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ORBIT THEORY FOR ACCELERATORS 

T. Suzuki, KEK, Tsukuba, 305-0801, Japan 

Abstract 

All the devices in synchrotrons and storage rings are placed 
at fixed positions. Observations are also made at fixed 
positions. Thus, the orbit length is a natural independent 
variable, and (arrival) time and energy are canonical vari
ables. This description is a commonplace for betatron os
cillations, synchrotron oscillations in a static case, and for 
collective beam instabilities. However, the time is usually 
used for synchrotron oscillations in a changing magnetic 
fields. Also, betatron accelerations are sometimes ignored. 
We develop a symplectic theory for synchrotron oscilla
tions which uses the orbit length as an independent variable 
and includes betatron acceleration. Since sychrotron os
cillations are closly connected with transverse coordinates, 
we also study synchro-betatron coupling. 

1 INTRODUCTION 

We develop an orbit theory for circular accelerators us
ing the orbit length s as an independent variable (s

description). Chao [I] stressed the difference between a 
snap-shot (a picture taken at a fixed time, t-description) . 
and observations at fixed places (s-description). He devel
oped an orbit theory for collective effects from this point 
of view. The equation of betatron oscillations is described 
in this way, but synchrotron oscillations are usually studied 
by the t-description. 

The t-desription has several defects. Firstly, it is diffi
cult to describe localized natures of rf cavities, etc. We are 
forced to use a travelling-wave approximation. A standing
wave picture, which is more physical, predicts chaotic be
haviors in synchrotron oscillations when the synchrotron 
tune is large [2]. Then, the concept of rf-buckets breaks 
down. Also, Piwinski [3] showed in a linear approxima
tion that synchrotron tunes are different in the travellin
wave approximations and in the standing-wave treatment. 
For a high tune, synchrotron oscillations become unsta
ble. Further, when we study synchro-betatron coupling, 
we are forced to use two independent variables. Also, the 
standing-wave picture is necessary to find a resonance con
dition llx = n + mv8 ,where Vx and V 8 are betatron and 
synchrotron tunes, and n and m are arbitrary integers. In 
the travelling-wave picture, only n = 0 effects appear. 

These are commonplace in static cases, but are also im
portant in the case of changing magnetic fields. In this 
case, betatron acceleration driven by the changing mag
netic fields is somtimes neglected, but this must be in
cluded. Bryant and Johnsen [4] analyzed this point in de
tail in the t-description.lt is interesting to note that Veksler 
[5] and McMillan [6] used the s-description. We develop a 

symplectic theory for synchrotron oscillations and synchro
betatron coupling from the viewpoints described above. 

2 CANONICAL VARIABLES AND 
EQUATIONS OF MOTION 

In the s-description, the (arrival) timet and minus the en
ergy - E are canonical variables. We first make a canon
ical transformation from t to r by a relation t = to + r, 
where to is the arrival time of the synchronous particle 
t0 (s) = f dsfv0 , v0 the velocity of the synchronous parti
cle, and r(s) is the time delay of an arbitrary particle. We 
put a subscript 0 to variables of the .synchronous particle in 
this paper except for fJ and "/. Then we make the second 
canonical transformation from (r, -E) to (r, -!:J.E) by a 
relationE = Eo + !:J.E, where !:J.E is the energy error. 

Though the equations of motion can be derived from a 
Hamiltonian, we can obtain them from physical consider
ations if we pay due attentions to canonical natures of the 
variables. We describe this simplified approach though the 
equations are checked by a Hamiltonian formalism. The 
energy equation is 

d!:J.E . 
~ = eVop(s- s0 ){sin¢- sin¢0 } + eBx, (!) 

where e Vis the peak energy gain by rf-cavities, ¢ is the rf 
phase, so is the position of the rf cavity, Op is the periodic 
0-function, i3 is the time derivative of a vertical magnetic 
induction, and x is the horizontal coordinate. In this paper, 
the dot means a partial or a total derivative with repect to 
time. The time equation is derived from simple geometrial 
considerations and, after a few steps, we obtain 

dr lx l!:J.E 
ds = vo ( p - fJ2"12 Eo ) (2) 

where only linear terms are kept. The pair (x,px) denotes 
canonical variables for the transverse motion. 

Now, x is decomposed as 

where Xf3 is the coordinate of betatron oscillations, Dis the 
dispersion function, pis the radius of curvature, {3 is the ve
locity Lorentz factor, !:J.B is the field error and Xco denotes 
a closed orbit distortion driven by errors. Usually, only 
the !:J.E /Eo term in Eq.(3) is kept for synchrotron oscilla
tions, but the !:J.B-term is also important for a symplectic 
description. Different particles pass through a fixed point s 

at different times and feel different magnetic field strength. 
Thus, 

!:J.B(to + r) = !:J.B(to) + B(to)r (4) 
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Since t.B(t0 ) term does not contain any canonical vari
able, it only affects a closed orbit, but the B term is impor
tant. If this term is neglected, the necessry condition for 
symplecticity 

(5) 

is not satisfied. In this paper, the primes denote differenti
ation with respect to s. This condition is also a sufficient 
condition for the Louville theorem. The xp-term shows 
a synchro-betatron coupling. We neglect x,0 because this 
does not oscillate and also it is small. 

We now express Eq.(3) by a canonical transformation 
with a generating function that has old coordinates and new 
momenta. 

