
LAC2005 Proceedings

3rd International Linux Audio Conference

April 21 – 24, 2005

ZKM | Zentrum für Kunst und Medientechnologie

Karlsruhe, Germany

Published by
ZKM | Zentrum für Kunst und Medientechnologie

Karlsruhe, Germany
April, 2005

All copyright remains with the authors
www.zkm.de/lac/2005

Content

Preface . 5

Staff . 6

Thursday, April 21, 2005 – Lecture Hall

11:45 AM Peter Brinkmann

MidiKinesis – MIDI controllers for (almost) any purpose . 9

01:30 PM Victor Lazzarini

Extensions to the Csound Language: from User-Defined to
Plugin Opcodes and Beyond . 13

02:15 PM Albert Gräf

Q: A Functional Programming Language for Multimedia Applications 21

03:00 PM Stéphane Letz, Dominique Fober and Yann Orlarey

jackdmp: Jack server for multi-processor machines .29

03:45 PM John ffitch

On The Design of Csound5 .37

04:30 PM Pau Arumı́ and Xavier Amatriain

CLAM, an Object Oriented Framework for Audio and Music 43

Friday, April 22, 2005 – Lecture Hall

11:00 AM Ivica Ico Bukvic

“Made in Linux” – The Next Step . 51

11:45 AM Christoph Eckert

Linux Audio Usability Issues . 57

01:30 PM Marije Baalman

Updates of the WONDER software interface for using Wave Field Synthesis . . . 69

02:15 PM Georg Bönn

Development of a Composer’s Sketchbook . 73

Saturday, April 23, 2005 – Lecture Hall

11:00 AM Jürgen Reuter

SoundPaint – Painting Music . 79

11:45 AM Michael Schüepp, Rene Widtmann, Rolf “Day” Koch and

Klaus Buchheim

System design for audio record and playback with a computer using FireWire . 87

01:30 PM John ffitch and Tom Natt

Recording all Output from a Student Radio Station . 95

LAC2005
3

02:15 PM Nicola Bernardini, Damien Cirotteau, Free Ekanayaka and

Andrea Glorioso

AGNULA/DeMuDi – Towards GNU/Linux audio and music 101

03:00 PM Fernando Lopez-Lezcano

Surviving On Planet CCRMA, Two Years Later And Still Alive 109

Saturday, April 23, 2005 – Media Theater

11:00 AM Julien Claassen

Linux As A Text-Based Studio . 115

11:45 AM Frank Eickhoff

“terminal rasa” – every music begins with silence . 121

01:30 PM Werner Schweer and Frank Neumann

The MusE Sequencer: Current Features and Plans for the Future127

02:15 PM Nasca Octavian Paul

ZynAddSubFX – an open source software synthesizer . 131

03:00 PM Tim Janik

Music Synthesis Under Linux . 137

Sunday, April 24, 2005 – Lecture Hall

11:00 AM Davide Fugazza and Andrea Glorioso

AGNULA Libre Music – Free Software for Free Music .141

11:45 AM Dave Phillips

Where Are We Going And Why Aren’t We There Yet? .147

LAC2005
4

Preface

We are very happy to welcome you to the 3rd International Linux Audio Con-
ference. It takes place again at the ZKM | Institute for Music and Acoustics in
Karlsruhe/Germany, on April 21-24, 2005.

The “Call for Papers” which has resulted in the proceedings you hold in your hands
has changed significantly compared to the previous LAC conferences because this
time we were asking for elaborated papers rather than short abstracts only. We
are very glad that in spite of this new hurdle we have received quite a lot of paper
submissions and we are confident that many people will appreciate the efforts which
the authors have put into them. Each paper has been reviewed by at least 2 experts.
Many thanks go to the authors and reviewers for their great work!

We hope that the 2005 conference will be as successful and stimulating as the
previous ones and we wish you all a pleasant stay.

Frank Neumann and Götz Dipper
Organization Team LAC2005

Karlsruhe, April 2005

The International Linux Audio Conference 2005 is sponsored by

LAC2005
5

Staff

Organization Team LAC2005

Götz Dipper ZKM | Institute for Music and Acoustics
Frank Neumann LAD

ZKM

Marc Riedel Organization of LAC2005 Concerts/Call for Music

Jürgen Betker Graphic Artist
Hartmut Bruckner Sound Engineer
Ludger Brümmer Head of the Institute for Music and Acoustics
Uwe Faber Head of the IT Department
Hans Gass Technical Assistant
Joachim Goßmann Tonmeister
Achim Heidenreich Event Management
Martin Herold Technical Assistant
Martin Knötzele Technical Assistant
Andreas Liefländer Technical Assistant
Philipp Mattner Technical Assistant
Alexandra Mössner Assistant of Management
Caro Mössner Event Management
Chandrasekhar Ramakris-
hnan

Software Developer

Martina Riedler Head of the Event Department
Thomas Saur Sound Engineer
Theresa Schubert Event Management
Joachim Schütze IT Department
Bernhard Sturm Production Engineer
Manuel Weber Technical Director of the Event Department
Monika Weimer Event Management
Susanne Wurmnest Event Management

LAD

Matthias Nagorni SUSE LINUX Products GmbH
Jörn Nettingsmeier Coordination of the Internet Audio Stream

Relay Servers
Marco d’Itri Italian Linux Society
Eric Dantan Rzewnicki Radio Free Asia, Washington

Chat Operator
Sebastian Raible

Icecast/Ices Support
Jan Gerber
Karl Heyes Xiph.org

LAC2005
6

Paper Reviews
Fons Adriaensen Alcatel Space, Antwerp/Belgium
Frank Barknecht Deutschlandradio, Köln/Germany
Ivica Ico Bukvic University of Cincinnati, Ohio/USA
Paul Davis Linux Audio Systems, Pennsylvania/USA
François Déchelle France
Steve Harris University of Southampton, Hampshire/UK
Jaroslav Kysela SUSE LINUX Products GmbH, Czech Republic
Fernando Lopez-Lezcano CCRMA/Stanford University, California/USA
Jörn Nettingsmeier Folkwang-Hochschule Essen/Germany
Frank Neumann Karlsruhe/Germany
Dave Phillips Findlay, Ohio/USA

(In alphabetical order)

LAC2005
7

LAC2005
8

MidiKinesis — MIDI controllers for (almost) any purpose

Peter Brinkmann
Technische Universität Berlin

Fakultät II – Mathematik und Naturwissenschaften
Institut für Mathematik

Sekretariat MA 3-2
Straße des 17. Juni 136

D-10623 Berlin
brinkman@math.tu-berlin.de

Abstract

MidiKinesis is a Python package that maps MIDI
control change events to user-defined X events, with
the purpose of controlling almost any graphical user
interface using the buttons, dials, and sliders on a
MIDI keyboard controller such as the Edirol PCR-
30. Key ingredients are Python modules providing
access to the ALSA sequencer as well as the XTest
standard extension.

Keywords

ALSA sequencer, MIDI routing, X programming,
Python

1 Introduction

When experimenting with Matthias Nagorni’s
AlsaModularSynth, I was impressed with its
ability to bind synth parameters to MIDI events
on the fly. This feature is more than just a
convenience; the ability to fine-tune parameters
without having to go back and forth between
the MIDI keyboard and the console dramati-
cally increases productivity because one can ad-
just several parameters almost simultaneously,
without losing momentum by having to navi-
gate a graphical user interface. Such a feature
can make the difference between settling for a
“good enough” choice of parameters and actu-
ally finding the “sweet spot” where everything
sounds just right.

Alas, a lot of audio software for Linux does
not expect any MIDI input, and even in pro-
grams that can be controlled via MIDI, the act
of setting up a MIDI controller tends to be less
immediate than the elegant follow-and-bind ap-
proach of AlsaModularSynth. I set out to build
a tool that would map MIDI control change
events to GUI events, and learn new mappings
on the fly. The result was MidiKinesis, the sub-
ject of this note. MidiKinesis makes it possible
to control almost any graphical user interface
from a MIDI controller keyboard.

2 Basics

Before implementing MidiKinesis, I settled on
the following basic decisions:

• MidiKinesis will perform all its I/O
through the ALSA sequencer (in particular,
no reading from/writing to /dev/midi*),
and it will act on graphical user interfaces
by creating plain X events.

• MidiKinesis will be implemented in Python
(Section 8), with extensions written in C as
necessary. Dependencies on nonstandard
Python packages should be minimized.

Limiting the scope to ALSA and X effectively
locks MidiKinesis into the Linux platform (it
might work on a Mac running ALSA as well as
X, but this seems like a far-fetched scenario),
but I decided not to aim for portability because
MidiKinesis solves a problem that’s rather spe-
cific to Linux audio.1 The vast majority of Mac
or Windows users will do their audio work with
commercial tools like Cubase or Logic, and their
MIDI support already is as smooth as one could
possibly hope. The benefit of limiting MidiKi-
nesis in this fashion is a drastic simplification of
the design; at the time of this writing, MidiKi-
nesis only consists of about 2000 lines of code.

When I started thinking about this project,
my first idea was to query various target pro-
grams in order to find out what widgets their
user interfaces consist of, but this approach
turned out to be too complicated. Ultimately,
it would have required individual handling of
toolkits like GTK, Qt, Swing, etc., and in many
cases the required information would not have
been forthcoming. So, I decided to settle for

1I did put a thin abstraction layer between low-level
implementation details and high-level application code
(Section 3), so that it is theoretically possible to rewrite
the low-level code for Windows or Macs without breaking
the application code.

LAC2005
9

the lowest common denominator — MidiKine-
sis directly operates on the X Window System,
using the XTest standard extension to generate
events. I expected this approach to be some-
what fragile as well as tedious to calibrate, but
in practice it works rather well (Section 5).

For the purposes of MidiKinesis, Python
seemed like a particularly good choice because
it is easy to extend with C (crucial for hook-
ing into the ALSA sequencer and X) and well
suited for rapidly building MIDI filters, GUIs,
etc. Python is easily fast enough to deal with
MIDI events in real time, so that performance
is not a concern in this context. On top of
Python, MidiKinesis uses Tkinter (the de facto
standard toolkit for Python GUIs, included in
many Linux distributions), and ctypes (Sec-
tion 8) (not a standard module, but easy to
obtain and install).

3 The bottom level

At the lowest level, the modules pyseq.py and
pyrobot.py provide access to the ALSA se-
quencer and the XTest library, respectively.
There are many ways of extending Python with
C, such as the Python/C API, Boost.Python,
automatic wrapper generators like SIP or
SWIG, and hybrid languages like pyrex. In
the end, I chose ctypes because of its abil-
ity to create and manipulate C structs and
unions. This is crucial for working with ALSA
and X since both rely on elaborate structs and
unions (snd seq event t and XEvent) for pass-
ing events.

3.1 Accessing the ALSA sequencer
The module pyseq.py defines a Python shadow
class that provides access to the full sequencer
event struct of ALSA (snd seq event t).
Moreover, the file pyseq.c provides a few
convenience functions, most importantly
midiLoop(...), which starts a loop that waits
for MIDI events, and calls a Python callback
function when a MIDI event comes in.

The module pyseq.py also provides an ab-
straction layer that protects application pro-
grammers from such implementation details.
To this end, pyseq.py introduces the following
classes:

PySeq manages ALSA sequencer handles, and
it provides methods for creating MIDI
ports, sending MIDI events, etc. Applica-
tion programmers will subclass PySeq and
override the methods init (called by the

constructor) and callback (called when a
MIDI event arrives at an input port of the
corresponding sequencer).

MidiThread is a subclass of
threading.Thread that provides sup-
port for handling incoming MIDI events
in a separate thread. An instance of
MidiThread keeps a pointer to an instance
of PySeq whose callback method is called
when a MIDI event comes in.

Using this class structure, a simple MIDI fil-
ter might look like this:

from pyseq import *

class MidiTee(PySeq):
def init(self, *args):

self.createInPort()
self.out=self.createOutPort()

def callback(self, ev):
print ev
self.sendEvent(ev, self.out)
return 1

seq=MidiTee(’miditee’)
t=MidiThread(seq)
t.start()
raw_input(’press enter to finish’)

This filter acts much like the venerable tee
command. It reads MIDI events from its in-
put port and writes them verbatim to its out-
put port, and it prints string representations of
MIDI events to the console. The last line is nec-
essary because instances of MidiThread are, by
default, daemon threads.

Once started, an instance of MidiThread
will spend most of its time in the C function
midiLoop, which in turn spends most of its time
waiting for events in a poll(...) system call.
In other words, instances of MidiThread hardly
put any strain on the CPU at all.

3.2 Capturing and sending X events
Structurally, the module pyrobot.py is quite
similar to pyseq.py. It uses ctypes to create a
Python shadow class for the XEvent union of X,
and it introduces a simple abstraction layer that
protects application programmers from such de-
tails. The main classes are as follows:

PyRobot is named after Java’s
java.awt.Robot. It provides basic function-
ality for capturing and sending X events.

LAC2005
10

Script uses PyRobot to record and play se-
quences (scripts) of mouse and keyboard
events.

The following code records a sequence of
mouse and keyboard events and replays it.

from pyrobot import *

R=PyRobot()
S=Script()
print ’record script, press Escape’
S.record(R)
raw_input(’press enter to replay’)
S.play(R)

4 The top level

The module midikinesis.py is the main ap-
plication of the package. It waits for incom-
ing MIDI control change events. If it receives a
known event, it triggers the appropriate action.
Otherwise, it asks the user to assign one of six
possible mappings to the current event:

Button maps a button on the MIDI keyboard
to a sequence of X events (Section 3.2)
that the user records when setting up this
sort of mapping. This sequence will typi-
cally consist of mouse motions, clicks, and
keystrokes, but mouse dragging events are
also admissible.
It is also possible to assign Button map-
pings to dials and sliders on the keyboard.
To this end, one defines a threshold value
between 0 and 127 (64 is the default) and
chooses whether a rising edge or a falling
edge across the threshold is to trigger the
recorded sequence of X events.

Slider maps MIDI events from a slider or dial
on the MIDI keyboard to mouse dragging
events along a linear widget (such as a
linear volume control or scrollbar). For
calibration purposes, midikinesis.py asks
the user to click on the bottom, top, and
current location of the widget. Hydrogen
and jamin are examples of audio software
with widgets of this kind. The button used
to click on the bottom location determines
the button used for dragging.

Selection divides the range of controller values
(0 . . . 127) into brackets, with each bracket
corresponding to a mouse click on a user-
defined location on the screen. It primarily
targets radio buttons.

Counter handles counter widgets whose val-
ues are changed by repeatedly clicking on
up/down arrows. Specimen uses widgets of
this kind. Counter mappings are calibrated
by clicking on the location of the up/down
arrows and by specifying a step size, i.e.,
the number of clicks that a unit change of
the controller value corresponds to.

Circular Dial behaves much like Slider, ex-
cept it drags the mouse in a circular mo-
tion. amSynth has dials that work in this
fashion.

Linear Dial sounds like an oxymoron, but the
name merely reflects the dual nature of
the widgets that it targets. To wit, there
are widgets that look like dials on the
screen, but they get adjusted by pressing
the mouse button on the widget and drag-
ging the mouse up or down in a linear mo-
tion. Rosegarden4, ZynAddSubFX, and
Hydrogen all have widgets of this kind.

These six mappings cover most widgets that
commonly occur in Linux audio software. But-
ton mappings are probably the most general as
well as the least obvious feature. Here is a sim-
ple application of some of Button mappings, us-
ing Rosegarden4:

• Map three buttons on the MIDI keyboard
to mouse clicks on Start, Stop, and Record
in Rosegarden4.

• Map a few more buttons to mouse clicks on
different tracks in Rosegarden4, followed by
the Delete key.

Pressing one of the latter buttons will acti-
vate and clear a track, so that it is possible to
record a piece consisting of several tracks (and
to record many takes of each track) without
touching the console after the initial calibration.

5 Subtleties

One might expect the approach of mapping
MIDI events to plain X events to be rather frag-
ile because simple actions like moving, resizing,
or covering windows may break existing map-
pings. In practice, careful placement of applica-
tion windows on the desktop will eliminate most
problems of this kind. Moreover, MidiKinesis
provides a number of mechanisms that increase
robustness:

• MidiKinesis computes coordinates of
X events relative to a reference point. If

LAC2005
11

all mappings target just one window, then
one makes the upper left-hand corner of
this window the reference point, and if the
window moves, one only needs to update
the reference point.

• The notion of reference points also makes
it possible to save mappings to a file and
restore them later.

• It helps to start one instance of MidiKine-
sis for each target window, each with its
individual reference point. This will re-
solve most window placement issues. In
order to make this work, one launches and
calibrates them individually. When an in-
stance of MidiKinesis has been set up, one
tells it to ignore unknown events and moves
on to the next instance. Like this, instances
of MidiKinesis won’t compete for the same
MIDI events.

• Instances of MidiKinesis only accept events
whose channel and parameter match cer-
tain patterns.2 By choosing different pat-
terns for different instances of MidiKinesis,
one keeps them from interfering with each
other, while each still accepts new map-
pings.

6 Fringe benefits

Using the module pyseq.py, one can rapidly
build MIDI filters. I even find the simple Midi-
Tee example from Section 3.1 useful for eaves-
dropping on conversations between MIDI de-
vices (tools like amidi serve a similar purpose,
but I like being able to adjust the output format
on the fly, depending on what I’m interested in).

One of the first applications I built on top
of pyseq.py was a simple bulk dump handler
for my MIDI keyboard. It shouldn’t be much
harder to build sophisticated configuration edi-
tors for various MIDI devices in a similar fash-
ion.

I was surprised to find out that there seemed
to be no approximation of java.awt.Robot for
Python and Linux before pyrobot.py, so that
pyrobot.py might be useful in its own right,
independently of audio applications.

7 Where to go from here

While the focus of MidiKinesis has squarely
been on audio applications, it also opens the

2By default, MidiKinesis accepts events from General
Purpose Controllers on any channel.

possibility of using MIDI events to control all
kinds of software. For instance, when I was im-
plementing Slider mappings, I used the vertical
scrollbar of Firefox as a test case.

In order to illustrate the basic idea of creative
misuse of MIDI events, I implemented a simple
game of Pong, controlled by a slider or dial on a
MIDI keyboard. Generally speaking, a mouse is
a notoriously sloppy input device, while MIDI
controllers tend to be rather precise. So, a tool
like MidiKinesis might be useful in a nonaudio
context requiring speed and accuracy.

Finally, I feel that the applications of MidiKi-
nesis that I have found so far barely scratch the
surface. For instance, the ability to record and
replay (almost) arbitrary sequences of X events
has considerable potential beyond the examples
that I have tried so far.

8 Resources

MidiKinesis is available at http:
//www.math.tu-berlin.de/~brinkman/
software/midikinesis/midikinesis.
tgz. MidiKinesis requires Python, Tkin-
ter, and ctypes, as well as an X server that
supports the XTest standard extension.

Python is a powerful scripting language,
available at http://www.python.org/.
Chances are that you are using a Linux
distribution that already has Python
installed.

Tkinter is the de facto standard toolkit for
Python GUIs, available at http://www.
python.org/moin/TkInter. It is included
in many popular Linux distributions.

ctypes is a package to create and manip-
ulate C data types in Python, and to
call functions in shared libraries. It
is available at http://starship.python.
net/crew/theller/ctypes/.

9 Acknowledgements

Special thanks go to Holger Pietsch for getting
me started on the X programming part of the
project, and to the members of the LAU and
LAD mailing lists for their help and support.

LAC2005
12

Extensions to the Csound Language: from User-Defined to
Plugin Opcodes and Beyond.

Victor Lazzarini

Music Technology Laboratory
National University of Ireland, Maynooth

Victor.Lazzarini@nuim.ie

Abstract

This article describes the latest methods of
extending the csound language. It discusses these
methods in relation to the two currently available
versions of the system, 4.23 and 5. After an
introduction on basic aspects of the system, it
explores the methods of extending it using
facilities provided by the csound language itself,
using user-defined opcodes. The mechanism of
plugin opcodes and function table generation is
then introduced as an external means of extending
csound. Complementing this article, the fsig signal
framework is discussed, focusing on its support for
the development of spectral-processing opcodes.

Keywords: Computer Music, Music Processing
Languages, Application Development, C / C++
Programming

1 Introduction

The csound (Vercoe 2004) music programming
language is probably the most popular of the text-
based audio processing systems. Together with
cmusic (Moore 1990), it was one of the first
modern C-language-based portable sound
compilers (Pope 1993), but unlike it, it was
adopted by composers and developers world-wide
and it continued to develop into a formidable tool
for sound synthesis, processing and computer
music composition. This was probably due to the
work of John Ffitch and others, who coordinated a
large developer community who was ultimately
responsible for the constant upgrading of the
system. In addition, the work of composers and
educators, such as Richard Boulanger, Dave
Phillips and many others, supported the expansion
of its user base, who also has been instrumental in
pushing for new additions and improvements. In
summary, csound can be seen as one of the best
examples of music open-source software
development, whose adoption has transcended a

pool of expert-users, filtering into a wider music
community.

The constant development of csound has been
partly fuelled by the existence of a simple opcode
API (Fftich 2000) (Resibois 2000), which is easy
to understand, providing a good, if basic, support
for unit generator addition. This was, for many
years, the only direct means of extending csound
for those who were not prepared to learn the inside
details of the code. In addition, the only way of
adding new unit generators to csound was to
include them in the system source code and re-
build the system, as there was no support for
dynamically-loadable components (csound being
from an age where these concepts had not entered
mainstream software development). Since then,
there were some important new developments in
the language and the software in general providing
extra support for extensions. These include the
possibility of language extension both in terms of
C/C++-language loadable modules and in csound’s
own programming language. Another important
development has been the availability of a more
complete C API (Goggins et al 2004), which can
be used to instantiate and control csound from a
calling process, opening the door for the separation
of language and processing engine.

2 Csound versions

Currently there are two parallel versions of the so-
called canonical csound distribution, csound 4.23,
which is a code-freeze version from 2002 , and
csound 5, a re-modelled system, still in beta stage
of development. The developments mentioned in
the introduction are present in csound 4.23, but
have been further expanded in version 5. In this
system, apart from the core opcodes, most of the
unit generators are now in loadable library
modules and further opcode addition should be in
that format. The plugin opcode mechanism is
already present in version 4.23, although some
differences exist between opcode formats for the

LAC2005
13

mailto:Victor.Lazzarini@nuim.ie

two versions. These are mainly to do with
arguments to functions and return types. There is
also now a mechanism for dynamic-library
function tables and an improved/expanded csound
API. Other changes brought about in csound 5 are
the move to the use of external libraries for
soundfile, audio IO and MIDI.

Csound 4.23 is the stable version of csound, so at
this moment, it would be the recommended one for
general use and, especially, for new users. Most of
the mechanisms of language extension and unit
generator development discussed in this paper are
supported by this version. For Linux users, a GNU
building system-based source package is available
for this version, making it simple to configure and
install the program on most distributions. It is
important to also note that csound 5 is fully
operational, although with a number of issues still
to be resolved. It indeed can be used by anyone,
nevertheless we would recommend it for more
experienced users. However, the user input is
crucial to csound 5 development, so the more users
adopting the new version, the better for its future.

3 Extending the language

As mentioned earlier, csound has mechanisms for
addition of new components both by writing code
in the csound language itself and by writing C/C++
language modules. This section will concentrate on
csound language-based development, which takes
the basic form of user-defined opcodes. Before
examining these, a quick discussion of csound data
types, signals and performance characteristics is
offered

3.1 Data types and signals

The csound language provides three basic data
types: i-, k- and a-types. The first is used for
initialisation variables, which will assume only one
value in performance, so once set, they will usually
remain constant throughout the instrument code.
The other types are used to hold scalar (k-type) and
vectorial (a-type) variables. The first will hold a
single value, whereas the second will hold an array
of values (a vector) and internally, each value is a
floating-point number, either 32- or 64-bit,
depending on the version used.

A csound instrument code can use any of these
variables, but opcodes might accept specific types
as input and will generate data in one of those
types. This implies that opcodes will execute at a
certain update rate, depending on the output type
(Ekman 2000). This can be at the audio sampling
rate (sr), the control rate (kr) or only at
initialisation time. Another important aspect is that

csound instrument code effectively has a hidden
processing loop, running at the control-rate and
affecting (updating) only control and audio signals.
An instrument will execute its code lines in that
loop until it is switched off
Under this loop, audio variables, holding a block of
samples equivalent to sr/kr (ksmps), will have their
whole vector updated every pass of the loop:

instr 1 /* start of the loop */

iscl = 0.5 /* i-type, not affected by

 the loop */
asig in /* copies ksmps samples from
 input buffer into asig */
atten = asig*iscl /* scales every sample
 of asig with iscl */
out atten /* copies kmsps samples from
 atten into output buffer */

endin /* end of the loop */

This means that code that requires sample-by-
sample processing, such as delays that are smaller
than one control-period, will require setting the a-
rate vector size, ksmps, to 1, making kr=sr. This
will have a detrimental effect on performance, as
the efficiency of csound depends a lot on the use of
different control and audio rates.

3.2 User-defined opcodes

The basic method of adding unit generators in the
csound language is provided by the user-defined
opcode (UDO) facility, added by Istvan Varga to
csound 4.22. The definition for a UDO is given
using the keywords opcode and endop, in a similar
fashion to instruments:

opcode NewUgen a,aki
/* defines an a-rate opcode, taking a,
 k and i-type inputs */
endop

The number of allowed input argument types is
close to what is allowed for C-language opcodes.
All p-field values are copied from the calling
instrument. In addition to a-,k- and i-type
arguments (and 0, meaning no inputs), which are
audio, control and initialisation variables, we have:
K, control-rate argument (with initialisation); plus
o, p and j (optional arguments, i-type variables
defaulting to 0,1 and -1). Output is permitted to be
to any of a-, k- or i-type variables. Access to input
and output is simplified through the use of a
special pair of opcodes, xin and xout. UDOs
will have one extra argument in addition to those
defined in the declaration, the internal number of
the a-signal vector samples iksmps. This sets
the value of a local control rate (sr/iksmps) and

LAC2005
14

defaults to 0, in which case the iksmps value is
taken from the caller instrument or opcode.

The possibility of a different a-signal vector size
(and different control rates) is an important aspect
of UDOs. This enables users to write code that
requires the control rate to be the same as audio
rate, without actually having to alter the global
values for these parameters, thus improving
efficiency. An opcode is also provided for setting
the iksmps value to any given constant:

setksmps 1 /* sets a-signal vector to 1,
 making kr=sr */

The only caveat is that when the local ksmps value
differs from the global setting, UDOs are not
allowed to use global a-rate operations (global
variable access, etc.). The example below
implements a simple feedforward filter, as an
example of UDO use:

#define LowPass 0
#define HighPass 1

opcode NewFilter a,aki

 setksmps 1 /* kr = sr */
 asig,kcoef,itype xin
 adel init 0

 if itype == HighPass then
 kcoef = -kcoef
 endif

 afil = asig + kcoef*adel
 adel = asig /* 1-sample delay,

only because kr = sr */
 xout afil

endop

Another very important aspect of UDOs is that
recursion is possible and only limited to available
memory. This allows, for instance, the
implementation of recursive filterbanks, both serial
or parallel, and similar operations that involve the
spawning of unit generators. The UDO facility has
added great flexibility to the csound language,
enabling the fast development of musical signal
processing operations. In fact, an on-line UDO
database has been made available by Steven Yin,
holding many interesting new operations and
utilities implemented using this facility
(www.csounds.com/udo). This possibly will form
the foundation for a complete csound-language-
based opcode library.

3.3 Adding external components

Csound can be extended in variety of ways by
modifying its source code and/or adding elements

to it. This is something that might require more
than a passing acquaintance with its workings, as a
rebuild of the software from its complete source
code. However, the addition of unit generators and
function tables is generally the most common type
of extension to the system. So, to facilitate this,
csound offers a simple opcode development API,
from which new dynamically-loadable (‘plugin’)
unit generators can be built. In addition, csound 5
also offers a similar mechanism for function tables.
Opcodes can be written in the C or C++ language.
In the latter, the opcode is written as a class
derived from a template (‘pseudo-virtual’) base
class OpcodeBase, whereas in the former, we
normally supply a C module according to a basic
description. The following sections will describe
the process of adding an opcode in the C language.
An alternative C++ class implementation would
employ a similar method.

3.3.1 Plugin opcodes
C-language opcodes normally obey a few basic
rules and their development require very little in
terms of knowledge of the actual processes
involved in csound. Plugin opcodes will have to
provide three main programming components: a
data structure to hold the opcode internal data, an
initialising function or method, and a processing
function or method. From an object-oriented
perspective, all we need is a simple class, with its
members, constructor and perform methods. Once
these elements are supplied, all we need to do is to
add a line telling csound what type of opcode it is,
whether it is an i-, k- or a-rate based unit generator
and what arguments it takes.

The data structure will be organised in the
following fashion:

1. The OPDS data structure, holding the
common components of all opcodes.

2. The output pointers (one MYFLT pointer
for each output)

3. The input pointers (as above)
4. Any other internal dataspace member.

The csound opcode API is defined by csdl.h, which
should be included at the top of the source file. The
example below shows the data structure for same
filter implemented in previous sections:

#include "csdl.h"

typedef struct _newflt {
OPDS h;
MYFLT *outsig;/* output pointer */
MYFLT *insig,*kcoef,*itype;/* input
 pointers */
MYFLT delay; /* internal variable,

LAC2005
15

http://www.csounds.com/udo

 the 1-sample delay */
int mode; /* filter mode */
} newfilter;

The initialisation function is only there to initialise
any data, such as the 1-sample delay, or allocate
memory, if needed. The new plugin opcode model
in csound5 expects both the initialisation function
and the perform function to return an int value,
either OK or NOTOK. In addition, both methods
now take a two arguments: pointers to the csound
environment and the opcode dataspace. In version
4.23 the opcode function will only take the pointer
to the opcode dataspace as argument. The
following example shows an initialisation function
in csound 5 (all following examples are also
targeted at that version):

int newfilter_init(ENVIRON *csound,

newfilter *p){
p->delay = (MYFLT) 0;
p->mode = (int) *p->itype;
return OK;
}

The processing function implementation will
depend on the type of opcode that is being created.
For audio rate opcodes, because it will be
generating audio signal vectors, it will require an
internal loop to process the vector samples. This is
not necessary with k-rate opcodes, as we are
dealing with scalar inputs and outputs, so the
function has to process only one sample at a time.
This means that, effectively, all processing
functions are called every control period. The filter
opcode is an audio-rate unit generator, so it will
include the internal loop.

int newfilter_process(ENVIRON *csound,
 newfilter *p){
int i;
/* signals in, out */
MYFLT *in = p->insig;
MYFLT *out = p->outsig;
/* control input */
MYFLT coef = *p->kcoef;
/* 1-sample delay */
MYFLT delay = *p->delay;
MYFLT temp;

if(p->mode)coef = -coef;

/* processing loop */
for(i=0; i < ksmps; i++){
 temp = in[i];
 out[i] = in[i] + delay*coef ;
 delay = temp;
}
/* keep delayed sample for next time */
*p->delay = delay;

return OK;
}

To complete the source code, we fill an opcode
registration structure OENTRY array called
localops (static), followed by the LINKAGE
macro:

static OENTRY localops[] = {
{ "newfilter", S(newfilter), 5, "a",
"aki", (SUBR)newfilter_init, NULL,
(SUBR)newfilter_process }
};

LINKAGE

The OENTRY structure defines the details of the
new opcode:

1. the opcode name (a string without any
spaces).

2. the size of the opcode dataspace, set using
the macro S(struct_name), in most cases;
otherwise this is a code indicating that the
opcode will have more than one
implementation, depending on the type of
input arguments.

3. An int code defining when the opcode is
active: 1 is for i-time, 2 is for k-rate and 4
is for a-rate. The actual value is a
combination of one or more of those. The
value of 5 means active at i-time (1) and a-
rate (4). This means that the opcode has an
init function and an a-rate processing
function.

4. String definition the output type(s): a, k, s
(either a or k), i, m (multiple output
arguments), w or f (spectral signals).

5. Same as above, for input types: a, k, s, i,
w, f, o (optional i-rate, default to 0), p (opt,
default to 1), q (opt, 10), v(opt, 0.5), j(opt,
–1), h(opt, 127), y (multiple inputs, a-
type), z (multiple inputs, k-type), Z
(multiple inputs, alternating k- and a-
types), m (multiple inputs, i-type), M
(multiple inputs, any type) and n (multiple
inputs, odd number of inputs, i-type).

6. I-time function (init), cast to (SUBR).
7. K-rate function.
8. A-rate function.

The LINKAGE macro defines some functions
needed for the dynamic loading of the opcode.
This macro is present in version 5 csdl.h, but not in
4.23 (in which case the functions need to be added
manually):

#define LINKAGE long opcode_size(void) \
{ return sizeof(localops);} \
OENTRY *opcode_init(ENVIRON *xx) \
{ return localops;} \

LAC2005
16

The plugin opcode is build as a dynamic module,
and similar code can be used both with csound
versions 4.23 or 5:

gcc -02 -c opsrc.c -o opcode.o
ld -E --shared opcode.o –o opcode.so

However, due to differences in the interface, the
binaries are not compatible, so they will need to
built specificially for one of the two
versions.Another difference is that csound 5 will
load automatically all opcodes in the directory set
with the environment variable OPCODEDIR,
whereas version 4.23 needs the flag –opcode-
lib=myopcode.so for loading a specific module.

3.3.2 Plugin function tables
A new type of dynamic module, which has been
introduced in csound 5 is the dynamic function
table generator (GEN). Similarly to opcodes,
function table GENs were previously only included
statically with the rest of the source code. It is
possible now to provide them as dynamic loadable
modules. This is a very recent feature, introduced
by John Ffitch at the end of 2004, so it has not
been extensively tested. The principle is similar to
plugin opcodes, but the implementation is simpler.
It is only necessary to provide the GEN routine
that the function table implements. The example
below shows the test function table, written by
John Ffitch, implementing a hyperbolic tangent
table:

#include "csdl.h"
#include <math.h>

void tanhtable(ENVIRON *csound,

FUNC *ftp, FGDATA *ff,)
{
/* the function table */
MYFLT fp = ftp->ftable;
/* f-statement p5, the range */
MYFLT range = ff->e.p[5];
/* step is range/tablesize */
double step = (double)
 range/(ff->e.p[3]);
int i;
double x;
 /* table-filling loop */
 for(i=0, x=FL(0.0); i<ff->e.p[3];

i++,x+=step)
 *fp++ = (MYFLT)tanh(x);
}

The GEN function takes three arguments, the
csound environment dataspace, a function table
pointer and a gen info data pointer. The former
holds the actual table, an array of MYFLTs,
whereas the latter holds all the information
regarding the table, e.g. its size and creation
arguments. The FGDATA member e will hold a

numeric array (p) with all p-field data passed from
the score f-statement (or ftgen opcode).

static NGFENS localfgens[] = {
 { "tanh", (void(*)(void))tanhtable},
 { NULL, NULL}
};

The structure NFGENS holds details on the
function table GENs, in the same way as OENTRY
holds opcode information. It contains a string name
and a pointer to the GEN function. The localfgens
array is initialised with these details and terminated
with NULL data. Dynamic GENs are numbered
according to their loading order, starting from
GEN 44 (there are 43 ‘internal’ GENs in csound
5).

#define S sizeof
static OENTRY *localops = NULL;
FLINKAGE

Since opcodes and function table GENs reside in
the same directory and are loaded at the same time,
setting the *localops array to NULL, will avoid
confusion as to what is being loaded. The
FLINKAGE macro works in the same fashion as
LINKAGE.

4 Spectral signals

As discussed above, Csound provides data types
for control and audio, which are all time-domain
signals. For spectral domain processing, there are
two separate signal types, ‘wsig’ and ‘fsig’. The
former is a signal type introduced by Barry Vercoe
to hold a special, non-standard, type of logarithmic
frequency analysis data and is used with a few
opcodes originally provided for manipulating this
data type. The latter is a self-describing data type
designed by Richard Dobson to provide a
framework for spectral processing, in what is
called streaming phase vocoder processes (to
differentiate it from the original csound phase
vocoder opcodes). Opcodes for converting between
time-domain audio signals and fsigs, as well as a
few processing opcodes, were provided as part of
the original framework by Dobson. In addition,
support for a self-describing, portable, spectral file
format PVOCEX (Dobson 2002) has been added to
csound, into the analysis utility program pvanal
and with a file reader opcode. A library of
processing opcodes, plus a spectral GEN, has been
added to csound by this author. This section will
explore the fsig framework, in relation to opcode
development.

Fsig is a self-describing csound data type which
will hold frames of DFT-based spectral analysis

LAC2005
17

data. Each frame will contain the positive side of
the spectrum, from 0 Hz to the Nyquist (inclusive).
The framework was designed to support different
spectral formats, but at the moment, only an
amplitude-frequency format is supported, which
will hold pairs of floating-point numbers with the
amplitude and frequency (in Hz) data for each DFT
analysis channel (bin). This is probably the most
musically meaningful of the DFT-based output
formats and is generated by Phase Vocoder (PV)
analysis. The fsig data type is defined by the
following C structure:

typedef struct pvsdat {
/* framesize-2, DFT length */
long N;
/* number of frame overlaps */
long overlap;
/* window size */
long winsize;
/* window type: hamming/hanning */
int wintype;
/* format: cur. fixed to AMP:FREQ */
long format;
/* frame counter */
unsigned long framecount;
/* spectral sample is a 32-bit float */
AUXCH frame;
} PVSDAT;

The structure holds all the necessary data to
describe the signal type: the DFT size (N), which
will determine the number of analysis channels
(N/2 + 1) and the framesize; the number of
overlaps, or decimation, which will determine
analysis hopsize (N/overlaps); the size of the
analysis window, generally the same as N; the
window type, currently supporting
PVS_WIN_HAMMING or PVS_WIN_HANN;
the data format, currently only PVS_AMP_FREQ;
a frame counter, for keeping track of processed
frames; and finally the AUXCH structure which
will hold the actual array of floats with the spectral
data. The AUXCH structure and associated
functions are provided by csound as a mechanism
for dynamic memory allocation and are used
whenever such operation is required. A number of
other utility functions are provided by the csound
opcode API (in csdl.h), for operations such as
loading, reading and writing files, accessing
function tables, handling string arguments, etc..
Two of these are used in the code below to provide
simple error notification and handling
(initerror() and perferror()).

A number of implementation differences exist
between spectral and time-domain processing
opcodes. The main one is that new output is only
produced if a new input frame is ready to be
processed. Because of this implementation detail,

the processing function of a streaming PV opcode
is actually registered as a k-rate routine. In
addition, opcodes allocate space for their fsig
frame outputs, unlike ordinary opcodes, which
simply take floating-point buffers as input and
output. The fsig dataspace is externally allocated,
in similar fashion to audio-rate vectors and control-
rate scalars; however the DFT frame allocation is
done by the opcode generating the signal. With
that in mind, and observing that type of data we are
processing is frequency-domain, we can implement
a spectral unit generator as an ordinary (k-rate)
opcode. The following example is a frequency-
domain version of the simple filter implemented in
the previous sections:

#include "csdl.h"
#include "pstream.h" /* fsig definitions
*/

typedef struct _pvsnewfilter {
OPDS h;
/* output fsig, its frame needs to be
 allocated */
PVSDAT *fout;
PVSDAT *fin; /* input fsig */
/* other opcode args */
MYFLT *coef, *itype;
MYFLT mode; /* filter type */
unsigned long lastframe;
} pvsnewfilter;

int pvsnewfilter_init(ENVIRON *csound,

pvsnewfilter *p)
{
long N = p->fin->N;
p->mode = (int) *p->itype;
/* this allocates an AUXCH struct, if
 non-existing */
if(p->fout->frame.auxp==NULL)
 auxalloc((N+2)*sizeof(float),
 &p->fout->frame);
/* output fsig description */
p->fout->N = N;
p->fout->overlap = p->fin->overlap;
p->fout->winsize = p->fin->winsize;
p->fout->wintype = p->fin->wintype;
p->fout->format = p->fin->format;
p->fout->framecount = 1;
p->lastframe = 0;

/* check format */
if (!(p->fout->format==PVS_AMP_FREQ ||
 p->fout>format==PVS_AMP_PHASE))
return initerror("wrong format\n");
/* initerror is a utility csound
 function */

return OK;
}

The opcode dataspace contains pointers to the
output and input fsig, as well as the k-rate
coefficient and the internal variable that holds the
filter mode. The init function has to allocate space
for the output fsig DFT frame, using the csound

LAC2005
18

opcode API function auxalloc(), checking first if
it is not there already.

int pvsnewfilter_process(ENVIRON *csound,
 pvsnewfilter p)
{
 long i,N = p->fout->N;
 MYFLT cosw, tpon;
 MYFLT coef = *p->kcoef;
 float *fin = (float *)
 p->fin >frame.auxp;
float *fout = (float *)
 p->fout->frame.auxp;

if(fout==NULL)
 return perferror("not initialised\n");
/* perferror is a utility csound
 function */

if(mode) coef = -coef;
/* if a new input frame is ready */
if(p->lastframe <
 p->fin->framecount) {
 /* process the input, filtering */
 pon = pi/N; /* pi is global*/
 for(i=0;i < N+2;i+=2) {
 cosw = cos(i*pon);
 /* amps */
 fout[i] = fin[i] *

sqrt(1+coef*coef+2*coef*cosw);
 /* freqs: unchanged */
 fout[i+1] = fin[i+1];
 }
 /* update the framecount */
 p->fout->framecount =
 p->lastframe = p->fin->framecount;
 }
return OK;
}

The processing function keeps track of the frame
count and only processes the input, generating a
new output frame, if a new input is available. The
framecount is generated by the analysis opcode
and is passed from one processing opcode to the
next in the chain. As mentioned before, the
processing function is called every control-period,
but it is independent of it, only performing when
needed. The only caveat is that the fsig framework
requires the control period in samples (ksmps) to
be smaller or equal to the analysis hopsize.
Finally, the localops OENTRY structure for this
opcode will look like this:

static OENTRY localops[] = {
 {"pvsnewfilter", S(pvsnewfilter), 3,
 "f", "fkp", (SUBR)pvsnewfilter_init,
 (SUBR)pvsnewfilter_process}
};

From the above, it is clear to see that the new
opcode is called pvsnewfilter and its
implementation is made of i-time and k-rate
functions. It takes fsig, ksig and one optional i-time
arguments and it outputs fsig data.

5 Conclusion

Csound is regarded as one of the most complete
synthesis and processing languages in terms of its
unit generator collection. The introduction of
UDOs, plugin opcode and function table
mechanisms, as well as a self-describing spectral
signal framework, has opened the way for further
expansion of the language. These methods provide
simpler and quicker ways for customisation. In
fact, one of the goals of csound 5 is to enhance the
possibilities of extension and integration of the
language/processing engine into other systems. It
is therefore expected that the developments
discussed in this article are but only the start of a
new phase in the evolution of csound.

6 References

Richard Dobson. 2000. PVOCEX: File format for

Phase Vocoder data, based on WAVE FORMAT
EXTENSIBLE. .
http://www.bath.ac.uk/~masrwd/pvocex/pvocex.
html.

Rasmus Ekman. 2000. Csound Control Flow.
http://www.csounds.com/internals/index.html.

John Ffitch. Extending Csound. In R. Boulanger,
editor, The Csound Book, Cambridge, Mass.,
MIT Press.

Michael Goggins et Al. 2004. The Csound API.
http://www.csounds.com/developers/html/csoun
d_8h.html

F Richard Moore. 1990. Elements of Computer
Music, Englewood Cliffs, NJ: Prentice-Hall,
1990.

Stephen T Pope. 1993. Machine Tongues XV:
Three Packages for Software Sound Synthesis.
Computer Music Journal 17 (2).

Mark Resibois. 2000. Adding New Unit
Generators to Csound. In R. Boulanger, editor,
The Csound Book, Cambridge, Mass., MIT
Press.

Barry Vercoe. 2004. The Csound and VSTCsound
Reference Manual,
http://cvs.sourceforge.net/viewcvs.py/csound/cso
und5/csound.pdf.

LAC2005
19

http://www.bath.ac.uk/~masrwd/pvocex/pvocex.html
http://www.bath.ac.uk/~masrwd/pvocex/pvocex.html
http://www.csounds.com/internals/index.html
http://www.csounds.com/developers/html/csound_8h.html
http://www.csounds.com/developers/html/csound_8h.html
http://cvs.sourceforge.net/viewcvs.py/csound/csound5/csound.pdf
http://cvs.sourceforge.net/viewcvs.py/csound/csound5/csound.pdf

LAC2005
20

Q: A Functional Programming Language for Multimedia
Applications

Albert GRÄF
Department of Music-Informatics
Johannes Gutenberg University

55099 Mainz
Germany

ag@muwiinfa.geschichte.uni-mainz.de

Abstract

Q is a functional programming language based on
term rewriting. Programs are collections of equa-
tions which are used to evaluate expressions in a
symbolic fashion. Q comes with a set of exten-
sion modules which make it a viable tool for sci-
entific programming, computer music, multimedia,
and other advanced applications. In particular, Q
provides special support for multimedia applications
using PortAudio, libsndfile, libsamplerate, FFTW,
MidiShare and OSC (including a SuperCollider in-
terface). The paper gives a brief introduction to the
Q language and its multimedia library, with a fo-
cus on the facilities for MIDI programming and the
SuperCollider interface.

Keywords

Computer music, functional programming, multime-
dia programming, Q programming language, Super-
Collider

1 Introduction

The pseudo acronym “Q” stands for “equa-
tional programming language”. Q has its roots
in term rewriting, a formal calculus for the
symbolic evaluation of expressions coming from
universal algebra and symbolic algebra sys-
tems (Dershowitz and Jouannaud, 1990). It
builds on Michael O’Donnell’s ground-breaking
work on equational programming in the 1980s
(O’Donnell, 1985) and the author’s own re-
search on efficient term pattern matching and
rewriting techniques (Gräf, 1991).

In a sense, Q is for modern functional pro-
gramming languages what BASIC is for imper-
ative ones: It is a fairly simple language, thus
easy to learn and use, yet powerful enough to
tackle most common programming tasks; it is
an interpreted (rather than compiled) language,
offering adequate (though not C-like) execu-
tion speed; and it comes with a convenient in-
teractive environment including a symbolic de-
bugger, which lets you play with the parts of

your program to explore different solution ap-
proaches and to test things out.

Despite its simplicity, Q should not be mis-
taken for a “toy language”; in fact, it comes
with a fairly comprehensive collection of li-
braries which in many areas surpasses what is
currently available for its bigger cousins like ML
and Haskell. Moreover, Q’s SWIG interface
makes it easy to interface to additional C and
C++ libraries if needed.

The Q programming environment is GPL’ed
software which has been ported to a large va-
riety of different platforms, including Linux
(which has been the main development platform
since 1993), FreeBSD, Mac OS X, BeOS, So-
laris and Windows. Q also has a cross-platform
multimedia library which currently comprises
MIDI (via Grame’s MidiShare), audio (provid-
ing interfaces to PortAudio v19, libsndfile, lib-
samplerate and FFTW) and software synthe-
sis (via OSC, the “Open Sound Control” proto-
col developed by CNMAT, with special support
for James McCartney’s SuperCollider software).
Additional modules for 3D graphics (OpenGL)
and video (libxine) are currently under develop-
ment.

In the following we give a brief overview of the
language and the standard library, after which
we focus on Q’s multimedia facilities. More in-
formation about Q can be found on the Q home-
page at http://q-lang.sourceforge.net.

2 The language

At its core, Q is a fairly simple language which
is based entirely on the notions of reductions
and normal forms pertaining to the term rewrit-
ing calculus. A Q program or script is simply
a collection of equations which establish alge-
braic identities. The equations are interpreted
as rewriting rules in order to reduce expres-
sions to normal forms. The syntax of the lan-
guage was inspired by the first edition of Bird
and Wadler’s influential book on functional pro-

LAC2005
21

gramming (Bird and Wadler, 1988) and thus
is similar to other modern functional languages
such as Miranda and Haskell. For instance, here
is how you define a function sqr which squares
its argument by multiplying it with itself:

sqr X = X*X;

When this equation is applied to evaluate an
expression like sqr 2, the interpreter performs
the reduction sqr 2 => 2*2. It then goes on to
apply other equations (as well as a number of
built-in rules implementing the primitive oper-
ations such as arithmetic) until a normal form
is reached (an expression is said to be in nor-
mal form if no more equations or built-in rules
can be applied to it). In our example, the in-
terpreter will invoke the rule which handles in-
teger multiplication: 2*2 => 4. The resulting
expression 4 is in normal form and denotes the
“value” of the original expression sqr 2.

Note that, as in Prolog, capitalized identifiers
are used to indicate the variables in an equation,
which are bound to the actual values when an
equation is applied. We also remark that func-
tion application is denoted simply by juxtaposi-
tion. Parentheses are used to group expressions
and to indicate “tuple” values, but are not part
of the function application syntax. This “cur-
ried” form of writing function applications is
ubiquitous in modern functional languages. In
addition, the Q language also supports the usual
infix notation for operators such as + and *.
As in other modern functional languages, these
are just “syntactic sugar” for function applica-
tions; i.e., X*X is just a convenient shorthand
for the function application (*) X X. Operator
“sections” are also supported; e.g., (+1) denotes
the function which adds 1 to its argument, (1/)
the reciprocal function.

