
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCll 

CERN ISR-TH/80-36 

28th July 1980 

WAKEFIELD OF A RELATIVISTIC CURRENT IN A CAVITY 

by 

T. Weiland, B. Zotter 

Geneva , Switzer land 



WAKEFIELDS OF A RELATIVISTIC CURRENT IN A CAVITY 

T. Weiland, B. Zotter 

1. INTRODUCTION 

2. PILL-BOX CAVITY 

2.1 MODE ANALYSIS 

2.2 TIME-DOMAIN ANALYSIS 

2.3 COMPARISON OF RESULTS OBTAINED BY VARIOUS METHODS 

3. GENERAL CAVITIES 

4. CONCLUSIONS 

APPENDIX : WAKEFIELD IN A PILL-BOX CAVITY 



• 

, 



- l -

l. INTRODUCTION 

The wakefield of a bunch of charged particles traversing a resonant 

cavity is of considerable interest for·particle accelerators and storage 

rings, as it permits the calculation of the coupling impedance - and hence 

the stability - as well as the evaluation of the energy loss of the bunched 

beam. The only geometry which permits exact analytic calculations of the 

wakefield is the closed cylindrical cavity, commonly called "pill-box". 

Several different approaches to calculate the wakefield of a bunch of 

particles traversing a pill-box cavity have been published in the literaturel-G) 

but the equivalence of the solutions was not.obvious. 

Here we compare the solutions obtain~d by the mode-analysis and in the 

time-domain amongst each other and also with a· recently published numerical 

method
7 ) solving the problem for general rotational symmetric cavities. 

In general, we find complete agreement for the wakefield of bunches 

with continuous line-charge densities, and there is no "missing scalar 

potential" in the mode-analysis as has been assumed before. However, for 

discontinuous charge-densities such as delta-function pulses {which can be 

used as Green's function for arbitrary charge-densities) agreement is found 

only if one disregards divergent terms which are of no consequence for 

realistic .. (continuous) charge densities. 

Finally, the mode-analysis can be generalized to arbitrary cavities, 

for which the wakefield is obtained in terms of the loss parameters of each 

of the resonant modes. The resonant frequencies and loss-parameters can be 

obtained numerically for.certain rotationally symmetric cavities with 

8) . C)) 

existing computer programs such as KN7C or SUPERFISff . However, the series 

for the wakefield converge rather slowly for positions inside the bunch -

which is the case of interest for the c·oupling impedance - and there the 

obtainable accuracy is quite limited. However for positions well behind the 

bunch, the series ·converge faster- and thus the energy loss can be evaluated 

more precisely. 
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2. PILL-BOX CAVITY 

In thiS chapter the wakefield in a pill-box cavity will be evaluated 
using the mode concept and the time-domain scheme. Finally these analytical 
results will be compared ·with numerical ones. 

2.1 Mode analysis 

The mode analysis uses the resonant modes of a cavity to compute the 
wakefield. It is assumed first that the contributions of the free charges, 
which cannot be taken into account by those modes, vanish. 
the distance betweenia point charge Q 
mode concept gives the; wakefield as an 

- Q cos 

and a test particle 

infinite sum1 •2 ) 

The k are the loss parameters defined by ~ 

* v . v 
:L .. --..:J!. 

4 •U 
~ 

With z > 0 as 
0 

behind it, the 

(1) 

( 2) 

U~ is the stored energy in the mode ~ and y~ is the voltage seen by the point 
charge. For a pill-b0x cavity these loss parameters can be given analytically. 

The normalized field components are 

J:;n,p jn 
Jo (jn fJ = . . z R 

En,p - 1Tp J. (jn fJ -r g l 

Hn,p i UJ E Jl (jn ~) . -¢ np 0 

where g is the "gap"-length of the cavity of 
Wno2 fj j2 of the Bessel-function J (x) and --~- = I~R' 

o c2 l ! 

l'' p z) (i t) cos exp w g np 

sin (1T p ZJ . exp (i w t) (3) g np 

cos (1T p ZJ . exp (i w t) g np 

the radius 

rnp 1 2 
+ --1 . 

l g) 

R, jn is the n-th zero 

• 

·. 

