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1. INIRODUCTION 

One of the impressive results obtained in the experiments with antiproton ( p) 

beams in the Low Energy Antiproton Ring (LEAR) is the abnormally large P-wa ve 

(relative orbital momentum of proton and antiproton L = 1) contribution to different 

observables: the pp elastic scattering [I] (0" e), the charge-exchange reaction ( p p 

~ lin) [2] (0" ce), the annihilation cross-section (0" a), the P-states widths of the p p 

atom (protonium) [3], and the real-to-imaginary ratio cp parameter) for the forward 

elastic pp scattering amplitude [4] at very low centre-of-mass momenta, k, of the 

colliding particles (k < 150 MeV/c). Moreover, it was observed that the P-wave 

contribution even grows with k decreasing from 150 to 100 MeV/c (see [5] and 

references therein). 

On the other hand, the canonical theoretical treatement predicts a quite 

opposite k-dependence of the partial wave cross section at low momentum k. Due to 

centrifugal repulsion, it is expected that at kR < L (R is the effective NN nuclear 

interaction range) the behaviour of the partial cross sections should be 

( 1) 

(2) 

where 
L 

X (kR)- (kR) 
~ - [(2L+1)!!] 

(3) 

Here v = 2k/M denotes the relative velocity of p and p, and M is the nucleon mass. 

The quantities cCL) are smooth functions of k and L, so that lC(L)l can be 

approximately considered as constants, equal to R in order of magnitude. 

Therefore, according to eqs. (1-3), the P-wave contributions to the cross 

sections should be ten times less than those from the S-wave ones even at k - R-1. 

But the analysis of the experimental data shows that S and P partial amplitudes are 
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comparable [1]. This means that values of fC(L)[ are very large and they compensate 

for the smallness of centrifugal factors defined by XL. 

A natural physical reason for the enhancement of the P-wave amplitudes in 

low energy pp collisions is the possible existence of the near-threshold (close to 2M) 

quasinuclear bound or resonant NN P-states. These states should appear because of 

the strongly attractive nuclear forces between N and N. The corresponding poles of 

the pp scattering amplitude would then naturally lead to P-wave enhancement. This 

fact was first emphasized qualitatively in reference [6], a long time before 

appearance of the sophisticated experimental data. 

The main problem of the quantitative theory is making the right choice when 

taking into account the annihilation of the NN pair. The first choice historically 

used was the optical model (OM) in which the strong absorption caused by 

annihilation is described by means of a non- Hermitian Hamiltonian [7]. 

Another possible approach is a unitary coupled-channels model (CCM). In the 

latter, both NN and the annihilation (two-meson) channels are introduced explicitly 

and considered coupled with each other by some Hermitian interaction Hamiltonian. 

The most important difference between OM and CCM comes from the fact that 

in the CCM case not only the annihilation ( NN ~ mesons) but also the inverse 

"reannihilation" process (mesons ~ NN) are taken into account and automatically 

included in the calculations. A direct consequence of that is the fact that in the CCM, 

the annihilation widths of quasinuclear levels are substantially reduced compared to 

those given by OM (see, for instance, reference [8]). 

The calculations performed within the framework of the CCM with 

realistic NN nuclear forces (OBEP) reproduce quite well all experimental data on low 

energy pp interactions [5], [9], [10], [11]. In these papers the quasinuclear P-levels 

responsible for the P-wave enhancement were evaluated and their widths were 

shown to be of the order of normal hadron size (from few tens to one hundred MeV). 
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It seemed that these CCM results definitely explain the physical nature of the 

observed large P-wave contribution to the pp low energy interaction. 

At the same time a satisfactory description of the experimental data under 

consideration was obtained in the OM calculations [12], [13], [14]. Despite the fact that 

the widths of the NN levels given by OM are usually larger than those in CCM, one 

cannot exclude that in some variants of the OM fitting the experimental data, there 

are one or few near-threshold P-states giving the observed P-wave enhancement. 

This possibility should be confirmed by direct calculations. Otherwise the conclusion 

that bound and resonant states manifest themselves in the phenomena discussed 

above would be model-dependent and so questionable. 