Equations may also include a condition part,
as in the following (recursive) definition of the
factorial function:

fact N = N*fact (N-1) if N>0;
= 1 otherwise;

Another useful extension to standard term
rewriting are the “where clauses” which al-
low you to bind local variables in an equa-
tion. For instance, the following equation de-
fines a function for solving quadratic equations
x2 + px + q = 0. It first checks whether the
discriminant D = p2/4 − q is nonnegative be-
fore it uses this value to compute the two real
solutions of the equation.

solve P Q = (-P/2+sqrt D,-P/2-sqrt D)
if D >= 0 where D = P^2/4-Q;

You can also define global variables using a
def statement. This is useful if a value is used
repeatedly in different equations and you don’t
want to recalculate it each time it is needed.

def PI = 4*atan 1;

Functions on structured arguments are de-
fined by “pattern matching”. E.g., the quick-
sort function can be implemented in Q with the
following two equations. (Note that lists are
written in Prolog-like syntax, thus [] denotes
the empty list and [X|Xs] a list starting with
the head element X and continuing with the list
of remaining elements Xs. Furthermore, the ++
operator denotes list concatenation.)

qsort [] = [];
qsort [X|Xs] = qsort (filter (<X) Xs) ++
[X] ++ qsort (filter (>=X) Xs);

Higher-order functions which take other func-
tions as arguments can also be programmed in a
straightforward way. For instance, the filter
function used above is defined in the standard
library as follows. In this case, the function ar-
gument P is a predicate expected to return the
value true if an element should be included in
the result list, false otherwise.

filter P [] = [];
filter P [X|Xs] = [X|filter P Xs] if P X;

= filter P Xs otherwise;

In contrast to “pure” functional languages
such as Haskell, Q takes the pragmatic route in
that it also provides imperative programming
features such as I/O operations and mutable
data cells (“references”), similar to the corre-
sponding facilities in the ML programming lan-
guage. While one may argue about the use of
such “impure” operations with side-effects in
a functional programming language, they cer-
tainly make life easier when dealing, e.g., with
complex I/O situations and thread synchro-
nization. The || operator can be employed
to execute such actions in sequence. For in-
stance, using the built-in reads (“read string”)
and writes (“write string”) functions, a simple
prompt/input interaction would be written as
follows:

prompt = writes "Input: " || reads;

LAC2005
22

References work like pointers to expressions.
Three operations are provided: ref which cre-
ates a reference from its initial value, put which
changes the referenced value, and get which re-
turns the current value. With these facilities
you can realize mutable data structures and
maintain hidden state in a function. For in-
stance, the following function counter returns
the next integer at each invokation, starting at
zero:

def COUNTER = ref 0;
counter = put COUNTER (N+1) || N

where N = get COUNTER;

Despite its conceptual simplicity, Q is a
full-featured functional programming language
which allows you to write your programs in a
concise and abstract mathematical style. Since
it is an interpreted language, programs writ-
ten in Q are definitely not as fast as their
counterparts in C, but they are much easier to
write, and the execution speed is certainly good
enough for practical purposes (more or less com-
parable to interpreted Lisp and Haskell).

Just like other languages of its kind, Q has
automatic memory management, facilities for
raising and handling exceptions, constructs for
defining new, application-specific data types,
and means for partitioning larger scripts into
separate modules. Functions and data struc-
tures using “lazy” evaluation can be dealt with
in a direct manner. Q also uses dynamic typing,
featuring a Smalltalk-like object-oriented type
system with single inheritance. This has be-
come a rare feature in contemporary functional
languages which usually employ a static Hind-
ley/Milner type system to provide more safety
at the expense of restricting polymorphism. Q
gives you back the flexibility of good old Lisp-
style ad-hoc polymorphism and even allows you
to extend the definition of existing operations
(including built-in functions and operators) to
your own data types.

3 The library

No modern programming or scripting language
is complete without an extensive software li-
brary covering the more mundane programming
tasks. In the bad old times of proprietary soft-
ware, crafting such a library has always been a
major undertaking, since all these components
had to be created from scratch. Fortunately,
nowadays there is a large variety of open source

software providing more or less standardized so-
lutions for all these areas, so that “reinventing
the wheel” can mostly be avoided.

This is also the approach taken with the Q
programming system, which acts as a kind of
“nexus” connecting various open source tech-
nologies. To these ends, Q has an elabo-
rate C/C++ interface including support for
the SWIG wrapper generator (www.swig.org),
which makes it easy to interface to existing
C/C++ libraries. This enabled us to provide
a fairly complete set of cross-platform exten-
sion modules which, while not as comprehen-
sive as the facilities of other (much larger) lan-
guage projects such as Perl and Python, make it
possible to tackle most practical programming
tasks with ease. This part of the Q library also
goes well beyond what is offered with most other
modern functional languages, especially in the
multimedia department.

The core of the Q programming system in-
cludes a standard library, written mostly in
Q itself, which implements a lot of useful Q
types and functions, such as complex numbers,
generic list processing functions (including list
comprehensions), streams (a variant of lists fea-
turing lazy evaluation which makes it possible
to represent infinite data structures), container
data structures (sets, dictionaries, hash tables,
etc.), the lambda calculus, and a PostScript in-
terface. Also included in the core is a POSIX
system interface which provides, e.g., lowlevel
I/O, process and thread management, sock-
ets, filename globbing and regular expression
matching.

In the GUI department, Q relies on Tcl/Tk
(www.tcl.tk). While Tk is not the prettiest
toolkit, its widgets are adequate for most pur-
poses, it can be programmed quite easily, and,
most importantly, it has been ported to a large
variety of platforms. Using SWIG, it is also
possible to embed GTK- and Qt-based inter-
faces, if a prettier appearance and/or more so-
phisticated GUI widgets are needed. (Com-
plete bindings for these “deluxe” toolkits are on
the TODO list, but have not been implemented
yet.)

For basic 2D graphics, Q uses GGI, the “Gen-
eral Graphics Interface” (www.ggi-project.org),
which has been augmented with a FreeType in-
terface to add support for advanced font han-
dling (www.freetype.org). Moreover, a mod-
ule with bindings for the ImageMagick library
(www.imagemagick.org) allows you to work

LAC2005
23

with virtually all popular image file formats and
provides an abundance of basic and advanced
image manipulation functions.

To facilitate scientific programming, Q has in-
terfaces to Octave, John W. Eaton’s well-known
MATLAB-like numerical computation software
(www.octave.org), and to IBM’s “Open Data
Explorer”, a comprehensive software for doing
data visualization (www.opendx.org).

Web programming is another common occu-
pation of the contemporary developer. In this
realm, Q provides an Apache module and an
XML/XSLT interface (xmlsoft.org) which al-
low you to create dynamic web content with
ease. Moreover, an interface to the Curl li-
brary enables you to perform automated down-
loads and spidering tasks (curl.haxx.se). If
you need database access, an ODBC mod-
ule (www.iodbc.org, www.unixodbc.org) can be
used to query and modify RDBMSs such as
MySQL and PostgreSQL.

4 MIDI programming

Q’s MIDI interface, embodied by the midi mod-
ule, is based on Grame’s MidiShare library
(Fober et al., 1999). We have chosen MidiShare
because it has been around since the time of the
good old Atari and thus is quite mature, it has
been ported to a number of different platforms
(including Linux, Mac OS X and Windows), it
takes a unique “client graph” approach which
provides flexible dynamic routing of MIDI data
between different applications, and, last but not
least, it offers comprehensive support for han-
dling standard MIDI files.

While MidiShare already abstracts from all
messy hardware details, Q’s midi module even
goes one step further in that it also represents
MIDI messages not as cryptic byte sequences,
but as a high-level “algebraic” data type which
can be manipulated easily. For instance, note on
messages are denoted using data terms of the
form note_on CHANNEL NOTE VELOCITY. The
functions midi_get and midi_send are used
to read and write MIDI messages, respectively.
For example, Fig. 1 shows a little script for
transposing MIDI messages in realtime.

The midi module provides all necessary data
types and functions to process MIDI data in any
desired way. It also gives access to MidiShare’s
functions to handle standard MIDI files. In or-
der to work with entire MIDI sequences, MIDI
messages can be stored in Q’s built-in list data
structure, where they can be manipulated using

Q’s extensive set of generic list operations. Q’s
POSIX multithreading support allows you to
run multiple MIDI processing algorithms con-
currently and with realtime scheduling priori-
ties, which is useful or even essential for many
types of MIDI applications.

These features make it possible to imple-
ment fairly sophisticated MIDI applications
with moderate effort. To demonstrate this,
we have employed the midi module to pro-
gram various algorithmic composition tools and
step sequencers, as well as a specialized graph-
ical notation and sequencing software for per-
cussion pieces. The latter program, called
“clktrk”, was used by the composer Bene-
dict Mason for one of his recent projects
(felt | ebb | thus |brink |here | array | telling, per-
formed by the Ensemble Modern with the Junge
Deutsche Philharmonie at the Donaueschingen
Music Days 2004 and the Maerzmusik Berlin
2005).

Other generally useful tools with KDE/Qt-
based GUIs can be found on the Q homepage.
For instance, Fig. 2 shows the QMidiCC pro-
gram, a MidiShare patchbay which can be con-
figured to take care of your MidiShare drivers
and to automatically connect new clients as
soon as they show up in the MidiShare client
list. QMidiCC can also be connected to other
MidiShare applications to print their MIDI out-
put and to send them MIDI start and stop mes-
sages.

5 Audio and software synthesis

The audio interface consists of three mod-
ules which together provide the necessary fa-
cilities for processing digital audio in Q. The
audio module is based on PortAudio (v19),
a cross-platform audio library which provides
the necessary operations to work with the au-
dio interfaces of the host operating system
(www.portaudio.com). Under Linux this mod-
ule gives access to both ALSA (www.alsa-
project.org) and Jack (jackit.sf.net). The
sndfile module uses Erik de Castro Lopo’s
libsndfile library which allows you to read
and write sound files in a variety of formats
(www.mega-nerd.com/libsndfile). The wave
module provides basic operations to create, in-
spect and manipulate wave data represented as
“byte strings” (a lowlevel data structure pro-
vided by Q’s system interface which is used to
store raw binary data). It also includes oper-
ations for sample rate conversion (via libsam-

LAC2005
24

import midi;

/* register a MidiShare client and establish I/O connections */
def REF = midi_open "Transpose",
IO = midi_client_ref "MidiShare/ALSA Bridge",
_ = midi_connect IO REF || midi_connect REF IO;

/* transpose note on and off messages, leave other messages unchanged */
transp K (note_on CH N V)

= note_on CH (N+K) V;
transp K (note_off CH N V)

= note_off CH (N+K) V;
transp K MSG = MSG otherwise;

/* the following loop repeatedly reads a message, transposes it and
immediately outputs the transformed message */

transp_loop K = midi_send REF 0 (transp K MSG) || transp_loop K
where (_,_,_,MSG) = midi_get REF;

Figure 1: Sample MIDI script.

Figure 2: QMidiCC program.

plerate, www.mega-nerd.com/SRC) and fast
Fourier transforms (via FFTW, www.fftw.org),
as well as a function for drawing waveforms in
a GGI visual.

Q’s audio interface provides adequate sup-
port for simple audio applications such as audio
playback and recording, and provides a frame-
work for programming more advanced audio
analysis and synthesis techniques. For these
you’ll either have to provide your own C or C++
modules to do the necessary processing of wave
data, or employ Q’s osc module which allows
you to drive OSC-aware software synthesizers
(www.cnmat.berkeley.edu/OpenSoundControl).
We also offer an sc module which provides
special support for James McCartney’s Super-

Collider (McCartney, 2002).

The osc module defines an algebraic data
type as a high-level representation of OSC pack-
ets which can be manipulated easily. All stan-
dard OSC features are supported, including
OSC bundles. The module also implements a
simple UDP transport layer for sending and re-
ceiving OSC packets. In addition, the sc mod-
ule offers some convenience functions to control
SuperCollider’s sclang and scsynth applica-
tions.

Fig. 3 shows a little Q script implementing
some common OSC messages which can be used
to control the SuperCollider sound server. Us-
ing these facilities in combination with the midi
module, it is a relatively straightforward matter

LAC2005
25

import osc, sc;

// load a synthdef into the server
d_load NAME = sc_send (osc_message CMD_D_LOAD NAME);

// create a new synth node (add at the end of the main group)
s_new NAME ID ARGS

= sc_send (osc_message CMD_S_NEW (NAME,ID,1,0|ARGS));

// free a synth node
n_free ID = sc_send (osc_message CMD_N_FREE ID);

// set control parameters
n_set ID ARGS = sc_send (osc_message CMD_N_SET (ID|ARGS));

Figure 3: Sample OSC script.

/* get MIDI input */

midiin = (TIME,MSG) where (_,_,TIME,MSG) = midi_get REF;

/* current pitch wheel value and tuning table */

def WHEEL = ref 0.0, TT = map (ref.(*100.0)) [0..127];

/* calculate the frequency for a given MIDI note number N */

freq N = 440*2^((get (TT!N)-6900)/1200+get WHEEL/6);

/* The MIDI loop: Assign voices from a queue Q of preallocated SC synth units
in a round-robin fashion. Keep track of the currently assigned voices in a
dictionary P. The third parameter is the MIDI event to be processed next. */

/* note offs: set the gate of the synth to 0 and put it at the end of the queue */

loop P Q (_,note_on _ N 0)
= n_set I ("gate",0) || loop P Q midiin

where (I,_) = P!N, P = delete P N, Q = append Q I;
= loop P Q midiin otherwise;

loop P Q (T,note_off CH N _)
= loop P Q (T,note_on CH N 0);

/* note ons: turn note off if already sounding, then get a new voice from the
queue and set its gate to 1 */

loop P Q (T,note_on CH N V)
= n_set I ("gate",0) || loop P Q (T,note_on CH N V)

where (I,_) = P!N, P = delete P N, Q = append Q I;
= n_set I ("freq",FREQ,"gain",V/127,"gate",1) ||
loop P Q midiin
where [I|Q] = Q, FREQ = freq N,
P = insert P (N,(I,FREQ));

Figure 4: Excerpt from a MIDI to OSC processing loop.

LAC2005
26

to implement software synthesizers which can
be played in realtime via MIDI. All actual au-
dio processing takes place in the synthesis en-
gine, the Q script only acts as a kind of “MIDI
to OSC” translator. For instance, Fig. 4 shows
an excerpt from a typical MIDI processing loop.

An example of such a program, called “QSC-
Synth”, can be found on the Q homepage (cf.
Fig. 5). QSCSynth is a (KDE/Qt based) GUI
frontend for the sclang and scsynth programs
which allows you to play and control SuperCol-
lider synthesizers defined in an SCLang source
file. It implements a monotimbral software
synth which can be played via MIDI input and
other MidiShare applications. Moreover, with
MidiShare’s ALSA driver, QSCSynth can eas-
ily be wired up with ALSA-based sequencer ap-
plications like Rosegarden, employing it as a
fully programmable realtime software synthe-
sizer. The audio stream generated by Super-
Collider can be watched in an integrated wave-
form/FFT display, and can also be recorded in
an audio file. QSCSynth can also be configured
to map arbitrary MIDI controller messages to
corresponding OSC messages which change the
control parameters of the synthesizer and effect
units defined in the SCLang source file. More-
over, QSCSynth also provides its own control
surface (constructed automatically from the pa-
rameter descriptions found in the binary synth
definition files) which lets you control synth and
effect units from the GUI as well.

6 The future

While Q’s multimedia library already provides
a fairly complete framework for programming
multimedia and computer music applications on
Linux, there still remain a few things to be done:

• Finish the OpenGL and video support.

• Provide modules for some Linux-specific li-
braries such as Jack, LADSPA and DSSI.

• Provide high-level interfaces for computer
music applications such as algorithmic
composition. There are a few lessons
to be learned from existing environments
here, such as Rick Taube’s Common Music
(Taube, 2005), Grame’s Elody (Letz et al.,
2000) and Paul Hudak’s Haskore (Hudak,
2000b).

• Add graphical components for displaying
and editing music (piano rolls, notation,
etc.). For this we should try to reuse parts

from existing open source software, such
as Lilypond (lilypond.org), the GUIDO
library (www.salieri.org/guido) and
Rosegarden (www.rosegardenmusic.com).

• Add a “patcher”-like visual program-
ming interface, such as the one found in
IRCAM’s OpenMusic.

7 Conclusion

Functional programming has always played an
important role in computer music, because it
eases the symbolic manipulation of complex
structured data. However, to our knowledge no
other “modern-style” functional language cur-
rently provides the necessary interfaces to im-
plement sophisticated, realtime-capable multi-
media applications. We therefore believe that
Q is an interesting tool for those who would
like to explore MIDI programming, sound syn-
thesis and other multimedia applications, in the
context of a high-level, general-purpose, non-
imperative programming language.

While the Q core system is considered sta-
ble, the language and its libraries continue to
evolve, and it is our goal to turn Q into a vi-
able tool for rapid application development in
many different areas. We think that multime-
dia is an attractive playground for functional
programming, because modern FP languages al-
low many problems in this realm to be solved
in new and interesting ways; see in particular
Paul Hudak’s book on multimedia programming
with Haskell (Hudak, 2000a) for more exam-
ples. As the multithreading and realtime capa-
bilities of mainstream functional languages ma-
ture, it might also be an interesting option to
port some of Q’s libraries to other environments
such as the Glasgow Haskell compiler which of-
fer better execution speed than an interpreted
language, for the benefit of both the functional
programming community and multimedia appli-
cation developers.

References

Richard Bird and Philip Wadler. 1988. Intro-
duction to Functional Programming. Prentice
Hall, New York.

Nachum Dershowitz and Jean-Pierre Jouan-
naud. 1990. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, chapter 6,
pages 243–320. Elsevier.

Dominique Fober, Stephane Letz, and Yann Or-
larey. 1999. MidiShare joins the open sources

LAC2005
27

Figure 5: QSCSynth program.

softwares. In Proceedings of the International
Computer Music Conference, pages 311–313,
International Computer Music Association.
See also http://www.grame.fr/MidiShare.

Albert Gräf. 1991. Left-to-right tree pattern
matching. In Ronald V. Book, editor, Rewrit-
ing Techniques and Applications, LNCS 488,
pages 323–334. Springer.

Paul Hudak. 2000a. The Haskell School of Ex-
pression: Learning Functional Programming
Through Multimedia. Cambridge University
Press.

Paul Hudak. 2000b. Haskore Mu-
sic Tutorial. Yale University, De-
partment of Computer Science. See
http://www.haskell.org/haskore.

Stephane Letz, Dominique Fober, and Yann
Orlarey. 2000. Realtime composition in
Elody. In Proceedings of the International
Computer Music Conference, International

Computer Music Association. See also
http://www.grame.fr/Elody.

James McCartney. 2002. Rethinking the com-
puter music language: SuperCollider. Com-
puter Music Journal, 26(4):61–68. See also
http://supercollider.sourceforge.net.

Michael O’Donnell. 1985. Equational Logic
as a Programming Language. Series in the
Foundations of Computing. MIT Press, Cam-
bridge, Mass.

Heinrich K. Taube. 2005. Notes from the Met-
alevel: Introduction to Algorithmic Music
Composition. Swets & Zeitlinger. To appear.
http://pinhead.music.uiuc.edu/~hkt/nm.

LAC2005
28

jackdmp: Jack server for multi-processor
machines

S.Letz, D.Fober, Y.Orlarey
Grame - Centre national de création musicale

{letz, fober, orlarey}@grame.fr

Abstract

jackdmp is a C++ version of the Jack low-latency
audio server for multi-processor machines. It is a
new implementation of the jack server core features
that aims in removing some limitations of the cur-
rent design. The activation system has been changed
for a data flow model and lock-free programming
techniques for graph access have been used to have
a more dynamic and robust system. We present the
new design and the implementation for MacOSX.

Keywords

real-time, data-flow model, audio server, lock-free

1 Introduction

Jack is a low-latency audio server, written for
POSIX conformant operating systems such as
GNU/Linux. It can connect a number of dif-
ferent applications to an audio device, as well
as allowing them to share audio between them-
selves (Vehmanen, Wingo and Davis 2003). The
current code base written in C, developed over
several years, is available for GNU/Linux and
MacOSX systems. An additional integration
with the MacOSX CoreAudio architecture has
been realized (Letz, Fober and Orlarey 2004).

The system is now a fundamental part of
the Linux audio world, where most of music-
oriented audio applications are now Jack com-
patible. On MacOSX, it has extended the Core-
Audio architecture by adding low-latency inter-
application audio routing capabilities in a trans-
parent manner. 1

The new design and implementation aims in
removing some limitations of the current ver-
sion, by isolating the ”heart” of the system and
simplifying the implementation:

• the sequential activation model has been
changed to a new graph activation scheme

1All CoreAudio applications can take profit of Jack
features without any modification

based on a data-flow model, that will nat-
urally take profit of multi-processor ma-
chines

• a more robust architecture based on lock-
free programming techniques has been de-
veloped to allow the server to keep working
(not interrupting the audio stream) when
the client graph changes or in case of client
execution failure, especially interesting in
live situations.

• various simplifications have been done in
the internal design.

The section 2 explains the requirements, sec-
tion 3 describes the new design, section 4 de-
scribes the implementation, and finally section
5 describes the performances.

2 Multi-processing

Taking profit of multi-processor architectures
usually requires applications to be adapted. A
natural way is to develop multi-threaded code,
and in audio applications a usual separation
consists in executing audio DSP code in a real-
time thread and normal code (GUI for instance)
in one or several standard threads. The sched-
uler then activates all runnable threads in par-
allel on available processors.

In a Jack server like system, there is a natural
source of parallelism when Jack clients depend
of the same input and can be executed on dif-
ferent processor at the same time. The main re-
quirement is then to have an activation model
that allows the scheduler to correctly activate
parallel runnable clients. Going from a sequen-
tial activation model to a completely distributed
one also raise synchronization issues that can be
solved using lock-free programming techniques.

LAC2005
29

3 New design

3.1 Graph execution

In the current activation model (either on Linux
or MacOSX), knowing the data dependencies
between clients allows to sort the client graph
to find an activation order. This topological
sorting step is done each time the graph state
changes, for example when connections are done
or removed or when a new client opens or closes.
This order is used by the server to activate
clients in sequence.

Forcing a complete serialization of client ac-
tivation is not always necessary: for example
clients A and B (Fig 1) could be executed at the
same time since they both only depend of the
”Input” client. In this graph example, the cur-
rent activation strategy choose an arbitrary or-
der to activate A and B. This model is adapted
to mono-processor machines, but cannot exploit
multi-processor architectures efficiently.

3.2 Data flow model

Data flow diagrams (DFD) are an abstract gen-
eral representation of how data flows around
a system. In particular they describe systems
where the ordering of operations is governed by
data dependencies and by the fact that only the
availability of the needed data determines the
execution of one of the process.

A graph of Jack clients typically contains se-
quencial and parallel sub-parts (Fig 1). When
parallel sub-graph exist, clients can be executed
on different processors at the same time. A
data-flow model can be used to describe this
kind of system: a node in a data-flow graph
becomes runnable when all inputs are avail-
able. The client ordering step done in the mono-
processor model is not necessary anymore. Each
client uses an activation counter to count the
number of input clients which it depends on.
The state of client connections is updated each
time a connection between ports is done or re-
moved.

Activation will be transfered from client to
client during each server cycle as they are exe-
cuted: a suspended client will be resumed, exe-
cutes itself, propagates activation to the output
clients, go back to sleep, until all clients have
been activated. 2

2The data-flow model still works on mono-processor
machines and will correctly guaranty a minimum global
number of context switches like the ”sequential” model.

Input Ouput

A

B

C D

Figure 1: Client graph: Client A and B could
be executed at the same time, C must wait for
A and B end, D must wait for C end.

3.2.1 Graph loops
The Jack connection model allows loops to be
established. Special feedback connections are
used to close a loop, and introduce a one buffer
latency. We currently follow Simon Jenkins 3

proposition where the feedback connection is in-
troduced at the place where the loop is estab-
lished. This scheme is simple but has the draw-
back of having the activation order become sen-
sitive to the connection history. More complex
strategies that avoid this problem will possibly
be tested in the future.

3.3 Lock-free programming

In classic lock-based programming, access to
shared data needs to be serialized using mutual
exclusion. Update operations must appear as
atomic. The standard way is to use a mutex
that is locked when a thread starts an update
operation and unlocked when the operation is
finished. Other threads wanting to access the
same data check the mutex and possibly sus-
pend their execution until the mutex becomes
unlocked. Lock based programming is sensi-
tive to priority inversion problems or deadlocks.
Lock-free programming on the contrary allows
to build data structures that are safe for con-
current use without needing to manage locks or
block threads (Fober, Letz, and Orlarey 2002).

Locks are used at several places in the cur-
rent Jack server implementation. For example,
the client graph needs to be locked each time
a server update operation access it. When the
real-time audio thread runs, it also needs to ac-
cess the client graph. If the graph is already
locked and to avoid waiting an arbitrary long
time, the Real-Time (RT) thread generates an
empty buffer for the given audio cycle, causing
an annoying interruption in the audio stream.

A lock-free implementation aims at remov-

3Discussed on the jack-dev mailing list

LAC2005
30

ing all locks (and particularly the graph
lock) and allowing all graph state changes
(add/remove client, add/remove ports, connec-
tion/disconnection...) to be done without in-
terrupting the audio stream. 4 As described
in the implementation section, this new con-
straint requires also some changes in the client
side threading model.

3.3.1 Lock-free graph state change
All update operations from clients are serial-
ized through the server, thus only one thread
updates the graph state. RT threads from the
server and clients have to see the same coher-
ent state during a given audio cycle. Non RT
threads from clients may also access the graph
state at any time. The idea is to use two states:
one current state and one next state to be up-
dated. A state change consists in atomically
switching from the current state to the next
state. This is done by the RT audio server
thread at the beginning of a cycle, and other
clients RT threads will use the same state dur-
ing the entire cycle. All state management op-
erations are implemented using the CAS 5 op-
eration and are described with more details in
the implementation section.

3.4 A ”robust” server
Having a robust system is especially important
in live situations where one can accept a tempo-
rary graph execution fault, which is usually bet-
ter that having the system totally failing with
a completely silent buffer and an audio stream
interruption for example. In the current sequen-
tial version, the server waits for the client graph
execution end before in can produce the output
audio buffers. Thus a client that does not run
during one cycle will cause the complete failure
of the system.

In a multi-processor context, it is interesting
to have a more distributed system, where a part
of the graph may still run on one processor even
if another part is blocked on the other one.

3.4.1 Engine cycle
The engine cycle has been redesigned. The
server no longer waits for the client execution
end. It uses the buffers computed at the previ-
ous cycle. The server cycle is fast and take al-

4Some operations like buffer size change will still in-
terrupt the audio stream.

5CAS is the basic operation used in lock-free pro-
gramming: it compares the content of a memory address
with an expected value and if success, replaces the con-
tent with a new value.

most constant time since it is totally decoupled
from the clients execution. This allows the sys-
tem to keep running even if a part of the graph
can not be executed during the cycle for what-
ever reason (too slow client, crash of a client...).

The server is more robust: the resulting out-
put buffer may be incomplete, if one or sev-
eral clients have not produced their contribu-
tion, but the output audio stream will still be
produced. The server can detect abnormal sit-
uations by checking if all clients have been ex-
ecuted during the previous cycle and possibly
notify the faulty clients with an XRun event.

3.4.2 Latency
Since the server uses the output buffers pro-
duced during the previous cycle, this new model
adds a one buffer more latency in the system.6
But according to the needs, it will be possible
to choose between the current model where the
server is synchronized on the client graph exe-
cution end and the new more robust distributed
model with higher latency.

4 Implementation

The new implementation concentrates on the
core part of the system. Some part of the API
like the Transport system are not implemented
yet.

4.1 Data structure
Accessing data in shared memory using pointers
on the server and client side is usually complex:
pointers have to be described as offset related
to a base address local to each process. Linked
lists for example are more complex to manage
and usually need locked access method in multi-
thread cases. We choose to simplify data struc-
tures to use fixed size preallocated arrays that
will be easier to manipulate in a lock free man-
ner.

4.2 Shared Memory
Shared memory segments are allocated on the
server side. A reference (index) on the shared
segment must be transfered on the client side.
Shared memory management is done using two
classes:

• On the server side, the JackShmMem
class overloads new and delete operators.
Objects of sub-classes of JackShmMem will

6At least on OSX where the driver internal behaviour
concerning input and output latencies values cannot be
precisely controlled

LAC2005
31

be automatically allocated in shared mem-
ory. The GetShmIndex method retrieves
the corresponding index to be transfered
and used on the client side.

• Shared memory objects are accessed us-
ing a standard pointer on the server side.
On the client side, the JackShmPtr tem-
plate class allows to manipulate objects al-
located in shared memory in a transparent
manner: initialized with the index obtained
from the server side, a JackShmPtr pointer
can be used to access data and methods 7

of the corresponding server shared memory
object.

Shared memory segments allocated on the
server will be transfered from server to client
when a new client is registered in the server, us-
ing the corresponding shared memory indexes.

4.3 Graph state
Connection state was previously described as
a list of connected ports for a given port.
This list was duplicated both on the server
and client side thus complicating connec-
tion/disconnection steps. Connections are now
managed in shared memory in fixed size arrays.

The JackConnectionManager class main-
tains the state of connections. Connections are
represented as an array of port indexes for a
given port. Changes in the connection state will
be reflected the next audio cycle.

The JackGraphManager is the global
graph management object. It contains a con-
nection manager and an array of preallocated
ports.

4.4 Port description
Ports are a description of data type to be ex-
changed between Jack clients, with an associ-
ated buffer used to transfer data. For audio
input ports, this buffer is typically used to mix
buffers from all connected output ports. Audio
buffers were previously managed in a indepen-
dent shared memory segment.

For simplification purpose, each audio buffer
is now associated with a port. Having all buffers
in shared memory will allow some optimiza-
tions: an input port used at several places with
the same data dependencies could possibly be
computed once and shared. Buffers are pre-
allocated with the maximum possible size, there
is no re-allocation operation needed anymore.
Ports are implemented in the JackPort class.

7Only non virtual methods

4.5 Client activation
At each cycle, clients that only depend of the
input driver and clients without inputs have to
be activated first. To manage clients without in-
puts, an internal freewheel driver is used: when
first activated, the client will be connected to it.
At the beginning of the cyle, each client has its
activation counter containing the number of in-
put client it depends on. After being activated,
the client decrements the activation counter of
all its connected output. The last activated in-
put client will resume the following client in the
graph. (Fig 2)

Each client uses an inter-process sus-
pend/resume primitive associated with an ac-
tivation counter. An implementation could be
described with the following pseudo code. Exe-
cution of a server cycle follows several steps:

• read audio input buffers

• write output audio buffers computed the
previous cycle

• for each client in client list, reset the acti-
vation counter to its initial value

• activate all clients that depends on the in-
put driver client or without input

• suspend until next cycle

C (1)

A(0)

B(0) B(0)

C (0)

A(0)

C (2)

A(0)

B(0)

Running client

Figure 2: Example of graph activation: C is ac-
tivated by the last running of its A and B input.

After being resumed by the system, execution
of a client consists of:

• call the client process callback

• propagate activation to output clients

• suspend until the next cycle

On each platform, an efficient synchroniza-
tion primitive is needed to implement the sus-
pend/resume operation. Mach semaphores are
used on MacOSX. They are allocated and
published by the server in a global names-
pace (using the mach bootstrap service mecha-
nism). Running clients are notified when a new

LAC2005
32

client is opened and access the corresponding
semaphore.

Linux kernel 2.6 features the Fast User space
mutEx (futex), a new facility that allows two
process to synchronize (including blocking and
waking) with either no or very little interaction
with the kernel. It seems likely that they are
better suited to the task of coordinating mul-
tiple processes than the FIFO’s that the Linux
implementation currently uses.

4.6 Lock-free graph access
Lock-free graph access is done using the Jack-
AtomicState template class. This class imple-
ment the two state pattern. Update methods
use on the next state and read methods access
the current state. The two states can be atom-
ically exchanged using a CAS based implemen-
tation.

• code updating the next state is protected
using the WriteNextStateStart and
WriteNextStateStop methods. When
executed between these two methods, it can
freely update the next state and be sure
that the RT reader thread can not switch
to the next state.8

• the RT server thread switch to the new
state using the TrySwitchState method
that returns the current state if called
concurrently with a update operation and
switch to the next state otherwise.

• other RT threads read the current state,
valid during the given audio cycle using the
ReadCurrentState method.

• non RT threads read the current state us-
ing the ReadCurrentState method and
have to check that the state was not
changed during the read operation (using
the GetCurrentIndex method):

void ClientNonRTCode(...)
{

int cur_index,next_index;
State* current_state;
next_index = GetCurrentIndex();
do {

cur_index = next_index;
current_state = ReadCurrentState();
...
< copy current_state >
...

8The programming model is similar to a lock-based
model where the update code would be written inside a
mutex-lock/mutex-unlock pair.

next_index = GetCurrentIndex();
} while (cur_index != next_index);

}

4.7 Server client communications
A global client registration entry point is de-
fined to allow client code to register a new
client (a JackServerChannel object). A pri-
vate communication channel is then allocated
for each client for all client requests, and re-
mains until the client quits. Possible crash of
a client is detected and handled by the server
when the private communication channel is ab-
normally closed. A notification channel is also
allocated to allow the server to notify clients:
graph reorder, xrun, port registration events...

Running clients can also detect when the
server no more runs as soon as waiting on the
input suspend/resume primitive fails. (Fig 3)

The current version uses socked based chan-
nels. On MacOSX, we use MIG (Mach Inter-
face Generator), a very convenient way to define
new Remote Procedure Calls (RPC) between
the server and clients. 9

 Jack Server

Client A

Client B

Client requests
Server

notifications

Client requests

Server
notifications

Client
registration

Figure 3: The server defines a public ”client reg-
istration” channel. Each client is linked with the
server using two ”request ”and ”notification”
channels.

4.8 Server
The Jack server contains the global client reg-
istration channel, the drivers, an engine, and
a graph manager. It receives requests from the
global channel, handle some of them (BufferSize
change, Freewheel mode..) and redirect other
ones on the engine.
4.8.1 Engine
The engine contains a JackEngineControl,
a global shared server object also visible for
clients. It does the following:

9Both synchronous and asynchronous function calls
can be defined

LAC2005
33

• handles requests for new clients through
the global client registration channel and
allocates a server representation of new ex-
ternal clients

• handles request from running clients

• activates the graph when triggered by the
driver and does various timing related oper-
ations (CPU load measurement, detection
of late clients...)

4.8.2 Server clients
Server clients are either internal clients (a Jack-
InternalClient object) when they run in the
server process space10 or external clients (a
JackExternalClient object) as a server repre-
sentation of an external client. External clients
contain the local data (for example the notifi-
cation channel, a JackNotifyChannel object)
and a JackClientControl object to be used by
the server and the client.

4.8.3 Library Client
On the client side, the current Jack version uses
a one thread model: real-time code and no-
tifications (graph reorder event, xrun event...)
are treated in a unique thread. Indeed the
server stops audio processing while notifications
are handled on the client side. This has some
advantages: a much simpler model for syn-
chronization, but also some problematic con-
sequences: since notifications are handled in
a thread with real-time behaviour, a non real-
time safe notification may disturb the whole ma-
chine.

Because the server audio thread is not in-
terrupted anymore, most of server notifications
will typically be delivered while the client audio
thread is also running. A two threads model for
client has to be used:

• a real-time thread dedicated to the audio
process

• a standard thread for notifications

The client notification thread is started in
jack-client-new call. Thus clients can already
receive notifications when they are in the opened
state. The client real-time thread is started
in jack-activate call. A connection manager
client for example does not need to be activated
to be able to receive graphreorder, or portregis-
tration like notifications (Fig 4).

10Drivers are a special subclass of internal clients

Closed Opened Running

jack_client_new jack_activate

jack_deactivatejack_client_close

Notification thread
running

Notification + RT thread
running

Figure 4: Client life cycle

This two threads model will possibly have
some consequences for existing Jack applica-
tions: they may have to be adapted to allow a
notification to be called while the audio thread
is running.

The library client (a JackLibClient object)
redirects the external Jack API to the Jack
server. It contains a JackClientChannel ob-
ject that implements both the request and no-
tification channels, local client side resources as
well as access to objects shared with the server
like the graph manager or the server global
state.

4.8.4 Drivers
Drivers are needed to activate the client graph.
Graph state changes (new connections, port,
client...) are done by the server RT thread.
When several drivers need to be used, one of
them is called the master and updates the
graph. Other one are considered as slaves.

The JackDriver class implements com-
mon behaviour for drivers. Those that use
a blocking audio interface (like the Jack-
ALSADriver driver) are subclasses of the
JackThreadedDriver class. A special Jack-
FreewheelDriver (subclass of JackThreaded-
Driver) is used to activate clients without in-
puts and to implement the freewheel mode
(see 4.8.5). The JackAudioDriver class im-
plements common code for audio drivers, like
the management of audio ports. Callback
based drivers (like the JackCoreAudioDriver
driver, a subclass of JackAudioDriver) can di-
rectly trigger the Jack engine.

When the graph is synchronized to the au-
dio card, the audio driver is the master and the
freewheel driver is a slave.

4.8.5 Freewheel mode
In freewheel mode, Jack no longer waits for any
external event to begin the start of the next
process cycle thus allowing faster than real-time
execution of Jack graph. Freewheel mode is im-
plemented by switching from the audio and free-
wheel driver synchronization mode to the free-
wheel driver only:

LAC2005
34

• the global connection state is saved

• all audio driver ports are deconnected, thus
there is no more dependancies with the au-
dio driver

• the freewheel driver is synchronized with
the end of graph execution: all clients are
connected to the freewheel driver

• the freewheel driver becomes the master

Normal mode is restored with the connections
state valid before freewheel mode was done.
Thus one consider that no graph state change
can be done during freewheel mode.

4.9 XRun detection
Two kind of XRun can be detected:

• XRun reported by the driver

• XRun detected by the server when a client
has not be executed the previous cycle: this
typically correspond to abnormal scheduler
latencies

On MacOSX, the CoreAudio HAL system al-
ready contains a XRun detection mechanism: a
kAudioDeviceProcessorOverload notification is
triggered when the HAL detects an XRun. The
notification will be redirected to all running
clients. All clients that have not been executed
the previous cycle will be notified individually.

5 Performances

The multi-processor version has been tested on
MacOSX. Preliminary benchmarks have been
done on a mono and dual 1.8 Ghz G5 machine.
Five jack-metro clients generating a simple bip
are running.

Client 1

Signal
Awake

FinishAudio
Interrupt

t

Client 2

Signal Awake
Finish

Server

Figure 5: Timing diagram for a two clients in
sequence example

For a server cycle, the signal date (when
the client resume semaphore is activated), the
awake date (when the client actually wakes up)
and the finish date (when the client ends its pro-
cessing and go back to suspended state) relative
to the server cycle start date before reading and

writing audio buffers have been measured. The
first slice in the graph also reflects the server be-
havior: the duration to read and write the audio
buffers can be seen as the signal date curve off-
set on the Y-coordinate. After having signaled
the first client, the server returns to the Core-
Audio HAL (Hardware Abstract Layer), which
mix the output buffers in the kernel driver (off-
set between the first client signal date and its
awake date (Fig 5)). The first client is then
resumed.

Figure 6: Mono G5, clients connected in se-
quence. For a server cycle: signal (blue), awake
(pink) and finish (yellow) date. End date is
about 250 microsecond on average.

With all clients running at the same time, the
measure is done during 5 seconds. The behavior
of each client is then represented as a 5 seconds
”slice” in the graph and all slices have been con-
catenated on the X axis, thus allowing to have
a global view of the system.

Two benchmarks have been done. In the first
one, clients are connected in sequence (client
1 is connected to client 2, client 2 to client 3
and so on), thus computations are inevitably
serialized. One can clearly see that the signal
date of client 2 happens after the finished date
of client 1 and the same behavior happens for
other clients. Measures have been done on the
mono (Fig 6) and dual machine (Fig 7).

In the second benchmark, all clients are only
connected to the input driver, thus they can
possibly be executed in parallel. The input
driver client signal all clients at (almost) the
same date 11. Measures have been done on
the mono (Fig 8) and dual (Fig 9) machine.
When parallel clients are executed on the dual

11Signaling a semaphore has a cost that appears as the
slope of the signal curve.

LAC2005
35

Figure 7: Dual G5. Since clients are connected
in sequence, computations are also serialized,
but client 1 can start earlier on the second pro-
cessor. End date is about 250 microsecond on
average.

machine, one see clearly that computations are
done at the same time on the 2 processors and
the end date is thus lowered.

Figure 8: Parallel clients on a mono G5. Al-
though the graph can potentially be parallelized,
computations are still serialized. End date is
about 250 microsecond on average.

Other benchmarks with different paral-
lel/sequence graph to check their correct acti-
vation behavior and comparaison with the same
graphs runned on the mono-processor machine
have been done. A worst case additional la-
tency of 150 to 200 microseconds added to the
average finished date of the last client has been
measured.

6 Conclusion

With the development of multi-processor ma-
chines, adapted architectures have to be devel-
oped. The Jack model is particularly suited

Figure 9: Parallel clients on a dual G5. Client 1
can start earlier on the second processor before
all clients have been signalled. Computations
are done in parallel. End date is about 200 mi-
crosecond on average.

to this requirement: instead of using a ”mono-
lithic” general purpose heavy application, users
can build their setup by having several smaller
and goal focused applications that collaborate,
dynamically connecting them to meet their spe-
cific needs.

By adopting a data flow model for client ac-
tivation, it is possible to let the scheduler natu-
rally distribute parallel Jack clients on available
processors, and this model works for the bene-
fit of all kind of client aggregation, like inter-
nal clients in the Jack server, or multiple Jack
clients in an external process.

A Linux version has to be completed with
an adapted primitive for inter process synchro-
nization as well as socket based communication
channels between the server and clients. The
multi-processor version is a first step towards
a completely distributed version, that will take
advantage of multi-processor on a machine and
could run on multiple machines in the future.

References

D.Fober, S.Letz, Y.Orlarey ”Lock-Free Tech-
niques for Concurrent Access to Shared Ob-
jects”, Actes des Journes d’Informatique Mu-
sicale JIM2002, Marseille, pages 143–150

S.Letz, D.Fober, Y.Orlarey, P.Davis ”Jack
Audio Server: MacOSX port and multi-
processor version, Proceedings of the first
Sound and Music Computing conference -
SMC’04”, pages 177–183

Vehmanen Kai, Wingo Andy and Davis
Paul ”Jack Design Documentation”,
http://jackit.sourceforge.net/docs/design/

LAC2005
36

On The Design of Csound5

John ffitch
Department of Computer Science

University of Bath
Bath BA2 7AY,

UK,
jpff@cs.bath.ac.uk

Abstract
Csound has been in existence for many years, and
is a direct descendant of the MusicV family. For
a decade development of the system has continued,
via some language changes, new operations and the
necessary bug fixes. Two years ago a small group of
us decided that rather than continue the incremental
process, a code freeze and rethink was needed. In
this paper we consider the design and aims for what
has been called Csound5, and describe the processes
and achievements of the implementation.

Keywords
Synthesis language, Csound.

1 Introduction and Background

The music synthesis language
Csound (Boulanger, 2000) was produced
by Barry Vercoe(Vercoe, 1993) and was avail-
able under the MIT Licence on a small number
of platforms. The current author ported the
code to the Windows environment in the
early 1990s, whereupon a self-defining team
of programmers, DSP experts and musicians
emerged who have continued to maintain and
extend the software package ever since. The
original synthesis engine has remained largely
unchanged, while a significant number of
new operations (opcodes) and table creation
routines have been added. Despite various
suggestions over the years, the two languages —
the score language and the orchestra language
— have remained unaltered until very recently,
when user-defined opcodes, if..else and score
looping constructs were introduced.

The user base of Csound is large, and as we
have maintained a free download policy we do
not know how many copies there are in exis-
tence or how many are being used. What is
clear from the Csound mailing lists is that the
community is very varied, and while some of us
think of ourselves as classical “art” composers,
there are also live performers, techno and ambi-
ent composers, and many other classifications.

The subject of this paper is Csound5, and in
particular how its design has evolved from the
current Csound. But there are two particular
phenomena that have had a direct influence on
the need for the re-think.

The first was legal; Csound had been dis-
tributed under the MIT licence since 1986,
which stipulates some freedoms and some re-
strictions. The freedoms are expressed as Per-
mission to use, copy, or modify these programs
and their documentation for educational and re-
search purposes only and without fee is hereby
granted, provided that this copyright and per-
mission notice appear on all copies and support-
ing documentation. There was clarification that
this should be taken to allow composers to use it
without imposing any restriction on the result-
ing music. However the licence continues For
any other uses of this software, in original or
modified form, including but not limited to dis-
tribution in whole or in part, specific prior per-
mission from M.I.T. must be obtained. When
Csound was first made available this was con-
sidered a free licence, but with the growth of the
Free Software movement, and much wider avail-
ability of computers, the restriction stopped de-
velopers making use of Csound in larger soft-
ware systems if they were intending to dis-
tribute the resulting system. It also acted to
prevent some kinds of publicity, as might be en-
gendered by inclusion in books and magazines.
Early attempts to resolve these problems failed,
mainly though incomprehension. The publica-
tion of Phillips’ book(Phillips, 2000) was a fur-
ther call to address the problem. The change
which influenced the whole approach to the de-
velopment of Csound was the adoption by MIT
of the Lesser GNU Public Licence. The de facto
monopoly allowing distribution was gone.

The second phenomenon was the appar-
ently remorseless improvements in technology.
Csound was conceived as an off-line program,
rendering a sound description over however long

LAC2005
37

Figure 1: Architecture of original Csound

it took. In the mid 1990s there was a project to
recreate Csound for an embedded DSP proces-
sor(Vercoe, 1996) as a means of making a real-
time synthesis system. This has been overtaken
by the increase in machine speeds, and this
speed has resulted in the Csound community
calling for real-time performance, performer in-
terfaces and MIDI controls. While some users
had been wanting this for years, the availability
of processors that were nearly capable of real-
time rendering made all too clear the shortcom-
ings of the 15- year-old design.

At the end of 2002 we imposed a code freeze
to allow the developer community to catch up
with their modifications, and in particular to
allow larger scale changes to be made on a
fixed target. The previous version was still sub-
jected to bug fixes but mainstream development
ceased as we moved to Sourceforge and opened
up the system even further.

This paper gives one person’s view of the sys-
tem we are building, usually called Csound5, as
we froze at version 4.23. As the system is now
running largely satisfactorily it is a good time
to reflect on the aims of this major reconstruc-
tion, and to what extent our aspirations have
been matched by our achievements.

2 Requirements

The developers had a number of (distributed)
discussions of what was needed in any revision.
The strongest requirement was the ability to
embed Csound within other systems, be they
performance system or experimental research
testbeds(ffitch and Padget, 2002). This has a
number of software implications. The most sig-
nificant one is perhaps the need for an agreed
application process interface (API) which would
allow the controlling program access to some of
the internal operations of Csound, and also sep-

arate the compilation processes from the execu-
tion. Also in the scope of the API is the possibil-
ity of adding new opcodes and generators which
have access to the opcode mechanisms, memory
allocation, navigation of internal structures and
so on.

Related to the requirement for a documented
software interface is a call to make Csound re-
entrant. This would allow multiple uses both
serially and in parallel. The original code was
written with no thought for such niceties, and
there is a plethora of static variables throughout
the system. Removing these would be a major
step towards re-entrance, and encapsulating the
state within a single structure was the proposed
solution, a structure that could also carry parts
of the API.

A possible lesser goal was to improve the in-
ternal reporting of errors. The original system
set a global variable to indicate an initialisation
error or a performance error, and this is checked
at the top event loop. A simpler and more re-
spectable process is for each initialiser and op-
erator to return an error code; such a system
can be extended to make use of the error codes.

Csound originally generated IRCAM format
sound files, and AIFF. Later WAV was added
and some variants of AIFC. The code was all
ad hoc and as audio formats are continually be-
ing developed, it seemed an ideal opportunity
to capitalise on the work of others, and to use
an external library to provide audio filing.

In a similar way the real-time audio output is
specially written for each platform, and main-
taining this reduces the time available for devel-
opment and enhancement. Since Csound was
written, cross-platform libraries to encapsulate
real-time audio have been developed, and while
using an external library for files it seemed nat-
ural to investigate the same for sound.

Another aspect where there was platform-
dependent code is in graphics. Csound has been
able to display waveforms and spectral frames
from the beginning, but there are a large num-
ber of optional files for DOS, Windows, Macin-
tosh, SGI, SUN, X, and so forth. Using a gen-
eral graphical system would move this compli-
cation into someone else’s hands. It would also
be useful if the graphical activity were made ex-
ternal, using the API, so a variety of graphical
packages could be used in a fashion like embed-
ding. This leads to the idea of providing a vis-
ible software bus to communicate between the
Csound engine and the wider environment.

LAC2005
38

The last component where an external library
could assist is in MIDI. There have been com-
plaints about the support for MIDI for a long
time, and so in any reconstruction it was clearly
something that should be addressed.

The last major component that is in need of
reconstruction is the orchestra parser. The orig-
inal parser is an ad hoc parser very reminiscent
of the late 1970s. It is hard to modify and there
are bugs lurking there that have evaded all at-
tempts to fix. If a new parser were to be written
it could sidestep these problems and also allow
things like two-argument functions, which have
been requested in the past. Another possible
outcome from a new parser might be the ability
to experiment with alternative languages which
maintain the underlying semantics. That might
also incorporate the identification of a parser
API.

In all this design we were mindful that
Csound was and must remain a cross-platform
synthesis system, and should behave the same
on all implementations. It would also be con-
venient if the building system were the same
or similar on all platforms, and installation
should be simple — accessible to users at any
computer-literate level.

The other overriding requirement is that the
system must not change externally, in the sense
that all old music pieces must still render to the
same audio. We can add new functionality, but
visible things must not be removed.

3 Implementation

The previous section described the desired fea-
tures of the new Csound. But they are wishes.
In this section we consider the translations of
these aspirations to actual code.

The API is largely the work of Gogins, but
there is a number of basic concepts in the solu-
tion. The implementation is by a global struc-
ture that is passed as an argument to most func-
tions. Within the structure there are at least
three groups of slots. The first group incor-
porates the main API functions; functions to
control Csound, such as Perform, Compile, Per-
formKsmps, Cleanup and Reset. There are also
functions in this structure to allow the control-
ling program to interrogate Csound, to deter-
mine the sampling rate, the current time posi-
tion and so forth. These functions are also used
by user-defined opcode libraries to link to the
main engine. The last group are the state vari-
ables for the instantiation of Csound.

The transition to allowing a re-entrant system
is largely one of moving static variables into the
system-wide structure. Code simplicity is main-
tained by creating C macros so access can be via
the same text as previously. By adding an addi-
tional argument to every opcode of this environ-
ment structure a great simplification of much of
the code is achieved, especially for user-defined
opcodes, as described in more detail below (sec-
tion 4).

Every opcode now returns an error code, or
zero if it succeeded. This is a facility that has
not been exploited yet, but it should be pos-
sible to move more of the error messages from
the main engine, and incidentally to facilitate
internationalisation.

