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In this le-cture I will review some of the general properties of the geometry of 
the moduli sp<'~ce 1 l of a wide physically interf'sting class of supf'rstring compadi­
fic(!tions, nanwly Calabi-Yau vacua2 l. 

In a broader sense. in string theory, Calabi-Yau compactifications are rf'fcrrcd 
to as (2,2) yacua3 l, referring to the superconformal properties4 ) of the string in­
ternal degrees of freedom which are used to define a four-dimensional superstring 
modf'i5 l. 

In any st. ring compactification to four dimensions we require space-timf' super­
symmetry t.o he unbroken, in order to define a sensible string theory. This of course 
may also solve the hierarchy problem of the weak interaction scale6 l, provided we 
tacitly assume that there is some, as yet unknown, mechanism which will generate 
hath the weak scale <md supersymmetry breaking at energies E::; 0(1 TeV). 

A general property of Calabi-Yau compactifications of superstrings down to 

fonr dimensions is that there is a general relation3 )2 )7 l between some massless 
neutral multiplets and the multiplets charged under the gauge symmetry group G 
which is, in general, at least at the compactification scale, E6 x E8 . 

More specifically, a Calabi-Yau space is specified by some topological num­
bers, the Hodge numbers of the manifold, which count the number of independent 

harmonic (1,1) forms and (2,1) forms which exist on the manifold. The Euler 
number is simply given by 2(h(l,l) - h(2 ,o) and is related to the net chirality 
of fermion representations in a given Calabi-Yau space. Indeed for each (1,1) 
and (2.1) harmonic forms in the internal manifold there is a massless scalar field 
MQ(x)(a = l, ... h.0 ,11 ),No(x)(o = 1, ... h(2 ,1)) in Minkowski space and for each 
such form t.ht"fc is also a corresponding 27 (for (1,1) forms) and 27 (for (2,1) forms) 
left-handed family of the E6 gauge group (singlet with respect to the residual Es). 
A model is t.lwrcfore chiral if the numher of harmonic (1,1) forms is different from 
the number of harmonic (2,1) forms, i.e. if the Euler number docs not vanish. 

The nPutnll scalar fields M, N are usually called moduli fields8l-l 2 l in the 

sense that their vacuum expectation value is completely undetermined by the 
equations of mot. ion, and therefore < M >, < N > arc just free parameters for 

the intf'rnal nwtric of the Calabi-Yau space. For Calabi-Yau threefolcls the moduli 
have the geometrical mcnning of deformation parameters of the Kahler struct.mc 
((1,1) moduli) anrl of the complex structure ((2,1) moduli) respectivcly9

l
10 l. 

The relation of the scalar moduli fields and the underlyinp; two-dimen~ional 
conformal fidd tlwory is hest seen from their interpretations as flat directions of 

the scalar pot.entinl V(M,N,P) of the theory. Here by P we denote any other 
scalar field which may be charged or neutral under G but which comes from t.hc 

gauge degrees of freedom. 

The moduli fields have the property that 

av 
iJM ~ 0 'fM (I) 

in contrast with the P fields, for which the equation ~~ = 0 fixes their value at 
some point P0 . 

In the background field approach13l massless space-time fields such as the 
graviton and scalar fields appear as "coupling constants" in an underlying two­
dimensional a-model. 

The requirement of conformal invariance beyond the tree level, namely the 
statement that the {3 function associated to these couplings vanishes, is nothing 
but their effective space-time equation of motion 13), i.e. 

{39 ~'-" = 0 yields Rll"- ~ Rgll" = TP., (2) 

and for a generic scalar field ¢ 

/3.; ~ 0 yields ~~ ~ 0 foe ~ ~< ~ > (3) 

since the other terms depend on 8p.¢· 
From eq. (3) we see that a flat direction corresponds to a coupling constant 

< ¢ > of the underlying conformal field theory for which the theory is exactly 
conformal invariant. If we call V<P the vertex operator which corresponds to the 
moduli massless excitation then ¢ V<P is a conformal invariant perturbation for all 
4> and V<P is called an exactly marginal operator. 

