Abstract
The recent analysis of the Planck 2018 polarization data shows a nonzero isotropic cosmic birefringence (ICB) that is not explained within the ΛCDM paradigm. We then explore the question of whether the nonzero ICB is interpreted by the framework of the Standard Model Effective Field Theory (SMEFT), or at the energy scales of the cosmic microwave background, the low-energy EFT (LEFT) whose dynamical degrees of freedom are five SM quarks and all neutral and charged leptons. Our systematic study reveals that any operator in the EFT on a cosmological background would not give the reported ICB angle, which is observationally consistent with frequency independence. In particular, we estimate the size of the ICB angle generated by the effect that the cosmic microwave background photons travel through the medium of the cosmic neutrino background with parity-violating neutrino-photon interactions and find that it would be too small to explain the data. If the reported ICB angle should be confirmed, then our result would indicate the existence of a new particle that is lighter than the electroweak scale and feebly interacting with the SM particles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175 [astro-ph/0302209] [INSPIRE].
WMAP Science Team collaboration, Results from the Wilkinson Microwave Anisotropy Probe, PTEP 2014 (2014) 06B102 [arXiv:1404.5415] [INSPIRE].
Planck collaboration, Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [Erratum ibid. 652 (2021) C4] [INSPIRE].
Y. Minami and E. Komatsu, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data, Phys. Rev. Lett. 125 (2020) 221301 [arXiv:2011.11254] [INSPIRE].
P. Diego-Palazuelos et al., Cosmic Birefringence from the Planck Data Release 4, Phys. Rev. Lett. 128 (2022) 091302 [arXiv:2201.07682] [INSPIRE].
J.R. Eskilt, Frequency-dependent constraints on cosmic birefringence from the LFI and HFI Planck Data Release 4, Astron. Astrophys. 662 (2022) A10 [arXiv:2201.13347] [INSPIRE].
J.R. Eskilt and E. Komatsu, Improved constraints on cosmic birefringence from the WMAP and Planck cosmic microwave background polarization data, Phys. Rev. D 106 (2022) 063503 [arXiv:2205.13962] [INSPIRE].
Cosmoglobe collaboration, Cosmoglobe DR1 results — II. Constraints on isotropic cosmic birefringence from reprocessed WMAP and Planck LFI data, Astron. Astrophys. 679 (2023) A144 [arXiv:2305.02268] [INSPIRE].
S.M. Carroll, G.B. Field and R. Jackiw, Limits on a Lorentz and Parity Violating Modification of Electrodynamics, Phys. Rev. D 41 (1990) 1231 [INSPIRE].
S.M. Carroll and G.B. Field, The Einstein equivalence principle and the polarization of radio galaxies, Phys. Rev. D 43 (1991) 3789 [INSPIRE].
D. Harari and P. Sikivie, Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background, Phys. Lett. B 289 (1992) 67 [INSPIRE].
B. Feng, M. Li, J.-Q. Xia, X. Chen and X. Zhang, Searching for CPT Violation with Cosmic Microwave Background Data from WMAP and BOOMERANG, Phys. Rev. Lett. 96 (2006) 221302 [astro-ph/0601095] [INSPIRE].
QUaD collaboration, Parity Violation Constraints Using Cosmic Microwave Background Polarization Spectra from 2006 and 2007 Observations by the QUaD Polarimeter, Phys. Rev. Lett. 102 (2009) 161302 [arXiv:0811.0618] [INSPIRE].
WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
Planck collaboration, Planck intermediate results. XLIX. Parity-violation constraints from polarization data, Astron. Astrophys. 596 (2016) A110 [arXiv:1605.08633] [INSPIRE].
Y. Minami, H. Ochi, K. Ichiki, N. Katayama, E. Komatsu and T. Matsumura, Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles from CMB experiments, PTEP 2019 (2019) 083E02 [arXiv:1904.12440] [INSPIRE].
Y. Minami, Determination of miscalibrated polarization angles from observed cosmic microwave background and foreground EB power spectra: Application to partial-sky observation, PTEP 2020 (2020) 063E01 [arXiv:2002.03572] [INSPIRE].
Y. Minami and E. Komatsu, Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles II: Including cross frequency spectra, PTEP 2020 (2020) 103E02 [arXiv:2006.15982] [INSPIRE].
S.E. Clark, C.-G. Kim, J.C. Hill and B.S. Hensley, The Origin of Parity Violation in Polarized Dust Emission and Implications for Cosmic Birefringence, Astrophys. J. 919 (2021) 53 [arXiv:2105.00120] [INSPIRE].