An attempt at such an analysis was made by Lacombe et al. in reference [14]. 

In this paper the Argand diagrams of the partial scattering amplitudes were studied. 

At least one of them (13Po) was found to have resonance-like structure (see Figure 

1). It was also demonstrated that this amplitude could be approximated by a sum of 

Breit-Wigner-like resonant amplitude plus a smooth term originating from 

singularities located far from the threshold. The best fit gave the following 

positions, (Eo), and widths, (r), of the near-threshold 13po level: Eo = - 1.91 MeV, r = 

10.6 MeV and Eo = - 0.2 MeV, r = 10.2 MeV for the Paris and Dover-Richard potentials 

respectively. 

This result indicates that in OM the P-wave enhancement may also be 

connected with the existence of near-threshold P-levels in the NN system. In 

addition it points out that these levels, being located extremely close to the threshold, 

can be narrow. 

Nevertheless, these conclusions, following from reference [14], need to be 

confirmed in two aspects. Firstly, the singular terms in the partial scattering 

amplitudes, being supposed to exist a priori, were introduced "by hand" into the 

fitting procedure. Thus, it seems necessary to evaluate such levels directly by 

solving the eigenvalue problem for the non-Hermitian OM Hamiltonian. Secondly, it 
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is necessary to check the existence of the NN near-threshold P-levels in OM 

versions which are different from those considered in reference [ 14], but also 

describing the bulk of the low energy pp experimental data and particularly the 

large P-wave contribution to the cross sections. 

The aim of this paper is to examine these two questions. As the corresponding 

numerical calculations are cumbersome it is necessary to make a reasonable choice 

for the OM version to study. We have chosen the optical potential proposed by M. 

Kohno and W. Weise (KW) [13]. This potential differs substantially from the Paris 

potential. For instance, the absorption range (i.e. the radius of the imaginary part of 

the optical potential) in the KW model is twice as large as in the Paris potential. At 

the same time the KW potential fits satisfactorily all the considered experimental 

data. It is remarkable that the energy dependence of some P-wave partial amplitudes 

is very similar for different OM (see Figure 1). 

Nevertheless, an attempt was made in Reference [13] to explain the large 

contribution of P-waves as a result of suppression in the S-wave pp partial 

scattering amplitudes rather than P-wave enhancement. This statement is difficult 

to understand because the scattering lengths in the KW model are normal (of the 

order of 1 fm). Neglecting Coulomb effects and the n-p mass difference we have 

obtained the following pp scattering lengths: a pp( IS ol = 0.52 - 0.98i fm and 

a p p ( 3 S D 1) = 1.00 - 0. 79i fm, in agreement with the experimental data from 

protonium shifts and widths [3]. 

These reasons pushed us to make a direct search of poles in the complex 

momentum plane of the P-wave partial pp scattering amplitudes in the KW version 

of the OM. 

The plan of the paper is the following. In Section 2 we analyse the energy 

behaviour of P-wave scattering amplitudes in the KW potential, which we have 

calculated. Section 3 is devoted to a general description of some analytical properties 

of the amplitudes for Hermitian and non-Hermitian interaction Hamiltonians. 
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Section 4 contains the results of numerical calculations of the eigenvalues and 

resonances in the KW potential. In Section 5 some remarks on the difference 

between the OM and the CCM wave functions inside the interaction region are 

discussed and a general conclusion is presented. 

2. ENERGY DEPENDENCE OF THE PARTIAL W A VB CROSS SECTIONS 

In the KW model, NN interaction is described by a complex, local, and energy-

independent potential which will be written in the following way: 

V NN (r) = V oBEP(r) + iW(r) (4) 

Here, V0 BEP is the G-parity transform of the NN Ueda potential [15] regularised 

below some cut-off radius rc. This cut-off is needed to avoid the singular terms in 

OBEP caused by spin-orbit and tensor forces. 

