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INTRODUCTION: THE STATUS OF cc El TRANSITIONS AND CORRECTIONS 

The charmonium system and especially its spectrum can be understood reaso

nably well in terms of a non-relativistic potential model with the SchrOdinger 
. l) 2) 

equatlon ' . One test for the degree of non-relativity (which, however, will 

turn out to be misleading except for the spectrum) is usually a calculation of the 

first order relativistic correction to the kinetic energy of a 

J/~ 2 ), which turns out to be well below 10% [corresponding to 

c quark in the 

(v/c) 2 < 0.4]. 

Nevertheless we observe big discrepancies between theory and experiment for 

decays, especially lepton pair decays and radiative transitions. Adopting the 

naive model, we can fit the one or the other, but not both2 ). The sensitive pa-

rameter here is the quark mass 

pair decay to lowest order 

m . 
c 

With low m
0 

• l GeV we can fit the lepton 

and with high m
0 

z 3.5 GeV we can fit the electric dipole (El) radiation 

r ( "l'' ___. t ? 11) = 
E1 c 

where j is the spin of the P /x and 
c 

W' are SchrOdinger model wave functions. 

the quark charge, 

(l) 

(2) 

A good value for the constituent c quarks mass lies between one and two GeV, 

implying that there are substantial corrections to both formulae (l) and (2). 

The corrections to (l) are widely discussed in the literature and we will not 

take this up here. Instead we will concentrate on the corrections to (2). What 

is the status ? Experimentally, all three transitions (2) are measured to be 

116±5) keV 3 ), while a model calculation with m
0 

= 1.6 GeV gives (36,50,58) keV 

for j = (2,1,0). Can we tune the model so that it matches experiment? The 

answer is "no", because the best quantity to calculate, 

' 
131 

r _, 
is only sensitive to me 

1

_it is ~me , therefore a large me makes the rates 

(2) small] and very insensitive to any other parameter of the model. For example, 

varying the power a of a power potential V(r) ~ ra between a = 0 and 
41 

a = oo changes (3) by less than 10% . 
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Unable to tune (3), we have to ask for corrections to (2) beyond the strictly 
non-relativistic model. A list of (relativistic) corrections contains 

i) finite size effects (= corrections to the long photon wave length appro
ximation), 

ii) recoil corrections, 

iii) higher multipoles beyond El, 

iv) extra terms in the transition Hamiltonian, 
v} admixtures of different radial and orbital eigenstates, and of a DD 

(or D:i5*, etc. ) continuum 

vi) corrections to the size of the wave functions. 

Finite size effects, which have been discussed by Novikov et a1. 5 l, and recoil 
++ corrections both show up as an extra factor exp(-ik•r/2) i 1 in the transition 

matrix element. For processes (2), (k ri2) 2 lies between 0.04 and 0.25, but 
a simple calculationS) shows that there is an extra suppression factor of 10 
coming from the three dimensional nature of the problem. Thus corrections i) 
and ii) will be negligible. Higher multipoles iii) may be controlled by an 
expansion of the same exp(-ik•;/2), again only the even powers are significant 
(this corresponds to an expansion of either the electric or the magnetic field 
of the classical photon). For j = 0, multipoles higher than El are excluded, 
for the other states they should be a few per cent at most. It is amusing to 
note that this order of magnitude estimate leads us to expect at most 10% M2 
in x

2
(3.55) + y J/~. Extra terms in the transition Hamiltonian which appear 

as higher terms in the 

by Novikov et a1. 5 ). 

non-relativistic reduction iv) were first discussed 

Meshkov 

More recently, this item has been taken up again by Karl, 
and Rosner6 ), who essentially show that no big effects appear. An ad-

mixture of different radial eigenstates in either ~' or P /x can be mimicked c 
by tuning the potential. We have seen that this has no big effects. An admixture 
of different orbital eigenstates generally occurs in a relativistic treatment. 
It will only be significantly large if the states which mix lie nearby in 
energy. Therefore a 1 3D admixture to the 2 3 3 wave in W' is much more I I 
likely than any ~ ~ 3 admixture in the ~ = 1 P IX states. But even in this c 
case, the 1 3D

1 
- 2 3 3

1 
mixture induced by the bound state dynamics is negligibly 

small2 ) ,S). The ~· - ~" mixing occurs predominantly via the coupling of both 
states to Dii: the ~" decays Zweig allowed to DiS and the ~· are at least 
very close to threshold with a large virtual coupling to DB. Radiative decays 
of the W' are mainly affected twofold: the cc content becomes renormalized 
and a strong (positive) interference between the transitions 2S ~ lP and 
lD ~ lP occurs. In the model of Eichten et a1. 7 ) the net effect, however, is 
only a 14- 24% reduction of the rates (2). It is amusing to note that a change 
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of the 

in the 

sign of the D wave admixture in ~ would make the S-D interference 

+ 
y X(O ) decay negative and would thus help to make the rates more similar. 