P. Diego-Palazuelos et al., Robustness of cosmic birefringence measurement against Galactic foreground emission and instrumental systematics, JCAP 01 (2023) 044 [arXiv:2210.07655] [INSPIRE].
M. Monelli et al., Impact of half-wave plate systematics on the measurement of cosmic birefringence from CMB polarization, JCAP 03 (2023) 034 [arXiv:2211.05685] [INSPIRE].
B. Jost, J. Errard and R. Stompor, Characterizing cosmic birefringence in the presence of Galactic foregrounds and instrumental systematic effects, Phys. Rev. D 108 (2023) 082005 [arXiv:2212.08007] [INSPIRE].
E. Komatsu, New physics from the polarized light of the cosmic microwave background, Nature Rev. Phys. 4 (2022) 452 [arXiv:2202.13919] [INSPIRE].
S.M. Carroll, Quintessence and the rest of the world, Phys. Rev. Lett. 81 (1998) 3067 [astro-ph/9806099] [INSPIRE].
A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [INSPIRE].
M. Pospelov, A. Ritz, C. Skordis, A. Ritz and C. Skordis, Pseudoscalar perturbations and polarization of the cosmic microwave background, Phys. Rev. Lett. 103 (2009) 051302 [arXiv:0808.0673] [INSPIRE].
F. Finelli and M. Galaverni, Rotation of Linear Polarization Plane and Circular Polarization from Cosmological Pseudo-Scalar Fields, Phys. Rev. D 79 (2009) 063002 [arXiv:0802.4210] [INSPIRE].
S. Panda, Y. Sumitomo and S.P. Trivedi, Axions as Quintessence in String Theory, Phys. Rev. D 83 (2011) 083506 [arXiv:1011.5877] [INSPIRE].
S. Lee, G.-C. Liu and K.-W. Ng, Imprint of Scalar Dark Energy on Cosmic Microwave Background Polarization, Phys. Rev. D 89 (2014) 063010 [arXiv:1307.6298] [INSPIRE].
W. Zhao and M. Li, Fluctuations of cosmological birefringence and the effect on CMB B-mode polarization, Phys. Rev. D 89 (2014) 103518 [arXiv:1403.3997] [INSPIRE].
G.-C. Liu and K.-W. Ng, Axion Dark Matter Induced Cosmic Microwave Background B-modes, Phys. Dark Univ. 16 (2017) 22 [arXiv:1612.02104] [INSPIRE].
G. Sigl and P. Trivedi, Axion-like Dark Matter Constraints from CMB Birefringence, arXiv:1811.07873 [INSPIRE].
M.A. Fedderke, P.W. Graham and S. Rajendran, Axion Dark Matter Detection with CMB Polarization, Phys. Rev. D 100 (2019) 015040 [arXiv:1903.02666] [INSPIRE].
T. Fujita, K. Murai, H. Nakatsuka and S. Tsujikawa, Detection of isotropic cosmic birefringence and its implications for axionlike particles including dark energy, Phys. Rev. D 103 (2021) 043509 [arXiv:2011.11894] [INSPIRE].
F. Takahashi and W. Yin, Kilobyte Cosmic Birefringence from ALP Domain Walls, JCAP 04 (2021) 007 [arXiv:2012.11576] [INSPIRE].
L.W.H. Fung, L. Li, T. Liu, H.N. Luu, Y.-C. Qiu and S.H.H. Tye, Axi-Higgs cosmology, JCAP 08 (2021) 057 [arXiv:2102.11257] [INSPIRE].
S. Nakagawa, F. Takahashi and M. Yamada, Cosmic Birefringence Triggered by Dark Matter Domination, Phys. Rev. Lett. 127 (2021) 181103 [arXiv:2103.08153] [INSPIRE].
M. Jain, A.J. Long and M.A. Amin, CMB birefringence from ultralight-axion string networks, JCAP 05 (2021) 055 [arXiv:2103.10962] [INSPIRE].
G. Choi, W. Lin, L. Visinelli and T.T. Yanagida, Cosmic birefringence and electroweak axion dark energy, Phys. Rev. D 104 (2021) L101302 [arXiv:2106.12602] [INSPIRE].
I. Obata, Implications of the cosmic birefringence measurement for the axion dark matter search, JCAP 09 (2022) 062 [arXiv:2108.02150] [INSPIRE].
H. Nakatsuka, T. Namikawa and E. Komatsu, Is cosmic birefringence due to dark energy or dark matter? A tomographic approach, Phys. Rev. D 105 (2022) 123509 [arXiv:2203.08560] [INSPIRE].
W. Lin and T.T. Yanagida, Consistency of the string inspired electroweak axion with cosmic birefringence, Phys. Rev. D 107 (2023) L021302 [arXiv:2208.06843] [INSPIRE].
