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Abstract. Recently, Artificial Neural Networks (ANN) have shown high 

potential in the area of Natural Language Processing (NLP). In the area of 

sentence compression, the application of ANNs has proven to outperform 

existing rule-based approaches. Nevertheless, these approaches require a decent 

amount of training data to achieve high accuracy. In this work, we aim at 

employing ANNs to derive process model labels from process descriptions. Since 

the amount of publicly available pairs of text and process model is scarce, we 

employ a transfer learning approach. While training the compression model on a 

large corpus consisting of sentence-compression pairs, we transfer the model to 

the problem of deriving label descriptions. We implement our approach and 

conduct an experimental evaluation using pairs of process descriptions and 

models. We found that our transfer learning model keeps high recall while losing 

performance on precision and compression rate. 

Keywords: Business Process Modeling, Deep Leaning, Sentence Compression, 

Artificial Neural Network, Natural Language Processing  

1 Introduction 

Business process modeling is an important task of Business Process Management 

(BPM) [1]. It is used in manifold applications including the standardization and the 

improvement of business processes [2]. Process modeling requires the knowledge of a 

modeling language and the underlying process domain. A process modeler may acquire 

the latter by interviews, observations and investigating process descriptions. However, 

gathering the process requirements and deriving process models represent an effortful 

cognitive performance. Thus, first approaches investigate an automated analysis [3] of 

process descriptions and the automated derivation of process models [4]. Existing 

approaches are rule-based and built up on established methods from Natural Language 

Processing (NLP) to extract the information contained in the descriptions. However, 

since process descriptions represent unstructured information, the automated analysis 

and derivation of process models becomes easily complex. 

Recently, deep learning approaches have been proven to solve complex cognitive tasks 

such as language translation [5] and compression of information [6]. Furthermore, deep 
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learning-based classification has been successfully applied in the context of BPM to 

automatically distinguish activity from event labeling in process models [7]. 

Due to the promising results of deep learning in NLP, we aim at investigating the 

potential of deep learning-based NLP for the automated translation from process 

descriptions to conceptual process models. In particular, we focus on the research 

question (RQ) how sentences of process description can be condensed to create activity 

labels that retain the most important process information. Thus, in this work we 

investigate sentence compression [8] as a technique to mimic the labelling task of a 

process modeler. In the past, sentence compression has been used in variety of 

applications, including compression of spoken sentences in closed captioning services 

for deaf persons watching TV [9] and generating abstracts for documents [10].  

Nevertheless, deep learning-based compression requires a large data set containing 

pairs of sentences and their respective compression. To our best knowledge, a data set 

containing a sufficient number of sentences of process descriptions and their respective 

labels is not publicly available. Thus, we aim at employing a transfer learning approach 

to overcome the lack of domain specific training data [11]. To answer the research 

question, we use a design science research approach [12]. We conceptualize a 

compression model as our artifact of interest, implement the compression model and 

provide an evaluation of our compression approach. 

The paper is structured as follows. Section 2 presents related work. In section 3, we 

provide a detailed description of the conceptual design of our developed deep learning-

based compression model. Section 4 presents the evaluation of our approach including 

a detailed description of the data as well as the evaluation setup. Finally, section 5 

discusses the achieved results, the limitations of our approach and future work. 

2 Related Work 

In BPM, approaches aiming at automatic derivation of conceptual models from text can 

be found frequently [4]. Friedrich, et al. [4] makes use of methods from computational 

linguistics and NLP in order to extract process models from textual descriptions. Doing 

so, they defined a set of rules and markers extracted by a syntax parser to identify 

relevant activities in a sentence. However, such rule-based approaches heavily rely on 

correctly parsed syntax trees and, therefore, are very error-prone specifically when 

having noisy input data [4]. 

Thus, we investigated another method called sentence compression to extract 

relevant information i.e. activity labels from text. There are mainly two different 

methods to solve a compression task of a sentence. While abstractive approaches [13-

14] rely on paraphrasing words, extractive methods [6], [8-9], [15-20] solve sentence 

compression as a sequence of word deletions of the original sentence. In this case, for 

each word of a sentence, the compression algorithm needs to decide whether to keep or 

delete the word based on its given features [17]. In deletion-based sentence 

compression, one can distinguish between two different lines of research: one relying 

on manually modeled linguistic knowledge [15] and the other based on machine 

learning (ML) [18]. 



