Abstract
Recently the DArk Matter Particle Explorer (DAMPE) has reported an excess in the electron-positron flux of the cosmic rays which is interpreted as a dark matter particle with the mass about 1.5 TeV. We come up with a leptophilic Z′ scenario including a Dirac fermion dark matter candidate which beside explaining the observed DAMPE excess, is able to pass various experimental/observational constraints including the relic density value from the WMAP/Planck, the invisible Higgs decay bound at the LHC, the LEP bounds in electron-positron scattering, the muon anomalous magnetic moment constraint, Fermi-LAT data, and finally the direct detection experiment limits from the XENON1t/LUX. By computing the electron-positron flux produced from a dark matter with the mass about 1.5 TeV we show that the model predicts the peak observed by the DAMPE.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE].
AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE].
AMS collaboration, L. Accardo et al., High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121101 [INSPIRE].
AMS collaboration, M. Aguilar et al., Precision Measurement of the (e + + e − ) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 221102 [INSPIRE].
DAMPE collaboration, G. Ambrosi et al., Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552 (2017) 63 [arXiv:1711.10981] [INSPIRE].
Q. Yuan et al., Interpretations of the DAMPE electron data, arXiv:1711.10989 [INSPIRE].
Y.-Z. Fan, W.-C. Huang, M. Spinrath, Y.-L.S. Tsai and Q. Yuan, A model explaining neutrino masses and the DAMPE cosmic ray electron excess, Phys. Lett. B 781 (2018) 83 [arXiv:1711.10995] [INSPIRE].
G.H. Duan, L. Feng, F. Wang, L. Wu, J.M. Yang and R. Zheng, Simplified TeV leptophilic dark matter in light of DAMPE data, JHEP 02 (2018) 107 [arXiv:1711.11012] [INSPIRE].
P. Athron, C. Balázs, A. Fowlie and Y. Zhang, Model-independent analysis of the DAMPE excess, JHEP 02 (2018) 121 [arXiv:1711.11376] [INSPIRE].
P.-H. Gu and X.-G. He, Electrophilic dark matter with dark photon: from DAMPE to direct detection, Phys. Lett. B 778 (2018) 292 [arXiv:1711.11000] [INSPIRE].
W. Chao and Q. Yuan, The electron-flavored Z’-portal dark matter and the DAMPE cosmic ray excess, arXiv:1711.11182 [INSPIRE].
J. Cao, L. Feng, X. Guo, L. Shang, F. Wang and P. Wu, Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions, Phys. Rev. D 97 (2018) 095011 [arXiv:1711.11452] [INSPIRE].
X. Liu and Z. Liu, TeV dark matter and the DAMPE electron excess, arXiv:1711.11579 [INSPIRE].
W. Chao, H.-K. Guo, H.-L. Li and J. Shu, Electron Flavored Dark Matter, arXiv:1712.00037 [INSPIRE].
Y.-L. Tang, L. Wu, M. Zhang and R. Zheng, Lepton-portal Dark Matter in Hidden Valley model and the DAMPE recent results, arXiv:1711.11058 [INSPIRE].
P.-H. Gu, Radiative Dirac neutrino mass, DAMPE dark matter and leptogenesis, arXiv:1711.11333 [INSPIRE].
G.H. Duan, X.-G. He, L. Wu and J.M. Yang, Leptophilic dark matter in gauged \( \mathrm{U}{(1)}_{L_e-{L}_{\mu }} \) model in light of DAMPE cosmic ray e + + e − excess, Eur. Phys. J. C 78 (2018) 323 [arXiv:1711.11563] [INSPIRE].
L. Zu, C. Zhang, L. Feng, Q. Yuan and Y.-Z. Fan, Constraints on box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data, arXiv:1711.11052 [INSPIRE].
Y. Gao and Y.-Z. Ma, Implications of dark matter cascade decay from DAMPE, HESS, Fermi-LAT and AMS02 data, arXiv:1712.00370 [INSPIRE].
X.-J. Huang, Y.-L. Wu, W.-H. Zhang and Y.-F. Zhou, Origins of sharp cosmic-ray electron structures and the DAMPE excess, Phys. Rev. D 97 (2018) 091701 [arXiv:1712.00005] [INSPIRE].
H.-B. Jin, B. Yue, X. Zhang and X. Chen, Cosmic ray e + e − spectrum excess and peak feature observed by the DAMPE experiment from dark matter, arXiv:1712.00362 [INSPIRE].
F. Yang, M. Su and Y. Zhao, Dark Matter Annihilation from Nearby Ultra-compact Micro Halos to Explain the Tentative Excess at 1.4 TeV in DAMPE data, arXiv:1712.01724 [INSPIRE].
K. Ghorbani and H. Ghorbani, Two-portal Dark Matter, Phys. Rev. D 91 (2015) 123541 [arXiv:1504.03610] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].
D. Barducci et al., Collider limits on new physics within MicrOMEGAs 4.3, Comput. Phys. Commun. 222 (2018) 327 [arXiv:1606.03834] [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].
Muon g-2 collaboration, G.W. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].
SLD Electroweak Group, SLD Heavy Flavor Group, DELPHI, LEP, ALEPH, OPAL, LEP Electroweak Working Group and L3 collaborations, t.S. Electroweak, A combination of preliminary electroweak measurements and constraints on the standard model, hep-ex/0312023 [INSPIRE].
A. Freitas and S. Westhoff, Leptophilic Dark Matter in Lepton Interactions at LEP and ILC, JHEP 10 (2014) 116 [arXiv:1408.1959] [INSPIRE].
P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].
XENON100 collaboration, E. Aprile et al., Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data, Science 349 (2015) 851 [arXiv:1507.07747] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].
XENON collaboration, E. Aprile et al., First Dark Matter Search Results from the XENON1T Experiment, Phys. Rev. Lett. 119 (2017) 181301 [arXiv:1705.06655] [INSPIRE].
LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].
W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ − L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].
M. Cirelli, R. Franceschini and A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
X. Huang, Y.-L.S. Tsai and Q. Yuan, LikeDM: likelihood calculator of dark matter detection, Comput. Phys. Commun. 213 (2017) 252 [arXiv:1603.07119] [INSPIRE].
Fermi-LAT collaboration, S. Abdollahi et al., Cosmic-ray electron-positron spectrum from 7 GeV to 2 TeV with the Fermi Large Area Telescope, Phys. Rev. D 95 (2017) 082007 [arXiv:1704.07195] [INSPIRE].
G. Bélanger et al., Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].
Fermi-LAT collaboration, M. Ackermann et al., The Fermi Galactic Center GeV Excess and Implications for Dark Matter, Astrophys. J. 840 (2017) 43 [arXiv:1704.03910] [INSPIRE].
Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1712.01239
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ghorbani, K., Ghorbani, P.H. DAMPE electron-positron excess in leptophilic Z′ model. J. High Energ. Phys. 2018, 125 (2018). https://doi.org/10.1007/JHEP05(2018)125
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2018)125