F = (n ∧ FTrue) ∨ (¬n ∧ FFalse), where both FTrue and FFalse
are BDDs and the variable n does neither appear in FTrue nor in FFalse. Since
both branches are disjoint with respect to n, one can calculate the probability that
F yields true as

P (F = true) = P (n) · P (FTrue = true) + (1− P (n)) · P (FFalse = true) .

The probability P (n) = σ(an) is defined by the corresponding probabilistic fact

σ(an) :: fn .

The complementary probability 1 − P (n) is σ(−an) (cf Lemma B.1). See
Equation 6.2 for the definition of the sigmoid function σ. We apply the inductive
hypothesis that says, the algorithm returns the correct probabilities when applied
to FTrue and FFalse. Hence the value for prob, calculated in Line 7 of Algorithm 10,
is correct.

The partial derivative of P (F ) with respect to aj , in the inductive case

∂

∂aj

(
P (n) · P (FTrue = true) + (1− P (n)) · P (FFalse = true)

)
,

requires one to distinguish the following two cases.

Case 1 If n 6⊆Θ nj , namely the current node n does not represent a ground
instance of the target fact fj , then one can treat P (n) as constant factor:

∂P (F = true)
∂aj

=
∂
(
P (n) · P (FTrue = true)

)
∂aj

+
∂
(

(1− P (n)) · P (FFalse = true)
)

∂aj

=σ(an) · ∂P (FTrue = true)
∂aj

+ σ(−an) · ∂P (FFalse = true)
∂aj

.

We apply the inductive hypothesis that says, the algorithm returns the correct
gradient when applied to FTrue and FFalse. This part of the proof covers Line 8 of
Algorithm 10.
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Case 2 If n ⊆Θ nj , namely the current node n represents a ground instance of
the target fact fj , we get

∂P (F = true)
∂aj

=
∂
(
P (n) · P (FTrue = true)

)
∂aj

+
∂
(

(1− P (n)) · P (FFalse = true)
)

∂aj

we replace P (n) by the corresponding probability σ(aj)

=
∂
(
σ(aj) · P (FTrue = true)

)
∂aj

+
∂
(
σ(−aj) · P (FFalse = true)

)
∂aj

and apply the product rule on both summands

=σ(aj) · σ(−aj) · P (FTrue = true)

+ σ(aj) ·
∂P (FTrue = true)

∂aj

− σ(aj) · σ(−aj) · P (FFalse = true)

+ σ(−aj) ·
∂P (FFalse = true)

∂aj

and reorganize the terms to

=σ(aj) ·
∂P (FTrue = true)

∂aj
+ σ(−aj) ·

∂P (FFalse = true)
∂aj

σ(aj) · σ(−aj) ·
(
P (FTrue = true)− P (FFalse = true)

)
.

We apply the inductive hypothesis that says, the algorithm returns the correct
partial derivative and probability when applied to FTrue and FFalse. This part of
the proof covers Line 9 of Algorithm 10.





Appendix E

Gradient Computation for
Hybrid ProbLog

In Chapter 4 we introduced Hybrid ProbLog and showed how exact inference can
be carried out in programs with continuous facts. The algorithm relies on dynamic
discretization and introduces so-called auxiliary facts that are annotated with a
cumulative density function. For instance, the auxiliary fact call_temp(T)[0,5)
expresses that the value of the variable T is within the interval [0, 5). These
auxiliary facts get annotated with a probability that is computed by integrating the
density of corresponding continuous fact, i.e., P (call_temp(T)[0,5)) =

∫ 5
0 D(x)dx.

The details can be found in Section 4.2.