 

 

In linguistic-knowledge-based sentence compression approaches make use of 

syntactic features as signals [21-23]. Following the approach of syntactic features, the 

task of sentence compression is defined as an optimization problem using hard 

constraints, which can be solved by integer linear programming (ILP) [24]. Other work 

in this line focuses on pruning dependency trees in order to shorten a sentence [8], [25-

26]. Similar to rule-based model derivation in BPM, compression models solely based 

on linguistic-knowledge are highly sensitive to errors since there is no way to recover 

from an incorrect parse tree [15].  

Therefore, the second research stream in deletion-based sentence compression 

employs methods from ML and deep learning resulting in increased performance. 

Filippova, et al. [15] use a Long-short term memory (LSTM) [27] model to compress a 

sentence by using word embedding without any additional syntactical information. A 

similar approach is described by Sakti, et al. [9] using incremental sentence 

compression, i.e. deciding at each step of the sequence whether to keep or remove the 

current word instead of processing the entire sequence at once.  

The deletion-based ML approaches are further investigated in the following 

research. Wang, et al. [17] use syntactical features in addition to word embeddings. Lai, 

et al. [16] propose a bi-directional encoder-decoder approach while Thao, et al. [18] 

use a gated neural network. ML models dedicated to classifying the word tokens of a 

sentence that will be omitted are also investigated in [19]. The approach aims at 

applying sentence compression in a cross-lingual setting learning from sentences in two 

different languages, English and Portuguese. Further approaches make use of 

unsupervised learning to train sentence compression models. Miao and Blunsom [20] 

trained a generative model using competitive generator and discriminator networks to 

generate compressed sentences. Wang, et al. [6] formulated sentence compression as a 

Markov decision process and reinforcement learning is applied in order to train a neural 

network learning syntactical constraints known from previous ILP research on sentence 

compression in order to compress a sentence properly. 

3 Conceptual Design 

In this work, we design an artifact that is able to derive process model activity labels 

from textual process descriptions. In this section, we describe the conceptual design of 

our approach. We aim at training a deletion-based compression model [15] that is able 

to tag each word of a sentence whether it should be omitted or not. In other words, for 

a sentence 𝑠 = [𝑤1, 𝑤2, … , 𝑤𝑛] there exists a corresponding sequence of integers 𝑦 =
[𝑦1, 𝑦2, … , 𝑦𝑛] with 𝑦𝑖 ∈ [0,1], 𝑖 ∈ [1, … , 𝑛] [17]. In this context, 𝑦𝑖 = 1 means the 

word is part of the compression and 𝑦𝑖 = 0 means it is not. 

In Figure 1 the design process of our artifact is illustrated. The process starts with 

the underlying data sources extracted from two different domains. The first corpus 

contains 210,000 headlines of English news articles together with their appropriate 



 

 

compressions and was collected and used by Filippova and Altun [26]. Our second 

dataset includes three different process descriptions manually collected by us given in 

text form with a total of 32 sentences. Next to this, we continue with a preprocessing 

of the raw data using techniques known from NLP research as well as predictive 

modeling. The stage of preprocessing includes all steps necessary to transform a 

sentence into a sequence of feature vectors.  

First, the raw sentences and their compressions need to be parsed using a syntax 

parser. We tokenize the sentences into sequences of words and gather syntactical 

information, which will be used by our linguistic knowledge model. The purpose of 

tokenization is transforming the raw sentence-compression-pairs into labeled data for 

the model training defining. Based on the compressed sentence each token of the 

original sentence is assigned a tag indicating whether it should be part of the 

compression or not. Furthermore, syntactical information is attached to each token, 

including dependency (DEP) labels and part-of-speech (POS) tags.  

Subsequently, all digits, dates and numbers are replaced by a special NUMB token 

in order to simplify the sentences by deleting irrelevant information [28]. For further 

simplification, each sentence is filtered by all tokens that are punctuation marks. 

