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The X(3.41) and two states at 3.50 and 3.55 GeV have been discovered 1 -~) in 

radiative decays of the lj; 1 (3.68) and have been interpreted as three of the four 

even-charge conjugation of charmonium predicted 5
-

7
) to lie between W(3.1) and 

W'(3.68). Recently 1
) a fourth state at 3.45 GeV has also been observed in radia

tive decay of the ~ 1 (3.68), though unlike the other three this 3.45 state has 

no visible hadronic decay modes. The predicted states 
. ++ ++ 

~n quest~on are 0 , 1 , 
++ . 3 • -+ and 2 , be~ng P

1 
states of charmon~um, and also 0 , a 1 So state, being th~ 

first radially excited state of paracharmonium commonly known as ~~. Of the 
c 

observed states the X(3.41) is established from observed hadronic decays to be 
. ++ 2++ ++ one of the ser~es 0 , , 4 , ... The angular distribution in 

I/J 1 + y + xC3.4l) is in accord Vlith that appropriate to the spin 0 assignment 

namely (l + cos 2 8) and this spin 0 angular distribution is not observed in 
. l) . h 0++ . the 3.50 and 3.55 reg1on ; these observat1ons suggest t at the state ~s at 

3.41 and the 0-+ state at 3.45. In accord with these assignments, Chanowitz and 

Gilman') have given arguments for assigning X(3.4l), x(3.50), and X(3.55) to the 
++ ++ . -+ 

1 , and 2 states, respect~vely, and the 3.45 to the 0 state. hfe adopt 

this orthodox point of view on the observed states and investigate the 3 P
1 

level 

splittings and the radiative widths rcw' + 
3 PJ) and their consequences for the 

dynamical parameters and properties of the charmonium system in general. 

We use a potential method with relativistic kinematics to all orders of v/c, 

by using a Bethe-Salpeter equation with an instantaneous potential, as detailed 

below. For the short-range part of this potential we use, follm.,.ing standard 

practice, a form suggested by asymptotic freedom 9
), taking one gluon exchange in 

the Feynman gauge 

\1 v ·- d. -v" . ..L yfb 
s or r o (r (l) 

where as is the (positive) asymptotic freedom coupling parameter and y~, y11b are 

the Dirac matrices acting on the particles ~ and ~' respectively (being a quark 

anti-quark pair). For the longer range confining part we adopt the linear r de

pendence suggested by lattice gauge theories of infrared confinement and much 

used in charmonium calculations 6
'

7
): 

v (2) 

where la, lb are unit (Dirac) matrices. We have assumed 1n (2), in concordance 

with infrared confinement models 10
), that the long-range potential is a multi

gluon effect and that the vector potential of one-gluon exchange is not appro

priate. The Lorentz covaniant scalar (2) is the simplest form. Though it is 

overtly spin-independent, yet insertion into the Bethe-Salpeter equation reveals a 

spin-dependence of order 1/r, whereas the lattice gauge theories 10
) suggest a 
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much stronger spin-suppression as discussed by, for example, by Schnitzer 11
,

12
). 

It is instructive to expand. the relativistic equation given below in powers of 
1/m, m being the charmed quark mass (even though we solve our equations to all 
orders in 1/m or equivalently v/c) and to consider the resulting spin-orbit and 
tensor forces. For the spin-orbit coupling from (1) we get 

3 L. 
(3) -

and from (2) we also get a spin-orbit coupling 

1... t: (- 1 ~ (>.v)} -. ¥ ,. ~l" 
:: _ .1 ..L [-r(-r+i)-t..(i.+l)- S(s+ u] 

I" 4 ........ (4) 

Both the potentials (1) and (2) are attractive (non-relativistically) but they 
give the opposite sign of spin-orbit potential, seen in (3) and (4), because of 
their different spin structure. Thus the Coulomb potential alone would order the 
P-levels, in ascending energy order, as 3 P 0 , 

3 P1, 3 P2, while the scalar confining 
potential would order them oppositely as 3 P2 , 3 P1, 3 P 0 • To the same order in 1/m 
the Coulomb potential (2), but not the confining pot·ential (1), gives rise to a 
tensor force 

3 - I 
.i (5) 

which gives a P-level splitting ordering the levels in ascending energy order, as 
3 P 0 , 

3 P 2 , 3P1 thus co-operating with the Coulomb spin-orbit coupling in putting 
3 p 0 lowest. Thus in this perturbative treatment (in 1/m) discussion of this 
paragraph, the experimental quasi-fact 8

) that 3 P 0 is lowest, restricts A to be 
not too large (in some measure related to the wave functions) relative to a · s' 
because m ~s fairly large this almost certainly holds also in the non-perturLative 
treatment of this paper. 