In this appendix, we show how one can obtain the partial derivative of their
probability with respect to the parameters of the distribution. This allows one to
extend the gradient-descent search used by LFE-ProbLog (cf. Chapter 6) towards
continuous distributions and to automatically estimate their parameters. Please
note that we restrict ourselves to the partial derivative of the cumulative density
function, while ignoring dependencies between the auxiliary facts, that is, the
bodies of the auxiliary clauses. In the following we assume the continuous facts to
be annotated with a Gaussian. Hence the probability attached to auxiliary facts is
defined as

P (call_f[X0,X1)) =
∫ X1

X0

ϕµ;σ(x) dx (E.1)

where ϕµ;σ is the density function of a Gaussian distribution

ϕµ;σ(x) = 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

(E.2)
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with mean µ ∈ R and standard deviation σ > 0. The following theorem states
that the partial derivatives of (E.1) can be computed efficiently by evaluating the
density at the borders of the interval [X0, X1).

Theorem E.1. Let call_f[X0,X1) be an auxiliary fact introduced by the Hybrid
ProbLog inference algorithm. The partial derivatives of P (call_f[X0,X1)) are

∂

∂µ
P (call_f[X0,X1)) = 1

σ
ϕµ;σ(X0)− 1

σ
ϕµ;σ(X1) (E.3)

∂

∂σ
P (call_f[X0,X1)) = X0 − µ

σ
ϕµ;σ(X0)− X1 − µ

σ
ϕµ;σ(X1) . (E.4)

In the proof of this theorem we assume the points X0, X1 to be finite. Extending
this to the border cases call_f(−∞,X1) and call_f[X0,∞) will be straightforward.
Please note that the standard deviation σ has to be larger than 0, which needs to
be taken into account by the gradient-descent algorithm. A possible solution is
the use of a transformation function. For instance, one can represent the standard
deviation as σ = exp(a) with an arbitrary a ∈ R. This is akin to the use of the
sigmoid function (cf. (6.2)) in LFE-ProbLog for representing fact probabilities. We
omit this transformation for the ease of readability of the proofs. In order to show
Theorem E.1 we require the following lemma.

Lemma E.1. The partial derivatives of ϕµ;σ(x) with respect to the parameters µ
and σ of the normal density (E.2) are

∂

∂µ
ϕµ;σ(x) = ϕµ;σ(x) · x− µ

σ2 (E.5)

∂

∂σ
ϕµ;σ(x) = ϕµ;σ(x) · (x− µ)2 − σ2

σ3 . (E.6)
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Proof. The derivation of (E.5) can be shown as follows

∂

∂µ
ϕµ;σ(x) = ∂

∂µ

[
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)]

by (E.2)

= 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

∂

∂µ

[
−1

2

(
x− µ
σ

)2
]

by chain rule

= ϕµ;σ(x) · ∂
∂µ

[
−1

2

(
x− µ
σ

)2
]

by (E.2)

= ϕµ;σ(x) ·
[
−1

2 · 2 ·
(
x− µ
σ

)
·
(
−1
σ

)]
by chain rule

= ϕµ;σ(x) · x− µ
σ2 by reordering

The derivation of (E.6) can be shown as follows

∂

∂σ
ϕµ;σ(x) = ∂

∂σ

[
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)]

by (E.2)

= −1
σ2
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

+ 1
σ
√

2π
∂

∂σ

[
exp

(
−1

2

(
x− µ
σ

)2
)]

by product rule

= −1
σ
ϕµ;σ(x) by (E.2)

+ 1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

∂

∂σ

[
−1

2

(
x− µ
σ

)2
]

by chain rule

= −1
σ
ϕµ;σ(x) + ϕµ;σ(x) ·

[
−1

2
(x− µ)2

σ3 · (−2)
]

by chain rule

= ϕµ;σ(x) (x− µ)2 − σ2

σ3 by reordering
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Proof. We now prove Theorem E.1 using Lemma E.1. First we show how to obtain
the partial derivative with respect to µ (cf. (E.3)). Then we prove the second
equation (E.4) and show how to obtain the partial derivative with respect to σ.