(6) 

where 
t.E B7 

F 1 = pp{x- D(--- -)}, 
fJ2Eo Bo 

1 t.E B7 
F2 = xD Po(fJ2E

0
- Bo ), 

- 1 1 t.E B7 2 F3 = -t.E7- -DD Po(----) . 
2 fJ2Eo Bo 

Here, pp is a canonical momentum conjugate to xp and 
p0 is the kinetic momentum. This generating function was 
first obtained by Morton and Chao[?] with an approxima
tion D1 = B = 0. Carsten and Hagedoorn[8] included the 
D 1-term and the B-term is now included. 

The relations between the old and new variables are 
given as 

t.E B 
x = xp + D{ fJ2Eo - Bo (r + 7p)} (7) 

Px = PP + D1
Po{ fJ~;o - :

0 
(T + 7p)} (8) 

- i3 2 
t.E = t.E + Bo 7p{J Eo (9) 

7=f+7p (10) 

where 
PoD1xp- jjpD 

7p = fJ2Eo (II) 

The bars indicate the new canonical variables. 
The meaning of 7p can be seen by 

In the present case, we can include not only free betatron 
oscillations, but also synchro-betatron coupling. Also, we 
see that the eBxp term is cancelled when we use t.E in
stead of t.E. Thus, the betatron acceleration by betatron 
oscillations is cancelled out: the betatron oscillations affect 
only the arrival time in synchrotron oscillations. 

Inserting Eqs.(7) to (1 0) into Eqs.( 1) and(2), we obtain 
the energy and the time equations expressed by the new 
canonical variables. From now on, we omit the bars from 
the new variables for the sake of simplicity. Neglecting the 
i32 term, we obtain 

dt.E · t.E . . 
----;{8 = eBD fJ2E

0 
+eVJ.(s-so){sm¢-sm¢0 } (13) 

d7 1 D 1 t.E DB 
ds = vo {( p- 12 ) (3 2Eo - pB (f + 7p)} 04) 

We note that the coordinates of betatron oscillations xp is 
cancelled out and only 7p term remains. Together with 
the corresponding equations for xp and pp, we obtain the 
equations of motion for synchro-betatron coupling. For the 
static case in the s-description and in the standing-wave 
picture, the ,equations are given in [ 10] though several er
rors are present in this paper. There it is described that the 
standing -wave pictue ( Jp-function) is important to derive 
a resonace condition llx = n + mv8 • 

We now make a brief comment on rf phase angle ¢ = 
¢0 + t.¢. In the standing-wave picture, the particles feel 
an rf-field only at the position ofrf-cavities. So, it is natural 
to put </>o = Wrf(to)to. Also, we putt.¢= Wrf(to)7 to the 
first order in 7. Such equations are described in a textbook 
by Livingston and Blewett[!!] though in the t-description. 

Now, we neglect the synchro-betatron coupling and put 
7~ = 0. We study pure synchrotron oscillations. We use 
a travelling-wave approximation here: The Dv-finction is 
expanded into a Fourier series and we keep only one har
monic term with a harmonic nuber h. The phase angle <p in 
this case is redefined as <p = ¢- M, where 8 = sf Rand R 
is the average radius. We further make a one-turn average 
of the quantity < D / p >= a, where a is the momentum 
compaction factor. Then, we obtain 

dt.E eV . . aB 
-- = -{sm<p- sm<po} + -t.E 

d8 21f woB 
(15) 

d7 1 t.E B 
d8 = wo {'1 fJ2E0 - "'Bo 7 } 

(16) 

where '1 =a- lh2
• 

d7p xp 
ds = pvo 

(12) Combining Eqs. (15) and (16), we obtain an equation for 

where we neglected the adiabatic change of the parame
ters, and we used the equation of betatron oscillations and 
the defining equation for D. Thus, 7~ shows the time delay 
due to betatron oscillations. This relation was first found 
by Piwinski and Wrulich[9] by a heuristic manner. This 
quantity is also known as CP (Central Position) phase in 
the theory of cyclotrons. (See the references cited in [8].) 

7 

d wo(32 Eo d7 eV . . 
dB( '1 dB)= 2" (sm<p- sm<po) (17) 

where the second-order term B2 is consistantly omitted. 
We note that the B terms appear only in the second or 
higher order terms. This suggests that we can obtain a cor
rect equation even in the absence of betatron accelerations, 
as analized by Bryant and Johnsen. 

-2-



The arrival time at a fixed point has a strict physical sig
nificance, but people usually use the rf-phase. The canoni
cal variable conjugate to 6.¢ is W( = -D.E /wr 1 ). Insert
ing these variables into Eqs.(l5) and (16), combining the 
two as before, and neglecting the second and higher order 
terms in the adiabaticaly-changing variables, we obtain af
ter several steps 

If we put a = 1 (pure bending field) and h = l,this equa
tion reduces to McMillan's one. Also, if we put dB = w0dt, 
Eq.(l8) reduces to the one given by Courant and Snyder. 

3 DISCUSSIONS AND CONCLUSIONS 

We developed an orbit theory for synchrotron oscillations 
and synchro-betatron coupling. We stressed the impor
tance of a standing-wave picture. The travelling-wave 
concepts such as the rf-buckets are approximations. The 
standing-wave treatment has revealed the instability and 
also a chaotic behavior for high synchrotron tunes. On the 
other hand, the travelling-wave approximation is necessary 
for analytic works. Even in this case, the orbit theory is not 
more complicated than the t-description. 

More details including a Hamiltonian formalism will be 
described elsewhere. 
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