The decision to use an external library for
reading and writing sound files was an easy one;
what was less easy was deciding which one to
use. A number were considered, both the small
and simple, and the all-embracing. The one we
chose was Libsndfile (de Castro Lopo, 2005).
The library is subject to LGPL, but the decid-
ing factor was the helpful attitude of the au-
thor. We have not regretted this decision, and
it was moderately easy to replace the complex
accumulation of AIFF, AIFC and WAV with
the cleaner abstraction. The hardest part was
that Libsndfile works in frames and Csound has
been written in samples or sometimes bytes. Of
particular note was the removal of many lines
of code that dealt with multiple formats (alaw,
µlaw, signed and unsigned...).

There seemed less choice with the real-time
audio library; PortAudio (Bencina and Burk,
2005; Bencina and Burk, 2001) seemed obvious.
As the library was in transition from version 18
to 19 we decided to look ahead and use v19.
This has been a more problematic decision. For
example Csound is written with a blocking I/O
model for audio, but to date of writing this is
not implemented on all platforms, and we are
using a hybrid, implementing blocking via call-
backs and threads on some systems, and simple
blocking I/O on others. There have even been
suggestions that we abandon this library as it
has not (yet) delivered the simplicity we seek.
I think this can be overcome, and the decision
was correct, but there are clearly problems re-
maining in this area.

The companion to PortAudio in the Port-
Music project(Por, 2005) for MIDI is Port-
MIDI(Dannenberg, 2005). This was the obvi-
ous choice to support MIDI. The software mod-

LAC2005
39

els are fairly far apart but it has been incorpo-
rated. What we do not seem to be able to find
is a library for file-based MIDI. At present we
are continuing to use the original Vercoe code,
with what looks like duplication in places. This
needs to be investigated further.

There is a surfeit of graphical toolkits, at
many levels of complexity. Based on previ-
ous experience, both outside Csound and inside
with CsoundAV(Maldonado, 2005), FLTK was
chosen. This is simple and light-weight. There
are undoubtedly faster libraries, but graphics
performance is not of the essence and the sim-
plicity is worth the loss. A drawback is that
this is a C++ library, whereas Csound is still at
heart a C program. However in the medium
term I still intend that graphics should be
moved out of the core Csound and we should
use the API and software bus.

A contentious issue (at least within our devel-
oper community) has been a framework for com-
mon building. For most of the life of Csound
there have been three major builds, for Linux,
Windows and Macintosh. The Linux and Unix
system use a hand crafted makefile; on Win-
dows a Microsoft Visual C++ IDE was used
and on Macintosh the Codewarrior IDE. The re-
design of Csound coincided with the acceptance
of OSX on the Macintosh, and the availabil-
ity of the MinGW package for Windows. This
suggests that it should be possible to have a
common tool-chain. Initial experience with the
GNU tools (automake, autoconf etc) was highly
negative, with incompatibilities between plat-
forms, and between different releases of Linux.
We are now using SCons(SCo, 2005) which is
a Python-based building system which we have
found to work cleanly on our three major plat-
forms, and to have sufficient flexibility.

The first implementation of a software bus
has been made, by offering an arbitrary number
of uni-directional audio and control buses. This
facility remains to be exploited.

The most problematic area of the implemen-
tation is the parser. A Flex-based lexer and a
Bison parser have been developed1 and these
implement most of the current Csound lan-
guage. The problem of joining this front-end
into the internal structures remains as a ma-
jor task that has not yet been attempted. The
design of the parser will allow user-defined op-

1The parse is not based on the earlier Bernardini
parser, but created with the support of Epigon Audio-
care Pvt Ltd

Figure 2: Architecture of Csound5

codes as is essential, as well as functions of one
or more arguments. The main incompatibilities
are in the enforcement of functions as functions,
which is not in the original system. It does how-
ever mend known bugs in the lexing phase, and
also makes better use of temporary variables.

4 User Defined Libraries

One reason for the redesign was to allow third
parties to provide new opodes, either as open
source or as compiled libraries that can be
loaded into Csound. The user opcodes are com-
piled into .DLL or shared libraries, and the ini-
tialisation of Csound loads libraries as required.

User libraries were introduced in Csound4,
but in Csound5 they have been extensively de-
veloped. We provide C macros to allow the li-
brary to be written in much the same way as
base opcodes, and proforma structures to link
the opcodes into the system. We have also re-
cently made it possible to have library-defined
table generators as well. The macros wrap the
usual internal Csound functions as called via the
global environment structure.

To prove that the mechanism works, many of
the opcodes were remade as loadable code. The
final decision as to which opcodes will be in the
base and which loadable is not settled, but the
overall structure of Csound is now changed from
the architecture of figure 1 to that of figure 2.
With this architecture we hope that clearer sep-
aration will make maintenance simpler.

5 Experience

In many ways it is too early to make informed
judgements on the new Csound. On the other
hand the system has been in a running state for
many months, and on at least the Linux plat-
form it is usable. Despite some rough edges it
renders to both file and audio, and there are no
appreciable performance issues.

The use of Libsndfile has been a very posi-
tive experience on all platforms. PortAudio has

LAC2005
40

caused some problems; with ALSA on Linux
it is acceptable, but there have been latency
problems on Windows and a number of ongoing
problems on OSX, with lack of blocking I/O and
an apparent need for multiple copying of audio
data. There are enough indications from the
PortAudio development community to say that
this will work to our advantage eventually. It is
still too soon to comment on the MIDI compo-
nents.

There are still questions that arise from
graphics and in particular the control of mul-
tiple threads. I believe that the solution is to
use the software bus and outsource graphical
activity to a controlling program. The graph-
ics does work as well as it did on Csound4, but
problems arise with the internal generation of
GUIs for performance systems.

The code freeze has had a number of mi-
nor positive effects; the code has been sub-
jected to coherent scrutiny without pressures
for releases. Multiple identical functions have
been combined, and many small coding im-
provements have been made, for both stylistic
and accuracy reasons.

The current state is close to release. It might
be possible to release before the incorporation of
the parser, but this would be a disappointment
to me. The other aspect that may delay re-
lease is documentation. The manual still needs
updating. Basic information on the system al-
ready exists.

The decision to use SCons has proved excel-
lent. It is working on Windows and OSX as well
as the usual development Linux platforms.

6 Conclusions

In this paper I have described the thoughts be-
hind the creation of the next incarnation of
Csound. Evolution rather than revolution has
been the key, but we are creating an embed-
dable system, a system more extensible than
previously, and with clear component divisions,
while preserving the operations and functional-
ity that our users have learnt to expect. By con-
centrating on an embeddable core I hope that
the tendency to create variants will be discour-
aged, and from my point of view I will not have
to worry about graphics, which interests me not
at all!

While the system has remained a cross-
platform one, development has been mainly on
Linux, and we have seen great benefits from all
the tools there. When Csound5 reaches its dis-

tribution time soon, the musical community will
also see these benefits.

7 Acknowledgements

My thanks go to everyone on the Csound De-
velopment mailing list for all their input, com-
ments and reports, and also to all the Csound
users who made it so clear what they wanted.
Particular thanks are due to Michael Gogins for
his insistence on a sane API, and to Richard
Boulanger who has been a driving force be-
hind me in the development and maintenance
of Csound.

References

Ross Bencina and Phil Burk. 2001. PortAudio
– an Open Source Cross Platform Audio API.
In ICMC2001. ICMA, September.

Ross Bencina and Phil Burk. 2005. PortAudio.
http://www.portaudio.com/.

Richard Boulanger, editor. 2000. The Csound
Book: Tutorials in Software Synthesis and
Sound Design. MIT Press, February.

Roger B. Dannenberg. 2005. PortMIDI.
http://www-2.cs.cmu.edu/~music/
portmusic/portmidi.

Erik de Castro Lopo. 2005. Libsndfile. http:
//www.mega-nerd.com/libsndfile/.

John ffitch and Julian Padget. 2002. Learning
to play and perform on synthetic instruments.
In Mats Nordahl, editor, Voices of Na-
ture: Proceedings of ICMC 2002, pages 432–
435, School of Music and Music Education,
Göteborg University, September. ICMC2002,
ICMC.

Gabriel Maldonado. 2005. Csoundav.
http://www.csounds.com/maldonado/
download.htm.

Dave Phillips. 2000. The Book of Linux Mu-
sic and Sound. No Starch Press. ISBN:
1886411344.

2005. PortMusic. http://www-2.cs.cmu.edu/
~music/portmusic/.

2005. SCons. http://www.scons.org/.
Barry Vercoe, 1993. Csound — A Manual for

the Audio Processing System and Supporting
Programs with Tutorials. Media Lab, M.I.T.

Barry Vercoe. 1996. Extended Csound. In On
the Edge, pages 141–142. ICMA, ICMA and
HKUST. ISBN 0-9667917-4-2.

LAC2005
41

LAC2005
42

CLAM, an Object Oriented Framework for Audio and Music

Pau Arumı́ and Xavier Amatriain
Music Technology Group, Universitat Pompeu Fabra

08003 Barcelona, Spain
{parumi,xamat}@iua.upf.es

Abstract

CLAM is a C++ framework that is being developed
at the Music Technology Group of the Universitat
Pompeu Fabra (Barcelona, Spain). The framework
offers a complete development and research platform
for the audio and music domain. Apart from offering
an abstract model for audio systems, it also includes
a repository of processing algorithms and data types
as well as a number of tools such as audio or MIDI
input/output. All these features can be exploited to
build cross-platform applications or to build rapid
prototypes to test signal processing algorithms.

Keywords

Development framework, DSP, audio, music, object-
oriented

1 Introduction

CLAM stands for C++ Library for Audio and
Music and is a full-fledged software framework
for research and application development in the
audio and music domain. It offers a conceptual
model as well as tools for the analysis, synthesis
and transformation of audio signals.

The initial objective of the CLAM project
was to offer a complete, flexible and platform in-
dependent sound analysis/synthesis C++ plat-
form to meet the needs of all the projects of the
Music Technology Group (MTG, 2004) at the
Universitat Pompeu Fabra in Barcelona. Those
initials objectives have slightly changed since
then, mainly because the library is no longer
seen as an internal tool for the MTG but as a
framework licensed under the GPL (Free Soft-
ware Foundation, 2004).

CLAM became public and Free in the course
of the AGNULA IST European project (Con-
sortium, 2004). Some of the resulting applica-
tions as well as the framework itself were in-
cluded in the Demudi distribution.

Although nowadays most the development is
done under GNU/Linux, the framework is cross-
platform. All the code is ANSI C++ and it

is regularly compiled under GNU/Linux, Win-
dows and Mac OSX using the GNU C++ com-
piler but also the Microsoft compiler.

CLAM is Free Software and all its code and
documentation can be obtained though its web
page (www CLAM, 2004).

2 What CLAM has to offer ?

Although other audio-related environments ex-
ist 1 —see (Amatriain, 2004) for an extensive
study and comparison of most of them— there
are some important features of our framework
that make it somehow different:

• All the code is object-oriented and written
in C++ for efficiency. Though the choice
of a specific programming language is no
guarantee of any style at all, we have tried
to follow solid design principles like design
patterns (Gamma E. and J., 1996) and
C++ idioms (Alexandrescu, 2001), good
development practices like test-driven de-
velopment (Beck, 2000) and refactoring
(Fowler et al., 1999), as well as constant
peer reviewing.

• It is efficient because the design decisions
concerning the generic infrastructure have
been taken to favor efficiency (i.e. inline
code compilation, no virtual methods calls
in the core process tasks, avoidance of un-
necessary copies of data objects, etc.)

• It is comprehensive since it not only in-
cludes classes for processing (i.e. anal-
ysis, synthesis, transformation) but also
for audio and MIDI input/output, XML
and SDIF serialization services, algorithms,
data visualization and interaction, and
multi-threading.

• CLAM deals with wide variety of extensible
data types that range from low-level signals

1to cite only some of them: OpenSoundWorld, PD,
Marsyas, Max, SndObj and SuperCollider

LAC2005
43

Figure 1: CLAM modules

(such as audio or spectrum) to higher-level
semantic-structures (a musical phrase or an
audio segment)

• As stated before, it is cross-platform

• The project is licensed under the GPL
terms and conditions.

• The framework can be used either as a reg-
ular C++ library or as a prototyping tool.

In order to organise all these features CLAM
is divided into different architectonic modules.
Figure 1 shows the modules and submodules
that exist in CLAM. The most important ones
are those related to the processing kernel, with
its repositories and infrastructure modules. Fur-
thermore, a number of auxiliary tools are also
included.

In that sense, CLAM is both a black-box and
a white-box framework (Roberts and Johnson,
1996). It is black-box because already built-in
components included in the repositories can be
connected with minimum programmer effort in
order to build new applications. And it is white-
box because the abstract classes that make up
the infrastructure can be easily derived in order
to extend the framework components with new
processes or data classes.

2.1 The CLAM infrastructure
The CLAM infrastructure is defined as the set
of abstract classes that are responsible for the
white-box functionality of the framework and
define a related metamodel 2. This metamodel
is very much related to the Object-Oriented
paradigm and to Graphical Models of Compu-
tation as it defines the object-oriented encap-
sulation of a mathematical graph that can be
effectively used for modeling signal processing
systems in general and audio systems in partic-
ular.

The metamodel clearly distinguishes between
two different kinds of objects: Processing ob-
jects and Processing Data objects. Out of the
two, the first one is clearly more important as
the managing of Processing Data constructs can
be almost transparent for the user. Therefore,
we can view a CLAM system as a set of Process-
ing objects connected in a graph called Network.

Processing objects are connected through in-
termediate channels. These channels are the
only mechanism for communicating between
Processing objects and with the outside world.
Messages are enqueued (produced) and de-

2The word metamodel is here understood as a “model
of a family of related models”, see (Amatriain, 2004) for
a thorough discussion on the use of metamodels and how
frameworks generate them.

LAC2005
44

queued (consumed) in these channels, which
acts as FIFO queues.

In CLAM we clearly differentiate two kinds
of communication channels: ports and controls.
Ports have a synchronous data flow nature while
controls have an asynchronous nature. By syn-
chronous, we mean that messages get produced
and consumed at a predictable —if not fixed—
rate. And by asynchronous we mean that such
a rate doesn’t exist and the communication fol-
lows an event-driven schema.

Figure 2 is a representation of a CLAM pro-
cessing. If we imagine, for example, a processing
that performs a frequency-filter transformation
on an audio stream, it will have an input and
an out-port for the incoming audio stream and
processed output stream. But apart from the
incoming and outcoming data, some other en-
tity —probably the user through a GUI slider—
might want to change some parameters of the
algorithm.

This control data (also called events) will ar-
rive, unlike the audio stream, sparsely or in
bursts. In this case the processing would want
to receive these control events through vari-
ous (input) control channels: one for the gain
amount, another for the frequency, etc.

The streaming data flows through the ports
when a processing is fired (by receiving a Do()
message).

Different processings can consume and pro-
duce at different velocities or, likewise, a dif-
ferent number of tokens. Connecting these pro-
cessings is not a problem as long as the ports are
of the same data type. The connection is han-
dled by a FlowControl entity that figures out
how to schedule the firings in a way that avoids
firing a processing with not enough data in its
input-port or not enough space into its output-
ports.
Configurations: why not just controls?
Apart from the input-controls, a processing re-
ceives another kind of parameter: the configu-
rations.

Configurations parameters, unlike controls
parameters, are dedicated to expensive or struc-
tural changes in the processing. For instance, a
configuration parameter can decide the number
of ports that a processing will have. Therefore,
a main difference with controls is that they can
only be set into a processing when they are not
in running state.
Composites: static vs dynamic It is very
convenient to encapsulate a group of process-

ings that works together into a new composite
processing. Thus, enhancing the abstraction of
processes.

CLAM have two kinds of composites: static
or hardcoded and dynamic or nested-networks.
In both cases inner ports and controls can pub-
lished to the parent processing.

Choosing between the static vs dynamic com-
posites is a trade-off between boosting efficiency
or understandability. See in-band pattern in
(Manolescu, 1997).

2.2 The CLAM repositories
The Processing Repository contains a large set
of ready-to-use processing algorithms, and the
Processing Data Repository contains all the
classes corresponding to the objects being pro-
cessed by these algorithms.

The Processing Repository includes around
150 different Processing classes, classified in the
following categories: Analysis, ArithmeticOper-
ators, AudioFileIO, AudioIO, Controls, Genera-
tors, MIDIIO, Plugins, SDIFIO, Synthesis, and
Transformations.

Although the repository has a strong bias
toward spectral-domain processing because of
our group’s background and interests, there are
enough encapsulated algorithms and tools so as
to cover a broad range of possible applications.

On the other hand, in the Processing Data
Repository we offer the encapsulated versions
of the most commonly used data types such as
Audio, Spectrum, SpectralPeaks, Envelope or
Segment. It is interesting to note that all of
these classes have interesting features such as
a homogeneous interface or built-in automatic
XML persistence.

2.3 Tools
XML Any CLAM Component can be stored
to XML as long as StoreOn and LoadFrom meth-
ods are provided for that particular type (Gar-
cia and Amatrian, 2001). Furthermore, Pro-
cessing Data and Processing Configurations –
which are in fact Components– make use of a
macro-derived mechanism that provides auto-
matic XML support without having to add a
single line of code (Garcia and Amatrian, 2001).
GUI Just as almost any other framework in
any domain, CLAM had to think about ways of
integrating the core of the framework tools with
a graphical user interface that may be used as
a front-end of the framework functionalities.

The usual way to work around this issue is to
decide on a graphical toolkit or framework and

LAC2005
45

Figure 2: CLAM processing detailed representation

add support to it, offering ways of connecting
the framework under development to the wid-
gets and other graphical tools included in the
graphical framework. The CLAM team, how-
ever, aimed at offering a toolkit-independent
support. This is accomplished through the
CLAM Visualization Module.

This general Visualization infrastructure is
completed by some already implemented pre-
sentations and widgets. These are offered both
for the FLTK toolkit (FLTK, 2004) and the
QT framework (Blanchette and Summerfield,
2004; Trolltech, 2004). An example of such
utilities are convenient debugging tools called
Plots. Plots offer ready-to-use independent wid-
gets that include the presentation of the main
Processing Data in the CLAM framework such
as audio, spectrum, spectral peaks. . .

Platform Abstraction Under this category
we include all those CLAM tools that encap-
sulate system-level functionalities and allow a
CLAM user to access them transparently from
the operating system or platform.

Using these tools a number of services –such
as Audio input/output, MIDI input/output or
SDIF file support– can be added to an applica-
tion and then used on different operating sys-
tems without changing a single line of code.

3 Levels of automation

The CLAM framework offers three different lev-
els of automation to a user who wants to use its
repositories, which can also be seen as different

Figure 3: a CLAM processing network

levels of use of the generic infrastructure:

Library functions The user has explicit ob-
jects with processings and processing data and
calls processings Do methods with data as its
parameters. Similarly as any function library.

Processing Networks The user has explicit
processing objects but streaming data is made
implicit, through the use of ports. Nevertheless,
the user is in charge of firing, or calling a Do()
method without parameters.

Automatic Processing Networks It offers
a higher level interface: processing objects are
hidden behind a layer called Network, see Fig-
ure 3 Thus, instantiation of processing objects

LAC2005
46

are made through passing strings identifiers to a
factory. Static factories are a well documented
C++ idiom (Alexandrescu, 2001) that allow us
to decouple the factory class with its registered
classes in a very convenient way. They makes
the process of adding or removing processings
to the repository as easy as issuing a single line
of code in the processing class declaration.

Apart from instantiation, the Network class
offers interface for connecting the components
processings and, most important, it automati-
cally controls the firing of processings (calling
its Do method).

Actually, the firing scheduling can follow dif-
ferent strategies, for example a push strategy
starting firing the up-source processings, or a
pull strategy where we start querying for data
to the most down-stream processings, as well as
being dynamic or static (fixed list of firings).
See (Hylands and others, 2003; www Ptolemy,
2004) for more details on scheduling dataflow
systems.

To accommodate all this variability CLAM
offers different FlowControl sub-classes which
are in charge of the firing strategy, and are plug-
gable to the Network processing container.

4 Integration with GNU/Linux
Audio infrastructure

CLAM input/output processings can deal with
a different kinds of device abstraction architec-
tures. In the GNU/Linux platform, CLAM can
use audio and midi devices through the ALSA
layer (www ALSA, 2004), and also through the
portaudio and portmidi (www PortAudio, 2004;
www PortMidi, 2004) layers.

ALSA: ALSA low-latency drivers are very
important to obtain real-time input/output pro-
cessing. CLAM programs using a good sound-
card in conjunction with ALSA drivers and
a well tuned GNU/Linux system —with the
real-time patch— obtains back-to-back laten-
cies around 10ms.

Audio file libraries: Adding audio file writ-
ing and reading capability to CLAM has been a
very straight-forward task since we could del-
egate the task on other good GNU/Linux li-
braries: libsndfile for uncompressed audio for-
mats, libvorbis for ogg-vorbis format and finally
libmad and libid3 for the mp3 format.

Jack: Jack support is one of the big to-dos
in CLAM. It’s planned for the 1.0 release or
before —so in a matter of months. The main

problem now is that Jack is callback based while
current CLAM I/O is blocking based. So we
should build an abstraction that would hide this
peculiarity and would show those sources and
sinks as regular ones.

LADSPA plugins: LADSPA architecture is
fully supported by CLAM. On one hand, CLAM
can host LADSPA plugins. On the other hand,
processing objects can be compiled as LADSPA
plugins.

LADSPA plugins transform buffers of audio
while can receive control events. Therefore
these plugins map very well with CLAM pro-
cessings that have exclusively audio ports (and
not other data types ports) and controls.

CLAM takes advantage of this fact on two
ways: The LADSPA-loader gets a .so library file
and a plugin name and it automatically instan-
tiate a processing with the correspondent audio
ports and controls. On the other hand, we can
create new LADSPA plugins by just compiling
a C++ template class called LadspaProcessing-
Wrapper, where the template argument is the
wrapped processing class.

DSSI plugins: Although CLAM still does
not have support for DSSI plugins, the re-
cent development of this architecture allowing
graphical user interface and audio-instruments
results very appealing for CLAM. Thus addi-
tions in this direction are very likely. Since
CLAM provides visual tools for rapid prototyp-
ing applications with graphical interface, these
applications are very suitable to be DSSI plug-
ins.

4.1 What CLAM can be used for ?
The framework has been tested on —but also
has been driven by— a number of applica-
tions, for instance: SMSTools, a SMS Analy-
sis/Synthesis (Serra, 1996) graphical tool; Salto
(Haas, 2001), a sax synthesizer; Rappid (Rob-
ledo, 2002) a real-time processor used in live
performances.

Other applications using CLAM developed at
the research group includes: audio features ex-
traction tools, time-stretching plugins, voice ef-
fect processors, etc.

Apart from being a programmers framework
to develop applications, the latest developments
in CLAM have brought important features that
fall into the black-box and visual builder cate-
gories.

That lets a user concentrate on the research
of algorithms forgetting about application de-

LAC2005
47

Figure 4: NetworkEditor, the CLAM visual
builder

velopment. And, apart from research, it is also
valuable for rapid application prototyping of ap-
plications and audio-plugins.

5 Rappid Prototyping in CLAM

5.1 Visual Builder
Another important pattern that CLAM uses
is the visual builder which arises from the ob-
servation that in a black-box framework, when
connecting objects the connection script is very
similar from one application to another.

Acting as the visual builder, CLAM have a
graphical program called NetworkEditor that
allows to generate an application –or at least
its processing engine– by graphically connecting
objects. And another application called Proto-
typer, that acts as the glue between an applica-
tion GUI designed with a graphical tool and the
processing engine defined with the NetworkEd-
itor.

5.2 An example
Here we will show how we can set up a graphical
stand-alone program in just few minutes. The
purpose of this program is to make some spec-
tral transformations in real-time with the audio
taken from the audio-card, apply the transfor-
mations and send the result back to the audio-
card. The graphical interface will consist in a
simple pane with different animated representa-
tions of the result of the spectral analysis, and
three sliders to change transformation parame-
ters.
First step: building the processing net-
work (Figure 4) Patching with NetworkEd-
itor is a very intuitive task to do. See Figure 4.
We can load the desired processings by dragging
them from the left panel of the window. Once
in the patching panel, processings are viewed as

Figure 5: the QT GUI designer tool

little boxes with attached inlets and outlets rep-
resenting its ports and control. The application
allows all the typical mouse operations like se-
lect, move, delete and finally, connect ports and
controls.

Since CLAM ports are typed, not all out-
ports are compatible with all in-ports. For
example in the Figure 4, the second process-
ing in the chain is called SMSAnalysis and re-
ceives audio samples and produces: sinusoidal
peaks, fundamental, several spectrums (one cor-
responding to the original audio and another
corresponding to the residual resulting of sub-
tracting the sinusoidal component).

Connected to SMSAnalysis out-ports we have
placed three processings to perform transforma-
tions: one for controlling the gain of the sinu-
soidal component, another to control the gain
of the residual component and the last one for
shifting the pitch. The latest modifies both si-
nusoidal and residual components.

Then the signal chain gets into the SMSSyn-
thesis which output the resynthesizes audio
ready to feed the AudioOut (which makes the
audio-card to sound)

Before starting the execution of the network,
we can right click upon any processing view to
open a dialog with its configuration. For in-
stance, the SMSAnalysis configuration includes
the window type and window size parameters
among many others.

Another interesting feature of the Net-
workEditor is that it allows loading visual plots
widgets for examining the flowing data in any
out-port. And also, slider widgets to connect to

LAC2005
48

Figure 6: the running prototype

the in-control inlets.
Once the patch is finished we are ready to

move on directly to the graphical user interface.

Second step: designing the program GUI
(Figure 5) The screen-shot in Figure 5 is
taken while creating a front end for our process-
ing network. The designer is a tool for creating
graphical user interfaces that comes with the
QT toolkit (Blanchette and Summerfield, 2004;
Trolltech, 2004).

Normal sliders can be connected to process-
ing in-ports by just setting a suited name in
the properties box of the widget. Basically this
name specify three things in a row: that we
want to connect to an in-control, the name that
the processing object have in the network and
the name of the specific in-control.

On the other hand we provide the designer
with a CLAM Plots plugin that offers a set of
plotting widgets that can be connected to out-
ports.

In the example in Figure 5 the black boxes
corresponds to different plots for spectrum, au-
dio and sinusoidal peaks data.

Now we just have to connect the plots widgets
by specifying —like we did for the sliders— the
out-ports we want to inspect.

We save the designer .ui file and we are ready
to run the application.

Third step: running the prototype (Fig-
ure 6) Finally we run the prototyper pro-
gram. Figure 6. It takes two arguments, in
one hand, the xml file with the network speci-
fication and in the other hand, the designer ui
file.

This program is in charge to load the network
from its xml file —which contains also each pro-
cessing configuration parameters— and create
objects in charge of converting QT signals and
slots with CLAM ports and controls.

And done! we have created, in a matter of
minutes, a prototype that runs fast C++ com-
piled code without compiling a single line.

6 Conclusions

CLAM has already been presented in other con-
ferences like the OOPSLA’02 (Amatriain et al.,
2002b; Amatriain et al., 2002a) but since then,
a lot of progress have been taken in different di-
rections, and specially in making the framework
more black-box with visual builder tools.

CLAM has proven being useful in many ap-
plications and is becoming more and more easy
to use, and so, we expect new projects to be-
gin using the framework. Anyway it has still
not reached a the stable 1.0 release, and some
improvements needs to be done.

See the CLAM roadmap in the web (www
CLAM, 2004) for details on things to be done.
The most prominent are: Library-binaries and
separate submodules, since at this moment
modularity is mostly conceptual and at the
source code organization level. Finish the audio
feature-extraction framework which is work-in-
progress. Simplify parts of the code, specially
the parts related with processing data and con-
figurations classes. Have working nested net-
works

7 Acknowledgements

The authors wish to recognize all the people
who have contributed to the development of
the CLAM framework. A non-exhaustive list
should at least include Maarten de Boer, David
Garcia, Miguel Ramı́rez, Xavi Rubio and En-
rique Robledo.

Some of the the work explained in this paper
has been partially funded by the Agnula Eu-
ropan Project num.IST-2001-34879.

References

A. Alexandrescu. 2001. Modern C++ Design.
Addison-Wesley, Pearson Education.

X. Amatriain, P. Arumı́, and M. Ramı́rez.
2002a. CLAM, Yet Another Library for Au-
dio and Music Processing? In Proceed-
ings of the 2002 Conference on Object Ori-
ented Programming, Systems and Applica-

LAC2005
49

tion (OOPSLA 2002)(Companion Material),
Seattle, USA. ACM.

X. Amatriain, M. de Boer, E. Robledo, and
D. Garcia. 2002b. CLAM: An OO Frame-
work for Developing Audio and Music Appli-
cations. In Proceedings of the 2002 Confer-
ence on Object Oriented Programming, Sys-
tems and Application (OOPSLA 2002)(Com-
panion Material), Seattle, USA. ACM.

X. Amatriain. 2004. An Object-Oriented Meta-
model for Digital Signal Processing. Univer-
sitat Pompeu Fabra.

K Beck. 2000. Test Driven Development by Ex-
ample. Addison-Wesley.

J. Blanchette and M. Summerfield. 2004. C++
GUI Programming with QT 3. Pearson Edu-
cation.

AGNULA Consortium. 2004. AGNULA (A
GNU Linux Audio Distribution) homepage,
http://www.agnula.org.

FLTK. 2004. The fast light toolkit (fltk) home-
page: http://www.fltk.org.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. 1999. Refactoring: Improving
the Design of Existing Code. Addison-Wesley.

Free Software Foundation. 2004. Gnu gen-
eral public license (gpl) terms and conditions.
http://www.gnu.org/copyleft/gpl.html.

Johnson R. Gamma E., Helm R. and Vlissides J.
1996. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley.

D. Garcia and X. Amatrian. 2001. XML as a
means of control for audio processing, syn-
thesis and analysis. In Proceedings of the
MOSART Workshop on Current Research
Directions in Computer Music, Barcelona,
Spain.

J. Haas. 2001. SALTO - A Spectral Do-
main Saxophone Synthesizer. In Proceedings
of MOSART Workshop on Current Research
Directions in Computer Music, Barcelona,
Spain.

C. Hylands et al. 2003. Overview of the
Ptolemy Project. Technical report, Depart-
ment of Electrical Engineering and Computer
Science, University of California, Berklee,
California.

D. A. Manolescu. 1997. A Dataflow Pattern
Language. In Proceedings of the 4th Pattern
Languages of Programming Conference.

MTG. 2004. Homepage of the Music Technol-
ogy Group (MTG) from the Universitat Pom-
peu Fabra. http://www.iua.upf.es/mtg.

D. Roberts and R. Johnson. 1996. Evolve
Frameworks into Domain-Specific Languages.
In Procedings of the 3rd International Confer-
ence on Pattern Languages for Programming,
Monticelli, IL, USA, September.

E. Robledo. 2002. RAPPID: Robust Real Time
Audio Processing with CLAM. In Proceed-
ings of 5th International Conference on Dig-
ital Audio Effects, Hamburg, Germany.

X. Serra, 1996. Musical Signal Processing,
chapter Musical Sound Modeling with Sinu-
soids plus Noise. Swets Zeitlinger Publishers.

Trolltech. 2004. Qt homepage by trolltech.
http://www.trolltech.com.

www ALSA. 2004. Alsa project home page.
http://www.alsa-project.org.

www CLAM. 2004. CLAM website:
http://www.iua.upf.es/mtg/clam.

www PortAudio. 2004. PortAudio homepage:
www.portaudio.com.

www PortMidi. 2004. Port Music home-
page: http://www-2.cs.cmu.edu/ mu-
sic/portmusic/.

www Ptolemy. 2004. Ptolemy project home
page. http://ptolemy.eecs.berkely.edu.

LAC2005
50

“Made in Linux” — The Next Step

Ivica Ico BUKVIC
College­Conservatory of Music, University of Cincinnati

3346 Sherlock Ave. #21
Cincinnati, OH, U.S.A., 45220

http://meowing.ccm.uc.edu/~ico/
ico@fuse.net

Abstract

It's been over half a decade since the Linux audio
began to shape into a mature platform capable of
impressing even the most genuine cynic. Although
its progress remains unquestionable, the increasing
bleed­over of the GNU software onto other
platforms, fragmentation of the audio software
market, as well as wavering hardware support,
pose as a significant threat to its long­term
prosperity. “Made in Linux” is a newly proposed
incentive to create a non­profit foundation that will
bridge the gap between the Linux audio
community and the commercial audio market in
order to ensure its long­term success.

Keywords

Foundation, Initiative, Exposure, Commercial,
Incentives

1 Introduction

While no single event is necessarily responsible
for the sudden proliferation of the Linux audio
software, it is undeniable that the maturing of the
ALSA and JACK frameworks were indispensable
catalysts in this process. Yet, what really made this
turning point an impressive feat was the way in
which the Linux audio community, amidst the
seemingly “standardless anarchy,” was able to not
only acknowledge their quality, but also
wholeheartedly embrace them. Although some
users are still standing in denial of the obvious
advantages heralded by these important
milestones, nowadays they are but a minority.
Since, we've had a number of software tools
harness the power of the new framework,
complementing each other and slowly shaping

Linux into a complete Digital Audio Workstation
(DAW) solution.

2 The Momentum

Today, while we still enjoy the momentum
generated by these important events, increasing
worldwide economic problems, bleed­over of the
GNU software to closed dominant platforms, as
well as the cascading side­effects, such as the
questionable pro­audio hardware support, now
stand as formidable stepping stones to the long­
term success of this platform.

Even though the economic hardship would
suggest greater likelihood of Linux adoption for
the purpose of cutting costs, this model only works
in the cases where Linux has already proven its
worth, such as the server market. And while I do
not mean to imply that Linux as a DAW has not
proven its worth in my eyes (or should I say ears?),
it is unquestionable that its value is still a great
unknown among the common users who are, after
all, the backbone of the consumer market and
whose numbers are the most important incentive
for the commercial vendors. In addition, Linux
audio and multimedia users as well as potential
newcomers still face some significant obstacles,
such as the impressive but unfortunately unreliable
support of the ubiquitous VST standard via the
WINE layer, or the lack of a truly complete all­in­
one DAW software.

The aforementioned platform transparency of
the GNU model is a blessing and a curse. While it
may stimulate the user of a closed platform to
delve further into the offering of the open­source
community, contribute to, and perhaps even
switch to an open­source platform, generally such
a behavior is still largely an exception. Let us for a
moment consider the potential contributors from

LAC2005
51

the two dominant platforms: Microsoft and Apple.
The dominant Microsoft platform is architecturally
too different, so the contributions from the users of
this platform will likely be mostly porting­related
and as such will do little for the betterment of the
software's core functionalities (as a matter of fact,
they may even cause increase in the software
maintenance overhead). Similarly, the Apple users
as adoring followers of their own platform usually
yield similar contributions. Naturally, the
exceptions to either trend are noteworthy, yet they
remain to be exactly that: exceptions. While it is
not my intention to trivialize such contributions
nor to question the premise upon which the GNU
doctrine has been built, it is quite obvious that the
cross­platform model of attracting new users to the
GNU/Linux platform currently does not work as
expected and therefore should not be counted on as
a recipe for the long­term success.

What is unfortunate in this climate of dubious
cross­platform contributions and dwindling
economic prospects through fragmentation of the
audio software industry, is the fact that it generates
a cascading set of side­effects. One of such effects
is the recently disclosed lack of RME's interest, a
long­term supporter of the Linux audio efforts, to
provide ALSA developers with the specifications
for its firewire audio hardware due to IP concerns.
Even though such a decision raises some
interesting questions, delving any further into the
issue is certainly outside the scope of this paper.
Yet, the fact remains that without the proper
support for the pro­audio interfaces of tomorrow,
no matter how good the software, Linux audio has
no future. The situation is certainly not as grim as
it seems as there are many other audio devices that
are, and will continue to be supported.
Nonetheless, this may become one of the most
important stepping stones in the years to come and
therefore should be used as a warning that may
very well require a preemptive (re)action from the
Linux audio community before it becomes too late.

3 Counter­Initiatives

Amidst these developments, our community has
certainly not been dormant. There were numerous
initiatives that were usually spawned by
individuals or small groups of like­minded
enthusiasts in order to foster greater cooperation
among the community members and attract

attention from the outsiders, such as the Linux
Audio Consortium of libre software and companies
whose primary purpose is to help steer further
developments as well as serve as a liaison between
the commercial audio world and the Linux audio
community. Another example is the “Made with
Linux” CD which is to include a compilation of
works made with Linux and whose dissemination
would be used as a form of publicity as well as for
the fund­raising purposes. Other examples include
numerous articles and publications in reputable
magazines that expose the true power of Linux as
well as recently increased traffic on the Linux­
Audio­User and Linux­Audio­Developer mailing
lists concerning works made using Linux.

These are by no means the only gems of such
efforts. Nonetheless, their cumulative effect has to
this day made but a small dent in exposing the true
power of Linux as a DAW. To put this statement
into perspective, even the tech­savvy and generally
pro­Linux audience of the Slashdot technology
news site is largely still ignorant of Linux's true
multimedia content creation and production
potential.

All this points to the fact that Linux audio
community has reached the point of critical mass
at which all involved need to take the next step in
organizing efforts towards expanding the audio
software market exposure, whether for the reasons
of own gratification, financial gain, or simply for
the benefit of the overall community. After all, if
the Linux audio supporters do not take these steps
then it should certainly not be expected from
others to follow or even less likely take the steps in
their stead.

4 “Made in Linux” to the Rescue

“Made in Linux” is an initiative carrying a
deliberate syntactic pun in its title to separate itself
from other similar programs and/or initiatives that
may have already taken place and/or are associated
with the more generalized form of evangelizing
Linux. The title obviously plays a pun on the
labels commonly found on commercial products in
order to identify their country of assembly, less
commonly the country of their origin. Such
ubiquitous practice nowadays makes it nearly
impossible to find a commercial product without
such a label. Considering that the initiative I am
proposing should be as vigilant and as all­

LAC2005
52

encompassing as the aforementioned labels, I felt
that the title certainly fit the bill.

The initiative calls for formation of a non­profit
foundation whose primary concern will be to
oversee the proliferation of Linux as a DAW
through widespread publicity of any marketable
multimedia work that has utilized Linux, monetary
incentives, awards, and perhaps most importantly
through establishing of reliable communication
channels between the commercial pro­audio
market and the Linux audio developers, artists, and
contributors. With such an agenda there are
superficial but nonetheless pronounced similarities
with the function and purpose behind the Linux
Audio Consortium. However, as we will soon find
out, there are some distinguishing differences as
well.

One of the most important long­term goals of
“Made in Linux” foundation will be to accumulate
operating budget through fund­rising. Such budget
would enable the foundation to provide incentives
towards the development of most sought audio­
related software features and/or tools, sponsoring
competitions and awards for the recognition of the
most important contributions to the community,
media exposure, music­oriented incentives (i.e.
composition competitions), and beyond.

Depending upon the success of the initial
deployment, the foundation's programs could
easily expand to encompass other possibilities,
such as the yearly publications of works in a form
of a CD compilation similar to the aforementioned
“Made with Linux” collection, as well as other
incentives that may help the foundation become
more self­dependent while at the same time
allowing it to further expand its operations.

While the proposal of creating an entity that
would foster Linux as a DAW proliferation
certainly sounds very enticing, please let us not be
deceived. Linux audio market is currently a niche
within a niche, and as such does not suggest that
such foundation would boast a formidable
operating budget. Nonetheless, it is my belief that
in time it may grow into a strong liaison between
the commercial world and our, whether we like it
or not, still widely questioned “GNU
underground.”

5 Streamlining Exposure

In order to expedite and streamline the
aforementioned efforts, the “Made in Linux”
program also calls for an establishment of a clearly
distinguishable logo which is to be embedded into
any audio software that has been conceived on a
Linux platform and is voluntarily endorsing this
particular initiative.

The idea to encourage all contributors,
developers and artists alike, to seal their work with
a clearly identifying logo is a powerful advertising
mechanism that should not be taken lightly,
especially considering that it suggest their
devotion if not indebtedness to the GNU/Linux
audio community, whether by developing software
tools primarily for this platform, or by using those
tools in their artistic work. More importantly, if a
software application were to ported to another
platform, the logo's required persistence would
clearly and unquestionably reveal its origins
likely elevating curiosity among users oblivious
to the Linux audio scene. Although we already
have several logos for the various Linux audio­
related groups and/or communities, most of them
are denominational and as such may not prove to
be the best convergent solution. Therefore, I would
like to propose the a creation of a new logo that
would be preferably used by anyone who utilizes
Linux for multimedia purposes. The following
example being a mere suggestion, a starting point
if you like, is distributed under the GNU/GPL
license (larger version is freely available and
downloadable from the author's website — please
see references for more info):

It is of utmost importance once the logo's
appearance has been finalized and ratified, that it
remains constant and its use consistent in order to
enable end­users to familiarize themselves with it
and grasp the immensity and versatility of Linux
audio offering. Naturally, the software applications
that do not offer graphical user interface could

LAC2005
53

simply resort to incorporating the title of the
incentive. With these simple, yet important steps,
the Linux multimedia software would, to the
benefit of the entire community, attain greater
amount of exposure and publicity.

Contrary to the aforementioned foundation, this
measure is neither hard to implement nor does
should it generate a significant impact from the
developer's standpoint, yet it does pose as a
powerful statement to the GNU/Linux cause. Just
like the Linux's “Tux” mascot, which now
dominates the Internet, this too can become a
persistent image associated with the Linux audio
software. However, in order to be able to attain
this seemingly simple goal, it is imperative that the
Linux audio community extends a widespread (if
not unanimous) support and cooperation towards
this initiative. Only then will this idea yield
constructive results. Needless to mention that this
prerequisite will not only test the appeal of the
initiative, but also through its fruition assess the
community's interest (or lack thereof) in instituting
the aforementioned foundation. Once the
foundation would assume its normal day­to­day
operations, this measure would become integral
part of the foundation's agenda in its efforts to
widen the exposure of the rich Linux audio
software offering.

6 Linux Audio Consortium Concerns

By now it is certainly apparent that the
aforementioned initiative bears resemblance to the
Linux Audio Consortium agenda which has been in
existence for over a year now. After all, both
initiatives share the same goal: proliferation of
Linux audio scene by offering means of
communication as well as representation.
However, there are some key differences between
the two initiatives.

In its current state the Linux Audio Consortium
could conceivably sponsor or at least serve as the
host for the “Made in Linux” initiative. Yet, in
order for the consortium to be capable of
furnishing full spectrum of programs covered by
this initiative, including the creation of the
aforementioned foundation, there is an
unquestionable need for a source of funding.
Currently, the consortium does not have the
facilities that would enable such steady source of
income. As such, the additional programs

proposed as part of this initiative, should they be
implemented under the patronage of the
consortium, they would require a reasonably
substantial alterations to its bylaws and day­to­day
operations.

Naturally, it would be unfortunate if the two
initiatives were to remain separate as such
situation would introduce unnecessary
fragmentation of an already humbly­sized
community. Nonetheless, provided that the “Made
in Linux” program creates an adequately­sized
following, it may become necessary at least in
initial stages for the two programs to remain
separate until the logistical and other concerns of
their merging are ironed out.

7 Conclusion

It is undeniable that the Linux audio community
is facing some tough decisions in the imminent
future. These decisions will not only test the
community's integrity, but will likely determine
the very future of the Linux as a software DAW.
Introducing new and improving existing software,
while a quintessential factor for the success in the
commercial market, unfortunately may not help
solve some of the fundamental issues, such as the
dubious state of the pro­audio hardware support.
As such, this sole incentive will not ensure the
long­term success of the Linux platform.
Furthermore, whether one harbors interest in a
joint effort towards promoting Linux also may not
matter much in this case. After all, if Linux fails to
attract professional audio hardware vendors, no
matter how good the software offering becomes, it
will be useless without the proper hardware
support. Therefore, it is the formation of the
foundation (or restructuring of the existing Linux
Audio Consortium) and its relentless promotion of
the Linux audio efforts that may very well be
community's only chance to push Linux into the
mainstream audio market where once again it will
have a relatively secure future as a professional
and competitive DAW solution.

8 Acknowledgements

My thanks, as always, go to my beloved family
who through all these years of hardship and many
sleepless nights troubleshooting unstable Linux
kernels and modules, X session setups, and audio
xrun's, stood by me. Big thanks also go to all the

LAC2005
54

members of the Linux audio community without
whose generous efforts none of this would have
been possible.

References

ALSA website. http://www.alsa­project.org
(visited on January 10, 2005).

JACK website. http://jackit.sourceforge.net/
(visited on January 10, 2005).

Linux Audio Consortium website.
http://www.linuxaudio.org (visited on January
10, 2005).

Linux­audio­developers (LAU) website.
http://www.linuxdj.com/audio/lad/ (visited on
January 10, 2005).

“Made in Linux” logo (GIMP format).
http://meowing.ccm.uc.edu/~ico/Linux/log.xcf.

Slashdot website. http://www.slashdot.org (visited
on January 10, 2005).

Steinberg/VST website. http://www.steinberg.net/
(visited on January 10, 2005).

WINE HQ website. http://www.winehq.com/
(visited on January 10, 2005).

LAC2005
55

LAC2005
56

Linux Audio Usability Issues
Introducing usability ideas based on Linux audio software

Christoph Eckert
Graf-Rhena-Straße 2

76137 Karlsruhe, Germany
mchristoph.eckert@t-online.de

February 2005

Abstract
The pool of audio software for Linux based

operating systems has to offer very powerful tools
to grant even average computer users the joy of
making music in conjunction with free software.
However, there are still some usability issues.
Basic usability principles will be introduced, while
examples will substantiate where Linux audio
applications could benefit from usability ideas.

Keywords
Usability & application development

1. Introduction
Free audio software has become very powerful

during the last years. It is now rich in features and
mature enough to be used by hobbyists as well as
by professionals.

In the real world, day by day we encounter some
odds and ends which are able to make us unhappy
or frustrated. May it be a screw driver which does
not fit a screw, a door which does not close
properly or a knife which simply is not sharp
enough.

This is also valid for software usage. There often
are lots of wee small things which sum up and
prevent us from doing what we originally wanted
to do. Some of these circumstances can be avoided
by applying already existing usability rules to
Linux audio software.

Usability usually is associated with graphical
user interface design, mainly on Mac OS or even
Microsoft Windows operating systems.
Surprisingly, most of the rules apply to any
software on any operating system, including
command line interfaces.

A bunch of documents discovering this area of
programming are available from various projects
and companies, e.g. the GNU project, the Gnome
desktop environment, the wxWidgets project[1],
Apple computers or individuals.

One of the basic questions is how much a user
needs to know before he is able to use a tool in
order to perform a certain task. The amount of
required knowledge can be reduced by clever
application design which grants an average user an
immediate start. Last but not least, clever software
design reduces the amount of documentation
needed; developers dislike writing documentation
as well as users dislike reading it.

2. Usability Terms
Besides the classical paper »Mac OS 8 Human

Interface Guidelines« by Apple Computer, Inc[2],
the Gnome project has published an excellent
paper discovering usability ideas[3].

Joel Spolsky has written a book called »User
Interface Design for Programmers«. It is based on
Mac and Windows development, but most ideas
are also valid for Linux. Reduced in size, it is also
available online[4].

To get familiar with the topic, some of the
commonly found usability terms will be
introduced. Included examples will concretize the
ideas. Most of the examples do not only belong to
one usability principle but even more.

2.1 Knowing the Audience
In order to write software which enables a user

to perform a certain task, it is necessary to know
the audience. It is a difference if the software
system will teach children to read notes or enable a
musician to create music. Different groups use a
different vocabulary, want to perform different
tasks and may have different computer knowledge.

Each user may have individual expectations on
how the software will work. The expectations are
derived from the task he wants to perform. The
user has a model in mind, and the better the
software model fits the user model, the more the
user will benefit. This can be achieved by creating
use cases, virtual users or asking users for
feedback, so some applications include feedback
agents.

LAC2005
57

To fit the user's expectations is one of the most
important and most difficult things. If the same
question appears again and again in the user
mailing lists, or even has been manifested in a list
of frequently asked questions (known as FAQ), it
is most likely that the software model does not fit
the user model.

The target group of audio applications are
musicians. They vary in computer skills, the music
and instruments they play and finally the tasks
they want to perform using the computer. Some
want to produce electronic music, others want to
do sequencing, hard disk recording or prepare
scores for professional printing.

An audio application of course uses terms found
in the world of musicians. On the other hand too
specialized terms confuse the user. A piano
teacher, for example, who gets interested in
software sequencers, gets an easier start if the
software uses terms he knows. A tooltip that reads
»Insert damper pedal« can be understood more
easily than »Create Controller 64 event«.

As soon as a user starts an audio software, he
might expect that the software is able to output
immediately sound to the soundcard. As we are on
Linux, however, the user first needs to know how
to set the MIDI and maybe the JACK connections.

An application therefore could make this easily
accessible or at least remember the settings
persistently until the next start and try to reconnect
automatically. MusE for example is already doing
so:

2.2 Metaphors
Metaphors are widely used to make working on

computers more intuitive to the user, especially
(but not only) in applications with graphical user
interfaces (also known as GUI applications).
Metaphors directly depend on the audience,
because they often match things the user knows
from the real world.

Instead of saving an URL, a bookmark gets
created while surfing the web. On the other hand,
choosing bad metaphors is worse than using no
metaphor at all.

Well chosen metaphors reduce the need to
understand the underlying system and therefore

ensure that the user gets an immediate start. In the
following example, a new user will be most
probably confused by the port names:

A metaphor makes it easier to the user to
understand what is meant, maybe Soundcard input
1 and 2 and Soundcard output 1 through 6 instead
of alsa_pcm:capture or alsa_pcm:playback.

Patchage[6] is a nice attempt to use metaphors to
visualize the data flow in a manner the audio user
is familiar with, compared to connecting real
world musical devices. It could become the right
tool for intuitively making MIDI connections as
well as JACK audio connections. If it contained a
LADSPA and DSSI host, it could be a nice tool to
easily control most aspects of a Linux audio
environment:

An example for a misleading metaphor is an
LED emulation used as a switch. An LED in real
life displays a status or activity. A user will not
understand that it is a control to switch something
on and off. In MusE, LEDs are used to en- and
disable tracks to be recorded, and this often is not
clearly understood by users:

Replacing the LEDs by buttons which include an
LED to clearly visualize the recording status of
each track would make it easier to understand for
the user.