∂

∂µ
P (call_f[X0,X1)) = ∂

∂µ

X1∫
X0

ϕµ;σ(x) dx by (E.1)

The partial derivation can be moved inside the integral since ϕµ;σ is a smooth
function and we integrate it over a finite interval. This step requires X0 and X1
to be finite. If they are infinite, that is, in case of an improper integral, we would
need to argue differently.

=
X1∫
X0

∂

∂µ
ϕµ;σ(x) dx

=
X1∫
X0

ϕµ;σ(x) · x− µ
σ2 dx by (E.5)

=
X1∫
X0

1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
· x− µ
σ2 dx by (E.2)

= −1
σ2
√

2π

X1∫
X0

exp
(
−1

2

(
x− µ
σ

)2
)
· µ− x

σ
dx by reordering

One can write this integral as c
∫
f(g(x)) · g′(x) dx, where f(x) = exp(x), g(x) =

− 1
2
(
x−µ
σ

)2 and g′(x) = µ−x
σ . Hence we can apply the integration by substitution



GRADIENT COMPUTATION FOR HYBRID PROBLOG 165

method. To this end we have to substitute u = − 1
2
(
x−µ
σ

)2 and du = µ−x
σ dx.

= −1
σ2
√

2π

g(X1)∫
g(X0)

exp (u) du

= −1
σ2
√

2π
exp (u)

∣∣∣∣g(X1)

u=g(X0)
by c

∫
exp(u) du = exp(u)

= −1
σ2
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)∣∣∣∣∣

X1

x=X0

by resubstituting u

= −1
σ
ϕµ;σ(x)

∣∣∣∣X1

x=X0

by (E.2)

= 1
σ
ϕµ;σ(X0)− 1

σ
ϕµ;σ(X1) .

The second part of the theorem can be shown as follows

∂

∂σ
P (call_f[X0,X1)) = ∂

∂σ

X1∫
X0

ϕµ;σ(x) dx

=
X1∫
X0

∂

∂σ
ϕµ;σ(x) dx by smoothness of ϕ

=
X1∫
X0

ϕµ;σ(x) (x− µ)2 − σ2

σ3 dx by (E.6)

=
X1∫
X0

1
σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

(x− µ)2 − σ2

σ3 dx by (E.2)

=
X1∫
X0

[
−1

σ2
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)

+ µ− x
σ2
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
µ− x
σ2

]
dx by reordering
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We define u(x) := µ−x
σ2
√

2π and v(x) := exp
(
− 1

2
(
x−µ
σ

)2) and substitute.

=
X1∫
X0

[
u′(x) · v(x) + u(x) · v′(x)

]
dx

Using the product rule and the fundamental theorem of calculus we get

= u(x) · v(x)
∣∣∣X1

x=X0

= µ− x
σ2
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)∣∣∣∣∣

X1

x=X0

by re-substituting

= µ− x
σ

ϕµ;σ(x)
∣∣∣∣X1

x=X0

by (E.2)

= µ−X1

σ
ϕµ;σ(X1)− µ−X0

σ
ϕµ;σ(X0)

= X0 − µ
σ

ϕµ;σ(X0)− X1 − µ
σ

ϕµ;σ(X1) . by reordering

This concludes the proof and shows that the partial derivatives can be calculated
very efficiently and exact by evaluating the density function at the borders of the
interval attached to the auxiliary fact.



Appendix F

Computing Expected Counts
on Interpretation-Restricted
Theory

The following theorem shows that the conditional probability of fn given I calculated
in the theory T is equivalent to the probability calculated in T r(I). This guarantees
that subsequent steps of LFI-ProbLog (cf. Chapter 7) yield the correct result.

Theorem F.1. For all ground probabilistic facts fn and partial interpretations Im

ET [δmn,k|Im] =
{
ET r(Im)[δmn,k|Im] if fn ∈ depT (Im)
pn otherwise

,

where T r(I) is the interpretation-restricted ProbLog theory of T and pn is the
probability of the fact fn.