The motion in the space of conformal field theory is given by the geometry of 
the 4> manifold, i.e. the "coupling constant" space. 

Let us assume this space to be some differentiable manifold: Zamolodchikov 
has shown that this space can be regarded as a Riemannian space with metric 
given by1) 

< V.;,(l)V.;,(O) > ~ Gu(~) (4) 

Using the fact that V are truly marginal operators from their operator product 
expansion 1 it may then be shown that in the effective Lagrangian the ¢ r( x) kinetic 
term is given by 

c u( ~ )iJ~~~a,~ 1 (5) 

and moreover 

V(~) = 0 6) 

when we set all other (non-moduli) fields to their v.e.v. 
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Considerable progress in the knowledge of the metric G 11 has been gained over 

the last year with a number of techniques which give quite genPral and remarkable 

results. 

It is the aim of this lecture to discuss these properties and relate them to the 

dynamics of a given superstring compactification. 

Let us consider the number of moduli fields of a given Calabi-Yau compadi­

fkat.ion. 

If we were geometers and considered only deformation of the metric then 

the number of (real) moduli would be ho,l) + 2h( 2,t)· However, in superstrings, 

space· time supersymmetry gives us additional scalar degrees of freedom from the 

non-gauge sector, namely those coming from the (internal components of the) 

antisymmetric tensor B, 11 (they are exactly ho,l)) and two more coming from 

the dilaton ¢ and the space-time t"omponents b, 11 of the antisymmctric tensor2). 

Therefore in any superstring compactified on a Calabi-Yau threefold the non-gauge 

sector gives 2(h(l,l) + h(2,t) + 1) degrees of freedom which are exactly suitable to 

be used as coordinates of a complex (K8.hler) manifold, as required by N = 1 

space-time supersymmetry14l present in heterotic string compactification. 

Just from this fact we know that the (neutral) moduli of heterotic string 

compactificat.ions are coordinates of a Kahler manifold of complex dimension 

(h(l,l) + h(2.t) + 1). The one-dimensional manifold associated to the dilaton is 

readily seen to be (at string tree level) sg\!}'). There are seveml ways to find 

this result. One is to use the space-time Peccei-Quinn symmetry associated to 

b,.,,s- s + ic .. 

By duality transformation¢> and b,., can be put in a complex fieldS. Then the 

Kii.hler potential must be of the form K(ReS). But (ReS) is the dilaton coupling 

whose power is fixed at tree level to give a kinetic 15l tenn 

I 
(ReS)' ((o,ReS)' + (o,ImS)2 ) {7) 

which can be rewritten as 

K,-5 a, sa;!! with K = -log(S + 3') (8) 

Dixon. Kaplunowsky and Louis have shown12l, using superconformal VYa.rd 

identities, that the moduli manifold has the product structure 

SU(l, 1) X M,.(l.l) X M,.(2.l) M = ... ., (9) 

where M,.
0

.
11

,M 1112•
11 

are two Kahler manifolds of complex dimensions ho.Jl and 

h(2 .t) respectiwly. 
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This result was first pointed out by Seiberg8) and then proved in refs. 9) and 

10) with different methods. 

One of these proofs uses N = 2 space-time supersymmetry8l which also gives 

additional insights on the structure of the moduli space9lll). 

Thl:' occurrence of N = 2 space-time supersymmetry comes about because 

Calabi-Yau spaces can be used to compactify type II rather than heterotic super­

strings. 

Since the moduli metric G 1 J( t/1} does not know which specific superstring 

theory one is compactifying, the term given by eq. 5) in the effective Lagrangian 

is common to heterotic and type II theories, but in the second case, because the 

number of space-time supersymmetries is doubled, it has to satisfy the additional 

constraint coming from the second space-time supersymmetry. 

Of course it is conceivable that this constraint is inherited from the Ward 

identities of the underlying (2,2) superconfonnal algebra. With no surprise this 

turns out to be precisely the case12). 

Much useful information on string dynamics comes from exploiting the sym­

metries of the effective Lagrangian, the most powerful being local supersymmetry. 

For example, the non-renonnalization theorems on the heterotic superstring ef­

fective superpotential and the way they may be violated are easily seen in the 

effective Lagrangian approach16). 

