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SOMMARIO/ABSTRACT

Preferences typically define a partial ordering over
outcomes. A number of formalisms like soft con-
straints and CP-nets exists to specify such partial or-
derings. In situations involving multiple agents, we
need to combine the preferences of several individu-
als. In this paper, we consider each agent as voting
on whether they prefer one outcome to another. We
prove that, under certain conditions on the kind of
partial orders that are allowed to express te prefer-
ences of the agents and of the result, if there are at
least two agents and three outcomes to order, no pref-
erence aggregation system can be fair. That is, no
preference aggregation system can be free (give any
possible result), monotonic (improving a vote for an
outcome only ever helps), independent to irrelevant
assumptions (the result between two outcomes only
depends on how the agents vote on these two out-
comes), and non-dictatorial (there is not one agent
who is never contradicted). This result generalizes Ar-
row’s impossibility theorem for combining total orders
[1].

1 Introduction and Motivation

Constraints and preferences occur in many real-world
problems. For example, when rostering nurses, we will
have hard constraints (such as “Nobody is allowed to
work three consecutive night shifts” and “Each shift
must have at least two intensive care nurses”) as well
as preferences on outcomes (such as “Alice prefers to
work with Bob” and “Bob prefers not to work with
Carol”). Preferences can be quantitative or qualita-
tive (e.g. “Carol’s preference for day shifts is 0.8 and
night shifts is 0.2” versus “Carol prefers days shifts to
night shifts”) as well as conditional or unconditional
(e.g. “If it is a night shift, Alice prefers the maternity
ward to the ER ward”)

A number of formalisms exist for representing pref-
erences. For example, soft constraints [2, 10] can
model quantitative preferences whilst CP nets model
conditional qualitative preferences [3, 4]. Each pro-
vides an ordering on outcomes. In general, this or-
dering is partial as outcomes may be incomparable.
For example, when comparing wines, we might prefer
a white wine grape like chardonnay to the sauvignon
blanc grape, but we might not want to order chardon-
nay compared to a red wine grape like merlot. In
addition, we will often want to reason about the pref-
erences of multiple agents. For example, each nurse
can have different preferences over the shifts. As a
second example, when choosing a wine, each person
at the table may have different preferences. We there-
fore need to consider mechanisms for aggregating pref-
erences. The result of aggregating the preferences of
multiple agents is itself naturally a partial order. If
two outcomes are incomparable for each agent, it is
reasonable for them to remain incomparable in the fi-
nal order. Incomparability can also help us deal with
disagreement between the agents. If some agents pre-
fer A to B and others prefer B to A, then it may be
best to say that A and B are incomparable. In this
paper, we consider this kind of scenario. We assume
each agent has a preference ordering on outcomes rep-
resented via soft constraints, CP nets or any other
mechanism. A preference aggregation procedure then
combines these partial orders to produce an overall
preference ordering, and this again can be a partial or-
der. The question we address here is: can we combine
such preferences fairly? Suppose we have 100 agents,
and 50 of them prefer A to B, whilst the other 50 pre-
fer B to A. It might seem reasonable to decide that
A is incomparable to B. But what if 99 agents prefer
A to B, and only one prefers B to A? Rather than
always declare A to be incomparable to B whenever
someone votes against A being better to B, is there
not a more sophisticated voting system that will de-



cide A is better than B and compensate the agent who
preferred B to A on some other outcomes? We will
show that, if each agent can order the outcomes via a
partial order with unique top and bottom, and if the
result has to be a partial order with a unique top or a
unique bottom, then any preference aggregation pro-
cedure is ultimately unfair. This question has already
been addressed in the context of total orders. Ar-
row’s impossibility theorem demonstrates that there
is no fair mechanism for combining total orders [1].
We show that this result can be generalized to certain
partial orders. In brief, we will say that a preference
aggregation system is fair if it has the following four
properties:

Freeness: there is no restriction on the result;

Independence to irrelevant alternatives: the
relation between A and B in the result depends
only on the preference relation between A and B

given by the agents (and not on their preferences
over other elements);

Monotonicity: if an agent moves up the position of
one outcome in his preference ordering, then (all
else being equal) such an outcome cannot move
down in the resulting preference ordering;

Non-dictatorial: there is no agent such that, no
matter what the others vote, she is never con-
tradicted in the result.

