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In this lecture I will review some of the genieral properties of the geometry of
the moduli space’) of a wide physically interesting class of superstring compacti-
fications, namely Calabi-Yau vacua?!.

In a broacer sense, in string theory, Calabi-Yau compactifications are referred
to as {2,2) vacua®, referring to the superconformal properties'! of the string in-
ternal degrees of freedom which are used to define a four-dimensional superstring
model®),

In any string compactification to four dimensions we require space-time super-
symmetry to be unbroken, in order to define a sensible string theory. This of course
may also solve the hierarchy problem of the weak interaction scale® | provided we
tacitly assume that there is some, as yet unknown, mechanism which will generate
beth the weak scale and supersymmetry breaking at energies E < 0(1 TeV').

A general property of Calabi-Yan compactifications of superstrings down to
four dimensions is that there is a general relation®?7} between some massless
neutral multiplets and the multiplets charged under the gauge symmetry group G
which is, in general, at least at the comnpactification scale, Fg x Ej.

More specifically, a Calabi-Yau space is specified by some topological num-
bers, the Hodge numbers of the manifold, which count the number of independent
harmonic (1,1} formms and (2,1) forms which exist on the manifold. The Euler
number is simply given by 2(h(; 1) — hga,yy) and is related to the not chirality
of fermion representations in a given Calabi-Yau space. Indeed for each (1,1}
and {2,1) harmonic formns in the internal manifold there is a massless scalar field
Mo{z)a = 1,.. hg 1)), Nalz)a = 1,... heay)) in Minkowski space and for each
such form there is also a corresponding 27 {for (1,1) forms} and 27 {for (2,1) forms)
teft-handed family of the Ey gauge group (singlet with respect to the residnal Eg).
A model is thercfere chiral f the number of harmonic (1,1} forms is different from
the number of harmonic (2,1) forms, i.e. if the Evler mumber does not vanish.

The neutral scalar fields M, ¥ are usually called moduli fields®?~12} in the
sense that their vacuum expectation value is completely undetermined by the
equations of motion, and therefore < M >,< N > are just free parameters for
the internal metric of the Calabi- Yau space. For Calabi-Yau threefolds the mocduli
have the geometrical meaning of deformation parameters of the IGihler structure
{{1,1) moctuli) and of the complex structure ((2,1) moduli) respectively®1?),

The relation of the scalar moduli fields and the underlying two-dimensional
ronformal field theory is best seen from their interpretations as flat directions of
the scalar potential V(M , N, P) of the theory. Here by PP we denote any other
scalar field which may be charged or neutral nnder G but which comes fromn the

gauge degrees of freedom.

The moduli fields have the property that

av

- = 0VYM 1

ar = ° (1
in contrast with the P fields, for which the equation % = 0 fixes their value at

some point Fp.

In the background field approach!® massless space-time fields such as the
graviton and scalar ficlds appear as “coupling constants” in an underlying two-
dimensional o-model.

The requirement of conformal invariance beyond the tree level, namely the
statement that the @ function associated to these couplings vanishes, is nothing

but their effective space-time equation of motion®, j.e.
. 1
B;,, =0yields R, — 3 Rgu = T (2)

and for a generic scalar field ¢
ﬂ¢:Oyields% =0for ¢ =< ¢ > (3)

since the other terms depend on 8,4.

From eq. (3) we see that a flat direction corresponds to a coupling constant
< ¢ > of the underlying conformal field theory for which the theory is exactly
conformal invariant. If we call V; the vertex operator which corresponds to the
moduli massless excitation then ¢V} is a conformal invariant perturbation for all
¢ and V, is called an exactly marginal operator.

The motion in the space of conformal field theory is given by the geometry of
the ¢ manifold, i.e. the “coupling constant” space.

Let us assume this space to be some differentiable manifold: Zamolodchikov
has shown that this space can be regarded as a Riemannian space with metric
given byl

< V¢.,(1)V¢J(0) > = G”(é) {4)

Using the fact that V are truly marginal operators from their operator product,

expansion, it may then be shown that in the effective Lagrangian the ¢;(z) kinetic
term is given by

Cri(@)0up18,¢, (8)
and moreover
Vid)=0 8)

when we set all other {non-moduli) fields to their v.e.v.
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Considerable progress in the knowledge of the metric Gy has been gained over
the last year with a number of techniques which give quite general and remarkable
results.