·. 
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Hence the voltage seen by a particle becomes 

g 

v = j ~z (r = 0, z,t = ~) • dz 
-np c 

i•w •R 
[l - (i 

w •g) J np 0 np 
= (-1)- exp 

jn•c c 

and further 

* c ·Ry [ (-l)p • cos(wnp·~)] v v = 2 • ~p • l -
-np -np Jn•c 

The stored energy is given by 

u np 
= 

).10 

2 

rr•s 
0 

4 

*n,p 
~ • dz • r • d¢ • dr 

we finally get the loss parameters : 

1 
= 

l - (-l)p cos (wnp ·~ 

j 2 • J2 ( j ) 
n 1 n 

The expression for the point charge wakefield becomes 

L:L: 
n=l p=-oo 

1 - (-l)Pcos{w '.51.) 
np c 

• cos(w • zo) . np -
c 

(4) 

(5) 

(6) 

(7) 

(8) 

(By counting p from. -oo to +«> rather than from 0 to oo we avoid a special factor t•.·. 

for p = 0). 

2.2 Time-domain analysis 

The electric and magnetic fields induced by a bunch of charged particles 

traversing a cavity can be derived from the scalar and vector potentials. These 

potentials can be expressed as infinite series of the products of the eigenmodes 

of the cavity and of time-dependent factors : 
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+ 
1:~ + 

~ (r, t) = (r) r (t) w ~ ~ 

+ + 
1:~ + (g) 

A ( r, t) (r) q~ (t) 
~ ~ 

The summation extends in general over modes in all 3 spatial directions 
(W = m,n,p). For a beam passing along the axis of a rotationnally symmetric 
cavity however, only azimuthally symmetric fields are excited, and the 
summation is limited to radial (l ~ n < oo) and axial (-oo < p < oo) mode-numbers. 

The eigenmodes are normalized solutions of the homogeneous Helmholtz 
equations : 

Wnp 
2 J """"C2 ¢np = 0 

~]+ (10) 

anp = 0 
c 

which fulfill the proper boundary conditions at the cavity walls (assumed 
to be perfectly conducting for simplicity), and where 
frequencies (x 2~) of the cavity. The time-dependent . . 10) determ~ned from the equatLons 

++ 

w. are the resonant np 
factors then can be 

+ 
c2 fp r (t) = (r-v•t) . 

¢np (r) dV np 
E ·w2 
o np v 

(ll) 

qnp w2 l ) + ++ + + (t) + "np (t) = J (r-v• t) anp (r) dV np Eo 
v 

-+ 
+-+ + where P (r) is the charge density, and J(r) = p•v the current density of the + bunch moving with velocity v. For convenience, we will restrict our consi-

derations to bunches moving with light-velocity along the cavity axis + + (v = c•ez). The integration extends generally over the volume of the beam 
inside the cavity, and reduces to an integral over z for a filamentary beam 
at the axis (after replacing the volume density p by the line-density A). 
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The initial conditions for q will be chosen such that there are no fields 
np 

in the cavity before the bunch arrives. In order to include bunches of any 

length, we take qnp(-00 ) = qnp(-oo) = 0. 

The electric field can be obtained from the potential with the relation 

+ 
E 

+ 
= - 17¢ 

+ 
{lA 

at (12) 

and hence the axial component on the axis (r=O) of an azimuthally symmetric 

field ({1/{1¢ = 0) becomes 

E
2

(z,t) = 
r¢np • L (lz rnp (t) + a • q (t)l 

npz np ~ 
n,p 

The wakefield at a distance z0 
(or time ta'zo/C) behind the bunch 

(center) is defined as the integral over Ez along the z-axis with 

ct = z+z0 or : 

0 

(13) 

(14) 

We derive the wakefield from the potentials of a pill-box cavity in 

the appendix. In this geometry, the eigenmodes and resonant frequencies, 

are given by closed analytic expressions. For a bunch of the line-charge 

density A(z) we obtain in general : 

00 

1 
= 2: 

n=l TI Eo g 

+ ~dx 
-g 

· cos rrpx 
g 

with v = w /c np np 

00 

1 2:~ f dx • cos vnp x • [n (x-z0 ) + 

(15) 
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For continuous charge distributions, we can interchange the order of 
integration and summation over p. As shown in the appendix, the wakefield 
is then given by the much simpler expression 

