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In the present lecture 1 will describe some properties of the field theory limit for
ten-dimensional superstrings compactified on complex three-dimensional (Calabi-Yau)
manifolds®.

Although the origin of these properties is motivated by string theory, the study of them
leads to a new class of supergravity theories and to new quaternionic manifolds for N = 2
hypermultiplets never encountered before®¥,

The properties we are going to discuss are, in more gefieral terms, connected with local
properties of the moduli space of Calabi-Yau manifolds® or, in string language, with the
moduli space of {2,2) internal superconformal field theories™.

The connection with string theory comes from the fact that the target space metric of the
scalar field kinetic term
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in the effective Lagrangian is related to the correlator of two {truly) marginal operators®™
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in the corresponding two-dimensional field theory in which ¢ plays the role of a ‘coupling
constant’ space®, :

We will not discuss in which precise sense Eqs. (1) and (2) are related but we shall point
out here whart are the local constraints on the metric g, which arise from the fact that
Calabi-Yau spaces, or in more general terms (2,2) superconformal systems, can be equally
used for type IIA, 1IB, or heterotic superstrings® ™.

In a space-time geometrical language this means that a Calabi-Yau threefold can be used
as the ‘vacuum’ of different ten-dimensional supergravity theories, i.e, N = 1 chiral
supergravity coupled to Yang-Mills [with gauge group Es X Eg or SO{32)] or N = 2 non-chiral
and chiral supergravity. It is known that these supergravity theories are related to the
low-energy limit of heterotic™, type I1A and type 1IB superstrings respectively'”,

When the same Calabi-Yau space is used to compactify different theories one expects
there to be a relation among couplings in the effective Lagrangians. The reason for this lies in
the fact that all ten-dimensional fields of ten-dimensional supergravity compactified on

M4 x Cs are expanded in terms of the same harmonics?, In particular, the massless fields on
Oy are related to closed harmonic (1,1) and (2,1) forms on Cy, which in turn are related to the
topological properties of the Calabi-Yau space. As a consequence of this fact the effective
interactions of massless fields in four dimensions are expressed by some overtapping integrals
on the Calabi-Yau space and these integrals are the same in different theories since they are
merely a property of the internal space.

As an illustrative example it is easy to see'” that the four-dimensional axion coupling
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in type ILA supergravity, which comes from the ten-dimensional interaction term
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is related to the same intersection matrix'?

dove = SBoABLAR, ®

that determines the Yukawa couplings for 27 antifamilies in four-dimensional heterotic strings
with gauge group E¢ % Eq. )

At the string level the same correspondence arises from the fact that vertex operators for
massless particles of heterotic and type II theories are related since they contain the same (2,2)
superconformal fields and they only differ from the space-time part and the heterotic gauge
fermions'?, '

For example, the matter field vertex operators contain the first component of the same
N = 2 chiral superfield whose last cdmponcnt is related to the moduli vertex. )

This implies a relation between correlators. of matter fields (in heterotic strings) and
moduli fields which are common to different superstrings. Howeyer, since moduli fields are
related, by N = 2 space~time supersymmetry, to other bosonic fields in type I theories
(Ramond-Ramond scalars and vectors), this also implies that the same couplings will also fix
the mutuat interactions of moduli fields and Ramond-Ramond fields.

Therefore the rich structure which emerges for {2,2) superconformal systems gives
different maps.from heterotic, type IIA and type IIB theories, The map from type II to
heterotic strings was first discussed by Lerche, Liist and Schellekens® in the lattice
construction of four-dimensional superstrings and emphasized by Gepner® in his classification
of (2,2) superconformal field theories. The map from type 11A to type IIB was first discussed
by Seiberg™, and its general consequences analysed in Refs, 2 and 13,

Let us denote by Z! the set of all scalar fields in a given theory. In a string theory
compactified on a Calabi-Yau space the scalar fields are members of some supermultiplets,
more precisely in heterotic strings they are members of chiral multiplets.
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If we neglect the gauge sector the number of massless chiral multiplets is hay +
hap + 1, where hq 1 and he, are the only independent Hodge numbers of the Calabi-Yau
space”. In terms of the metric and antisymmetric tensor the (1,1} scalars are g, bij-, the (2,1)
scalars are g;, and the remaining chiral multiplet is given by the dilaton ¢ and the space-time
axion D (dual to b,).

