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A B S T R A C T 

We investigate the high energy behaviour of a 
massive non-Abelian gauge theory by deriving a Reggeon 
field theoryo Analysing the leading ~n s coefficient 
in arbitrary order perturbation we find that due to exten­
sive cancellations between different Feynman diagrams the 
transverse momentum is always strongly cut off •. This leads 
to the existence of moving Regge poles as leading singu­
larities in all quantum number configurations. We give a 
general description of the leading ~n s piece in arbi­
trary order perturbation theory and compute, in lowest 
order, Reggeon trajectory function and triple Reggeon ver­
tices, We find that the Reggeon belonging to the highest 
multiplet has a negative mass (intercept above one), and 
we discuss the possible implication of this result. 
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Non-Abelian gauge field theories (NAGFT) have become a promising 

candidate for real physics, not Only weak and electromagnetic but also strong 

interactions.- Much interest has been given to asymptotic freedom and the 

possibility of quark confinement in these theories, but so far rather little 

is known about high energy scattering in the Regge limit, The property of 

asymptotic freedom makes it very attractive to use renormalization group 

arguments, but all attempts to overcome the difficulties connected with 

exceptional momenta in the Regge limit have failed. On the other hand, the 

appropriate language to describe this kinematic region seems to be the j 

plane formalism. Gribov's Reggeon calculus, together with the more recent 

development of Reggeon field theory (RFT) provides us with a powerful tool 

to study the rather complex j plane structureo It is therefore suggest­

ive to describe the high energy behaviour of a given relativistic quantum 

field theory (QFT) by means of a RFT which has to be derived from the 

underlying theory, 

It is important to explain why such a program has not been carried 

out in the case of ~ 3 theory or QED. There are two different reasons. 

In order to derive the RFT from the underlying QFT, one calculates Reggeon 

trajectory functions, which give Reggeon mass and slope parameter for the 

RFT, and Reggeon interaction terms. In the absence of more powerful tech­

niques, these parameters are given in a power series expansion in the under­

lying coupling constant, and only the lowest non-trivial order can be cal­

culated (weak coupling limit), It is a particular feature of ~ 3 theory, 

being a scalar QFT, that in the weak coupling limit the high energy behaviour 

is trivial, This is why the program of deriving a RFT from ~ 3 theory has 

either to go beyond weak coupling limit calculations or will be useless, In 

the case of QED, the leading j plane singularities are, at least in the 

weak coupling limit, fixed cuts and not moving Regge poles. This is closely 

related to the fact that the photon in QED does not Reggeize, and the Gribov­

Pomeranchuk singularities are not shielded by Regge cut singularities. It 

is not known whether - and if so, how - Reggeon calculus and RFT can be used 

for such fixed cut singularities. 

In this letter we wish to report an analysis of the high energy 

behaviour in a massive NAGFT model. None of the reasons which in ~ 3 

theory and QED made the idea of deriving a RFT rather unattractive applies 

to NAGFT, and we have computed Reggeon trajectories and triple Reggeon 

interaction terms. Our starting point is the analysis of high energy 
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1) -4) behaviour in perturbation theory. Several groups have calculated the 
leading tn s pieces up to sixth order perturbation theory [one paper in 
Ref. 4) goes up to 8th orde~, and generalizing from these calculations, 

attempts have been made 5 ), to extend the analysis up to infinite order, but 
only within a particular subset of Feynman diagrams. The important result of 

these studies is that the vector particle Reggeizes. The situation of the 
vacuum channel (the Pomeron), however, remains unclear. In all these papers 
the NAGFT model had SU(2) gauge symmetry, and the gauge mesons were made 

massive via the Higgs mechanism. In the unitary gauge, such a theory des­
cribes the interaction of three massive vector particles, forming an iso­
triplet (I= 1), and one massive isosinglet, the Higgs scalar. In order 

to make contact with these calculations, we choose the same model, but we 
shall restrict ourselves to the meson sector and disregard fermions. As to 
the method of calculating leading tn s pieces in a given order of pertur­
bation theory, we adopt Lipatov 1 s 2 ) idea of using dispersion relations, 
but have to generalize it in a non-trivial way. The other authors have 
used momentum space techniques and computed the leading pieces of individual 
Feynman diagrams. However, because of extensive cancellations between se­

veral diagrams of the same order perturbation theory, only the sum of quite 
a large number of these leading pieces yields a meaningful result free of 
ultraviolet divergences. In higher order perturbation theory, these can­
cellations become immense, and that is why we prefer Lipatov 1 s method. 