This is because the ratio of the amplitudes, 

4 ( {3..v1 -> 'f 15 Pi) 
f1 (..2.lS., -'> i 1 3 ~·) 

(4) 

is not uniform for the three P waves. To summarize this point (correction v), 

mixing effects are very likely to play an important role among the corrections to 

naive non-relativistic dipole rates. We will now turn to another very important 

correction, namely relativistic effects on the size of cc wave functions vi). 

As a first attempt we will concentrate on spin independent effects. Since these 

will turn out to be quite large we also expect sizeable spin dependent correc

tions. To some extend these have been discussed by JacksonS). The spin indepen

dent corrections we study are a consequence of the modification of the non

relativistic equation of motion. A relativistic equation of motion exhibits 

a different relation between energy level differences and the size of the wave 

functions as compared to the non-relativistic case: for fixed level differences 

the relativistic wave functions will occupy less space and therefore dipole 

moments will be smaller. This can be seen in two ways. First, we discuss the 

dipole sum rules in the context of a model in first order perturbation theory 

to the non-relativistic case. There we will find a 30% reduction of the upper 

bounds on process (2) as given by the dipole sum rules. We then turn to a 

relativistic model using the Klein-Gordon (KG) equation. For charmonium, the 

transition rates of this KG model are reduced by the same 30% + 40% as compared 

to the non-relativistic model. 

El SUM RULES IN FIRST ORDER PERTURBATION THEORY 

The cc Hamiltonian is 

H = H r.' _,_ 1-{ < 11 
(5) 

where in the centre of mass system 

H (o> ~ V(r). (6) 



Here 
HI 1) 

all 

the 
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~ is the reduced mass and V(r) the static part of the potential, while 
contains all non-static corrections. To first order perturbation theory 

(1) 9) 10) (!) terms in H are known ' • Even numerical calculations of H for 
. ll) 12) cc system exlst ' . To this first order all spin dependent terms leave 

the centres of gravity of multiplets invariant, so that it is consistent to con
sider these centres of gravity and the spin independent corrections alone. The 
energy difference k in (3) will change from zeroth to first order, while the 
matrix element of the dipole operator in (3) will not (wave functions are un
affected in first order). With the numerics of Ref. ll) 

"" o. 1- 17) 

where me = 1.8 GeV [a smaller quark mass than 1.8 GeV should make the ratio 
(7) even smaller]. Expression (3) can now be rewritten as 

18) 

The important observation is that the dipole sum rules only bound k(o) I<~' lr1Pc/x>l 2 

but not the whole of (8). To see this, remember that the sum rules are derived 
from the uncertainty relation ~,PJ~ 3i (~=l) by using the lowest order equa-
tion of motion 

19) 

to replace 
-> 
p. It follows that 

(10) 

and with the insertion of a complete set of final states one arrives at 

Ill) 

where ki~) = <fiH(o) If>- <iiH(o) li>. The consequence of this is a modifica
tion of all El sum rules by factors 17). With the numerics of Ref. ll) we have 
worked out the following Table of new dipole sum rule bounds. 
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transition TRK SR WK SR 

2 33 + yl 3 P - <25 
1 2 

2 3S 
1 

+ yl 3 P1 - <35 

-

2 33 + 
1 

yl 3P
0 - <40 

l 3P + yl 3S1 2 
<410 >135 + 200 ± 80 

l 3P 1 
+ yl 3S

1 
<310 >105 + 105 ± 40 

l 3 P +ly 3s 1 <150 >50 + 40 ± 15 
0 

Upper and lower limits on cC El transitions (in keV) 
using the Thomas-Reiche-Kuhn and Wigner-Kirkwood sum 
rules to first order perturbation theory with roc = 

3
) 

= 1.8 GeV. We further use f(~'+yPciX) = (16±5) kev 
Where the bound is expressed as two numbers, the second 
number and the error arise from this experimental mea
surement. 

We note much less discrepancy between the measured rates (2) and the bounds in 

the Table than in a lowest order treatroent2 ). Especially the upper and lower 

bounds on Pc/X + y J/~ no longer leave a big gap. 