From the gauge sector we obtain ha,iy + he,y chiral multiplets in the 77- and
27-dimensional representation of Es and h neutral gauge singlets related to H' (end T)',

Let us pow move to type IT strings. In type IIA strings the (1,1) moduli are members of
vector mutliplets, while in type [IB strings they are members of hypermultiplets®”. The
opposite situation oceurs for (2,1) moduli. This is best seen by looking at the space-time vector
fields in the two theories™.

In-type IIA they come from the ten-dimensional vector A, and ten-dimensional
three-form Ayt Ay, Ay (i = 1...10, p=1...4,1, ] = 1,2,3). In type LB they come from the

"
len-dimensio:aql four-form Ay, -5 (with self-dual field strength): Ag;g, Aijk.

The total number of vector fields is therefore hq .y + 1 and hez,1y + 1 in the two different
theories. The remaining vector is the graviphoton, the N = 2 partner of the graviton. On the
gther hand, if one counts the number of hypermultiplets, they are hg.y + 1in type HHA theory
and he.py + 1 in type IIB theery. This is so because gij pairs with Ay in type ITA while g;7 ,
by pair with b, A,y in type I1B to make a total number of degrees of freedom equal to 4hg,1
and 4h_p in the two different theories. The extra hypermultiplet corresponds to the universal
sector containing the dilaton, the space-time axion, and two extra scalars, which in the [1A and
IIB theories are given respectively by Aip, bis, ¢ '® (b’, ¢ denote here the imaginary part of
the complex dilaton and complex antisymmetric tensor present in the type IIB theory).

The restriction from N = 2 space-time supersymmetry'*~'® implies that the moduli fields
should be coordinates of special Kahler manifolds (compatible with N =2 space-time
supersymmetry) when viewed as members of vector multiplets or as coordinates of
quaternionic manifolds when viewed as members of hypermultiplets. Of course their roles
interchange by going from type 1A to type IIB theory and vice versa. We denote® by C-map
the mathematical operation which interchanges the effective Lagrangian of type [1A with type
IIB theory. In mathematical terms it is a correspondence between two target space manifolds

given by

(W\A(hu,-)) ® QA( hearte)

and
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where 9 and Q refer to Kihler and guaternionic, and in brackets is given their complex and
quaternionic dimension.

Since these spaces are factorized a more important operation is the map (called S-map in
Ref. 2), which maps a Kahler manifold of {complex) dimension n to a quaternionic manifold

of (quaternionic) dimension » + 1. We note that this map only exists if the original Kéhler
manifold is of the special type required by N = 2 space-time supersymmetry. The associated
Q manifold of a given 9 manifold is catled dual quaternionic manifold,

This map also exists in the case of global supersymmetry (not related to strings). In that
case it is a map from a restricted n-dimensional K&hler manifold to a 2h-dimensional
hyper-Kihler manifold (real dimension 4n)®, Note that the restricted Kihler spaces of N = 2
rigid supersymmetry are different from the restricted ones of N = 2 local supersymmetry. This
corresponds to the fact that the dual manifold is in one case hyper-Kihler and in the other case
quaternionic.

An important property of dual quaternionic manifolds of (quaternionic) dimension n + 1
is that they contain, as submanifolds, the Kédhler spaces [SU(1,1)/U(1)] x M, of complex
dimension n + 1, where 9, is the original Kihler manifold and SU(1,1)/U(1) is the Kdhler
space containing the dilaton and the axion (dual to the space-time antisymmetric tensor),

We now give the main (local) properties of Calabi-Yau moduli space and their
quaternionic extension in the case of type II superstrings'™, Let us denote by éacs) the (1,1)
and {2,1) moduli.

The moduli space 9 of complex dimension hy,iy + he.a) has the product structure
M = M, x Ma, where Ma and My are Kihler spaces of dimension hqa,y and he,uy,
respectively, of restricted type.

This means that, in a certain choice of coordinates for the moduli, the Kéhler potential K
is of the form

KA( e= "~ Q"% VA(B) ©)

with Y,\(u) given by
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where fam are holomorphic, i.e. #amy/d am = 0.
The functions fag determine all low-energy couplings of heterotic strings as well as type
11 strings, and their form depends on the particular Calabi-Yau space. n the field theory limit

the functions Y ey are given by**®
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where V is the volume of the threefold, J is the K&hler form as a function of the (1.1) moduli
parameters, and @ is the holomorphic (3,0) form as a function of the (2,1) meoduli. From
Eqgs. (8) and (9} is manifest the geometrical meaning of the ¢ and ¢g moduli as deformation
parameters of the Kihler class and complex structure respectively.