S. Gasparotto and I. Obata, Cosmic birefringence from monodromic axion dark energy, JCAP 08 (2022) 025 [arXiv:2203.09409] [INSPIRE].
N. Lee, S.C. Hotinli and M. Kamionkowski, Probing cosmic birefringence with polarized Sunyaev-Zel’dovich tomography, Phys. Rev. D 106 (2022) 083518 [arXiv:2207.05687] [INSPIRE].
M. Jain, R. Hagimoto, A.J. Long and M.A. Amin, Searching for axion-like particles through CMB birefringence from string-wall networks, JCAP 10 (2022) 090 [arXiv:2208.08391] [INSPIRE].
K. Murai, F. Naokawa, T. Namikawa and E. Komatsu, Isotropic cosmic birefringence from early dark energy, Phys. Rev. D 107 (2023) L041302 [arXiv:2209.07804] [INSPIRE].
D. Gonzalez, N. Kitajima, F. Takahashi and W. Yin, Stability of domain wall network with initial inflationary fluctuations and its implications for cosmic birefringence, Phys. Lett. B 843 (2023) 137990 [arXiv:2211.06849] [INSPIRE].
Y.-C. Qiu, J.-W. Wang and T.T. Yanagida, High-Quality Axions in a Class of Chiral U(1) Gauge Theories, Phys. Rev. Lett. 131 (2023) 071802 [arXiv:2301.02345] [INSPIRE].
J.R. Eskilt, L. Herold, E. Komatsu, K. Murai, T. Namikawa and F. Naokawa, Constraints on Early Dark Energy from Isotropic Cosmic Birefringence, Phys. Rev. Lett. 131 (2023) 121001 [arXiv:2303.15369] [INSPIRE].
T. Namikawa and I. Obata, Cosmic birefringence tomography with polarized Sunyaev-Zel’dovich effect, Phys. Rev. D 108 (2023) 083510 [arXiv:2306.08875] [INSPIRE].
S. Gasparotto and E.I. Sfakianakis, Cosmic birefringence from the Axiverse, JCAP 11 (2023) 017 [arXiv:2306.16355] [INSPIRE].
P. Agrawal, M. Nee and M. Reig, Axion couplings in grand unified theories, JHEP 10 (2022) 141 [arXiv:2206.07053] [INSPIRE].
N. Bartolo, A. Hoseinpour, S. Matarrese, G. Orlando and M. Zarei, CMB Circular and B-mode Polarization from New Interactions, Phys. Rev. D 100 (2019) 043516 [arXiv:1903.04578] [INSPIRE].
J. Royer, Effect of a degenerate neutrino sea on electromagnetism, Phys. Rev. 174 (1968) 1719 [INSPIRE].
G. Karl, Coherent Parity Violation: A Review of Optical Activity with Massless and Massive Particles, Can. J. Phys. 54 (1976) 568 [INSPIRE].
S. Mohanty, J.F. Nieves and P.B. Pal, Optical activity of a neutrino gas, Phys. Rev. D 58 (1998) 093007 [hep-ph/9712414] [INSPIRE].
G. Karl and V. Novikov, Photon-neutrino interactions, JETP Lett. 81 (2005) 249 [hep-ph/0411176] [INSPIRE].
M. Dvornikov and V.B. Semikoz, Birefringence of electromagnetic waves in the relic neutrino gas, JCAP 03 (2021) 028 [arXiv:2011.14883] [INSPIRE].
M. Petropavlova and A. Smetana, Toward interferometry of neutrino electromagnetism, Phys. Rev. D 106 (2022) 053003 [arXiv:2204.02886] [INSPIRE].
C.Q. Geng, S.H. Ho and J.N. Ng, Neutrino number asymmetry and cosmological birefringence, JCAP 09 (2007) 010 [arXiv:0706.0080] [INSPIRE].
S.-H. Ho, W.F. Kao, K. Bamba and C.Q. Geng, Cosmological birefringence due to CPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields, Eur. Phys. J. C 75 (2015) 192 [arXiv:1008.0486] [INSPIRE].
R.-P. Zhou, D. Huang and C.-Q. Geng, Cosmic birefringence from neutrino and dark matter asymmetries, JCAP 07 (2023) 053 [arXiv:2302.11140] [INSPIRE].
G.W. Horndeski, Conservation of Charge and the Einstein-Maxwell Field Equations, J. Math. Phys. 17 (1976) 1980 [INSPIRE].