This method can briefly be described as followso In the first 

step one calculates the tree approximation for T 2 ~ 2 (in the Regge limit), 

T (in the double Regge limit), T 2 ~ 4 
..•• etc. This has to be done by 2~ 3 

inspecting all Feynman diagrams which contribute to that order, and one 
explicitly sees the cancellations that we have mentioned. But the results 
are sufficiently simple. Loop corrections to these amplitudes are calcu­

lated via dispersion relations and unitary equations. For T 2 ~ 2 the 
dispersion relation reads : 

( 1 ) 

For disc T2 _., 2 (s,t) one uses 

(2) 
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The treatment of inelastic amplitudes is illustrated by the simplest case 

T 2 ~ 3" In the double Regge limit, this al!lplitude splits into two pieces : 

(3) 

The first part has simultaneous energy discontinuities in s and sab' 

the second one in s and sbc' as it is required by the Steinmann rela­

tions. For large energies (s, sab' sbc- co, sab/s, sb
0
/s -o) each of 

the two terms in (3) satisfies a double dispersion relation, e.g., 

c/fsc 5 h 7i,.(s.1s,:) 
f I 

Six (s~- S£c) 

+ a..,s + 
(4) 

For the energy discontinuities which appear in (4) we use the unitarity 

equations 

(5) 

( 6) 

The existence of the decomposition (3) and the double dispersion relation 

(4) (both in the double Regge limit) can be justified on rather general 

grounds 
7
). Using these dispersion relations (1) and (4), one now computes 

seccessively higher and higher order perturbation theory. For example, 

T 2 ~ 2 in fourth order is obtained by using ( 1) and employing T 2 ~ 2 
in 

second order (which is the tree approximation) for the right-hand side of 

( 2). For T 
2 
~ 

2 
in sixth 

(2) is needed, but T 2 ~ 3 

order, the three-particle intermediate state in 

in third order (which is the tree approximation) 
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the next step, 

using (3), (4) 

weneed T 2 ~ 3 
and (5), (6) for 

in fifth order. This 

and 

Continuing this procedure, one can go to 
sab 

higher and higher order, 

each step one makes use of results that have been obtained in one of the 

previous steps. 

Besides the existence of dispersion relations there is another 

assumption which goes into these calculations. The striking consequence 

of this method is that Faddeev-Popov ghosts never appearo This is because 

we work in the unitary gauge (Rg gauge with s- 0). In general, one is 

not allowed to take the limit S ........ 0 before doing Feynman loop integrations. 

The infinite momentum technique calculations of Refs. 3), 4) have shown 

that, as ±'ar as the leading .en s pieces of Feyruna:n diagrams are concerned, 

ghosts are not needed and, hence, one may take the limit S-+ 0 before doing 

the integrals. This is plausible because the exchange of ghosts being 

spin f objects is down by a power of s compared to the exchange of vector 

particles. But it is nevertheless an assumption that we make about the 

allowance of interchanging the order of taking s- 0 and performing the 

loop integrations in higher order perturbation theory. 