1t is the aim of this lecture to discuss these properties and relate them to the
dynamics of a given superstring compactification.

Let us consider the number of moduli fields of a given Calahi-Yau compacti-
fication,

If we were geometers and considered only deformation of the metric then
the number of {real) moduli would be h(y 1y + 2h¢a,1). However, in superstrings,
space-time supersymmetry gives us additional scalar degrees of freedom from the
non-gauge sector, namely those coming from the {internal components of the)
antisymmetric tensor B, (they are exactly h(, 1)) and two more coming from
the dilaton ¢ and the space-time components b, of the antisymmetric tensor?.
Therefore in any superstring compactified on a Calabi-Yau threefold the non-gauge
sector gives 2(h¢ 1y + fya,1y + 1) degrees of freedom which are exactly suitable to
be used as coordinates of a complex (Kahler) manifold, as required by ¥ =1
space-time supersymmetry'*) present in heterotic string compactification.

Just from this fact we know that the (neutral) moduli of heterotic string
compactifications are coordinates of a Kahler manifold of complex dimension
(A1) + hz.1y + 1). The one-dimensional manifold associated to the dilaton is
readily seen to be (at string tree level) ig(rt“-’l There are several ways to find
this result. One is to use the space-time Peccei-Quinn symmeiry associated to
by, S — 5 +fe..

By duality transformation ¢ and b, can be put in a complex field S. Then the
Kahler potential must be of the form K(ReS). But (ReS) is the dilaton coupling
whose power is fixed at tree level to give a kinetic'® term

1 2 .
ReS)? ((8uReSY + (8,ImS)?) (1)
which can be rewritten as
I\’SE 6,.86,,3 with K = —log(s + g) (8)

Dixon, Kaplunowsky and Louis have shown'?, using superconformal Ward
identities, that the moduli manifold has the product structure

SU(1,1
M = _U((W)- X Mgy X Magy, (9
where M, . My, ,, are two Kahler manifolds of complex dimensions hy, ;) and
h(a.1) respectively.
3

This result was first pointed out by Seiberg® and then proved in refs. 9) and
10) with different methods.

One of these proofs uses N = 2 space-time supersymmetry®! which also gives
additional insights on the structure of the moduli space®'!).

The occurrence of N = 2 space-time supersymmetry comes about because
Calabj- Yau spaces can be used to compactify type 11 rather than heterotic super-
strings.

Since the moduli metric Gy ($) does not know which specific superstring
theory one is compactifying, the term given by eq. 5) in the effective Lagrangian
is common to heterotic and type II theories, but in the second case, because the
number of space-time supersymmetries is doubled, it has to satisfy the additional
constraint coming from the second space-time supersymmetry.

Of course it is conceivable that this constraint is inherited from the Ward
identities of the underlying (2,2) superconformal algebra. With no surprise this
turns out to be precisely the case?).

Much useful information on string dynamics comes from exploiting the sym-
metries of the effective Lagrangian, the most powerful being local supersymmetry.
For example, the non-renormalization theorems on the heterotic superstring ef-
fective superpotential and the way they may be violated are easily seen in the
effective Lagrangian approach’®).

General properties of superstring compactifications on (4,0) or (4,4) super-
conformal field theories and the extensive use of N = 2 and N = 4 space-time
supersymmetry in those cases is another example®®),

We now focus our attention on the Calabi-Yaun vacua in four dimensions.

For these compactifications we can see the degrees of freedom in a pure
space-time picture assuming the compactification scale R is much larger than
the string size o'/2. In this regime we may use the point-field limit of 10-
dimensional superstrings which is 10-dimensicnal N = 1 supergravity. For het-
erotic superstrings'™? we have 10D-supergravity coupled to a Yang-Mills Ey x Es
(or $O(32)) multiplet'®). For type II strings we have type II A (non-chiral) and
type II B (chiral) supergravity'®).