LAC2005
58

2.3 Accessibility
All over the world, there are citizens with

physical and cognitive limitations. There are blind
people as well as people with hearing impairments
or limited movement abilities. On a Linux system
it is easily possible to design software which can
be controlled using a command line interface.
When designing GUI software it is still needed to
include the most important options as command
line options. This way even blind users are able to
use a GUI software synthesizer by starting it with a
certain patch file, connecting it to the MIDI input
and playing it using an external keyboard
controller.

Free software often gets used all over the world.
It is desirable that software is prepared to easily
get translated and localized for different regions.
By including translation template files in the
source tarball and the build process, users are able
to contribute by doing translation work:

Besides Internationalization and Localization
(both also known as i18n and l10n), accessibility
includes paying attention to cultural and political
aspects of software. Showing flags or parts of
human beings causes unexpected results, maybe as
soon as an icon with a hand of a western human
will be seen by users in Central Africa.

Keyboard shortcuts enable access to users who
have problems using a mouse. The Alt key is
usually used to navigate menus, while often
needed actions are directly accessible by Ctrl-
keycombos. The tabulator key is used to cycle
through the controls of dialogs etc.

2.4 Consistency
Consistency is divided into several aspects of an

application. It includes consistency with (even
earlier versions of) itself, with the windowmanager
used, with the use of metaphors and consistency
with the user model.

Most of the time, users do not only use one
application to realize an idea. Instead, many
applications are needed to perform a job, maybe
to create a new song. The user tries to reapply

knowledge about one application while using
another. This also includes to make an application
consistent with other applications even if
something has been designed wrong in other
applications. If an application is a Gnome
application, the user expects the file open dialog to
behave the same as in other Gnome applications.
Writing a new file request dialog in one of the
applications will certainly confuse the user even if
it was better than the generic Gnome one.

Consistency does not only affect GUI programs
but command line programs as well. Some Linux
audio programs can be started with an option to
use JACK for audio output using a command line
parameter. As soon as applications behave
differently, the user cannot transfer knowledge
about one program to another one:

There are also programs which do not read any
given command line parameters. Invoking such a
program with the help parameter will simply cause
it to start instead of printing some useful help on
the screen:

The GNU coding standards[5] recommend to let
a program at least understand certain options. To
ask a program for version and help information
should really included in any program. Even if
there is no help available, it is helpful to clearly
state this and point the user to a README file, the
configuration file or an URL where he can get
more information. If a GUI application contains a
help menu, it is useful if it at least contains one
entry. It is better to have a single help page clearly
stating that there is no help at all and pointing to
the project homepage or to a README file than
having no help files installed at all.

Programs containing uppercase characters in the
name of the binary file confuse the user. The
binary file of KhdRecord for example really reads
as »KhdRecord« making it difficult for the user to
start it from a command line, even if he remembers
the name correctly. Another example are program's
where the binary file name does not fit the
application's name exactly, as found on the virtual

LAC2005
59

keyboard. The user has to guess the binary
representation, and this causes typing errors:

GUI programs can add a menu entry to the
system menu so the user is able to start the
program the same way as other programs and
doesn't need to remember the application's name.
Therefore, GUI applications must not depend on
command line options to be passed and need to
print important error messages not only on the
command line, but also via the graphical user
interface.
For consistency reasons, such desktop integration
shouldn't be left to the packagers. The user should
always find an application on the same place in the
menu system, regardless which distribution he is
running.

Users are used to click on documents to open
these in the corresponding application. So it is
useful if an audio application registers the used
filetypes. MusE for example saves its files as
*.med files. Due to the lack of filetype registration,
KDE recognizes these files as text files. Clicking
on »Jazzy.med« will open it in a text editor instead
of starting MusE and loading it:

Consistency also includes the stability of an
application, security aspects and its data
compatibility with itself as well as other
applications. Even in the world of free software it
is often not simple for the user to exchange data
between different applications.

2.5 Feedback
A computer is a tool to enter, process and output

data. If a user has initiated a certain task, the
system should keep him informed as long as there
is work in progress or if something went wrong.

This way the user doesn't have to guess the status
of the system. The simpler a notification is, the
better the user will be able to understand and to
remember it after it is gone.

Providing information which enables the user to
solve a problem and to avoid it in the future
reduces disappointment and frustration. For the
same reason message texts should be designed in a
manner that the software instead of the user is
responsible for errors.

When starting MusE without a JACK
soundserver already running, the user gets
prompted by an alert clearly explaining the
problem:

The user now has a good starting point and
learns how to avoid this error in the future.

A further example for good feedback is found in
qarecord[7]. It clearly shows the input gain using a
nice level meter the user may know from real
recording equipment:

On the other hand, the user gets no feedback if
currently audio is recorded or not. If no recording
is in progress it makes no sense to press the pause
and stop buttons, so both need to appear inactive.
As soon as recording is in progress it makes no
sense to press the record button again, so the
record button needs to be set inactive. If the
recording is paused, the pause or record button
needs to be disabled.
Qarecord needs to be started in conjunction with
some command line parameters defining the
hardware which should be used to capture audio. If
qarecord included a graphical soundcard and an
input source selector as well as a graphical gain
control, it would perfectly fulfill further usability
ideas like direct access and user control. The user
was able to do all settings directly in qarecord
instead of using different applications for a simple
job.

LAC2005
60

To offer feedback, it is necessary to add
different checks to a software system. A user
starting an audio application might expect it will
immediately be able to output sound. On Linux
based systems, there are some circumstances
which prevent an application from outputting
audio. This for example happens as soon as one
application or soundserver blocks the audio device
while another one also needs to access it. In this
case, there are applications which simply seem to
hang or even do not appear on the screen instead
of giving feedback to the user. Actually, the
application simply waits until the audio device gets
freed.
In the following example, xmms gets started to
play an audio file. After that, Alsa Modular Synth
(AMS) gets started, also directly using the
hardware device, while xmms still is blocking the
device. Unfortunately, AMS does not give any
feedback, neither on the command line nor in the
graphical user interface:

The user will only notice that AMS does not
start. As soon xmms will be quit, even if it were
hours later, AMS will suddenly appear on the
screen. Some feedback on the command line and a
graphical alert message helped the user to
understand, to solve and to avoid this situation in
the future.

Concerning JACK clients, it is an integral part of
the philosophy that applications can be
disconnected by jackd. As soon as this happens,
some applications simply freeze, need to be killed
and restarted.
MusE shows an informational dialog instead of
simply freezing:

Of course it would be better if jackified
applications would not need to be restarted and
could try to automatically reconnect to JACK

without any user interaction as soon as a
disconnect occures.

2.6 Straightforwardness
To perform a task, the user has to keep several

things in mind, may it be a melody, a drum pattern
etc. There are external influences like a ringing
telephone or colleagues needing some attention.
So, the user only spends a reduced amount of his
attention to the computer. This is why applications
need to behave as straightforward as possible.

One of the goals is that the computer remembers
as many things as possible, including commands,
settings etc. On Linux, the advantages of the
command line interface are well known, but it is
also known how badly commands and options are
remembered if these are not used or needed often.
This is why typed commands are replaced by
menus and buttons in end user software whenever
possible.

Users dislike reading manuals or dialog texts
and developers dislike writing documentation.
Keeping the interface and dialogs straightforward
will reduce the need of documentation. It is also
true that it is difficult to keep documentation in
sync with the software releases.

It is also important to create a tidy user
interface by aligning objects properly, grouping
them together and giving equal objects the same
size.

Disabling elements which do not fit the current
situation helps the user to find the right tools at the
right time. Ordering UI elements to fit the user's
workflow reduces to write or to read
documentation. Think about analogue
synthesizers: Mostly, the elements are ordered to
fit the signal flow from the oscillators through the
mixer and filter sections to the outputs.

According to Dave Phillips, who asked the
developers to write documentation, an additional
thing is to reduce the amount of documentation
needed. The best documentation is the one which
does not need to be written and the best dialogs are
the ones which do not need to appear. Both will
reduce the time of project members spent on
writing documentation and designing dialogs. The
user will benefit as well as the project members.

After invoking an application, the user likes to
start immediately to concentrate on the task to
perform. He might expect a reasonable
preconfigured application he immediately can start
to use. When starting, Hydrogen opens a default
template file. Further demo files are included,
easily accessible via the file menu:

LAC2005
61

Hydrogen optionally remembers the last opened
file to restore it during the next start and
automatically reconnects to the last used JACK
ports:

Alsa Modular Synth includes a lot of example
files, too, but it does not load a template file when
starting, and there is no easy access to the example
files. The user needs to know that there are
example files, and the user needs to know where
these files are stored.

Another example is the fact that there are
different audio subsystems on a Linux box. An
audio application which wants to work
straightforward included various output plugins.
One application which already has a surprising
amount of output plugins (including a JACK
plugin) is xmms:

Furthermore, xmms offers feedback as soon as
the configured output destination is not available
during startup:

A further idea to make it even more
straightforward could be that xmms did some
checks as soon as the preconfigured device is not
available during startup and chooses an alternative
plugin automatically. If doing these checks in an
intelligent order (maybe JACK, esound, aRts,
DMIX, ALSA, OSS), xmms will most probably
match the user's expectations. If no audio system
was found, an error message got printed.

Introducing such a behaviour could improve
other Linux audio applications, too. Some example
code in the ALSA Wiki pages[8] could be a good
starting point for future audio developers.

Average human beings tend to start counting at
1. In the software world, counting sometimes starts
at zero for technical reasons. Software makes it
possible to hide this in the user interface. This
includes the numbering of sound cards (1, 2, 3
instead of 0, 1, 2) as well as program changes (1,
2, 3 ... 128 instead of 0, 1, 2 ... 127) or MIDI
channels (1, 2, 3 ... 16 instead of 0, 1, 2 ... 15).

A musician configured his keyboards to send
notes on the channels 1 through 4. If the software
starts the numbering at zero, the user has to
struggle with the setup:

A more human readable numbering matched the
user's expectations much more:

2.7 User Control
Every human wants to control his environment.

Using software, this includes the ability to cancel
long lasting operations as well as the possibility to
configure the system, like preferred working

LAC2005
62

directories and the preferred audio subsystem. An
application that behaves the way the user expects
makes him feel that he is controlling the
environment. It also needs to balance contrary
things, allowing the user to configure the system
while preventing him from doing risky things.

As soon as a musician gets no audio in a real
studio, he starts searching where the audio stream
is broken. In a software based system, he also
needs controls to do so. Such controls are not only
needed for audio but also for MIDI connections.
An LED in a MIDI sequencer indicating incoming
data or a levelmeter in an audio recording program
to indicate audio input are very helpful to debug a
setup. On some hardware synthesizers
corresponding controls exist. A Waldorf
Microwave, for example, uses an LED to indicate
that it is receiving MIDI data. Rosegarden displays
a small bar clearly showing that there is incoming
MIDI data on the corresponding track:

A further thing worth some attention is not to
urge the user to make decisions. SysExxer is a
small application to send and receive MIDI system
exclusive data (also known as sysex). After
SysExxer has received sysex data the user must
decide that the transmission is finished by clicking
the OK button:

After that the user has to decide if the data gets
saved as one single or as multiple split files:

SysExxer then asks for a location to store the
file:

SysExxer urged the user to make three
consecutive decisions and therefore the user does
not feel like he is controlling the situation. Instead,
the application controls the user.

Some Qt based audio programs often forget the
last used document path. The user opens a file
somewhere on the disk. As soon he wants to open
another one, the application has forgotten the path
the user has used just before and jumps back to the
home directory:

Most probably the user did expect to be put back
to the last used directory. Applications can offer
preferences for file open and file save paths or
even better persistently remember the last used
paths for the user.

The Linux operating system does not depend on
file extensions. On the other hand, file extensions
are widely used to assign a filetype to applications.
If an application has chosen to use a certain file
extension, it should ensure that the extension gets
appended to saved files even if the user forgot to
specify it.
A file open dialog can filter the directory contents
so the user only gets prompted with files matching
the application. On the other hand, a file open
dialog also should make it possible to switch this
filter off, so the user is able to open a file even if it
is missing the correct extension.

If an application does not ensure that the
extension gets appended when saving a file and
does not enable the user to switch the filter off
when trying to reopen the file, it will not appear in
the file open dialog even if it resides in the chosen
directory, so the user is unable to open the desired
file:

LAC2005
63

On Linux configuration options are usually
stored in configuration files. A user normally
doesn't care about configuration files because
settings are done using GUI elements. On the other
hand, sometimes things go wrong. Maybe a
crashing application will trash its own
configuration file or an update has problems
reading the old one. Therefore, command line
options to ask for the currently used configuration
and data files are sometimes very helpful. The
same information can be displayed on a tab in the
about box. This enables the user to modify it if
needed.

User control includes to enable the user to
configure the base audio environment. Maybe he
wants to rename soundcards and ports according to
more realistic device names like »Onboard
Soundcard Mic In« or similar. If a MIDI device
which offers multiple MIDI ports is connected to
the computer, it is useful to be able to name the
ports according to the instruments connected to the
ports. If there is more than one soundcard
connected, the user may like to reorder them in a
certain manner, perhaps to make the new USB 5.1
card the default device instead of the onboard
soundchip. He wants to grant more than one
application access to a soundcard, in order to listen
to ogg files while a software telephone still is able
to ring the bell.

In the last few years, alsaconf has done a really
great job, but meanwhile it seems to be a little bit
outdated because it is unable to configure more
than one soundcard or to read an existing
configuration. It is unable to configure the DMIX
plugin or to put the cards in a certain user defined
order. It still configures ISA but no USB cards.

A replacement seems to be a very desirable
thing. Such a script, used by configuration front
ends, will bring many of the existing but mostly
unused features to more users.

A further script could be created to help
configuring JACK, maybe by doing some tests
based on the hardware used and automatically
creating a base JACK configuration file.

2.8 Forgiveness
A software system which allows to easily undo

more than one of the last actions performed will
encourage the user to explore it. The classical undo
and redo commands are even found on hardware
synthesizers like the Access Virus[9].

Some applications allow to take snapshots so the
user can easily restore a previous state of the
system, for example on audio mixing consoles.

As soon the user wants to do an irreversible
action an alert should ask for confirmation.

2.9 Direct Access
In graphical user interfaces tasks are performed

by manipulating graphically represented objects. It
is a usability design goal to make accessing the
needed commands as easy as possible.

Options an application supports should be made
dynamically accessible, even during runtime. AMS
for example supports a monophonic as well as a
polyphonic mode via a command line option.
Unfortunately, it is not possible to enter the desired
polyphony persistently via the preferences or to
change the polyphony during runtime. As soon as
the user forgets to pass the desired polyphony to
AMS during startup, it needs to be quit and
restarted with the correct polyphony applied. Then
the user has to reopen the patch file and to redo all
MIDI and audio connections. Therefore there is no
direct access to the polyphony settings.

When a user changes the preference settings of
an application, the program should change its
behaviour immediately. It is also important to
write the preferences file immediately after
changes have been made. Otherwise, a crash will
make the application forget the settings the user
has made. In gAlan for example, preference
changes make it necessary to restart the program:

Tooltips and »What's this« help are very useful
things in GUI applications. Both grant the user
direct access to documentation on demand and
reduce the need for writing documentation. On the
other hand, if an application offers tooltips and

LAC2005
64

»What's this« help, both need to contain
reasonable contents. Otherwise, the user may
believe that similar controls will also be useless in
other applications.

A further thing to grant users direct access is to
give them needed options and controls where and
when needed, even if the controls were external
applications. A Linux audio user often is in need to
access the soundcard's mixer as well as a MIDI or
JACK connection tool. Therefore, a sequencer
application offering a button to launch these tools
from within its user interface grants the user direct
access. There are different tools like kaconnect,
qjackconnect or qjackctl, so preference settings
make it possible that the user enters the programs
he likes to use. Rosegarden for example allows the
user to enter the preferred audio editor:

The same way external MIDI and JACK
connection tools as well as a mixer could be made
available:

These fields need to be well preconfigured
during the first application startup. One possibility
is to set the application's defaults to reasonable
values during development time. Unfortunately,
this seems to be impossible because the
configuration of the user's system is not known at
this moment.

Therefore, Rosegarden could try to check for the
existence of some well known tools like qjackctl,
qjackconnect, kaconnect, kmix, kamix or qamix

and enter them into the matching fields in case
these are empty at application startup.

An application could even offer the possibility to
make MIDI and audio connections directly from
its interface with UI elements of its own. As long
as the connections reappear in aconnect and
jack_connect, it fulfills both the usability
requirements of direct access and consistence.

A further issue concerning direct access is
setting a soundcard's mixing controls. On a
notebook with an AC '97 chip, alsamixer usually
shows all controls the chip has to offer, regardless
if all abilities of the chip are accessible from the
outside of the computer or not:

Of course ALSA cannot know which pins of the
chip are connected to the chassis of the computer.
The snd-usb-module really handles a huge amount
of more and more hotpluggable devices. This
simply makes it impossible for ALSA to offer a
reasonable interface for each particular card.
Currently, alsamixer for a Terratec Aureon 5.1
USB looks like this:

PCM1 does not seem to do anything useful,
while auto gain is not a switch (like the user might
expect) but looks like a fader instead. It cannot be
faded, of course, but muted or unmuted to switch it
on and off. There are two controls called 'Speaker'.
One of them controls the card's direct throughput,
while the second one controls the main volume.
The average user has no chance to understand this
mixer until he plays around with the controls and
checks what results are caused by different
settings.

Qamix tries to solve this building the UI reading
an XML file matching the card's name:

LAC2005
65

The user configures a card by adjusting this file.
This is a nice attempt, but still qamix gets too less
information from ALSA to make a really good UI:

A further usability goal is consistency. All these
points mentioned above require that ALSA needs
to remain the central and master instance for all
user applications.

One idea to realize this is to make ALSA able to
give applications more and better information
about the hardware. As soon a soundcard gets
configured, a matching, human created
configuration file got selected manually or via a
card ID, so the controls of a particular card could
be named more human readable. If the
configuration file was in Unicode format, it even
can contain names in different languages:

Introducing a similar system for ALSA device
and MIDI port names also seems to be desirable.
This needs writing some configuration files.
Keeping the file format as simple unicode text or
XML files which simply are stored at a certain
loaction can make users easily contribute.

3. The Developer's Point of View
After having discussed a lot of usability issues

from a user's point of view, it is also necessary to

view it from a developer's point of view. There are
several reasons why it is difficult to introduce
usability into Linux audio software projects.

First of all, the question is if there is any reason
why a developer of free software should respect
usability ideas. If someone has written an
application for his own needs and has given it
away as free software, the motivation to apply
usability ideas has a minor priority. Nobody
demands that an application that someone
submitted for free has to include anything.

In the beginning of a software project, it makes
less sense to think about the user interface. At first,
the program needs to include some useful
functionality. As soon as a project grows and
maybe several developers are working on it, the
user base might increase. In this case, the ambition
of the project members to make the application
better and more user friendly usually increases.

Even in this case, it is often difficult to achieve a
more user friendly design for technical reasons.
Applications often are designed to start with
command line parameters to make them behave as
desired. If the design of the software is made to
take options at application startup, it is likely that
these cannot easily be changed during runtime.
The same is valid for preference settings read from
a configuration file during an application's startup.
It often does not expect the values to be changed
dynamically. Adjusting this behaviour at a later
point in the development process is sometimes
difficult and can cause consecutive bugs.

Keeping this in mind, it requires to design the
software system to keep the different values as
variable as possible from the very beginning of the
development process. Changing this afterwards
can be difficult.

A further point is the fact that developers tend to
be technically interested. A developer might have
been working on new features for a long time,
having done research on natural phenomena and
having created some well designed algorithms to
simulate the result of the research in software. The
developer now is proud having created a great
piece of software and simply lacks the time to
make this valuable work more accessible to the
users. The developer has put a lot of time and
knowledge in the software and then unfortunately
limits the user base by saving time while creating
the user interface.

Sometimes it is also caused by the lack of
interest about user interface design. There have
always been people who are more interested in
backends and others more interested in frontends.
Developers who are interested in both cannot be
found often. It is important to notice that this is a

LAC2005
66

given fact. But not each project has the luck that
one of the members is an usability expert, so it is
useful if all project members keep usability aspects
in mind.

Of course, bugs need to be fixed, and even the
existing user base tends to beg more for new
features instead of asking to improve the existing
user interface. This is understandable because the
existing user base already knows how to use the
program.

A software system will never be finished. So
developers who want to introduce usability
improvements need to clearly decide if they want
to spent some time on it at a certain point.

Working on usability improvements needs time,
and time is a strongly limited resource especially
in free software projects which mainly are based
on the work of volunteers.

Everything depends on the project members and
if they are interested in spending some time on
usability issues or not.

4. Summary
Linux is surely ready for the audio desktop.

Most applications a musician needs are available,
at least including the base functionality.
Furthermore, there is free audio software which
does things musicians have never heard about on
other operating systems.

Due to this fact, keeping some usability ideas in
mind will make more semi-skilled users enjoying
free software. More users cause more acceptance
of free software, and this will cause more people to
participate.

Usability is not limited to graphical user
interfaces. It also affects command line interfaces.
Linux is known to be a properly designed
operating system. Respecting some basic usability
rules helps continuing the tradition.

On Linux there are many choices which
environment to work in. There are different
window managers and desktop environments as
well as different toolkits for graphical user
interface design.

Working and developing on a heterogeneous
system like Linux does not mean that it is
impossible or useless to apply usability rules. It
simply means that it is a special challenge to
address and work on usability ideas.

Paying attention to usability issues is not only
important to make user's life easier or improve his
impression. It also is important to broaden the user
base in order to get more bug reports and project
members. And finally it helps spreading Linux
when surprising average computer skilled

musicians what cool applications are available as
free software.

5. License
The copyright of this document is held by

Christoph Eckert 2005. It has been published
under terms and conditions of the GNU free
documentation license (GFDL).

6. Resources
• [1] The wxWidgets toolkit wxGuide:

http://wxguide.sourceforge.net
• [2] The Apple human interface principles:

http://developer.apple.com/documentation/mac/
pdf/HIGuidelines.pdf

• [3] The Gnome user interface guidelines:
http://developer.gnome.org/projects/gup/hig/

• [4] User Interface Design by Joel Spolsky:
http://joelonsoftware.com
/navLinks/fog0000000247.html

• [5] The GNU coding standards:
http://www.gnu.org/prep/standards

• [6] Patchage:
http://www.scs.carleton.ca/~drobilla/patchage/

• [7] Various software of M. Nagorni:
http://alsamodular.sourceforge.net/

• [8] The ALSA wiki pages:
http://alsa.opensrc.org

• [9] The Access Virus Synthesizers:
http://www.virus.info/

LAC2005
67

LAC2005
68

Updates of the WONDER software interface for using Wave Field Synthesis

Marije A.J. BAALMAN
Communication Sciences, Technische Universität Berlin

Sekr. EN8, Einsteinufer 17
Berlin, Germany

baalman@kgw.tu­berlin.de

Abstract

WONDER is a software interface for using Wave
Field Synthesis for audio spatialisation. Its user
group is aimed to be composers of electronic
music or sound artists. The program provides a
graphical interface as well as the possibility to
control it externally using the OpenSoundControl
protocol. The paper describes improvements and
updates to the program, since last year.

Keywords

Wave Field Synthesis, spatialisation

1 Introduction

Wave Field Synthesis (WFS) is a technique for
sound spatialisation, that overcomes the main
shortcoming of other spatialisation techniques, as
there is a large listening area and no “sweet spot”.
In recent years, WFS has become usable with
commercially available hardware.

This paper describes the further development of
the WONDER program, that was designed to
make the WFS­technique available and usable for
composers of electronic music and sound artists.

2 Short overview of WFS and WONDER

WFS is based on the principle of Huygens,
which states that a wave front can be considered as
an infinite number of point sources, that each emit
waves; their wavefronts will add up to the next
wavefronts. With Wave Field Synthesis, by using a
discrete, linear array of loudspeakers, one can
synthesize correct wavefronts in the horizontal
plane (Berkhout e.a. 1993). See figure 1 for an
illustration of the technique.

WONDER is an open source software program
to control a WFS system. The program provides a
graphical user interface and allows the user to

think in terms of positions and movements, while
the program takes care of the necessary
calculations for the speaker driver functions. The
program is built up in three parts: a grid definition
tool, a composition tool and a play interface.
Additional tools allow the user to manipulate grids
or scores, or view filter data.

For the actual realtime convolution, WONDER
relies on the program BruteFIR (Torger). This
program is capable of doing the amount of filter
convolutions that are necessary to use WFS in
realtime. On the other hand, BruteFIR has the
drawback, that all the filters need to be calculated
beforehand and during runtime need to be stored in
RAM. This limits the flexibility for realtime use. It
is for this reason, that a grid of points needs to be
defined in advance, so that the filters for these
points can be calculated beforehand and stored in
memory.

For a more complete description of the
WONDER software and the WFS­technique in
general, I refer back to previous papers (Baalman,
2003/2004).

Figure 1. The Huygens' principle (left) and the Wave
Field Synthesis principle (right).

LAC2005
69

3 Updates to WONDER

Since its initial release in July 2004, WONDER
has gone through some changes and updates. New
tools have been implemented and the functionality
of some of the old tools have been improved. Also,
some parts were reimplemented to allow for easier
extension in the future and resulting in a cleaner
and more modular design.

The graphical overview, which displays the
spatial layout of the speakers and source positions
have been made consistent with each other and
now all provide the same functionality, such as the
view point (a stage view or an audience view),
whether or not to show the room, setting the limits
and displaying a background image.

The room definition has been improved: it is
now possible to define an absorption factor for
each wall, instead of one for all walls.

3.1 Grid tools

The Grid definition tool allows a user to define a
grid consisting of various segments. Each segment
can have a different spacing of points within its
specified area and different characteristics, such as
inclusion of high frequency damping and room
parameters for reflections.

The menu “Tools” now provides two extra tools
to manipulate Grids. It is possible to merge several
grids to one grid and to transform a grid.

The Merge­tool puts the points of several grids
into one grid, allowing the user to use more than
one grid in an environment.

The Transform­tool applies several spatial
transformations to the segments of a grid and then
calculates the points resulting from these
transformed segments. This transformation can be
useful if a piece will be performed on another
WFS system, which has another geometry of the
speaker setup and the coordinates of the grid need
to be transformed.

The filter view (fig. 2) is a way to verify a grid
graphically. It shows you the coefficients of all the
filters of a source position in a plot. The plot
shows on the horizontal axis the loudspeakers, in
the vertical direction the time (on the top is zero).
The intensity indicates the value of the absolute
value of the volume. Above the graph, the input
parameters of the gridpoint are given, as well as
some parameters of the grid as a whole. This filter

overview can be useful for verification of
calculations or for eductional purposes.

Another way to verify a grid is using the grid
test mode during playback with which you can
step through the points of a grid and listen to each
point separately.

3.2 Composition tools

With the composition tool the user can define a
spatial composition of the sound source
movements. For each source the movement can be
divided in sections in time and the spatial
parameters can be given segmentwise per section.

In the composition definition dialog it is also
possible to transform the current composition. The
user can define a set of spatial transformations that
have to be applied to the sources and sections
specified. After the transformations have been
applied, the user can continue working on the
composition. This tool is especially handy when
one source has to make a similar movement as

Figure 2. Filter view tool of WONDER. At the top,
information about the grid and the current grid point
are given. In the plot itself is in the horizontal direction
the speakers, in the vertical direction the time. The
intensity (contrast can be changed with the slider at the
bottom right) is an indication of the strength of the
pulse. The view clearly shows the reflection pattern of
the impulse response.

LAC2005
70

another: just make a copy of the one source and
apply a transformation to the copy.

After a score has been created (either with the
composition tool or by recording a score), there are
four tools available in the “Tools”­menu to
manipulate the scores.

“Clean score” is handy for a recorded score.
This cleans up any double time information and
rounds the times to the minimum time step
(default: 25 ms).

“Merge scores” enables you to merge different
scores into one. It allows a remapping of sources
per score included.

“Transform score” allows you to make
transformations to different sources in a score.

The last tool is the “timeline view”, which
shows the x­ and y­component in a timeline (fig.
4); it shows the selected time section as a path in
an x­y view. It is also possible to manipulate time
points in this view. While playing it shows a
playhead to indicate the current time. The concept
of this timeline view is inspired by the program
“Meloncillo” (Rutz). The timeline view allows for
a different way of working on a composition: the
user can directly manipulate the score.

3.3 Play interface

WONDER provides a graphical interface to
move sound sources or to view the movement of
the sound sources. The movement of sound

sources can be controlled externally with the OSC­
protocol (Wright, 2003).

Score control is possible by using the Transport
controls (fig. 3), which have been re­implemented.

The sound in­ and output can be chosen to be
OSS, ALSA, JACK or a sound file. In the first
three cases the input has to be equal to the output.

The program BruteFIR (Torger) is used as audio
engine. The communication between BruteFIR and
WONDER can be verified by using a logview,
which displays the output of BruteFIR. Due to
some changes in the command line interface of
BruteFIR, the communication between WONDER
and BruteFIR could be improved and there is no
more a problem with writing and reading
permissions for the local socket.

The logview, which records (in red) the
messages that are shown in the statusbar of
WONDER, shows the feedback from the play
engine BruteFIR in black. It is possible to save the
log to a file.

Figure 4. The timeline view of WONDER. The selected time section is shown as a path in the positional
overview. The user can edit the score by moving the breakpoints or adding new ones.

Figure 3. Transport control of WONDER. The slider
enables the user to jump to a new time. The time in
green (left) indicates the running time, the time in
yellow (right) the total duration of the score. The
caption of the window indicates the name of the score
file.

LAC2005
71

3.4 Help functions

The manual of the program is accessible via the
“Contents” item in the “Help”­menu. This displays
a simple HTML­browser with which you can
browse through the documentation. Alternately,
you can use your own favourite browser to view
the manual.

Additionally, in most views of WONDER,
hovering above buttons, gives you a short
explanation about the buttons' functionality.

4 External programs to control WONDER

There are two examples available which show
how to control WONDER from another program: a
SuperCollider Class available and an example
MAX/MSP patch.

Another program that can be used for external
control is the JAVA­program SpaceJockey
(Kneppers), which was designed to enable the use
of (customizable) movement patterns and to
provide MIDI­control over the movements.

5 Conclusion

WONDER has improved in the last year and has
become more stable and more usable. Several
changes have been made to facilitate further
development of the program.

Current work is to create an interface to EASE
for more complex room simulation and to integrate
the use of SuperCollider as an optional engine for
the spatialisation. It is expected that SuperCollider
can provide more flexibility, such as removing the
necessity to load all filter files in RAM and the
possibility to calculate filter coefficients during
runtime.

Current research is focused on how to
implement a more complex sound source
definition.

Download

A download is available at:
http://gigant.kgw.tu­berlin.de/~baalman/

References

Baalman, M.A.J., 2003, Application of Wave Field
Synthesis in the composition of electronic
music, International Computer Music
Conference 2003, Singapore

Baalman, M.A.J., 2004, Application of Wave Field
Synthesis in electronic music and sound
installations, Linux Audio Conference 2004,
ZKM, Karlsruhe, Germany

Baalman, M.A.J. & Plewe, D., 2004, WONDER ­
a software interface for the application of
Wave Field Synthesis in electronic music and
interactive sound installations, International
Computer Music Conference 2004, Miami, Fl.,
USA

Berkhout, A.J., Vries, D. de & Vogel, P. 1993,
Acoustic Control by Wave Field Synthesis,
Journal of the Acoustical Society of America,
93(5):2764­2778

Kneppers, M., & Graaff, B. van der, SpaceJockey,
http://avdl1064.oli.tudelft.nl/WFS/

Rutz, H.H., Meloncillo,
http://www.sciss.de/meloncillo/index.html

Torger, A., BruteFIR,
http://www.ludd.luth.se/~torger/brutefir.html

Wright, M., Freed, A. & Momeni, A. 2003,
“OpenSoundControl: State of the Art 2003”,
2003 International Conference on New
Interfaces for Musical Expression, McGill
University, Montreal, Canada 22­24 May 2003,
Proceedings, pp. 153­160

LAC2005
72

Development of a Composer’s Sketchbook

Georg BÖNN
School of Electronics

University of Glamorgan
Pontypridd CF37 1DL

Wales, UK
gboenn@glam.ac.uk

Abstract

The goal of this paper is to present the
development of an open source and cross-
platform application written in C++, which
serves as a sketchbook for composers. It
describes how to make use of music analysis
and object-oriented programming in order to
model personal composition techniques. The
first aim was to model main parts of my
composition techniques for future projects in
computer and instrumental music. Then I
wanted to investigate them and to develop
them towards their full potential.

Keywords

Music Analysis, Algorithmic Composition,
Fractals, Notation, Object-Oriented Design

0 Introduction

Computer-Assisted Composition
(CAC) plays an important role in computer
music production. Many composers nowadays
use CAC applications that are able to support
and enhance their work. Applications for CAC
help composers to manage the manifold of
musical ideas, symbolic representations and
musical structures that build the basis of their
creative work. Maybe it is time to put a
flashlight on CAC again and to look at
examples where user-friendly interfaces meet
efficient computation and interesting musical
concepts.

What are the advantages of CAC? For
a composer to be able to use the PC as an
intelligent assistant that represents a new kind
of sketchbook and a well of ideas.

Not only, that it is possible to quickly
input and save musical data, the work in CAC
results in a great freedom of choice between
possible solutions of a given compositional

problem. Maybe a network of different
algorithms work together, then only little
changes of initial parameters could trigger
surprising twists within the final result.
Moreover, you can take those outcomes and
scrutinise their value by direct and immediate
comparison. Thus, a composer can take the
time and always look for alternatives. The
manifold of structures and ideas is going to be
manageable through CAC software. Also, one
should take into account the thrill of surprise
that well designed CAC algorithms might fuel
into one’s work-flow.

This paper wants to discuss one
specific compositional problem that is the
invention and modelling of melodic structures.
The proposed software that resolves that
particular probelm shall represent a germ for
an open source (under the GNU Public
License) and free CAC application that is
planed to grow as the number of compositional
algorithms will hopefully increase in the near
future. It is intended that this software is easy
to learn and to use and that it benefits from
proven concepts of object-oriented design and
programming. Therefore, the author hopes that
the ideas presented will find the interest and
also maybe the support of the Linux Audio
Developer’s community.

Of course, personal preferences and
musical experience influence the work of a
composer. Those together with intuition,
imagination, phantasy and the joy to play,
including the joy for intellectual challenges,
they are, in my view, the driving forces behind
musical creativity. Would it be possible to
define a set of algorithms that would match
that experience? Is finding an algorithm not
also often a creative process?

1 Music Analysis

The fundamental idea in Composer’s
Sketchbook is the use of a user-defined

LAC2005
73

database, that contains the building blocks for
organic free-tonal musical stuctures. Those
building blocks are three-note cells which stem
from my personal examination of the major
and minor third within their tonal contexts
(harmonics, tuning systems, Schenker’s
Ursatz), as well as within atonal contexts
(Schoenberg’s 6 kleine Klavierstücke op.19,
Ives’ 4th violin sonata). Although in my
system, tonality is hardly recognisable
anymore because of constant modulations, i
cannot deny the historic dimension of the third,
nor can i neglect or avoid its tonal
connotations. I suppose it helped me to create
an equilibrium of free tonality where short
zones of tonality balance out a constant stream
of modulations.

Analysis of scores by Arnold Schoenberg and
Charles Ives led me to a very special matrix of
three-note cells. Further analysis revealed that
it is possible to use a simple logic to
concatenate those cells. Algorithms using this
logic were created who are able to render an
unprecedent variety of results based on a small
table of basic musical material. In order to
generate the table, a small set of generative
rules is applied to a set of primordial note-
cells. The general rule followed in this
procedure is to start with very simple material,
then apply combinatorics unfolding its inner
complexity and finally generate a manifold of
musical variations by using a combination of
fractal and stochastic algorithms.

The first four cells forming the matrix are
variations of the simple melodic figure e-d-c.
The chromatic variations are e-flat-d-c, e-flat-
d-flat-c and e-d-flat-c (see Figure 2, A-D).

One of the reasons why I chose these figures
was, because they represent primordial,
archetypical melodic material that can be
found everywhere in music of all periods and
ages. An exceptional example for the use of
the Ursatz-melody is Charles Ives’ slow
movement of the 4th violin sonata. This
movement quotes the chorale “Yes, Jesus loves
me” and uses its three-note ending e-d-c (“he
is strong”) as a motive in manifold variations
throughout the piece. Analysis reveals that Ives
uses the major and minor versions of the
motive and all its possible permutations (3-2-1,
2-1-3, 1-3-2).

2 The Matrix

The matrix I developed uses exactly
the same techniques: Four different modes (A-
D) of the ‘Ur’-melody are submitted to all
three possible permutations (see Figure 2).
This process yields 12 primordial cells. Each
one of those 12 cells is then submitted to a
transformation called “partial inversion”.

Figure 2: The matrix of 36 cells

Partial Inversion means: Invert the first
interval but keep the second one untouched.
Or, keep the first interval of the cell original

LAC2005
74

and invert the second one. This process of
partial inversion can be found extensively used
by Arnold Schönberg in his period of free
atonality. As a perfect example, have a look at
his Klavierstück op.19/1, bar 6 with up-beat in
bar 5.

The reason for using partial inversion
is that it produces a greater variety of musical
entities than the plain methods of inversion and
retrograde. At the same time partial inversion
guarantees consistency and coherence within
the manifold of musical entities. Applying
partial inversion to the 12 cells yields another
24 variants of the original e-d-c-melody.

The final matrix of 36 cells contains an
extraordinary complex network of
relationships. Almost every cell in the matrix
has a partner, which is the very cell in a
different form, the cell may be inverted,
retrograde, permutated or inverse retrograde.
Yet, each one of these is closely related to the
original ‘Ur’-melody.

Going back to Schönberg’s op. 19/1, it
came as a surprise that every single note in this
piece is part of one or more groups of three
notes, which can be identified as a member of
the matrix of 36 cells.

The discovery of an element of my
own language in the matrix gave me yet
another good reason to further investigate its
application. I call it “chromatic undermining”,
breaking into the blank space left behind by a
local melodic movement. Cells which belong
to that element are the partial inversions of
Ursatz B and C, left column.

The matrix of cells forms the basis of
all further work with algorithms. It can be
regarded as a database of selected primordial
music cells. Thus it is clear that a user-
interface should make it possible to replace
that database by any other set of entities where
it is totally in the hands of the user to decide
which types of entities should belong to the
database. The user-interface should also allow
to add, delete or edit the database at runtime
and make the database persistent.

3 Algorithms

The algorithms that are used to concatenate
cells from the database are as follows:

3.1 Fractal Chaining

Beginning with two notes, the fractal algorithm
seeks to insert a new note between them. It
detects the original interval between the two
notes, then it queries the database whether
there exists a cell, which contains that interval
between its first and last note. If it is true, then
the middle note of the cell is inserted between
the two notes of our beginning (see Figure 3
a). We now have a sequence of three notes
whose interval strucure is equal to the cell that
was chosen from the database. The pitch-
classes of our first two notes are preserved.
This algorithm, can be applied recusively.
Starting now with three notes from our result,
the algorithm steps through the intervals and
replaces each one of them by two other
intervals that were obtained from another cell
within our matrix database (see Figure 3 b). Of
course, there are multiple solutions for the
insertion of a note according to a given
interval, because there are several cells within
the matrix that would pass the check. The
choice made by the program depends on a
first-come-first-served basis. In order to make
sure that each cell has an equal chance of
getting selected, the order of the matrix has
always been scrambled the moment before the
query was sent to the database. The fractal
algorithm needs a minimum input of two notes
but it can work on lists of notes of any length.
Fractal chains maintain the tendency of the
original structure at the beginning. Therefore,
this interval structure is the background
structure of the final result after the algorithm
has been called a few times.

LAC2005
75

Figure 3: Sequence of Fractal Chaining

3.2 Chain overlapping 2 notes

The chaining algorithms differ from the fractal
algorithm because their goal is to add notes to
the tail of a given list rather then inserting
them between every two notes. The chaining
method overlapping two notes looks at the last
interval of a melody. It then searches the
matrix for a matching three-note cell whose
first interval is equal to that last interval of the
melody. If a match was found, then the second
interval of the cell is added to the melody and
so a new note is added, the melody expands
(see Figure 4).

Figure 4: Scheme of Algorithm 3.2

The reason for using overlapping cells was a
result of music analysis: One note may belong
to more than just one cell, thus providing a
high degree of coherence of the inner musical
structure.

3.3 Chain overlapping 1 note

This method simply takes a random cell from
the database and adds it to the end of the
melody by taking its last note as the first note
of the cell, thus adding two new notes to the
melody (see Figure 5).

Figure 5: Scheme of Algorithm 3.3

3.4. Chain combining Algorithms

3.2 & 3.3

The algorithm takes the last interval of the
melody, finds, if possible, a match with a cell
from the database, adds the last note from the
cell to the melody, then taking this note as the
starting point of a randomly chosen cell from
the database (see Figure 6).

Figure 6: Scheme of Algorithm 3.4

3.5 Option: check history

This option can be switched on or off and
triggers a statistical measurment of the pitch-
class content of the melody. It ensures that
only those cells are chosen from the database
whose interval structure generates new pitch-
classes when added to the melody. This option
leads to the generation of totally chromatic
fields and ensures that every pitch-class has an
equal chance to occur within the melody. The
history-check can be modified in order to meet
other requirements, e.g. the algorithm can be
told to chose only cells adding pitch-classes to

LAC2005
76

the melody, which belong to a specific key or
mode previously defined by the user.

3.6 Chain with no overlap

The algorithm choses the first interval of a
randomly chosen cell and adds the interval to
the melody. Then it takes another random cell
and adds its content to the melody.

Figure 7: Scheme for Algorithm 3.5

3.7 Chain using different cell

contours

The term contour means that each cell has a
certain profile of up- or down-movements.
These contours are automatically measured
within the database. The chaining using
contour comparisons takes the last three-note
group of the melody and mesures the contour.
Then it looks-up the database in order to find a
cell which has one of the four possible
contours: up/down, down/up, up/up or
down/down. The user decides which one of
those criteria has to be met and the matching
cell is added to the melody.

3.8 Using and extending the

program

By using different chaining methods, possibly
in a sequence of processes, the user has an
enormous freedom of choice and variety in
modelling a melodic line and the structure of a
sequence.

It will be possible to use within the
program an editor for context-free grammar in
order to let the user define a set of rules by
which musical entites are chosen from the
database.

It is easy to imagine, that the matrix of
36 cells can be extended and more variations
of the e-d-c-melody could join the matrix. For
instance, i added 10 more modes of the ‘Ur’-
melody resulting in a database of 126 cells.

It is also possible to use the chaining
algorithms in order to build-up chord
structures. When using a database containig
major and minor thirds (or other intervals) it is
easy to imagine that the algorithm “Chain
overlapping 1 note” with history-check “on”
returns all possible chords containing 3 up to
12 notes using nothing but major and minor
thirds (or other intervals).

We are also not restricted to the well-
tempered 12-note scale. The software is open
to more notes per octave as well as it is
possible to use micro-intervals.

4 Program Development

The software development uses the C++
language and started as an application for
Windows using MFC. In order to port the
program to Linux and MacOS X the
development switched to the wxWidgets1
framework.

4.1 User-Interface

The user can input notes via his computer
keyboard that automatically mimics the keys
of a piano keyboard: ‘Q’=c, ‘2’=c#, ‘W’=d,
‘3’=d#, ‘E’=e, ‘R’=f, ‘5’=f# and so on; the
lower octave starts with ‘Y’=c, ‘S’=c# etc.. By
using the up- and down-arrow keys the user
can switch to the next octave up or down. The
notes are being played instantly via MIDI
interface and printed directly on screen in
western music notation. After a melody has
been entered, it is possible to transform the
input in a number of ways. For example,
rubber-band-style selections can be made,
notes can be transposed or deleted just like
with a text editor. Series of notes can be
inverted and reversed and the aforementioned
fractal and chaining algorithms applied. These
commands work on both selections or the
entire score. A “Refresh” command exists for
the fractal algorithms. It automatically reverts
the transformation and gives simply “another
shot”, stepping through all possible
alternatives. Of course, selections or the entire
score can be played and stopped.

In future versions, all commands
described here shall run in their own worker-

1 Formerly known as wxWindows. The name has
been changed to wxWidgets. See also
www.wxwindows.org

LAC2005
77

thread, not in the user-interface thread, so the
user-interface will not be blocked by any
calculations. The program supports export of
standard MIDI files. It is planned for future
versions to support MIDI, XML and CSV file
import in order to give more choices for the
replacement of the cell database.

4.2 Classes

Following the above description of the
algorithms and the user-interface, it is evident
that we had to implement the classic Mode l-
View-Controller paradigm. Frameworks like
MFC or wxWidgets are built around this
paradigm, so it makes sense to use them. Since
wxWidgets supports all popular platforms it
was chosen as framework for my development.

The representaion of music data as
objects makes it necessary to design
fundamental data structures and base classes.
The software uses mainly two different
container classes: An Array class, which is
used to organise and save the note-cell data of
our database. The Arrays save notes as midi-
note numbers (ints) and they generate
automatically information about the intervals
they contain, which is a list of delta values.
The whole database is kept as an Array of
Arrays in memory. In order to facilitate
ordering of the cells and random permutations
of the database, pointers to the note-cell Arrays
are kept in a Double -Linked List. The Double -
Linked List is a template-based class which
manages pointers to object instances. The
melody imput from the user is also kept in an
instance of the class Double-Linked List,
where the elements consist of pointers to a
note-table, that can be shared by other objects
as well. The Algorithms described in this paper
work on a copy of the melody note-list. Since
the note-list is of type Double-Linked List,
only pointers are being copied. The Algorithm
class intitalises its own Array of notes, which
itself creates a delta-list of intervals. Pointers
to the delta-list elements are the stored inside a
Double-Linked List object, so the Algorithms
can easily work on the interval-list from the
user input. This is done because there is a lot
of comparison of interval sizes going on. The
history-check that was described as an option

is implemented as a Visitor of the Algorithm.
This object calculates a history table of all
pitch-classes that have been used so far. It uses
the Double-Linked List containing the
intervals from the Algorithm object it is
visiting. All Events that are sent to the MIDI
interface are also managed by a Linked-List
Container.

In order to build the editor for note
display and to implement user-interaction, the
Composite Design-Pattern will be used. All
graphic elements will be either Component or
Composite instances. For instance a Staff
would be a Composite that contains other
Components like Notes, Clefs, Barlines, etc..

5 Conclusion

The use of design-patterns like composite and
vistor allows us to achieve a very robust code
that is both easy to maintain and to extend. The
paper also showed that it is possible to model
composition techniques using object-oriented
design of musical data. An application has
been created that has the flexibility to extend
knowledge gained from music analysis and
personal experience. The initial goal of
creating a sketchbook for composers has been
achieved.

6 References

J. Dunsby and A. Whittall. 1988. Music
Analysis in Theory and Practice. Faber,
London

E. Gamma, R. Helm, R. Johnson and J.
Vlissides. 1995. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-
Wesley, Reading, MA

Bruno R. Preiss. 1999. Data Structures and
Algorithms with Object-Oriented Design
Patterns in C++. Wiley, New York

M. Neifer. 2002. Porting MFC applications to
Linux. http://www-
106.ibm.com/developerworks/library/l-mfc/

LAC2005
78

SoundPaint – Painting Music

Jürgen Reuter
Karlsruhe
Germany

reuter@ipd.uka.de

Abstract

We present a paradigm for synthesizing electronic
music by graphical composing. The problem of map-
ping colors to sounds is studied in detail from a
mathematical as well as a pragmatic point of view.
We show how to map colors to sounds in a user-
definable, topology preserving manner. We demon-
strate the usefulness of our approach on our proto-
type implementation of a graphical composing tool.

Keywords

electronic music, sound collages, graphical compos-
ing, color-to-sound mapping

1 Introduction

Before the advent of electronic music, the west-
ern music production process was clearly di-
vided into three stages: Instrument craftsmen
designed musical instruments, thereby playing
a key role in sound engineering. Composers
provided music in notational form. Performers
realized the music by applying the notational
form on instruments. The diatonic or chromatic
scale served as commonly agreed interface be-
tween all participants. The separation of the
production process into smaller stages clearly
has the advantage of reducing the overall com-
plexity of music creation. Having a standard set
of instruments also enhances efficiency of com-
posing, since experience from previous compo-
sitions can be reused.

The introduction of electro-acoustic instru-
ments widened the spectrum of available in-
struments and sounds, but in principle did not
change the production process. With the intro-
duction of electronic music in the middle of the
20th century however, the process changed fun-
damentally. Emphasis shifted from note-level
composing and harmonics towards sound engi-
neering and creating sound collages. As a re-
sult, composers started becoming sound engi-
neers, taking over the instrument crafts men’s
job. Often, a composition could not be no-
tated with traditional notation, or, even worse,

the composition was strongly bound to a very
particular technical setup of electronic devices.
Consequently, the composer easily became the
only person capable of performing the compo-
sition, thereby often eliminating the traditional
distinction of production stages. At least, new
notational concepts were developed to alleviate
the problem of notating electronic music.

The introduction of MIDI in the early 80s was
in some sense a step back to electro-acoustic,
keyed instruments music, since MIDI is based
on a chromatic scale and a simple note on/off
paradigm. Basically, MIDI supports any instru-
ment that can produce a stream of note on/off
events on a chromatic scale, like keyed instru-
ments, wind instruments, and others. Also,
it supports many expressive features of non-
keyed instruments like vibrato, portamento or
breath control. Still, in practice, mostly key-
boards with their limited expressive capabilities
are used for note entry.

The idea of our work is to break these limi-
tations in expressivity and tonality. With our
approach, the composer creates sound collages
by visually arranging graphical components to
an image, closely following basic principles of
graphical notation. While the graphical shapes
in the image determine the musical content of
the sound collage, the sound itself is controlled
by color. Since in our approach the mapping
from colors to actual sounds is user-definable
for each image, the sound engineering process is
independent from the musical content of the col-
lage. Thus, we resurrect the traditional separa-
tion of sound engineering and composing. The
performance itself is done mechanically by com-
putation, though. Still, the expressive power of
graphics is straightly translated into musical ex-
pression.