Excluded from the filtering process are the punctuation marks at the end of each 

sentence. These tokens are not deleted but transformed into end-of-sequence (EOS) 

Figure 1. Conceptual Design 



 

 

tags following the approach of Filippova, et al. [15]. The process of filtering 

punctuation marks is motivated by the reduction of unique POS. Next to this we apply 

a stemming algorithm for reducing the amount of unique words sharing the same 

meaning. 

After these steps of preprocessing the words are finally transformed into embedded 

feature vectors that can be processed by neural networks. Therefore, a standard skip-

gram model is employed in order to transform each word of the vocabulary into a d-

dimensional vector [18]. Furthermore, the categorical features for a token (POS tags 

and DEP labels) are encoded using one-hot-encoding. Because of the filtering of 

punctuation marks, the vector size of this encoding can be reduced in this step resulting 

in an increased training performance. The preprocessed data is then used for training 

our compression model and deriving labels from textual process descriptions after the 

training. 

We investigate a base model and a Linguistic Knowledge (LK) model in this work. 

In Figure 2, the architecture of both models is depicted. As illustrated, both models 

share the same architecture but differ in their corresponding input feature space. The 

base model solely utilizes word embeddings (Word emb) as input features whereas the 

LK model uses word embeddings with added linguistic knowledge (POS and DEP). 

The input layer processes a set of features for each word that, depending on the model, 

Figure 2. Model architecture according to Wang, et al. [17] 



 

 

incorporates linguistic knowledge or solely word embeddings. As already mentioned 

above, LK considers two kinds of linguistic features for the model as input features, 

DEP labels and POS tags.  

The architecture and model parameters mainly follow the approach of Wang, et al. 

[17]. The model is trained using the architecture of a 3-layered bi-directional LSTM 

followed by a dropout layer to avoid overfitting. Each LSTM cell contains 123 neurons 

resulting in 256 activations per feature vector due to the bi directionality of our model. 

Each dropout layer is initialized with a fraction of 0.5. The last LSTM layer is connected 

to a fully connected dense. Finally, we apply a sigmoid activation function on the 

activations of the dense layer resulting in a binary classification output for each 

processed word. This classification 𝑦𝑖 is considered the prediction of our model on 

whether the current word is part of the compression or not.  

4 Evaluation 

4.1 Data and Preprocessing 

As part of our design, we make use of two independent data sets that are extracted from 

two different domains, English news headlines and text-based business process 

descriptions. The first one is used for both, training and evaluation of the model, and 

contains sentences together with their corresponding compression. To give an example 

for a sentence extracted from the news corpus the headline “The Australian Treasury 

believes positive signs are emerging in the Australian economy” is denoted together 

with its compression “Positive signs are emerging”. This data is freely available in a 

public repository.1 

The latter data set is incorporated during evaluation only and contains the process’ text 

descriptions. The texts were initially given in German language and were automatically 

translated into English using a machine translation tool.2 

As already discussed in the conceptual design section earlier, the data first needs to 

run through several steps of preprocessing to transform the sentences given as strings 

into a sequence of feature vectors. We use syntaxnet3 as our underlying syntax parser 

for transforming sentences into sequences of words and gathering DEP labels and POS 

tags. During this step of preprocessing a few sentence-compression pairs are dropped 

because of a different order of the words of the sentence and its corresponding 

compression, wrong encoding or extensive length of the sentence. Subsequently, we 

apply a WordNet [29] lemmatizer using python’s nltk package4 for stemming of the 

raw words. Furthermore, we employ Word2Vec [30] for embedding of the words into 

feature vectors using python’s genism package5. We initialize d = 200 as the 

dimensionality for the embedding vectors and train the embedding model using the 

                                                         
1 https://github.com/google-research-datasets/sentence-compression  
2 https://www.deepl.com/translator  
3 https://github.com/tensorflow/models/tree/master/research/syntaxnet 
4 https://www.nltk.org/_modules/nltk/stem/wordnet.html  
5 https://radimrehurek.com/gensim/ 
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words from both datasets. Finally, categorical DEP and POS tags are transformed into 

feature vectors using one-hot-encoding. 