EQUATION OF MOTION 

We use an equation of motion which incorporates effects of relativistic 
kinematics. If we insert an instantaneous potential in the centre-of-mass system 
into the Bethe-Salpeter equation, we obtain the Salpeter equation13 , 14

) in momen
tum space: 
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where ~(q) is the wave function in the relative momentum q = p = -p ; 
b -a -b 

W = 1m2 + q 2 , m being the quark mass; A a' = 1 (l ± H /W) are the projection 
± a a,ba b b 

operaters for particles ~ and ~ , where Ha = 9': • Ea + 8 m, Hb = 9': • Et + B m. 

E is the energy of the two-particle state, and for bound states Eq. (6) is an 

eigenvalue equation in E. 

For a non-relativistic system, or any system such that 

E +l.W >> £-.l.W (7) 

it may be justified to drop the second term in (6) with the negative energy pro

jection operators. [The precise justification in any particular case depends not 

only on (7) but also on they-matrix dependence of the potential, v.J Doing this, 

w~:~t:i:;he~~;~le: e~:t~::ffb IV{!~! 1) 

Alternatively we can regard (8), following Faustov15
), as a quasi-potential 

Logunov-Tavkheldize-Blankenbecler-Sugar equation16 ). 

(8) 

In fact the equation (8), or its equivalent, is the basis for the derivatiOn 

of the Fermi-Breit Hamiltonian 17
), containing inter atia the spin-orbit interac

tion, or the treatment of positronium in the work of Schwinger 18
) which has been 

widely followed in the charmonium literature. However, equation (8) is exact in 

the sense that no expansion in powers of 1/m (equivalently v/c), m being the 

charmed quark mass, is yet made. 

We solve (8) to a high degree of accuracy using computer numerical methods. 

V(q,q 1
) = V(q-q') is in our work just the Fourier transform of the potential (l), 

(2), or whatever instantaneous potential we wish to investigate. Our methods 

also allow us to solve the more complicated equation (6), and this we do, some

times with results very close, in the cases presented here, to the solutions of 

(8) • 

WAVE FUNCTIONS FOR ~ AND X MESONS 

There is a well-known way of writing 2- (spin i) fermion wave functions as a 

superposition of Dirac y-matrices; this representation is particularly natural 

when the two fermions are particle and antiparticle, and the representation of 

spinor outer products, such as ua~~ or ub~~' as Dirac y-matrices is almost imme

diate19). Using this representation the reduced Salpeter equation (8) may b-e 

written 
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(9) 

where 1> is now a superposition of Dirac y-matrices, <PaS the first index a of the 
y-matrices corresponding to particle a, and the second index B to particle b ; 
V(q -q 1 )<P(q 1

) in the integral is a symbolic notation involving y-matrix multipli
cation on left (right) for y-matrices of V corresponding to particles a (b), 
respectively; in the case of the potential (2), for example, 

In (9), for a vector meson such as the ~(3,1) or ~ 1 (3,68) we write W(q) = ~.(q), - ~ -where i 1, 2, 3 is the spin-space suffix. The form of Eq. (9) innnediately 
restricts the possible forms of~-; this is a dynamical restriction20

) extra ~ 

to those of parity rotational invariance and charge conjugation, and reduces the 
number of independent scalar functions in ~- from six to two so that ~- takes the ~ ~ form 

'1-d~)-= A.(t>f -~J., ¢,.('a) + (3 ( ,,. ~ ·t-·f.<:flJ t1ot(,_•;J 1\.(-~J • (10) 