00 (16) 
00 00 

~ 2 2: 2: 1 - (-) p cos VnE · g 
A (x-z0 ) cos (vnpx) V(Z

0
) 

n·E 0 ·g . 2 J 2 (. ) n=l p=-oo Jn 1 Jn 0 

dx-

For discontinuous charge distributions such as the step or delta-function 
pulse, this equation yields the expressions which are valid after the discon
tinuity has left the cavity (z

0 
> g). For z

0 
< g, the complete expression 

Eq. (15) contains a divergent term which is related to the infinite energy loss 
when such a distribution traverses a (closed) cavity. 

summed 

For the step function pulse, the 

analytically4) for g < z <14R2 + 
0 

infinite sums in Eq.(l6) have been 

g2'_ g, i.e. before reflections from 
the outer-cavity wall arrive at the location where the wakefield is evaluated 
but after the pulse has left the cavity. If the divergence is ignored, the 
(different) series yield the same sum also for z

0 
<gas shown in Ref.5. 

If thus appears that Eq. (16) may be used for any distribution, as the divergent 
term is of no consequence for realistic (continuous) distributions which are 
always the ultimate aim of the computations. 

Eq. (16) could be reduced further by exchanging the order of integration 
and summation also for the infinite integral. However, this leads to the 
expressions restricted to z

0 
< I4R 2 + g 2

'- g discussed above. 
Eq. (16) to a number of typical distributions. 

a) Delta function pulse l.(z) 

2Q 

n,p 

Q· o (z) 

l - (-JP cos (vnp ·g) 

jn2 J1 2 (jn) 

We now apply 

(17) 

For z
0 

< 14R2+g 2-g these sums can be evaluated analytically, and 
yield 
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= 
Q 1 1 (18) 

where the square brackets stand for the integer part of the term enclosed. 

With Q = 1, these expressions could be considered the Green's function for 

the wakefield of a general distribution A (z) , which is obtained formally by 

= 
~~ 

(19) 

(o) 

However, this integral diverges at. the lower limit and there should 

be a term included outside the integral which cancels the divergence. We 

get the correct result by leaving-off the lower limit (or replacing it by 

-oo which amounts to the same as A(-oo) = 0), but the same result is obtained 

without these complications under b. 

,. 

b) Step-function pulse >.(Z) >.0 • s (-Z) 

where 

then 

s (z) = 

= 
2 Ao 

7f Eo g 

for z < 0 

for z = 0 

for z > 0 

n,p 

1 - (-)P cos vnp g 

jn2 Jl2 (jn) 

sin v- • z 
np o 

Restricting z to be smaller than 14R2+g2'_ g, on~ obtains2) 
0 

= _2c_ 
2 11 r 0 

1 

~] 2g + L2g" . 

and hence the wakefield for an arbitrary distribution A(Z) 

(20) 

(21) 
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z 

ro dl- (Z) 

J dz 
• R-n l + 

Z
0 -z 
--+ 

2g 

l 

~ dz 
(22) 

l 

0 

This expression is valid before the arrival of reflections from the 
cylindrical cavity wall, i.e. for a limited range of Z

0 (which is here 
counted from the beginning of the bunch) . 

c) Parabolic bunch 

(half length L) 

Equation (16) yields 

= 
3Q g 

1T EO L n,p 

!- (z) = 

l - (-l cosvnp g 

jn2 v 2 Jl2 (jn! np 

3Q 
4L 

0 

- for z2) /z I < L L2 

for /z I > L 

2 [s_~_·n ___ v~n~p __ <_z~0~+_L_l_ 
- cos 

vnp L 

For z < L < g < 14R2+g2' - g these sums yield 0 

3 Q g 

The same expression is obtained from Eq. (19), which becomes 

3 Q 

4 1T E L 3 
0 

0 

(L-z) R-n ~ + 
2

g ~ dz z -z 
0 

for z
0 < 2g (z

0 
counted from the head of the bunch). 

Vnp~ cosvnp Z 0 

z > L 
0 

(23) 

(24) 
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d) Gaussian charge distribution with standard deviation cr 

A (z) 

We find from Eq. (22), after evaluation of the integral 

= 

z 2 
0 

Q - 2a2 
----"- e 
rr Eo g 

(25) 

where w(z) is the complex error-function, and Re stands for r~al part. No 

closed expression is presently known to the authors for this sum, but it 

has been evaluated numerically and is compared to purely numerical results 

in the next section. 