W is the imaginary part of the KW potential for taking into account the 

annihilation. It has the usual Woods-Saxon form: 

W (r) = - _W-'-'-"-o--=
'. Ro l+e-.- (5) 

The model has four parameters (rc. Wo, Ro, a) which were fixed by fitting the 

experimental data: rc = I fm, w0 = 1.2 GeV, Ro = 0.55 fm, a = 0.2 fm. However, for a 

better understanding of this model we will vary the parameters w0 and rc· 

We have calculated the different partial P-waves elastic (0" e) and annihilation 

(0" a) cross sections. In order to investigate their relative contributions to the total 

cross sections, we remove from them, following equations (1)-(3), the trivial 

kinematical and statistical factors by introducing the reduced elastic ( cr e) and 

annihilation ( cr al cross sections: 
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cr. 
cr.<kl 

4 
(2J + I )1tk (6) 

Cia 
cr.< k J 

(2J+l)7tk (7) 

These reduced cross sections are proportional to the squared modulus of the 

functions C(L)(k) in equations (1)-(3). 

Results for all P partial waves are presented in figures 2a and 2b. They 

correspond respectively to isospin T = 0 and T = 1 states in the standard spectroscopic 

convention 2T + 1,2S+l L J· Results corresponding to a "pure annihilation scattering", 

i.e. obtained by putting VoBEP = 0 in equation (4), are also included. 

We remark, from a global comparison between Figures 2a and 2b, that the N N 

P-wave scattering is dominated by T = 0 channels. The reduced cross sections are 

greater in T = 0 states, roughly speaking by a factor 10, than the vertical scaling 

factor used in the Figure 2b plot. 

Another conclusion which can be drawn from this figure is that the large P-

wave contribution in the optical model is not produced by annihilation, but is 

generated by nuclear forces. Indeed, annihilation scattering (Yo B EP= 0 curves in 

Figures 2a and 2b) is two orders of magnitude out. 

From Figures 2 we also see that the most important P-wave is 1 3 P 0 . Its 

anomalously big contribution was already noticed in [16], where the protonium level 

shifts and widths in the KW potential were calculated. 

The same feature is even more clearly seen in the reduced pp annihilation 

cross sections Ci a(k) shown in Figure 3. We see that all reduced cross sections are 

practically constant in the k-region from 0 to 100 MeV/c and that the anomalously 

big value of the 13 P 0 cross section is also accompanied by the strongest energy 

dependence. 
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These facts, the big value and the strong energy dependence in the 1 3 P 0 

amplitude suggest the existence of near-threshold singularities. The next sections 

will be devoted to the demonstration that this is really the case. 

3. S-MATRIX SINGULARITIES IN THE OPTICAL MODELS 

Before going into details of the considered particular potential we will discuss 

some general features of isolated singularities of the amplitude that can be found in 

any optical model. 

Let us introduce the Jost function, aa(Wo,k), by writing the reduced regular 

radial solution of the Schrodinger equation, ua, in the asymptotic region as 

I 'k 'k Ua(Wo,k,r) = 2ik (aa(Wo.-k) el r- aa(Wo.k) e-1 r) (8) 

where Wo is the "annihilation strength" introduced in (5) and a = (S,L,J,T) labels the 

set of the quantum numbers of the state (i.e. spin, orbital and total angular 

momentum, and isospin respectively). 

The S matrix is then given by the formulas: 

S =(-)L a(Wo, -k) =(-)La*(- Wo, k*). 
a(Wo, k) a*(-Wo, -k*) 

(9) 

To obtain the latter equality we used the symmetry relation: 

a(Wo,k) = a*(-Wo,-k*) (10) 

Let us emphasize here the difference between this symmetry relation (10) and 

the corresponding one in the case of the two coupled-channels model. In the latter 

case, the relation is the same as for a Hermitian potential problem, i.e. a(k) = a*( -k*), 
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despite the fact that annihilation is taken into account. This question was discussed 

in detail in [ 17] (see also references therein). 

In Figure 4 we present the complex momentum plane (K) and the two so-called 

physical (EI) and unphysical (EII) energy sheets of the Riemannian energy 

manifold into which it is mapped. The K plane is divided into eight sectors (I-VIII) 

and the E-sheets into the corresponding quadrants. We use the following notations: 

k = k1 +ik2, (II) 

2 2 2 
E=!_=(kJ- k2) +Zik1k2, 

M M (12) 

M is the nucleon mass. 