In a non-relativistic situation with large m, A (q) "' (1 + S)/2 and A (q) o, (1- S)/2, + - - -and a solution with ~ alone would correspond to pure S-wave, since the quark spin s 
ai' is unmixed with orbital motion, and a solution with ~d alone would correspond 
to pure D-wave. In the general case, substituting (10) into (9) gives two coupled 
integral equations in ~s(q 2 ) and ¢d(q 2

), and the solution is of the form (10) with 
both ¢s and ¢d present. In the charmonium case with m ~ 1.3 - 2.0 GeV/c 2 and for
ces of the form (l) and (2) with suitable A and a to give ~(3.1) and ~ 1 (3.68), an s 
approximately non-relativistic situation results and the solutions of (9) fall 
into classes of 

i) ¢s with a small admixture of ¢d ('S-wave solutions') and 
ii) ¢d with a small admixture of ¢s ('D-wave solutions'). 

++ ++ Non-relativistically both the 0 and l wave functions are pure P-waves, 
while the 2++ wave function is a mixture of P- and F-waves. Correspondingly there 
is only one independent function in either the 0++ or the 1++ wave functions, and 
substitution into (9) of eith~r of these wave functions leads to an integral 
equation in one function; in the case of the 2++ a coupled integral equation in 
two functions results. 

The use of the full Salpeter equation (6) rather than the reduced equation 
(8) or (9) still implies a restriction on the number of independent functions in 
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the particle wave functions over and above those restrictions imposed by parity 

and charge conjugation, but the number of independent functions is doubled. 

FORM OF THE POTENTIAL 

The fundamental characteristics of our potential, except for the r -+ oo be

haviour, are conveyed by Eqs. (1) and (2). The precise form used 1s 

tl.t 0. wQ ] -r"f C I{!- e -f'~) -r '6,. l' -c e. + (11) 

where C, C1
, and w are constants. The non-relativistic aspect 

b . a b obtained y putt1ng y y = 1, is illustrated in the figure. 
]J ]J 

damps the otherwise infinitely rising potential for large r; 

of the potential, 
-]Jr 

The factor e 

without such a 

damping, the integral equations (6), (8), or (9) would not be soluble, at any 
rate without special limiting procedures. Within the context of infrared confine

ment Kogut and Susskind 21
) have advocated such a potential as a screening effect 

of the original infinitely rising potential by the creation of quark-antiquark 

pairs. The outflow of probability to infinity associated with such a potential 

is due to the resulting charmed mesons, not bare quarks. We take W 0.1 in GeV 

units corresponding to a range of about 2 fermis; our results are insensitive to 

making W smaller -- corresponding to a larger range -- up to about 0. 02, at which 

stage our numerical method begins to lose accuracy 

The constant C sets the energy scale and includes all those spin-independent 

interactions not included in the r-dependent part of the potential. From an 

operational point of view, without this constant the quark mass might be restric

ted by the requirements of fitting ~(3.1) and ~'(3.68); in fact it turns out 

that C is rather small. The related constant C1 = V(00)., whose effect is switched 

on for large r only, plays a formal role, enabling us to solve for all the char

monium energy levels, even the higher ones above 4 GeV/c 2
, as discrete bound 

states. 

Our important adjustable parameters are A, as' m (the charmed quark mass), 

and C. 

RESULTS FOR CONSTANT as 

We solve the integral equations using matrix procedures, which will be des

cribed elsewhere. It is necessary either to regularize the potential or to modify 

the propagator (E- 2W)- 1 (E- 2Im 2 + p 2) 1 for very large momenta, and it is 
-j 

simplest to do the latter. He take as modified propagator [CE-2/m +p )(!1 2 +p 2
)] 

with II = 6.0 GeV/c. 
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One can readily find values of A, a , m, and C, with m in the reg1on s 
1.5-2.0 GeV/c 2 , such that 1- mesons (predominantly S-\vave) are at 3.1 and 

3.68 GeV/c 2 • The P-wave mesons then occur between 3.1 and 3.68, not in coinci
dence with the 1./1

1 (3.68) as would be the case for a pure Coulomb potential (A= 0). 