tion of 

We then have 

T2~ 2' T2~ 3 

carried out several steps in the successive calcula-
2 3 in the order g , g , ••• Some of the low order 

results are already contained in Ref. 2), and they all agree with the results 

obtained by other methods in Refs. 3) and 4). We went beyond these existing 

calculations, but we rather soon found a general structure of the leading 

£n s pieces, which will persist in all orders of perturbation theory. The 

first important observation is that, as a consequence of the extensive can­

cellation, transverse momentum is always strongly cut off. This, together 

with the Reggeization of the elementary vector particle, implies the exis­

tence of moving Regge poles (as opposed to fixed cut singularities) in~ 

quantum number configurations. For the channel with the quantum number of 

the vector particle (I= 1 in our case), this moving pole is, of course, 

the Reggeizing vector particle. In the other two channels (I= o, I= 2) 

the moving Regge poles belong to bound states of two vector particles. The 

second observation concerns the· t dependence of the leading ~n s coef­

ficient. In any order perturbation theory, the leading term for T 2 ~ 2 is 

of the form 

(7) 
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where the power p and the function F(t) depend on the order of perturba­

tion theory and the set of Feynman diagrams which is considered. F(t) is 

always given as an integral over two-dimensional transverse momentum and 

can be constructed out of the pieces shown in Fig. 1. The horizontal lines 

denote the scattering particles, and vertical lines stand for propagator 

r;; 2 M2 J -1 JlC j_ + depending on the two-dimensional transverse momentum 

There are vertices with arbitrarily many transverse momentum lines coupling 

to the external particles (upper and lower part of Fig. 1a), and vertices 

with n transverse lines going into m transverse lines (n,m arbitrary) 

(shown in the central part of Fig. 1a). Taking any of these vertices and 

connecting them via transverse momentum lines gives the most general form 

of F(t) in (7). Some examples are shown in Fig. 1b-d. It is important 

to note that these tr~sverse momentum diagrams do not directly come out 

as the high energy behaviour of a few Feynman diagramso For example, the 

bubble string in Fig, 1b is not directly the high energy behaviour of ladder 

Feynman diagrams : they alone are highly ultra-violet divergent, and one has 

to include many more diagrams before one obtains a finite result. However, 

once the cancellation of divergent parts has taken place, one is left with 

simple structures like Fig. 1b-d. 

The form (7) together with the structure of F(t) is highly remi­

niscent of a super-renormalizable theory such as ~ 3 theory. This similar­

ity can be used to find the explicit form for the vertices of Figo 1a, and, 

for a given structure F(t), to determine the power p of ~n s. We do 

not want here to present these rules in all detail, but only mention the 

general idea. For a given structure of F(t), one essentially looks for 

~ 3 Feynman diagrams which in the high energy limit lead to such a coeffi­

cient function F(t), and makes certain charges at the vertices of these 

Feynman graphs. One then calculates their high energy behaviour, which in 

~ 3 theory is not too difficult, and in the final results changes the power 

of s to s 1 • For details we refer to Ref. 8). 

Once we have found a method how to compute leading ~n s pieces 

in any order perturbation theory, we are faced with the problem of how to 

sum them up. We suggest to use RFT as the most suitable way of doing this 

summation. Reggeons are defined as the sum of bubble strings (Fig. 2a), 

and the higher order pieces of Fig. 1a are used to build Reggeon interaction 

terms (Fig. 2b). Allowing for Reggeon interactions of arbitrarily high 

order (Fig. 2c), we thus translate the problem of summing all structures in 
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Fig. 1b into the task of solving a RFT with infinitely many couplings. 
Reggeon propagators and Reggeon couplings have to be computed from inspect­
ing the appropriate parts of F(t). We wish to point out the difference 
between this way of summing leading £n s pieces and others that have been 
used so faro In Refso 1)-4), the authors sum over all contributions for a 
given order perturbation theory. Except for the t channel with the quantum 
number of the vector particle, where the contributions sum up to make the 
vector particle Reggeize, no simple result emerges, and nothing can be 
learned about the vacuum channel (the Pomeron). In Ref. 5), an integral 
equation is used to determine the j plane singularities in both the 
I~ 1 and I~ 0 t channels. Such integral equations can be understood 
as taking the sum of a particular subset of diagrams like Fig. 1b. Apart 
from the question why one may sort out a particular subset and neglect 
others, we find that the vertices that go into the equation for the I~ 0 
channel do not agree with our results. For the I;::: 1 channel we find a 
large number of cancellations among the diagrams which represent the inte­
gral equation, and this explains why the solution to this integral equation 
is just the sum over diagrams of Fig. 1b. 