Proof. For the ease of notation we assume that the ProbLog program T is ground.
Furthermore, we drop the m index identifying individual interpretations, hence
Im = I. We then have to consider the following two cases.

Case 1 fn 6∈ depT (I): Due to the definition of depT (I) the ground probabilistic
fact fn is independent of I and we get PTw ({fn} | I) = PTw ({fn}) = pn.

Case 2 fn ∈ depT (I): In order to prove that ET [δn,k|I] = ET r(I)[δn,k|I] it is
sufficient to show that PTw ({fn} | I) = P

T r(I)
w ({fn} | I) as this is the probability
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used by the expectation computation. In turn, it is sufficient to show that

PTw ({fn}, I)
PTw (I) = P

T r(I)
w ({fn}, I)
P
T r(I)
w (I)

due to the definition of a conditional probability. The following argumentation
similar for numerator and denominator, we will restrict to the latter one.

PTw (I) =
∑
L⊆LT
L|=I

PT (L)

Now we split the set L into L1 and L2 such that L1 contains all atoms of L,
which are in the dependency set of I, and L2 contains the rest. Let T1 and T2 the
corresponding theories.

=
∑

L1⊆LT∩depT (I)

∑
L2⊆LT \depT (I)

L1∪L2|=I

PT1(L1) · PT2(L2)

By definition, L2 has no influence on provability of I and can in turn be shifted
outside of the inner sum.

=
∑

L1⊆LT∩depT (I)
L1|=I

PT1(L1)
∑

L2⊆LT \depT (I)

PT2(L2)

The inner sum is 1 as it iterates over all subsets.

=
∑

L1⊆LT∩depT (I)
L1|=I

PT1(L1)

= PT
r(I)

w (I)



Appendix G

Kullback-Leibler Divergence
Between ProbLog Programs

The Kullback-Leibler divergence D(P ||Q) is a non-symmetric measure for the
difference of two probability distributions P and Q (cf. [Wasserman, 2003]). It is
used in probability theory as well as in information theory where it is also known
as information gain. The K-L divergence aggregates the difference of the two
distributions on all elements of the outcome space. It is only defined if the support
of Q is larger than the one of P , that is, for all i where P (i) > 0 also Q(i) > 0.

We use the K-L divergence to evaluate the LFI-ProbLog learning algorithm
(cf. Chapter 7) and measure how close the learned program T2 is to the ground
truth program T1. We are doing parameter estimation, that is, the structure of
the program is fixed and only the fact probabilities change. Hence we can restrict
the definition of the K-L divergence to programs that are identical except for the
fact probabilities.

Definition G.1 (K-L Divergence). Let T1 = F1 ∪ BK and T2 = F2 ∪ BK be
ground ProbLog programs such that the probabilistic facts are identical except for
the probabilities, that is, F1 = {pi :: fi|1 ≤ i ≤ n} and F2 = {qi :: fi|1 ≤ i ≤ n}.
Then the K-L Divergence between T1 and T2 is defined as

D(T1||T2) :=
∑

L⊆LT1

PT1(L) log P
T1(L)

PT2(L)

where PT1(L) and PT2(L) are the probabilities that the subprogram L is sampled
from T1 and T2 respectively (cf. Eq. 3.4).
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Please note, that the set of ground facts LT1 in the definition above is identical to
the ground facts LT2 (cf. Equation 3.2). Hence the value of D(T1||T2) does not
change if the sum iterates over L ⊆ LT2 instead of L ⊆ LT1 .

There are exponentially many subprograms L ⊆ LT1 , which makes evaluating the
K-L divergence as defined above impossible in practice. However, the probabilistic
facts in a ProbLog program are independent, which can be exploited to compute
the K-L divergence in linear time by looping once over F .