The remainder of this paper is organized as
follows: Section 2 gives a short sketch of image-
to-audio transformation. To understand the
role of colors in a musical environment, Section

LAC2005
79

3 presents a short survey on the traditional use
of color in music history. Next, we present and
discuss in detail our approach of mapping col-
ors to sounds (Section 4). Then, we extend our
mapping to aspects beyond pure sound creation
(Section 5). A prototype implementation of our
approach is presented in Section 6. We already
gained first experience with our prototype, as
described in Section 7. Our generic approach is
open to multiple extensions and enhancements,
as discussed in Section 8. In Section 9, we com-
pare our approach with recent work in related
fields and finally summarize the results of our
work (Section 10).

2 Graphical Notation Framework

In order to respect the experience of tradition-
ally trained musicians, our approach tries to
stick to traditional notation as far as possi-
ble. This means, when interpreting an image
as sound collage, the horizontal axis represents
time, running from the left edge of the image
to the right, while the vertical axis denotes the
pitch (frequency) of sounds, with the highest
pitch located at the top of the image. The verti-
cal pitch ordinate is exponential with respect to
the frequency, such that equidistant pitches re-
sult in equidistant musical intervals. Each pixel
row represents a (generally changing) sound of
a particular frequency. Both axes can be scaled
by the user with a positive linear factor. The
color of each pixel is used to select a sound. The
problem of how to map colors to sounds is dis-
cussed later on.

3 Color in Musical Notation History

The use of color in musical notation has a long
tradition. We give a short historical survey in
order to show the manifold applications of color
and provide a sense for the effect of using colors.

Color was perhaps first applied as a purely no-
tational feature by Guido von Arezzo, who
invented colored staff lines in the 11th century,
using yellow and red colors for the do and fa
lines, respectively. During the Ars Nova period
(14th century), note heads were printed with
black and red color to indicate changes between
binary and ternary meters(Apel, 1962). While
in medieval manuscripts color had been widely
applied in complex, colored ornaments, with the
new printing techniques rising up in the early
16th century (most notably Petrucci’s Odhe-
caton in 1501), extensive use of colors in printed
music was hardly feasible or just too expen-

sive and thus became seldom. Mozart wrote a
manuscript of his horn concert K495 with col-
ored note heads, serving as a joke to irritate the
hornist Leutgeb – a good friend of him(Wiese,
2002). In liturgical music, red color as con-
trasted to black color remained playing an ex-
traordinary role by marking sections performed
by the priest as contrasted to those performed
by the community or just as a means of read-
ability (black notes on red staff lines). Slightly
more deliberate application of color in music
printings emerged in the 20th century with tech-
nological advances in printing techniques: The
advent of electronic music stimulated the devel-
opment of graphical notation (cp. e.g. Stock-

hausen’s Studie II (Stockhausen, 1956) for the
first electronic music to be published(Simeone,
2001)), and Wehinger uses colors in an au-
ral score(Wehinger, 1970) for Ligeti’s Artic-

ulation to differentiate between several classes
of sounds. For educational purposes, some au-
thors use colored note heads in introductory
courses into musical notation(Neuhäuser et al.,
1974). There is even a method for training ab-
solute hearing based on colored notes(Taneda
and Taneda, 1993). Only very recently, the use
of computer graphics in conjunction with elec-
tronic music has led to efforts in formally map-
ping colors to sounds (for a more detailed dis-
cussion, see the Related Work Section 9).

While Wehinger’s aural score is one of the
very few notational examples of mapping col-
ors to sounds, music researchers started much
earlier to study relationships between musical
and aural content. Especially with the upcom-
ing psychological research in the late 19th cen-
tury, the synesthetic relationship between hear-
ing and viewing was studied more extensively.
Wellek gives a comprehensive overview over
this field of research(Wellek, 1954), including
systems of mapping colors to keys and pitches.
Painters started trying to embed musical struc-
tures into their work (e.g. Klee’s Fugue in

Red). Similarly, composers tried to paint im-
ages, as in Mussorgsky’s Pictures at an Exhi-

bition. In Jazz music, synesthesis is represented
by coinciding emotional mood from acoustic
and visual stimuli, known as the blue notes in
blues music.

4 Mapping Colors to Sounds

We now discuss how colors are mapped to
sounds in our approach.

For the remainder of this discussion, we define

LAC2005
80

a sound to be a 2π-periodic, continuous func-
tion s : R 7→ R, t → s(t). This definition meets
the real-world characteristic of oscillators as the
most usual natural generators of sounds and the
fact that our ear is trained to recognize periodic
signals. Non-periodic natural sources of sounds
such as bells are out of scope of this discus-
sion. We assume normalization of the periodic
function to 2π periodicity in order to abstract
from a particular frequency. According to this
definition, the set of all possible sounds – the
sound space – is represented by the set of all
2π-periodic functions.

Next, we define the color space C following
the standard RGB (red, green, blue) model: the
set of colors is defined by a three-dimensional
real vector space R3, or, more precisely, a sub-
set thereof: assuming, that the valid range of
the red, green and blue color components is
[0.0, 1.0], the color space is the subset of R3 that
is defined by the cube with the edges (0, 0, 0),
(1, 0, 0), (0, 1, 0), and (0, 0, 1). Note that the
color space is not a vector space since it is not
closed with respect to addition and multiplica-
tion by scalar. However, this is not an issue
as long as we do not apply operations that re-
sult in vectors outside of the cube. Also note
that there are other possibilities to model the
color space, such as the HSB (hue, saturation,
brightness) model, which we will discuss later.

Ideally, for a useful mapping of colors to
sounds, we would like to fulfill the following con-
straints:

• Injectivity. Different colors should map
to different sounds in order to utilize the
color space as much as possible.

• Surjectivity. With a painting, we want to
be able to address as many different sounds
as possible – ideally, all sounds.

• Topology preservation. Most impor-
tant, similar colors should map to similar
sounds. For example, when there is a color
gradation in the painting, it should result
in a sound gradation. There should be no
discontinuity effect in the mapping. Also,
we want to avoid noticeable hysteresis ef-
fects in order to preserve reproducibility of
the mapping across the painting.

• User-definable mapping. The actual
mapping should be user-definable, as re-
search has shown that there is no general
mapping that applies uniquely well to all
individual humans.

Unfortunately, there is no mapping between
the function space of 2π-periodic functions and
R3 that fulfills all of the three constraints.
Pragmatically, we drop surjectivity in order
to find a mapping that fulfills the other con-
straints. Indeed, dropping the surjectivity con-
straint does not hurt too much, if we assume
that the mapping is user-definable individually
for each painting and that a single painting does
not need to address all possible sounds: rather
than mapping colors to the full sound space, we
let the user select a three-dimensional subspace
S of the full sound space. This approach also
leverages the limitation of our mapping not be-
ing surjective: since for each painting, a differ-
ent sound subspace can be defined by the com-
poser, effectively, the whole space of sounds is
still addressable, thus retaining surjectivity in a
limited sense.

Dropping the surjectivity constraint, we now
focus on finding a proper mapping from color
space to a three-dimensional subset of the sound
space. Since we do not want to bother the com-
poser with mathematics, we just require the ba-
sis of a three-dimensional sound space to be de-
fined. This can be achieved by the user sim-
ply defining three different sounds, that span
a three-dimensional sound space. Given the
three-dimensional color space C and a three-
dimensional subspace S of the full sound space,
a bijective, topology preserving mapping can be
easily achieved by a linear mapping via a matrix
multiplication,

M : C 7→ S, x → y = Ax, x ∈ C, y ∈ S (1)

with A being a 3 × 3 matrix specifying the ac-
tual mapping. In practice, the composer would
not need to specify this vector space homomor-
phism M by explicitly entering some matrix A.
Rather, given the three basis vectors of the color
space C, i.e. the colors red, green, and blue,
the composer just defines a sound individually
for each of these three basis colors. Since each
other color can be expressed as a linear combi-
nation of the three basis colors, the scalars of
this linear combination can be used to linearly
combine the three basis sounds that the user
has defined.

5 Generalizing the Mapping

As excitingly this approach may sound at first,
as disillusioning we are thrown back to real-
ity: pure linear combination of sounds results in
nothing else but cross-fading waveforms, which

LAC2005
81

quickly turns out to be too limited for serious
composing. However, what we can still do is
to extend the linear combination of sounds onto
further parameters that influence the sound in a
non-linear manner. Most notably, we can apply
non-linear features on sounds such as vibrato,
noise content, resonance, reverb, echo, hall, de-
tune, disharmonic content, and others. Still,
also linear aspects as panning or frequency-
dependent filtering may improve the overall ca-
pabilities of the color-to-sound mapping. In
general, any scalar parameter, that represents
some operation which is applicable on arbitrary
sounds, can be used for adding new capabilities.
Of course, with respect to our topology preser-
vation constraint, all such parameters should re-
spect continuity of their effect, i.e. there should
no remarkable discontinuity arise when slowly
changing such a parameter.

Again, we do not want to burden the com-
poser with explicitly defining a mapping func-
tion. Instead, we extend the possibilities of
defining the three basis sounds by adding scalar
parameters, e.g. in a graphical user interface
by providing sliders in a widget for sound defi-
nition.

So far, we assumed colors red, green and blue
to serve as basis vectors for our color space.
More generally, one could allow to accept any
three colors, as long as they form a basis of the
color space. Changing the basis of the color
space can be compensated by adding a basis
change matrix to our mapping M :

M ′ : C’ 7→ S, x → y = AφC′
→Cx = A′x, (2)

assuming that φC′
→C is the basis change matrix

that converts x from space C’ to space C.
Specifically, composers may want to prefer

the HSB model over the RGB model: tradition-
ally, music is notated with black or colored notes
on white paper. An empty, white paper is there-
fore naturally associated with silence, while a
sheet of paper heavily filled with numerous mu-
sical symbols typically reminds of terse music.
Probably more important, when mixing colors,
most people think in terms of subtractive rather
than additive mixing. Conversion between HSB
and RGB is just another basis change of the
color space.

When changing the basis of the color space,
care must be taken with respect to the range
of the vector components. As previously men-
tioned, the subset of the R3, that forms the
color space, is not a vector space, since the sub-

set is not closed with respect to addition and
multiplication by scalar. By changing the basis
in R3, the cubic shape of the RGB color space in
the first octant generally transforms into a dif-
ferent shape that possibly covers different oc-
tants, thereby changing the valid range of the
vector components. Therefore, when operating
with a different basis, vectors must be carefully
checked for correct range.

6 SoundPaint Prototype
Implementation

In order to demonstrate that our approach
works, a prototype has been implemented in
C++. The code currently runs under Linux,
using wxWidgets(Roebling et al., 2005) as GUI
library. The GUI of the current implementation
mainly focuses on providing a graphical front-
end for specifying an image, and parameterizing
and running the transformation process, which
synthesizes an audio file from the image file. An
integrated simple audio file player can be used
to perform the sound collage after transforma-
tion.

Figure 1: Mapping Colors to Sounds

Currently, only the RGB color space is sup-
ported with the three basis vectors red, green,
and blue. The user defines a color-to-sound
mapping by simply defining three sounds to be
associated with the three basis colors. Figure
1 shows the color-to-sound mapping dialog. A
generic type of wave form can be selected from
a list of predefined choices and further param-
eterized, as shown in Figure 2 for the type of
triangle waves. All parameters that go beyond
manipulating the core wave form – namely pan,
vibrato depth and rate, and noise content – are
common to all types of wave forms, such that
they can be linearly interpolated between dif-
ferent types. Parameters such as the duty cycle
however only affect a particular wave form and
thus need not be present for other types of wave
forms.

Some more details of the transformation are
worth mentioning. When applying the core
transformation as described in Section 2, the

LAC2005
82

Figure 2: Parameterizing a Triangle Wave

resulting audio file will typically contain many
crackling sounds. These annoying noises arise
from sudden color or brightness changes at pixel
borders: a sudden change in sound produces
high-frequency peaks. To alleviate these noises,
pixel borders have to be smoothened along the
time axis. As a very simple method of anti-
aliasing, SoundPaint horizontally divides each
image pixel into sub-pixels down to audio reso-
lution and applies a deep path filter along the
sub-pixels. The filter characteristics can be con-
trolled by the user via the Synthesize Options

widget, ranging from a plain overall sound with
clearly noticeable clicks to a smoothened, al-
most reverb-like sound.

Best results are achieved when painting only
a few colored structures onto the image and
leaving the keeping the remaining pixels in the
color that will produce silence (i.e., in the RGB
model, black). For performance optimization,
it is therefore useful to handle these silent pix-
els separately, rather than computing a complex
sound with an amplitude of 0. Since, as an effect
of the before mentioned pixel smoothing, often
only very few pixels are exactly 0, SoundPaint
simply assumes an amplitude of 0, if the am-

plitude level falls below a threshold value. This
threshold value can be controlled via the gate

parameter in the Synthesize Options widget.

7 Preliminary Experience

SoundPaint was first publically presented in
a workshop during the last Stadtgeburtstag
(city’s birthday celebrations) of the city Karl-

sruhe(Sta, 2004). Roughly 30 random visitors
were given the chance to use SoundPaint for a
30 minutes slot. A short introduction was pre-
sented to them with emphasis on the basic con-
cepts from a composer’s point of view and basic
use of the program. They were instructed to
paint on black background and keep the paint-
ing structurally simple for achieving best re-
sults. For the actual process of painting, XPaint
(as default) and Gimp (for advanced users) were
provided as external programs.

Almost all users were immediately able to
produce sound collages, some of them with very
interesting results. What turned out to be most
irritating for many users is the additive interpre-
tation of mixed colors. Also, some users started
with a dark gray rather than black image back-
ground, such that SoundPaint’s optimization
code for silence regions could not be applied, re-
sulting in much slower conversion. These obser-
vations strongly suggest to introduce HSB color
space in SoundPaint.

8 Future Work

Originally stemming from a command-line tool,
SoundPaint still focuses on converting image
files into audio files. SoundPaint’s GUI mostly
serves as a convenient interface for specifying
conversion parameters. This approach is, from
a software engineering point of view, a good ba-
sis for a clean software architecture, and can
be easily extended e.g. with scripting purposes
in mind. A composer, however, may prefer a
sound collage in a more interactive way rather
than creating a painting in an external appli-
cation and repeatedly converting it into an au-
dio file in a batch-style manner. Hence, Sound-
Paint undoubtedly would benefit from integrat-
ing painting facilities into the application itself.

Going a step further, with embedded paint-
ing facilities, SoundPaint could be extended
to support live performances. The performer
would simply paint objects ahead of the cursor
of SoundPaint’s built-in player, assuming that
the image-to-audio conversion can be performed
in real-time. For Minimal Music like perfor-

LAC2005
83

mances, the player could be extended to play
in loop mode, with integrated painting facili-
ties allowing for modifying the painting for the
next loop. Inserting or deleting multiple objects
following predefined rhythmical patterns with a
single action could be a challenging feature.

Assembling audio files generated from multi-
ple images files into a single sound collage is de-
sired when the surjectivity of our mapping is an
issue. Adding this feature to SoundPaint would
ultimately turn the software into a multi-track
composing tool. Having a multi-track tool, in-
tegration with other notation approaches seems
nearby. For example, recent development of
LilyPond’s(Nienhuys and Nieuwenhuizen, 2005)
GNOME back-end suggests to integrate tradi-
tional notation in separate tracks into Sound-
Paint. The overall user interface of such a multi-
track tool finally could look similar to the ar-
range view of standard sequencer software, but
augmented by graphical notation tracks.

9 Related Work

Graphical notation of music has a rather long
history. While the idea of graphical compos-
ing as the reverse process is near at hand, prac-
tically usable tools for off-the-shelf computers
emerged only recently. The most notably tools
are presented below.

Maybe Iannis Xenakis was the first one who
started designing a system for converting im-
ages into sounds in the 1950’s, but it took him
decades to present the first implementation of
his UPIC system in 1978(Xenakis, 1978). Like
SoundPaint, Xenakis uses the coordinate axes
following the metaphor of scores. While Sound-
Paint uses a pixel-based conversion that can be
applied on any image data, the UPIC system
assumes line drawings with each graphical line
being converted into a melody line.

Makesound(Burrell, 2001) uses the following
mapping for a sinusoidal synthesis with noise
content and optional phase shift:

x position phase
y position temporal position
hue frequency
saturation clarity (inv. noise content)
luminosity intensity (amplitude)

In Makesound, each pixel represents a section
of a sine wave, thereby somewhat following the
idea of a spectrogram rather than graphical no-
tation. Color has no effect on the wave shape
itself.

EE/CS 107b(Suen, 2004) uses a 2D FFT of

each of the RGB layers of the image as basis for
a transformation. Unfortunately, the relation
between the image and the resulting sound is
not at all obvious.

Coagula(Ekman, 2003) uses a synthesis
method that can be viewed as a special case
of SoundPaint’s synthesis with a particular set
of color to sound mappings. Coagula uses a si-
nusoidal synthesis, using x and y coordinates
as time and frequency axis, respectively. Noise
content is controlled by the image’s blue color
layer. Red and green control stereo sound
panning. Following Coagula’s documentation,
SoundPaint should show a very similar behav-
ior when assigning 100% noise to blue, and pure
sine waves to colors red and green, with setting
red color’s pan to left and green color’s pan to
right.

Just like Coagula, MetaSynth(Wenger and
Spiegel, 2005) maps red and green to stereo pan-
ning, while blue is ignored.

Small Fish(Furukawa et al., 1999), presented
by the ZKM(ZKM, 2005), is an illustrated book-
let and a CD with 15 art games for control-
ling animated objects on the computer screen.
Interaction of the objects creates polytonal se-
quences of tones in real-time. Each game de-
fines its own particular rules for creating the
tone sequences from object interaction. The
tone sequences are created as MIDI events and
can be played on any MIDI compliant tone gen-
erator. Small Fish focuses on the conversion of
movements of objects into polytonal sequences
of tones rather than on graphical notation; still,
shape and color of the animated objects in some
of the games map to particular sounds, thereby
translating basic concepts of graphical notation
into an animated real-time environment.

The PDP(Schouten, 2004) extension for the
Pure Data(Puckette, 2005) real-time system fol-
lows a different approach in that it provides a
framework for general image or video data pro-
cessing and producing data streams by serializa-
tion of visual data. The resulting data stream
can be used as input source for audio process-
ing.

Finally, it is worth mentioning that the vi-
sualization of acoustic signals, i.e. the op-
posite conversion from audio to image or
video, is frequently used in many systems,
among them Winamp(Nullsoft, 2004) and
Max/MSP/Jitter(Cycling ’74, 2005). Still,
these species of visualization, which are of-
ten implemented as real-time systems, typically

LAC2005
84

work on the audio signal level rather than on
the level of musical structures.

10 Conclusions

We presented SoundPaint, a tool for creating
sound collages based on transforming image
data into audio data. The transformation fol-
lows to some extent the idea of graphical no-
tation, using x and y axis for time and pitch,
respectively. We showed how to deal with the
color-to-sound mapping problem by introduc-
ing a vector space homomorphism between color
space and sound subspace. Our tool mostly
hides mathematical details of the transforma-
tion from the user without imposing restric-
tions in the choice of parameterizing the trans-
formation. First experience with random users
during the city’s birthday celebrations demon-
strated the usefulness of our tool. The re-
sult of our work is available as open source at
http://www.ipd.uka.de/~reuter/

soundpaint/.

11 Acknowledgments

The author would like to thank the Faculty of
Computer Science of the University of Karl-
sruhe for providing the infrastructure for devel-
oping the SoundPaint software, and the depart-
ment for technical infrastructure (ATIS) and
Tatjana Rauch for their valuable help in or-
ganizing and conducting the workshop at the
city’s birthday celebrations.

References

Willi Apel. 1962. Die Notation der polyphonen
Musik 900-1600. Breitkopf & Härtel, Wies-
baden.

Michael Burrell. 2001. Makesound, June. URL:
ftp://mikpos.dyndns.org/pub/src/.

Cycling ’74. 2005. Max/MSP/Jitter. URL:
http://www.cycling74.com/.

Rasmus Ekman. 2003. Coagula. URL:
http://hem.passagen.se/rasmuse/Coagula.htm.

Kiyoshi Furukawa, Masaki Fujihata, and Wolf-
gang Münch. 1999. Small fish: Kammer-

musik mit Bildern für Computer und Spieler,
volume 3 of Digital arts edition. Cantz, Ost-
fildern, Germany. 56 S. : Ill. + CD-ROM.

Meinolf Neuhäuser, Hans Sabel, and
Richard Rudolf Klein. 1974. Bunte Za-

ubernoten. Schulwerk für den ganzheitlichen
Musikunterricht in der Grundschule. Di-
esterweg, Frankfurt am Main, Germany.

Han-Wen Nienhuys and Jan Nieuwenhuizen.
2005. LilyPond, music notation for everyone.
URL: http://lilypond.org/.

Nullsoft. 2004. Winamp. URL:
http://www.winamp.com/.

Miller Puckette. 2005. Pure Data. URL:
http://www.puredata.org/.

Robert Roebling, Vadim Zeitlin, Stefan Cso-
mor, Julian Smart, Vaclav Slavik, and
Robin Dunn. 2005. wxwidgets. URL:
http://www.wxwidgets.org/.

Tom Schouten. 2004. Pure Data Packet. URL:
http://zwizwa.fartit.com/pd/pdp/
overview.html.

Nigel Simeone. 2001. Universal edition history.
2004. Stadtgeburtstag Karlsruhe, June. URL:

http://www.stadtgeburtstag.de/.
Karl-Heinz Stockhausen. 1956. Studie II.
Jessie Suen. 2004. EE/CS 107b. URL:

http://www.its.caltech.edu/˜chia/EE107/.
Naoyuki Taneda and Ruth Taneda. 1993.

Erziehung zum absoluten Gehör. Ein neuer
Weg am Klavier. Edition Schott, 7894. B.
Schott’s Söhne, Mainz, Germany.

Rainer Wehinger. 1970. Ligeti, Gyorgy: Ar-

ticulation. An aural score by Rainer We-
hinger. Edition Schott, 6378. B. Schott’s
Söhne, Mainz, Germany.

Albert Wellek. 1954. Farbenhören. MGG –
Musik in Geschichte und Gegenwart, 4:1804–
1811.

Eric Wenger and Edward Spiegel.
2005. Methasynth 4, January. URL:
http://www.uisoftware.com/
DOCS PUBLIC/MS4 Tutorials.pdf.

Henrik Wiese. 2002. Preface to Concert for
Horn and Orchestra No. 4, E flat ma-

jor, K495. Edition Henle, HN 704. G.
Henle Verlag, München, Germany. URL:
http://www.henle.de/katalog/
Vorwort/0704.pdf.

Iannis Xenakis. 1978. The UPIC system. URL:
http://membres.lycos.fr/musicand/
INSTRUMENT/DIGITAL/UPIC/UPIC.htm.

2005. Zentrum für Kunst und Medientechnolo-
gie. URL: http://www.zkm.de/.

LAC2005
85

LAC2005
86

System design for audio record and playback with a computer using FireWire

Michael SCHÜEPP
BridgeCo AG

michael.schuepp@bridgeco.net

Rene Widtmann
BridgeCo AG

rene.widtmann@bridgeco.net

Rolf “Day” KOCH
BridgeCo AG

rolf.koch@bridgeco.net

Klaus Buchheim
BridgeCo AG

klaus.buchheim@bridgeco.net

Abstract
This paper describes the problems and solutions to
enable a solid and high-quality audio transfer
to/from a computer with external audio interfaces
and takes a look at the different elements that need
to come together to allow high-quality recording
and playback of audio from a computer.

Keywords
Recording, playback, IEEE1394

1 Introduction
Computers, together with the respective digital

audio workstation (DAW) software, have become
powerful tools for music creation, music
production, post-production, editing. More and
more musicians turn to the computer as a tool to
explore and express their creative ideas. This
tendency is observed for both, professional and
hobby musicians. Within the computer music
market a trend towards portable computers can be
observed as well. Laptops are increasingly used for
live recordings outside a studio as well as mobile
recording platforms. And, with more and more
reliable system architectures, laptops/computers are
also increasingly used for live performances.

However making music on a computer faces the
general requirement to convert the digital music into
analogue signals as well as to digitize analogue
music to be processed on a computer.

Therefore the need for external, meaning located
outside of the computer housing, audio interfaces is
increasing.

The paper describes a system architecture for
IEEE1394 based audio interfaces including the
computer driver software as well as the audio
interface device.

1.1 System Overview
When discussing the requirements for an audio

interfaces it is important to understand the overall
system architecture, to identify the required
elements and the environment in which those
elements have to fit in.

The overall system architecture can be seen in the
following figure:

Illustration 1: Computer audio system overview

The overall system design is based on the
following assumptions:
 A player device receives m audio channels

(connection 3), from the computer, and plays
them out. In addition it plays out data to i MIDI
Ports. The data (audio and MIDI) sent from the
computer are a compound stream.

 A recorder device records n audio channels and
sends the data to the computer (connection 4).
In addition it records data from j MIDI Ports
and sends their data to the computer. The data
(audio and MIDI) sent from the computer are a
compound stream.

 A device can send or receive a synchronisation
stream (connection 1 and 2). Typically one of
the Mac/PC attached audio devices is the clock
master for the synchronisation stream.

The player and recorder functions can be stand-
alone devices or integrated into the same device.

LAC2005
87

1.2 What is there?
In the set-up above the following elements

already exist and are widely used:

On computers:
 Digital audio workstation software such as Cubase

and Logic with their respective audio APIs (ASIO
and CoreAudio)

 Operating system (here Windows XP and Apple
Mac OS X)

 Computer hardware such as graphic cards, OHCI
controllers, PCI bus etc.

On audio interface:
 Analogue/Digital converters with I2S interfaces

All of the above elements are well accepted in the
market and any solution to be accepted in a market
place needs to work with those elements.

1.3 What is missing?
The key elements that are missing in the above

system are the following:
1. The driver software on the computer that takes the

audio samples to/from a hardware interface and
transmits/receives them to/from the audio APIs of
the music software.

2. The interface chip in the audio interface that
transmits/receives the audio samples to/from the
computer and converts them to the respective
digital format for the converter chips.

The paper will now focus on these two elements
and shows, what is required for both sides to allow
for a high-quality audio interface. In a first step we
will look at the different problems we face and then
at the proposed solutions.

2 Issues to resolve
To allow audio streaming to/from a computer the

following items have to be addressed:

2.1 Signal Transport
It has to be defined how the audio samples get

to/from the music software tools to the audio
interface. The transfer protocol has to be defined as
well the transfer mode.

Additionally precautions to reduce the clock jitter
during the signal transport have to be taken. Also
the latency in the overall system has to be
addressed.

2.2 Synchronization
In a typical audio application there are many

different clock sources for the audio interface.
Therefore we have the requirement to be able to
synchronize to all of those clock sources and to
have means to select the desired clock source.

2.3 Signal Processing
For low latency requirements and specific

recording set-up, it is required to provide the
capability for additional audio processing in the
audio interface itself. An example would be a direct
monitor mixer that mixes recorded audio onto the
audio samples from the computer.

2.4 Device Management
Since we have the requirement to sell our product

to various different customers as well as for various
different products in a short time-to-market, it is
necessary to provide a generic approach that
reduces the customization efforts on the firmware
and driver. Therefore it was necessary to establish a
discovery process that allows the driver at least to
determine the device audio channels and formats
on-the-fly. This would reduce the customization
efforts significantly. Therefore means to represent
the device capabilities within the firmware and to
parse this information by the driver have to be
found.

2.5 User Interface
It must be possible to define a user interface on

the device as well as the computer or a mix of both.
Therefore it is required to provide means to supply
control information from both ends of the system

2.6 Multi-device Setup
It is believed that it must be possible to use

several audio interfaces at the same time to provide
more flexibility to end-users. This puts additional
requirements on all above issues. To avoid sample
rate conversion in a multi-device setup it is
mandatory to allow only a single clock source
within the network. This requirement means to
select the master clock within the multi-device setup
as well as to propagate the clock information within
the network so that all devices are slaved to the
same clock.

3 Resolution
Very early in the design process it was decided to

use the IEEE1394 (also called FireWire) standard

LAC2005
88

[6] as the base for the application. The IEEE1394
standard brings all means to allow isochronous data
streaming, it is designed as a peer-to-peer network
and respective standards are in place to transport
audio samples across the network. It was also
decided to base any solution on existing standards
to profit from already defined solutions. However it
was also clear that the higher layers of the desired
standards were not good enough to solve all of our
problems. Therefore efforts have been undertaken
to bring our solutions back to the standardization
organisations.

Overall the following standards are applied to
define the system:

Illustration 2: Applied standards

As we can see, a variety of standards on different
layers and from different organisations are used.

3.1 Signal Transport
The signal transport between the audio interfaces

and the computer is based on the isochronous
packets defined in the IEEE1394 standard. The
format and structures of audio packets is defined in
IEC61883-6 standard [6], which is used here as
well. However a complex audio interface requires
transmitting several audio and music formats at the
same time. This could e.g. be PCM samples,
SPDIF framed data and MIDI packets. An
additional requirement is synchronicity between the
different formats. Therefore it was decided to define
a single isochronous packet, based on an IEC
61338-6 structure that contains audio and music
data of different formats. Such a packet is called a
compound packet. The samples in such a packet are
synchronized since the time stamp for the packet
applies to all the audio data within the packet.

IEC 61883-6 packets that contain data blocks
with several audio formats are called compound
packets. Isochronous streams containing compound
packets are called compound streams. Compound
streams are used within the whole system to
transfer audio and music data to/from the audio
interface.

The IEC 61883-6 standard defines the structure
of an audio packet being sent over the IEEE1394
bus. The exact IEC 61883-6 packet structure can
be found in [6].

Illustration 3: IEC 61883 packet structure

The blocking mode is our preferred mode for data
transmission on the IEEE1394 bus. In case data is
missing to complete a full packet on the source side
empty-packets are being sent. An empty-packet
consists of only the header block and does not
contain data. The SYT field in the CIP1 header is
set to 0xffff.

The following rules to create an IEC 61883
compliant packet are applied:
 A packet always begins with a header block

consisting of a header and two CIP header
quadlets.

 (M) data blocks follow the header block.
Table 1 defines M and its dependency on the
stream transfer mode.

 In blocking mode, the number of data blocks is
constant. If insufficient samples are available to fill

LAC2005
89

all the data blocks in a packet, an empty packet
will be sent.

 In non-blocking mode, all the available samples
are placed in their data blocks and sent
immediately. The number of data blocks is not
constant.

Sampling Frequency
(FDF) [kHz]

Blocking Mode Non-Blocking
Mode

32 8 5-7
44.1 8 5-7
48 8 5-7
88.2 16 11-13
96 16 11-13
176.4 32 23-25
196 32 23-25

Table 1: Number of data blocks depending on the
sampling frequency

The header information and structure for an
isochronous IEC61883 packet is defined as follows:

Illustration 4: IEC 61883 packet header

Table 2 describes the different elements and their
definition within the packet header:

Field Description

Data Length Length in bytes of the packet data, including
CIP1 and CIP2 header.

Channel Isochronous channel to which the packet
belongs.

SY “System”
Can be of interest if DTCP (streaming
encryption) is used.

SID “System Identification”
Contains the IEEE1394 bus node id of the
stream source.

DBS “Data Block Size”
Contains information about the number of
samples belonging to a data block.

DBC “Data Block Count”
Is a counter for the number of data blocks that
have already been sent. It can be used to detect
multiply sent packets or to define the MIDI port
to which the sample belongs.

FMT “Format”
The format of the stream. For an audio stream
this field is always 0x10.

FDF The nominal sampling frequency of the stream.
See [3.1] for value definition.

Field Description

SYT Cycles This field, in combination with the SYT Offset
field, defines the point in time when the packet
should be played out. Value range: 0 – 15

SYT Offset This field, in combination with the SYT Cycles
field, defines the point in time when the packet
should be played out.
Value range: 0 – 0xBFF

Table 2: IEC 61883 packet header fields

Within an IEC 61883 packet, the data blocks
follow the header. For the data block structure we
applied the AM824 standard as defined in 6.

An audio channel is assigned to a slot within the
data block:

Illustration 5: Data block structure

The following rules apply to assemble the data
blocks:
1. The number of samples (N) within a data block of

a stream is constant.
2. The number of samples should be even

(padding with ancillary no-data samples see 6)
3. The label is 8 bits and defines the sample data type
4. The sample data are MSB aligned
5. The channel to slot assignment is constant

The channel to data block slot assignment is user
defined. To create a compound packet, a data
structure had to be defined to place the different
audio and music formats within the data blocks. No
current standard defines the order in which such
user data must be placed within a data block. The
current standard 6 simply provides a recommended
ordering. We applied this recommendation for our
application and made the following data block
structure mandatory to stream audio and music
information:

LAC2005
90

Illustration 6: User data order
The following rules are applied to create the data

blocks of a compound packet:
1. A region within a data block always contains

data with the same data type
2. Not every region type must exist in a packet

The following region order is used:
1. SPDIF: IEC 60958 (2 Channels)
2. Raw Audio: Multi-Bit Linear Audio (N Channels)
3. MIDI: MIDI Conformant Data
4. SMTPE Time Code
5. Sample Count

MIDI data is transferred, like audio data, within
channels of a compound data block. Because of the
low transfer rate of one MIDI port, data of 8 MIDI
ports, instead of just one, can be transferred in one
channel. As shown in Illustration 7, one data part of
a MIDI port will be transferred per data block and
channel. This method of splitting data is called
multiplexing.

Illustration 7: MIDI data multiplexing
For the two main elements in this system, the

driver and the interface processor, it is required to
assemble the data packet correctly when sending
data as well as to receive and disassmble the
packets. Based on the dynamics of the system with
different channel counts and formats the final
packet structure has to be derived from the
configuration from the interface such as number of
channels per format and sample rate. Overall in the
system it is required to keep the latency low so the

framing and deframing processes have to be done as
efficiently as possible.

3.2 Synchronization
The system synchronization clock for an

IEEE1394 based audio interface can normally be
retrieved from four different sources:
1. The time information in the SYT header field of an

incoming isochronous stream.
2. The 8KHz IEEE1394 bus Cycle Start Packet

(CSP).
3. The time information from an external source like

Word Clock or SPDIF.
4. A clock generated by a XO or VCXO in the device.

Illustration 8: Possible synchronization sources
for an IEEE1394 based audio interface

3.3 Signal Processing
The specific architecture of the BridgeCo

DM1x00 series is designed to enable signal
processing of the audio samples once they have
been deframed:

Illustration 9: Architecture of the BridgeCo
DM1000 processor

Since the on-board ARM processor core can
access every audio sample before it is either sent to
the audio ports or sent to the IEEE1394 link layer,

SDRAM/SRAM Memory Controller

Security Engine SRAM 96 kByte

Timing Recovery
DCO

Audio

In/Out

SPI GPIO UART (2)

SD/SRAM, Flash
PCMCIA

ARM926EJ

Cache TC RAM

MMU

1394a/b LLC

DTCP 61883

PHY-Link

S100...S800

Audio Ports

I2S, I8S SPDIF

LAC2005
91

it is possible to enable signal processing on the
audio interface. Typical applications used in this
field are direct monitor mixers, which allow mixing
the inputs from the audio ports with the samples
from the IEEE1394 bus before they are played out
over the audio ports:

Illustration 10: Direct monitor mixer

3.4 Device Management
The device management plays a key role within

the overall concept. To implement a generic
approach it is absolutely necessary for the driver
software to determine the device capabilities such
as number of audio channels, formats and possible
sample rates on-the-fly. Based on that information,
the driver can expose the respective interfaces to the
audio software APIs. The device management and
device discovery is normally defined in the AV/C
standards from the 1394TA. To achieve our goals,
several audio and music related AV/C standards
have been used:
 AV/C Music Subunit Specification V1.0
 AV/C Stream Format Information Specification

V1.0
 AV/C Audio subunit 1.0

However the standards did not provide all means
to describe and control devices as intended.
Therefore two of above standards, AV/C Music
Subunit and AV/C Stream Format Information are
currently updated within the 1394TA organization,
based on the experience and implementations from
Apple Computer and BridgeCo.

Using AV/C, the driver has the task to determine
and query the device for its capabilities whereas the
device (meaning the software running on the device)
needs to provide all the information requested by
the driver to allow to stream audio between the
driver and the audio interface. As soon as the device
is connected to the driver via IEEE1394, a device
discovery process is started. The discovery process

is based on a sequence of AV/C commands
exchanged between the driver and the device. Once
this sequence is executed and the device is
recognized as an AV/C device, the driver starts to
query the device for the specific device information.
This can either be done using proprietary AV/C
commands or by parsing an AV/C descriptor from
the device.

Within the device, the control flow and different
signal formats are described with an AV/C model.
The AV/C model is a representation of the internal
control flow and audio routing:

Illustration 11: Typical AV/C model

The following rules are applied to an AV/C
model:
1 Fixed connections must not be changed. Every

control command requesting such a change must
be rejected.

2 Every unclear requested connection (like Ext.
IPlug0  Destination Plug) must be rejected.

In the AV/C model we also see the control
mechanism for the direct monitor mixer which can
be controlled over AV/C e.g. to determine the levels
of the different inputs into the mixer.

Based on this information, the driver software
can now determine the number of audio channels to
be sent to the device, the number of audio channels
received from the device, the different formats and
expose this information to the audio streaming APIs
such as ASIO or CoreAudio and expose all
available sample rates to a control API.

3.5 User Interface
In the described system of an audio interface

connected to a computer there are two natural
points to implement a user interface:
 A control panel on the computer
 Control elements on the audio interface

LAC2005
92

Depending on customer demands and branding,
different OEMs have different solutions/ideas of a
control interface. In our overall system architecture
we understand that it is impossible to provide a
generic approach to all possible configurations and
demands. Therefore we decided to provide APIs
that can easily be programmed. Those APIs have to
be present on both sides, on the driver as well as in
the device software:
 On the driver side we expose a control API that

allows direct controlling the device as well as to
sent/use specific bus commands.

 On the device we have several APIs that allow to
link in LEDs, knobs, buttons and rotaries.

The commands from the control API of the driver
are send as AV/C commands or vendor specific
AV/C commands to the device. The control API
provides the correct framing of those commands
whereas the application utilizing the control API
needs to fill in the command content.

On the device side, those AV/C commands are
received and decoded to perform the desired action.
This could e.g. be different parameters for the
mixer routines or being translated into SPI
sequences to control and set the external
components.

Next to the UI information, the device might need
to send additional information to a control panel,
e.g. peak level information of different audio
samples, rotary information for programmable
functions etc. For those high-speed data transfers,
the AV/C protocol can be too slow since it e.g.
allows a timeout of about 10 msec before sending
retries. Within that time frame, useful and
important information might already be lost.
Therefore we deployed a high-speed control
interface (HSCI) that allows the device to
efficiently provide information to the driver. With
the HSCI, the device writes the desired information
into a reserved space of the IEEE1394 address
space of the device. This allows the application on
the computer doing highly efficient asynchronous
read requests to this address space to obtain the
information. Since the information structure is
such, that no information gets lost, the PC
application can pull the information when needed.

3.6 Multi-device Setup
A multi-device setup is normally needed when

users like to use multiple device to gain a higher
channel count or use different formats that are not
all available in a single audio interface:

Illustration 12: Multi-device configuration

If multiple audio interfaces are connected to a
computer, we face certain limitations, either
imposed by the operating system, the audio
software on a computer, APIs etc. :

1. ASIO and CoreAudio based audio software
(e.g. Cubase) can only work with a single
device.

2. To avoid sample rate conversion, only a single
clock source can be allowed for all devices.

3. All devices need to be synchronised over the
network

To overcome those limitations the driver software
has to provide the following capabilities:

1. Concatenate multiple IEEE1394 devices into a
single ASIO or CoreAudio device for the
audio software application.

2. Allow selecting the clock source for each
device.

3. Ability to transmit and send several
isochronous streams.

4. Ability to supply the same SYT values to all
transmitted isochronous streams

The device itself needs to provide the following
functions:

1. Expose available clock sources to the driver
software

2. Generate correct SYT values for outgoing
isochronous streams

To synchronise multiple devices on a single clock
source, which might be an external clock source for
one of the devices, the following clocking scheme is
used:

1. A device must be selected as clock master.
This can be the computer as well.

2. If an external device is the clock master, the
driver software synchronizes to the SYT time
stamps within the isochronous stream from the
clock master device.

3. The driver copies the received SYT time
stamps from the clock master stream to its
outgoing stream for all other devices.

LAC2005
93

4. All external devices expect the clock master
use the SYT time stamps of their incoming
isochronous stream as a clock source.

Illustration 13: Example for a multi-device clock
setup

Now, all devices are slaved across the IEEE1394
network to a single clock source. This avoids to use
word clock or similar schemes to synchronize
multiple devices.

Based on above configurations, each device needs
to be able to synchronize on the SYT time stamps
of the isochronous packets to work in such an
environment.

Therefore the following features are required for
the driver software:

1. Concatenate multiple devices into a single
device on the audio API (ASIO or CoreAudio)

2. Allow synchronizing on the SYT time stamps
from a selected isochronous stream

3. Generate correct SYT time stamps for all
isochronous streams based on the received
SYT time stamps

4. Parse AV/C model to determine all available
clock sources on a device

5. Allow to set the clock source for each device

For the chip/firmware combination on the audio
interface the following requirements must be met:

1. Allow to synchronize to SYT time stamps
2. Expose all available clock sources on the

device in the AV/C Model
3. Allow external control of the clock sources via

AV/C

4 FreeBob Project
Currently, there only exists drivers for the

Windows and MacOS X platform, which are of
course not free. The FreeBob project is trying to
implement a complete free and generic driver for
Linux based systems. The project is still in early
stages, though first (hardcoded) prototypes are

working. For further informatin please visit the
website of the project (http://freebob.sf.net).

5 Conclusion
Due to the wide spectrum of interpretation within

the available standards a very tight cooperation
between all elements in the system is necessary. In
developing such a system, it is not enough just to
concentrate on and develop one element within the
system. Instead it is rather required to start from a
system perspective, to design an overall system
concept that is initially independent of the different
elements. Then, in a second step the individual
tasks for each element can be defined and
implemented. BridgeCo has chosen this approach
and with over 20 different music products shipping
today has proven that the concept and the system
design approach leads to a success story. BridgeCo
also likes to express its gratitude to Apple
Computer, which has been a great partner
throughout the design and implementation process
and has provided valuable input into the whole
system design concept.

6 Reference
[1] IEEE Standard 1394-1995, IEEE Standard for a

High Performance Serial Bus, IEEE, July 22
1996

[2] IEEE Standard 1394a-2000, IEEE Standard for
a High Performance Serial Bus—Amendment 1,
IEEE, March 30 2000

[3] IEEE Standard 1394b-2002, IEEE Standard for
a High-Performance Serial Bus—Amendment 2,
IEEE, December 14 2002

[4] TA Document 2001024, “Audio and Music Data
Transmission Protocol” V2.1, 1394TA, May 24
2002

[5] TA Document 2001012, “AV/C Digital
Interface Command Set General Specification”,
Version 4.1, 1394TA, December 11, 2001

[6] TA Document 1999031, “AV/C Connection and
Compatibility Management Specification”,
Version 1.0, 1394TA, July 10, 2000

[7] TA Document 1999025, “AV/C Descriptor
Mechanism Specification”, Version 1.0,
1394TA, April 24 2001

[8] TA Document 2001007, “AV/C Music Subunit”,
Version 1.0, 1394TA, April 8 2001

[9] TA Document 1999008, “AV/C Audio Subunit
Specification”, Version 1.0, 1394TA, October
24 2000

[10] IEC 61883-6, Consumer audio/video equipment
- Digital interface - Part 6: Audio and music
data transmission protocol, IEC, October 14
2002

LAC2005
94

Recording all Output from a Student Radio Station

John ffitch
Department of Computer Science

University of Bath
Bath BA2 7AY,

UK,
jpff@cs.bath.ac.uk

Tom Natt
Chief Engineer, URB
University of Bath
Bath BA2 7AY,

UK,
ma1twn@bath.ac.uk

Abstract

Legal requirements for small radio stations in the
UK mean, inter alia, that the student station at
Bath (University Radio Bath or URB) must retain
50 days of the station’s output. In addition, as it
has recently become easier to transfer data using dis-
posable media, and general technical savvy amongst
presenters has improved, there is now some interest
in producing personal archives of radio shows. Be-
cause existing techniques, using audio videos, were
inadequate for this task, a modern, reliable system
which would allow the simple extraction of any au-
dio was needed. Reality dictated that the solution
had to be cheap. We describe the simple Linux so-
lution implemented, including the design, sizing and
some surprising aspects.

Keywords

Audio archive, Audio logging, Radio Station, Por-
taudio.

1 Introduction

The University of Bath Student’s Union has
been running a radio station(URB, 2004) for
many years, and it has a respectable tradition
of quality, regularly winning prizes for its pro-
grammes(SRA, 2004). Unfortunately the im-
proved requirements for logging of output from
the station coincided with the liquidation of a
major sponsor and hence a significant reduction
in the station’s income, so purchasing a com-
mercial logging device was not an option.

Following a chance conversation the authors
decided that the task was not difficult, and a
software solution should be possible. This pa-
per describes the system we planned and how it
turned out. It should be borne in mind that dur-
ing development, cost was the overriding factor,
in particular influencing hardware choices.

2 The Problem

The critical paragraph of the regulations on Ra-
dio Restricted Service Licences, which control

such activities as student broadcasting in the
UK read

You are required to make
a recording of all broadcast
output, including advertisements
and sustaining services. You
must retain these recordings
(‘logging tapes’) for a period of 42
days after broadcast, and make
them readily available to us or to
any other body authorised to deal
with complaints about broadcast
programmes. Failure to provide
logging tapes on request will be
treated seriously, and may result
in a sanction being imposed.

where the bold is in the original (OffComm,
2003). In the previous state the logging was
undertaken using a video player and a pile of
video tapes. These tapes were cycled manually
so there was a single continuous recording of all
output. This system suffered from the following
problems.

The quality was largely unknown. In at least
the last 3 years no one has actually listening to
anything recorded there; indeed it is not known
if it actually works! The system required some-
one to physically change the tape. Hence, there
were large gaps in logging where people simply
forgot to do this, which would now expose the
station to legal problems.

Assuming that the tapes actually worked, re-
covering audio would be a painstaking process
requiring copying it from the tapes to some-
where else before it could be manipulated in
any way. Hence this was only really useful for
the legal purposes, rather than for people tak-
ing home copies of their shows. Also, as far as
could be determined, whilst recovering audio,
the logger itself had to be taken offline.

Put simply, the system was out of date. Over
the last two years there has been a move to mod-

LAC2005
95

ernise URB by shifting to computers where pos-
sible, so it seemed logical to log audio in such
a way that it would be easy to transmit onto
the network, and be secure regarding the regu-
lations.

3 Requirements

The basic requirement for the system is that
it should run reliably for many days, or even
years, with little or no manual intervention. It
should log all audio output from the radio sta-
tion, and maintain at least 50 days of material.
Secondary requirements include the ability to
recover any particular section of audio by time
(and by a non-technical user). Any extracted
audio is for archiving or rebroadcast so it must
be of sufficient quality to serve this purpose.
There is another, non functional, requirement,
that it should cost as close to zero as possible!

Quick calculations show that if we were to
record at CD quality (44.1KHz, 16bit stereo)
then we would need 44100 × 2 × 2 bytes a sec-
ond, or 44100×2×2×60×24 = 14Gb each day,
which translates to over 700Gb in a 50 day pe-
riod. While disks are much cheaper than in ear-
lier times, this is significantly beyond our bud-
get. Clearly the sound needs to be compressed,
and lossy compression beckons. This reduces
the audio quality but, depending on compres-
sion rates, not so much that it violates our re-
quirements.

We sized the disk requirements on a conserva-
tive assumption of 1:8 compression, which sug-
gests at least an 80Gb disk. Quick experiments
suggested about a 400MHz Intel processor; the
decision to use Linux was axiomatic. Given suf-
ficient resource, a system to record DJ training
sessions and demo tapes was suggested as a sim-
ple extension.

We assumed software would be custom-
written C, supported by shell scripts, cron jobs
and the like. A simple user recovery system
from a web interface would be attractive to the
non-technical user, and it seemed that PERL
would be a natural base for this.

There are commercial logging computers, but
the simple cost equation rules them out.

4 Hardware

A search for suitable hardware allowed the cre-
ation of a 550MHz Celeron machine with 128Mb
of memory, ethernet, and two old SoundBlasters
retrieved from a discard pile. SuSE9.1(Novell,
2004) was installed with borrowed screen, key-

board and mouse. The only cash expenditure
was a new 120Gb disk; we decided that 80Gb
was a little too close to the edge and the addi-
tional space would allow a little leeway for any
extensions, such as the DJ training.

There were two unfortunate incidents with
the hardware; the disk was faulty and had
to be replaced, and following the detection of
large amounts of smoke coming from the moth-
erboard we had to replace the main system;
the best we could find was a 433MHz Celeron
system. Fortunately the disk, soundcards and
other equipment were not damaged and in the
process of acquiring a new motherboard and
processor combination we were lucky enough
to find another stick of RAM. Most important,
what we lost was time for development and test-
ing as we needed to hit the deadline for going
live at the beginning of the 2004 academic year.

Hardware Features
433MHz Celeron slower than our design
120Gb disk New!
2 × SoundBlaster 16 old but working
256Mb main memory
10 Mbit ether

Table 1: Summary of Hardware Base

5 Implementation

The main program is that the suite needs to
perform two main tasks: read a continuous au-
dio stream and write compressed audio to the
disk. The reading of the audio feed must not
be paused or otherwise lose a sample. The cur-
rent design was derived from a number of alter-
native attempts. We use a threaded program,
with a number of threads each performing a
small task, coordinated by a main loop. A con-
siderable simplification was achieved by using
PortAudio(Por, 2004) to read the input, using
a call-back mechanism. We shamelessly canni-
balised the test program patest record writ-
ten by Phil Burk to transfer the audio into an
array in large sections. The main program then
writes the raw audio in 30 second sections onto
the disk. It works on a basic 5 period cycle,
with specific tasks started on periods 0, 3 and
4.

On 0 a new file is used to write the raw audio,
and a message is written to the syslog to indi-
cate the time at which the file starts. On period
3 a subthread is signalled to start the compres-

LAC2005
96

sion of a raw audio file, and on period 4 the next
raw audio file is named and created. By sharing
out the tasks we avoid bursts of activity which
could lead to audio over-runs. This is shown in
figure 1.

