

15th International Conference on Wirtschaftsinformatik,

March 08-11, 2020, Potsdam, Germany

Using Artificial Neural Networks to Derive Process

Model Activity Labels from Process Descriptions

Mirco Pyrtek1,2, Philip Hake1,2, and Peter Loos1,2

1 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany;
2 Saarland University, Saarbrücken, Germany

{mirco.pyrtek, philip.hake, peter.loos}@dfki.de

Abstract. Recently, Artificial Neural Networks (ANN) have shown high

potential in the area of Natural Language Processing (NLP). In the area of

sentence compression, the application of ANNs has proven to outperform

existing rule-based approaches. Nevertheless, these approaches require a decent

amount of training data to achieve high accuracy. In this work, we aim at

employing ANNs to derive process model labels from process descriptions. Since

the amount of publicly available pairs of text and process model is scarce, we

employ a transfer learning approach. While training the compression model on a

large corpus consisting of sentence-compression pairs, we transfer the model to

the problem of deriving label descriptions. We implement our approach and

conduct an experimental evaluation using pairs of process descriptions and

models. We found that our transfer learning model keeps high recall while losing

performance on precision and compression rate.

Keywords: Business Process Modeling, Deep Leaning, Sentence Compression,

Artificial Neural Network, Natural Language Processing

1 Introduction

Business process modeling is an important task of Business Process Management

(BPM) [1]. It is used in manifold applications including the standardization and the

improvement of business processes [2]. Process modeling requires the knowledge of a

modeling language and the underlying process domain. A process modeler may acquire

the latter by interviews, observations and investigating process descriptions. However,

gathering the process requirements and deriving process models represent an effortful

cognitive performance. Thus, first approaches investigate an automated analysis [3] of

process descriptions and the automated derivation of process models [4]. Existing

approaches are rule-based and built up on established methods from Natural Language

Processing (NLP) to extract the information contained in the descriptions. However,

since process descriptions represent unstructured information, the automated analysis

and derivation of process models becomes easily complex.

Recently, deep learning approaches have been proven to solve complex cognitive tasks

such as language translation [5] and compression of information [6]. Furthermore, deep

mailto:%7bmirco.pyrtek,%20philip.hake,%20peter.loos%7d@dfki.de

learning-based classification has been successfully applied in the context of BPM to

automatically distinguish activity from event labeling in process models [7].

Due to the promising results of deep learning in NLP, we aim at investigating the

potential of deep learning-based NLP for the automated translation from process

descriptions to conceptual process models. In particular, we focus on the research

question (RQ) how sentences of process description can be condensed to create activity

labels that retain the most important process information. Thus, in this work we

investigate sentence compression [8] as a technique to mimic the labelling task of a

process modeler. In the past, sentence compression has been used in variety of

applications, including compression of spoken sentences in closed captioning services

for deaf persons watching TV [9] and generating abstracts for documents [10].

Nevertheless, deep learning-based compression requires a large data set containing

pairs of sentences and their respective compression. To our best knowledge, a data set

containing a sufficient number of sentences of process descriptions and their respective

labels is not publicly available. Thus, we aim at employing a transfer learning approach

to overcome the lack of domain specific training data [11]. To answer the research

question, we use a design science research approach [12]. We conceptualize a

compression model as our artifact of interest, implement the compression model and

provide an evaluation of our compression approach.

The paper is structured as follows. Section 2 presents related work. In section 3, we

provide a detailed description of the conceptual design of our developed deep learning-

based compression model. Section 4 presents the evaluation of our approach including

a detailed description of the data as well as the evaluation setup. Finally, section 5

discusses the achieved results, the limitations of our approach and future work.

2 Related Work

In BPM, approaches aiming at automatic derivation of conceptual models from text can

be found frequently [4]. Friedrich, et al. [4] makes use of methods from computational

linguistics and NLP in order to extract process models from textual descriptions. Doing

so, they defined a set of rules and markers extracted by a syntax parser to identify

relevant activities in a sentence. However, such rule-based approaches heavily rely on

correctly parsed syntax trees and, therefore, are very error-prone specifically when

having noisy input data [4].

Thus, we investigated another method called sentence compression to extract

relevant information i.e. activity labels from text. There are mainly two different

methods to solve a compression task of a sentence. While abstractive approaches [13-

14] rely on paraphrasing words, extractive methods [6], [8-9], [15-20] solve sentence

compression as a sequence of word deletions of the original sentence. In this case, for

each word of a sentence, the compression algorithm needs to decide whether to keep or

delete the word based on its given features [17]. In deletion-based sentence

compression, one can distinguish between two different lines of research: one relying

on manually modeled linguistic knowledge [15] and the other based on machine

learning (ML) [18].