All the relevant statistics for both data sets after preprocessing can be found in Table 

1 with S denoting the complete set of sentences. In this table the number of sentences, 

vocabulary size, number of unique POS and DEP classes, average sequence lengths, as 

well as compression rates are described. Finally, we apply padding to the sequences 

such that they stick to the internal shape of a deep recurrent neural network. 

Table 1. Dataset statistics 

 News Data Process Data 

|𝐒| 200 969 32 

|𝐒𝐯𝐨𝐜| 107 449 199 

|𝐒𝐏𝐎𝐒| 49 26 

|𝐒𝐃𝐄𝐏| 43 29 

𝐚𝐯𝐠(|𝐒𝐢|) 26.38 17.28 

𝐂𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐫𝐚𝐭𝐞 0.3917 0.4268 

4.2 Model Training 

The model is compiled using Adam [31] as the underlying optimizer with a learning 

rate of 0.001. As the loss function the negative log-likelihood function is used. We train 

both models over 10 epochs using a batch size of 32. 

The models are implemented in python, version 3.6, constructed and compiled using 

the deep learning library keras6, version 2.2.4, running TensorFlow7, version 1.11.0, in 

the backend. 

We split the news corpus is into training, test and validation data sets. We keep 1.000 

sentences for each, test and validation data set and the rest of 198.969 for training. The 

ratio between the training, test and validation set is set following the approach of 

Filippova, et al. [15]. 

4.3 Performance Measures 

We use precision, recall, F1-score and accuracy as defined in formulas (1)-(4) to 

measuring the model’s performance. In this context, we compare predicted deletion 

marks to the true labels given in the test data. The true positives (TP) represent the 

labels that are correctly predicted as 1, the true negatives (TN) are all labels correctly 

predicted as 0, the false positives (FP) are predicted as 1 but in fact are labelled with 0 

and the false negatives (FN) are predicted as 0 but in fact are labelled with 1. 

                                                         
6 https://keras.io/  
7 https://www.tensorflow.org/  



 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(3) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
 

(4) 

Furthermore, we calculate the compression rate (CR). The CR defines the average 

ratio between the number of words being part of the compression and the number of 

words in the original sentence. As defined in formula (5), we calculate this ratio for all 

sentences y containing labelled word embeddings 𝑦𝑖. In other words, CR denotes the 

average rate of words to keep of a sentence of certain length when compressing it. 

 CR(y) =
|{𝑦𝑖 |𝑦𝑖 ∈ 𝑦, 𝑦𝑖 = 1}|

|{𝑦𝑖 |𝑦𝑖 ∈ 𝑦}|
  (5) 

4.4 Results 

Finally, in this section the results of our approach are evaluated. After training the 

models, they are evaluated on unseen data of the news corpus as well as the process 

descriptions dataset by applying each one on the test data and calculating the 

performance measures for each of them. Since labels are only given for the news data, 

we have to assign true labels for the process descriptions manually. In this process, the 

words in the compression are kept following order and syntax of the initial sentence in 

the process description because of our deletion-based approach. Thus, sentences 

formulated passively were also formulated passively in the related compression.  

Table 2. Performance measures 

 Model Precision Recall F1 𝒂𝒄𝒄𝒘𝒐𝒓𝒅 𝒂𝒄𝒄𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆 

N
ew

s 

D
a
ta

 Base Model 0.7832 0.7486 0.7655 0.8204 0.1100 

LK Model 0.8423 0.8024 0.8219 0.8638 0.2320 

P
ro

ce
ss

 

D
a
ta

 Base Model 0.5797 0.7155 0.6404 0.6528 0.0625 

LK Model 0.6471 0.7364 0.6888 0.7125 0.0313 

 



 

 

In Table 2 the scores of both models applied on the test data can be found. As we 

can see from here, two different types of accuracy measures are calculated. We 

investigate a per word accuracy and a per sentence accuracy giving a measure for whole 

sequences of words in a sentence to be correctly classified [28]. We can observe that 

the LK model achieves overall better results w.r.t. the metrics except per sentence 

accuracy of the process data. For the news corpus, the incorporation of linguistic 

knowledge empowers the model to classify as double as much sentences correctly 

compared to the base model. However, his rule does not hold for the process data. The 

reason for that could be explained by the different grammatical syntax of both datasets. 