The difficult problem is to get the P-waves at the right positions, with the 

correct ordering and a specified level splitting, while at the same time main-
+ - + -taining the correct leptnnic ~;..ridths f(\jJ -+ e e ) , f(!JJ' -+ e e ) . The difficulty 

arises as follows. We kncn,1 that the. 0++ state is at 3.41 GeV and that the 

1 . . b 0++ . . ++ 2++ . sp 1tt1ng etween and next h1ghest P-wave state, e1ther 1 or , 1s at 

least 0.09 GeV. As pointed out previously, the level ordering of itself, with 

0++ lowest, demands a certain minimum ratio of a. /T 2 to ~, (and A cannot be too s p 
small otherwise the P-wave states would be near to 3.68), and the relatively large 

level splitting increases the desirable magnitude of as. At the same time, larger 

a means that the 1j;(3.61) and 1,J.J(3.68) have larger wave functions at the origin, s 
r = 0 [¢ I in terms of Eq. (10) for the 1- wave functions] leading to larger s r=o + _ + _ 
widths f(~ + e e), f(~ 1 

+ e e). 

For evaluating tl1es~ widtl1s we use tl1e Weisskopf-van Royen non-relativistic 

formula, with an extra factor of 3 for colour: 

''Tr J 

where l.jJ(r) is the normalized Have function of the 1- meson [in our case the 

Fourier transform of (10)] and M is the meson mass. 

(12) 

We have explored the features of the charmonium system in the space of the 

parameters (A, a , rn, C) and these features appear to be simple and smooth enough s 
for us to build up a good picture by sampling. With our potential, and the 

charmed quark mass rn in the region 2.0 > m > 1.5, it seems that the 0++ level is 

too high and, associatedly, the level splitting is too small. Our best results 

are in the neighbourhood of 

(o.IS" > (). 4-') I. ~S") 0·1"3), (13a) 

Gd U.Nf-1, 

These particular parameters give rise to the following mass spectrum: 

t ( ,... S-wQvf') , 3. I , (13b) 

( ,... ti -wo.vt) : (13c) 

(13d) 

with leptonic and radiative decay widths of ¢, ~ 1 at reasonable values. 
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Since the P-wave splitting is too small, first-order formulae such as (3)

(5) strongly suggest that a lower charmed quark mass would be appropriate. For 

the charmed quark mass rn in the region 1. 5 > m > 1. 0 we find energy levels and 

leptonic and radiative decay widths for parameters in the neighbourhood of 

(>- ) r/..'S' ) to\ • c) = (14a) 

These particular parameters (with C1 2) give rise to the following mass spec-

trum: 

1- )\'\fSC>I\..5 ("' s-vvcc.vc) 

1 - ~r~.escl'l.$ (,.. ol.-wo.oJe) 

3. I .. 3. 7 

-a. 77 

.. ~. 04 

.. 4-0'i 

• 4- • .t" (14b) 

) 4-30 
(14c) 

(14d) 

and the following widths: 

r ( "'f --;) e~ f!-) .::. 4-~ /c.e v (14e) 

r ( "f' ~ (o ...... r~+) r+)+¥] :: (2. G.) ~ 4-.. 1,) (14f) 

(14g) 

(The radiative widths in (14£) and (14g) are quoted using the correct experimental 

factor of k 3 in the dipole formula.) 

We note a number of points: 

++ ++ . . 
i) That a large 0 -1 spl1tt1ng with these levels at 3.41 and 3.50, respec-

tively, implies a relatively small 1++- 2++ splitting -- indeed too small in 

the case above to agree with the experimental level at 2.55; this is a pre

diction of the potential used -- we do not have the freedom to vary totally 

independently the 1 ++- 2++ splitting. 

ii) The radiative widths of ~ 1 to the P-wave states are in marked disagreement 

with one experiment 22 ) which sets an upper limit of about 10 keV on the 

width of manochromatic y-rays from W' decay, but are not in marked disagree

ment with some later experimental results on this width 1
,

23
). Eichten et 

a1. 2 l+) (who do not, of course, calculate the P-wave splitting) quote a rate 
I ++ f(W + 0 + y) = 36 keV in their calculation incorporating a charmed meson 

continuum which affects the ~ 1 wave function thus reducing the rate. To 

compare like with like, we should revert to their original calculations 5
), 

which (with the correct y-ray energy) would give f(~' + 0++ + y) = 40 keV, 

about 50% greater than our above calculation, (14f), of 26 keV. 
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iii) The value of rW~ - is somewhat low. e e 

iv) That the constant C has become very small so that 

region of the wave function, is almost purely Ar -

the potential, in 

a ya (1/r) y11b 
s )1 

the 

v) The value of a being 0.49 is twice as much as that given by the use of the s 
asymptotic freedom formula 25

) for the ratio f(¢ + leptons)/f(¢ + hadrons). 
However, in the calculations of Eqs. (16) we have not used the asymptotic 
freedom formula for a itself, and the use of this gives a different result, s 
as reported below. 