String-theory arguments and non-renormalization theorems®™ indicate that while Eq. (9)
is an exact result and is given by a tree-level g-model calculation, Eq. (8) is true in o-model
perturbation theory but is not true in a strongly coupled s-model where non-perturbative
corrections, such as world-sheet instantons, become important. Another way of saying this is
that the metric of the moduli space of (2,2) superconformal field theories does not coincide
with the geometrical metric of the moduli fields of the Calabi-Yau ctassical threefold [given by
Eqs. (6) and (8)].

Recently?" a Kaluza-Klein argument has been given for the instability of the (1,1) meduli
metric against integration over massive Kaluza-Klein modes. In view of the fact that massive
Kaluza-Klein and winding stringy modes are retated by duality’® in the moduli fields it is
likely that these different arguments are in fact equivaient.

It is our aim to characterize now the properties of the dual quaternionic manifolds
Qth + 1), where h = he,y in type I1A and h = hg,1; in type IIB strings.

An important fact which enables us to compute the Q manifolds is three-dimensional
duality”™. More precisely, if we consider the bosonic sector of N = 2 n-Abelian vector
multiplets coupled to N = 2 four-dimensional supergravity and dimensionally reduce the
theory to b = 3 dimensions we get an N = 4, D = 3 supergravity theory coupled to a
quaternionic g-model, Note that in D = 3 the holonomy group contains an SO(4) = SU(2) x
SU(2) group and therefore two kinds of quaternionic manifolds. Then two different sets of
quaternionic manifolds are nothing but the dimensionally reduced version of vector and
hypermultiplet self-couplings.

Note that in D = 3 the Abelian gauge boson coming from the circle compactification gy,
is just equivalent to a scalar degree of freedom because of three-dimensional duality. This
degree of freedom, as we will see shortly, is essential for matching the dimension of the duat
quaternionic manifold.

The metric of the dual quaternionic manifold® is derived here by performing a
dimensional reduction from D) = 4 to D = 3 dimensions of N = 2 supergravity coupled to
n-vector Abelian muitiplets with self coupling specified by a holomorphic function f{Z*)
a=1,...,n.

The N = 2 Lagrangian for vector multiplets is (bosonic part)!5™'®
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where F is a homogeneous function of degree 2 in n + 1 variables X' (Z' = X/X® and
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Dimensional reduction from D = 4 (N=2) to B = 3 (N = 4) is obtained using a triangular
gauge for the vierbein
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and for four-vectors we have
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The Lagrangian {10) reduced to three dimensions, after a Weyl rescaling
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We now use three-dimensional duality to convert the n + 1 vector fields Fi, H, into scalars.
For this purpose we add the Lagrange multipliers S;, ¢
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Integration over Fi, H, yields
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Finally, let us define the fields
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Then the Lagrangian describing the scalar manifold of (real} dimension 4 (n + 1) is
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Positivity of the kinetic energy requires K.; and — Rj; to be positive definite matrices {as

impiied by Eq. (103!,

Equation (23) defines a manifold for 2(n + 1) complex fields S, 2*, C which according to
the general analysis of Ref. 2 is a dual quaternionic manifold of the original n-dimensional
restricted Kihler manifold with coordinates Z*. The additional n + 1 complex fields which
enlarge the moduli space to a quaternionic manifold are the § multiplet, containing the dilaton
and axion, and (n + 1) {complex) Ramond fields C;, which come from Ramond-Ramond
scalars.

Let us anticipate some properties shared by all dual quaternionic manifolds™.

a) At each point of the moduli space Z* = z3° (9, Z*® = () the Ramond-Ramond scalars, the
dilaton and the axion, parametrize an SU(l,n + 2)/U(1) x SU(n + 2) manifold. Forn = 0
this manifold reduces to the universal sector, as obtained in Ref. 2 by general arguments
and explicitly constructed eisewhere?™,

b) If we set the n + | Ramond-Ramond scalars C; = 0 (3,Ci = 0) then the (Z%,5) fields
parametrize the manifold [SU(1,1)/U(1)] X Ma, where M, is the original (restricted) Kihler
manifold.