Furthermore, we can see that for the process data, we achieve a relatively high recall 

value of 0.7364 although the process data is not incorporated during training of the 

model. The model seems to identify all important terms within the sentences with rather 

high accuracy for both datasets. In contrary, precision values significantly drop for both 

models when applied on the process descriptions. This means that the models are 

keeping a lot of unnecessary words in the compressed label which could be due to the 

different grammar and vocabulary of both datasets.  

In Table 3 the particular CR of the ground truth i.e. of the test set and of the particular 

model outputs are denoted. As one can see from the table, the CR differ significantly 

for the process data. The models are keeping much more words in the compression 

when applied on the processes compared to the news corpus. Obviously, the model 

produces more false positives, since the real CR of the dataset is significantly lower. 

This is also reflected in the low precision score of both models. However, incorporating 

process data during model training can possibly improve both values, CR and precision, 

since specific syntax and vocabulary of this data can be taught. 

Table 3. Compression rates 

Data Compression Rate 

News Data Process Data 

Test data 0.3915 0.4268 

Base model 0.3742 0.5335 

LK model 0.3729 0.4919 

5 Discussion 

Our compression model was found to keep high recall scores when applied to the 

process data but is limited to lower precision scores compared to the news corpus. This 

results in compressions, which are slightly longer than the true activity labels and 

require manual post-processing. Thus, improvement of the model can possibly be 

achieved by applying techniques of on-line or incremental learning as described by 

Losing, et al. [32]. Following such approach, domain-specific data is added to the 

training data set including process descriptions and according compressions, which 

allows the model to learn syntax and vocabulary that are specific to this domain. 

However, this requires additional work of data gathering since such data is not publicly 



 

 

available. Moreover, the proposed models are limited to a sentence-based processing. 

Thus, information spread over multiple sentences cannot be summarized appropriately. 

Furthermore, the investigation of the trained models revealed that they are limited to 

preserving only single activities within a sentence of a process description. For instance, 

a single sentence of a process description could consist of multiple main or subordinate 

clauses containing several process activities. In this case, single activities cannot be 

identified separately by the compression model resulting in incorrect or missing activity 

labels. This problem originates from the applied compression in the training dataset 

where the compressed sentences mainly exhibit a single activity. This issue could be 

resolved by parsing and splitting the sentences using a syntax parser before passing the 

clauses to the model. 

6 Conclusion 

In this work, we investigated the RQ how sentences of process description can be 

condensed to create activity labels that retain the most important process information. 

We applied a design science research approach resulting in a sentence compression 

model based on recurrent neural networks as our artifact of interest. Furthermore, we 

employed a transfer learning approach to overcome the lack of publicly available pairs 

of process models and process descriptions. We found that our trained compression 

model is able to keep significantly high recall while losing performance on precision as 

well as compression rates. 

In Table 4 we provide two examples for output compressions by the model denoted 

together with the original sentence and the true label. As already indicated by the high 

recall score, both examples fully contain the words of the real label, whereas they also 

carry additional words that are actually not part of it. Since the amount of information 

covered by the compressed sentence is ~50% less on average (according to CR) 

compared to the original one while keeping most important words, the compression of 

the original sentence can possibly reduce the amount of cognitive effort required for a 

process modeler to extract the right label manually from a process description. In 

particular, a process modeler can utilize our model to get recommendations for activity 

labels of process models based on its textual descriptions. In future work, the impact of 

the model w.r.t. time savings for a process modeler can be analyzed in a user study. 

Table 4. Example output 

Sentence Label Compression (LK model) 

the goods are delivered by the 

vendor and arrive in the warehouse 

goods are 

delivered 

the goods are delivered by 

the vendor 

if the latter is the case the goods 

must be repacked to make them fit 

for storage 

goods must 

be repacked 

the goods must be repacked 

to make fit for storage 
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