This is a straightforward generalization of the defi-
nition of fairness used by Arrow on total orders. The
main result of this paper is a proof that, if there are
at least two agents and three outcomes to order, no
preference aggregation system (where preferences are
described as said above) can be fair. This result ex-
tends a fundamental theorem obtained by Arrow [1],
which demonstrates that voting systems in which both
the voters’ orders and the resulting order are total
cannot be fair. This result is both disappointing and
a little surprising. By moving from total order to a
class of partial orders, we enrich greatly our ability
to combine outcomes fairly. If agents disagree on two
outcomes, we can always declare them to be incompa-
rable. In addition, a partial ordering can have multi-
ple outcomes which are optimal. Unlike an election,
we need not declare a single winner. Nevertheless, we
still do not escape the reach of Arrow’s theorem. Any
voting system will have one or more agents who dic-
tate the overall preferences. However, preference may
need more relaxed orders than the one considered in
our results. For example CP nets, even acyclic, may
produce partial orders with more than one bottom.
Soft constraints produce arbitrary partial orders. So
we still hope there is a voting semantics for preference
aggregation which is fair.

2 Formal background

A preference ordering can be described by a binary
relation on outcomes where x is preferred to y iff (x, y)
is in the relation. Such relations may satisfy a number
of properties. A binary relation R on a set S (that is,
R ⊆ S × S) is:

• reflexive iff for all x ∈ S, (x, x) ∈ R;

• transitive iff for all x, y, z ∈ S, (x, y) ∈ R and
(y, z) ∈ R implies (x, z) ∈ R;

• antisymmetric iff for all x, y ∈ S, (x, y) ∈ R

and (y, x) ∈ R implies x = y;

• complete iff for all x, y ∈ S, either (x, y) ∈ R or
(y, x) ∈ R.

A total order over satisfies all four of these proper-
ties. A total order has an unique optimal element,
that is an element o ∈ S such that ∀x ∈ S, (o, x) 6∈ S

. We say that this element is undominated.
By comparison, a partial order over a set of ele-

ments S is a binary relation R on S which is reflexive,
transitive and antisymmetric but may not be com-
plete. There may be pairs of elements (x, y) of S which
are not in the partial order relation, that is, such that
neither (x, y) ∈ R nor (y, x) ∈ R. Such elements are
incomparable. Thus any partial order R induces a
binary relation I(R) which represents the incompara-
bility among some of the elements of S. In general,
given a partial order R, relation I(R) is symmetric,
not reflexive, and not transitive. In fact, all pairs
(x, x) are in R and thus not in I(R). Also, it could
be that (x, y) ∈ I(R), (y, z) ∈ I(R) and (x, z) ∈ R. A
partial order can have several optimal and mutually
incomparable elements. We say that these elements
are undominated. Given any relation R which is ei-
ther a total or a partial order, if (x, y) ∈ R, it can be
that x = y or that x 6= y. If R is such that (x, y) ∈ R

implies x 6= y, then R is said to be strict. This means
that reflexivity does not hold. Both total and par-
tial orders can be extended to deal with ties, that is,
sets of elements which are equally positioned in the
ordering. This situation can be described via a binary
relation R on the powerset of S rather than on S, such
that the subsets are disjoint and they cover the whole
S. Thus such subsets form a partition of S. Given R,
we will write Part(R) to denote the partition over S

induced by R. As with total and partial orders, such
a relation can be complete or not. In the following
we will call such relations as a total order (resp., par-
tial order) with ties. In a total or partial order with
ties, say R, another relation can be derived, which
we will call indifference: two elements x, y ∈ S are
in the indifference relation Ind(R) iff x, y ∈ S1 and
S1 ∈ Part(R). Summarizing, in a total order with



ties, two elements can be either ordered or indifferent.
On the other hand, in a partial order with ties, two
elements can be either ordered, or indifferent or in-
comparable. Notice that, while incomparability is not
transitive in general, indifference is transitive, reflex-
ive, and symmetric.