¢} The quaternionic manifold Q(n + 1) has at least 2n + 4 isometries acting on all coordinates
but the moduli fields 2*.
d) The dual quaternionic manifolds are Einstein spaces with negative curvature: R= -8
m+1D{n+3).
€) Those moduli which correspond to vanishing Yukawa couplings (in heterotic strings),
together with their (Ramond) partners, the dilaton and the axion, span a Kihler
gquaternionic manifold SUR,n’ + D/SU) x SUm’ +1) x U(1). The associated
restricted Kahler manifold is in this case SU(I,n")/U(1) x SU(n’).
Properties (a), (b), (c), and (e) can be discussed in a rather straightforward way. It is
sufficient to observe that Eq. (23) can be rewritten as
-— fad o
e',é = -kq';?r%“ 9"4 .'— RS? D’_S D s
s — N - o —
- —_ D - ‘,% - . - - i ) (24)
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The above equations show that for Re C; = 0 (8,Ci=0), the manifold reduces to
SUCLD/U(L) X M,, with coordinates (S, Z%), while for fixed Z* it contains the submanifold
SU(,n + 2)/U(1) x SU(n + 2) with coordinates (S, C'). The standard metric for this manifold
is best seen by making the following field redefinition (holomorphic for fixed Z%)
§—3-%CR"IC.

We also remark that if the matrix 91(Z, Z) is holomorphic, i.e. does not depend on Z,
then the manifold Q is Kahler with K#hler potentiat K + K. In view of Eq. (11) this is the case
if the f(Z) function is a quadratic polynomial and the Kihler quaternionic manifold is
therefore given by SU(2,n + 1)/8U(2) x SU(n + 1) x U(1).

Note that a quadratic f implies vanishing Yukawa couplings and this proves statement (¢).

To discuss the point (¢) we remark that there are 2n + 3 isometries related to the axion
and Ramond scalars C'

S-S tix-2Cy-r Wy
C— C+ip ¢ p\?\(.

where a, 8i, 1 are 2n + 3 real parameters, The last isometry is the scale transformation

S = AS ) C- Q""d . (29)

Therefore the Q manifold has at least 2n + 4 isometries. This is consistent with the statement
(a) in which case these isometries are the non-linearly realized part of the non-compact group
SU(I,n+2).

It remains to prove that the manifold defined by Eqgs. (23) and {24) is a quaternionic
manifold of (real) dimension 4(n + 1).

Let us recalt that for quaternionic manifolds of (real) dimension 4d there exist three
locally defined tensors (J')f where u = 1,3; g,» = 1...4d, which satisfy the quaternionic
algebra

au’k jv

(28)
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(30
Moreover, the three two-orms _ o _
- w -
32%-3,:,(\;(}‘(1:(? : 6—}“’:- ﬁre (_d“)!:, e
are covariantly constant with respect to an Sp(1) connection
'DT=d:)-+[LD,J-]'—’O)' T=3"c" (2
The Sp(l) cufvat_ure is proportional to the ¥ two-forms
Adw+ww = A : 63

for some \. The holonomy group of a quaternionic manifold is contained in Sp(1) % Sp(d).
In addition, quaternionic manifolds are Einstein spaces with

RJ“’ = A (_d-'tﬂ..).ir., ) | | 34
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However, consistent coupling to supergravity requires'¥ A = ~1. This property will, of
course, be satisfied for all dual quaternionic spaces irrespective of the choice of the
holomorphic function [(Z).

Let us consider the original Kahler manifold 9, with Kihler (closed) two-form given by

J-= ICACA ((.A= Cﬁdéq) )

The Kihler metric is

A A ®
ka;‘: £, (eb) ' (36)

It is convenient to define an n % {n + 1) matrix P as follows™:

A A :
Bel ) Ba s -el 2

& & b

P satisfies

P- 2 =0 (_?:azl)

S (Nz)(zhu
P+P_'"2'N%[N ]

(38)

S S
BN 0= -2

The vierbein one-forms for the quaternionic manifeld are
Pd2
~
(k~-k)2
€ 2

1!

N'[dG-dW&(c+0)]

(39
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The Wedge product of forms dx A dy will be denoted by dx dy. The @ symbol denotes the
sum of the product of components of 1wo one-forms. We use capital letters for flat indices,
small letters for curved indices, initial letters. of the alphabet a, A run from ] up to n while
middle letters i, I run from lupton + 1.