P. Fleury, J.P. Beltran Almeida, C. Pitrou and J.-P. Uzan, On the stability and causality of scalar-vector theories, JCAP 11 (2014) 043 [arXiv:1406.6254] [INSPIRE].
J. Khodagholizadeh, S. Mahmoudi, R. Mohammadi and M. Sadegh, Cosmic birefringence as a probe of the nature of dark matter: Sterile neutrino and dipolar dark matter, Phys. Rev. D 108 (2023) 023023 [arXiv:2307.16286] [INSPIRE].
A. Greco, N. Bartolo and A. Gruppuso, Cosmic birefrigence: cross-spectra and cross-bispectra with CMB anisotropies, JCAP 03 (2022) 050 [arXiv:2202.04584] [INSPIRE].
A. Greco, N. Bartolo and A. Gruppuso, Probing Axions through Tomography of Anisotropic Cosmic Birefringence, JCAP 05 (2023) 026 [arXiv:2211.06380] [INSPIRE].
E. Brezin and C. Itzykson, Polarization phenomena in vacuum nonlinear electrodynamics, Phys. Rev. D 3 (1971) 618 [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE].
Y. Liao, X.-D. Ma and Q.-Y. Wang, Extending low energy effective field theory with a complete set of dimension-7 operators, JHEP 08 (2020) 162 [arXiv:2005.08013] [INSPIRE].
B.K. El-Menoufi and G.A. White, The axial anomaly, dimensional regularization and Lorentz-violating QED, arXiv:1505.01754 [INSPIRE].
W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys. 98 (1936) 714 [physics/0605038] [INSPIRE].
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].
Planck collaboration, Planck intermediate results — XXIV. Constraints on variations in fundamental constants, Astron. Astrophys. 580 (2015) A22 [arXiv:1406.7482] [INSPIRE].
J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You, Top, Higgs, Diboson and Electroweak Fit to the Standard Model Effective Field Theory, JHEP 04 (2021) 279 [arXiv:2012.02779] [INSPIRE].
S. Weinberg, Universal Neutrino Degeneracy, Phys. Rev. 128 (1962) 1457 [INSPIRE].
WMAP collaboration, Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [INSPIRE].
W. Altmannshofer, M. Tammaro and J. Zupan, Non-standard neutrino interactions and low energy experiments, JHEP 09 (2019) 083 [arXiv:1812.02778] [Erratum ibid. 11 (2021) 113] [INSPIRE].
J. Ellis and S.-F. Ge, Constraining Gluonic Quartic Gauge Coupling Operators with gg → γγ, Phys. Rev. Lett. 121 (2018) 041801 [arXiv:1802.02416] [INSPIRE].
ATLAS collaboration, Search for dark matter at \( \sqrt{s} \) = 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector, Eur. Phys. J. C 77 (2017) 393 [arXiv:1704.03848] [INSPIRE].
R. Mohammadi, J. Khodagholizadeh, M. Sadegh, A. Vahedi and S.-s. Xue, Cross-correlation power spectra and cosmic birefringence of the CMB via photon-neutrino interaction, JCAP 06 (2023) 044 [arXiv:2109.00152] [INSPIRE].
E. Cremmer and J. Scherk, Spontaneous dynamical breaking of gauge symmetry in dual models, Nucl. Phys. B 72 (1974) 117 [INSPIRE].
A.S. Goldhaber and M.M. Nieto, Photon and Graviton Mass Limits, Rev. Mod. Phys. 82 (2010) 939 [arXiv:0809.1003] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01 [INSPIRE].
J.F. Nieves and P.B. Pal, P and CP Odd Terms in the Photon Selfenergy Within a Medium, Phys. Rev. D 39 (1989) 652 [Erratum ibid. 40 (1989) 2148] [INSPIRE].
C. Giunti and A. Studenikin, Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys. 87 (2015) 531 [arXiv:1403.6344] [INSPIRE].
E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-Energy Effective Field Theory below the Electroweak Scale: Operators and Matching, JHEP 03 (2018) 016 [arXiv:1709.04486] [INSPIRE].
Acknowledgments
We would like to thank Eiichiro Komatsu and Satoshi Shirai for discussions. This work is supported by Natural Science Foundation of China No. 12150610465 (YN), the RIKEN Incentive Research Project grant (RN), and JSPS Overseas Research Fellowship / JSPS KAKENHI No. JP20H05859 and 19K14702 (IO), No. 19H01891, No. 20H05860 (RS).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2310.09152
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Nakai, Y., Namba, R., Obata, I. et al. Can we explain cosmic birefringence without a new light field beyond Standard Model?. J. High Energ. Phys. 2024, 57 (2024). https://doi.org/10.1007/JHEP01(2024)057
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2024)057