The usual strict total order (<Z and total order
(≤Z) defined on the set of integers Z are classical ex-
amples. The following orderings are, instead respec-
tively a strict partial order and a partial order over
pairs of integers. Consider the set of pairs of integers
Z × Z and the orders defined as follows: 〈x, y〉 <Z×Z

〈z, w〉 iff x <Z z and y <Z w and 〈x, y〉 ≤Z×Z 〈z, w〉
iff x ≤Z z and y ≤Z w. It is easy to see that <Z×Z is
not reflexive nor complete and is transitive and an-
tisymmetric while ≤Z×Z is reflexive, transitive and
antisymmetric but not complete. According to such
orderings some elements of Z × Z are ordered (e.g.
〈1, 2〉 <Z×Z 〈3, 4〉) while others are incomparable (e.g.
〈5, 3〉 is incomparable with 〈2, 8〉).

As an example of partial order with ties consider
the following defined on triples in Z × Z × Z. Given
〈x1, y1, z1〉 and 〈x2, y2, z2〉 in Z × Z × Z, we say
〈x1, y1, z1〉 ≤ 〈x2, y2, z2〉 iff 〈y1, z1〉 ≤Z×Z 〈y2, z2〉. In
other words we are indifferent to the value of the first
component. In this case we will have elements that
are respectively ordered , as 〈2, 3, 4〉 < 〈1, 5, 6〉, or in-
comparable, as 〈2, 3, 4〉 and 〈2, 1, 5〉 or indifferent, as
〈1, 2, 3〉 and 〈2, 2, 3〉.

3 Preferences

A number of formalisms have been proposed for rep-
resenting and reasoning about preferences of a single
agent. Common to all is that they induce some sort
of partial or total ordering, possibly with ties, on the
outcomes. For example, soft constraints can model
quantitative preferences [2, 10]. Each constraint as-
sociates a preference value to each assignment of its
variables. To model preference ordering and aggrega-
tion, the set of possible preference values is the carrier
of a semiring, whose two operations state how to order
values in the set and how to combine values to obtain
new preferences. A complete assignment of values to
variables is associated to a preference value by com-
bining the preferences of each partial assignment in
each constraint via the combination operation of the
semiring. In general, the order induced on the pref-
erences via this approach is a partial order with ties.
Assignments with the same preference are naturally
interpreted as ties.

Soft constraints can also represent hard statements,
as in ”I need to be back before 8pm”: it is enough
to take a set with just two preferences values (that
can be interpreted as true and false), order them via
logical or (thus true is better than false and we have

a total order), and combine them via logical and (so
an assignment has preference true if all constraints
have preference true, and it is said to be consistent;
an assignment has preference false, and it is said to
be inconsistent, if some of the constraints have pref-
erence false). In this case, the ordering induced over
the complete assignments is a total order with ties:
all consistent assignments have preference true (thus
they are all indifferent) and are better than all incon-
sistent assignments (which again are indifferent among
them).

Another formalism for representing preferences is
CP nets [3, 4]. They are a compact mechanism to
model conditional qualitative preferences (as in ”If I
take the fish course, I prefer white wine over red”)
which satisfy the ceteris paribus or “all other things
being equal” property. A dependency graph in a CP
net states the relation among the features of the prob-
lem. Each feature X has a domain of possible values
and some parent features Pa(X) on which it depends
on: given any complete assignment to Pa(X), CP nets
state a total order for the values in the domain of X (in
a structure called a CP conditional preference table).
Such a total order represents the preference order on
the values of X given the values of its parents, all else
being equal. A CP net induces an ordering over the
complete assignments of all its features: an assignment
O is better than another one O′ if there is a chain of
improving flips from O to O′, where an improving flip
is a change of the value of one feature that improves
the preference according to some preference table in
the CP net. Such an ordering is in general partial and
does not have ties.