General properties of superstring compactifications on (4,0) or (4,4} super­

conformal field theories and the extensive use of N = 2 and N = 4 space-time 

supersymmetry in those cases is another example8l9). 

We now focus our attention on the Calabi-Yau vacua in four dimensions. 

For these compactifications we can see the degrees of freedom in a pure 

space-time picture assuming the compactification scale R is much larger than 

the string size o'112 • In this regime we may use the point-field limit of 10-

dimensional superstrings which is 10-dimensional N = 1 supergravity. For het­

erotic superstrings17> we have 100-supergravity coupled to a Yang-Mills E8 x E8 

(or S0(32)) multiplet18>. For type II strings we have type II A (non-chiral) and 

type II B (chiral) supergravity19>. 
The bosonic fields which give rise to scalars in four dimensions are 

G;.v,B;.v.<P,At (10) 

for heterotic superstrings, 

G;.v, Bpv. ¢>, Ap, Apvp (II) 
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for type IIA ~nperstrinp;s, and 

Gj.v, BZv. tj,C, A,-.vpa (12) 

for type II D superstrings. Here Bz.,, rpc, denote complex antisymmetric tensor 

and scalar fields in ten dimensions. 

The (1,1) and (2,1) forms in Calabi-Yau compactifications come as follows: 

we split p ~ p,l (I' ~ 1. .. 4, I ~ 1 ... 6) and the I ~ ( i, I) ( i ~ 1, 2, 3). 

Then in heterotic strings the (1,1) and (2,1) forms come respectively from 

G;1, b;; ; G;i (13) 

In type II A strings they come from 

G;;, b;1, A 11;; G;i, A;
1
k (14) 

and in type II D strings from 

G;;, bf,, A 11 viJ ; G;j, A 11 ;;k (15) 

The reason we have as many 27,27 families as (1,1) and (2,1) forms is because 

we identify the SU(3) holonomy connection with the SU(3) gauge connection2 ) in 

the decomposition of Es -+ E6 X SU(3). 

A
(i,27) A(i,27) A~i,27) 
J -+ J ' J (16) 

The full spC'dnun of the scalar fields in the three theories compactified on the 

same Calabi- Yau space is as follows: 

heterotic case: Ma,Ncr,t/>:,t/>~,5 (17) 

[a~ 1. .. h(I,IJ•" ~ 1 ... h!2, 1J,A E 27,A E 27] 

where M, correspond to g;1, b;1, Ncr to g;j and S to¢ and b1w. 

Type II A case: Ma,Ncr,Ccr,S,C (18) 

when Ca correspond to the A;jk modes and C to the Aijk mode. 

Type II B case: Ma,Ca,St,S2,Ncr (19) 

when Af,., c(l correspond to 9i)• bfj> Apvij and sl' s2 correspond to rjJC' b~,v. 

Since in type II A theories there are 4 degrees of freedom for each (2,1) form 

and in type II D theories there are 4 degrees of freedom for each (1,1) form, we 
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conclude that the (2,1) and (1,1) moduli belong toN= 2 (space-time) hypermul­

tiplets respectively in type II A and type II B theories8 ),9 ). 

In the chirality reversed theory the same moduli belong to vector multiplets; 

indeed in type II A theories there are h(2 ,1) + 1 gauge vectors coming from A 11 ;jk 

and A 11 ijk· The additional vector is the graviphoton. From N = 2 space-time 

supersymmetry arguments20) we know that the interaction of vector multiplets 

and hypermultiplets consistent with N = 2 supcrgravity is a non-linear a-model 

of the form 

MsK x Q (20) 

where M is a (special) Kiihler manifold (to be defined later) for the vector 

multiplets20 ) and Q is a quaternionic manifold for the hypermultiplets20 l21 l 22), 

If we write in brackets the (complex) and ( quaternionic) dimensions of these 

manifolds in type II A and II B theories we have9 ) 

MA MA(h(I,l)) X QA(h(2,!) + 1) (21) 

M 8 ~ M 8 (h(2,l)) X Q8 (h(l,!) + 1) (22) 

The additional hypermultiplet which raises the Q dimension from h to h + 1 

comes from the dilaton and antisynunetric tensor sectors. 