The poles of the S-matrix are given by isolated zeros of the Jost function in the 

K-plane and they correspond to bound (Im k > 0) or resonant states (Im k < 0). 

In the Hermitian case, bound states are restricted to the positive K-imaginary 

axis or the negative real axis on the physical energy sheet Er (Bo in Figure 4). 

Resonances appear in the lower half K-plane by pairs (ko, -ko *) which are 

symmetric with respect to the imaginary axis (Ro and Ro' in Fig. 4) according to 

relation (10) if Wo = 0. In this case the symmetry relation (10) allows us to write the 

S-matrix for the momentum k in the form 

• 
S(k) = - ( k + k o) ( k - k o) 

S(k) , (13) 
( k - k o) ( k + k o) 

where the unimodular factor S(k) does not contain the poles ko and -ko *. This 

expression leads to the usual resonant Breit-Wigner form for scattering cross 

section: 

I 
O'(k)- ---=---2 

2 r 
(E- Eo) +-

4 

(14) 
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with the position Eo and width r of the resonance given by the equalities 

r(k) = - 4 Im(ko) k/M. (15) 

In the case of sharp resonance the width is usually defined as r o = r (I ko I). 

Starting from this picture, we will switch on the annihilation potential step by step 

and follow the different kinds of pole trajectories <Yl which can be expected from 

general principles. 

Let us begin by considering the trajectory of a pole which in the Hermitian 

case was a bound state. There are two possible cases. The first one is represented by 

trajectory Y1 up to B1 in Fig. 4. This pole moves apart from the imaginary axis but 

remains in sector III. In this situation the physical interpretation of this pole as an 

unstable bound state is possible. The total mass of the system is smaller than 2M; the 

decay into NN is thus forbidden and the NN wave function tends exponentially to 

zero when r ~ oo. 

The second case appears when the pole trajectory moves up to B2, crossing the 

bisector separating regions III and IV. In that case the possibility of any physical 

interpretation of such a state is lost. The total mass of the system becomes greater 

than 2M but the decay into NN is still impossible because according to (8) the wave 

function of such a state decreases exponentially at large r. 

Let us discuss now the possible trajectories of states which in the Hermitian 

case are associated with resonances (points Ro and Ro' in Fig. 4). When we switch on 

the annihilation we immediately lose the symmetry of these poles, which directly 

follows from property (10) for the complex potential. The right pole Ro follows a 

trajectory y3 up to some point Rt which will be located in the quadrant VII (Re E < 0) 

or VIII (Re E < 0) depending on the strength of the annihilation potential. The left 

R 0' pole, in the case of small influence of annihilation, has a trajectory y3 ' up to 
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some point R1 ', but for strong annihilation it crosses the K real axis and reaches the 

point Rz' in sector IV (Im k > 0). 

As was pointed out above, the poles lying in sector IV do not correspond to any 

physical state of the NN system. The existence of these singularities was discussed in 

connection with the problem of :E -nuclear states in references [ 18, 19]. It should be 

mentioned that a "mirror" pole R' in sector V never defines a physical state by itself. 

Even in the Hermitian case the corresponding energy k'o 2 /M has a positive 

imaginary part, leading to an exponentially- increasing time-dependent solution of 

the Schri:idinger equation which is physically senseless. 

As follows from equations (13) and (14), the pair of poles (Ro, Ro') is needed to 

obtain a resonance behaviour of the amplitudes whether the symmetry is exact, as in 

the Hermitian case, or approximate, as for some states in optical models. 

We have presented the possible pole trajectories in a complex potential. As will 

be shown in the following Section, the discussed possibilities are realized in the KW 

model. The most non-trivial fact will be the existence of narrow near-threshold N N 

quasinuclear states in an optical model even with relatively large annihilation 

range. 
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4. OUANIITATIVE RESULTS ON BOUND AND RESONANT NN STATES IN KW MODEL 

The strong attractive NN OBEP interaction creates a rich spectrum of bound 

and resonant states and their properties have been widely studied by many authors 

(see Refs. [14,20,21]). Two papers [14,21] have been devoted to the study of some of 

these singularities and their influence on the scattering observables when the 

annihilation is included . We will present in this section numerical results for all 

bound and near-threshold resonant states in the KW optical model for S and P partial 

waves. 