Partial CP nets [9] do not require that all features
are ranked. This allows one to represent situations
as in ”I am indifferent to the color of the car”. This
means that the ordering induced by a partial CP net
over its outcomes is in general a partial ordering with
ties. In fact, there could be flips which are neither
improving nor worsening, since they change the value
of a non-ranked feature.

4 Aggregating preferences

There are many situations in which we need to com-
bine the preferences of multiple agents. A number of
mechanisms exist for preference aggregation [5, 11].
One possibility is to run an election in which each
agent votes on how they rank every pair of outcomes.
In [9], we assume that each agent represents their pref-
erences with a partial CP net and then votes on how
outcomes should be ordered. However, the agents can
just as easily represent their individual preferences
with soft constraints or any other formalism for repre-
senting preferences. We need, however, to specify how
their votes are collected together into a result.



As in voting theory, the orderings of the agents is
called a profile. A voting system is then a function
mapping profiles onto a result (a partial ordering). In
[9], we discuss a number of different voting rules for
when agents vote with partial orders.

Pareto: One outcome α is better than another β

(written α �p β) iff every agent says that α � β

or α ≈ β. Two outcomes are incomparable iff
they are not ordered either way. An outcome is
Pareto optimal iff no other outcome is better.

Majority: One outcome α is majority better than
another β (written α �maj β) iff the number of
agents which say that α is better than β is greater
than the number of agents which say the oppo-
site plus the number of those that say that α and
β are incomparable. Two outcomes are major-
ity incomparable iff they are not ordered either
way. An outcome is majority optimal iff no other
outcome is majority better.

Max: One outcome α is max better than another β

(written α �max β) iff more agents vote in favor
than against or for incomparability. Two out-
comes are max incomparable iff they are not or-
dered either way. An outcome is max optimal iff
no other outcome is max better.

Lex: This rule assumes the agents are ordered in im-
portance. One outcome α is lexicographically
better than another β (written α �lex β) iff there
exists some agent A such that all agents higher
in the order say α ≈ β and A says α � β.
Two outcomes are lexicographically incompara-
ble iff there exists some distinguished agent such
that all agents higher in the ordered are indiffer-
ent between the two outcomes and the outcomes
are incomparable to the distinguished agent. Fi-
nally, an outcome is lexicographically optimal iff
no other outcome is lexicographically better.

Rank: Each agent gives a numerical rank to each out-
come. For example, in a partial CP net, the rank
of an outcome is zero if the outcome is optimal,
otherwise it is the length of the shortest chain of
worsening flips between one of the optimal out-
comes and it. We say that one outcome α is rank
better than another β (written α �r β) iff the
sum of the ranks assigned to α is smaller than
that assigned to β. Two outcomes are rank indif-
ferent iff the sum of the ranks assigned to them
are equal. Either two outcomes are rank indiffer-
ent or one must be rank better than the other.
Finally, an outcome is rank optimal iff no other
outcome is rank better.

The Pareto, and Lex rules define strict partial or-
derings if the agents have a strict partial order, while

if the agents have a partial order with ties then these
rules define a partial order without ties. The Rank
rule, instead, no matter what the agents use to rep-
resent their preferences (strict partial order or partial
order with ties) defines a total order with ties. Maj
and Max are irreflexive and antisymmetric but may be
not transitive. However, they all have at least one op-
timal element. Notice that in all the five rules, except
Rank, it is not possible for two outcomes to be indiffer-
ent, since we assume that each feature is ranked by at
least one of the partial CP nets, while indifference in
the qualitative relations (Pareto, Max, Majority, and
Lex) means indifference for everybody. In all these
voting rules, except Rank, the result of aggregating
preferences is itself a partial order.