The compression is actually performed by a
lower priority sub task which is spawned by a
call to system. There is no time critical aspect
of the compression as long as it averages to com-
pressing faster than the realtime input. Any lo-
cal load on the machine may lead to local varia-
tion but eventually it must catch up. There is a
dilemma in the compression phase. The obvious
format is OGG, for which free unencumbered
software exists, but the student community is
more used to MP3 format. We have exper-
imented with oggenc(ogg, 2004), which takes
80% of elapsed time on our hardware and com-
presses in a ratio of 1:10, and notlame(Not,
2004), where compression is 1:11 and 74% of
elapsed time. Our sources have both methods
built in with conditional compilation.

We have varied the period, and have decided
on a minute, so each audio file represents five
minutes of the station’s output; this is a good
compromise between overheads and ease of re-
covery.

The result of this program is a collection of 5
minute compressed audio files. Every day, just
after midnight, these files are moved to a direc-
tory named after the day, and renamed to in-
clude the time of the start of the interval of time
when the recording started. This is achieved
with a small C program which reads the syslog
files to get the times. This program could have
been written in PERL but one of us is very fa-
miliar with C. A snapshot of part of the logging
directory is shown in figure 2, where compressed
audio, raw PCM files, unused PCM files and a
compression log can be seen.

The decision to rename actual files was taken
to facilitate convenience during soak testing.
We were running the system over this time as
if it were live, and hence were using it to ex-
tract logs when they were requested by presen-
ters. Cross-referencing files with the system log
was a tedious task so an automatic renaming
seemed the obvious choice. Using this opportu-
nity to refile the logs in directories correspond-
ing to the date of logging also assisted greatly in
retrieval. A more long-term consideration was
that renamed files would be easier to extract
via a web interface and hence this work could
probably be used in the final version also.

Figure 1: Overview of Software Cycle

6 Experience

The program has now been running for a signif-
icant time. Two problems with the design have
emerged.

The first was the change to winter time which
happened a few days after going live. Our logs,
and hence times, where based on local time as
that seemed to be closest to what the users
would require. But with the clock being put
backwards, times repeat. Clearly we need to
maintain both times in the logs, and append
the time zone to the ultimate file name, or some
similar solution. But how did we manage this
shift backwards without loss of data? The an-
swer is in the second problem.

We are capturing the raw station output in
44.1KHz 16bit stereo. Every five minutes a new
file is started. Actually we are not starting files
by time but by sample count (13230000 frames).
As was predicted, the sound card was not sam-
pling at exactly CD rate, but faster, and as a
result we are drifting by 19 seconds a day. In it-
self this is not a problem, and indeed rescued the
possible data loss from the introduction of win-
ter time, but it is less convenient for the student
DJs who want a copy of their program. The
suggestion is that the files should be aligned on
five minute boundaries by the clock. This en-
tails monitoring the clock to decide on a change
of file, which would be a considerable departure
from the simplicity of design. Exactness is not
important, but we would like to be less than
a minute adrift. Our revised code, not yet in
service, makes the switch of files after reading
the clock, and additional care is needed to avoid
clock drift.

LAC2005
97

-rw-r--r-- 1 root root 4801096 Mar 7 10:59 Arc0041022.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:04 Arc0041023.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:09 Arc0041024.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:14 Arc0041025.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:19 Arc0041026.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:24 Arc0041027.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:29 Arc0041028.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:34 Arc0041029.mp3
-rw-r--r-- 1 root root 4801096 Mar 7 11:39 Arc0041030.mp3
-rw-r--r-- 1 root root 52920000 Mar 7 11:44 Arc0041032
-rw-r--r-- 1 root root 4801096 Mar 7 11:44 Arc0041031.mp3
-rw-r--r-- 1 root root 0 Mar 7 11:47 log5Pwl4o
-rw-r--r-- 1 root root 42332160 Mar 7 11:48 Arc0041033
-rw-r--r-- 1 root root 0 Mar 7 11:48 Arc0041034
-rw-r--r-- 1 root root 3145728 Mar 7 11:48 Arc0041032.mp3

Figure 2: Part of Directory for Running System

It was this clock drift, which can be seen
in figure 3, that saved the situation when we
changed from summer time to winter time. If
we had implemented the time alignment method
then the file names would have repeated for the
one hour overlap (1am to 2am is repeated in the
UK time scheme), but as the soundcard had
read faster, the second hour was fortuitously
aligned to a different second, and so we could
rescue the system manually.

The zone change from winter to summer in-
volves the non-existence of an hour and so raises
no problems. Before next autumn we need to
have deployed a revised system. It has been
suggested that using the Linux linking mecha-
nisms we could maintain all logging in universal
time, and create separate directories for users to
view.

There was one further problem. When the
syslog file got large the usual logrotate mecha-
nism started a new file. But as our renaming
system reads the syslog, it subsequently missed
transfer and rename of some output. This was
fixed by hand intervention, but at present we do
not have a good solution to this; nasty solutions
do occur to us though!

Another minor problem encountered during
initial testing was with the hardware: it seems
under Linux older versions of the SoundBlaster
chipset could not handle both recording from
an input stream and outputting one simultane-
ously. The output stream took priority so unless
we specifically muted the output channels on
the card, no sound was captured. This is only
mentioned here in case an attempt is made to

duplicate this work, and so to avoid the hours
of frustration endured during our initial tests.
We expect that similar minor problems will ap-
pear later as we develop the system, but the
main data collection cycle seems most satisfac-
torily robust. Most importantly, despite being
forced to downgrade our hardware, the system
performs within its new limitations without loss
of data during compression phases — even dur-
ing periods of additional load from users (i.e.
when logs are being extracted). There is suffi-
cient slack for us to consider adding additional
services.

7 Conclusions

Tests have demonstrated that our original aim,
of a cheap data logging system, has been eas-
ily achieved — the whole system cost only £60
in new purchased materials. What is also clear
is that the whole structure of the Linux and
Open Source movements made this much more
satisfactory than we feared. The efficiency of
Linux over, say, Windows meant that we could
use what was in effect cast-off hardware. The
ability to separate the data collection from the
compression and filing allowed a great simplifi-
cation in the design, and so we were able to start
the logging process days before we had thought
about the disposal process, but before the start
of the university term. The crontab mecha-
nism enables us to delete whole directories con-
taining a single day after 60 days have passed.
We still need to implement a web-interface to
extracting of programs, but the availability of
PERL, Apache, and all the related mechanisms
suggests that this is not a major task.

LAC2005
98

-rw-r--r-- 1 root root 4801096 Mar 4 22:55 22:45:08.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:00 22:50:08.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:05 22:55:08.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:10 23:00:08.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:15 23:05:08.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:20 23:10:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:25 23:15:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:30 23:20:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:35 23:25:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:40 23:30:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:45 23:35:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:50 23:40:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 4 23:55 23:45:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 5 00:00 23:50:07.mp3
-rw-r--r-- 1 root root 4801096 Mar 5 00:05 23:55:07.mp3
-rw-r--r-- 1 root root 6912 Mar 5 01:10 index

Figure 3: Part of an Archive Directory

Although it is not a major problem to write,
the extraction web page for the system will be
the only part most users see and hence design
for ease of use must be key. Currently, the idea
is to incorporate this into the current URB on-
line presence(URB, 2004) which allows mem-
bers of the station to log into a members area.
We will add a logging page, which presents users
with a very simple interface specifying only the
beginning and end points of the period required.
With their user-names tied to a download desti-
nation, presenters will always find their logs in
the same place, limiting the possibility of con-
fusion.

Being based on such reliable software pack-
ages, we are sure that if we ever have sufficient
funds for an upgrade, for example to a digital
input feed, this can easily be accommodated.
We are aware that the current system lacks re-
dundancy, and a secondary system is high on
our wish-list. More importantly we have not
yet completed a physically distributed back-up
in case the next machine fire does destroy the
disk.

We are confident that as the radio station
continues to be the sound-track of the Univer-
sity of Bath, in the background we are listen-
ing to all the sounds, logging them and making
them available for inspection. With this infras-
tructure in place we might even consider a “play
it again” facility, if the legal obstacles can be
overcome.

Naturally as the program is based on open
source code we are willing to provide our system

to anyone else who has this or a similar problem.

8 Acknowledgements

Our thanks go to Simon Lee, the instructor of
Bath University Students’ Union T’ai Chi Club,
for tolerating our discussions before (and some-
times during) training sessions.

References

2004. Notlame mp3 encoder. http://users.
rsise.anu.edu.au/~conrad/not_lame/.

Novell. 2004. http://www.novell.com/
de-de/linux/suse.

OffComm. 2003. Office of Communications
Document: Long-Term Restricted Service
Licences. http://www.ofcom.org.uk/
codes_guidelines/broadcasting/radio/
guidance/lo%ng_term_rsl_notes.pdf,
January.

2004. Ogg front end. http://freshmeat.net/
projects/oggenc/.

2004. PortAudio — portable cross-platform
Audio API. http://www.portaudio.com/.

2004. SRA: Student Radio Association. http:
//www.studentradio.org.uk/awards.

2004. URB: University Radio Bath. http://
www.bath.ac.uk/~su9urb.

LAC2005
99

LAC2005
100

AGNULA/DeMuDi - Towards GNU/Linux audio and music

Nicola Bernardini, Damien Cirotteau, Free Ekanayaka, Andrea Glorioso
Media Innovation Unit - Firenze Tecnologia

Borgo degli Albizi 15
50122 Firenze

Italy

Abstract

AGNULA (acronym for “A GNU/Linux Audio dis-
tribution”, pronounced with a strong g) is the name
of a project which has been funded until April 2004
by the European Commission (number of contract:
IST-2001-34879; key action IV.3.3, Free Software:
towards the critical mass). After the end of the
funded period, AGNULA is continuing as an inter-
national, mixed volunteer/funded project, aiming to
spread Free Software in the professional audio/video
arena. The AGNULA team is working on a tool to
reach this goal: AGNULA/DeMuDi, a GNU/Linux
distribution based on Debian, entirely composed of
Free Software, dedicated to professional audio re-
search and work. This paper1 describes the current
status of AGNULA/DeMuDi and how the AGNULA
team envisions future work in this area.

Keywords

AGNULA, audio, Debian

1 The AGNULA project - a bit of
history

In 1998 the situation of sound/music Free Soft-
ware applications had already reached what
could be considered well beyond initial pio-
neeristic stage. A website, maintained by musi-
cian and GNU/Linux2 enthusiast Dave Phillips,
was already collecting all possible sound and
music software running on GNU/Linux archi-
tectures. At that time, the biggest problem was
that all these applications were dispersed over
the Internet: there was no common operational
framework and each and every application was
a case-study by itself.

1This paper is Copyright c© 2004 Bernardini,
Cirotteau, Ekanayaka, Glorioso and Copyright
c© 2004 Firenze Tecnologia. It is licensed un-
der a Creative Commons BY-SA 2.0 License (see
http://creativecommons.org/licenses/by-sa/2.0/
legalcode).

2Throughout the document, the term GNU/Linux
will be used when referring to a whole operating system
using Linux as its base kernel, and Linux when referring
to the kernel alone.

A natural development followed shortly after,
when musician/composer/programmer Marco
Trevisani proposed a to a small group of friends
(Nicola Bernardini, Maurizio De Cecco, Davide
Rocchesso and Roberto Bresin) to create LAOS
(the acronym of Linux Audio Open Sourcing), a
binary distribution of all essential sound/music
tools available at the time including website dif-
fusion and support. LAOS came up too early,
and it did not go very far.

But in 2000, when Marco Trevisani proposed
(this time to Nicola Bernardini, Günter Geiger,
Dave Phillips and Maurizio De Cecco) to build
DeMuDi (Debian Multimedia Distribution) an
unofficial Debian-based binary distribution of
sound/music Free Software, times were riper.

Nicola Bernardini organized a workshop in
Firenze, Italy at the beginning of June 2001,
inviting an ever–growing group of support-
ers and contributors (including: Marco Tre-
visani, Günter Geiger, Dave Phillips, Paul
Davis, François Déchelle, Georg Greve, Stanko
Juzbasic, Giampiero Salvi, Maurizio Umberto
Puxeddu and Gabriel Maldonado). That was
the occasion to start the first concrete DeMuDi
distribution, the venerable 0.0 alpha which was
then quickly assembled by Günter Geiger with
help from Marco Trevisani. A bootable CD-
version was then burned just in time for the
ICMC 2001 held in La Habana, Cuba, where
Günter Geiger and Nicola Bernardini held a tu-
torial workshop showing features, uses and ad-
vantages of DeMuDi(Déchelle et al., 2001).

On November 26, 2001 the European Com-
mission awarded the AGNULA Consortium —
composed by the Centro Tempo Reale, IR-
CAM, the IUA-MTG at the Universitat Pom-
peu Fabra, the Free Software Foundation Eu-
rope, KTH and Red Hat France — with con-
sistent funding for an accompanying measure
lasting 24 months (IST-2001-34879). This ac-
companying measure, which was terminated on
March 31st 2004, gave considerable thrust to

LAC2005
101

the AGNULA/DeMuDi project providing sci-
entific applications previously unreleased in bi-
nary form and the possibility to pay professional
personnel to work on the distribution.

After the funded period, Media Innovation
Unit, a component of Firenze Tecnologia (itself
a technological agency of the Chamber of Com-
merce of Firenze) has decided to partly fund
further AGNULA/DeMuDi developments.

AGNULA has constituted a major step in the
direction of creating a full-blown Free Software
infrastructure devoted to audio, sound and mu-
sic, but there’s much more to it: it is the first
example of a European-funded project to clearly
specify the complete adherence of its results to
the Free Software paradigm in the project con-
tract, thus becoming an important precedent for
similar projects in the future.

2 Free Software and its applications
in the “pro” audio domain

When describing the AGNULA project, and the
AGNULA/DeMuDi distribution specifically, a
natural question arises - why is it necessary or
desiderable to have a completely Free Software
based distribution (whether based on the Linux
kernel or not is not the point here) for audio
professionals and research in the sound domain?

Free Software3 is the set of all computer pro-
grams whose usage and distribution licenses
(think about the “EULA” or “End User Licens-
ing Agreements”, that so many users have come
to know throughout the years) guarantee a pre-
cise set of freedoms:

• The freedom to run the program, for any
purpose (freedom 0);

• The freedom to study how the program
works, and adapt it to your needs (freedom
1). Access to the source code is a precon-
dition for this;

3We tend to prefer this term, rather than “Libre Soft-
ware”, even if the former term is inherently ambiguous
because of the english term “free” — which can mean
“free as in free beer” or “free as in free speech”. Free
Software is, of course, free as in free speech (and secon-
darily, but not necessarily, as in free beer). Usage of the
term “Libre Software” arose in the european context try-
ing to overcome this ambiguity with a term, libre, which
is correct in the french and spanish languages and is un-
derstandable in italian and other european languages.
However, it is not universally accepted as an equivalent
of “Free Software” and its usage can induce confusion in
readers and listeners — we therefore prefer to stick to
the traditional, albeit somewhat confusing, terminology.

• The freedom to redistribute copies so you
can help your neighbor (freedom 2);

• The freedom to improve the program, and
release your improvements to the public, so
that the whole community benefits (free-
dom 3). Access to the source code is a pre-
condition for this;

The most famous of such licenses is probably
the GNU General Public License, which is the
founding stone of the Free Software Foundation
effort to build a completely free operating sys-
tem, GNU (GNU’s Not Unix).

This is not the right place to describe the
concepts and the history of the Free Software
movement as it would deserve.

Suffice it to say that the possibility to use,
study, modify and share computer programs
with other people is of paramount importance
to the everyday life of creators (i.e. composers),
professional users (i.e. sound engineers, per-
formers) and researchers. This distinction is
of course artificial, since all of us can be cre-
ators, professional users and researchers in spe-
cific moments of our life. But this taxonomy
can work as a simple tool to better understand
the pros of using Free Software in everyday life
and work:

• Creators can use tools which don’t dic-
tate them what they should do, instead be-
ing easily modifiable into something that
does what they want them to do. The
non-physical nature of software makes for
a very convenient material to build with;
even though the creator might not have
the needed technical skills and knowledge
to modify the program to best suit his/her
needs, s/he can always ask someone else to
do it; on a related note, this kind of re-
quests make for a potentially (and in some
key areas, factually) very thriving market-
place for consultants and small businesses;

• Professional users have at their dis-
posal a series of tools which were often
thought and designed by other professional
users; they can interact more easily with
the software writers, asking features they
might need or reporting bugs so that they
are corrected faster (some would say “at
all”). They can base their professional
life not on the whim of a single company
whose strategies are not necessarily com-
patible with the professional user’s own

LAC2005
102

plans, but on a shared ecosystem of soft-
ware which won’t easily disappear — if the
original software authors stop maintaining
the software, someone else can always re-
place them;

• Researchers can truly bend the tool they
have at their disposal to its maximum ex-
tent, something which is often very hard
to do with proprietary software (even with
well designed proprietary software, as it
is basically impossible to understand all
users’ requirements in advance). They can
count on computer programs which have
been deeply scrutinized by a peer-review
process which finds its counterpart only in
the scientific community tradition4 as op-
posed to the habit of proprietary software
to completely obscure the “source code” of
a program, and all the bugs with it. Last,
not least, for all those researchers who use
software programs not as simple tools but
as bricks in software development (as often
happens today in computer–assisted com-
position and more generally in sound re-
search) the possibility to draw from an im-
mense database of freely available, usable
and distributable computer programs can
prove an incredible advantage, especially
when considering the cost of proprietary
computer programs and the financial sit-
uations of most research institutions nowa-
days.5

In the end, one might ask whether creativity
is truly possible without control on the tools
being used — a control which Free Software
guarantees and proprietary software sometimes
grants, but more often than not manipulates for
purely economical reasons.

This is not an easy question to answer at all
— there are many subtle issues involved, which
span in the field of economics, psychology, en-
gineering, sociology, etc, etc. The AGNULA
project actually believes that creativity is very

4This is not a coincidence, as the GNU project was
basically born in the Artificial Intelligence Laboratories
at the M.I.T.

5It should be noted, however, that whilst monetary
costs are of course a strong variable of all the equation,
the central importance of Free Software in research is not

related to money itself. Having free (i.e. gratis) software
which is not free (i.e. not libre) can be an ephemeral
panacea, but on the long run it simply means tying one-
self and one’s own research strategy to somebody else’s
decisions.

difficult without such control,6 but it’s unques-
tionable that the subject would deserve a fairer
treatise, through cross-subject studies able to
span the whole range of fields outlined above.

3 The AGNULA/DeMuDi
framework

The framework of AGNULA/DeMuDi is the
“classical” environment one can expect from a
GNU/Linux system to run audio applications.
The first component is the Linux kernel patched
to turn it into an efficient platform for real
time applications such as audio applications.
Then the ALSA drivers allow the usage of a
wide range of soundcards from consumer grade
to professional quality. On top of the drivers
runs the Jack server which allows lowlatency,
synchronicity and inter-application communica-
tion. Last, not least, the LADSPA plugins for-
mat is the standard for audio plugins on the
GNU/Linux platform.

3.1 The Linux kernel

3.1.1 Is the Linux kernel suitable for

audio applications?

The heart of the AGNULA/DeMuDi distribu-
tion is the Linux kernel. However, since Linux
was originally written for general purpose oper-
ating systems (mainly for servers and desktop
applications) as a non preemptive kernel, it was
not really useful for real-time applications. Tru-
ely showing the power of Free Software, several
improvements of the kernel scheduler turned it
into a good platform for a Digital Audio Work-
station (DAW).

To face this limitation two strategies have
been adopted: the preemption patch and the
lowlatency patch.

3.1.2 Preemption patch

Originally created by MontaVista and now
maintained by Robert M. Love,7 this patch re-
designs the kernel scheduler and redefines the
spinlocks from their SMP specific implementa-
tion to preemption locks. This patch allows the
Linux scheduler to be preemptive – when an in-
terruption of higher priority occurs the kernel
preempts the current task and runs the higher
priority task – except for specific critical sec-
tions (such as spinlocks or when the scheduler

6This belief has become a sort of mantra, as is stated
on our t-shirts: “There is no free expression without
control on the tools you use”.

7http://www.tech9.net/rml/linux

LAC2005
103

is running). This strategy has proven its effi-
ciency and reliability and has been included in
the new stable releases of the kernel (2.6.x).

3.1.3 Lowlatency patch

Introduced by Ingo Molnar and improved by
Andrew Morton, the lowlatency8 patch intro-
duces some specific conditional rescheduling
points in some blocks of the kernel. Even if
the concept of this patch is quite simple, it im-
poses a very high maintenance burden because
the conditional rescheduling points are spread
all over the kernel code without any centraliza-
tion.

3.1.4 Which patch is the best?

We test the kernel 2.4.24 with the methodology
of (Williams, 2002).9 We used realfeel10 while
running the Cerberus Test Control System 11

to stress the kernel. 5.000.000 interrupts were
generated with a frequency of 2048 interrupt per
second and the scheduling latency is measured
for each interrupt on a Intel Centrino 1.4 MHz
with 512 Mb of RAM .

The result for the non–patched kernel (see
Figure 1) with a maximum latency of 48,1 ms
makes this kernel not suitable for real–time ap-
plication. The patches greatly improve the sit-
uation. The lowlatency patch provides better
results – better maximum latency and highest
percentage of lowlatency interrupts. The op-
timal choice seems to be the combination of
both. The combination of the patches has also
proven to be more reliable after a long uptime
(see (Williams, 2002))

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0.1 1 10 100

oc
cu

rr
en

ce
s

milliseconds

2.4.24 vanilla

vanilla

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

oc
cu

rr
en

ce
s

milliseconds

2.4.24 lowlatency vs preempt

lowlatency
preempt

Figure 1: Vanilla vs Lowlatency and preempt
2.4.24 scheduler latency

Even if AGNULA/DeMuDi still provides a
2.4.x kernel some preliminary tests show that

8http://www.zip.com.au/~akpm/linux/schedlat.html
9We invite the reader to consult this paper for a more

detailed explanation of how the kernel scheduler works
and of the two patches.

10http://www.zip.com.au/~akpm/linux/schedlat.html
#amlat

11http://sourceforge.net/projects/va-ctcs/

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

oc
cu

rr
en

ce
s

milliseconds

2.4.24 lowlatency + preempt

lowlatency + preempt

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10

oc
cu

rr
en

ce
s

milliseconds

2.4.24 vs 2.6.5

2.4.24
2.6.5

Figure 2: Lowlatency + Preempt 2.4.24 and
preempt 2.6.5 scheduler latency

the new stable kernel (2.6.x) provides better
scheduler and will therefore be very suitable for
an audio platform. The preempt patch is now
directly shipped with the vanilla kernel. The
maximum latency measured for the 2.6.5 kernel
is 0.7ms, and the percentage of interrupts being
served within 0.1 ms is significantly higher than
for any version of the 2.4.24 kernel.

3.1.5 Capability patch

The third patch applied to the kernel does not
improve the performance of the system but al-
lows a non–root users to use the real time capa-
bility of Linux. It is particularly useful to run
the Jack (see 3.3) audio server as a normal user.

3.2 ALSA

ALSA (Advanced Linux Sound Architecture) is
a modular software framework which supports
a wide range of soundcards12 from consumer
grade to professional quality. The ALSA drivers
also provide an OSS/Free emulation to allow
compatibility with legacy applications. ALSA
is now the standard audio subsytem of the 2.6.x
Linux kernels (replacing OSS, which was the
standard throughout the 2.4.x series). ALSA
also provides an API and a user space library
(libasound).

3.3 The Jack Audio Connection Kit

The Jack Audio Connection Kit (Jack) can be
considered as the real user–space skeleton of
AGNULA/DeMuDi. This audio server runs on
top of the audio driver (ALSA , OSS or Por-
taudio) and allows the different audio applica-
tions to communicate with each other. While
other audio servers exist (aRts and esd among
others), Jack is the only one which has been
designed from the grounds up for professional
audio usage: it guarantees low latency opera-
tions and synchronicity between different client

12See the – not-so-up-to-date – soundcards matrix on
the ALSA web pages to have an idea of the number of
soudcards supported.

LAC2005
104

2.4.24 vanilla 2.4.24 lowlatency 2.4.24 preempt 2.4.24 both 2.6.5 preempt

max(L)(ms.) 48.1 1.8 4.8 1.8 0.7
L < 0.1ms(%) 90.2182 99.1168 99.5404 99.4831 99.9685
L < 0.2ms(%) 97.3432 99.9679 99.9115 99.9643 99.9878
L < 0.5ms(%) 99.9768 99.9976 99.9311 99.9973 99.9982
L < 1ms(%) 99.9801 99.9997 99.9567 99.9998 100
L < 10ms(%) 99.9983 100 100 100 100
L < 50ms(%) 100 100 100 100 100

Table 1: Distribution of the latency measurements for the different kernels

applications. Therefore it has become a de facto
standard for professional audio on GNU/Linux
systems and the majority of the applications in-
cluded in the AGNULA/DeMuDi distribution
are Jack–compliant (“jackified”, to use the rel-
evant jargon). Another reason for Jack’s suc-
cess is the simple, high–level but powerful API
that it provides, which has greatly facilitated
the jackification of audio applications.

Last, not least, Jack also provides a master
transport which allows for simultaneous control
of different applications (start/pause/stop).

3.4 The LADPSA plugins

LADSPA, which stands for Linux Audio Devel-
opers Simple Plugins Architecture, is the VST
equivalent on GNU/Linux systems. It provides
a standard way to write audio plugins. The
majority of the applications included in AG-
NULA/DeMuDi supports this format; since a
number of high qualities plugins are available
and non–compliant applications are “changing
their mind”, it’s apparent how LADSPA is the
“de facto” standard as far as audio plugins are
concerned.

4 Applications

AGNULA/DeMuDi doesn’t provide all the
music/audio programs available for the
GNU/Linux platform; the goal is to provide
a thought–out selection of the “best” ones,
allowing every kind of user to choose from
consumer–grade to professional–grade appli-
cations. Even after the reduction process
the original list underwent, the number of
applications included in AGNULA/DeMuDi
(100+) obliges us to present a restricted but
representative overview. A complete list of the
available applications is included either in the
distribution itself or online13.

13http://www.agnula.org/Members/damien/List/view

Sound Editors The choice of the sound edi-
tors included in AGNULA/DeMuDi illus-
trate the versatility of the distribution: it
goes from the complex but extremely pow-
erful Snd to the user friendly and straight-
forward audacity for the time domain. Fre-
quency domain edition is possible with
ceres3

Multitracker Considered as one of the major
audio applications for GNU/Linux, Ardour
is not only an excellent multitrack recorder
but it also “caused” the development of
Jack, as the author of these two programs,
Paul Davis, originally developed Jack to
fulfil a need he had for Ardour. Ecasound
is a robust non-GUI alternative for multi-
track recording.

Interactive Graphical Building Environments

Free Software is very strong in this field
with two well developed applications which
have been enjoying a tremendous success
for years: jMax and Pure Data (better
known as Pd).

Sequencers Two sequencers amongst others
are worth mentioning: Rosegarden and
Muse. While originally they were pure
midi–sequencers, now they both have some
audio capabilities which turn them into
complete musical production tools.

Sound Processing Languages A wide
choice of compositional languages like
CSound, SuperCollider, Common Lisp
Music are available. It may be noticed
that the first two were re–licensed under
respectively the GNU LGPL (GNU Lesser
General Public License) and the GNU
GPL during the funded lifetime of the
AGNULA project.

Software synthesizers A good range of soft-
ware synthesizer is provided, including

LAC2005
105

tools for modular synthesis (AlsaModu-
larSynth, SpiralSynthModular); for additive
and subtractive synthesis (ZynAddSubFX);
and dedicated synthesis/compositional lan-
guages, such as Csound and SuperCollider.

Last, not least, fluidsynth and TiMidity++
allow sample-based synthesis. In the at-
tempt to distribute only Free Software,
a Free GUS patch, freepat is also pro-
vided with TiMidity++. The patch is not
complete (it still misses some instruments
to cover the General Midi map) and this
raised our perception that free content (like
free samples or free loops) are a crucial
need in order to provide a totally Free au-
dio platform.

Notation The last category is particularly well
represented with the professional–grade au-
tomated engraving system Lilypond. While
Lilypond provides a descriptive language of
the musical scores, it is also a back-end for
different applications such as Rosegarden or
the dedicated notation interface NoteEdit.

5 Prosecution after the ending of
the funded phase

AGNULA/DeMuDi gave rise to a fairly large
interest. Even after the ending of the funded
phase, users’ feedback has constantly increased
as well as the requests for further enhance-
ments. Being AGNULA/DeMuDi a Free
Software project, these conditions naturally
favoured its continuation.

As a matter of fact over the past months
the distribution kept improving, and has now
achieved most of its fundamental goals along
with a certain degree of maturity and stability.

Nevertheless the project is probably encoun-
tering growth limits. At the moment the im-
provement of the distribution almost exclusively
depends on the “centralised” effort of the AG-
NULA team.

As computer based audio and multimedia
processing are very wide fields, a distribution
aiming to embrace them all from different per-
spectives needs to actively involve different com-
munities.

Time has come to exit the prototype and ex-
perimental phase and put A/DeMuDi in a wider
picture.

Here follow some steps that the AGNULA
team is going to undertake during the next
months in order to entight the connection with

all those projects/communites whose goals,
spirit and people are closely related with
A/DeMuDi.

5.1 Development infrastructure

The development infrastructure, currently
hosted on the AGNULA server14 will be moved
to Alioth15 and A/DeMuDi source packages will
be tracked using the official Debian Subversion
server.

Every major Custom Debian Distribution is
already registered on Alioth16

, and having them all in a single place helps
exchanging code, automate common services,
spawn new CDDs.

Moreover all Debian developers are members
of Alioth, and having a Debian-related project
registered on Alioth makes it easier for the De-
bian community to notice and possibly join it.

5.2 Mailing lists

All user level discussions shall be carried di-
rectly on official Debian mailing list.

Probably due to historical reasons AG-
NULA/DeMuDi is now often perceived as a dif-
ferent distribution from or a derivation of De-
bian, as other popular projects 17

This attitude somehow conflicts with the con-
cept of Custom Debian Distribution and its ad-
vantages.

One of the goals of the AGNULA project was
and is to improve the quality of Debian as far
as audio and multimedia are concerned, and this
effort will be carried directly inside Debian, with
the work of Debian maintainers.

AGNULA/DeMuDi releases shall be consid-
ered as a comfortable way to install Debian for
audio and multimedia work.

Every issue concerning AGNULA/DeMuDi is
actually concerning Debian and it makes sense
discuss it on Debian mailing lists, where one can
get in touch and receive support from a much
larger community than AGNULA.

These lists are of particular interest for the
AGNULA community:

14http://devel.agnula.org
15http://alioth.debian.org/projects/demudi
16https://alioth.debian.org/projects/debian-edu/

https://alioth.debian.org/projects/debian-np/
https://alioth.debian.org/projects/debian-br-cdd/
https://alioth.debian.org/projects/cdd/

17http://www.knoppix.net
http://www.morphix.org/modules/news/
http://www.progeny.com/
http://www.ubuntulinux.org/

LAC2005
106

Debian-Multimedia 18 For audio and multi-
media Debian-specific issues

Debian-User 19 For generic user support in
English. Furthermore other dedicated
mailing lists, as Debian-French, Debian-
Italian, Debian-Spanish, Debian-Russian,
Debian-Japanese, etc. 20 offer user sup-
port in various languages.

Moreover we encourage joining the Linux Au-
dio Mailing list 21 for all discussions on using
Linux for audio purposes.

5.3 Quality assurance

The AGNULA team is going to promote the
birth of a quality assurance group dealing with
audio and multimedia Debian packages.

While AGNULA/DeMuDi had a fairly large
success among the users, creating an active
community around the project, it is remark-
able that, beside a few cases, the same thing
did not happen with respect to the develop-
ers, who generally preferred to stick to Debian
and coordinate themselves through the Debian-
Multimedia group.

Debian-Multimedia is an official Debian
sub-project started by Marco Trevisani (for-
mer technical manager of AGNULA/DeMuDi)
whose goals are virtually identical to AG-
NULA/DeMuDi. The activity of the group
is not as intense as AGNULA/DeMuDi, but
it is constant in time, and has achieved some
high quality results (e.g. good packaging for
the JACK Audio Connection Kit). Currently
Debian-Multimedia is simply a mailing list, and
no web page has been yet published to describe
the project, as it happened for other Debian
groups 22

The Debian-Multimedia sub-project not
only represents the ideal door for AG-
NULA/DeMuDi to enter Debian, but can also
be considered a reference point for other Debian
based distributions dealing with audio and mul-

20 http://lists.debian.org/debian-french/
http://lists.debian.org/debian-italian/
http://lists.debian.org/debian-user-spanish/
http://lists.debian.org/debian-user-portuguese/
http://lists.debian.org/debian-user-russian/
http://lists.debian.org/debian-japanese/

21http://www.linuxdj.com/audio/lad/subscribelau.php
22 http://www.debian.org/devel/debian-desktop/

http://www.debian.org/devel/debian-installer/
http://www.debian.org/doc/ddp
http://www.debian.org/security/audit/
http://people.debian.org/ csmall/ipv6/

timedia (e.g. Medialinux), and it would allow to
gather the various efforts under the same hat.

Beside the tasks which Debian-Multimedia
is already successfully carrying on, the group
would:

• be a reference point for the au-
dio/multimedia subset of Debian, assuring
coherence and usability

• deal with a well defined set of packages

• provide bleeding-edge applications

• test packages and look for possible bugs

• discuss design and interface issues

• maintain a FAQ of the Debian-Multimedia
mailing list

6 Conclusions

The AGNULA project, originally funded by the
European Commission, is now continuing to
pursue its goal of making Free Software the best
choice for audio/video professionals on a volun-
teer/paid basis. The history of the AGNULA
project, AGNULA/DeMuDi current status and
its foreseeable future have been shown, as well
as the general philosophy and technical beliefs
that are behind the AGNULA team choices.

The AGNULA team does believe that a
positive feedback loop has been spawned be-
tween Debian and the fast evolving domain of
GNU/Linux audio applications. As a matter of
fact a previously weak ring in the chain between
audio professionals, musicians and composers
on one side and Free Software developers on the
other has been significantly strengthened.

This result can be considered the basis of a
future adoption of Free Software tools by people
who formerly had no alternative to proprietary
software, along with all the implications of such
a process in the educational, social, artistic and
scientific fields.

7 Acknowledgements

As the reader may expect, projects such as AG-
NULA/DeMuDi are the result of the common
effort of a very large pool of motivated peo-
ple. And indeed, giving credit to any deserv-
ing individual that contributed to these projects
would probably fill completely the space al-
lotted for this paper. Therefore, we decided
to make an arbitrarily small selection of those
without whose help AGNULA/DeMuDi would
not probably exist. We would like to thank,

LAC2005
107

Marco Trevisani, who has been pushing the en-
velope of a Free audio/music system for years,
Dave Phillips, Günter Geiger, Fernando Lopez-
Lezcano, François Déchelle and Davide Roc-
chesso: all these people have been working
(and still work) on these concepts and ideas
since the early days. Other people that de-
serve our gratitude are: Philippe Aigrain and
Jean-François Junger, the European Commis-
sion officials that have been promoting the idea
that AGNULA was a viable project against all
odds inside the Commission itself; Luca Mantel-
lassi and Giovanni Nebiolo, respectively Presi-
dent of Firenze’s Chamber of Commerce and
CEO of Firenze Tecnologia, for their support:
they have understood the innovative potential
of Free Software much better than many so-
called open-source evangelists. Finally we wish
to thank Roberto Bresin and the rest of the De-
partment of Speech Music and Hearing (KTH,
Stockholm), for kindly hosting the AGNULA
server.

References

François Déchelle, Günter Geiger, and Dave
Phillips. 2001. Demudi: The Debian Mul-
timedia Distribution. In Proceedings of the
2001 International Computer Music Confer-
ence, San Francisco USA. ICMA.

Clark Williams. 2002. Linux scheduler latency.
Technical report, Red Hat Inc.

LAC2005
108

SURVIVING ON PLANET CCRMA, TWO YEARS LATER AND STILL
ALIVE

Fernando Lopez-Lezcano, nando@ccrma.stanford.edu
CCRMA

Stanford University
http://ccrma.stanford.edu/planetccrma/software/

ABSTRACT

Planet CCRMA at Home [2] is a collection of packages
that you can add to a computer running RedHat 9 or Fe-
dora Core 1, 2 or 3 to transform it into an audio work-
station with a low-latency kernel, current ALSA audio
drivers and a nice set of music, midi, audio and video ap-
plications. This presentation will outline the changes that
have happened in the Planet over the past two years, fo-
cusing on the evolution of the linux kernel that is part of
Planet CCRMA.

1. INTRODUCTION

Creating worlds is not an easy task, and Planet CCRMA is
no exception. The last two years have seen a phenomenal
expansion of the project. The history of it will reflect, I
hope, part of the recent history of Linux Audio projects
and kernel patching.

2. A BIT OF HISTORY

For those of you that are not familiar with Planet CCRMA
[2] a bit of history is in order. At CCRMA (the Center
for Computer Research in Music and Acoustics at Stan-
ford University) we have been using Linux as a platform
for research and music production since the end of 1996
or so. Besides the software available in the plain distri-
bution I installed at the time, I started building and in-
stalling custom music software in our main server (disk
space was not what it is today, and there were not that
many Linux machines at that time, we were dual boot-
ing some PCs between Linux and NEXTSTEP, which was
the main computing platform at CCRMA). I don’t need to
say that sound support for Linux in 1997 was a bit prim-
itive. Not many sound cards were supported, and very
few existed that had decent sound quality at all. Low la-
tency was not a concern as just getting reliable sound out-
put at all times was a bit of a challenge. Eventually the
sound drivers evolved (we went through many transitions,
OSS, ALSA 0.5 and then 0.9), and patches became avail-
able for the Linux kernel that enabled it to start working
at low latencies suitable for realtime reliable audio work,
so I started building custom monolithic kernels that incor-
porated those patches and all the drivers I needed for the

hardware included in our machines (building monolithic
kernels was much easier than trying to learn the details of
loadable kernel modules :-).

But over time hard disks became bigger so that there
was now more free space in the local disks, and the num-
ber of Linux machines kept growing, so the server in-
stalled software was going to become a network bottle-
neck.

Also, some adventurous CCRMA users started to in-
stall and try Linux in their home machines, and wanted
an easy way to install the custom software available in all
CCRMA workstations.

I was installing RedHat so I started to use RPM (the
RedHat Package Manager) to package a few key applica-
tions that were used in teaching and research (for exam-
ple the Snd sound editor, the CM - CLM - CMN Com-
mon Lisp based composition and synthesis environment,
Pd and so on and so forth).

At first I just stored those packages in a network ac-
cessible directory and told potential users, “there you are,
copy the packages from that directory and install them
in your machine”. A simple Web site with links to the
packages was the next step, and installation instructions
were added as I got feedback from users on problems they
faced when trying to install the packages. Finally the
project was made “public” with a post announcing it in
the Cmdist mailing list - an email list for users of Snd and
CM/CLM/CMN (although I later learned that some users
had discovered the existence of the packages through search
engines, and were already using them). The announce-
ment happened on September 14th 2001. Time flies.

This changed the nature of the project. As more people
outside of CCRMA started using the packages I started
to get requests for packaging music software that I would
not have thought of installing at CCRMA. The number of
packages started to grow and this growth benefited both
CCRMAlites and external Planet CCRMA users alike.

As the project (and this was never an “official” project,
it was a side effect of me packaging software to install at
CCRMA) grew bigger the need for a higher level package
management solution became self-evident. The dreaded
“dependency hell” of any package based distribution was
a problem. More and more packages had external depen-
dencies that had to be satisfied before installing them and
that needed to be automatic for Planet CCRMA to be re-

LAC2005
109

ally usable. At the beginning of 2002 apt for rpm (a port
of the Debian apt tool by Conectiva) was incorporated into
Planet CCRMA, and used for all package installation and
management. For the first time Planet CCRMA was rea-
sonably easy to install by mere mortals (oh well, mere
geek mortals).

Fast forward to today: there are more than 600 individ-
ual packages spanning many open source projects in each
of the supported branches of RedHat/Fedora Core. You
can follow the external manifestation of these changes over
time by reading the online ChangeLog that I have main-
tained as part of the project (a boring read, to say the
least).

3. AT THE CORE OF THE PLANET

Since the announcement of the project outside CCRMA
on September 2001, the base distribution on which it was
based (RedHat) has seen significant changes. In July 2003
RedHat stopped releasing commercial consumer products,
and the last RedHat consumer version was 9, released on
March 2003. The Fedora Project was created, with the
aim of being a community driven distribution with a fast
release cycle that would also serve as a testbed for new
technologies for the enterprise line of RedHat products.
Fedora Core 1 was the first release, followed by Fedora
Core 2 and 3, at approximately 6 month intervals. The
rapid release cycle plus the introduction of new technolo-
gies in the releases have made my life more “interesting”.

In particular, Fedora Core 2 saw the introduction of the
2.6 kernel, which created a big problem for rebuilding the
Planet CCRMA package collection on top of it. The prob-
lem: a good, reliable low latency kernel did not exist. At
that point in time 2.6 did not have an adequate low la-
tency performance, despite the assurances heard during
the 2.5 development cycle that new infrastructure in the
kernel was going to make it possible to use a stock kernel
for low latency tasks. Alas, that was not possible when
Fedora Core 2 was released (May 2004).

4. THE KERNELS

Up to Fedora Core 1 the base distribution used a 2.4 ker-
nel, and Planet CCRMA provided custom kernel packages
patched with the well known low latency (by A. Morton)
[6] and preemptible kernel (by R. Love) [5] patches (the
last originally created by Monta Vista [4]), in addition to
the tiny capabilities patch that enabled to run the Jack Au-
dio Connection Kit server [15] and his friends with real-
time privileges as non-root users.

Fedora Core 2 changed the equation with the introduc-
tion of the 2.6 kernel. Running a 2.4 kernel on top of the
basic distribution presented enough (small) compatibility
problems that I discarded the idea very early in my testing
cycle. And 2.6 had a very poor latency behavior, at least in
my tests. As a consequence until quite recently I still rec-
ommended using Fedora Core 1 for new Planet CCRMA
installs.

For the first 2.6 kernels I tested (March 2004) I used
a few additional patches by Takashi Iwai [7] that solved
some of the worst latency problems. But the results were
not very usable.

Ingo Molnar and Andrew Morton again attacked the
problem and a very good solution evolved that is now
available and widely used. Ingo started writing a series
of patches for realtime preemption of the 2.6 kernel [8]
(named at the beginning the “voluntary preemption” patch-
set). This set of patches evolved on top of the “mm”
patches by Andrew Morton [9], the current equivalent of
the old unstable kernel series (there is no 2.7 yet!, exper-
imental kernel features first appear in the “mm” patches
and then slowly migrate - the successful ones, that is -
to the official release candidates and finally to the stable
releases of the Linux kernel). Ingo did very aggressive
things in his patches and the voluntary preemption patches
(later renamed realtime preemption patches) were not the
most stable thing to run in your computer, if it booted at
all (while tracking successive releases I must have com-
piled and tried out more than 40 fully packaged kernels,
for details just look at the changelog in the spec files of the
Planet CCRMA 2.6 kernels). I finally released a prelimi-
nary set of kernel packages on December 24 2004, using
version 0.7.33-04 of Ingo’s patches, one of the first re-
leases that managed to boot in all my test machines :-)

What proved out to be interesting and effective in Ingo’s
patches gradually percolated to the not so bleeding edge
“mm” patches by Andrew Morton, and bits and pieces of
“mm” gradually made it upstream to the release candi-
dates and then to the stable kernel tree.

So, little by little the latency performace of the stock
kernel improved. By the time of the release of 2.6.10 (De-
cember 24 2004 again just a coincidence) it was pretty
good, although perhaps not as good as a fully patched 2.4
kernel. But keep in mind that this is the stock kernel with
no additional patches, so the situation in that respect is
much much better than it was in the old stock 2.4 kernel.

The end result for Planet CCRMA dwellers at the time
of this writing are two sets of kernels, currently available
on both Fedora Core 2 and 3.

4.1. The “stable” kernel

The current version is 2.6.10-2.1.ll. 2.6.10 turned out to
be an unexpected (at least by me) milestone in terms of
good low latency behavior. Finally, a stock kernel that has
good low latency performance, out of the box. I would
say it is close to what a fully patched 2.4 kernel could
do before. The package also adds the realtime lsm kernel
module, more on that later.

4.2. The “edge” kernel

Currently 2.6.10-0.6.rdt based on Ingo Molnar’s realtime
preempt patch version 0.7.39-02. This is a more bleeding
edge kernel, with significantly better low latency perfor-
mance and based on Ingo Molnar’s realtime preemption
patches. The downside of trying to run this kernel is that it

LAC2005
110

still (at the time of this writing) does not work perfectly in
all hardware configurations. But when it works, it works
very well, and users have reported good performance with
no xruns running with two buffers of 64 or even 32 sam-
ples! Amazing performance.

I’m still being a bit conservative in how I configure
and build this kernel, as I’m not currently using the RE-
ALTIME RT configuration option, but rather the REAL-
TIME DESKTOP option (thus the rdt in the release). The
penalty in low latency behavior is worth the extra stability
(at this time). I hope that the RT option (which gets the
linux kernel close to being a “hard realtime” system) will
evolve and become as stable as the REALTIMEDESKTOP
configuration.

These packages also include the realtime lsm module.

4.3. Small details that matter

But a kernel with good low latency is not nearly enough.
You have to be able to run, for example, Jack, from a nor-
mal non-root account. Enter Jack O’Quinn [10] and Tor-
ben Hohn. Their efforts created a kernel module, part of
the kernel security infrastructure, that enables applications
run sgid to a certain group, or run by users belonging to
a group, or run by any user (all of this configurable, even
at runtime), to have access to realtime privileges without
having to be root. This is more restrictive and secure than
the old capabilities patch, and at the time of this writing
and after a very long discussion in the Linux Kernel mail-
ing list (see [11] and [12]), has been incorporated into the
“mm” kernel patches. Hopefully it will eventually per-
colate down to the stable kernel tree at some point in the
future. It was a tough sell advocating for it in the Linux
Kernel mailing list, many thanks to Jack O’Quinn, Lee
Revell and others for leading that effort and to Ingo Mol-
nar and Con Kolivas for proposing workable alternatives
(that were later discarded). When the realtime patch be-
comes part of the standard kernel tree, a stock kernel will
not only have decent low latency performance but will
also work with software that needs realtime privileges like
Jack does (including the ability of applications to run with
elevated SCHEDFIFO scheduling privileges and to lock
down memory so that it is not paged to disk).

But this was not enough for a Planet CCRMA release.
Ingo Molnar’s realtime preemption patch changed the be-
havior of interrupt requests, the lower half of the interrupt
processes (if I understand correctly) are now individual
processes with their own scheduling class and priorities,
and a vital part of tuning a system for good low latency
behavior is to give them, and Jack itself, the proper re-
altime priorities so that the soundcard and its associated
processes have more priority than other processes and pe-
ripherals. I was trying to find a solution to this that did
not involve users looking around /proc and tuning things
by hand, when Rui Nuno Capela sent me a neat startup
service script called rtirq that does just that, it sorts all
interrupt service routines and assigns them decent priori-
ties. Together with another small startup script I wrote that
loads and configures the realtime lsm module, they make

it possible to package an easy to install turn-key solution
to a low latency 2.6 based kernel.

4.4. The core packages

The end result in Planet CCRMA are two sets of meta
packages that reduce the installation and configuration of
a 2.6 kernel to two apt-get invocations (installing planetccrma-
core for the safer kernel and planetccrma-core-edge for
the more risky one that offers better low latency perfor-
mance).

This, coupled to the fact that due to 2.6 both Fedora
Core 2 and 3 use ALSA by default, made installing Planet
CCRMA is a much easier process when compared to Fe-
dora Core 1 or RedHat 9 and their 2.4 kernels.

5. CONTINENTS AND ISLANDS

A large number of applications and supporting libraries
have been added and updated over time to Planet CCRMA
since 2003. Although not as many as I would like (just
take a look at the “Pipeline” web page for packages wait-
ing to be added to the repository). The list is almost too
long but here it goes: seq24, filmgimp (later renamed to
cinepaint), fluidsynth (formerly iiwusynth), the mcp ladspa
plugins, hydrogen, rezound, cinelerra, mammut, csound,
qarecord, qamix, qjackctl, gmorgan, ceres, pmidi, den-
emo, jackeq, cheesetracker, the rev ladspa plugins, qsynth,
xmms-jack, jamin, vco ladspa plugins, pd externals (per-
colate, creb, cxc, chaos, flext, syncgrain, idelay, fluid, fftease,
dyn), tap ladspa plugins, timemachine, caps ladspa plug-
ins, xmms-ladspa, specimen, simsam, pvoc, brutefir, aeo-
lus, fil ladspa plugins, pd vasp externals, jaaa, tap reverb
editor, jackmix, coriander, liblo, jack bitscope, dvtitler,
the soundtouch library, beast, phat, sooperlooper, qmidiarp,
dssi. Sigh, and that’s only new packages. Many many sig-
nificant updates as well. Go to the Planet CCRMA web
page for links to all these (and many other) fine software
packages.

6. OTHER WORLDS

Planet CCRMA is one of many package repositories for
the RPM based RedHat / Fedora family of distributions.
Freshrpms [13], Dag [14], Atrpms, Dries and many others
constitute a galaxy of web sites that provide easy to install
software. Planet CCRMA is in the process of integrat-
ing with several of them (the so called RpmForge project)
with the goal of being able to share spec files (the building
blocks of RPM packages) between repositories. That will
make my work, and that of the other packagers, easier,
will reduce the inevitable redundancy of separate projects
and will increase compatibility between repositories.

Another world in which I also want to integrate parts
of Planet CCRMA is the Fedora Extras repository. This
Fedora sponsored project opened its first CVS server a
short while ago and will be a centralized and more offi-
cial repository of packages, but probably exclusively ded-

LAC2005
111

icated to augmenting the latest Fedora Core release (as op-
posed to the more distribution agnostic RpmForge project).
With the availability of Fedora Extras the “community”
part of the Fedora Project is finally arriving and I’m look-
ing forward to becoming a part of it.