Since we consider the formulation and use of RFT as the most con­
venient way to perform the summation of all leading ~n s pieces, we have 
calculated Reggeon trajectories and triple-Reggeon vertices. For the three 
t channel configurations I==: 0, 1, 2 we find the trajectories 

T=O 
(8) 

I== 1 · 
(9) 

I=.2: 
( 1 0) 

I 
( 11 ) 

(M is the mass of the vector particle and g the coupling in the NAGFT). 
Our RFT thus contains three multiplets of Reggeon fields : a singlet ~ 

for I~ 0, a triplet cp i with I~ 1 , and a quintet cpij for I~ 2 



- 7 -

c~ij is a symmetric and traceless tensor and has five independent compo­
nents)o Reggeon masses and slopes are given as : 

I 
()(r = 

From (8)-(10) we obtain for the Reggeon masses and slopes 

s- ~ 
I ,, 9~ Jl L1o = 2 ~113 (}( ... 12 · tfn" l'fa.. , 0 

4!("" 
.J.~ ' s- 9~ 

1712. 
I CX1. =- 6 · h" H 2. 

j_'l. ~ 

' 2. ..1. Ll !l : -2 J>n2. 
I 

0(2. ::--3 h"'-lf"l. 

With these parameters we have the following RFT 

:t ( CfJ </;) <f···) == tk.... + ;[ ;.,t-

, 
()(:t \Ito'! . . \ltn .. 

T•~ T•a 

( 1 2) 

( 1 3) 

( 1 4) 

( 1 5) 

( 16) 

( 1 7) 

( 18) 
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+ 1-a.c.) 

0 

+ ~ { <f -trp,·rp,· +~.c.} 
2.! 

+ ( 19) 

The labels of ll, A refer to the isospin of the Reggeons (I= 0,1, 2), and 

p
2
(ij /k£,mn) is the tensor which co].lples two I= 2 Reggeons to another 

I= 2 field (Fig. 3). The form of ( 19) is easily understood : certain 

couplings, such as ~~ 1 , cannot exist because of signature conservation, 

and the question whether a triple vertex 

Re(s~ 1 s~ 2 ) being positive or negative. 

is real or imaginary follows from 

Sign and size of the lcik will be 

discussed in Ref. 8). Here we only mention that 
0 2 J 2 

A 
11 

and 1c 
11 

~ 0 ( g ) , and 
i 4 lcjk~o(g ) otherwise. 

The important feature of this RFT is the negative sign of ll
2 

in (16). It says that the Reggeon with highest isospin develops a negative 

mass. In relativistic quantum field theory with a continuous symmetry 

[e .. g., A~ 4 with U(niJ, the appearance of a negative mass square leads 

(provided the dimensions are large enough) to a spontaneous breakdown of 

the symmetry, and massless particles (Goldstone particles) appear. If 

this argument applies to our RFT, we have a massless Reggeon, i.e., a 

Regge singularity with intercept 1 which might lead to a constant (up to 

powers of ln s) total cross-section. This idea of the Pomeron being a 

reflection of spontaneous breakdown of a continuous symmetry in Reggeon 

space has been expressed before 9 l, but the result in (16) for the first 

time gives a concrete reason where such a symmetry breaking might come from., 

' "'"''"""""'''"'"''~""""!I''""'"'''"'"'" '''''"""''"n "'""'"''I' 111001''"'' "''""''II '""'''" """ ,, ' 
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Because of the possible importance of the negative mass Reggeon 

we have extended our calculation to more general gauge groups SU(N)o The 

way in which a massive SU(2) NAGFT can be generalized to massive SU(N) 

is described in Ref. 10), and we present only the results of calculating 

the Regge trajectories. For general SU(N), the vector mesons belong to 

the (N
2
-1) dimensional adjoint representation, and quantum number assi­

gnment of the different Reggeon multiplets is found by decomposing the 

product (N 2-1)x (N 2-1) into its irreducible representationso One finds 

that the SU(3) result 

g X 8 - 1 + 8A + 8.s -t /0 + /0 + 21-
(20) 

can be generalized to 

( 21 ) 