The bosonic fields which give rise to scalars in four dimensions are
Gii» Biin 6, AL (10)
for heterotic superstrings,

GiiyBio b Ap, Anip (11}
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for type [1A superstrings, and
Guiy Biin 0°, Apops {12)

for type I1 B superstrings. Here Bf,, ¢°, denote complex antisymmetric tensor
and scalar fields in ten dimensions.

The (1,1) and (2.1) forms in Calabi-Yau compactifications come as follows:
wesplit i =p, I{p=1.,.4, I=1...6)andthe I=(:,%) (i =1,2,3).

Then in heterotic strings the (1,1) and (2,1) forms come respectively from

Gis, biz: Gy (13)
In type II A strings they come from
Gig iz Api s Gij A (14)
and in type II B strings from

Gis b5 Apeis 3 Gigs Ak (18)

iy

The reason we have as many 27, 27 families as (1,1) and (2,1) forms is because
we identify the SU(3) holonomy connection with the ST(3) gauge connection® in
the decomposition of Eg — Eg x SU(3).

A(‘;'ZT) = AﬂiﬂT),Agi'?T) (16)

The full spectrum of the scalar fields in the three theories compactified on the

same Calabi-Yau space is as follows:
heterotic case: My, Na, ¢, ng, S (17}
la=1.. hane=1. . he,Ac27,A€27)
where M, correspond to gij, bij, No to gij and S to ¢ and b,
Type Il A case: M, ,N,,Cs,5,C {18}
when C, correspond to the A;j,; modes and C to the A;;; mode.
Type II B case: M,,C,,51,5,;, N, (19)

when M, C, correspond to g, bfj, Ayui; and 51, 8, correspond to ¢°, bfw.
Since in type II A theories there are 4 degrees of freedom for cach (2,1) form

and in type II B theories there are 4 degrees of freedom for each (1,1) form, we
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conclude that the (2,1) and (1,1) moduli belong to N = 2 (space-time) hypermul-
tiplets respectively in type II A and type II B theories®)#).

In the chirality reversed theory the same moduli belong to vector multiplets;
indeed in type Il A theories there are hep vy + 1 gauge vectors coming from A, 5
and A,;jx. The additional vector is the graviphoton. From N = 2 space-time
supersymmetry arguments?® we know that the interaction of vector multiplets
and hypermultiplets consistent with N = 2 supergravity is a non-linear o-model
of the form

Mg x Q {(20)

where M is a (special} Kahler manifold {to be defined later) for the vector
multiplets*® and @ is a quaternionic manifold for the hypermultiplets??)21)22),

If we write in brackets the (complex) and {quaternionic) dimensions of these
manifolds in type IT A and II B theories we have?®

MA = MAhay) x @A hay +1) (21)

ME = MB(h(z,l)) XQB(h(1.1)+1) (22)

The additional hypermultiplet which raises the @ dimension from A to k + 1
comes from the dilaton and antisymmetric tensor sectors.

It is worth mentioning at this point that while the M Kahler manifolds con-
tain the same moduli fields which appear in heterotic strings, the @ manifolds
are obtained by gluing together moduli scalars with non-moduli scalars which ac-
tually, in string theory, come from the Ramond-Ramond sector of the left-right
superconformal algebra,

The first observation at this point is that the manifolds M# and M? must
coincide with the submanifolds of heterotic strings when we freeze one of the two
sets of the topologically distinct moduli. The fact that the full manifold is a
product space as given by eq. (9) comes by setting to zero the R-R fields in type
II theories. For example, setting Cy = C = 0 in type II A we obtain that®

SU(1,1)

NN (23)

Q(ﬁ2.1+1) - M(h(z.l)) X

and the same is true for the type 11 B theory.

We conclude that from pure space-time arguments we can indeed prove eq.
(9).

We now come to the next question,

Which is the structure of the MA(F) special Kahler manifolds?
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The answer is given by N = 2 space-time supersymmetry?®?). A special
Kihler manifold is a Kahler manifold whose curvature R ;4 satisfies the additional
constraint?*)

Rubed = GaiGoi + GogG o

. _ (24)
— 2R Cuc,‘C:EJGGW

where G; is the Kahler metric and G** its inverse.
Here Cyp. is a holomorphic (totally symmetric) tensor which because of the

Bianchi identity, satisfies the integrability condition'?)24)25)

Dye?®Copep = 0 (25)

which in turns implies Cppe = e 2K D, Dy D (e** §), where S is a scalar function.

