Abstract
The hadroproduction of a W boson in association with a charm quark at the Large Hadron Collider is at the centre of current investigations due to its potential to probe the strangeness content of the proton. In this paper we present an implementation of the W + c production process in the PowHel event generator matched to the PYTHIA8 parton shower approach, allowing to obtain predictions for differential cross-sections with NLO QCD accuracy matched to the accuracy of the Shower Monte Carlo event generator. Effects of non-diagonal CKM matrix elements, finite charm quark mass and off-shell W decays including spin correlations are taken into account. We investigate the production of a leptonically decaying W boson in association with either a charmed meson (W ± + D∗∓) or a charmed jet (W ± + jc) and compare our predictions with particle-level measurements by the ATLAS and CMS collaborations at \( \sqrt{s} \) = 7 and 13 TeV. The role of the so-called “opposite sign” and “same sign” contributions to the theoretical cross-sections is presented and discussed, pointing out the importance of including parton shower effects for a reliable estimate of the latter and a faithful comparison with experimental data.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
A. Accardi et al., A critical appraisal and evaluation of modern PDFs, Eur. Phys. J. C 76 (2016) 471 [arXiv:1603.08906] [INSPIRE].
PROSA collaboration, Impact of heavy-flavour production cross sections measured by the LHCb experiment on parton distribution functions at low x, Eur. Phys. J. C 75 (2015) 396 [arXiv:1503.04581] [INSPIRE].
V. Bertone, R. Gauld and J. Rojo, Neutrino telescopes as QCD microscopes, JHEP 01 (2019) 217 [arXiv:1808.02034] [INSPIRE].
PROSA collaboration, Improved constraints on parton distributions using LHCb, ALICE and HERA heavy-flavour measurements and implications for the predictions for prompt atmospheric-neutrino fluxes, JHEP 04 (2020) 118 [arXiv:1911.13164] [INSPIRE].
S. Alekhin et al., Determination of strange sea quark distributions from fixed-target and collider data, Phys. Rev. D 91 (2015) 094002 [arXiv:1404.6469] [INSPIRE].
S. Alekhin, J. Blümlein and S. Moch, Strange sea determination from collider data, Phys. Lett. B 777 (2018) 134 [arXiv:1708.01067] [INSPIRE].
F. Faura, S. Iranipour, E. R. Nocera, J. Rojo and M. Ubiali, The strangest proton?, Eur. Phys. J. C 80 (2020) 1168 [arXiv:2009.00014] [INSPIRE].
xFitter Developers’ Team collaboration, Probing the strange content of the proton with charm production in charged current at LHeC, Eur. Phys. J. C 79 (2019) 864 [arXiv:1907.01014] [INSPIRE].
M. V. Garzelli, QCD opportunities with forward neutrinos during the HL-LHC phase, poster presentation at the APS 2021 April Meeting Quarks to Cosmos, online, April 17–20 (2021).
CMS collaboration, A search for the standard model Higgs boson decaying to charm quarks, JHEP 03 (2020) 131 [arXiv:1912.01662] [INSPIRE].
ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays to charm quarks with the ATLAS detector, arXiv:2201.11428.
S. Iwamoto, G. Lee, Y. Shadmi and Y. Weiss, Tagging new physics with charm, JHEP 09 (2017) 114 [arXiv:1703.05748] [INSPIRE].
ATLAS collaboration, Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector, JHEP 01 (2018) 126 [arXiv:1711.03301] [INSPIRE].
CMS collaboration, Search for dark matter produced in association with heavy-flavor quark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 77 (2017) 845 [arXiv:1706.02581] [INSPIRE].
G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher and J. P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
CDF collaboration, First measurement of the production of a W boson in association with a single charm quark in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett. 100 (2008) 091803 [arXiv:0711.2901] [INSPIRE].
D0 collaboration, Measurement of the ratio of the \( p\overline{p} \) → W + c− jet cross section to the inclusive \( p\overline{p} \) → W + jets cross section, Phys. Lett. B 666 (2008) 23 [arXiv:0803.2259] [INSPIRE].
CDF collaboration, Observation of the production of a W boson in association with a single charm quark, Phys. Rev. Lett. 110 (2013) 071801 [arXiv:1209.1921] [INSPIRE].
CMS collaboration, Measurements of the associated production of a W boson and a charm quark in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, arXiv:2112.00895 [INSPIRE].
CMS collaboration, Measurement of associated W + charm production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 02 (2014) 013 [arXiv:1310.1138] [INSPIRE].
ATLAS collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 05 (2014) 068 [arXiv:1402.6263] [INSPIRE].
CMS collaboration, Measurement of associated production of a W boson and a charm quark in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 269 [arXiv:1811.10021] [INSPIRE].
LHCb collaboration, Study of W boson production in association with beauty and charm, Phys. Rev. D 92 (2015) 052001 [arXiv:1505.04051] [INSPIRE].
W. T. Giele, S. Keller and E. Laenen, QCD corrections to W boson plus heavy quark production at the Tevatron, Phys. Lett. B 372 (1996) 141 [hep-ph/9511449] [INSPIRE].