Here LA denotes the sum of all antisymmetric representations other than 

(N
2
-1 )A [this is the analogue of 10+10 in SU(3) and 45+45 in SU(4IJ, 

and E3 the sum of symmetric representations other than 1 and (N
2
-1)

3 

[this corresponds to 27 in SU(3) and 81+20 in SU(4I]. For the 

Reggeons belonging to the first three representations we find intercept 

below one (that means positive Reggeon mass). Reggeons belonging to EA 

do not exist (in lowest order perturbation theory), and all Reggeons 

in Es have the same intercept above one (negative Reggeon masses). In 

formulas : 

(22) 

( 23) 

~ 

O((N!.t)s{t}= -1. +: (t- ~;~It rt-a.)pH) ~~'Is- -t (24) 

O(l: (t) 
s 

N3 
- 1. - --:-----=---:----- ( t -2 H~ B ( i:) 

i (N~t}(N~2)-I r ( 25) 
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(These formulas can only be used for N ~ 3.) This result indicates that 
the existence of negative mass Reggeons in the highest multiplets may be a 
rather general property of NAGFT. 

We feel that these results raise sufficient interest to continue 
our program of describing the high energy behaviour in NAGFT via RFTo The 
next thing to do is then to investigate the RFT (14)-(19), in particular 
to study the guestion of spontaneous symmetry breaking in RFT. The recent 
work on RFT beyond the critical point indicates that results of relativistic 
QFT cannot be applied to RFT without further investigations. Several 
groups 

11
) have studied RFT with a single Pomeron field beyond the critical 

point. In the absence of a continuous symmetry, such a theory has only the 
discrete symmetry ~ ~ $+. The important result of these investigations is 
that, when a

0 
> a

00
, 

(in fact, there is an 

there is no spontaneous breakdown of this symmetry 
instanton solution to RFT). It is,.therefore, possible 

that in the presence of a continuous symmetry the situation might be differ­
ent from what one expects on the basis of results of relativistic QFT. 

Despite this uncertainty we would like to mention two intriguing 
consequences which might arise if spontaneous symmetry breaking exists and 
results in zero mass objects in RFT. As we have pointed out earlier, an 
adequate description of the high energy behaviour of NAGFT can be given only 
by a RFT with infinitely many Reggeon interactions. In general, such a 
RFT cannot be solved, but we know that near the critical point the theory 
is governed by its lowest order interaction, the triple Reggeon vertex. So 
if we have a symmetry breaking in our theory, then for small values of g we 
might be close to the phase transition point, and we do not need to consider 
higher order Reggeon interactions. Our second comment concerns the validity 
of our work coupling limit calculation. Since we have been working in the 
leading ~n s approximation, all our Reggeon field theory parameters 

(6,A~k) are computed in lowest non-trivial order perturbation theory. 
Next to leading ~n s pieces would, presumably, lead to higher order 
correction to these quantities. However, if one finds that our RFT, with 
the parameters computed in lowest order, describes a phase in which the 
symmetry is broken and masslesS Reggeons do exist, then this phase depends 
primarily on the sign of the 6's as opposed to its actual size. Higher 
order corrections to 6 will not change the sign within a finite, non-zero 
range of the coupling constant g. This then leads to the expectation that 
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the behaviour of cr tot' etc., will remain unchanged for a non-zero range 
of values g, and our weak coupling limit results are sufficient to des­
cribe the high energy behaviour outside the limit g ~ 0, 

where 8 ) 

Details of calculations presented here will be published else-
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FIGURE CAPTIONS 

Elements of the leading tn s coefficient F(t) 

(a) vertices ; 

(b)-(d) a few examples of diagrams, 

Definition of 

(a) Reggeons, and 

(b)-(c) Reggeon couplings, 

Elements of the RFT. 
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