Abstract
We present the first measurement of the branching fraction of the singly Cabibbo-suppressed (SCS) decay \( {\Lambda}_c^{+} \) → pη′ with η′ → ηπ+π−, using a data sample corresponding to an integrated luminosity of 981 fb−1, collected by the Belle detector at the KEKB e+e− asymmetric-energy collider. A significant \( {\Lambda}_c^{+} \) → pη′ signal is observed for the first time with a signal significance of 5.4σ. The relative branching fraction with respect to the normalization mode \( {\Lambda}_c^{+} \) → pK−π+ is measured to be
where the uncertainties are statistical and systematic, respectively. Using the world-average value of \( \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) \) = (6.28 ± 0.32) × 10−2, we obtain
where the uncertainties are statistical, systematic, and from \( \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) \), respectively.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].
B. Andersson, G. Gustafson and T. Sjöstrand, Baryon production in jet fragmentation and γ-decay, Phys. Scr. 32 (1985) 574.
T. Uppal, R.C. Verma and M.P. Khanna, Constituent quark model analysis of weak mesonic decays of charm baryons, Phys. Rev. D 49 (1994) 3417 [INSPIRE].
P. Zenczykowski, Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50 (1994) 402 [hep-ph/9309265] [INSPIRE].
K.K. Sharma and R.C. Verma, SU(3)flavor analysis of two-body weak decays of charmed baryons, Phys. Rev. D 55 (1997) 7067 [hep-ph/9704391] [INSPIRE].
M.A. Ivanov, J.G. Korner, V.E. Lyubovitskij and A.G. Rusetsky, Exclusive nonleptonic decays of bottom and charm baryons in a relativistic three quark model: evaluation of nonfactorizing diagrams, Phys. Rev. D 57 (1998) 5632 [hep-ph/9709372] [INSPIRE].
Y. Kohara, Two-body nonleptonic decays of charmed baryons, Nuovo Cim. A 111 (1998) 67 [INSPIRE].
M.J. Savage and R.P. Springer, SU(3) predictions for charmed baryon decays, Phys. Rev. D 42 (1990) 1527 [INSPIRE].
M.J. Savage, SU(3) violations in the nonleptonic decay of charmed hadrons, Phys. Lett. B 257 (1991) 414 [INSPIRE].
H.-Y. Cheng, X.-W. Kang and F. Xu, Singly Cabibbo-suppressed hadronic decays of \( {\Lambda}_c^{+} \) , Phys. Rev. D 97 (2018) 074028 [arXiv:1801.08625] [INSPIRE].
J. Zou, F. Xu, G. Meng and H.-Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011 [arXiv:1910.13626] [INSPIRE].
W. Wang, F.-S. Yu and Z.-X. Zhao, Weak decays of doubly heavy baryons: the 1/2 → 1/2 case, Eur. Phys. J. C 77 (2017) 781 [arXiv:1707.02834] [INSPIRE].
C.Q. Geng, Y.K. Hsiao, C.-W. Liu and T.-H. Tsai, Antitriplet charmed baryon decays with SU(3) flavor symmetry, Phys. Rev. D 97 (2018) 073006 [arXiv:1801.03276] [INSPIRE].
S. Kurokawa and E. Kikutani, Overview of the KEKB accelerators, Nucl. Instrum. Meth. A 499 (2003) 1 [INSPIRE].
T. Abe et al., Achievements of KEKB, PTEP 2013 (2013) 03A001 [INSPIRE].
Belle collaboration, Physics achievements from the Belle experiment, PTEP 2012 (2012) 04D001 [arXiv:1212.5342] [INSPIRE].
Belle collaboration, The Belle detector, Nucl. Instrum. Meth. A 479 (2002) 117 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
R. Brun, F. Bruyant, M. Maire, A.C. McPherson and P. Zanarini, GEANT 3.21: user’s guide, CERN-DD-EE-84-01, CERN, Geneva, Switzerland (1987).
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].
E. Barberio and Z. Was, PHOTOS: a universal Monte Carlo for QED radiative corrections. Version 2.0, Comput. Phys. Commun. 79 (1994) 291 [INSPIRE].
X. Zhou, S. Du, G. Li and C. Shen, TopoAna: a generic tool for the event type analysis of inclusive Monte-Carlo samples in high energy physics experiments, Comput. Phys. Commun. 258 (2021) 107540 [arXiv:2001.04016] [INSPIRE].
G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C 030908 (2003) MODT002 [physics/0308063] [INSPIRE].
E. Nakano, Belle PID, Nucl. Instrum. Meth. A 494 (2002) 402 [INSPIRE].
K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima and T. Tsukamoto, Electron identification in Belle, Nucl. Instrum. Meth. A 485 (2002) 490 [hep-ex/0108044] [INSPIRE].
M. Oreglia, A study of the reactions ψ′ → γγψ, Ph.D. thesis, SLAC-R-236, Stanford University, Stanford, CA, U.S.A. (1980) [INSPIRE].
S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals Math. Statist. 9 (1938) 60 [INSPIRE].
BESIII collaboration, Measurement of the matrix element for the decay η′ → ηπ+π−, Phys. Rev. D 83 (2011) 012003 [arXiv:1012.1117] [INSPIRE].
R. Dalitz, CXII. On the analysis of τ-meson data and the nature of the τ-meson, Phil. Mag. 44 (1953) 1068.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2112.14276
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
The BELLE collaboration., Li, S.X., Cui, J.X. et al. First measurement of the \( {\Lambda}_c^{+} \) → pη′ decay. J. High Energ. Phys. 2022, 90 (2022). https://doi.org/10.1007/JHEP03(2022)090
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2022)090