Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production

  • Open access
  • Published: 27 June 2012
  • Volume 2012, article number 159, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production
Download PDF
  • Andrea Banfi1,
  • Gavin P. Salam2,3,4 &
  • Giulia Zanderighi5 
  • 912 Accesses

  • 115 Citations

  • Explore all metrics

Abstract

Using the technology of the caesar approach to resummation, we examine the jet-veto efficiency in Higgs-boson and Drell-Yan production at hadron colliders and show that at next-to-leading logarithmic (NLL) accuracy the resummation reduces to just a Sudakov form factor. Matching with NNLO calculations results in stable predictions for the case of Drell-Yan production, but reveals substantial uncertainties in gluon-fusion Higgs production, connected in part with the poor behaviour of the perturbative series for the total cross section. We compare our results to those from powheg with and without reweighting by hqt, as used experimentally, and observe acceptable agreement. In an appendix we derive the part of the NNLL resummation corrections associated with the radius dependence of the jet algorithm.

Article PDF

Download to read the full article text

Similar content being viewed by others

Jet-vetoed Higgs cross section in gluon fusion at N3LO+NNLL with small-R resummation

Article Open access 08 April 2016

Higgs production at NNLL′+NNLO using rapidity dependent jet vetoes

Article Open access 12 May 2020

NNLL resummation for the associated production of a top pair and a Higgs boson at the LHC

Article Open access 24 February 2017

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Nuclear and Particle Physics
  • Nuclear Physics
  • Particle Physics
  • Theoretical Nuclear Physics
  • Theoretical Particle Physics
  • Quantum Electrodynamics, Relativistic and Many-body Calculations
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, G. Aad et al., Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt {s} = {7} \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    Article  ADS  Google Scholar 

  3. TEVNPH (Tevatron New Phenomena and Higgs Working Group), CDF and D0 collaborations, Combined CDF and D0 search for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1203.3774 [INSPIRE].

  4. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  5. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons, Phys. Rev. 145 (1966) 1156 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  9. LHC Higgs Cross Section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].

  10. S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].

  11. ATLAS collaboration, G. Aad et al., Search for the Higgs boson in the H → WW (*) → ℓ + νℓ − \( \overline \nu \) decay channel in pp collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 111802 [arXiv:1112.2577] [INSPIRE].

    Article  ADS  Google Scholar 

  12. CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at \( \sqrt {s} = {7} \) TeV, Phys. Lett. B 710 (2012) 91 [arXiv:1202.1489] [INSPIRE].

    Article  ADS  Google Scholar 

  13. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Grazzini, NNLO predictions for the Higgs boson signal in the H → WW → lνlν and H → ZZ → 4l decay channels, JHEP 02 (2008) 043 [arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].

    Article  ADS  Google Scholar 

  17. V. Ravindran, J. Smith and W.L. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.M. Campbell, R.K. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].

    ADS  Google Scholar 

  21. I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].

    ADS  Google Scholar 

  22. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The q T spectrum of the Higgs boson at the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].

    Article  ADS  Google Scholar 

  24. C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].

    Article  ADS  Google Scholar 

  25. T. Becher and M. Neubert, Drell-Yan production at small q T , transverse parton distributions and the collinear anomaly, Eur. Phys. J. C 71 (2011) 1665 [arXiv:1007.4005] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Papaefstathiou, J.M. Smillie and B.R. Webber, Resummation of transverse energy in vector boson and Higgs boson production at hadron colliders, JHEP 04 (2010) 084 [arXiv:1002.4375] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B.R. Webber, New clustering algorithm for multi-jet cross-sections in e + e − annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant k t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP 01 (2002) 018 [hep-ph/0112156] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J.C. Collins, D.E. Soper and G.F. Sterman, Transverse momentum distribution in Drell-Yan pair and W and Z boson production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].

    ADS  Google Scholar 

  37. M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].

    ADS  Google Scholar 

  40. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  42. M. Wobisch, Measurement and QCD analysis of jet cross-sections in deep inelastic positron proton collisions at \( \sqrt {s} = {300} \) GeV, DESY-THESIS-2000-049 [INSPIRE].