In linguistic-knowledge-based sentence compression approaches make use of

syntactic features as signals [21-23]. Following the approach of syntactic features, the

task of sentence compression is defined as an optimization problem using hard

constraints, which can be solved by integer linear programming (ILP) [24]. Other work

in this line focuses on pruning dependency trees in order to shorten a sentence [8], [25-

26]. Similar to rule-based model derivation in BPM, compression models solely based

on linguistic-knowledge are highly sensitive to errors since there is no way to recover

from an incorrect parse tree [15].

Therefore, the second research stream in deletion-based sentence compression

employs methods from ML and deep learning resulting in increased performance.

Filippova, et al. [15] use a Long-short term memory (LSTM) [27] model to compress a

sentence by using word embedding without any additional syntactical information. A

similar approach is described by Sakti, et al. [9] using incremental sentence

compression, i.e. deciding at each step of the sequence whether to keep or remove the

current word instead of processing the entire sequence at once.

The deletion-based ML approaches are further investigated in the following

research. Wang, et al. [17] use syntactical features in addition to word embeddings. Lai,

et al. [16] propose a bi-directional encoder-decoder approach while Thao, et al. [18]

use a gated neural network. ML models dedicated to classifying the word tokens of a

sentence that will be omitted are also investigated in [19]. The approach aims at

applying sentence compression in a cross-lingual setting learning from sentences in two

different languages, English and Portuguese. Further approaches make use of

unsupervised learning to train sentence compression models. Miao and Blunsom [20]

trained a generative model using competitive generator and discriminator networks to

generate compressed sentences. Wang, et al. [6] formulated sentence compression as a

Markov decision process and reinforcement learning is applied in order to train a neural

network learning syntactical constraints known from previous ILP research on sentence

compression in order to compress a sentence properly.

3 Conceptual Design

In this work, we design an artifact that is able to derive process model activity labels

from textual process descriptions. In this section, we describe the conceptual design of

our approach. We aim at training a deletion-based compression model [15] that is able

to tag each word of a sentence whether it should be omitted or not. In other words, for

a sentence 𝑠 = [𝑤1, 𝑤2, … , 𝑤𝑛] there exists a corresponding sequence of integers 𝑦 =
[𝑦1, 𝑦2, … , 𝑦𝑛] with 𝑦𝑖 ∈ [0,1], 𝑖 ∈ [1, … , 𝑛] [17]. In this context, 𝑦𝑖 = 1 means the

word is part of the compression and 𝑦𝑖 = 0 means it is not.

In Figure 1 the design process of our artifact is illustrated. The process starts with

the underlying data sources extracted from two different domains. The first corpus

contains 210,000 headlines of English news articles together with their appropriate

compressions and was collected and used by Filippova and Altun [26]. Our second

dataset includes three different process descriptions manually collected by us given in

text form with a total of 32 sentences. Next to this, we continue with a preprocessing

of the raw data using techniques known from NLP research as well as predictive

modeling. The stage of preprocessing includes all steps necessary to transform a

sentence into a sequence of feature vectors.

First, the raw sentences and their compressions need to be parsed using a syntax

parser. We tokenize the sentences into sequences of words and gather syntactical

information, which will be used by our linguistic knowledge model. The purpose of

tokenization is transforming the raw sentence-compression-pairs into labeled data for

the model training defining. Based on the compressed sentence each token of the

original sentence is assigned a tag indicating whether it should be part of the

compression or not. Furthermore, syntactical information is attached to each token,

including dependency (DEP) labels and part-of-speech (POS) tags.

Subsequently, all digits, dates and numbers are replaced by a special NUMB token

in order to simplify the sentences by deleting irrelevant information [28]. For further

simplification, each sentence is filtered by all tokens that are punctuation marks.

Excluded from the filtering process are the punctuation marks at the end of each

sentence. These tokens are not deleted but transformed into end-of-sequence (EOS)

Figure 1. Conceptual Design

tags following the approach of Filippova, et al. [15]. The process of filtering

punctuation marks is motivated by the reduction of unique POS. Next to this we apply

a stemming algorithm for reducing the amount of unique words sharing the same

meaning.

