Abstract
Dark matter (DM) interacting with the SM fields via a Z′-boson (‘Z′-portal’) remains one of the most attractive WIMP scenarios, both from the theoretical and the phenomenological points of view. In order to avoid the strong constraints from direct detection and dilepton production, it is highly convenient that the Z′ has axial coupling to DM and leptophobic couplings to the SM particles, respectively. The latter implies that the associated U(1) coincides with baryon number in the SM sector. In this paper we completely classify the possible anomaly-free leptophobic Z′ with minimal dark sector, including the cases where the coupling to DM is axial. The resulting scenario is very predictive and perfectly viable from the present constraints from DM detection, EW observables and LHC data (di-lepton, di-jet and mono-jet production). We analyze all these constraints, obtaining the allowed areas in the parameter space, which generically prefer \( {m}_{Z^{\prime }} \) ≲ 500 GeV, apart from resonant regions. The best chances to test these viable areas come from future LHC measurements.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P. Langacker, R.W. Robinett and J.L. Rosner, New Heavy Gauge Bosons in pp and pp Collisions, Phys. Rev. D 30 (1984) 1470 [INSPIRE].
P. Langacker, The Physics of Heavy Z′ Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].
P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].
M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].
M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge Theory for Baryon and Lepton Numbers with Leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].
M. Duerr and P. Fileviez Perez, Baryonic Dark Matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].
A. Alves, S. Profumo and F.S. Queiroz, The dark Z′ portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].
G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z′ and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].
O. Lebedev and Y. Mambrini, Axial dark matter: The case for an invisible Z′, Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].
M. Duerr and P. Fileviez Perez, Theory for Baryon Number and Dark Matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].
P. Fileviez Perez, New Paradigm for Baryon and Lepton Number Violation, Phys. Rept. 597 (2015) 1 [arXiv:1501.01886] [INSPIRE].
M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma Lines from Majorana Dark Matter, Phys. Rev. D 93 (2016) 023509 [arXiv:1508.01425] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].
T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z′, JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].
M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z′ models from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].
G. Arcadi, M.D. Campos, M. Lindner, A. Masiero and F.S. Queiroz, Dark sequential Z′ portal: Collider and direct detection experiments, Phys. Rev. D 97 (2018) 043009 [arXiv:1708.00890] [INSPIRE].
P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal Theory for Lepto-Baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].
S. Ohmer and H.H. Patel, Leptobaryons as Majorana Dark Matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].
A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Z′ and anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].
N. Okada, S. Okada and D. Raut, SU(5) × U(1)X grand unification with minimal seesaw and Z′-portal dark matter, Phys. Lett. B 780 (2018) 422 [arXiv:1712.05290] [INSPIRE].
N. Okada and S. Okada, Z′-portal right-handed neutrino dark matter in the minimal U(1)X extended Standard Model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].
T. Bandyopadhyay, G. Bhattacharyya, D. Das and A. Raychaudhuri, Reappraisal of constraints on Z′ models from unitarity and direct searches at the LHC, Phys. Rev. D 98 (2018) 035027 [arXiv:1803.07989] [INSPIRE].
J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Dark Matter Models are not so Simple, JHEP 08 (2017) 053 [arXiv:1704.03850] [INSPIRE].
A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].
S. Rajpoot, Gauge symmetries of electroweak interactions, Int. J. Theor. Phys. 27 (1988) 689 [INSPIRE].
R. Foot, G.C. Joshi and H. Lew, Gauged Baryon and Lepton Numbers, Phys. Rev. D 40 (1989) 2487 [INSPIRE].
C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].
H. Georgi and S.L. Glashow, Decays of a leptophobic gauge boson, Phys. Lett. B 387 (1996) 341 [hep-ph/9607202] [INSPIRE].
T.R. Dulaney, P. Fileviez Perez and M.B. Wise, Dark Matter, Baryon Asymmetry and Spontaneous B and L Breaking, Phys. Rev. D 83 (2011) 023520 [arXiv:1005.0617] [INSPIRE].
P. Fileviez Perez and M.B. Wise, Breaking Local Baryon and Lepton Number at the TeV Scale, JHEP 08 (2011) 068 [arXiv:1106.0343] [INSPIRE].
J.M. Arnold, P. Fileviez Pérez, B. Fornal and S. Spinner, B and L at the supersymmetry scale, dark matter and R-parity violation, Phys. Rev. D 88 (2013) 115009 [arXiv:1310.7052] [INSPIRE].
P. Fileviez Pérez and H.H. Patel, Baryon Asymmetry, Dark Matter and Local Baryon Number, Phys. Lett. B 731 (2014) 232 [arXiv:1311.6472] [INSPIRE].
B. Batell, P. deNiverville, D. McKeen, M. Pospelov and A. Ritz, Leptophobic Dark Matter at Neutrino Factories, Phys. Rev. D 90 (2014) 115014 [arXiv:1405.7049] [INSPIRE].
M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].
C. Corianò, L. Delle Rose and C. Marzo, Constraints on abelian extensions of the Standard Model from two-loop vacuum stability and U(1)B − L, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, JCAP 03 (2015) 018 [arXiv:1411.2985] [INSPIRE].
XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
M. Baak and R. Kogler, The global electroweak Standard Model fit after the Higgs discovery, in Proceedings, 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, March 2–9, 2013, pp. 349-358 (2013) [arXiv:1306.0571] [INSPIRE].
ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36.1 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2017-027.
ATLAS collaboration, Search for new light resonances decaying to jet pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-070.
ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 96 (2017) 052004 [arXiv:1703.09127] [INSPIRE].
ATLAS collaboration, Search for low-mass dijet resonances using trigger-level jets with the ATLAS detector in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 121 (2018) 081801 [arXiv:1804.03496] [INSPIRE].
ATLAS collaboration, Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032016 [arXiv:1805.09299] [INSPIRE].
ATLAS collaboration, Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 788 (2019) 316 [arXiv:1801.08769] [INSPIRE].
UA2 collaboration, J. Alitti et al., A Search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].
CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s} \) = 1.96-TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].
D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [Erratum ibid. C 75 (2015) 408] [arXiv:1502.01518] [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
M.S. Chanowitz, M.A. Furman and I. Hinchliffe, Weak Interactions of Ultraheavy Fermions, Phys. Lett. B 78 (1978) 285 [INSPIRE].
J. Ellis, M. Fairbairn and P. Tunney, Phenomenological Constraints on Anomaly-Free Dark Matter Models, arXiv:1807.02503 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1807.07921
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Caron, S., Casas, J.A., Quilis, J. et al. Anomaly-free dark matter with harmless direct detection constraints. J. High Energ. Phys. 2018, 126 (2018). https://doi.org/10.1007/JHEP12(2018)126
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2018)126