2.3 Comparison of results obtained by various methods 

A comparison between the equations (8) and (15-17) for the a-function 

wakefield shows that the time domain and the mode analysis yield the ~ 

analytic expression except for the divergent term occurring in the time 

domain calculations for the case where the point charge is inside the pill-box 

cavity. 

For any realistic charge distribution both methods give exactly the 

same answer for all positions z
0

• 

Therefore one can conclude that any contributions to the wakefield due 

to free charges are correctly obtained in the mode concept and thus there is 

no missing scalar potential contribution as has been suspected in the past
1

'
2
). 

A further comparison was made between the analytic results derived 
7) 

above and numerical results of the computer program BCI which solves the 

field equations in the time domain directly by a mesh method, including the 

effects of free charges. 
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Fig. l shows the wakefield in a range of - 40 ~ Z
0 ~ 36o for a Gaussian 

bunch (o = 2.5 em) which has passed a pill-box cavity (R = 5 em), g = 10 em). 
An excellent agreement (better than 10-3 can be found for test particles 
"outside" the bunch (Z

0 
?. 4o). Although a rough mesh was used in BCI 

(ll x 21 -points), and only 40 modes in the analytic sum, both results can 
hardly be distinguished in the range 4o ~ z

0 ~ 36o. 

"Inside" the bunch (- 4o ~ Z
0 

~ 4o) the analytical and numerical results 
seem to d.isagree and therefore a second figure is given showing the wakefield 
in more detail and with increasing precision in both methods. The analytic 
results (broken lines) approach continuously the numerical results with 
increasing number of terms in the sum. The numerical results approach 
the analytical ones from the other side with increasing number of mesh points. 
The final difference between the most accurate results in Fig. lb is less 
than± 2.5 %. 

The reason for this slow convergence of the results "inside 11 the 
bunch is the behaviour of the Fourier spectrum of the driving current which 
is suddenly cut off at z

0 
for a beam moving with light velocity (see fig.2) 

(Due to causality a particle at Z0 can see fields only from particles in 
front of itself). 

"Inside"the bunch, the driving current for the wakefield is a function 
with a large step which leads to a Fourier transform proportional to 1/w over 
a large range. "Behind" the bunch the step is small and the Fourier transform 
of the driving term becomes proportional to exp(- w2 a 2 I 2c 2). 

This problem occurs in both methods. In the analytical expressions 
the terms with high frequencies do not decay sufficiently fast. In the 
numerical computations the highest frequency which can be included is given 

7) by the size of the largest mesh step 
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3. GENERAL CAVITIES 

As a result of chapter 2, we know that the wakefield is determined 

by the eigen-modes of the cavity and by the loss-parameters k~. A general 

cavity may then be represented by an LC-network as shown in Fig.3. 

The cavity impedance is given by (26) 

Z(w) = = 

(CU capacitance, Lu inductance, wu resonant frequency). 

This impedance is valid only if the Fourier transform of the driving 

current has no poles in the w-plane. However, it can be replaced by a 

much simpler one giving the same results for the wakefield without any 

restrictions to the driving term 

(27) 

As already mentioned above, the Fourier transform of the bunch current 

which is cut off at z
0 

is given by : 

z
0

jc 

= f j\(t)eiwtdt (28) 

The Fourier transform of the wakefield is simply given by 

= 
(29) 

Using Eq. 27 for the impedance the wakefield as a function of z0 becomes 

= 
1 
21T 

dw (30) 
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Hence we get 

(w z ) • k • e ]...!' 0 lJ 

z 
0 

- iwlJ c 
(31) 

To find the wakefield at a position z
0 

behind a reference point for 
an arbitrary bunchshape and for an arbitrary cavity one thus only needs the 
resonant frequencies wlJ, the loss-parameters klJ and the Fourier transforms 
of the bunch (which is cut off at z0 ) evaluated at the resonant frequencies. 

For realistic cavities only a limited number of resonant frequencies 
and loss-parameters can be obtained by numerical methods. For z

0 
inside the 

bunch a wakefield computation becomes very difficult due to the slow conver
gence of the sum in Eq. (31). However the series converge much faster for 
positions (Z 0 ) well behind the bunch and permit a more accurate calculation 
of the wakefield by this method. 