After these steps of preprocessing the words are finally transformed into embedded

feature vectors that can be processed by neural networks. Therefore, a standard skip-

gram model is employed in order to transform each word of the vocabulary into a d-

dimensional vector [18]. Furthermore, the categorical features for a token (POS tags

and DEP labels) are encoded using one-hot-encoding. Because of the filtering of

punctuation marks, the vector size of this encoding can be reduced in this step resulting

in an increased training performance. The preprocessed data is then used for training

our compression model and deriving labels from textual process descriptions after the

training.

We investigate a base model and a Linguistic Knowledge (LK) model in this work.

In Figure 2, the architecture of both models is depicted. As illustrated, both models

share the same architecture but differ in their corresponding input feature space. The

base model solely utilizes word embeddings (Word emb) as input features whereas the

LK model uses word embeddings with added linguistic knowledge (POS and DEP).

The input layer processes a set of features for each word that, depending on the model,

Figure 2. Model architecture according to Wang, et al. [17]

incorporates linguistic knowledge or solely word embeddings. As already mentioned

above, LK considers two kinds of linguistic features for the model as input features,

DEP labels and POS tags.

The architecture and model parameters mainly follow the approach of Wang, et al.

[17]. The model is trained using the architecture of a 3-layered bi-directional LSTM

followed by a dropout layer to avoid overfitting. Each LSTM cell contains 123 neurons

resulting in 256 activations per feature vector due to the bi directionality of our model.

Each dropout layer is initialized with a fraction of 0.5. The last LSTM layer is connected

to a fully connected dense. Finally, we apply a sigmoid activation function on the

activations of the dense layer resulting in a binary classification output for each

processed word. This classification 𝑦𝑖 is considered the prediction of our model on

whether the current word is part of the compression or not.

4 Evaluation

4.1 Data and Preprocessing

As part of our design, we make use of two independent data sets that are extracted from

two different domains, English news headlines and text-based business process

descriptions. The first one is used for both, training and evaluation of the model, and

contains sentences together with their corresponding compression. To give an example

for a sentence extracted from the news corpus the headline “The Australian Treasury

believes positive signs are emerging in the Australian economy” is denoted together

with its compression “Positive signs are emerging”. This data is freely available in a

public repository.1

The latter data set is incorporated during evaluation only and contains the process’ text

descriptions. The texts were initially given in German language and were automatically

translated into English using a machine translation tool.2

As already discussed in the conceptual design section earlier, the data first needs to

run through several steps of preprocessing to transform the sentences given as strings

into a sequence of feature vectors. We use syntaxnet3 as our underlying syntax parser

for transforming sentences into sequences of words and gathering DEP labels and POS

tags. During this step of preprocessing a few sentence-compression pairs are dropped

because of a different order of the words of the sentence and its corresponding

compression, wrong encoding or extensive length of the sentence. Subsequently, we

apply a WordNet [29] lemmatizer using python’s nltk package4 for stemming of the

raw words. Furthermore, we employ Word2Vec [30] for embedding of the words into

feature vectors using python’s genism package5. We initialize d = 200 as the

dimensionality for the embedding vectors and train the embedding model using the

1 https://github.com/google-research-datasets/sentence-compression
2 https://www.deepl.com/translator
3 https://github.com/tensorflow/models/tree/master/research/syntaxnet
4 https://www.nltk.org/_modules/nltk/stem/wordnet.html
5 https://radimrehurek.com/gensim/

https://github.com/google-research-datasets/sentence-compression
https://www.deepl.com/translator
https://github.com/tensorflow/models/tree/master/research/syntaxnet
https://www.nltk.org/_modules/nltk/stem/wordnet.html
https://radimrehurek.com/gensim/

words from both datasets. Finally, categorical DEP and POS tags are transformed into

feature vectors using one-hot-encoding.

All the relevant statistics for both data sets after preprocessing can be found in Table

1 with S denoting the complete set of sentences. In this table the number of sentences,

vocabulary size, number of unique POS and DEP classes, average sequence lengths, as

well as compression rates are described. Finally, we apply padding to the sequences

such that they stick to the internal shape of a deep recurrent neural network.

Table 1. Dataset statistics

 News Data Process Data

|𝐒| 200 969 32

|𝐒𝐯𝐨𝐜| 107 449 199

|𝐒𝐏𝐎𝐒| 49 26

|𝐒𝐃𝐄𝐏| 43 29

𝐚𝐯𝐠(|𝐒𝐢|) 26.38 17.28

𝐂𝐨𝐦𝐩𝐫𝐞𝐬𝐬𝐢𝐨𝐧 𝐫𝐚𝐭𝐞 0.3917 0.4268

4.2 Model Training

The model is compiled using Adam [31] as the underlying optimizer with a learning

rate of 0.001. As the loss function the negative log-likelihood function is used. We train

both models over 10 epochs using a batch size of 32.