J. M. Campbell, R. K. Ellis and W. T. Giele, A multi-threaded version of MCFM, Eur. Phys. J. C 75 (2015) 246 [arXiv:1503.06182] [INSPIRE].
W. J. Stirling and E. Vryonidou, Charm production in association with an electroweak gauge boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].
A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to W + jet hadroproduction including leptonic W -boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].
S. Kallweit, J. M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].
S. Kallweit, J. M. Lindert, P. Maierhofer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].
B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J. M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].
S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].
M. Czakon, A. Mitov, M. Pellen and R. Poncelet, NNLO QCD predictions for W+c-jet production at the LHC, JHEP 06 (2021) 100 [arXiv:2011.01011] [INSPIRE].
J. C. Collins, F. Wilczek and A. Zee, Low-energy manifestations of heavy particles: application to the neutral current, Phys. Rev. D 18 (1978) 242 [INSPIRE].
M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
A. Banfi, G. P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].
J. Rojo, Progress in the NNPDF global analyses of proton structure, arXiv:2104.09174 [INSPIRE].
R. D. Ball et al., The path to proton structure at one-percent accuracy, arXiv:2109.02653 [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
S. Bailey, T. Cridge, L. A. Harland-Lang, A. D. Martin and R. S. Thorne, Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs, Eur. Phys. J. C 81 (2021) 341 [arXiv:2012.04684] [INSPIRE].
T.-J. Hou et al., New CTEQ global analysis of quantum chromodynamics with high-precision data from the LHC, Phys. Rev. D 103 (2021) 014013 [arXiv:1912.10053] [INSPIRE].
S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].
G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].
S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].
T. Sjöstrand, The PYTHIA event generator: past, present and future, Comput. Phys. Commun. 246 (2020) 106910 [arXiv:1907.09874] [INSPIRE].
T. Sjöstrand et al., An introduction to Pythia 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012].
T. Sjöstrand, S. Mrenna and P. Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
J. Bellm et al., HERWIG 7.2 release note, Eur. Phys. J. C 80 (2020) 452 [arXiv:1912.06509] [INSPIRE].
G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].
G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
G. Bevilacqua, M. V. Garzelli and A. Kardos, \( t\overline{t}b\overline{b} \) hadroproduction with massive bottom quarks with PowHel, arXiv:1709.06915 [INSPIRE].
M. V. Garzelli, A. Kardos and Z. Trócsányi, Hadroproduction of \( t\overline{t}b\overline{b} \) final states at LHC: predictions at NLO accuracy matched with Parton Shower, JHEP 03 (2015) 083 [arXiv:1408.0266] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
M. Cacciari, M. Greco and P. Nason, The pT spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].
J. Campbell and T. Neumann, Precision phenomenology with MCFM, JHEP 12 (2019) 034 [arXiv:1909.09117] [INSPIRE].
J. M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001.
S. Alekhin, J. Blümlein and S. Moch, NLO PDFs from the ABMP16 fit, Eur. Phys. J. C 78 (2018) 477 [arXiv:1803.07537] [INSPIRE].
T.-J. Hou et al., Progress in the CTEQ-TEA NNLO global QCD analysis, arXiv:1908.11394 [INSPIRE].
S. Catani, D. de Florian, G. Rodrigo and W. Vogelsang, Perturbative generation of a strange-quark asymmetry in the nucleon, Phys. Rev. Lett. 93 (2004) 152003 [hep-ph/0404240] [INSPIRE].
CT18 collaboration, private communication (2021).
S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].
S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
A. Buckley, ATLAS PYTHIA 8 tunes to 7 TeV data, ATL-PHYS-PROC-2014-273 (2014).
R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
P. Marquard, A. V. Smirnov, V. A. Smirnov and M. Steinhauser, Quark mass relations to four-loop order in perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].
M. V. Garzelli, L. Kemmler, S. Moch and O. Zenaiev, Heavy-flavor hadro-production with heavy-quark masses renormalized in the \( \overline{\mathrm{MS}} \), MSR and on-shell schemes, JHEP 04 (2021) 043 [arXiv:2009.07763] [INSPIRE].
S. Alekhin, A. Kardos, S. Moch and Z. Trócsányi, Precision studies for Drell-Yan processes at NNLO, Eur. Phys. J. C 81 (2021) 573 [arXiv:2104.02400] [INSPIRE].
M. A. Ebert, J. K. L. Michel, I. W. Stewart and F. J. Tackmann, Drell-Yan qT resummation of fiducial power corrections at N3 LL, JHEP 04 (2021) 102 [arXiv:2006.11382] [INSPIRE].
A. Banfi, G. P. Salam and G. Zanderighi, Accurate QCD predictions for heavy-quark jets at the Tevatron and LHC, JHEP 07 (2007) 026 [arXiv:0704.2999] [INSPIRE].
J. Campbell, J. Huston, and F. Krauss, The black book of quantum chromodynamics: a primer for the LHC era, Oxford University Press, Oxford, U.K. (2017).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2106.11261
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Bevilacqua, G., Garzelli, M.V., Kardos, A. et al. W + charm production with massive c quarks in PowHel. J. High Energ. Phys. 2022, 56 (2022). https://doi.org/10.1007/JHEP04(2022)056
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2022)056