It is worth mentioning at this point that while the M Kiihler manifolds con­

tain the same moduli fields which appear in heterotic strings, the Q manifolds 

are obtained by gluing together moduli scalars with non-moduli scalars which ac­

tually, in string theory, come from the Ramond-Ramond sector of the left-right 

superconformal algebra. 

The first observation at this point is that the manifolds M A and M 8 must 

coincide with the submanifolds of heterotic strings when we freeze one of the two 

sets of the topologically distinct moduli. The fact that the full manifold is a 

product space as given by eq. (9) comes by setting to zero the R-R fields in type 

II theories. For example, setting Ccr = C = 0 in type II A we obtain that9 ) 

Q(h,_t+l)-+ M(h(2,l)) X 

and the same is true for the type II B theory. 

SU(1, 1) 

U(1) 
(23) 

We conclude that from pure space-time arguments we can indeed prove eq. 

(9). 

We now come to the next question. 

Which is the structure of the MA(B) special Kiihler manifolds? 
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The an~wl'r is giw•n by N = 2 space-time supersymmet.ry20l23 l. A special 

Kiihl<>r mnnifolcl is a Ki\hler manifold whose curvature Rat.cd satisfies t.he additional 

constraint 231 

RabcJ = GabGcJ + GadGcb 

- c2
"-' CacpCitJqGPii 

where G
11

;, is the Kiihler metric and G"" its inverse. 

(24) 

Ht>re Cahc is a holomorphic (totally symmetric) tensor which because of the 

Dianchi idPntity, satisfies the integrability condition12 l24 l25) 

'Dfde2K Cojcp = 0 (25) 

which in turns implies Cabc = e-2K'D11 'D6'Dc(e2"-' S), where Sis a scalar function. 

Eq. (24) bas also been derived from superconformal VVard identities12l be­

tween scattering amplitudes of moduli fields and charged fields in which case the 

holomorphic tensor Cdc has the meaning of the Yukawa coupling for 27 (or 27) 
families12 l26 l . 

c.,,(27)' C.p,(2'7)3 (26) 

Eq. (24) gh·es a further constraint on the Kabler potential f( which defines 

the Kahler metric 

G4 ;, = a"qK (27) 

A metric which satisfies eq. (24) can be found in a special coordinate system which 

is the one actually used in N = 2 supergravity tensor calculus20l 23 >. 
If we define by Z" the moduli coordinates and by /(Z 4

) an arbitrary holo­

morphic funct-ion of the moduli, then it is not difficult to show that the following 
ansatz 20)23) 

l. 

]{ = -t'nY 

2/ + 2!"- u.- J;)(z"- z .. ) (1. = 
8
f ) az• 

Cabc /de 
a a a 
z· z• Z' f 

solves eq. (24) for any /(Z). 

(28) 

(29) 

(30) 

We are led to the conclusion that in a special coordinate system, called the 

special gauge, the entire geometry of the Calabi-Yau moduli space is enwded in 

two holomorphic fund-ions of the moduli fields JA(M),f 8 (N). 

Tht:'re are profound implications for superstring dynamics which come from 

this specific structure of the moduli space and its relation to the Yukawa couplings. 

The first one is that (27) 3 and (27)3 couplings can only depend on their separate 
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moduli12 l26 l27), i.e. (27)3 couplings can only depend on the M parameters and 

(~)3 couplings on the N parameters. This results in an exact (string tree level) 

result27
l. A result which is true (to any finite order) in u·modcl perturbation 

theory, i.e., in a power expansion in a' I R2 
1 is the fact that Yukawa couplings for 

27 families are just constants and cannot dept>nd on the moduli parameters. 

This is related to the Peccei·Quinn symmrtry of t-he bij(x) fluctuations which 

in turn imply that the f function is strictly a cubic polynomial D) 

J(Z) = a.,,z· z• Z' (31) 

The coefficients dabc are quantized and are topological objects, given by the 

intersection matrices of (1,1) forms28) 

over the Calabi-Yau space. 

d,,, = J B, A B, A B, 
c, 

(32) 

This result is however spoiled by world-sheet instanton effects, which give rise 

to an explicit Z-dependence on the Yukawa couplings26
). We will comment later 

on this effect. 