5 Arrow’s impossibility theorem

The voting rules described in the previous section
show that one can combine preferences in many dif-
ferent ways, obtaining a result which itself may be a
partial or total order. How can we be sure that we are
accurately and fairly combining together the agents’
preferences? In voting theory, one property of an elec-
tion which is highly desirable is fairness. Given a set
of voters and a set of outcomes, and assuming each
voter gives a total order with ties of the outcomes and
the result is a total order with ties, the fairness of a
voting system is defined [1] as the coexistence of the
following properties:

Freeness: it is possible to obtain any possible result;

Independence to irrelevant alternatives: the
relation between A and B in the resulting
ordering depends only on the relation between A

and B given by the agents;

Monotonicity: if an agent moves up the position of
one outcome in her ordering, then (all else being
equal) such an outcome cannot move down in the
result;

Non-dictatorial: there is no voter such that, no
matter what the others vote, her ordering is the
result.

These properties are all very reasonable and desirable
also for preference aggregation. Unfortunately, a fun-
damental result in voting theory is Arrow’s impossi-
bility theorem [1] which shows that no voting system
on total orders with ties can be fair. In particular,
given at least two voters and three outcomes, freeness,
monotonicity, and independence of irrelevant assump-
tions, implies there must be at least one dictator.

A related notion is the concept of unanimity for
a voting system: if all agents agree about the rela-
tion between A and B (A can be either better, worse,



or indifferent to B), then the result must agree as
well. It is possible to show that monotonicity and in-
dependence to irrelevant alternatives imply unanim-
ity, whilst voting systems can be free, unanimous and
independent to irrelevant alternatives but not mono-
tonic [11]. Therefore a stronger version of Arrow’s
result can be obtained by proving that freeness, una-
nimity and independence of irrelevant assumptions,
implies that there must be at least one dictator [6].

6 Fairness of preference aggregation

Arrow’s theorem does not directly apply to aggregat-
ing preferences as voters are assumed to have a total
ordering with ties. As we described earlier, prefer-
ence orderings may be partial. In addition, they may
have other restrictions. For example, CP nets can
only represent orderings which decompose into inde-
pendent conditional CP statements, whereas voters in
an election can order their votes in any way. We first
generalize the defintion of dictatorship to deal with
the introduction of incomparability when we go from
total to partial orders. We will consider three different
ways to define a dictator for a voting system involving
partial orders.

Strong dictator: there is a voter such that, no mat-
ter what the others vote, her ordering is the re-
sult;

Dictator: there is a voter such that, no matter what
the others vote, if she says A is better than B

then the resulting ordering has A better than B;

Weak dictator: there is a voter such that, no matter
what the others vote, if she says A is better than
B then the resulting ordering does not have B

better than A.

If a strong dictator says A is incomparable to B then
A is also incomparable to B in the result. This is not
necessarily the case with a dictator or weak dictator.
On the other hand, if a weak dictator says A is better
than B, then in the result A may be better than B or
A incomparable to B. Clearly a strong dictator is a
dictator, and a dictator is a weak dictator. Note also
that whilst there can only be one strong dictator or
dictator, there can be any number of weak dictators.

We first show that the absence of a strong dictator
is a very weak property to demand of a voting system
in which the resulting ordering is a partial order. Even
an “unfair” voting system like the Lex rule, which ex-
plicitly favours a particular agent, is not strong dicta-
torial.

Lemma 1 Given a set of voters and a set of out-

comes, and assuming each voter gives a partial order

with ties of the outcomes, and the result is a partial

order with ties, a voting system can be free, mono-

tonic, independent of irrelevant assumptions, and not

have a strong dictator.

The Lex rule on partial orders with ties is free,
monotonic, and independent to irrelevant assump-
tions. The absence of a strong dictator might seem
to be in contradiction to the nature of a Lex rule as
there is a most important agent. However, such an
agent does not dictate incomparability, since whatever
is left incomparable by this agent can then be ordered
by some less important agent. Notice that the first
agent in the Lex ordering is always a dictator since if
she states that A is better than B then A is better
than B in the result. However, there are fairer voting
systems on partial orders which are not dictatorial.

Lemma 2 Given a set of voters and a set of out-

comes, and assuming each voter gives a partial order

with ties of the outcomes, and the result is a partial

order with ties, a voting system can be free, mono-

tonic, independent of irrelevant assumptions, and is

not dictatorial.