Eq. (24) has also been derived from superconformal Ward identities!? be-
tween scattering amplitudes of moduli fields and charged fields in which case the
holomorphic tensor Cas. has the meaning of the Yukawa coupling for 27 (or 27)
families! )26} )

Cubc(27)3 » Cu.ﬂ"r(ﬁ)s (26)

Eq. (24) gives a further constraint on the Kahler potential i which defines
the Kéhler metric

G,3 = LGK (27)

A metric which satisfies eq. (24) can be found in a special coordinate system which
is the one actually used in N = 2 supergravity tensor caleulus?®?3),

If we define by Z* the moduli coordinates and by f{Z?) an arbitrary holo-
morphic function of the moduli, then it is not difficult to show that the following
ansatz 20123}

K = -y (28)
r==w+nu4n—gnr—rﬂ(ﬁ=§;) (200
8 3 9

Cabe = fabe = 7% 78 e f (30}

solves eq. (24) for any f(Z).

We are led to the conclusion that in a special coordinate system, called the
special gauge, the entire geometry of the Calabi-Yau moduli space is encoded in
two holomarphic functions of the moduli fields fA(M), FE(N).

There are profound implications for superstring dynamics which come from
this specific structure of the moduli space and its relation to the Yukawa couplings.

The first one is that {27)* and (27)* couplings can only depend on their separate
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moduli'??8127) e (27) couplings can only depend on the M parameters and
(Z7)® couplings on the N parameters. This results in an exact (string tree level)
result?”), A result which is true (to any finite order)} in g-model perturbation
theory, i.e., in a power expansion in o /R?, is the fact that Yukawa couplings for
27 families are just constants and cannot depend on the moduli parameters.

This is related to the Peccei-Quinn symmetry of the bjj(z) fluctuations which
in turn imply that the f function is strictly a cubie polynomial ®

f(2) = dy. 228 2° {31)

The coeflicients d,s. are quantized and are topological objects, given by the
intersection matrices of (1,1) forms®®

dape = jB, A By A B, (32)
Cs

over the Calabi-Yau space.

This result is however spoiled by world-sheet. instanton effects, which give rise
to an explicit Z-dependence on the Yukawa couplings®®). We will comment later
on this effect.

In the case of (2,1) moduli, the (27)* Yukawa couplings depend on the mod-
uli; however, there are no string corrections to these couplings (perturbative or
non-perturbative) due to the fact that the ¢-model coupling expansion parameter
o /R? is precisely one of the (1,1) moduli which is forbidden to mix with the (2,1)
moduli from the previous considerations. Therefore the {27)% coupling can be eval-
uated exactly at the o-model tree level or in the point-field theory limit!2)26)27)
In this limit an exact formula of the f¥ function is given hy*®M1)

fB = -~ % jnA(au+Z‘c~;) (33
Cy

where (2 is a holomorphic three-form in projective coordinates for the moduli and
ag, (i = 1... hy ) (with §°, 3%) is a cohomology basis in H? dual to the homology

cycles A%, B,.
fmAw=ﬁ

Ca
A.[aa=£[ﬂ.f\ﬂb”—'5: (34)
1¢=lwAm=4:
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We want now to explore another consequence of eq. (24), namely the relation
between the moduli metric and the matter metric. In heterotic strings we know
that the full scalar self-couplings in the effective N = 1 supergravity action are

determined by the function®®

G = K+ éaiwf {38)
where W is the superpotential.
In our case
WM N, 6%, 8%) = Cape( M)$®8°6° + Copy(N)$" 4747 (36)

(Es gauge indices and couplings being understood).
From eq. {24} we know then that under Kahler transformations of the moduli

spaces we rmust have

A A

I(A — K4 -t - A v Cabe — abcegﬂ

(37)
KB L xB _aAB_xP

2
» Capy = Capae

where A4 = AA(AM) and AT = AP(NY are holomorphic parameters of the moduli.
This is a consequence of the fact that the O tensors are holomorphic. The
full Kakler potential of the moduli + matter field space is of the form'®

K = K*4+ KP +0(¢*) + higher order terms

The erucial fact is that the matter-dependent part must be Kahler inert under the

Kahler transformations of the moduli subspace. Under this requirement
K—+FK-As—Aa—Ap—Asp (38)

and in order for G to be invariant, both terms in W must scale as We®4+%8 This

is achieved by using the following KKahler transformations for the ¢ fields
A pAB o~ -~ AA_nB
$a — da € 3 $a = Pa e (39)

It is now easy to construct functions of the matter fields which are Kakler inert.