-+ vi) The mass of then and n 1 (0 ) on the above calculations are 3.04 and 3.2, c c 
respectively. We do not place any importance on these values because of the 
possibility of considerable mixing with n and n', and other effects associa

-+ ted with the two-gluon annihilation process of 0 mesons. 

vii) The values of the ~ S-wave and~ D-wave levels at 4.02 and 4.12 seem a little 
high to explain the marked dip in R at 4.0 as an interference effect of 
these resonances. However, we do not take this possible discrepancy too 
seriously because inter alia the effect of charmed-meson channels 24

) may be 
important in this region. 

RESULTS WITH ASYMPTOTIC FREEDOM FORMULA FOR as 

In the previous calculation, as in all the charmonium calculations reported 
so far, we have used a constant value of a which may be viewed phenomenologically s 
or, from an asymptotic freedom point of view as some average a appropriate to s 
meson in the 3-4 GeV region [which would be less than that appropriate to the 
<f>(l016), for example] 26

). However, the application to potential theory and the 
appropriate momentum at 

implicitly acknowledged 

which a should be taken is not straightforward; this is s 
in the standard theory where for r large -- corresponding 

to small momenta being important -- a breakdown of asymptotic freedom and a linear 
confining potential Ar, entirely different from the asymptotic freedom a /r, are s envisaged. Presumably this could be reflected in at least some momentum dependence 
in the a of a /r. s s 

The formalism of asymptotic freedom gives a as a function of the momentum, s 
the formula appropriate to four flavours and three colours being 

[1- g tJ. df·J -~~ f!'ltAt Tl ./..~ (f.) 
(15a) 

We have illustrated a different use of asymptotic freedom in charmonium calcula
tions by using (l5a) in our momentum space integral equation of motion (9) with 
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This use corresponds to radiative corrections of the vertices only of the Bethe

Salpeter ladder diagram and thus is consistent with the standard Bethe-Salpeter 

'ladder diagram only' usage. We regard our calculations as illustrative only 

because of the use of the particular four-flavour formula (15a) (though indeed 

it may well be the formula appropriate to the important momenta of the problem) 

and also because we have not generalized that formula to the one appropriate to 

two momenta Cg and g') being involved but have instead approximated by putting 

p2 = /qqT; however, on this latter point our experience shows that the integral 

equation is relatively insensitive to whether effects appear in q or in q 1
• 

Now our a 
s 

for large momenta (which has a strong influence on wave functions 

at the origin E = 0) is smaller than a 
s 

for the moderate momenta which influenced 

the part of the wave functions responsible for the P-wave splitting. Consequently 

we hope for just that desirable enhancement of the P-wave splitting while pre

serving the correct lepton widths of t~ and W', which we were previously unable to 

find for 2.0 > m > 1.5 GeV/c2 • This indeed happens, and for the following para-

meters 

(). "' c) ( o.t3> o. 77) I.,Jo.J.) 
) J.s ) l'>\ ' - (l6a) 

we find the results ,- ~eso"s ( ... s-Wctve): 3./ 
~ 

~.6,_, 3. H' 
(l6b) 

,- ""'ESO"-S ( .... ci-w«v..): ~. 77 ) '+· 0/ 
(l6c) 

P-wtt."e )l'l(!so...r 

rC"f->e~e-) = 
( o-+-+) 1 + +, .2 +t) ... t- (g. 4 2 ~ 3 .ro~ .i. s·4) (l6d) 

s-.~ lttV J r(t'->e:te·)=- 1.2../ceV (l6el 

r{"f- 1 ~ (o++~t++)j++)+'l] 

r [ ep+ j t++, 2 H)-> 1--~-a- 1 
:: 