For example, the Pareto rule on partial orders with
ties is free, monotonic, transitive, independent to irrel-
evant assumptions, and is not dictatorial. A particular
agent can only force the result by stating the incom-
parability of all possible outcomes. However, this is
not considered to be dictatorial according to our defi-
nition of dictatorship. Unfortunately, this appears to
be as fair as a voting system on partial orders can
be. In the next section, we will show that any voting
system on partial orders must have one or more weak
dictators.

7 Existence of weak dictators

We will prove a more general result, from which fol-
lows the existence of weak dictators in voting systems
on a certain class of partial orders, and the existence
of dictators in voting systems on total orders (Arrow’s
impossibility theorem). We will show that it is impos-
sible for a voting system where voters give preferences
as partial orders with a unique top and bottom, and
the result is a partial order with a unique top or unique
bottom, to be fair. This result holds also if we restrict
the result to be a total order, since a total order is
just a special case of a partial order with unique top
or bottom. Moreover, the same result holds also when
agents use just total orders, since the proof is very
similar. Similar arguments can be used to show that
these last two results imply Arrow’s impossibility the-
orem. We thus have a lattice of four results.

Let us call uPO a partial order with unique top or
bottom, uuPO a partial orderw with unique top and
unique boottom, and TO a total order. Then, let us
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n

TO TO 
n

TO uPO 
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Figure 1: Lattice of impossibility results. uPO

stands for partial order with unique top or bottom,
uuPO stands for partial order with unique top and
unique bottom, TO stands for total order. Arrow’s
theorem applies to TOn 7→ TO. ↙ and ↘ stand for
the lattice ordering.

denote An → B, where A, B ∈ {uPO, uuPO, TO}, a
voting system where agents can give an ordering of
type A and the result can be of type B. Then we
have the lattice of impossibility results for the voting
systems as described by Figure 1. The lattice oredring
can be defned as follows: A → B ≤ A′ → B′ iff A ⊆ A′

or B ⊆ B′.
We show now that the top element of this lattice

must be unfair. It follows then by the arguments given
above that any other element in the lattice must be
unfair.

We will prove that freeness, unanimity, and inde-
pendence of irrelevant assumptions implies that there
must be at least one weak dictator. Since monotonic-
ity and independence of irrelevant alternatives im-
plies unanimity, it follows that freeness, monotonic-
ity, and independence of irrelevant alternative implies
that there must be at least one weak dictator.

Theorem 1 Consider a set of voters and a set of out-

comes, and assume that:

• each voter gives a uuPO of the outcomes,

• the result is a uPO,

• there are at least 2 voters and 3 outcomes,

• the voting system is free, unanimous, and inde-

pendent to irrelevant alternatives

then there is at least one weak dictator.

Proof: The proof is similar in outline to that of Ar-
row’s theorem. However we must adapt each step to
this more general context. We first assume the result-
ing ordering is a PO with a unique bottom. The proof
can then be repeated very similarly for the other case
in which the resulting ordering is a PO with unique
top.

1. First we prove that, if a element B is top or bot-
tom in all uuPOs of the voters, then it must be
a top or bottom element in the resulting uPO. If
B is not a top or bottom element in the result,
there must be other elements A and C such that
A > B > C. We will now adjust the votes so
that C is above A for all voters. Since we have
uuPOs, we can always do that while keeping B

at the extreme position and not changing the or-
dering relation between A and B and between C
and B.

By unanimity we must have C above A in the
result. By independence, we still have A > B

and B > C. By transitivity, we have A > C

which is a contradiction.

2. There is a pivotal voter n∗ such that, when he
moves B from bottom to top, the same change
happens in the result.

Assume all voters have B as the bottom. Then, B

must be at the bottom in the result by unanimity.
Let n∗ be the first voter such that, when B moves
from bottom to top, this happens in the result.
n∗ must exist, because when all voters move B

from bottom to top, by unanimity in the result
we must have B at the top.

3. n∗ is a weak dictator for pairs of elements not
involving B.