The models are implemented in python, version 3.6, constructed and compiled using

the deep learning library keras6, version 2.2.4, running TensorFlow7, version 1.11.0, in

the backend.

We split the news corpus is into training, test and validation data sets. We keep 1.000

sentences for each, test and validation data set and the rest of 198.969 for training. The

ratio between the training, test and validation set is set following the approach of

Filippova, et al. [15].

4.3 Performance Measures

We use precision, recall, F1-score and accuracy as defined in formulas (1)-(4) to

measuring the model’s performance. In this context, we compare predicted deletion

marks to the true labels given in the test data. The true positives (TP) represent the

labels that are correctly predicted as 1, the true negatives (TN) are all labels correctly

predicted as 0, the false positives (FP) are predicted as 1 but in fact are labelled with 0

and the false negatives (FN) are predicted as 0 but in fact are labelled with 1.

6 https://keras.io/
7 https://www.tensorflow.org/

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2)

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(3)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(4)

Furthermore, we calculate the compression rate (CR). The CR defines the average

ratio between the number of words being part of the compression and the number of

words in the original sentence. As defined in formula (5), we calculate this ratio for all

sentences y containing labelled word embeddings 𝑦𝑖. In other words, CR denotes the

average rate of words to keep of a sentence of certain length when compressing it.

 CR(y) =
|{𝑦𝑖 |𝑦𝑖 ∈ 𝑦, 𝑦𝑖 = 1}|

|{𝑦𝑖 |𝑦𝑖 ∈ 𝑦}|
 (5)

4.4 Results

Finally, in this section the results of our approach are evaluated. After training the

models, they are evaluated on unseen data of the news corpus as well as the process

descriptions dataset by applying each one on the test data and calculating the

performance measures for each of them. Since labels are only given for the news data,

we have to assign true labels for the process descriptions manually. In this process, the

words in the compression are kept following order and syntax of the initial sentence in

the process description because of our deletion-based approach. Thus, sentences

formulated passively were also formulated passively in the related compression.

Table 2. Performance measures

 Model Precision Recall F1 𝒂𝒄𝒄𝒘𝒐𝒓𝒅 𝒂𝒄𝒄𝒔𝒆𝒏𝒕𝒆𝒏𝒄𝒆

N
ew

s

D
a
ta

 Base Model 0.7832 0.7486 0.7655 0.8204 0.1100

LK Model 0.8423 0.8024 0.8219 0.8638 0.2320

P
ro

ce
ss

D
a
ta

 Base Model 0.5797 0.7155 0.6404 0.6528 0.0625

LK Model 0.6471 0.7364 0.6888 0.7125 0.0313

In Table 2 the scores of both models applied on the test data can be found. As we

can see from here, two different types of accuracy measures are calculated. We

investigate a per word accuracy and a per sentence accuracy giving a measure for whole

sequences of words in a sentence to be correctly classified [28]. We can observe that

the LK model achieves overall better results w.r.t. the metrics except per sentence

accuracy of the process data. For the news corpus, the incorporation of linguistic

knowledge empowers the model to classify as double as much sentences correctly

compared to the base model. However, his rule does not hold for the process data. The

reason for that could be explained by the different grammatical syntax of both datasets.

Furthermore, we can see that for the process data, we achieve a relatively high recall

value of 0.7364 although the process data is not incorporated during training of the

model. The model seems to identify all important terms within the sentences with rather

high accuracy for both datasets. In contrary, precision values significantly drop for both

models when applied on the process descriptions. This means that the models are

keeping a lot of unnecessary words in the compressed label which could be due to the

different grammar and vocabulary of both datasets.

In Table 3 the particular CR of the ground truth i.e. of the test set and of the particular

model outputs are denoted. As one can see from the table, the CR differ significantly

for the process data. The models are keeping much more words in the compression

when applied on the processes compared to the news corpus. Obviously, the model

produces more false positives, since the real CR of the dataset is significantly lower.

This is also reflected in the low precision score of both models. However, incorporating

process data during model training can possibly improve both values, CR and precision,

since specific syntax and vocabulary of this data can be taught.