The method we used is based on a computation of the Hamiltonian, H, and 

inverse Green function, o-1 (k), in a configuration space lattice, i.e.: 

(16) 

o-1(k)m,n = k20m,n - Hm,n + i£ (17) 

Bound and resonant states are then obtained in a uniform way by looking at 

the complex zeros of the determinant ~ (k) = det[G-1 (k)] in the K-plane. This 

procedure, which is numerically non-trivial, allows a direct calculation of 

singularities without any additional fitting procedure of the scattering amplitudes. 

Bound states 

In Figure 5 we have plotted the S and P bound-state trajectories in the KW 

potential, parametrized by the annihilation strength Wo. As could be expected, the 

most attractive interactions are found in the T = 0, S = I channels. For these quantum 

numbers the contribution to OBEP forces from all mesons add coherently, resulting 

in a very strong potential [20]. For instance 13s D 1 and 13p 0 ground states have 

binding energies greater than I GeV, values which are unacceptable in any 

believable non-relativistic approach. 
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The majority of trajectories lie entirely in the physical sector III. However the 

less bound states move into region IV, appearing as "positive energy bound states", 

i.e. with total mass greater than 2M and, as discussed in the previous paragraph, 

without any physical meaning. Their overall evolution is shown in Figure 6, where 

concrete examples of a Yl -like trajectory in the K-plane are plotted for the partial 

waves IIs 0, 3Is0, and 3Iso1. 

It is also interesting to notice from Figure Sa a common property of all 

trajectories remaining in sector III. They move parallel to each other and obtain 

practically the same imaginary part for Wo = 1200 MeV. This can be understood from 

the integral expression for the width of a state: 

~=-f 
0 

00 
2 2 

I 'P a(r) I W(r)r dr, (18) 

Assuming the state to be deep enough and localized inside a region with 

practically constant imaginary potential, we obtain from equation (18): 

(19) 

For normalized wave functions, the integral in the latter equality is, of course, 

independent of the state's quantum numbers. 

From the physical point of view, the behaviour of the width as a function of 

the binding energy of the state should be different. Roughly speaking, the width is 

expected to be proportional to the phase volume of the mesons in the final (i.e. 

annihilation) channel. With increasing binding energy (i.e. decreasing effective 

mass) of the NN bound system, the phase volume decreases and the width of the 

level has to become smaller. This behaviour cannot be obtained in OM whereas it is 

automatically reproduced in the CCM approach [5]. 
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We finally conclude from Figure 5 the absence of any narrow bound state for 

this particular optical model. The narrowest one is the first radially excited I 3 P 0 

state. It has a width r = 600 MeV. 

Nevertheless, even with a big annihilation potential it is possible to obtain 

states with relatively small width. Such a situation will appear for states located very 

close to the threshold and being radially excited states. These states have a radius 

larger than the annihilation range in the KW model and therefore the annihilation 

potential has no significant influence on them. The same situation is possible for 

resonant states, as will be shown in the following. 

Resonances 

In order to find the near-threshold resonances as well as to understand their 

physical origin we start by looking into the near-threshold bound state spectra for 

the OBEP (Wo = 0) in the vicinity of the actual KW cut-off radius (rc = 1 fm). With 

decreasing value of rc, the strength of the potential is increased and the near

threshold resonances in the KW model will first appear as bound states. Results are 

shown in Figure 7. We see the existence of several bound states (11pJ, 33p1, l3pFz, 

13po) for rc values slightly smaller than 1 fm. They are respectively ground (11 P 1, 

33p1), first (13PFz) and second (13Po) excited states, as can be seen from Figure 5, 

and they will manifest as resonances in the KW model. Hereafter we will study their 

evolution in the lm k < 0 half plane as a function of rc and Wo as well as their 

influence on the scattering cross sections. 