Let us consider the following scenarios in the con-
text of moving B from the bottom to the top of
each voters ranking.

Π1: B is still the bottom of n∗. In the result,
B is the bottom element so we must have,
A > B for all A.

Π2: B has been moved to the top of n∗. In the
result, B is a top element so we must have,
B > C or B incomparable to C for all C.

Π3: As in Π2 but A has now been moved above B

in n∗ (and thus also above C), and all other
voters move freely A and C leaving B in the
top or bottom position.

By independence to irrelevant alternatives, A >

B must be the result of Π3, since all the AB votes
are the same as in Π1. Also, B > C or B incom-
parable to C must be in the result of Π3, since all
BC votes are the same as in Π2. By transitivity,
the result of Π3 cannot have C > A since it would
imply C > B which is contradictory with the as-
sumption that B and C are either incomparable
or B > C. Thus n∗ is a weak dictator.

4. There exists n′ which is a weak dictator for pairs
with no C. We can use the same construction as
above but with C in place of B.



5. We show now that n∗ = n′. On total orders, there
can be only one dictator so it follows immediately
that n∗ = n′. With partial orders, there can be
more than one weak dictator.

Without loss of generality, assume n∗ ≤ n′. Sup-
pose that n∗ < n′. Let us consider the following
scenarios: we start with all voters having B at the
bottom and C at the top. Then we swap B and
C in each orderings, going through the voters in
the same order as in the previous constructions.
When we move B up for n∗, B goes to the top
in the result (by the previous part of the proof).
C goes down for n∗, and in the result it can go
down down as well, in which case we would have
n∗ = n′ and thus a contradiction. Otherwise, C

could stay at the top together with B. Recall that
the result is a PO with a unique bottom, so we
can have several top elements. If this is the case,
take any A between B and C in n∗. Now A > C

in n∗, so it must be A > C or A incomparable
to C in the result, since n∗ is a weak dictator for
pairs with no B. But if C is at the top, this can
happen only if A is either incomparable to C and
B, or A < B. So, it cannot be B < A. Therefore
n∗ is a weak dictator for pairs not involving C.
We can therefore conclude that n∗ = n′, which is
a contradiction with the fact that n∗ < n′.

2

As with total orders, we can prove that freeness,
monotonicity and independence to irrelevant alterna-
tives implies unanimity.

Theorem 2 Consider a set of voters and a set of out-

comes, and assume that:

• each voter gives a uuPO of the outcomes,

• the result is a uPO with ties,

• there are at least 2 voters and 3 outcomes.

• the voting system is free, monotonic, and inde-

pendent to irrelevant alternatives

then there is at least one weak dictator.

Proof: Suppose the voting system is free and mono-
tonic, and that A ≥ B for all voters. If A is moved to
the top of the ordering for all voters then, by indepen-
dence to irrelevant alternatives, this leaves the result
between A and B unchanged. Suppose in the result
A < B or A is incomparable to B. By monotonicity,
any change to the votes of A over B will not help en-
sure A ≥ B. Hence, the election cannot be free. Thus
it must be A ≥ B in the result. The voting system is
therefore unanimous. By the last theorem, there must
be at least one weak dictator. 2

We consider again the five voting rules described
in Section 4 and identify which are affected by this
result.

• Maj and Max are not transitive, so they do not
generate a uPO as required by the theorem;

• Lex has a weak dictator, which is the most im-
portant agent;

• Rank is not independent to irrelevant alterna-
tives;

• in the Pareto rule every agent is a weak dictator.

Note that we could consider also another class of vot-
ing rules which modifies Pareto by applying the Pareto
rule only to a strict subset of the agents, and ignore
the rest. The agents in the subset will then all be weak
dictators, so also this voting system is not weakly fair.

One way around the limitations of Arrow’s theo-
rem is to restrict the type of election to one which
can be fair. For example, one of the hypotheses of
Arrow’s theorem is that there are three or more out-
comes. With just two outcomes, a voting system on
total orders can be fair. For instance, the majority
rule on total orders with a tie-breaking rule for an
even number of voters is free, monotonic, independent
to irrelevant alternatives and non-dictatorial.