The Lagrangian for the quaternionic manifold takes the form

el e ®@EAEGE +UQRUAT®T

S .

w2 Izi..nty
(e ® € is the Lagrangian for the original 9, manifold} in terms of the 2{n + 1) component
vierbein:

«L 4T - 4T (& ~T (U‘)
e_:(_g ) ¢ ), < =(,€.A);e FAEBAS @

To find the connections we compute the exterior derivatives of the vierbein one-forms, For
instance,

de = ~we @)
when « is the connection of the original Kahler manifold
w = - ENd“'E‘ENd'Z +%-'-\L%£AEM-'.E+
22N Z @3)
- ENT4RY L PNIYNTRY]

and

A i «. 3 ' .
NlJ‘P‘Y.J /ZFJ 9

12



The curvature twe-form for M,

deo + weo @s)

agrees with known results.
The connections for the @ manifold are given by

t ‘;}

o[ 1 «F I od
dt+p"rep+q’}e +t&.£ ¢ =0

where p is an Sp(1) connection and g,t are entries of an Sp(n + 1) connection.
Explicitly we have

!’(u u)~— M% -
2Nz
P _ _L(u)s L TN
“ SN TN e
- &N%
17 N ]
- O I
(48)
(5] [~
. - —
£: "'S'A&cE
B N2

The Sp(l) x Sp(n + 1) connection is better seen by defining a 4(n + 1) component
vierbein

v

w X
«C <
Q«P(e(sr)a‘

(49)

The flat metric is ' éaa+ ore- with

- Lt o) g’ ( ) (50)

Then VT is covariantly constant
@+ )V =0 o0

with connection

0= b W)yt @)~ (o iﬂ

(52)
Yoot " +
PP, 959, t -t K L'=--1L
Equation (52) proves that Q is an Sp(1) x Sp(n + 1) connection.
The Sp(1) curvature is
. —4 +
. e wl € g
~13=dp+ :.l..[-__ ]6'[ _:)0 53)
3= dpeve =g [2-)0"( 2

o7

] PR
Qt:l-)%:..v \II\;F' (54)

I" defines the three covariantly constant tensors satisfying the quaternionic algebra as given by
Eq. (30).

It is of interest to give the Sp(n + i} curvature as well. Thisis a 2(n + 1) X 2(n + 1) matrix
valued two-form

n~ h A
?\: (“'t” -'Lt (55}

tn which r, £’ are (n X 1) % {n + 1) matrix valued two-forms.



Their expression is
ROz -% (ul40d) -4 (eC+EE)

W0l @lterE!
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_ n = s (56)
JLACE :(rﬁba (eceb+ tCE D)
16 (ZN2)C
tA __l__ -‘g < _c
_ = T ue
v § 2N ABC( tUE )
-— A —— —
Jf _l-\: DEC i 'J_. - ‘QC ED
\o(2N2)" "ABe ewe® qg\,éqx“-b

N2 o

"cl,(ffqbe 'f{cd * Face {u&,‘* "ﬂde 'ffhc )(N-T;

1t can be checked that the quaternionic manifold with curvature given by Egs. (46) and (48) is
an Finstein space with scalar curvature given by

R = ~§(we)(n¢3)

in agreement with Ref. 15.

It is of interest to remark that for general holomorphic functions f the Sp{n + 1) curvature
depends both on the third and fourth derivatives of {, unlike the Kdhler curvature'®,

Dual quaternionic manifolds which correspond to non-vanishing Yukawa couplings in
heterotic strings (fape # 0} have a complicated structure unjess the Yukawa couplings are
independent of the moduii. In the latter case, for trilinear holomorphic functions f, one can
recover all symmetric and homogeneous quaternionic manifolds discussed in Refs. 24-26.

For vanishing Yukawa couplings the quaternionic manifold becomes a symmetric Kéhler
manifold SU(2, n + 1)/SU(2) x SU(n + 1) x U(1}.

In this paper we have obtained the dual quaternionic manifolds by using
three-dimensional duality in the pure context of four-dimensional supergravity.

An alternative way, which should give the same answer, would be to use the Kaiuza-Klein
campactification of type 1f ten-dimensional supergravity on a Calabi-Yau space or to use an
S-matrix approach, by computing string amplitudes in type 11 strings, along lines similar to
those recently discussed in Ref. 13.

It would be very interesting to check whether these different approaches give rise to the
SaMme answer.

It is worth mentioning that, besides the motivation of describing the low-energy limit of
superstrings compactified on (2,2) superconformal systems, the construction of the chiral
quaternionic manifolds provides examples of continuous families of quaternionic manifolds
which, to our knowledge, were unknown before, Here we have derived the explicit expression
for their connection and curvature. Recently the C-map and the construction of dual
hyper-Kihler and quaternionic manifolds has also been studied’” using harmonic
superspace“) which is the best suitable superspace description of hypermultiplet self
couplings.

This work was supported in part by the United States Department of Energy under
Contract # DE-AT03-88ER40384, Task E.
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