Let us first consider in Figure 8 the 13p 0 partial wave. Starting from a bound 

state in the imaginary axis (rc = 0.90 fm, E = - 1.75 MeV), this state goes to a resonance 

region. The symmetric curves in the lower half K-plane correspond to the motion of 

resonance without annihilation as a function of rc (i.e. the potential strength). For 

rc = 1 the pole coordinates are ko = (66 - 57i) MeV/c and the position and the width of 

the resonance obtained from equation (15) are Eo = 8 MeV, r = 20 MeV. 
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When we switch on the annihilation potential and keep constant rc = I we see 

that the poles become asymmetrical. Their asymmetry is small because annihilation 

has small influence on the wave function of this quasinuclear state due to the 

reasons discussed above. Now the pole coordinates in the K-plane are k'o = (- 82 - 76i) 

MeV/c, ko = (46 - 54i) MeV/c. Close values for a position of the right pole in the 13p0 

partial wave for the Dover-Richard and Paris potentials were obtained by a fitting 

procedure in [14]. However in this work, authors did not determine the position of 

the left pole. 

When annihilation is switched on, the right-left symmetry is broken and the 

denominator in equation (13) as a function of energy cannot be written in the Breit-

Wigner form. Instead of it we have 

S- I 

(E- Eo(k))+l(k)' 
2 

(20) 

where not only the width r, as usual, but also the position of the resonance Eo are 

functions of the momentum k: 

(21) 

M r(k) = 2(k1 k' 2 + k'J k2) - 2(k2 + k'z) k (22) 

with ko = k1 + ik2 and k'o = k'1 + ik'2. 

These functions, for the 13p0 partial wave, are shown in Figure 9a , where the 

importance of the k-dependence for both Eo and r is clearly seen. 

Because of that, the energy dependence of amplitudes and cross sections, even 

if they are calculated taking into account only the contribution of isolated poles, will 

not exhibit the usual maximum at some definite positive energy Eo. Instead of it, the 

near-threshold poles will manifest themselves first of all by a rapid decreasing of 
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the reduced amplitudes and cross sections with growing k. As can be seen in figure 

9b, such behaviour takes place starting from energies very close to the threshold. 

An example of asymmetry of the poles' position (ko, ko ') is given by the 

partial wave 33pl (Fig. 10). In this case the influence of annihilation is dramatic. 

The left pole lies at positive energy on the physical sheet, but the corresponding 

wave function has exponentially decreasing asymptotic behaviour as for a bound 

state. 

The main conclusion from these direct calculations of the poles' position, as 

well as from the fitting procedure performed in [14], is the statement that it is 

impossible to explain the success of OM in describing the experimental pp cross 

sections at low energy without the existence of near-threshold NN P-states. It is also 

clear from Figure 8 that these levels are created by the nuclear forces, i.e. that they 

are of quasinuclear nature. 

5. CONCLUSION 

It follows from the results presented in this paper that the physical reason for 

the enormous P-wave contribution to the pp interaction is the same for both the OM 

and CCM approaches. This reason is the strong attraction between N and N due to 

nuclear-type forces (OBEP). These forces create near-threshold singularities in 

the pp amplitudes, i.e. poles corresponding to the quasinuclear bound and resonant 

states of the NN system. As was shown, annihilation does not destroy these near

threshold states in any case because the radius of such a system is significantly 

larger than the annihilation range. 

At the same time, it is necessary to mention a principal difference between 

the OM and CCM approaches. Firstly, as was shown here, OM produces states which 

have no physical interpretation. Further, there is a substantial difference between 

OM and CCM wave functions inside the interaction region. This fact may be 
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important, for instance, for understanding the nature of the P-wave dominance 

effect observed in the reaction pp ~ AA just near the threshold (at relative A A 

momenta of few tens MeV/c). This transition is likely to be produced by K and K* 

exchanges, so that it takes place inside the region of baryon-antibaryon 

annihilation for the KW model. Wave functions at these distances are strongly 

suppressed due to absorption, especially in the case of S-states (I'P s(Wo; r = 0)12 tends 

to zero faster than 1/W o when W o ~ oo , see ref. [5]). Therefore, as was claimed in 

ref. [13], the relatively large P-wave contribution to the cross section for this 

production reaction would be caused rather by annihilation than by the attractive 

nuclear baryon-antibaryon forces. We would like to emphasize that the situation in 

the CCM is quite opposite. Due to reannihilation 'P does not tend to zero even at 

infinitely large values of the constant A defining the coupling between fermion 

(NN) and meson channels [5]. 