In the case of (2,1) moduli, the ('f7)3 Yukawa couplings depend on the mod­

uli; however, there are no string corrections to these couplings (perturbative or 

non-perturbative) due to the fact that the u-model coupling expansion parameter 

a' I R2 is precisely one of the (1,1) moduli which is forbidden to mix with the (2,1) 

moduli from the previous considerations. Therefore the (27)3 coupling can be eval­

uated exactly at the a-model tree level or in the point-field theory limit12) 26>27>. 
In this limit an exact formula of the j 8 function is given by10>11 l 

' J . j 8 = - 2 {)A (<>0 + Z'a;) (33) 

c, 

where Q is a holomorphic three-form in projective coordinates for the moduli and 

ao,at(i = 1 ... h2 ,1 ) (with {3°,j3i) is a cohomology basis in H 3 dual to the homology 

cycles A", Ba. 

J~A~=~ 
~ 

J~=J~A~=~ 
» ~ 

J~=J~A~=-~ 
~ ~ 
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\VC' want. now to explore another consequence of eq. (24), namdy the relation 
between the moduli metric and the matter metric. In heterotic strings we know 
that the full scalar self-couplings in the effective N = 1 supcrgravity action are 
determined by the function 29) 

G K +In! WI' (35) 

where lV is the superpotential. 

In our case 

1\'(i\I', N", ¢', "Jh = C,,,(M)¢"¢'¢' + C.p,(N)¢"¢' ¢' (36) 

(E6 gauge indices and couplings being understood). 

From eq. (24) we know then that under K8.hler transformations of the moduli 
spaces we must have 

J(A- [{A_ !\A -J\A 

]{B- gB _ !\B -7\B 

Cabc - Cabc€'2A"' 

Co:p 1 - C0 p1 e2
A

8 
(37) 

where i\A = 1\A(.M) and A 8 = A 8 (N) are holomorphic parameters of the moduli. 
This is a consequence of the fact that the C tensors are holomorphic. The 

full Kiihler potential of the moduli + matter field space is of the form12
) 

]( = ](A + ]( 8 + 0( ¢?) + higher order terms 

The cruci"l fact is that the matter-dependent part must be K8.hlcr inert under the 
Kfihler transfornwtions of the moduli subspace. Under this requirement 

]{ - !(- AA - 7\A -!\a - 7\a (38) 

and in order for G to be invariant, both terms in ~V must scale as l¥ eA,.I+An. This 
is achieved by using the following IGihler transformations for the </> fields 

</>a - ¢,. e -""'/"
8 ;;a:- </Jo: e~ (39) 

It is now easy to construct functions of the matter fields which are E:fihler inert. 
The simples!-. ones (quadratic in the </>'s) are 

-h 
(:( /{8- K"' J/3 </>"G rtb¢ - -lJ e( K"' -Kn)/3 <Po: G o:[J<I> r11·acr</Jrt1Jcr ( 40) 

From eq. 

to be 

( 40) we easily extract t.he matter field metric (for < <Pa >=< Jcr >= 0) 

G,paJ,j, = GoJ/'-(l<.'B_J<.:A)/3 a • • -- = G -e(K"' -f\
8

)/3 
"' iJ o:f3 ( 41) 
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a result derived from conformal field theory arguments in ref. 12). 

If we go to higher order terms in the matter fields we can construct many 
IGihler-invariant functions. A definite form is probably obtained in the point-field 
theory limit, i.e. by compactifying 10D supergravity on a Calabi-Yau manifold, 
using the fact that the metric can only have a simple dependence on the charged 
fields since they come from the 10D gauge fields. However, contrary to the mod­
uli case, we expect in this situation string corrections in CT-model perturbation 
theory30). We also remark that we have further assumed that the moduli space 
has no isometrics which may change eq. (41). 

We would like to end this summary by discussing, in deeper detail, the non­
perturbative effects which spoil the point-field limit result of eq. (31) for the 27 
families Yukawa couplings. 