--
l.1,'-'~"'' /..e\( 

'"'o );.~·e, u. 7 A.eV 
We note the following points which are different from the previous case (which 

had constant a and m = 1.35): 
s 

(l6f) 

(l6g) 

i) The ratio of the P-wave splittings [E(2++) -E(l++l]/[E(l++) -E(O++l] 1/2, 

in agreement with experiment. 
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ii) The radiative transitions of w'(3.684) are now less, being about the same as 
those found by Eichten et al. 24

) using an explicit charmed meson channel for 
+ + . ++ the 1 and 2 , and cons1derably less for the 0 . 

iii) a (3.1) = 0.36, a value which is still too large for the asymptotic freedom s 
calculations on f(~ ~ hadrons), but considerably nearer than the previously 
quoted value of 0.49. 

iv) The 0-+ occur at 3.0 and 3.67; the same remarks on the non-significance of 
the calculation of these levels apply. 

Finally, we should remark that neither in the constant a nor the variable s 
a case have me made an exhaustive search of the parameter space. An exhaustive s 
search (which we could not carry out in any reasonable time) would perhaps 
reveal parameter values giving results even somewhat closer to the experimental 
indications. We think that in the present state of the theory of charmonium our 
present qualitative results on the effect of our new considerations are sufficient. 

CONCLUSIONS 

From our quoted and unquoted results we conclude the following: 

I. i) A potential between quark and antiquark which is basically of the 
form la Ar lb- y~a (a /r) yb - C (where C turns out to be small, s ~ 

$ 0.2 GeV), with constant as' can give the correct J/~ and ~ 1 masses, 
approximately the correct leptonic widths, and the 0++ P-wave at 
3.41 GeV with the 1++ P-wave at 3.50 GeV, in agreement with experiment. 

++ ii) It then predicts the 2 P-wave level to be in the region of 3.53 GeV, 
the experimental value being 3.55. 

iii) The charmed quark mass m must be not more than 1.5 GeV/c 2 ; Lhe 
radiative transitions ~1 + P-wave + y are calculated to be somewhat 
wide in the region 15-26 keV. 

II. i) With the same potential with a momentum-dependent a (corresponding to s 
an asymptotic freedom formula with four flavours and three colours), 
the three P-wave levels can be found at approximately their correct 

. ++ ++ energies improving on the situation in I. The relatlvely small 2 - 1 
splitting is a successful prediction. This contrasts with the conclu
sions of previous authors 11

, 12
,

27
) using a somewhat different method 

. [ ++ ++ J [ ++ ++ J and potential, who find too large a ratw E(2 ) -E(l ) I E(l ) -E(O ) . 

ii) The charmed quark mass m can now be above 1.5 GeV/c 2
; with m = 1.6 the 

radiative transitions ~ 1 + P-wave + y are in the region 14-22 keV. 
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III. It is evident that the relative positions of the D-wave levels will provide 

an important clue to the nature of the potential. Our D-levels are higher 

than the corresponding S-levels. Linear confining potentials which are of 

the purely vector type y~ y~b will tend to give D-levels lower than 

S-1eve1s 2 '). 

It is evident that the experimental spectral information becoming available 

is capable, as it was hoped, of distinguishing sharply between different poten

tials, and perhaps of deciding whether any potential description be adequate. 

As an example of a potential awaiting detailed investigation along the lines of 

this paper, is notably a Coulomb short-range force [as given by (1), for example] 

together with a totally spin-independent linear confining force; this will prob

ably give smaller values of a than we have found. The relative positions of the 
s 

D-waves and S-waves can be vital due in these comparisons, and these might be 

discovered in the 3.9-4.5 GeV region, a though further problems of extra levels 

might await here. 

The authors wish to thank D.G. Sutherland and G. Ross for discussions and 

helpful suggestions and J. Ellis for much help with the spectral phenomena and 

phenomenology. One of us (A.B.H.) wishes to acknowledge a grant from the 

Gulbenkian Foundation. 
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Fig. 1 Plot of the non-relativistic features of V(r), given in Eq. (11) 
of the text. 
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