7. PLANET FORGE

A short time ago I finally got all the remaining compo-
nents, and finished building a new server here at CCRMA.
It is a fast dual processor machine with a lot of memory
and hard disk space completely dedicated to the Planet
CCRMA project. The original goal was to create a fast
build machine in which to queue packages to be rebuilt,
as that process was fast becoming one of my main pro-
ductivity bottlenecks in maintaining Planet CCRMA. A
secondary, but no less important goal, is to try to create
a collaborative environment in which more people could
participate in the development and maintenance of Planet
CCRMA packages and associated documentation. We’ll
see what the future brings. A lot of work remains to be
done to port my current build environment to the new ma-
chine and create a collaborative and more open environ-
ment.

8. FUTURE DIRECTIONS

One of the many things that are requested from time to
time in the Planet CCRMA lists is the mythical “single
media install” of Planet CCRMA (ie: “do I have to down-
load all these cdroms?”). In its current form (and on pur-
pose), a potential user of Planet CCRMA has to first install
Fedora Core, and then add the kernel, drivers and pack-
ages that make up Planet CCRMA (this additional instal-
lation and configuration work has been substantially re-
duced in Fedora Core 2 and 3 releases as they use ALSA
by default instead of OSS). While this is not that hard,
specially with the help of meta packages and apt-get or
synaptic, it appears that sometimes it is too much work
:-) And I have to agree, it would be much nicer to have a
single cd (hmm, actually a dvd given the size of current
distributions) and at the end of the install have everything
ready to go, low latency kernel active, just start the appli-
cations and make some music. I have long avoided going
down this road and becoming a “distribution” because of
the additional work that would involve. It is hard enough
trying to keep up to date with the very fast evolution of
Linux audio software.

But on and off I’ve been thinking about this idea, and
lately I’ve been actually doing something about it. At the
time of this writing (end of February 2005) I already have
a single “proof of concept” dvd with everything in it, all
of Fedora Core 2 - the distro I’ve been playing with, I
obviously have to do this on Fedora Core 3 as well - plus
all of Planet CCRMA. This test dvd is not small, about 3G
of stuff, remember, all of Fedora Core is included!

Installing Planet CCRMA from it entails booting into
the dvd, selecting the Planet CCRMA installation target,

customizing the packages installed if desired and press-
ing “Install” (while going through the normal installation
choices of a stock Fedora Core system install, of course).
One reboot and you are up and running. Furthermore, the
dvd creation process is pretty much automatic at this point
(start a series of scripts, wait for some time and out comes
a dvd iso image).

Of course things are not that easy. What kernel should
I select for installation? The more stable or the more risky
that has better latency performance? How will the id-
iosyncracies of this non-standard kernel interact with the
Fedora Core install process? (for example, it may hap-
pen that it will fail to boot in some machines, while the
original Fedora Core kernel would have succeeded - and
I don’t think Anaconda, the RedHat installer, would be
able to deal with more than one kernel at install time).
Hopefully some or all of these questions will have an-
swers by the time I attend LAC2005, and conference at-
tendees will be able to test drive an “official” alpha release
of Planet CCRMA, the distro (another question to be an-
swered: why do I keep getting into a deeper pit of support
and maintenance stuff??).

9. CONCLUSION

It is easy to conclude that Planet CCRMA is very cool.
More seriously. Planet CCRMA as a project is alive and
well. As a maintainer I’m (barely) alive, but have made it
to another conference, no small feat.

10. ACKNOWLEDGEMENTS

The Planet CCRMA project would never have been possi-
ble without the support for GNU/Linux and Open Source
at CCRMA, Stanford University, and in particular, the
support of to Chris Chafe, CCRMA’s Director. It goes
without saying that I extend my heartfelt thanks to the
hundreds of commited developers whose software projects
I package. Without them Planet CCRMA would not exist
and I would live in much more boring world.

11. REFERENCES

[1] The Fedora Project. http://fedora.redhat.com/

[2] The Planet CCRMA Project.
http://ccrma.stanford.edu/planetccrma/software/

[3] Ingo Molnar: Low latency patches for 2.2/2.4.
http://people.redhat.com/mingo/lowlatency-
patches/

[4] MontaVista: The Preemptible Kernel
Patch. http://www.mvista.com/, see also
http://www.linuxdevices.com/news/NS7572420206.html

[5] Robert Love: The Preemptible Kernel Patch.
http://rlove.org/linux/

LAC2005
112

[6] Andrew Morton: Low latency patches for 2.4.
http://www.zip.com.au/ akpm/linux/schedlat.html

[7] Takashi Iwai: low latency tweaks.
http://kerneltrap.org/node/view/2702

[8] Ingo Molnar: Realtime Preemption patches for
2.6. http://people.redhat.com/mingo/realtime-
preempt/

[9] Andrew Morton: the “mm” patches for 2.6.
http://kernel.org/pub/linux/kernel/people/akpm/patches/2.6/

[10] Jack O’Quinn: the realtime lsm kernel mod-
ule. http://sourceforge.net/projects/realtime-
lsm/

[11] Linux Weekly News: Merging the realtime se-
curity module. http://lwn.net/Articles/118785/

[12] Weekly News: Low latency for Audio Appli-
cations. http://lwn.net/Articles/120797/

[13] Freshrpms: package repository.
http://freshrpms.net/

[14] Dag: package repository.
http://dag.wieers.com/home-made/apt/

[15] The Jack Audio Connection Kit, a low latency
sound server. http://jackit.sf.net/

LAC2005
113

LAC2005
114

Linux As A Text-Based Studio
Ecasound – Recording Tool Of Choice

Julien CLAASSEN
Abtsbrede 47a

33098 Paderborn
Germany

julien@c-lab.de

Abstract

This talk could also be called ”ecasound textbased
harddisk recording”. I am going to demonstrate a
few of the most important features of ecasound and
how to make good use of them in music recording
and production.

This talk explains what ecasound is and what its
advantages are, how a braille display works, Eca-
sound’s basic features (playback, recording, effects
and controllers), and a few of ecasound’s more ad-
vanced features (real multitrack recording and play-
back and mastering).

Keywords

audio, console, recording, text-based

1 What is Ecasound?

1.1 Introduction to Ecasound

Ecasound is a textbased harddisk recording,
effects-processing and mixing tool. Basically it
can operate in two ways:

• It can work as a commandline utility. Many
of its features can be used from the com-
mandline, via a whole lot of options.

• It can also be operated from a shell-like in-
terface. This interface accepts its own set
of commands, as well as commandline op-
tions.

Ecasound supports more than your usual au-
dio io modes:

• ALSA - Advanced Linux Sound Architec-
ture

• Jack - Jack Audio Connection Kit

• ESD - Enlightenment Sound Daemon

• Oldstyle OSS - Open Sound System

• Arts - the Arts Sound Daemon

1.2 Advantages
1. Ecasound can easily be used in shell-scripts

through its commandline options. Thus it
can perform some clever processing.

2. Through its shell-interface you can access
realtime controls. Via its set and get com-
mands one can change and display con-
troller values.

3. Because ecasound does not require an X-
server and a lot of other GUI overhead, it is
slim and fast. On a 700 MHz processor one
can run an audio-server (JACK), a software
synthesizer (fluidsynth) and ecasound with
3 or more tracks without problems.

4. Ecasound is totally accessible for blind peo-
ple through its various textbased interfaces.
Those interfaces provide full functionality!

1.3 Disadvantages
1. Its textbased interface is not as intuitive

and easy to learn as a GUI for a sighted
person .

2. Its audio routing capabilities still lack cer-
tain features known to some other big linux
audio tools.

3. It does not provide much support for MIDI
(only ALSA rawmidi for controlling effects
and starting/stopping).

2 How I Work

I work with a braille display. A braille display
can display 40 or 80 characters of a screen. In
textmode this is a half or full line.

The braille display has navigation buttons, so
you can move the focus over the whole screen,
without moving the actual cursor. Usually the
display tracks the cursor movement, which is
very useful most of the time. For the rest of the
time, you can deactivate tracking of the cursor.

LAC2005
115

So the best programs to use are line-oriented.
Thus tools with shell-interfaces or commandline
utilities are the best tools for me.

N.B.: As I heard such tools are also among
the top suspects for users of speech-synthesizers.

3 Usage

This chapter will give several use cases of eca-
sound.

3.1 Using ecasound from the command
line

As already stated ecasound can – in general –
be used in two ways: From the commandline
and from its interactive mode. The following
examples will deal with ecasound’s command-
line mode.

3.1.1 Playing files from the
commandline

One of the simplest uses of ecasound is playing
a file from the commandline. It can look like
calling any simple player – like i.e. aplay. If the
ecasound configuration is adjusted correctly it
looks like this:

ecasound myfile.wav

or

ecasound -i myfile.wav

The ”-i” option stands for input. If you wish
to specify your output explicitly and do not
want to rely on the ecasoundrc configuration
file, you can do it like that:

ecasound -i myfile.wav -o alsa,p1

alsa,p1 marks the alsa output on my system-
configuration running ALSA. The ”-o” option
means output.

3.1.2 Recording files from the
commandline

It is as simple as playing files. The only
thing one needs to exchange is the place of
the sound-device (ALSA device) and the file
(myrecording.wav). So if one intends to
record from an ALSA device called ”io1” to
myrecording.wav, one would do it like that:

ecasound -i alsa,io1 -o
myrecording.wav

It looks just like the example from section
3.1.1 with sound-objects exchanged.

3.2 Interactive mode
Ecasound interactive mode offers a lot more
realtime control over the things you mean to
do like starting, stopping, skipping forward or
backward etc. Thus in most cases it is more
suited to the needs of a recording musician. Be-
low there are some simple examples.

3.3 Playing a file
This method of playing a file is much closer to
what one could expect of a nice player. The
syntax for starting ecasound is very similar to
the one from 3.1.1.

ecasound -c -i myfile.wav [-o
alsa,p1]

By pressing ”h” on the ecasound shell prompt
you get some basic help. For more info – when
trying it at home, there is the ecasound-iam (In-
terActive Mode) manual page.

3.4 Interactive recording
The simplest way to record a file is almost as
simple as playing a file. The only thing is you
have to specify the audio-input source. Btw.:
The same syntax can be used to convert files
between different formats (wave-file, mp3, ogg,
raw audio data...).

To do a simple interactive recording, type
this:

ecasound -c -i alsa,io1 -o
myrecording.wav

Again you have the interactive capabilities
of ecasound to support your efforts and extend
your possibilities. Besides that, it is the same
as in paragraph 3.1.2.

3.5 Effects in ecasound
Ecasound has two sources for effects: internal
and external via LADSPA. In the following sec-
tions both are introduced with a few examples
and explanations.
3.5.1 Internal effects
Ecasound comes with a substantial set of in-
ternal effects. There are filters, reverb, chorus,
flanger, phaser, etc. All effect-options start with
”e”, which is good to know when looking for
them in the manual pages. Here is a demo of
using a simple lowpass filter on a wave-audio
file:

ecasound -i myfile.wav -efl:1000

which performs a lowpass filter with a cutoff
frequency of 1000Hz on the file myfile.wav and
outputs the result to the default audio device.

LAC2005
116

3.5.2 External / LADSPA effects
Ecasound can also use LADSPA effects which
makes it a very good companion in the process
of producing and mastering your pieces.

There are two different ways of addressing
LADSPA effects: By name or by unique ID.
3.5.3 Addressing by name
With analyseplugin you can determine the
name of a LADSPA effect like:

babel:/usr/local/lib/ladspa #
analyseplugin ./decimator_1202.so

Plugin Name: "Decimator"
Plugin Label: "decimator"
Plugin Unique ID: 1202
Maker: "Steve Harris "
Copyright: "GPL"
Must Run Real-Time: No
Has activate() Function: No
Has deativate() Function: No
Has run_adding() Function: Yes
Environment: Normal
Ports: "Bit depth" input, control, 1 to
24, default 24

"Sample rate (Hz)" input, control,
0.001*srate to 1*srate, default 1*srate

"Input" input, audio, -1 to 1
"Output" output, audio, -1 to 1

Thus one knows that ”decimator” is the
name – label – of the plugin stored in decima-
tor 1202.so. Now you can use it like that:

ecasound -i file.wav
-el:decimator,16,22050

which simulates the resampling of the file
”file.wav” at 22.05 KHz.
3.5.4 Addressing by unique ID
analyseplugin not only outputs the label of a
LADSPA plugin, but also its unique ID, which
ecasound can also use. Mostly this way is sim-
pler, because there is less to type and you do
not have to look for upper- and lowercase let-
ters. With the following command you can use
the decimator plugin by its unique ID:

ecasound -i file.wav
-eli:1202,16,22050

This command does the same as the one be-
fore.

Although it looks more cryptic to the naked
eye, it is really shorter and (once you are used

to it) much simpler to type – this is at least my
personal experience.
3.5.5 Effect presets
Another powerful feature of ecasound
are effect presets. Those presets are
stored in a simple text-file, usually
/usr/local/share/ecasound/effect presets.
An effect preset can consist of one or more
effects in series, with constant and variable
parameters. What does this mean in prac-
tice? The following illustrates the use of the
metronome-effect:

ecasound -c -i null -pn:metronome,120

This provides a simple clicktrack at 120 BPM.
Internally the ecasound ”metronome” effect-
preset consists of a sinewave at a specific fre-
quency, a filter – for some reason – and a pulse
gate. This gate closes at a certain frequency
given in BPM. Would you use all those effects
on the commandline directly, you would have
to type a lot. Besides getting typos, you could
also choose very inconvenient settings. If you
use the effect preset, everything is adjusted for
you.

The standard preset file contains a good col-
lection to start with. From simple examples
for learning, to useful things like a wahwah,
metronome, special filter constellations, etc...
3.5.6 Controllers
Ecasound also offers a few controllers which you
can use to change effect parameters while your
music is playing. The simplest controller is a
two-point envelope. This envelope starts at a
given start value and moves over a period of
time to a certain endvalue. In practice it could
look like this: A user wants to fade in a track
from volume 0 to 100 over 4 seconds:

ecasound -i file.wav -ea:100
-kl:1,0,100,4

What does the first parameter of -kl mean?
This parameter is the same for all -k* – con-
troller – options. It marks the parameter you
want to change. The amplifier (-ea) has only
one parameter: the volume. Thus the first pa-
rameter is 1. The second is the start value (0),
meaning the volume should start at 0, the third
value is the endvalue for the envelope: Volume
should go up to 100. The last value is the time
in seconds that the envelope should use to move
from start to end value.

Ecasound offers more controllers than this
simple one. It has a sine oscillator and generic

LAC2005
117

oscillators which can be stored in a file like ef-
fect presets. Besides that you can use MIDI
controllers to do some really customised real-
time controlling.
3.5.7 An interactive recording with

realtime control
Now a short demonstration of the features pre-
sented so far: A short and simple recording with
some realtime-controlled effects.

The scenario is: One synthesizer recorded
with ecasound and processed by a lowpass fil-
ter which is modulated by a sinewave. This will
generate a simple wahwah effect. It might look
like this:

ecasound -c -i jack auto,fluidsynth
-o my file.wav -ef3:5000,0.7,1.0
-kos:1,800,5000,0.5,0

The -ef3 effect is a resonant lowpass filter
with these parameters: Cutoff frequency in Hz,
resonance – from 0 to 1 (usually) – and gain.
Values for gain should be between 0 and 1. The
-kos controller is a simple sine oscillator with
the following parameters:

1. effect-parameter – parameter of the effect
to modify (first parameter of -ef3 – the
cutoff)

2. start-value – lowest value for the cutoff fre-
quency

3. end-value – highest value for the cutoff

4. frequency in Hz – the frequency at which
the cutoff should change from lowest to
highest values – in this case 0.5 Hz. It takes
2 seconds.

5. iphase – initial phase of the oscillator. A
sinus starts at 0 and moves upwards from
there. Yet one can shift the wave to the
right by supplying an iphase > 0.

4 More complex work

This chapter gives some more complex usage
examples of ecasound.

4.1 Chains
4.1.1 What is a chain?
A chain is a simple connection of audio objects.
A chain usually contains of:

• an audio input

• effects (optional)

• an audio output

You have already seen chains, without really
knowing them because even a simple thing like:

ecasound -i file.wav

uses a chain with the default output.
To explicitly specify a chain, you need to

use the -a option. The above example with an
explicit chain-naming, yet still unchanged be-
haviour looks like that:

ecasound -a:my first chain -i
file.wav (-o alsa,p1)

4.1.2 What is a chain setup?
A chain setup can be seen as a map of all chains
used in a session. You can perhaps imagine that
you can have parallel chains – for mixing audio-
tracks – or even more complex structures for
tedious mastering and effects processing. You
can store a complete chain setup in a file. This
is very useful while mastering pieces.

A simple example of an implicit chain setup
includes all above examples. They have been
chain setups with only one chain. To store chain
setups in files you can use the interactive com-
mand cs-save-as or cs-save, if you’ve modified
an existing explicit chain setup.

4.2 Playing back multiple files at once

Now the user can play back a multitrack record-
ing before having generated the actual output-
mixdown.

It could look like this:

ecasound -c -a:1 -i track1.wav -a:2 i
track2.wav -a:3 -i track3.wav -a:1,2,3
-o alsa,p1

This also demonstrates another nice simplifi-
cation: One can write something like -a:1,2,3
to say that chain 1, 2 and 3 should have some-
thing in common. In this example it could be
even shorter:

ecasound -c -a:1 -i track1.wav -a:2
-i track2.wav -a:3 -i track3.wav -a:all
-o alsa,p1

This line does exactly the same as the last
demo. The keyword all tells ecasound to ap-
ply the following options to all chains ever men-
tioned on the commandline.

4.3 Recording to a clicktrack

Now one can use chains to perform an earlier
recording to a clicktrack:

LAC2005
118

ecasound -c -a:1,2 -i alsa,io1
-a:1 -o track1.wav -a:3 -i null
-pn:metronome,120 -a:2,3 -o alsa,p1

This does look confusing at first sight, but is
not. There are three chains in total. Chain 1
and 2 get input from the soundcard (alsa,p1),
chain three gets null input (null). Chain 2
(soundcard) and 3 (metronome) output to the
soundcard so you hear what is happening.
Chain 1 outputs to a file. Now you can use
track1.wav as a monitor and your next track
might be recorded with a line like this:

ecasound -c -a:1,2 -i alsa,io1
-a:1 -o track2.wav -a:3 -i null
-pn:metronome,120 -a:4 -i track1.wav
-a:2,3,4 -o alsa,p1

This extends the earlier example only by a
chain with track1.wav as input and soundcard
(alsa,p1) as output. Thus you hear the click-
track – as a good guidance for accurate playing
– and the first track as a monitor.

4.4 Mixing down a multitrack session
Having several tracks on harddisk, the mixdown
is due. First one can take a listen to the multi-
track session and then store the result to a file.

Listening to the multitrack can be achieved
by issuing the following command:

ecasound -c -a:1 -i t1.wav -a:2 -i
t2.wav -a:3 -i t3.wav -a:all -o alsa,p1

Now adjusting of volumes can be managed
by applying -ea (amplifier effect) to each track.
i.e.:

ecasound -c -a:1 -i t1.wav -ea:220
-a:2 -i t2.wav -ea:150 -a:3 -i t3.wav
-a:180 -a:all -o alsa,p1

This amplifies t1.wav by 220%, t2.wav by
150% and t3.wav by 180%.

Being content with volume adjustment
and possibly other effects, the only thing
left is exchanging soundcard output by file-
output. Meaning exchange alsa,p1 with
my output.wav:

ecasound -c -a:1 -i t1.wav -ea:220
-a:2 -i t2.wav -ea:150 -a:3 -i t3.wav
-ea:180 -a:all -o my output.wav

Now ecasound will process the files and store
the mixdown to disk. The last – optional – step
is to normalize the file my output.wav which
can be performed by ecanormalize:

ecanormalize my output.wav
The normalized output file overwrites the

original: So be careful!

5 Resume

Having in theory produced a piece ready for
burning on CD or uploading to the Internet,
here comes the resume. It is not the same way
you would do it in a graphical environment, yet
it still works fine!

For me ecasound is always the tool of choice.
It is a very flexible tool. Its two general modes
– commandline and interactive – combined with
its chain-concept make it a powerful recording
and mixing program. Because ecasound has
LADSPA support and can be connected to the
JACK audio server it is very simple to integrate
it in a linux-audio environment. You can also
use it in combination with graphical tools, if you
so choose.

So for those who love text interfaces, need fast
and simple solutions or those who start to learn
about audio-recording, ecasound can be a tool
of great value.

Besides that, ecasound is of course a very
good example of what free software develop-
ment can do: Produce a very up-to-date piece
of fine software which is fully accessible to blind
and visually impaired people. Yet still it was
not written with this audience in mind. There
is a fairly large crowd relying on ecasound for
very different kinds of work. Though it lacks
a few things that others have, it is not said
that ecasound can never get there. Meanwhile
there are other ways to achieve what one needs
to achieve, thanks to the flexibility of ecasound
and the tools you can combine/connect with it.

6 Thanks and Acknowledgements

Thanks and acknowledgements go to:

• Kai Vehmanen and the ecasound crew at
http://www.eca.cx/ecasound

• Of course the ALSA crew with much work
from Takashi Iwai and Jaroslav Kysela at
http://www.alsa-project.org

• Richard E. Furse and companions, at
www.ladspa.org, for creating LADSPA in
the first place

• Steve Harris and his wonderful collection of
LADSPA plugins at http://plugin.org.uk

• Paul Davis and friends at
http://jackit.sf.net for jackd, our favourite
realtime audio server

LAC2005
119

• http://www.fluidsynth.org, namely Josh
Green, Peter Hanappe and colleagues for
the soundfont-based softsynth fluidsynth

• Dave Phillips and his great collection of
MIDI and audio links at http://linux-
sound.org

• ZKM for hosting this conference,
see the official LAC webpages at
http://www.zkm.de/lac

Before thanking the great bunch of peo-
ple who organised and host this event,
I want to mention my own webpage at
http://ltsb.sourceforge.net.

Great many thanks to Frank Neumann,
Matthias Nagorni, Götz Dipper and ZKM for
organising and hosting this conference! And
many thanks and apologies to all those I for-
got! Sorry to you, I didn’t mean to!

LAC2005
120

”terminal rasa” - every music begins with silence

Frank EICKHOFF
Media-Art, University of Arts and Design

Lorenz 15
76135 Karlsruhe,

Germany,
feickhof@hfg-karlsruhe.de

Abstract

An important question in software development is:
How can the user interact with the software? What
is the concept of the interface? You can analyze the
”interface problem” from two perspectives. One is
the perspective of the software developer. He knows
the main features of the software. From that point
he can decide what the interface should look like, or
which areas should be open for access. On the other
side is the perspective of the user. The user wants
an interface with special features.

The questions for audio software designed for live
performance are: What should the program sound
like? If software for live performance should have
features like an instrument, what features does an
acoustic instrument have, and what features should
a computer music instrument have? The first part of
this paper is concerned with music and sound, the
special attributes of acoustic instruments, and the
features of an average Personal Computer. The sec-
ond part of the paper presents the audio software
project ”fui” as a solution to the aforementioned
questions and problems.

Keywords

computer music instrument, interface problem

1 Introduction

The ”interface problem” is a very important as-
pect in audio software development. The inter-
face of a machine is not the device itself, but
rather the parts of the machine which are used
for interaction and exchange; the area between
the inner and the outer world of the machine.
The ”interface problem” is the problem of inter-
action between human and machine. For an in-
strument, it is the area between sound produc-
tion and sound modulation. Sound is produced
through specific methods or physical phenom-
ena. These methods of sound production can be
controlled through the manipulation of various
parameters. These parameters are the values
which should be open for access by the user. It
is possible to draw conclusions from the analy-
sis of sound to the possibilities of sound modu-

lation, which is interaction. Therefore, the first
item to consider is music.

2 Computer Music Instrument?
Music - Instrument - Computer

Silence, noise, and sound are the most basic el-
ements of the phenomenon that is music. What
music one wants to hear is an individual deci-
sion. Each has his own likes and dislikes. In
the first place, music is a matter of taste. An
instrument (acoustic or electronic) is a tool or
a machine to make music. Any of these tools
are designed with a special intention. The ba-
sis of this intention is a certain idea of sound
and timbre. One can say that the instrument
is a mechanical or electronical construcion of a
sound idea. What should my instrument sound
like? How can I construct this sound?

2.1 Acoustic Sound
Sound is nothing more than pressure differences
in the air. One can hear sound, but one can not
easily see it or touch it. The behavior of sound
in a space is complex and depends on the phys-
ical properties of the space. Thus, any visual
representation of sound must remain abstract,
and is necessarily a simplified model of the real
situation. The special character of sound is that
one can NOT see it.

2.2 Digital Sound
A computer calculates a chain of numbers which
can be played by a soundcard. Acoustic waves
are simulated by combinations of algorithms.
Such mathematical processes are abstract and
not visible. An audio application can run within
a shell process or even as a background process.
It does not require any visual or even statistical
feedback.

2.3 Instrument = Sound + Interface
At the point where one wants direct access to
the sound manipulating parameters of his soft-
ware or instrument, one needs some sort of an

LAC2005
121

interface. The construction of the interface is
derived on one hand from the timbre of the
sound. On the other hand, the interface has in-
fluence on the playability of the instrument and,
thus, on the sound aesthetic. The instrument is
the connection of sound with an interface.

2.3.1 Classic, Acoustic Instruments
A classical instrument like the violin or the pi-
ano is very old compared to the computer. The
structure and operation of acoustic instruments
has been optimized through years of usage. One
could say, then, that the instrument has a bal-
ance between optimized playability and a char-
acteristic tone colour / timbre. Every instru-
ment has its own unique sound.

2.3.2 Universal Computer
From the start the computer was developed as
a universal flexible calculating machine. The
”universal computer” works with calculating
operations and algorithms. Alan Turing proved
with his invention of the ”Turing machine” that
every problem which could be mechanized can
be solved by a computer calculation1. Other-
wise the computer ends up in an infinite loop
and without result. The ”Turing machine” does
not stop. It is obvious that the computer can
solve a huge amount of problems.

The computer interface is divided into hard-
ware and software interface. The hardware
setup of an ordinary personal computer is a key-
board, a monitor and a mouse. Software in-
terfaces are programs which can interact with
such hardware. The clarification of this concept
makes it easy to deal with the complex possibil-
ities of the computer.

2.4 Computer Music Instrument
When one wants to use the computer as an
instrument, one must combine the features of
an instrument with the features of a computer.
One needs to create a balance between playa-
bility, unique sound and the special character
of the computer, that is flexibility:

Sound vs Playability vs Flexibility

3 The ”fui” Audio Application

The audio application ”fui” is a sample loop
sequencer. The program is designed for ”live

1”On computable Numbers and an Application to the
Entscheidungsproblem”, Alan Turing, 1947

performance”, as such it is playable like an in-
strument. It is a simple tool to create short
rhythmic loops. It has a minimal sound charac-
teristic and serial or linear rhythmic aesthetic.
The user has two different interfaces. One is a
terminal for keyboard commands. The other is
a graphic window with a GUI (Graphical User
Interface) for the interaction with the mouse.

3.1 Short Description
The user can load audio samples into a se-
quence. Such sequences are played in a loop di-
rectly. He can move such samples to a specific
point in time within a sequence. Samples are
dragged and moved multiple times until the mu-
sic gets interesting. With this method it is easy
to construct rhythmic patterns. Every sample
can be modulated through the control of differ-
ent parameters (Filter, TimePitch, PitchShift,
Incremental or Decremental Loop). It is possi-
ble to create multiple sequences, and to switch
between them in a song like manner. Because of
the playback of the loops, the user gets a direct
response to all the changes he or she makes. The
music develops through improvising and listen-
ing.
3.1.1 Sound Effects
Every sample can be modulated with different
effects. The effect parameters are both static
and random. The ”pitch” control allows the
user to manipulate the pitch of the sample. The
”position” is the playback start value within a
sample. ”Loop” restarts the sample at the end
and ”count” is the number of repeats. ”Incre-
mental loop” or ”decremental loop” starts the
sample at the ”position” point, and the sample
length gets shorter or longer after every repeat.

3.2 Interaction - Interface
The ”fui” application uses the standard inter-
faces of an ordinary computer. Every interface
has its advantages and disadvantages. The ter-
minal program is specialized on keyboard con-
trol. The GUI is specialized on mouse control.
The ”fui” application uses both features (see
Figure 1).

Figure 1: ”fui” Interface

LAC2005
122

3.2.1 Terminal
Before the invention of the desktop computer
with GUI control there was only a terminal.
The terminal is one of the oldest software in-
terfaces to the processes of the computer. The
terminal works perfectly as an interface because
it is incorporated on many operating systems.
It operates simply on keyboard input and text
output. It is difficult to implement a compara-
ble interface in a mouse orientated GUI. When
there is a terminal anyway, why shouldn’t we
use it?
3.2.2 ”pet” - Pseudo emulated

Terminal
The first thing which is launched by ”fui” is
”pet” (pseudo emulated terminal). The idea
behind ”pet” is to use the terminal as a key-
board input and text output interface during
the runtime of the program. This object uses
the standard streams (stdout, stdin) for read-
ing and writing. The user can type in sim-
ple UNIX like commands (see Table 1) for file
browsing, changing the working directory, load-
ing files into the ”fui” software.

The ”ls” command prints out a list of the
current directory. The ”pet” object numbers all
files and folders in the directory (see Figure 2).

Figure 2: list Directory

The ”get” command loads a filename into the
”pet” command parser. The command argu-
ment is the filename or the number printed out
with ”ls” (see Figure 3). Some other commands
like ”cd” use the same method of file identifica-
tion. This method provides a simple and fast
way to load files or browse directories.

Figure 3: get Filename

3.2.3 ”pet” and ”fui”
The ”fui” software uses ”pet” file loading and
file browsing. The ”pet” object numbers all file
in a directory chronologically. When the user
loads a sample or creates a new sequence ”fui”

creates index numbers. The sample-ID is ”ID”
and the sequence-ID is ”SID”. For example,
when the user wants to call a specific sample
he has to know the sample-ID. The command
”la” prints out a list with all sample filenames,
information about position, pitch and IDs of the
current sequence.

cd PATH or NUM change directory
ls list directory,

files are numbered
start start audio
stop stop audio
open open GUI
load ’name’ load sequence
save ’name’ save sequence
new new sequence,

generates SID
dels delete sequence
la list all samples,

with ID and SID
get NAME or NUM load sample
del ID delete sample
seq SID set current sequence
loop TIME set loop time (ms)
loff ID loop off
lon ID infinite loop on
lr ID random loop
ld ID POS NUM decremental loop
li ID POS NUM incremental loop
pi ID VALUE set pitch value

Table 1: ”pet” Commands

3.2.4 Graphic User Interface
Sometimes the possibility of visualization,
graphical feedback of statistical values, or inter-
action is very useful. The ”fui” GUI is rendered
in OpenGL and has a very simple design. There
are text buttons (strings which function like a
button), text strings without any interactivity
and variable numbers to adjust parameters with
the mouse. Every control is listed in a simple
menu (see Figure 4). Some text buttons have
multiple states. Active GUI elements are ren-
dered in black, inactive elements are grey (see
Figure 5).

A vertical, dotted line is the loop cursor. The
cursor changes the position from left to right,
analog to the current time position of the loop.
Audio samples are drawn as rectangles (see Fig-
ure 6).

The width of the rectangle is proportional to
the length of the sample and the length of the

LAC2005
123

Figure 4: GUI Menu

Figure 5: GUI

sample loop in seconds which is the width of
the window. The sample can be moved with
the mouse within a two dimensional area (like
a desktop, table or ”tabula”).

Every new sequence has a blank area, a blank
table (”tabula rasa”).

3.3 Example Usage
Every music begins with silence. ”fui” starts as
a simple terminal application without any other
window or GUI (”terminal rasa”). After startup
the software waits for command line input (see
Figure 7).

The ”open” command opens the GUI win-
dow. The ”new” command creates a new,
empty sequence. ”fui” adds a new number to
the ”SID LIST” in the GUI window. This num-
ber is the new ID for the current sequence.
The ”start” command starts the audio play-
back. The loop cursor starts moving over the

Figure 6: Vertical Cursor and two Samples

Figure 7: Start Screen - ”terminal rasa”

window. Now, the user can browse the harddisk
for suitable samples. The ”get” command loads
a sample into the sequence. The user can move
the sample to a position within the GUI win-
dow. Every time the cursor reaches the sample,
the sample will be played (see Figure 8).

3.4 Sound - Playability - Flexibility

Sound, playability and flexibility have a mu-
tual influence on each other. The sound is de-
termined by the implementation of audio play-
back and audio manipulation. Many interesting
rhythms can be found by improvising and play-
ing with the software. Different interfaces and
the implementation of a powerful audio engine
enhance the flexibility of ”fui”.

3.4.1 Sound
The characteristic ”fui” sound comes from the
combination of short samples into rhythmic
loops. All samples are freely arranged within
the time frame of one sequence. There are no
restrictions imposed by time grids or ”bpm”
(beats per minute) tempo parameters. The user
has a simple visualization and a direct audio
playback.

3.4.2 Playability
The use of the UNIX like terminal and the sim-
ple GUI provide a simple and playful access
to the software. Different sound effects with

LAC2005
124

static or random modulation vary the sound.
All changes are made intuitively by the user
through listening. For example, a combination
of two samples which might sound boring at
first, can become very interesting with slight
changes to the position of one sample within
the time frame of the loop. A simple change of
one parameter can have an interesting result in
the music.

3.4.3 Flexibility - Audio API?
In the first place the source code should be
portable. This project was developed on an Ap-
ple Macintosh PISMO, G3, 500 Mhz, OSX 10.3
using the gcc compiler. Later it was ported
to Linux. The whole project was written in
ANSI C/C++ with OpenGL for graphic render-
ing. The ”Software Toolkit”2 from Perry Cook
and Gary Scavone is used for realtime audio file
streaming. The platform independent window
class from ”plib”3 is used for creating the ren-
der window.

Different audio engines are tested for the
main audio streaming:

”RtAudio”4 from Gary Scavone, ”Portau-
dio”5 from Ross Bencina, ”FMOD”6 from Fire-
light Technologies and ”JACK”7 from Paul
Davis ”and others”.

The ”JACK” API works as a sound server
within the operating system. Completely dif-
ferent audio applications, which are compiled as
”JACK” clients, can share audio streams with
each other. Now the developer does not need to
think about implementing some kind of plug-
in architecture in the software. Audio streams
can easily be shared in a routing program. It
is simply perfect for audio software developers.
From that point the use of the ”JACK” API
is the most flexible solution for the ”fui” audio
project.

4 Conclusions

Music is meant to be listened to. The idea of
”fui” is to establish a balance between the in-
terface and the characteristic sound of the com-
puter as a musical instrument. When one is
familiar with the special features and the his-
torical background of acoustic instruments and
computers in music AND the general differences

2http://ccrma.stanford.edu/software/stk/
3http://plib.sourceforge.net/
4http://music.mcgill.ca/
5http://www.portaudio.com
6http://www.fmod.org
7http://jackit.sourceforge.net/

between the two, it is possible to say that the
ideal combination of both media is a hybrid
and open environment. The design of the inter-
face is simple, minimal and experimental. The
sound aesthetic is linear with nested rhythmic
patterns. The user deals with the program in
a playful way and the music is created through
listening.

5 Acknowledgements

Götz Dipper, Frank Neumann, Anne Vortisch,
Dan Santucci

6 Project Webpage

http://www.theangryyoungcomputers.de/fui

LAC2005
125

Figure 8: ”fui” Screenshot

LAC2005
126

The MusE Sequencer: Current Features and Plans for the Future

Werner SCHWEER
 Ludgerweg 5

33442 Clarholz-Herzebrock, Germany
ws@seh.de

Frank NEUMANN
Bärenweg 26

76149 Karlsruhe, Germany
beachnase@web.de

Abstract

The MusE MIDI/Audio Sequencer[1] has been
around in the Linux world for several years
now, gaining more and more momentum.
Having been a one-man project for a long time,
it has slowly attracted several developers who
have been given cvs write access and
continuously help to improve and extend MusE.

This paper briefly explains the current feature
set, gives some insight into the historical
development of MusE, continues with some
design decisions made during its evolution, and
lists planned changes and extensions.

Keywords

MIDI, Audio, Sequencer, JACK, ALSA

1 Introduction

MusE is a MIDI/Audio sequencer which
somewhat resembles the look 'n' feel and
functionality of software like Cubase for
Windows. It is based on the concepts of
(unlimited) tracks and parts, understands both
internal and external MIDI clients (through the
ALSA[2] driver framework) and handles different
types of tracks: MIDI, drum and audio tracks. For
audio, it provides a built-in mixer with insert
effects, subgroups and a master out section and
allows to send the downmix to a soundcard, a new
audio track or to a file.

Through support of the LADSPA[3] standard, a
large amount of free and open effect plugins are
available to be used on audio tracks.

By being based on the JACK audio framework,
it is possible to both route other program's sound
output into MusE and route MusE's output to
other programs, for instance a mastering
application like Jamin[4].

MusE's built-in editors for MIDI/audio data
come close to the average PC application with

expected operations like selection, cut/copy/paste,
Drag&Drop, and more. Unlimited Undo/Redo
help in avoiding dataloss through accidental
keypresses by your cat.

2 Historical Rundown

MusE has been developed by german software
developer Werner Schweer since roughly January
2000. Early developments started even years
before that; first as a raw Xlib program, later
using the Tcl/Tk scripting language because it
provided the most usable API and nicest look at
that time (mid-90s). It was able to load and
display musical notes in a pianoroll-like display,
and could play out notes to a MIDI device through
a hand-crafted kernel module that allowed
somewhat timing-stable playback by using the
kernel's timers. MIDI data was then handled to the
raw MIDI device of OSS. As the amount of data
to be moved is rather small in the MIDI domain,
reasonable timing could be reached back then
even without such modern features as "realtime-
lsm" or "realtime-preempt" patches that we have
today in 2.6 kernels.

With a growing codebase, the code quickly
became too hard to maintain, so the switch to
another programming language was unavoidable.
Since that rewrite, MusE is developed entirely in
C++, employing the Qt[5] user interface toolkit by
Trolltech, and several smaller libraries for
housekeeping tasks (libsndfile[6], JACK[7]).

In its early form, MusE was a MIDI only
sequencer, depending on the Open Sound System
(OSS) by 4Front Technologies[8]. When the
ALSA audio framework became stable and
attractive (mid-2000), ALSA MIDI support was
added, and later on also ALSA audio output.
Summer 2001 saw the introduction of an
important new feature, the "MESS" (MusE
Experimental Soft Synth"). This allows for the
development of pluggable software synthesizers,
like the VSTi mechanism on Steinberg's Cubase

LAC2005
127

sequencer software for Windows.

At some point in 2003 the score editor which
was so far a part of MusE was thrown out (it was
not really working very well anyway) and has
then been reincarnated as a new SourceForge
project, named MScore[9]. Once it stabilizes, it
should be able to read and export files not only in
standard MIDI file format, but also in MusE's
own, XML-based .med format.

In October 2003 the project page moved to a
new location at SourceForge. This made
maintenance of some parts (web page, cvs access,
bug reporting) easier and allowed the team of
active developers to grow. Since this time, MusE
is undergoing a more streamlined release process
with a person responsible for producing releases
(Robert Jonsson) and the Linux-typical separation
into a stable branch (only bug fixes here) and a
development branch (new features added here).

In November 2003 the audio support was
reduced to JACK only. Obviously the ALSA
driver code inside JACK was more mature than
the one in MusE itself, and it was also easier to
grasp and better documented than the ALSA API.

Additionally, fully supporting the JACK model
meant instant interoperability with other JACK
applications. Finally, it had also become too much
of a hassle for the main developer to maintain
both audio backends. The data delivery model
which looked like a "push" model from outside
MusE until now (though internally it had always
used a separate audio thread that pulls the audio
data out of the engine and pushes it into the
ALSA pcm devices) has now become a clear
"pull" model, with the jackd sound server
collecting audio data from MusE and all other
clients connected to it, and sending that data out
to either pcm playback devices or back to JACK-
enabled applications.

It has been asked whether MusE can be used as
a simple "MIDI only" sequencer without any
audio support. The current CVS source contains
some "dummy JACK code" which gets activated
when starting MusE in debug mode. If the interest
in this is high enough, it might get extended into a
real "MIDI only" mode.

In early 2004, the user interface underwent
substantial changes when Joachim Schiele joined
the team to redesign a lot of pixmaps for

windows, menus, buttons and other user interface
elements. Finally, MusE also received the
obligatory splash screen!

Another interesting development of 2004 is that
it brought a couple of songs composed, recorded
and mixed with MusE. This seems to indicate that
after years of development work, MusE is slowly
becoming "ready for the masses".

3 Examples of Coding Decisions

(1) In earlier versions of MusE, each NoteOn
event had its own absolute time stamp telling
when this event should be triggered during
playback. When a part containing a set of
elements was moved to a different time
location, the time stamps of all events in this
part had to be offset accordingly. However,
when the concept of "clone copies" was
introduced (comparable to symlinks under
Linux: Several identical copies of a part exist,
and modifying an event in one part modifies its
instance in all other cloned copies), this posed
a problem: The same dataset is used, but of
course the timestamps have to be different.
This resulted in a change by giving all events
only a timestamp relative to the start of the part
it lives in. So, by adding up the local time
stamp and the offset of the part's start from the
song start, a correct event playback is
guaranteed for all parts and their clone copies.

(2)MIDI controller events can roughly be
separated into two groups: Those connected to
note events, and those decoupled from notes.
The first group is covered by note on/off
velocity and to some degree channel
aftertouch. The second group contains the
classic controllers like pitchbender, modulation
wheel and more. Now, when recording several
tracks of MIDI data which are all going to be
played back through the same MIDI port and
MIDI channel, how should recording (and later
playback) of such controller events be
handled? Also, when moving a part around,
should the controller data accompanying it be
moved too, or will this have a negative impact
on another (not moved) part on another track?
Cubase seems to let the user decide by asking
him this, but there might be more intelligent
solutions to this issue.

(3)The current development or "head" branch of
the MusE development allows parameter
automation in some points. How is parameter

LAC2005
128

automation handled correctly, for both MIDI
and audio? Take as an example gain
automation. For MIDI, when interpolating
between two volumes, you do normally not
want to create thousands of MIDI events for a
volume ramp because this risks flooding a
MIDI cable with too much data and losing
exact timing on other (neighbouring) MIDI
events. For audio, a much finer-grained
volume ramp is possible, but again if the rate at
which automation is applied (the so-called
"control rate") is driven to extremes (reading
out the current gain value at each audio frame,
at audio rate), too much overhead is created.
So instead the control rate is set to a somewhat
lower frequency than the audio rate. One
possible solution is to go for the JACK buffer
size, but this poses another problem: Different
setups use different values for sample rate
(44.1kHz? 48kHz? 96kHz?) or period size,
which means that the same song might sound
slightly different on different systems. This is
an ongoing design decision, and perhaps
communication with other projects will bring
some insight into the matter.

4 Weak Spots

There are a couple of deficiencies in MusE; for
all of these efforts are already underway to get rid
of them, though:
• There is a clear lack of documentation on the

whole software. This is already tackled,
however, by a collaborative effort to create a
manual through a Wiki-based approach[10].

• The developer base is small compared to the
code base, and there is a steep learning curve
for prospective new developers wishing to get
up to speed with MusE's internals. However,
this seems to be true for a lot of medium-sized
or large Open Source projects these days.
Perhaps better code commenting (e.g. in the
Doxygen[11] style) would help to increase
readability and understandability of the code.

• Not all parts of MusE are as stable as one
would want. One of the reasons is that the
focus has been more on features and
architecture than on stability for quite some
time, though since the advent of stable and
development versions of MusE this focus has
changed a bit and MusE is getting more stable.

5 Future Plans

The plans for the future are manifold - as can be
seen very often with open-source projects, there
are gazillions of TODO items and plans, but too
little time/resources to implement them all. What
follows is a list of planned features, separated into
"affects users" and "affects developers". Some of
these items are already well underway, while
others are still high up in the clouds.

5.1 Planned changes on the User level

• Synchronisation with external MIDI devices.
This is top priority on the list currently, and
while some code for MIDI Time Code (MTC)
is already in place, it needs heavy testing.
MusE can already send out MMC (MIDI
Machine Control) and MIDI Clock, but when
using MusE as a slave, there is still some work
to be done. There have been plans for a while
in the JACK team to make the JACK transport
control sample-precise, and this will certainly
help once it is in place.

• A file import function for the old (0.6.x) MusE
.med files. This has been requested several
times (so there are in fact people using MusE
for a while! ☺), and as all .med files (XML-
based) carry a file version string inside them, it
is no problem to recognize 1.0 (MusE 0.6.x)
and 2.0 (0.7.x) format music files.

• Complete automation of all controllers (this
includes control parameters in e.g. LADSPA
plugins).

• Mapping audio controllers to MIDI controllers:
This would allow using external MIDI control
devices (fader boxes, e.g. from Doepfer or
Behringer) to operate internal parameters and
functions (transport, mixer etc).

• A feature to align the tempo map to a freely
recorded musical piece (which will alter the
tempo map in the master track accordingly).
This would bring a very natural and "human"
way of composing and recording music while
still allowing to later add in more tracks, e.g.
drums.

• Support for DSSI soft synths (see below)
• A configurable time axis (above the track list)

whose display can be switched between
"measure/beat/tick", SMPTE (minute / second /
frame) and "wallclock time".

• The "MScore" program which has been
separated from MusE will start to become
useful for real work. It will make use of the
above mentioned new libraries, AWL and AL,

LAC2005
129

and will have a simple playback function built
in (no realtime playback though), employing
the fluidsynth software synthesizer. It will be
able to work with both .mid and .med files,
with the .med file providing the richer content
of the two. MScore is still lacking support for
some musical score feature like triplets and n-
tuplets, but this is all underway. A lot of code
is already in place but again requires serious
testing and debugging.

5.2 Planned changes on the Developer level

• Better modularisation. Two new libraries are
forming which will become external packages
at some point: "AWL" (Audio Widget Library)
which provides widgets typically found in the
audio domain, like meters, location indicators,
grids or knobs, and "AL" (audio library) which
features house-holding functions like
conversion between a tempo map (MIDI ticks)
and "wallclock time" (SMPTE: hh:mm:ss:ff).

• Also, MESS soft synths shall get detached
from the MusE core application so that they
can get built easier and with less dependencies.
This reduces the steepness of the learning
curve for new soft synth developers.

• The new "DSSI"[12] (Disposable SoftSynth
Interface) is another desired feature. Already
now the "VST" and "MESS" classes have a
common base class, and adding in support for
DSSI here should not be too complicated.

• The creation of a "demosong regression test
suite" will be helpful in finding weak spots of
the MIDI processing engine. This could
address issues like MIDI files with more than
16 channels, massive amounts of controller
events in a very short time frame, SysEx
handling, checks for "hung notes" and more.
Getting input and suggestions from the
community on this topic will be very helpful!

6 Conclusions

MusE is one of the best choices to compose
music under Linux when the "classical" approach
(notes, bars, pattern, MIDI, samples) is required.

Thanks to the integration with the existing
ALSA and JACK frameworks, it can interact with
other audio applications to form a complete
recording solution, from the musical idea to the
final master.

7 Other Applications

There are some other MIDI/audio applications
with a similar scope as MusE; some of them are:
• Rosegarden[13], a KDE-based notation

software and sequencer
• Ardour[14], turning a computer into a digital

audio workstation
• seq24[15], a pattern-based sequencer (MIDI-

only) and live performance tool
• Cheesetracker[16], a "classic" pattern-oriented

tracker application
• Beast[17], an audio sequencer with a built-in

graphical modular synthesis system

Besides these, there are already numerous soft
synthesizers/drum machines/samplers etc that are
able to read MIDI input through ALSA and send
out their audio data through JACK; these
programs can be controlled from within MusE and
thus extend its sound capabilities. However,
connecting them with MusE MIDI- and audiowise
is more complicated, and can cause more
overhead due to context switches.

8 Acknowledgements

The authors wish to acknowledge the work of
everyone helping in turning a Linux-based
computer into a viable and free alternative to
typical commercial audio systems. No matter
whether you are developing, testing, documenting
or supporting somehow – thank you!

References

[1] http://www.muse-sequencer.org

[2] http://www.alsa-project.org

[3] http://www.ladspa.org

[4] http://jamin.sourceforge.net

[5] http://www.trolltech.com/products/qt/index.html

[6] http://www.mega-nerd.com/libsndfile/

[7] http://jackit.sourceforge.net

[8] http://www.4front-tech.com

[9] http://mscore.sourceforge.net
[10] http://www.muse-sequencer.org/wiki/index.php/Main_Page

[11] http://www.doxygen.org

[12] http://dssi.sourceforge.net

[13] http://www.rosegardenmusic.com

[14] http://www.ardour.org

[15] http://www.filter24.org/seq24/index.html

[16] http://www.reduz.com.ar/cheesetronic

[17] http://beast.gtk.org

LAC2005
130

ZynAddSubFX – an open source software synthesizer

Nasca Octavian PAUL
Tg. Mures, Romania

zynaddsubfx@yahoo.com

Abstract

ZynAddSubFX is an open source real­
time software synthesizer that produces many
types of sounds. This document will present the
ZynAddSubFX synthesizer and some ideas that are
useful in synthesizing beautiful instruments
without giving too much (mathematical) detail.

Keywords

Synthesizer, bandwidth, harmonics.

1 Introduction

The ZynAddSubFX software synthesizer has
polyphonic, multi­timbral and microtonal
capabilities. It has powerful synth engines, many
types of effects (Reverberation, Echo, Chorus,
Phaser, EQ, Vocal Morpher, etc.) and contains a
lot of innovations. The synthesizer engines were
designed to make possible many types of sounds
by using various parameters that allow the user to
control every aspect of the sound. Special care was
taken to reduce the amount of computation in
order to produce the sound, but without lowering
it's quality.

2 ZynAddSubFX structure

ZynAddSubFX has three synth engines and
allows the user to make instrument kits. In order to
make possible to play multiple at the instruments
same time, the synth is divided into a number of
parts. One part can contain one instrument or one
instrument kit. The effect can be connected as
System Effects, Insertion Effects and Part Effect.

The system effects are used by all parts, but the
user can choose the amount of the effect for each
part. The Insertion Effects are connected to one
part or to the audio output. The Part Effects are a
special kind of effect that belong to a single part,
and they are saved along the instrument.