Table 3. Compression rates

Data Compression Rate

News Data Process Data

Test data 0.3915 0.4268

Base model 0.3742 0.5335

LK model 0.3729 0.4919

5 Discussion

Our compression model was found to keep high recall scores when applied to the

process data but is limited to lower precision scores compared to the news corpus. This

results in compressions, which are slightly longer than the true activity labels and

require manual post-processing. Thus, improvement of the model can possibly be

achieved by applying techniques of on-line or incremental learning as described by

Losing, et al. [32]. Following such approach, domain-specific data is added to the

training data set including process descriptions and according compressions, which

allows the model to learn syntax and vocabulary that are specific to this domain.

However, this requires additional work of data gathering since such data is not publicly

available. Moreover, the proposed models are limited to a sentence-based processing.

Thus, information spread over multiple sentences cannot be summarized appropriately.

Furthermore, the investigation of the trained models revealed that they are limited to

preserving only single activities within a sentence of a process description. For instance,

a single sentence of a process description could consist of multiple main or subordinate

clauses containing several process activities. In this case, single activities cannot be

identified separately by the compression model resulting in incorrect or missing activity

labels. This problem originates from the applied compression in the training dataset

where the compressed sentences mainly exhibit a single activity. This issue could be

resolved by parsing and splitting the sentences using a syntax parser before passing the

clauses to the model.

6 Conclusion

In this work, we investigated the RQ how sentences of process description can be

condensed to create activity labels that retain the most important process information.

We applied a design science research approach resulting in a sentence compression

model based on recurrent neural networks as our artifact of interest. Furthermore, we

employed a transfer learning approach to overcome the lack of publicly available pairs

of process models and process descriptions. We found that our trained compression

model is able to keep significantly high recall while losing performance on precision as

well as compression rates.

In Table 4 we provide two examples for output compressions by the model denoted

together with the original sentence and the true label. As already indicated by the high

recall score, both examples fully contain the words of the real label, whereas they also

carry additional words that are actually not part of it. Since the amount of information

covered by the compressed sentence is ~50% less on average (according to CR)

compared to the original one while keeping most important words, the compression of

the original sentence can possibly reduce the amount of cognitive effort required for a

process modeler to extract the right label manually from a process description. In

particular, a process modeler can utilize our model to get recommendations for activity

labels of process models based on its textual descriptions. In future work, the impact of

the model w.r.t. time savings for a process modeler can be analyzed in a user study.

Table 4. Example output

Sentence Label Compression (LK model)

the goods are delivered by the

vendor and arrive in the warehouse

goods are

delivered

the goods are delivered by

the vendor

if the latter is the case the goods

must be repacked to make them fit

for storage

goods must

be repacked

the goods must be repacked

to make fit for storage

References

1. C. Houy, P. Fettke, P. Loos, W. van der Aalst und J. Krogstie, „Business Process

Management in the Large,“ Business & Information Systems Engineering, pp. 385-388,

June 2011.

2. M. Malinova und J. Mendling, „A Qualitative Research Perspective on BPM Adoption and

the Pitfalls of Business Process Modeling,“ in International Conference on Business Process

Management, Tallinn, Estonia, 2012.

3. H. van der Aa, H. Leopold und H. Reijers, „Comparing textual descriptions to process

models–the automatic detection of inconsistencies,“ in Information Systems, 2016.

4. F. Friedrich, J. Mendling und F. Puhlmann, „Process model generation from natural

language text,“ in International Conference on Advanced Information Systems Engineering,

Berlin, Heidelberg, 2011.

5. M. X. Chen, O. Firat, A. Bapna, M. Johnson, W. Macherey, G. Foster, L. Jones, N. Parmar,

N. Shazeer, A. Vaswani, J. Uszkoreit, L. Kaiser, M. Schuster, Z. Chen, Y. Wu und M.

Hughes, „The Best of Both Worlds: Combining Recent Advances in Neural Machine

Translation,“ in Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics, Melbourne, Australia, 2018.

6. L. Wang, J. Jiang und L. Liao, „Sentence Compression with Reinforcement Learning,“ in

International Conference on Knowledge Science, Engineering and Management, Cham,

2018.

7. P. Hake, M. Zapp, P. Fettke und P. Loos, „Supporting Business Process Modeling Using

RNNs for Label Classification,“ in International Conference on Applications of Natural

Language to Information Systems, Liège, 2017.

8. K. Knight und D. Marcu, „Statistics-Based Summarization - Step One: Sentence

Compression,“ in Proceedings of the Seventeenth National Conference on Artificial

Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence,

2000.

9. S. Sakti, F. Ilham, G. Neubig, T. Toda, A. Purwarianti und S. Nakamura, „Incremental

sentence compression using LSTM recurrent networks,“ in Automatic Speech Recognition

and Understanding, 2015.