The simplest ones (quadratic in the ¢'s} are
f’-“{B—K"mﬁb“Gaiah » E(I‘M_Kﬂ)/sgaGuﬁgﬁ , Taedtd” (40)

From eq. (40) we easily extract the matter field metric (for < ¢, >=< ¢, >= 0}
to be
B g PR
Coiy = GuelT~KN G, o = O T RTINS (41)
o a
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a tesult derived from conformal field theory arguments in ref. 12).

If we go to higher order terms in the matter fields we ean construct many
Kahler-invariant functions. A definite form is probably obtained in the point-field
theory limit, i.e. by compactifying 10D supergravity on a Calabi-Yau manifeld,
using the fact that the metric can only have a simple dependerce on the charged
fields since they come from the 10D gauge fields. However, contrary to the mod-
uli case, we expect in this situation string corrections in ¢-model perturbation
theory®”. We also remark that we have further assumed that the moduli space
has no isometries which may change eq. (41).

We would like to end this summary by discussing, in deeper detail, the non-
perturbative effects which spoil the point-field limit result of eq. {31) for the 27
families Yukawa couplings.

A case which can be discussed in great detail is an orbifold limit31} of a Calabi-
Yau space. At the orbifold points (in the case of the Z; orbifold) the moduli space
has an enhanced gauge symmetry SU(3) and for some values of the nine untwisted
(1,1) moduli parameters an extra gauge symmetry [/{1)%.

The smooth Calabi-Yau space which corresponds te a blown-up Z; orbifold
has 36 modular complex parameters?, 27 of them coming from the blowing up
modes. In the orbifold limit we remain with the 9 untwisted modular parameters
and locally the parameter space of the Z; orbifold is the symmetric space®?33)
SU(3,3)/SU(3) x SU(3) x U(1).

This is a homogeneous symmetric space with Kahler metric compatible with
egs. {29) and (31).

If we call Tj; the @ moduli fields {i,7 = 1,2, 3) the d coefficient is simply given
byzs)s}

dese = £ijreszi a={i,1)
b= (J,j)
e=(kk) (42)

In the field theory limit the Yukawa couplings for the (27)* families corresponding
to these nine modes are just constant, This is alse true in string theory. However
if we take the 27 additional families corresponding to the blowing up modes, in

the field theory limit they are also constant and with the following symmetries?®
d,’jk =0if: ?é_] # k d,‘,‘,’ constant (43)

In string theory, due to world sheet instanton corrections, what happens is that
the d coefficients become dependent on the untwisted moduli. The d’s which were
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zero are exponentially suppressed, while the d's which were constaut approach a

constant only in the R? /o’ — oo limit*!),

The remarkable fact is that the T dependence of the Yukawa couplings seems
to be controlled by a new symmetry, called space-time duality, which has to do
with the fact that the moduli space is not really a smooth manifold but rather a
conifold on which some points must be identified?® 37,

In the language of string theory this fact is ultimately related to the fact that
a string theory comipactified on a torus of radius R is equivalent to the same theory
compactified on a torus with radius o fR35)38),

If we think of the moduli space as the space which classifies distinct conformal
ficld theories, this space has to be modded out by the duality group (Z; in the
simplest example I — 3;-) which connect equivalent couplings.

Space-time duality symmetry seems to be a powerful tool in order to control
some non-perturbative world sheet effects in string theory and also in order to ex-
plain different gauge symmetry groups occurring in superstring compactifications.

Indeed, much progress has been recently made in understanding to what ex-

tent duality syminetry is a general phenomenon of generic four-dimensional super-
string models® 45},
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