  43. S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    Article  ADS  Google Scholar 

  44. G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e + e − event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].

    Article  ADS  Google Scholar 

  47. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  48. R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  52. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    Article  ADS  Google Scholar 

  53. R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order \( \alpha_s^2 \) correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].

  54. J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].

    ADS  Google Scholar 

  55. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    Article  ADS  Google Scholar 

  57. I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, Phys. Rev. D 85 (2012) 034011 [arXiv:1107.2117] [INSPIRE].

    ADS  Google Scholar 

  58. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

    Article  ADS  Google Scholar 

  59. N. Kidonakis, Collinear and soft gluon corrections to Higgs production at NNNLO, Phys. Rev. D 77 (2008) 053008 [arXiv:0711.0142] [INSPIRE].

    ADS  Google Scholar 

  60. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the large perturbative corrections to Higgs production at hadron colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  61. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Baglio and A. Djouadi, Higgs production at the LHC, JHEP 03 (2011) 055 [arXiv:1012.0530] [INSPIRE].

    Article  ADS  Google Scholar 

  63. R.W.L. Jones, M. Ford, G.P. Salam, H. Stenzel and D. Wicke, Theoretical uncertainties on α s from event shape variables in e + e − annihilations, JHEP 12 (2003) 007 [hep-ph/0312016] [INSPIRE].

    Article  ADS  Google Scholar 

  64. B. Nobalma et al., in The SM and NLO multileg and SM MC working groups: summary report, work presented at the workshop on Physics at TeV Collider, Les Houches France, 31 May–8 June 2011.

  65. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  66. P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

    ADS  Google Scholar 

  67. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R. Field, Early LHC underlying event data — findings and surprises, arXiv:1010.3558 [INSPIRE].

  71. ATLAS collaboration, G. Aad et al., Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC, New J. Phys. 13 (2011) 053033 [arXiv:1012.5104] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J.M. Campbell et al., NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, arXiv:1202.5475 [INSPIRE].

  73. G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

  74. F.A. Berends and W.T. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].

    Article  ADS  Google Scholar 

  75. Y.L. Dokshitzer, G. Marchesini and G. Oriani, Measuring color flows in hard processes: beyond leading order, Nucl. Phys. B 387 (1992) 675 [INSPIRE].

    Article  ADS  Google Scholar 

  76. J.M. Campbell and E.W.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].

    Article  ADS  Google Scholar 

  78. S. Catani and M. Grazzini, QCD transverse-momentum resummation in gluon fusion processes, Nucl. Phys. B 845 (2011) 297 [arXiv:1011.3918] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, D-79104, Freiburg, Germany

    Andrea Banfi

  2. CERN, PH-TH, CH-1211, Geneva 23, Switzerland

    Gavin P. Salam

  3. Department of Physics, Princeton University, Princeton, NJ, 08544, U.S.A.

    Gavin P. Salam

  4. LPTHE, CNRS UMR 7589, UPMC Univ. Paris 6, Paris, France

    Gavin P. Salam

  5. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, U.K.

    Giulia Zanderighi

Authors
  1. Andrea Banfi
    View author publications

    Search author on:PubMed Google Scholar

  2. Gavin P. Salam
    View author publications

    Search author on:PubMed Google Scholar

  3. Giulia Zanderighi
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Giulia Zanderighi.

Additional information

ArXiv ePrint: 1203.5773

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Banfi, A., Salam, G.P. & Zanderighi, G. NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production. J. High Energ. Phys. 2012, 159 (2012). https://doi.org/10.1007/JHEP06(2012)159

Download citation

  • Received: 02 April 2012

  • Accepted: 23 May 2012

  • Published: 27 June 2012

  • DOI: https://doi.org/10.1007/JHEP06(2012)159

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Resummation
  • QCD
  • Standard Model

Profiles

  1. Andrea Banfi View author profile
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature