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Abstract 

We describe how the wake potential of a bunched beam of arbitrary charge 

distribution can be calculated from the wake potential of a short Gaussian 

bunch by using the Hermite polynomial expansion. 
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1 Introduction 

Theoretically, the wake potential of a bunched beam of arbitrary charge distribution 

can be calculated by using the wake function of a point charge as a Green function.l1l In 

reality, except for few very simplifiedgeometries, the wake function of a point charge is 

impossible to obtain analytically. More difficulties emerge when one tries to compute the 

wake function (delta function wake) numerically because of the singularity in the time 

domain and the infinite number of resonances in the frequency domain. Approximations 

in the time domain have been proposed to obtain the wake function from the smooth 

wake potential of a short bunch by shifting the wake preceding the center of the bunch 

to the rear of it. Another approach in the frequency domain is to approximate the 

spectrum semi-analytically at high frequenciesl 2 •3 •4l. These approximations may not 

give satisfactory results for all cases. 

The difficulty of evaluating the wake function of a point charge is avoided by com­

puting the wake potential of a non-singular charge distribution of extended dimension. 

A number of computer programs have been developed for calculating the wake poten­

tials of charged particle bunches in various boundaries of different geometries 15 •6 •71. 

Nonetheless, even with the most advanced computers, a wake potential calculation still 

requires a significant amount of computer time, hence it is not practical to use these 

programs to calculate wake potentials repeatedly in a simulation program for beam 

stability or beam-beam interaction in accelerators. A conventional method for a fast 

computation is to calculate the effective impedance in the frequency domain from the 

resonant modes of a structure and then to Fourier transform the results to the time 

domain18l. Clearly, the utilization of this method relies on knowing the modes up to 

very high frequencies. It is important to know the impedance of a structure before it is 

built, therefore one has to depend on the results from computations. Attempting to cal­

culate the impedance numerically faces the same difficulties mentioned earlier. Trying 

to "unfold" the effective impedance of a bunch of finite length does not work in practice 

because of the extremely large weight factors where the effective impedance is small, 

e.g. for a Gaussian distribution one would have to multiply the effective impedance 

with the weight factor exp( +w 2 <T 2 ). Thus, a better scheme for rapid computation of 

wake potentials is required. 

As will be discussed in the following, some special properties of a Gaussian function 

and of the Hermite polynomials allow one to calculate directly the wake potential of a 

bunch with arbitrary distribution which can be expanded into a series of products of 

these functions. This method is similar to the Green function method; hence for any 
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specific geometry, one needs only to compute the wake potential of a (short) Gaussian 

bunch once. The wake potentials of each term in the expansion then can be obtained 

by (numerical) integrations. One may construct tables from the results and use the 

"table-look-up" technique[s] to increase the computation speed. 

2 The Wake Potential of a Bunched Beam 

2.1 A Generalization of the Green Function 

It is known that the wake function of a point charge G( a:, a:') can be used as a Green 

function to calculate the wake potential W F( a:) of a bunch with a charge distribution 

F( a:) by using the relation 

WF(a:) =I: G(a:,a:')F(a:')da:' (1) 

For infinitely long beam pipes (open boundary conditions), the wake function is a func­

tion of the difference of a: and a:' only; the above equation can be written as 

WF(a:) =I: G(a:- a:')F(a:')da:' 

=I: G(a:')F(a:- x')dx' , (2) 

where it is understood that G(y) = 0 for y < 0. In this note, we shall limit our 

discussions to the case where Eq.(2) holds, but we shall employ a "generalization" 

of Eq.(2): if W9 (a:) is the wake potential of a known function g(a:), and if a charge 

distribution F(y) can be expressed as a convolution of g(a:) and some function f(a:), i.e. 

F(y) =I: g(x)f(y- a:)da: , (3) 

then one can calculate the wake potential W F( t) of the distribution F(y) by using the 

relation 

WF(t) =I: W9 (x)f(t- a:)da: . (4) 

2 



2.2 The Hermite Polynomial Expansion 

We now consider the case where g( x) is a Gaussian function and where a solution 

of the above integral equation exists. For an arbitrary distribution F(y), it is usually 

impossible to find a closed form for the solution, but one can expand it into orthogonal 

functions. The fact that the Hermite polynomials' weight function is Gaussian suggests 

that it might be advantageous to expand F(y) in terms of them. Thus, we write 

F(y)= }z;(Texp(-;:2 )~anHn(~J. (5) 

In the Appendix we will show that the above expression can be replaced by one for a 

smaller value of (T1 • From Eq.(A.5) we get 

where 

(7) 

Substituting the above result into Eq.(2); changing variables from y to x - x' and s to 

x- t, yield the wake potential of the (arbitrary) distribution F 

(x-t)2]d 
2 2 t ' 

(T2 
(8) 

where 

1 1"" (t-x')
2 

W9 (t) = vlz1r G(x')exp[-
2 2 ]dx' , 

211'(Tl -oo (T 1 
(9) 

is the wake potential of a bunch with a Gaussian charge distribution with standard 

deviation (T1 < (T. One can prove by comparing Eq.(6) with Eq.(3) and changing 

variables that the solution for f( x) is 

1 
00 

( (T ) n ( X ) ( x2 ) f(x) = vlz1r L an - Hn 102 exp --
2 2 

1T0"2 n=O 0"2 V L.f:J'2 (]' 2 
(10) 

When F( x) is a Gaussian function, then the solution of Eq.(3) is also a Gaussian 

function. This can be seen by the relation 
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(11) 

Thus, we obtain the well-known result that the wake potential of the longer Gaussian 

bunch can be expressed as a superposition of the wake potential of the shorter Gaussian 

bunch as191 

1 1"" [ (s-xj2] Wp(x) = = Wg(s)exp - 2 ds . 
V 211"0"2 -oo 20"2 

(12) 

2.3 Applications 

For any boundary conditions for which one can obtain the wake potential of a 

Gaussian bunch, Eqs. (5) and (8) allow us to calculate the wake potential of a longer 

bunch with arbitrary charge distribution. The advantages of the method presented here 

compared to other methods described before are better accuracy and higher efficiency. 

One only needs to use the time consuming wake potential programs once, and to apply 

the results to any other function. This feature is especially useful in a beam stability 

or beam-beam interaction simulation where one can increase the computing speed by 

using this method in conjunction with the table-look-up technique. 

3 Conclusions 

We have shown that the wake potential of a bunched beam of arbitrary charge 

distribution can be calculated from the wake potential of a bunch with Gaussian charge 

distribution by using the Hermite polynomial expansion. Using this method, one can 

obtain better accuracy and higher computing efficiency particularly in the simulation 

programs of beam stability or beam-beam interaction in accelerators. 
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Appendix: Convolutions of 

Products of Gaussian Functions and Hermite Polynomials 

To derive Eq.(6), we first notice the following equality: 

17 joo [ ( s ) 2] [ (y - s )2] [ ( y ) 2] ~ exp- u-rn exp- 2 ds=exp- v- rn 
V .07ri7J 172 -oo V 2172 2171 V 217 

, (A.l) 

where 

(A.2) 

and 

v=(~)u. (A.3) 

Next, from the relation between the Hermite polynomials and their generating function liD], 

we have 

oo n 

-(v-•l' - -•' ~ !'__H ( ) e -e ~ T nS . 
n. 

n=O 

One now can evaluate the nth derivative of Eq.(A.l) with respect to u at u 

obtain 

(A.4) 

0 to 

(A.5) 

Substituting the above equation into Eq.(5) yields Eq.(6). Ifu = 0 in Eq.(A.l) or n = 0 

in Eq.(A.5), then one has 

17 Joo ( 8
2 ) [ (y s )2] ( y2 ) y'21r exp --2 exp -

2 2 ds = exp --
2 2 

0"1 0"2 - oo 2u 2 u 1 cr 
(A.6) 

Thus the convolution of two Gaussian functions is also a Gaussian function. 
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