10. K. Knight und D. Marcu, „Summarization beyond sentence extraction: A probabilistic

approach to sentence compression,“ Artificial Intelligence, pp. 91-107, 1 July 2002.

11. S. J. Pan und Q. Yang, „A survey on transfer learning,“ IEEE Transactions on knowledge

and data engineering, pp. 1345-1359, 2009.

12. K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen und J. Bragge, „The

design science research process: A model for producing and presenting information systems

research,“ in Proceedings of First International Conference on Design Science Research in

Information Systems and Technology DESRIST, Claremont, California, 2006.

13. S. Chopra, M. Auli und A. M. Rush, „Abstractive Sentence Summarization with Attentive

Recurrent Neural Networks,“ Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies,

pp. 93-98, 1 January 2016.

14. T. Cohn und M. Cohn, „Sentence Compression Beyond Word Deletion,“ 22nd International

Conference on Computational Linguistics, pp. 137-144, 2008.

15. K. Filippova, E. Alfonseca, C. Colmenares, L. Kaiser und O. Vinyals, „Sentence

compression by deletion with LSTMs,“ in Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, 2015.

16. D.-V. Lai, N. T. Son und N. Le Minh, „Deletion-based sentence compression using Bi-enc-

dec LSTM,“ in International Conference of the Pacific Association for Computational

Linguistics, Singapore, 2017.

17. L. Wang, J. Jiang, H. L. Chieu, C. H. Ong, D. Song und L. Liao, „Can Syntax Help?

Improving an LSTM-based Sentence Compression Model for New Domains,“ in

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,

Vancouver, 2017.

18. Y. Zhao, H. Senuma, X. Shen und A. Aizawa, „Gated Neural Network for Sentence

Compression Using Linguistic Knowledge,“ in International Conference on Applications of

Natural Language to Information Systems, 2017.

19. F. A. A. Nóbrega und T. A. S. Pardo, „Investigating Machine Learning Approaches for

Sentence Compression in Different Application Contexts for Portuguese,“ in International

Conference on Computational Processing of the Portuguese Language, Cham, 2016.

20. Y. Miao und P. Blunsom, „Language as a Latent Variable: Discrete Generative Models for

Sentence Compression,“ in Proceedings of the 2016 Conference on Empirical Methods in

Natural Language Processing, Austin, Texas, 2016.

21. J. Bingel und A. Søgaard , „Text Simplification as Tree Labeling,“ in Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers) , Berlin, Germany, 2016.

22. H. Jing, „Sentence Reduction for Automatic Text Summarization,“ in Proceedings of the

Sixth Conference on Applied Natural Language Processing, Seattle, Washington, USA,

2000.

23. R. McDonald, „Discriminative sentence compression with soft syntactic evidence,“ in 11th

Conference of the European Chapter of the Association for Computational Linguistics,

2006.

24. J. Clarke und M. Lapata, „Global Inference for Sentence Compression an Integer Linear

Programming Approach,“ 2008.

25. T. Berg-Kirkpatrick, D. Gillick und D. Klein, „Jointly Learning to Extract and Compress,“

in Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies - Volume 1, Portland, Oregon, 2011.

26. K. Filippova und Y. Altun, „Overcoming the Lack of Parallel Data in Sentence

Compression,“ in Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing , Seattle, Washington, USA, 2013.

27. S. Hochreiter und J. Schmidhuber, „Long Short-term Memory,“ Neural Computation, pp.

1735-1780, 1 December 1997.

28. F. Rodrigues, B. Martins und R. Ribeiro, „Neural Methods for Cross-Lingual Sentence

Compression,“ in International Conference on Artificial Intelligence: Methodology,

Systems, and Applications, Cham, 2018.

29. G. A. Miller, „WordNet: a lexical database for English,“ Communications of the ACM, Bd.

38, Nr. 11, pp. 39-41, 1995.

30. T. Mikolov, K. Chen, G. Corrado und J. Dean, „Efficient Estimation of Word

Representations in Vector Space,“ Proceedings of the International Conference on Learning

Representations, pp. 1-12, 1 January 2013.

31. D. Kingma und J. Ba, „Adam: A method for stochastic optimization,“ in International

Conference for Learning Representations, San Diego, 2015.

32. V. Losing, B. Hammer und H. Wersing, „Incremental on-line learning: A review and

comparison of state of the art algorithms,“ Neurocomputing, pp. 1261-1274, 31 January

2018.