2.1 Synth engines

The engines of ZynAddSubFX are: ADDsynth,
SUBsynth and PADsynth. In the Fig.1 it shows the
structure of these engines:

1) ADDsynth
The sound is generated by the oscillator. The
oscillator has different kind of parameters, like
the harmonic type(sine, saw, square, etc.), the
harmonic content, the modulations,
waveshapers, filters. These parameters allow
the oscillators to have any shape. A very
interesting parameter of the oscillator is called
“adaptive harmonics”. This parameter makes
possible very realistic sounds, because it allows
to control how the resonances appear on
different pitches. The oscillators includes a very
good anti­aliasing filter that avoids aliasing
even at the highest pitches. If the user wants,
the oscillator can be modulated by another
oscillator(called the “modulator”) using the
frequency modulation, phase modulation or the
ring modulation. The frequency of the
oscillators can be changed by the low frequency
oscillators and envelopes. After the sound is
produced by the oscillator, it passes through

Fig. 1 Synth engines

LAC2005
131

filters and amplitude changers controlled by
LFOs and envelopes.
An oscillator with a modulator and the
amplitude/frequency/filter envelopes is called a
“voice”. The ADDsynth contains more voices.
The output of voices is added together and the
result is passed through another amplitude/filter
envelopes and LFO. A interesting feature is that
the output of the voice can be used to modulate
a oscillator from another voice, thus making
possible to use modulation stacks. All the
oscillators that are not modulators can pass
through a resonance box.

2) SUBsynth
This module produces sound by generating a
white noise, filtering each harmonic(with band­
pass filters) from the noise and adding the
resulting harmonics. The resulting sound passes
through a amplitude envelope and a filter
controlled by another envelope.

3) PADsynth
This synth engine is the most innovative feature
in ZynAddSubFX. It was designed following to
the idea that the harmonics of the sounds are
not some simple frequencies, but are rather are
spread over a certain band of frequencies. This
will be discussed later..
Firstly there will be generated a long sample (or
few samples) according to the settings in this
engine (like the frequency spread of the
harmonics, the bandwidth of each harmonic,
the position of the harmonics, etc..). After this,
the sample is played at a certain speed in order
to achieve the desired pitch.
Even though this engine is more simpler than
ADDsynth, the sounds generated by it are very
good and make possible very easy generation of
instruments like pads, choirs, and even metallic
noises like bells, etc.

2.2 Instrument/Part structure

The structure of the Parts are drawn in Fig.2.

The sum of the output of the ADDsynth,
SUBsynth and PADsynth engines is called “kit
item”, because ZynAddSubFX allows a part to
contain several kit items. These kit's items can be
used to make drum kits or even to obtain multi­
timbrality for a single part (for dual instruments,
like a bell+strings or rhodes+voice) The output of
them can be processed by the part's effects. The
instrument kit with the part effects is considered to
be an instrument and saved/loaded into the
instrument banks. An instrument, usually contains
only one kit item.

2.3 ZynAddSubFX main structure

The main structure of ZynAddSubFX is drawn
in the Fig.3.

As seen from the Fig.3, the part's output is sent
to insertion effect and, after this, the signal can
pass through system effects. A useful feature of the
system effects is that the output of one system
effect can go to the next system effect. Finally, the
sound passes through the master insertion effects
(they could be a EQ or a reverberation, or any

Fig. 3

Fig. 2

LAC2005
132

other effect) and, after this, the sound is send to
the audio output.

3 Design principles

This section presents some design principles and
some ideas that were used to make the desired
sounds with ZynAddSubFX.

3.1 The bandwidth of each harmonic

This considers that the harmonics of the pitched
sounds are spread in frequency and are not a single
sine function.

Fig. 4 A narrow band harmonic vs. a wide band
harmonic

This helps to produce “warm” sounds, like choir,
orchestra or any other ensembles. So the
bandwidth of each harmonic can be used to
measure the ensemble effect.

An important aspect about the bandwidth of
each harmonic is the fact, that if you'll measure it
in Hz, it increases for higher harmonics. For
example, if a musical tone has the “A” pitch
(440Hz) and the bandwidth of the first harmonic is
10 Hz, the bandwidth of the second harmonic will
be 20 Hz, the bandwidth of the third harmonic will
be 30 Hz, etc..

Fig.5 Higher harmonics has a higher bandwidth

 Because of this, if the sound has enough
harmonics, the upper harmonics merge to a
continuous frequency band (Fig.6).

Fig. 6 Higher harmonics merges to a continuous
frequency band

Each ZynAddSubFX module was designed to
allow easy control of the bandwidth of harmonics
easily:

– by detuning the oscillators from
ADDsynth module and/or adding
“vibrato”.

– in SUBsynth, the bandwidth of each
bandpass filter controls the bandwidth
of the harmonics

– the PADsynth module uses this idea
directly, because the user can control
the frequency distribution of each
harmonic.

3.2 Randomness

The main reason why the digital synthesis
sounds too "cold" is because the same recorded
sample is played over and over on each keypress.
There is no difference between a note played first
time and second time. Exceptions may be the
filtering and some effects, but these are not
enough. In natural or analogue instruments this
does not happen because it is impossible to
reproduce exactly the same conditions for each
note. All three synth engines allow the user to use
randomness for many parameters.

3.3 Amplitude decrease of higher harmonics
on low velocity notes

All natural notes have this property, because on
low velocity notes there is not enough energy to
spread to higher harmonics. In ZynAddSubFX you
can do this by using a lowpass filter that lowers the
cutoff frequency on notes with low velocities or, if
you use FM, by lowering the modulator index.

LAC2005
133

3.4 Resonance

If you change the harmonic content of the sound
in order to produce higher amplitudes on certain
frequencies and keep those frequencies constant,
the listener will perceive this as if the instrument
has a resonance box, which is a very pleasant
effect to the ears. In ZynAddSubFX this is done
by:

• using the Resonance function in
ADDsynth and SUBsynth

• using the Adaptive Harmonics function
from the Oscillators

• using filters, EQ or Dynamic filter
effects

4 Basic blocks of ZynAddSubFX

4.1 Low Frequency Oscillators

These oscillators do not produce sounds
by themselves, but rather change some parameters
(like the frequency, the amplitude or the filters).

The LFOs have some basic parameters like
the delay, frequency, start phase and depth. These
parameters are shown in the Fig.7.

Another important LFO parameter is the
shape. There are many LFO types according to the
shape. ZynAddSubFX supports the following LFO
shapes (Fig. 8):

ZynAddSubFX's LFOs have other parameters,
like frequency/amplitude randomness, stretch, etc.

In the user interface the LFO interface is shown
like this (fig.9):

4.2 Envelopes

 Envelopes control how the amplitude, the
frequency or the filter change over time. There are
three types of envelopes: Amplitude Envelope,
Frequency Envelope and Filter Envelope. All
envelopes have 2 modes: parameter control (like
ADSR – Attack­Decay­Sustain­Release, ASR –
Attack­Sustain­Release) or Freemode, where the
envelope can have any shape.

The ADSR envelopes control the amplitudes
(fig. 10).

The following images show the filter envelope
as parameter control mode(Fig.11) or freemode
(Fig.12).

Fig. 7

Fig. 10 Envelopes

Fig. 11 Filter envelope user interface

Fig. 12 Free­mode envelope user interface

Fig. 8

Fig. 9 LFO interface

LAC2005
134

4.3 Filters

ZynAddSubFX supports many types of filters.
These filters are:
1. Analog filters:

• Low/High Pass (1 pole)
• Low/Band/High Pass and Notch (2 poles)
• Low/High Shelf and Peak (2 poles)

2. Arbitrary format filters
3. State Variable Filters

• Low/Band/High Pass
• Notch

The analog filter's frequency responses are are
shown in the Fig.13.

Fig. 13 Analog filter types and frequency response

The filters have several parameters that allow to
get many types of responses. Some of these
parameters are center/cutoff frequency, Q (this is
the bandwidth of bandpass filters or the resonance
of the low/high pass filters), gain (used by the
peak/shelf filters).

Fig.14 shows how the Q parameter changes the
filter response:

Fig. 14 “Q” parameter and filter frequency response

The Analog and State­Variable filters have a
parameter that allows the user to apply the filtering
multiple times in order to make a steeper
frequency response, as is shown in the Fig.15.

Fig. 15 Applying filter multiple times
The formant filters are a special kind of filter

which can produce vowel­like sounds, by adding
several formants together. A formant is a
resonance zone around a frequency that can be
produced by a bandpass filter. The user, also can
specify several vowels that are morphed by
smoothly changing the formants from one vowel to
another.

Fig. 16 shows a formant filter that has an “A”
and “E” vowel and how the morphing is done:

Fig. 16 Formant filter freq. response and morphing

5 ZynAddSubFX interaction to other
programs

ZynAddSubFX receives MIDI commands from
an OSS device or it can make a ALSA port that
allows other programs (like Rosegarden or MusE
sequencers) to interact with it. The audio output
can be OSS or JACK.

6 Conclusion

ZynAddSubFX is an open source software
synthesizer that produces sounds like commercial
software and hardware synthesizers(or even
better). Because it has a large number of
parameters, the user has access to many types of
musical instruments. Also, by using the idea of the
bandwidth of each harmonic the sounds which are
produced are very beautiful.

References

[1] http://zynaddsubfx.sourceforge.net

LAC2005
135

LAC2005
136

This document was written as accompanying material to a presentation at the 3rd International Linux Audio Conference 2005 in
Karlsruhe, Germany.

Music Synthesis Under Linux

Tim Janik
University of Hamburg, Germany

timj@gtk.org

ABSTRACT

While there is lots of desktop software emerging for Linux which is being used productively by many end-
users, this is not the case as far as music software is concerned. Most commercial and non-commercial music is
produced either without software or by using proprietary software products. With BEAST, an attempt is made
to improve the situation for music synthesis. Since most everything that is nowadays possible with hardware
synthesizers can also be processed by stock PC hardware, it's merely a matter of a suitable implementation to
enable professional music production based on free software. As a result, the development of BEAST focuses
on multiple design goals. High quality demands are made on the mathematical characteristics of the synthesis,
signals are processed on a 32-bit-basis throughout the program and execution of the synthesis core is fully real-
time capable. Furthermore, the synthesis architecture allows scalability across multiple processors to process
synthesis networks. Other major design goals are interoperability, so the synthesis core can be used by third-
party applications, and language flexibility, so all core functionality can be controlled from script languages
like scheme. In addition, the design of all components accounts for an intense focus on the graphical user
interface to allow simple and if possible intuitive operation of the program.

Keywords

Modular Synthesis, MIDI Sequencer, Asynchronous
Parallel Processing, Pattern Editor.

1 BEAST/BSE - An Overview

BEAST is a graphical front-end to BSE which is
a synthesis and sequencing engine in a separate
shared library. Both are being released under the
GPL and are being developed as free software for
the best part of a decade. Since the first public
release, some parts have been rolled out and
reintegrated into other Projects, for instance the
BSE Object system which became GObject in
Glib. The programming interface of BSE is
wrapped up by a glue layer, which allows for
various language bindings. Currently a C binding
exists which is used by BEAST. A C++ binding
exists which is used to implement plugins for BSE
and there also is a Scheme binding which is used
for application scripting in BEAST or scripting
BSE through the scheme shell bsesh.

BEAST allows for flexible sound synthesis and
song composition based on utilization of synthesis
instruments and audio samples. To store songs and
synthesis settings, a special BSE specific hybrid
text/binary file format is used which allows for

seamless integration of audio samples, synthesis
instruments and sequencing information.

Since the 0.5 development branch, BEAST
offers a zoomable time domain display of audio
samples with preview abilities. Several audio file
formats are supported, in particular MP3, WAV,
AIFF, Ogg/Vorbis and BseWave which is a hybrid
text/binary file format used to store multi samples
with loop and other accompanying information. A
utility for creation, compression and editing of
BseWave files is released with version 0.6.5 of
BEAST. Portions of audio files are loaded into
memory on demand and are decoded on the fly

Wave View Dialog

LAC2005
137

even for intense compression formats like
Ogg/Vorbis or MP3. This allows for processing of
very large audio files like 80 megabytes of MP3
data which roughly relates to 600 megabytes of
decoded wave data or one hour of audio material.
To save decoding processing power, especially for
looped samples, decoded audio data is cached up
to a couple of megabytes, employing a sensible
caching algorithm that prefers trashing of easily
decoded sample data (AIFF or WAV) over
trashing processing intense data (Ogg/Vorbis).

The synthesis core runs asynchronously and
performs audio calculations in 32-bit floating point
arithmetic. The architecture is designed to support
distribution of synthesis module calculations
across multiple processors, in case multiple
processors are available and the operating system
supports process binding. In principle the sampling
rate is freely adjustable, but it is in practice limited
by operating system IO capabilities. The generated
audio output can be recorded into a separate wave
file.

The graphical user interface of BEAST sports
concurrent editing of multiple audio projects, and
unlimited undo/redo functionality for all editing
functions. To easily give audio setups a try and for
interactive alterations of synthesis setups, real-time
MIDI events are processed. This allows utilization
of BEAST as a ordinary MIDI synthesizer.

Since the complete programming interface of the
synthesis core is available through a scheme shell,
BEAST allows registration of scheme scripts at
startup to extend its functionality and to automate
complex editing tasks.

2 Song Composition

Songs consist of individual tracks with
instruments assigned to them, and each track may
contain multiple parts. A part defines the notes that
are to be played for a specific time period.

The type of instrument assigned to a track is
either a synthesis instrument, or an audio sample.
Synthesis instruments are separate entities within
the song's audio project and as such need to be
constructed or loaded before use. In current
versions, to enable sound compression or echo
effects, post processing of audio data generated by
a track or song is supported by assigning
designated post processing synthesis meshes to
them which simply act as ordinary audio filters,
modifying the input signal before output.

The post processing mechanism is currently
being reworked, to integrate with the audio mixer
framework that started shipping in recent versions
of the 0.6 development branch. In the new audio
mixer, audio busses can freely be created and
connected, so volume metering or adjustment and
effects processing is possible for arbitrary
combinations of tracks and channels. Other
standard features like muting or solo playback of
busses are supported as well.

To allow editing of parts, a zoomable piano roll
editor is supplied. Notes can be positioned by
means of drag-and-drop in a two dimensional
piano key versus time grid arrangement. This
enables variation of note lengths and pitch through
modification of note placement and graphical
length. The piano keys also allow preview of
specific notes by clicking on or dragging about.
Also many other standard editing features are
available via context menu or the toolbar, for
instance note and event selection, cutting, pasting,
insertion, quantization and script extensions. MIDI
events other than notes, such as velocity or volume
events can also be edited in an event editor region
next to the piano roll editor. Newer versions of
BEAST even sport an experimental pattern editor
mode, which resembles well-known sound tracker
interfaces. The exact integration of pattern mode
editing with MIDI parts is still being worked out
though.

Similar to notes within parts, the individual parts
are arranged within tracks via drag-and-drop in the
zoomable track view. Tracks also allow links to
parts so a part can be reused multiple times within
multiple tracks or a single track. The track view
also offers editing abilities to select individual
tracks to be processed by the sequencer,
specification of the number of synthesis voices to
be reserved and adding comments.

Piano Roll and MIDI Event Dialog

LAC2005
138

3 Synthesis Characteristics

The synthesis facilities of the standard 0.6
development branch of the BEAST distribution,
roughly equates the facilities of a simple modular
synthesizer. However the quality and number of
the supplied synthesis modules is constantly being
improved.

Various synthesis modules are available.
Amongst the audio sources are an Audio
Oscillator, a Wave Oscillator, Noise, Organ and a
Guitar Strings module. Routing functionality is
implemented by modules like Mixer, Amplifier,
ADSR-Envelope, Adder, Summation, Multiplier
and Mini Sequencer. Various effect modules are
also supplied, many based on recursive filters, i.e.
Distortion, Reverb, Resonance, Chorus, Echos and
the list goes on. Finally, a set of connection or IO
modules is supplied for instrument input and
output, MIDI input or synthesis mesh
interconnection.

Apart from the synthesis modules shipped with
the standard distribution, BSE also supports
execution of LADSPA modules. Unfortunately,
limitations in the LADSPA parameter system
hinder seamless integration of LADSPA modules
into the graphical user interface.

In general, the modules are implemented
aliasing free, and highly speed optimized to allow
real-time applicability. Per module, multiple
properties (phase in an oscillator, resonance
frequency of filters, etc...) are exported and can be
edited through the user interface to alter synthesis
functionality. A large part of mutable module
parameters is exported through separate input or
output channels, to allow for maximum flexibility
in the construction of synthesis meshes.

BEAST generally does not differentiate between
audio and control signals. Rather, the control or

audio character of a signal is determined by the
way of utilization through the user.

The graphical user interface provides for simple
access to the construction and editing functionality
of synthesis networks. Modules can be selected
from a palette or context menu, and are freely
placeable on a zoomable canvas. They are then
connected at input and output ports via click-and-
drag of connection lines. For each module, an
information dialog is available and separate
dialogs are available to edit module specific
properties. Both dialogs are listed in the module
context menu. Properties are grouped by functional
similarities within editing dialogs, and many input
fields support multiple editing metaphors, like
fader bars and numeric text fields. All property and
connection editing functions integrate with the
project hosted undo/redo mechanism, so no editing
mistakes committed can be finally destructive.

3.1 Voice-Allocation

The maximum number of voices for the
playback of songs and for MIDI controlled
synthesis can be specified through the graphical
user interface. Increasing this number does not
necessarily result in an increase in processor load,
it just sets an upper limit within which polyphonic
synthesis is carried out. To reduce processor load
most effectively, the actual voice allocation is
adjusted dynamically during playback time. This is
made possible by running the synthesis core
asynchronously to the rest of the application, and
by preparing a processing plan which allows for
concurrent processing of voice synthesis modules.
This plan takes module dependencies into account
which allows distribution of synthesis module
processing tasks across multiple processors.
Execution of individual processing branches of
this plan can be controlled with sample
granularity. This allows suspension of module

LAC2005
139

branches from inactive voices. The fine grained
control of processing activation which avoids
block quantization of note onsets allows for
precise realization of timing specifications
provided by songs.

4 User experience and documentation

Like with most audio and synthesis applications,
BEAST comes with a certain learning curve for
the user to overcome. However, prior use of
similar sequencing or synthesis applications may
significantly contribute to reduction of this initial
effort. The ever growing number of language
translations can also be of significant help here,
especially for novice users. BEAST does not
currently come with a comprehensive manual, but
it does provide a “Quick Start” guide which
illustrates the elementary editing functions, and the
user interface is equipped with tooltips and other
informative elements explaining or exemplifying
the respective functionality. Beyond that,
development documentation for the programming
interfaces, design documents, an FAQ, Unix
manual pages and an online “Help Desk” for
individual user problems are provided, accessible
through the “Help” menu.

5 Future Plans

Although BEAST already provides solid
functionality to compose songs and work with
audio projects, there is still a long list of todo items
for future development.

Like with any free software project with an open
development process, we appreciate contributions
and constructive criticism, so some of the todo
highlights are outlined here:
● Extend the set of standard instruments

provided.
● Implement more advanced effect and distortion

modules.
● Adding a simple GUI editor for synthesis mesh

skins.
● Implementing new sound drivers, e.g.

interfacing with Jack.
● New instrument types are currently being

worked on such as GUS Patches.
● Support for internal resampling is currently in

planning stage.
● Extending language bindings and

interoperability.

6 Acknowledgements

Our thanks go to the long list of people who
have contributed to the BEAST project over the

years.

7 Internet Addresses

BEAST home page:
http://beast.gtk.org

Contacts, mailing list links, IRC channel:
http://beast.gtk.org/contact.html

Open project discussion forums:
http://beast.gtk.org/wiki:BeastBse

8 Abbreviations and References

ADSR – Attack-Decay-Sustain-Release, envelope
phases for volume shaping.

BEAST - Bedevilled Audio System,
http://beast.gtk.org.

BSE - Bedevilled Sound Engine.
C++, C - Programming languages,

http://www.research.att.com/~bs/C++.html.
FAQ – Frequently Asked Questions.
GLib - Library of useful routines for C

programming, http://www.gtk.org.
GObject - GLib object system library.
GPL - GNU General Public License,

http://www.gnu.org/licenses/gpl.html.
GUI – Graphical User Interface.
GUS Patch – Gravis Ultrasound Patch audio file

format.
IRC – Internet Relay Chat.
Jack - Jack Audio Connection Kit,

http://jackit.sourceforge.net.
LADSPA - Linux Audio Developer's Simple

Plugin API, http://www.ladspa.org.
MIDI - Musical Instruments Digital Interface,

http://www.midi.org/about-
midi/specshome.shtml.

MP3, WAV, AIFF - sound file formats,
http://beast.gtk.org/links-related.html.

Ogg/Vorbis - open audio codec,
http://www.xiph.org/ogg/vorbis.

LAC2005
140

AGNULA Libre Music - Free Software for Free Music

Davide FUGAZZA and Andrea GLORIOSO
Media Innovation Unit - Firenze Tecnologia

Borgo degli Albizi 15
50122 Firenze

Italy
d.fugazza@miu.firenzetecnologia.it, a.glorioso@miu.firenzetecnologia.it

Abstract

AGNULA Libre Music is a part of the larger AG-
NULA project, whose goal as a european–funded
(until April 2004) and as mixed private–volunteer
driven (until today) project was to spread Free Soft-
ware in the professional audio and sound domains;
specifically, AGNULA Libre Music (ALM from now
on) is a web–based datase of music pieces licensed
under a “libre content” license. In this paper1 An-
drea Glorioso (former technical manager of the AG-
NULA project) and Davide Fugazza (developer and
maintainer of AGNULA Libre Music) will show the
technical infrastructure that powers ALM, its rela-
tionship with other, similar, initiatives, and the so-
cial, political and legal issues that have motivated
the birth of ALM and are driving its current devel-
opment.

Keywords

AGNULA, libre content, libre music, Creative Com-
mons

1 The AGNULA project — a bit of
history

In 1998 the situation of sound/music Free Soft-
ware applications had already reached what
could be considered well beyond initial pio-
neeristic stage. At that time, the biggest prob-
lem was that all these applications were dis-
persed over the Internet: there was no common
operational framework and each and every ap-
plication was a case-study by itself.

But when Marco Trevisani proposed (this
time to Nicola Bernardini, Günter Geiger,
Dave Phillips and Maurizio De Cecco) to build
DeMuDi (Debian Multimedia Distribution) an
unofficial Debian-based binary distribution of
sound/music Free Software, something hap-
pened.

1This paper is Copyright c© 2005 Fugazza, Glo-
rioso and Copyright c© 2005 Firenze Tecnologia.
It is licensed under a Creative Commons BY-
SA 2.0 License (see http://creativecommons.org/li-
censes/by-sa/2.0/legalcode).

Nicola Bernardini organized a workshop in
Firenze, Italy at the beginning of June 2001,
inviting an ever–growing group of support-
ers and contributors (including: Marco Tre-
visani, Günter Geiger, Dave Phillips, Paul
Davis, François Déchelle, Georg Greve, Stanko
Juzbasic, Giampiero Salvi, Maurizio Umberto
Puxeddu and Gabriel Maldonado). That was
the occasion to start the first concrete DeMuDi
distribution, the venerable 0.0 alpha which was
then quickly assembled by Günter Geiger with
help from Marco Trevisani. A bootable CD-
version was then burned just in time for the
ICMC 2001 held in La Habana, Cuba, where
Günter Geiger and Nicola Bernardini held a tu-
torial workshop showing features, uses and ad-
vantages of DeMuDi(Déchelle et al., 2001).

On November 26, 2001 the European Com-
mission awarded the AGNULA Consortium —
composed by the Centro Tempo Reale, IR-
CAM, the IUA-MTG at the Universitat Pom-
peu Fabra, the Free Software Foundation Eu-
rope, KTH and Red Hat France — with con-
sistent funding for an accompanying measure
lasting 24 months (IST-2001-34879). This ac-
companying measure, which was terminated on
March 31st 2004, gave considerable thrust to
the AGNULA/DeMuDi project providing sci-
entific applications previously unreleased in bi-
nary form and the possibility to pay professional
personnel to work on the distribution.

After the funded period, Media Innovation
Unit, a component of Firenze Tecnologia (itself
a technological agency of the Chamber of Com-
merce of Firenze) has decided to partly fund
further AGNULA/DeMuDi developments. Free
Ekanayaka2 is the current maintainer of the dis-
tribution.

AGNULA has constituted a major step in the
direction of creating a full-blown Free Software
infrastructure devoted to audio, sound and mu-

2free@miu-ft.org

LAC2005
141

sic, but there’s much more to it: it is the first
example of a European-funded project to clearly
specify the complete adherence of its results to
the Free Software paradigm in the project con-
tract, thus becoming an important precedent for
similar projects in the future (Bernardini et al.,
2004).

2 AGNULA Libre Music:
sociopolitics

On February 2003 Andrea Glorioso was ap-
pointed as the new technical manager of the
AGNULA project, replacing Marco Trevisani
who had previously served in that position
but was unable to continue contributing to the
project due to personal reasons.

This is not the place to explain in detail how
the new technical manager of the AGNULA
project tackled the several issues which had to
be handled in the transition, mainly because of
the novelty of the concept of “Free Software”
for the European Commission (a novelty which
sometimes resulted in difficulties to “speak a
common language” on project management is-
sues) and of the high profile of the project itself,
both inside the Free Software audio community
— for being the first project completely based
on Free Software and funded with european

money — and in the European Commission —
for being the first project completely based

on Free Software and funded with european
money (Glorioso,).

The interesting point of the whole story —
and the reason why it is cited here — is that
the new Technical Manager, in agreement with
the Project Coordinator (Nicola Bernardini, at
the time research director of Centro Tempo
Reale) decided to put more attention on the
“social” value of project, making the life of
the project more open to the reference com-
munity (i.e. the group of users and devel-
opers gravitating around the so called LA*
mailing lists: linux-audio-announce,3 linux-
audio-users,4 linux-audio-dev5) as well as creat-
ing an AGNULA community per se.

In September 2003, when the first idea of AG-
NULA Libre Music was proposed to the Project
Coordinator by the Technical Manager for ap-

3http://www.music.columbia.edu/mailman/list-
info/linux-audio-announce

4http://www.music.columbia.edu/mailman/list-
info/linux-audio-announce

5http://www.music.columbia.edu/mailman/list-
info/linux-audio-announce

proval,6 the zeitgeist was ripe with the “Com-
mons”.

A number of relevant academic authors from
different disciplines had launched a counter–
attack against what was to be known as the
“new enclosure movement”, (Boyle, 2003): the
attempt of a restricted handful of multinational
enterprises to lobby (quite succesfully) for new
copyright extension and a stricter application of
neighbouring rights.

The result of this strategy on behalf of the
multinational enterprises of the music business
was twofold: on the one hand, annoying tens
of thousands of mostly law–abiding consumers
with silly lawsuits that had no chance of stand-
ing in the court7;8 on the other hand, motivat-
ing even more authors to escape the vicious cir-
cle of senseless privatization that this system
had taken to its extremes.

It seemed like a good moment to prove that
AGNULA really wanted to provide a service
to its community, and that it really had its
roots (and its leaves, too) in the sort of “peer-
to-peer mass production” (Benkler, 2002) that
Free Software allowed and, some would argue,
called for. After investing a major part of its
human and financial resources on creating the
project management infrastructure for working
on the two GNU/Linux distributions the project
aimed to produce, it was decided that a web–
accessible database of music would be created,
and the music it hosted would be shared and
made completely open for the community at
large.

Davide Fugazza was hired as the chief archi-
tect and lead developer of AGNULA Libre Mu-
sic, which saw its light in February 2004.9

2.1 Libre Content vs Libre Software

What might be missing in the short history of
ALM is that the decision to allow for the Eu-
ropean Commission funding to be spent on this

6The reader should remember that AGNULA, being
a publicly financed project, had significant constraints
on what could or could be done during its funded life-
time — the final decision and responsibility towards the
European Commission rested in the hands of the Project
Coordinator.

7http://www.groklaw.net/article.php?story=-
20040205005057966

8In fact, it can be argued that the real strategic rea-
son of these lawsuits had a marketing/PR reason rather
than substantial grounds, which does not make them less
effective in the short term.

9See http://lists.agnula.org/pipermail/a-
nnounce/2004-February/000041.html

LAC2005
142

sub–project of the main AGNULA project was
not an easy one, for several reasons:

• The European Commission, as all large po-
litical bodies, is under daily pressure by
several different lobbies;10 the “all rights
reserved” lobby, which is pressuring for
an extension of copyright length and of
the scope of neighbouring rights, was par-
ticularly aggressive at the time the ALM
project was launched (and still is, by the
way). This made financing a project, whose
primary goal was to distribute content with
flexible copyright policies, questionable in
the eyes of the EC (to say the least);

• Software is not content in the eyes of the
European Commission, which maintains
a very strict separation between the two
fields in its financing programmes.11 Using
money originally aimed at spreading Free
Software in the professional audio/sound
domain to distribute content was poten-
tially risky, albeit the reasons for doing so
had been carefully thought out;

• The licensing scheme which ALM applies,
mainly based on the Creative Commons li-
censes,12, did not and does not map cleanly
on the licensing ontology of Free Software.

Although there are striking similiarities in
the goals, the strategies and the tactics of
Creative Commons Corporation, Free Soft-
ware Foundation and other organizations
which promote Free Software, not all the
Creative Commons licenses can be consid-
ered “Free” when analyzed under the lens
of “Software” (Rubini, 2004). This point is
discussed with more detail in section 4

3 AGNULA Libre Music: technique

To make a long story short, AGNULA Libre
Music is a Content Management and online
publishing system, optimized and specialized
for audio files publication and management.

Registered users is given complete access to
his/her own material. The system takes care

10Please note that in this paper the term “lobby” is
used with no moral judgement implied, meaning just a
“pressure group” which tries to convince someone to ap-
ply or not apply a policy of a certain kind.

11It could be argues that, in the digital world, the
difference between data (“content”) and computer pro-
grams is rather blurred.

12See http://creativecommons.org/about/li-
censes/.

of assuring data integrity and the validation of
all information according to the given specifica-
tions.

Registration is free (as in free speech and in
free beer) and anonymous — the only request is
a valid e-mail address, to be used for automatic
and service communications.

In the spirit of libre content promotion, no
separation of functionalities between “simple
users” and “authors” has been implemented:
both classes of users can benefit from the same
features:

• Uploading and publishing of audio files
with automatic metatag handling;

• Real–time download statistics;

• Creation of personalized playlist, to be ex-
ported in the .pls and .m3u formats, them-
selves compatibles with the majority of
players around (xmms,13 winamp (TM),14

iTunes (TM)15);

Other features which are available to anony-
mous users, too, are:

• A search engine with the possibility of
choosing title, artist or album;

• RSS 2.0 feed with enclosures, to be used
with “podcasting” supporting clients;16;

• For developers and for integration with
other services, ALM offers a SOAP (Group,
2003) interface that allows queries to be re-
motely executed on the database;

3.1 The web and tagging engine

ALM uses the PostgreSQL database17 as the
back–end and the PHP language18 for its web–
enabled frontend. PHP also handles a page tem-
plating and caching system, though the Smarty

library.
File uploading on the server is handled

through a form displayed on users’ browsers;
first HTTP handles the upload on a temporary
location on the server, and then a PHP script
copies the audio files to their final destination.

It is in this phase that the MP3 or OGG Vorbis

metags, if already available in the file, are read.

13See http://www.xmms.org/.
14See http://www.winamp.com/.
15See http://www.apple.com.
16See http://en.wikipedia.org/wiki/Podcasting.
17See http://www.postgresql.org/.
18See http://www.php.net.

LAC2005
143

Besides, a form for the modification/creation of
such tags is presented to the user.

The system ask which license should be ap-
plied to the files — without this indication files
are not published and remain in an “invisible”
state, except for the registered user who up-
loaded them in the first place.

To avoid abuses of the service and the up-
loading of material which has not been prop-
erly licensed to be distributed, all visitors (even
anonymous ones) can signal, through a script
which is present in every page, any potential
copyright violation to the original author. The
script also puts the file into an “invisible” status
until the author either reviews or modifies the
licensing terms.

3.2 Metadata and license handling

To guarantee a correct usage of the files and
an effective way to verify licenses, the scheme
proposed by the Creative Commons project has
been adopted (Commons, 2004). Such scheme
can be summarized as follows:

• using metagas inside files;

• using a web page to verify the license;

ALM uses the “TCOP” Copyright tag, which
the ID3v2 metadata format provides (Nilsson,
2000), to show the publishing year and the URL
where licensing terms can be found.

This page, which lives on the AGNULA Libre
Music server, contains itself the URL of the Cre-
ative Commons licensing web page; moreover, it
contains an RDF (Group, 2004) description of
the work and of the usage terms.

In this way it is possible:

• to verify the authenticity of the license;

• to make it available a standardized descrip-
tion to search engines or specialized agents;

4 AGNULA Libre Music: legalities

4.1 Licensing policy

AGNULA Libre Music has decided to accept the
following licenses to be applied on the audio files
published and distributed through the system:

• Creative Commons Attribution-ShareAlike
2.019

19See http://creativecommons.org/licenses-
/by-sa/2.0/.

• Creative Commons Attribution 2.020

• EFF Open Audio License21

The overall goal was to allow for the broad-
est possible distribution of music, leaving to the
author the choice whether to apply or not a
“copyleft” clause (Stallman, 2002a) — i.e. that
all subsequent modifications of the original work
should give recipients the same rights and duties
that were given to the first recipient, thus creat-
ing a sort of “gift economy” (Stallman, 2002b),
albeit of a very particular nature, possible only
thanks to the immaterial nature of software (or
digital audio files, in this case).

We chose not to allow for “non-commercial
uses only” licenses, such as the various Cre-
ative Commons licenses with the NC (Non
Commercial) clause applied. The reason for this
choice are various, but basically boil down to the
following list:

• Most of the AGNULA team comes from the
Free Software arena; thus, the “non com-
mercial” clause is seen as potentially mak-
ing the work non-free. Further consider-
ations on the difference between software
and music, video or texts, and the different
functional nature of the two sets would be
in order here; but until now, an “old way”
approach has been followed;

• It is extremely difficult to define what “non
commercial” means; this is even more true
when considering the different jurisdiction
in which the works will be potentially dis-
tributed, and the different meanings that
the term “commercial” assumes. Besides,
what authors often really want to avoid is
speculation on their work, i.e. a big com-
pany using their music, but have no objec-
tion against smaller, “more ethical” entities
doing so.22 However, “non commercial” li-
censing does not allow such fine–grained se-
lection (Pawlo, 2004).

5 Future directions

AGNULA Libre Music is far from reaching its
maximum potential. There are several key ar-
eas which the authors would like to explore;

20See http://creativecommons.org/licenses/by-
/2.0/.

21See http://www.eff.org/IP/Open licenses-
/20010421 eff oal 1.0.html.

22The decision of what constitutes an “ethical” busi-
ness vs a non–ethical one is of course equivalent to open-
ing a can of worms, and will not be discussed here.

LAC2005
144

moreover — and perhaps, much more interest-
ingly for the reader — the AGNULA project
has always been keen to accept help and contri-
butions from interested parties, who share our
commitment to Free Software23 and circulation
of knowledge.

More specifically, the ares which the ALM
project is working on at the moment are:

• Integration with BitTorrent

BitTorrent24 has shown its ability to act
as an incredibly efficient and effective way
to share large archives (Cohen, 2003). AG-
NULA Libre Music is currently implement-
ing a system to automatically and regularly
create archives of its published audio files.
The ALM server will act as the primary
seeder for such archive.

• Integration with Open Media Streaming
(OMS)

Open Media Streaming25 is

a free/libre project software for
the development of a platform
for the streaming of multimedia
contents. The platform is based
on the full support of the stan-
dard IETF for the real-time data
transport over IP. The aim of the
project is to provide an open solu-
tion, free and interoperable along
with the proprietary streaming
applications currently dominant
on the market.”

ALM is currently analyzing the necessary
step to interface its music archive with
OMS, in order to have a platform com-
pletely based on Free Software and Open
Standards to disseminate its contents. Be-
sides, OMS is currently the only streaming
server which “understands” Creative Com-
mons licensing metadata, thus enabling
even better interaction with ALM metatag
engine (De Martin et al., 2004).

23It should be noted that Free Software Foundation
Europe holds a trademark on the name “AGNULA”;
the licensing terms for usage of such trademark clearly
state that only works licensed under a license considered
“free” by the Free Software Foundation can use the name
“AGNULA”.

24See http://bittorrent.com/.
25See http://streaming.polito.it/.

6 Acknowledgements

As the reader may expect, projects such as AG-
NULA and AGNULA Libre Music are the re-
sult of the common effort of a very large pool
of motivated people. And indeed, giving credit
to any deserving individual that contributed to
these projects would probably fill completely
the space allotted for this paper. Therefore,
we decided to make an arbitrarily small selec-
tion of those without whose help AGNULA and
AGNULA Libre Music would not probably ex-
ist. First of all, we would like to thank Richard
Stallman, without whose effort Free Software
would not exist at all; Lawrence Lessig, whose
steadfast work on behalf of the Digital Com-
mons has given justice to all the less known
persons that worked on the subject in unriper
times. Special thanks go to Roberto Bresin and
to the Speech, Music and Hearing department
of the Royal Institute of Sweden (KTH) for
hosting the main AGNULA Libre Music server.
Other people that deserve our gratitude are:
Philippe Aigrain and Jean-François Junger, the
European Commission officials that have been
promoting the idea that AGNULA was a viable
project against all odds inside the Commission
itself; Dirk Van Rooy, later AGNULA Project
Officer, Marc Leman and Xavier Perrot, patient
AGNULA Project Reviewers; Luca Mantellassi
and Giovanni Nebiolo, respectively President of
Firenze’s Chamber of Commerce and CEO of
Firenze Tecnologia, for their support.

References

Y. Benkler. 2002. Coase’s penguin, or, linux
and the nature of the firm. The Yale Law
Journal, 112.

N. Bernardini, D. Cirotteau, F. Ekanayaka,
and A. Glorioso. 2004. The agnula/demudi
distribution: Gnu/linux and free software
for the pro audio and sound research do-
main. In Sound and Music Computing 2004,
http://smc04.ircam.fr/.

J. Boyle. 2003. The second enclosure movement
and the construction of the public domain.
Law and Contemporary Problems, 66:33–74,
Winter-Spring.

B. Cohen. 2003. Incentives
build robustness in bittorrent.
http://bittorrent.com/bittorrentecon.pdf,
May.

Creative Commons. 2004. Using creative com-
mons metadata. Technical report, Creative
Commons Corporation.

LAC2005
145

J.C. De Martin, D. Quaglia, G. Mancini,
F. Varano, M. Penno, and F. Ridolfo.
2004. Embedding ccpl in real-time stream-
ing protocol. Technical report, Politecnico di
Torino/IEIIT-CNR.

F. Déchelle, G. Geiger, and D. Phillips. 2001.
Demudi: The Debian Multimedia Distribu-
tion. In Proceedings of the 2001 International
Computer Music Conference, San Francisco
USA. ICMA.

A. Glorioso. Project management, european
funding, free software: the bermuda triangle?
forthcoming in 2005.

XML Protocol Working Group. 2003. Soap ver-
sion 1.2 part 0: Primer. Technical report,
World Wide Web Consortium.

Semantic Web Working Group. 2004. Rdf
primer. Technical report, World Wide Web
Consortium.

M. Nilsson. 2000. Id3 tag version 2.4.0 - main
structure. Technical report.

M. Pawlo, 2004. International Commons at the
Digital Age, chapter What is the Meaning of
Non Commercial? Romillat.

A. Rubini. 2004. Gpl e ccpl: confronto e con-
siderazioni. CCIT 2004.

R Stallman, 2002a. Free Software, Free Soci-
ety: Selected Essays of Richard M. Stallman,
chapter What is Copyleft? GNU Books, Oc-
tober.

R. Stallman, 2002b. Free Software, Free Soci-
ety: Selected Essays of Richard M. Stallman,
chapter Copyleft: pragmatic idealism. GNU
Books, October.

LAC2005
146

Where Are We Going And Why Aren't We There Yet ?

A Presentation Proposal for LAC 2005, Karlsruhe

Dave Phillips
linux-sound.org

400 Glessner Avenue
Findlay OH USA 45840
dlphillips@woh.rr.com

Abstract

A survey of Linux audio development since LAC
2004. Commentary on trends and unusual
development tracks, seen from an experienced
user's perspective. Magic predictions and forecasts
based on the author's experience as the maintainer
of the Linux Sound & Music Applications website,
as a professional journalist specializing in Linux
audio, and as a Linux-based practicing musician.

Keywords

history, survey, forecast, user experience, magic

1 Introduction

Linux sound and music software developers
have created a unique world populated by some
remarkable programs, tools, and utilities. ALSA
has been integrated with the kernel sources, the
Rosegarden audio/MIDI sequencer has reached its
1.0 milestone, and Ardour and JACK will soon
attain their own 1.0 releases. Sophisticated audio
and GUI toolkits provide the means to create more
attractive and better-performing sound and music
programs, and users are succeeding in actually
using them.

2 A Brief Status Report

The Linux Sound & Music Applications site is
the online world's most popular website devoted to
Linux audio software. Maintaining the site is an
interesting task, one in which we watch the
philosophy of “Let 10,000 flowers blossom!”
become a reality. It can be difficult to distinguish
between a trend and the merely trendy, but after a
decade of development there are definite strong
currents of activity.

The past year has been a year of maturities for
Linux audio software at both the system and
application development levels. To the interested

user, the adoption of the ALSA sound system into
the Linux kernel means that Linux can start to
provide sound services to whatever degree
required. Desktop audio/video aficionados can
enjoy better support for the capabilities of the their
soundcards. Users seeking support for more
professional needs can find drivers for some pro-
audio hardware.

In addition to this advanced basic support there
are patches for the Linux kernel that can
dramatically reduce performance latency, bringing
Linux into serious consideration as a viable
professional-grade platform for digital audio
production needs, at least at the hardware level. It
is important to note that these patches are not
merely technically interesting, that they are being
used on production-grade systems now.
Furthermore, there is a continuing effort to reduce
or eliminate the need for patching at all, giving
Linux superior audio capabilities out-of-the-box.

ALSA has passed its 1.0 release, as has Erik de
Castro Lopo's necessary libsndfile. JACK is
currently at 0.99, and the low-latency kernel
patches have been well-tested in real-world
application. The combined significance of these
development tracks indicates that Linux is well on
its way to becoming a viable contender in the
sound and MIDI software arenas.

Support for the LADSPA plugin API has been
an expected aspect of Linux audio applications for
a few years. LADSPA limits are clear and self-
imposed, but users want services more like those
provided by VST/VSTi plugins on their host
platforms. Support for running VST/VSTi plugins
under Linux has also inspired users to ask for a
more flexible audio/MIDI plugin API. At thistime
the most likely candidate is the DSSI (Disposable
SoftSynth Interface) from the Rosegarden
developers. The DSSI has much to recommend it,
including support for LADSPA and an interface
for plugin instruments (a la VSTi plugins).

In this author's opinion the union of ALSA,

LAC2005
147

JACK, and LADSPA should be regarded as the
base system for serious audio under Linux.
However, the world of Linux audio is not defined
only by the AJL alliance. Other interesting and
useful projects are going on with broader
intentions that include Linux as a target platform.

The PortAudio/MIDI libraries have been
adopted as the cross-platform solution to
Csound5's audio/MIDI needs. Support for
PortAudio has appeared in Hydrogen CVS
sources, and it is already a nominal driver choice
for JACK.

GRAME's MidiShare is not a newcomer to the
Linux sound software world, but it is beginning to
see some wider implementation. Among its
virtues, MidiShare provides a flexible MIDI
multiplexing system similar to the ALSA
sequencer (it can even be an ALSA sequencer
client). The system has been most recently adopted
by Rick Taube's Common Music and the
fluidsynth project.

Sound support in Java has been useful for a few
years. All too often more attention has been paid to
Java's licensing issues than to its audio
capabilities. Many excellent Java-based
applications run quite nicely on Linux, including
the jMusic software, JSynthEdit, and Phil Burk's
excellent jSyn plugin synthesizer.

At the level of the normal user the applications
development track of Linux audio is simply
amazing. Most of the major categories for music
software have been filled or are being filled soon
by mature applications. Ardour is designed for
high-end digital audio production, Rosegarden
covers the popular all-in-one Cubase-style mode,
Audacity, Snd, and ReZound provide excellent
editing software, Hydrogen takes care of the drum
machine/rhythm programmer category, and MusE
and Rosegarden cover the standard MIDI
sequencer environment. Denemo and Rosegarden
can be used as front-ends for LilyPond, providing
a workpath for very high-quality music notation.

Notably missing from that list are samplers and
universal editor/librarian software for hardware
synthesizers. However, the LinuxSampler project
is rapidly approaching general usability, and while
the JSynthEdit project's pace is slow it does remain
in development. Some similar projects have
appeared in the past year, but none have advanced
as far as JSynthEdit.

A host of smaller, more focused applications
continues to thrive. Programs such as Jesse
Chappell's FreqTweak and SooperLooper, Rui
Capela's QJackCtl, and holborn's midirgui indicate
that useful Linux audio software is becoming more
easily written and that there is still a need for small

focused applications. Of course the on-going
development of graphics toolkits such as GTK,
QT, and FLTK has had a profound effect on the
usability of Linux applications.

Csound represents yet another significant class
of sound software for Linux, that of the traditional
language-based sound synthesis environment. The
currently cutting-edge Csound is Csound5,
basically a complete reorganization and rewrite
(where necessary) of the Csound code base.
Improvements include extensive modularization,
internal support for Python scripting, and an
enhanced cross-platform build system. The Linux
version of Csound5 is already remarkable, with
excellent realtime audio and MIDI performance
capability.

One downside to the increasing capabilities of
the Linux sound system is the increasing
complexity of Linux itself. For most users it is
decidedly uncomfortable and uninteresting to
perform the necessary system modifications
themselves, but happily the AGNULA/Demudi
and Planet CCRMA systems have brought near-
painless Linux audio system installation to the
masses. However, given the resistance of said
masses, we have seen the rise of the “live” Linux
multimedia-optimized CD. These systems allow
provide a safe and very effective means of
introducing not only Linux audio capabilities but
Linux in general, without alteration of the host
system. The Fervent Software company has taken
advantage of this trend and released their Studio
To Go! commercially. I believe that these live CDs
have enormous potential for Linux evangelization
generally, and they may be a particular blessing for
the expansion of interest in Linux audio
capabilities.

3 Visibility Is Clear

Linux audio software is becoming a serious
alternative for serious users. Composers of all
sorts, pro-audio recordists, sound synthesis
mavens, audio/video DJs and performance artists,
all these and many other sound & music people are
using this software on a productive daily basis.
More “music made with Linux” has appeared in
the past year than in the entire previous decade,
and coverage of Linux audio regularly appears in
major Linux journals. Articles on Linux audio
software have appeared in serious audio journals
such as Sound On Sound and the Computer Music
Journal.

LAC2005
148

Some of the significant events acknowledging
Linux audio software included Ron Parker's
demonstrations of the viability of Ardour and
JAMin in a commercial recording environment,
Criscabello's announcement that he'd recorded
Gilberto Gil with software libre, and the awards
received for Hydrogen and JACK. Small steps
perhaps, but they mark the steady progress of the
development in this domain.

4 Some Problems

There is no perfection here. Lack of
documentation continues to be a primary issue for
many new users. Hardware manufacturers still
refuse to massively embrace Linux audio
development. Many features common in Win/Mac
music software are still missing in their Linux
counterparts. Many application types are still
poorly represented or not represented at all.

Community efforts towards addressing
documentation issues include various wikis
(Ardour, Pd) and a few focus groups (Hydrogen,
Csound5), and while many applications do have
excellent docs, the lack of system-comprehensive
documentation still plagues the new user,
particularly when troubleshooting or attempting to
optimize some aspect of an increasingly complex
system. The problem is familiar and remains with
us: writing good documentation is difficult and
there are too few good writers with the time and
energy to spare for the work required.
Nevertheless, the impact of the documentation
wikis is yet to be felt, they may yet prove to be a
salvation for the befuddled user.

Hardware support still remains problematic.
ALSA support expanded to the Echo cards, and the
AudioScience company announced native Linux
driver support for their high-end audoi boards, but
no train of manufacturers hopped on the Linux
sound support bandwagon. I'm not sure what needs
to happen to convince soundcard and audio
hardware manufacturers that they need to support
Linux, and I believe that this issue needs some
more focused discussion in the community.

Limited hardware support is often worse than
none at all. ALSA developers are working to
provide sound services as complete as their
Win/Mac counterparts, but there are still problems
with regard to surround sound systems (3D, 5.1)
and access to on-board DSP chipsets.

A glance through any popular music publication
clearly shows that Linux audio software,
wonderful as it is, definitely lacks the variety of
the Win/Mac worlds. Users new to the Linux audio

world often lament the absence of programs such
as Acid, Fruity Loops, or Ableton Live, and I have
already mentioned the dearth of editor/librarian
software for hardware MIDI synthesizers. The
situation is surely improving, but there are still
several application types awaiting project
involvement.

5 Summary Conclusions

The good news far outweighs the bad, and the
bad news itself can be dealt with in productive
ways. The development and user communities
continue to thrive, long-term projects proceed,
more people are coming into our world, and more
music is being made. Coordinated efforts need to
be made to bring about greater program
documentation and manufacturer participation, but
whatever difficulties we encounter, the history of
Linux software development advises us to never
say never.

6 Acknowledgements

The author thanks the entire community of
Linux audio developers for their enormous
contribution to music and sound artists the world
over. The author also thanks the community of
Linux audio software users for their experiences,
advice, and suggestions regarding a thousand
sound- and music-related topics. Finally, the
author extends great gratitude to the faculty and
staff at ZKM for their continued support for this
conference.

LAC2005
149

LAC2005
150

	lac2005_all_papers.pdf
	lac2005_all_papers.pdf
	02_victor_lazzarini.pdf
	02_victor_lazzarini.pdf
	02_victor_lazzarini.pdf
	Extensions to the Csound Language: from User-Defined to Plug
	Abstract
	Introduction
	Csound versions
	Extending the language
	Data types and signals
	User-defined opcodes
	Adding external components

	Spectral signals
	Conclusion
	References