4. CONCLUSIONS 

It has been shown that for a pill-box cavity the time-domain calcu
lation and the mode analysis yield the same analytical expression for the 
wakefield of realistic bunch shapes. 

Extrapolating this result to arbitrary cavities yields an expression 
for the wakefield as a sum over loss-parameters and Fourier transforms. This 
sum converges very slowly for positions inside the bunch, making it difficult 
to obtain a precise value for the coupling impedance. However, a good approxi
mation to the wakefield can be obtained after the bunch has passed the cavity, 
and hence the total energy loss of the bunch passing the cavity can be calcu
lated more accurately. 
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eigenfunctions of the vector potential 

velocity .of light 

unit vector in r, ¢, z direction 

length of the pill-box cavity ("gap" length) 

n-th root of the Bessel-function J
0 

current produced by a line charge density A 

loss-parameter of the mode ~ 

half length of parabolic bunch 

radial mode number in a pill-box cavity n=l,2,3-·· 

longitudinal mode number in a pill-box cavity p= ... -2,-1,0,1,2 ... 

charge 

time dependent coefficients of the vector potential 

time dependent coefficients of the scalar potential 

radius of the pill-box cavity 

stored energy in the mode (n,p) 

voltage seen by a particle due to the mode (n,p) 

wakefield (= energy gain in volts) 

v wakefield for a point charge (~elta function), ~tep current, d, s ,G, p,A 
Gaussian bunch, £arabolic bunch, arbitrary line charge density A 

z 0 distance from the bunch center or reference point 

Z(w) impedance 

A(z) line-charge density of the driving current 

u general index for counting resonant modes 

cr standard deviation of a Gaussian bunch 

~np eigenfunctions of the scalar potential 

Wnp circular resonant frequencies of a pill-box cavity 
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Figure lb The wakefield of a Gaussian bunch (a = 2.5 em) due to 
a pill-box cavity (R = 5 em, g = 10 em) 

- 4a < z < 4a - 0-

--- mode-analysis results for 
a : 10 modes, b : 40, c : 160, d : 640 

- BCI-results for different meshes 
A : 6 X 11' B : 11 X 21' c : 21 X 41' D 41 X 81 

Li.O 



- 17 -

Zo 

Figure 2 The driving current seen by a particle at z0
. 

I 
I Z ( wl 

Figure 3 An LC-network representing the cavity. 
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APPENDIX 

WAKEFIELD IN A PILL-BOX CAVITY 

.... 
~ 

Jo (jnr/R) rrpz <l>np (r) = sin 
R Jl(jnl g 

~ J enr~ sin ~ .... • e g l R g r 

.... .... l c .... 
a,op (r) ;;g J l (jnl 

0 . e¢ R wnp (Al) 

jn J (~) cos ~ .... 
r o R f • ez 

(A2) 

The resonant frequencies are giv:en by 

• 0 [(~")' • (":)] \ 

2) !:hig~:.c!~'l~~'lLf"~t<?F..?_fq_L"-l.l.\¥.!.~11-'i:h.tQ._l:!,.'l<~::.<t~'l'<.:h.li._~i.'"-l_, moving along 
the z-axis with light velocity v = c. 

= 
c2 fg 

--"--'--,2 A ( z -ct) ¢ np ( z, r=O) dz 
Eo wnp 

c 
Eo 

0 

~ A(z-ct) anpz<z,r=O)dz = 

0 

F(t) . (A3) 

with the boundary conditions q (-oo) = q (-oo) = 0. The general solution for np np 
qnp thus is 

t 

l J F(T) sin Wnp<t-T)dT (A4a) = 

and for its derivative (which we need for the calculation of the electric 

field rather than ~p) 

COS W (t-T)dT np (A4b) 
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g 

#i c2 f A(z-ct) sin ~dz = 
Eo Wnp R J l (jn) g 

0 
(AS) 

t g 

l jn cZ ~ f ~ 
= dT COS w(t-T) dz A(z-cT) cos 

;;;g Eo Wnp R J l ( jn) g 
-oo 0 

The double integral in the second equation can be removed by changing the 

order of integration, but first we substitude z-cT = u, cT = v to get (see 

Figure Al) 
t g ct g-v 

J dt J dz = J dv J du 

-oo 0 -oo -v -ct -u g-et -u 

we further need the integral 

With 

-u 

= 

and hence 

~p (t) = 

v(v-ct) cos a(v+u)dv [sin v(v-ct) cos a(v+u) + 

-a cos v(v-ct) sin a(v+ul] 