A case which can be discussed in great detail is an orbifold limit31 ) of a Calabi­
Yau space. At the orbifold points (in the case of the Z3 orbifold) the moduli space 
has an enhanced gauge symmetry SU(3) and for some values of the nine untwisted 
(1,1) moduli parameters an extra gauge symmetry U(1)6

• 

The smooth Calabi-Yau space which corresponds to a blown-up Z3 orbifold 
has 36 modular complex parameters2>, 27 of them coming from the blowing up 
modes. In the orbifold limit we remain with the 9 untwisted modular parameters 
and locally the parameter space of the Z3 orbifold is the symmetric space32)33 ) 

SU(3,3)/SU(3) x SU(3) x U(1). 
This is a homogeneous symmetric space with I<iihler metric compatible with 

eq,. (29) and (31). 

If we call Tii the 9 moduli fields (i,j = 1, 2, 3) the d coefficient is simply given 
by28)9) 

dabc EijkEiji: a=(i,>) 

b = (j,j) 

c=(k,k) (42) 

In the field theory limit the Yukawa couplings for the (27)3 families corresponding 
to these nine modes are just constant. This is also true in string theory. However 
if we take the 27 additional families corresponding to the blowing up modes, in 
the field theory limit they are also constant and with the following symmetries28) 

dijk = 0 if i # j -:j:. k diii constant (43) 

In string theory, due to world sheet instanton corrections, what happens is that 
the d coefficients become dependent on the untwisted moduli. The d's which were 
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zero ar<' expon<'ntially snppres~. while the d's which were constant approach a 

mn:-tnnt only in the R2 /o-1
- 00 limit34 >. 

The rf'mnrkahlc- fttct i5 that the T dependence of the Yuk.-1.wa couplings S('('llls 

to b<' controllrd by a IU'W symmetry, called space-time duality, which has to do 

wit.h the fact. that the moduli space is not really a smooth manifold but rather a 

coni fold on which :-ome points must be ident.ified35)-JT). 

In the lnnguage of string t-heory this fact is ultimately relat.ed to the fact that 

a string t.h('ory compactified on a torus of radius R is equivalent to the same theory 

compactified on a t-orus with radius o 1 J R35l-JS). 

If WI"' think of the moduli space as the space which classifies distinct conformal 

fidel t.h('ori('s, this space has to be modded out by the duality group (Z2 in the 

simplest. examplt> R - !Ji) which connect equivalent couplings. 

Space-time dualit.y symmetry seems to be a powerful tool in order to control 

some non-perturhative world sheet effects in string theory and also in order to ex­

plain different gauge symmetry groups occurring in superstring compactifications. 

Indeed, much progress has been recently made in understanding to what ex­

tent duality symmetry is a general phenomenon of generic four-dimensional super­

string modPls3t~l-4 ·~l. 

References 

1) A.Il. Zamolodchikov, Sov. Phys.- JETP Lett. 43 (1986) 731. 

2) P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, Nucl. Pbys. 

B258 ( 1985) 46. 

3) D. Gepner. Phys. Lett. Bl99 (1987), Nucl. Phys. B296 (1988) 757. 

W. Lt'rchC", D. Liist and A.N. Schellekens, Nucl. Phys. B287 (1!)87) 477 and 

Phys. Lett. Bl87 ( 1987) 45. 

4) M. Ademollo et al.. Phys. Lett. 62B (1976) 195. 

5) W. Boucher, D. Friedan and A. Kent, Phys. Lett. B172 (1986) 316; A. Sen, 

Nud. Ph~·s. B278 (1986) 289; Nud. Phys. B284 (1987) 423; L. Dixon, 

D. Friednn, E. t>.IartiuPc and S.N. Shenker, Nucl. Phys. B282 (1087) 13; 

T. Banks. L. Dixon, D. Friedan and E. Martinec, Nucl. Phys. B299 ( 1988) 

613; T. Drmks and L. Dixon, Nucl. Phys. B307 (1988) 1081. 

6) See. e.g. H.P. Nilles, Phys. Rep. CllO (1984) 1 and references therein. 