Theorem G.1. Let T1 = F1∪BK and T2 = F2∪BK be ground ProbLog programs
such that the probabilistic facts are identical except for the probabilities, that is,
F1 = {pi :: fi|1 ≤ i ≤ n} and F2 = {qi :: fi|1 ≤ i ≤ n}. Then the K-L Divergence
between T1 and T2 can be calculated as

D(T1||T2) =
n∑
i=1

(
pi log pi

qi
+ (1− pi) log 1− pi

1− qi

)
.

It is possible to extend the K-L divergence and the theorem to non-ground facts.
To do so, one needs to multiply each summand pi log pi

qi
+ (1 − pi) log 1−pi

1−qi with
the number of ground instances of the probabilistic fact fi.

Proof. We prove Theorem G.1 by induction over the number of probabilistic facts.

Base case n = 1.

D(T1||T2) =
∑

L⊆LT1

PT1(L) log P
T1(L)

PT2(L)

= PT1({f1}) log P
T1({f1})

PT2({f1})
+ PT1(∅) log P

T1(∅)
PT2(∅)

= p1 log p1

q1
+ (1− p1) log 1− p1

1− q1

=
n∑
i=1

(
pi log pi

qi
+ (1− pi) log 1− pi

1− qi

)
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Inductive case n→ n+1. To simplify the notation, we define Tn+1
1 := T1∪{pn+1 ::

fn+1} and Tn+1
2 := T2 ∪ {qn+1 :: fn+1}

D(Tn+1
1 ||Tn+1

2 ) =
∑

L⊆(LT1∪{fn+1})

PT
n+1
1 (L) log P

Tn+1
1 (L)

PT
n+1
2 (L)

=

 ∑
L⊆LT1

PT
n+1
1 (L ∪ {fn+1}) log P

Tn+1
1 (L ∪ {fn+1})

PT
n+1
2 (L ∪ {fn+1})

+

 ∑
L⊆LT1

PT
n+1
1 (L) log P

Tn+1
1 (L)

PT
n+1
2 (L)


Probabilistic facts are independent and thus we can factorize the probabilities

=

 ∑
L⊆LT1

pn+1 · PT1(L) log pn+1 · PT1(L)
qn+1 · PT2(L)

+

 ∑
L⊆LT1

(1− pn+1) · PT1(L) log (1− pn+1) · PT1(L)
(1− qn+1) · PT2(L)


using the rules for log and factoring out the constants

=pn+1

 ∑
L⊆LT1

PT1(L)
(

log pn+1

qn+1
+ log P

T1(L)
PT2(L)

)+

(1− pn+1)

 ∑
L⊆LT1

PT1(L)
(

log 1− pn+1

1− qn+1
+ log P

T1(L)
PT2(L)

)
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expanding the inner sums and factoring out constants

=pn+1

(
log pn+1

qn+1

) ∑
L⊆LT1

PT1(L)

+

pn+1

 ∑
L⊆LT1

PT1(L)
(

log P
T1(L)

PT2(L)

)+

(1− pn+1)
(

log 1− pn+1

1− qn+1

) ∑
L⊆LT1

PT1(L)

+

(1− pn+1)

 ∑
L⊆LT1

PT1(L)
(

log P
T1(L)

PT2(L)

)
both

∑
L⊆LT1 P

T1(L) and
∑
L⊆LT1 P

T2(L) are 1, rearranging yields

=pn+1

(
log pn+1

qn+1

)
+ (1− pn+1)

(
log 1− pn+1

1− qn+1

)
+

∑
L⊆LT1

PT1(L) log P
T1(L)

PT2(L)

using the inductive assumption

=pn+1

(
log pn+1

qn+1

)
+ (1− pn+1)

(
log 1− pn+1

1− qn+1

)
+

n∑
i=1

(
pi log pi

qi
+ (1− pi) log 1− pi

1− qi

)

rearranging the terms

=
n+1∑
i=1

(
pi log pi

qi
+ (1− pi) log 1− pi

1− qi

)
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