[v sin v (u+ct) - a sin a (u+ctl] 

[v sin v(u+ct) - (-)P vsin v(u+ct-gl] 

-----:-=c'---::--;-:-:-1 v j~ 1}- (u-ct) (-fA (u+ct-g)] sin vu · du + 

Eo wnp jn J 1 ( jn) ! 
- "P Jg A (U:-ct) • sin rrpu • du I (A6) 

g g 
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Figure Al 

T tr., 

:.1 
v 

t i ·. 
I 

I 
I 
I 
I 

I 
0 9 z -ct 

---~ 

Figure A2 

v 
A 4 • 'I' 

' 

9 z 9 z z 

-9 

4) For the ~~~~~~~~-!~~~~ (Eq.l3) the contributions from the scalar potential 
(first Eq.A5) and from the second integral in the term of the vector-potential 
(Eq.A6) cancel, and we get simply 

= _1T_E_OC::.g_R2_ L: 
n,p 

where ap = np/g and \) 
np 

Wnp 
c 

this yields : 

[\ (u-ct) - (-f \ (u-ct+gl] sin "np u du 

(A7) 

For a delta-function, pulse \(z) Qo(z) 

' 
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and the double-integral in Eq. (AlO) becomes (All) 

idv [cos v v - (- )P cos v (v+gl] + 
(

0 

dv 

• -g 

[cosav- c-l cosv (v+gl] I[>- (v-z0 ) + 

1- (-f? A (v-z0 +gJ 

We can combine terms with cos v (v+g) and substi tude v + g = u to get for the 

term in the curly brackets 

Idu cos v u [2 A (u-z
0

) - (-f? A (u-z0 +g) - (-)PI- (u-zo-gl] + 

0 

+ Io du cos au[>- (u-z0 ) - (-f? A(u-z0
+gl] 

-g 

which yields Eq. (15) for the wakefield. 

By substituting u ± g = z in the first integral and splitting off 

integrals from 0 to oo one gets for the expression (Al2) 

00 g 

2 [1-(-f? cosvg] i /-(z-z0 ) cosvz dz-(-)P idz oosvz [>-Cz-g-z0 )-1-(-z-g-z0 ] 

For smooth distributions, one can change the order of integration and summation 

over p. \'le then need the sums of three infinite series for 0 := z 2 g 

+oo 

Leos = 

00 

6 (z), 2]-)P cos o(z-g) 

-oo -oo -oo 

(for any Sl to show that the terms in both finite integrals in the expression 

for the wakefield cancel, and we thus obtain Eq- (16) . 
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Ez(z,t) l 
s~n 

s~n 

0 < ct < g } (AS) 

Wnpt - (-)P sin Wnp<t-g/c) 

while for a gaussian distribution A(z) = 

E (z,t) z = 2: cos ';Tpz 
g 

ct > g 

one finds 

+ 
n,p 

(A9) 

where Jm w(z) is the imaginary part of the complex error function. 

5) ~~-~"';~~~~':!~_"';!;_E':?.~~!:~':?.'2_:_0_~~J::~'2~_!:!:!~_t;:~'2!:':~-~~-~~L!:'~'2C::!:! is found with 
Eqs (14) and (A7) 

c ~ l Jgd rrpz L..J J z A Z COS n,p "'np l vnl g 
0 

sin v u[A(u-z+z )-(-)P np o 
= 

(AlO 

Again, we can perform one of the integrations if we substitute u-z = v and inter
change the order of integration (see Fig.A2) 

We now need the integral 

fees az · sin v(v+z)dz = 

with a = 7rp v2 = 
2 jn2 

a +--g i-

rdz = 

I dz = 

.._,;;o
1
-,- ra sin az · sin v (v+z) + " · cos az · cosv (v+zl] a2-v2 t.; 

as before we get 

v R1 
[ ccs \) v - (- )P cos v (v+gl] j n2 

v' R2 
(cos v v - (-JPcos v (v+gl] 

jn 2 

• 
, 