THE KLEIN-GORDON MODEL 

The author has studied a charmonium potential model using the Klein-Gordon 

(KG) equation13 ). A considerable reduction of the quantity (3) as compared to 

the non-relativistic model was found. These findings have been checked by a 

detailed study of the cc system using the Dirac equation. In the introduction 

we noted that the quantity (3) varies by less than 10% for all confining power 

potentials. In fact, it never deviates by more than 10% from the sum rule value 

3/2~ (11). Consequently, we study the quantities 

<51 = J.A k \<1PI.-ri.2.S)I2. 
I 1P1 2.S (12) 

~ r 1<1 s,tP I< 1 s I <t" (1 'P) l.z. 
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The quantities of (12) as a function of mQ in 
a non-relativistic SchrOdinger potential model 
(~) and in a KG potential model 1()). Both 
models are of the Coulomb + linear type (standard 
model) and fit cc and bb respectively. The 
solid line shows 6

2 
(the broken line 6 ) in 

a KG model with a pure (scalar) linear potential 
Vir) = 0.8 GeV/fm. 

which are one in the non-relativistic harmonic oscillator and ~0.9 in any 
non-relativistic monominal potential model which confines. The figure shows 
0

1 
and 6

2 
in various models. One readily sees that the non-relativistic limit 

is not reached before mQ = 6 f 10 GeV. By comparison to the pure linear model 
it becomes evident that the Coulombic part of the potential plays a role for 6 
only in bb, -not in cc. For cC the dipole sum rules are quite close to 
model rates, but for b5 we need the model. We have done such a model calcu
lation (using the KG equation) and find it most convenient to express the result 
as a modification of the formulae (6.11) through (6.14) of the second of Ref. 2). 
The rates are given by those formulae with 

0. 62. )( 4 3$ --->.Zf' 
0. 84 ><2 ..:l..'P ---+ 11> - 2. 1 0. 66 •5' ~,., ~~s k 1~ 1 I = X fa. (13) 

I'VIb 0 . .?9 K 5" 1]) ~1'P 

0. 53 x.z, LS ->1P 
0. 13 K..3 1 p -> 15 
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where k is the average energy difference between the centres of gravity of the 

spin multiplets. Note that the dipole sum rules would give one for each decimal 

fraction shown in (13) except for 3S ~ 2P, where no bound exists. 

CONCLUSION 

We have shown that a good part of the discrepancy between the measured rates 

W' + y P IX and their non-relativistic theory can be identified as relativistic 
c 

size effects on the wave functions. We only discussed spin independent effects but 

it is conceivable that spin dependent effects may be of similar magnitude at 

least in charmonium. Such spin dependent effects would also affect ratios of 

these rates. Another source of this discrepancy is the neglect [with exception 

of Ref. ll] of DD admixtures in S and P wave functions and of S - D wave 

mixing. The existing calculation shows relatively few net effects, but this 

topic certainly remains open. In principle the ratios of our rates are also 

strongly affected by S - D mixing. 

In b5 transitions relativistic effects are already much smaller, but the 

dipole sum rules are much less saturated than in cc because of the increasing 

importance of the Coulomb part of the potential. A calculation had to be done. 

ACKNOWLEDGEMENTS 

It is a pleasure to thank the organizers and especially L. Montanet for the 

opportunity to participate in such an enjoyable conference and to meet many 

friends. 



- 8 -

REFERENCES 

l) E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.-M. Yan, Phys. Rev. 
Dl7 (1978) 3090; ibid. D2l (1980) 203. 

2) M. Krammer and H. Krasemann, in "New Phenomena in Lepton-Hadron Physics", 
eds D.E.C. Fries and J, Hess, Plenum Publ. Corp., New York and London 
(1980), p. 161 ff., Acta Phys. Austr. Suppl. XXI (1979) 259. 

3) Crystal Ball Collaboration, see e.g., 
C.M. Kiesling in the Proceedings of the 1979 EPS High Energy Physics Conference, 

Geneva (1979), p. 293 ff. 

4) H. Krasemann, Thesis, Hamburg 1978, DESY T 78/0l (1978); compare also 
A. Martin, in "Quarks and Leptons'', eds M. L8vy, J. -L. Basdevant, D. Speiser, 

J. Weyers, R. Gastmans and M. Jacob, Plenum Publ. Corp., New York and 
London (1980), p. 549 ff. 

5) V.A. Novikov, L.B. Okun, M.A. Shifman, A.I. Vainstein, M.B. Voloshin and 
V.I. Zakharov, Phys. Rep. 41C (1978) l. 

6) G. Karl, S. Meshkov and J.L. Rosner, Phys. Rev. Lett. 45 (1980) 215. 

7) E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane and T.-M. an, Phys. Rev. 
Lett. 36 (1976) 500, and Ref. l). 

8) J.D. Jackson, Phys. Lett. 87B (1979) 106. 

9) D. Gromes, Nucl. Phys. Bl3l (1977) 80. 

10) W. Celmaster and F.S. Henyey, Phys. Rev. Dl7 (1978) 3268. 

ll) D. Beavis, S.Y. Chu, B.R. Desai and P. Kaus, Phys. Rev. D20 (1979) 743. 

12) T. Barnes, University of Southampton preprint 79/80-4 (1980), to appear in 
Z. Physik. Taking the numbers of this paper leads to smaller corrections 
than the numbers of Ref. 11). In our relativistic model Ref. 13, however, 
quantity (8) agrees with Ref. 11). 

13) H. Krasemann, CERN preprint TH.30ll (1981), to appear in Phys. Lett. 

Ia. 