8 Constrained preferences and Social
choice

In many situations, we will have constraints as well
as preferences. For example, we may wish to find the
most preferred roster for the nurses which satisfies all
the hard constraints like union rules. We then need to
find those feasible outcomes which are undominated.
One method to do this is to collect all the feasible out-
comes, and order them. From a computational per-
spective, such a strategy may be very expensive. We
will have to collect all the feasible outcomes (which
is computationally expensive), ask each agent to com-
pare them (which can be computationally expensive
in formalisms like CP-nets), and then combine these
votes. In collaboration with Steve Prestwich, we are
currently exploring an alternative and computation-
ally more attractive solution in which we compile the
preferences into additional hard constraints. The so-
lutions of the compiled problem are guaranteed to be
feasible and undominated.

If we do not have any additional constraints, we
may only be interested in the best outcome for all the
agents. Such a situation can be described by means
of a social choice function. A social choice func-
tion is a mapping from a profile to one outcome, the
optimal outcome. The Muller-Satterthwaite theorem



is a generalization of Arrow’s theorem on total or-
ders which shows that a dictator is inevitable if we
have two agents, three or more outcomes and the so-
cial choice function collecting votes is unanimous and
monotonic [8]. With a partial order, there can be sev-
eral outcomes which are incomparable and optimal.
We can therefore consider a generalization of social
choice functions. A social choices function f is a
mapping from a profile to a non-empty set of out-
comes, the optimal outcomes.

We say that a social choices function f is unan-

imous iff when the outcome A is optimal for each
agent in Π then A ∈ f(Π), is monotonic iff given
two profiles Π and Π′ in which A ∈ f(Π), and for
any B O′

i in Π′ ranks A better than B whenever Oi

in Π does then A ∈ f(Π′), and is weak dictatorial

iff there is an order Oi in Π and A is optimal in Oi

implies A ∈ f(Π). For example, consider the social
choices function f(Π) which returns the set of opti-
mals for each order Oi in Π. This is unanimous and
monotonic. In addition, every agent in the profile is
a weak dictator. It is an interesting open question if
the Muller-Satterthwaite theorem can be generalized
to social choices functions. That is, are weak dictators
inevitable if we have two or more agents, three or more
outcomes and the social choices function is unanimous
and monotonic? A further extension would be to the
generalization of the Gibbard-Statterthwaite theorem
[7]. That is, are weak dictators inevitable if we have
at least two agents and three outcomes, and the social
choices function is strategy proof and onto. A social
choice function is strategy proof if it is best for each
agent to order outcomes as they prefer and not to try
to vote tactically.

9 Conclusions and future work

Many real-world problems involve constraints and
preferences. Preferences typically define a partial or-
dering over outcomes. A number of formalisms like
soft constraints and CP-nets exists to specify such par-
tial orderings. In situations involving multiple agents,
we need a mechanism to combine the preferences of
several individuals. We have considered each agent
as voting on whether they prefer one outcome to an-
other. We have proved that if there are at least two
agents and three outcomes to order, a preference ag-
gregation system canot be fair if agents use partial
orders with a unique top and unique bottom, and the
result is a partial order with a unique top or bottom.
This result generalizes Arrow’s impossibility theorem
for combining total orders [1].

Fairness is just one of the desirable properties for
a preference aggregation system. As we discussed
earlier, an interesting open question is whether vot-
ing systems on partial orders can have other desir-

able properties. For example, can they encourage
non-tactical voting? Are they non-manipulable? An-
other direction is to identify restricted types of pref-
erences which can fairly combined. For example, is
there a generalization of “single-peakedness” from to-
tal to partial orders which would permit preference
aggregation to be fair? A third direction is developing
methods to reason about preferences and constraints
simultaneously. We are currently exploring mecha-
nisms which compile preferences into additional hard
constraints. The solutions of such compiled problems
are guaranteed to be feasible and undominated.
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