11 

7) M. Dine and N. Seibcrg, Nucl. Phys. B301 (1988) 357; L. Dixon, Princeton 

University report PUPT (1987) 1074; (Trieste Lectures), D. Liist and S. 

Theisen, International Journal Modern Phys. A, Vol. 4 (1989) 4513. 
See also M. Green, J. Schwarz and E. Witten in "Superstring Theory" vol. 

II, Cambridge University Press and references therein. 

8) N. Seiberg, Nucl. Phys. B303 (1988) 206. 

9) S. Cecotti, S. Ferrara and L. Girardello, International Journal of Modern 

Physics, Vol. 4 (1989) 24; Phys. Lett. B213 (1988) 443; S. Ferrara, in Nucl. 

Phys. {Proc. Suppl.) 11 (1989) 342 (Proceedings of the IV''- International 

Workshop in High Energy Physics, Orthodox Academy of Crete, Greece (July 

1988); in "Fields, Strings and Critical Phenomena" Les Houches 1988, Session 

XLIX pg. 441; CERN preprint-TH 5293/85-UCLA-89/TEP-13, to appear 

in the Proceedings of the International School of Subnuclear Physics, 26th 

Course, The Superworld III, Erice Italy, August 1988 (Plenum Press, A. 

Zichichi Ed.). 

10) P. Candelas, P.S. Green and T. Hubsch, UTTG-28-88 (1988); UTTG-17-89 

(1989) Texas preprints; Phys. Rev. Lett. 62 (1989) 1956. 

11) S. Ferrara and A. Strominger, CERN-TH 5291/89, UCLA/89/TEP/6, to 

appear in the Proceedings of the Texas A. ?v:I· Strings' 89 Workshop (World 

Scientific). 

12) L. Dixon, V.S. Kaplunovsky and J. Louis, Nud. Phys. B329 (1990) 27. 

13) E.S. Fradkin and A.A. Tseytlin, JETP Lett. 41. (1985) 206; Nucl. Phys. 

B261 (1985) 1; Phys. Lett. 158B (1985) 316; Phys. Lett. 160B (1985) 

69; D. Friedman, C. G. Callan, E. Martinec and J. Perry, Nucl. Phys. B262 

(1985) 593. 

14) B. Zumino, Phys. Lett. 87B (1979) 203. 

15) E. Witten, Phys. Lett. 155B (1985) 151. 

16) M. Dine, N. Seiberg, X.G. Wen and E. Witten, Nucl. Phys. B278 (1986) 

769; Nucl. Phys. B289 (1987) 319; M. Dine and N. Seiberg, Nucl. Phys. 

B301 (1988) 357. 

17) D. Gross, J. Harvey, E. Martinec and R. Rohm, Phys. Rev. Lett. 54 (1985) 

502; Nucl. Phys. B256 (1985) 253; Nucl. Phys. B267 (1985) 75. 

12 



18) M. Green and J.H. Schwarz, Phys. Lett. 149B (1984) 117. 

19) M.B. Green and J.H. Schwarz, Phys. Lett. 122B (1983) 143; .T.H. Schwarz, 

Nud. Phyfi. B226 (1983) 269; J.H. Schwarz and P.C. West, Phys. Lett. 

126B (1983) 301; P.S. Howe and P.C. West, Nucl. Phys. B238 (1984) 181; 

L. Castellani, Nud. Phys. B238 (1987) 877. 

20) B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su and A. Van Proeyen, Phys. 

Lett. 134B (1984) 37; B. de Wit and A. Van Proeyen, Nucl. Phys. B245 

(1984) 89; J.P. Derendinger, S. Ferrara, A. Masiero and A. Van Proeyen, 

Nucl. Phys. 140B (1984) 307; B. de Wit, P.G. Lauwers and A. Van Proeyen, 

Nucl. Phys. B255 (1985) 569. 

21) J. Dagger and E. Witten, Nucl. Phys. B222 (1983) 1. 

22) J. Bagger, A. Galperin, E. Ivanov and V. Ogievetsky, Nucl. Phys. B303 

(1988) 522. 