The dependence of the annihilation cross section 0 a on the annihilation 

constant in the Hamiltonian is also quite different in OM and CCM. In the OM 0 a 

grows with Wo up to the unitary limit, whereas for the simplest version of CCM (for 

instance, with separable transition potential), we may even have 0 a(A ~ oo) ~ 0 

because of reannihilation. It is easy to show the latter statement analytically. 

Let us introduce the annihilation amplitude AA calculated in the first order of 

A, but with full accounting of the nuclear forces. So the full annihilation amplitude, 

fa. will be the solution of the integral equation: 

fa = AA + A2 A Do A Go fa. (23) 

where Do and Go are the Green functions of free mesons and fermions 

correspondingly. Hence, 

fa= A(l - A2 A Do A Go)- I A (24) 
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At the same time, for the scattering amplitude induced by reannihilation, fra. we 

have: 

fra =A)(! - A2 A Do A Got1 A Do A. (25) 

If fra has no poles (i.e. the reannihilation does not produce bound or resonant states) 

then at A >> 1 we obtain that fa - A -1 and fra - const. (on A). 

For realistic CCM, fra does have poles (because the reannihilation forces 

appear to be attractive). This phenomenon creates the oscillation of fa with 

increasing A, as can be seen from eq. (25) and as was first explicitly demonstrated in 

[5]. It is necessary to note that, of course in contrast to the quasinuclear states, the 

reannihilation poles cannot be considered as having a real physical status because 

their positions and even existence depend on the details of the annihilation 

mechanism which cannot be taken into account at the present state of our 

knowledge. 

We introduced the above comments on the relations between OM and CCM to 

emphasize the physical difference of the two approaches. But the main conclusion of 

this work was formulated in the beginning of this section: the P-wave enhancement 

effect observed in the low energy pp collisions is a manifestation of the 

quasinuclear near-threshold P-states appearing in any known realistic model of NN 

interaction. 
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FIGURE CAPTIONS 

Fig. 1. Argand diagram for the partial wave 13p0 in the different potentials: solid 

line - Kohno-Weise model (present calculations); dashed line 

dashed-dotted line Dover-Richard potential (calculations from ref. 

energy in the NN system is presented by triangles (5 MeV), squares 

circles (200 MeV). 

Paris potential; 

[14]). Kinetic 

(20 MeV) and 

Fig. 2(a). Reduced elastic cross section (see eq. (6)) for different partial P-waves 

with isospin T = 0 as a function of momentum k. The same quantity for pure 
annihilation scattering (VOBEP=O) is presented, scaled with a factor 103. 

(b). The same as in Fig. 2a for isospin T = 1. 

Fig. 3. Reduced annihilation cross section (see eq. (7)) for different partial P-

waves as a function of momentum k. 

Fig. 4. Momentum plane (K) and two energy sheets of the Riemannian manifold 

for the one-channel problem. Solid lines represent different trajectories of S-matrix 

poles (see text). 

Fig. 5. Trajectories of the bound state position in the E-plane in the KW potential 

as a function of the annihilation strength parameter Wo changing from 0 to 1200 

MeV. 

Fig. 6. Trajectories of the pole positions in the K-plane as a function of Wo. 

Fig. 7. Binding energies of different P-states in the KW potential as a function of 

rc. The imaginary part is switched off (Wo = 0). 

Fig.8. The K-plane positions of the poles for the partial wave 13p 0 as a function 

of rc and Wo. 

Fig. 9(a). Dependence of a "position of resonance" Eo (solid line) and "width" r 

(dashed line) on momentum k for the partial wave 13p0. 

(b). Value of [(E - Eo(k))2 + (r(k)/2)2]-1 for the Eo and r from Fig. 9a as a 

function of momentum k. 

Fig. 10. The same as in Fig. 8 for the partial wave 33p 1. 
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