23) E. Cremmcr, C. Kounnas, A. Van Proeyen, J.P. Derendinger, S. Ferrara, 

B. de Wit and L. Girardello, Nucl. Phys. B250 (1985) 385. 

24) A. Strominger, in "Special Geometry", to appear. 

25) L. Castellani, R. D'Auria and S. Ferrara, in "Special !Gibler geometry: 

an intrinsic formulation from N=2 space--time supersymmetry" CERN-TH-

5635/90 (1990). 

26) M. Dine, P. Huet and N. Seiberg, Nucl. Phys. B322 (1989) 301. 

27) J. Distler and n. Green, Nucl. Phys. B304 (1989) 1. 

28) A. Strominger, Phys. Rev. Lett. 55 (1985) 2517; A. Strominger and E. 

':Vitt.en, Journal Math. Phys. 101 (1985) 341; A. Strominger, in Proc('cdings 

of the Santa Barbara Workshop "Unified string theory", eds. ~~[. Green and 

D. Gross ('Vorld Scientific), p. 654. 

29} E. Cremmer, B . .Tulia, J. Scherk, S. Ferrara, L. Girarde\lo and P. van 

Nieuw~nhuizen, Nucl. Phys. B147 (1979) 105; E. Cremmer, S. Ferrara, 

L. Girardello aud A. Van Proeyen, Nucl. Phys. B212 (1983) 413. 

13 

30) S. Cecotti, S. Ferrara and L. Girardello, Nucl. Phys. B308 (1988) 346; 

S. Ferrara and M. Porrati, Phys. Lett. B216 (1989) 280; M. Cvctic, 

J. Molera and B.A.Ovrut, Phys. Rev. 040 (1989) 1140; M. Duff, 

S. Ferrara, C.N. Pope and K.S. Stelle, CERN-TH-5494/89; Imperial/TP/88-

89/25; CTP-TAMU-40/89; UCLA/89/TEP/26, to appear in Nucl. Phys. 

B. 

31) L. Dixon, J. Harvey, C. Vafa and E. Witten, Nucl. Phys. B261 (1085), 678; 

Nucl. Phys. B274 (1986) 285; L.E. Ibanez, H.P. Nilles and F. Quevedo, 

Phys. Lett. B187 (1987) 25; Phys. Lett. 192B (1987) 332. 

32) S. Ferrara, C. Kounnas and M. Porrati, Phys. Lett. B181 (1986) 263. 

33) M. Cvetic, J. Louis and B. Ovrut, Phys. Lett. B206 (1988) 239. 

34) M. Cvetic, Phys. Rev. Lett. 59 (1987) 1795; Phys. Rev. Lett. 59 (1987) 

2989; Phys. Rev. D37 (1988) 2366; M. Dine and C. Lee, Phys. Lett. B203 

(1988) 371. 

35) R. Dijkgraaf, E. Verlinde and H. Verlinde, preprint THU-87/30 (Princeton 

report) ( 1987). 

36) V.P. Nair, A. Shapere, A. Strominger and F. Wilczek, Nucl. Phys. B287 

(1987) 402. 

37) A. Shapere and F. Wilczek, Nucl. Phys. B320 (1989) 669. 

38) A. Giveon, E. Rabinovici and G. Veneziano, Nucl. Phys. B322 (1989) 669. 

39) J. Lauer, J. Mas and H.P. Nilles, Phys. Lett. B226 (1989) 251; E. J. Chun, 

J. Lauer, J. Mas and H.P. Nilles, Phys. Lett. B233 (1989) 141. 

40) S. Ferrara, D. Liist, A. Shapere and S. Theisen, Phys. Lett. B225 (1989), 

363. 

41) W. Lerche, D. Liist and N.P. Warner, Phys. Lett. B231 (1989) 417. 

42) C. Vafa, Harvard report HUTP-89/ A021 (1989). 

43) S. Ferrara, D. Li.ist and S. Theisen, Phys. Lett. B233 (1989) 147; "Duality 

tranformations in blown-up orbifolds", to appear. 

44) B. Greene, A. Shapere, C. Vafa and S.T. Yau, Harvard preprint HUTP-

89/A047 and 1ASSNS-HEP-89/47. 

14 


