
TASI: Terrain-Aware System Identification for
Autonomous Navigation of Wheeled Robots

Ryan Adolf∗, Tarun Amarnath∗, Jeremy Hughes∗ and Kaushik Shivakumar∗
Department of Electrical Engineering and Computer Sciences, University of California at Berkeley

∗equal contribution

I. ABSTRACT

Terrain-Aware System Identification (TASI) enables robots
to autonomously find an optimal path in an environment using
only odometry and visual inputs. TASI creates a feature map of
the environment by stitching camera images transformed based
on a Turtlebot’s odometry. It estimates dynamics from move-
ment and visual features using kernel regression, accounting
for uncertainties, and uses them for path planning. Results
show consistent navigation in simulation and that leveraging
visual commonality in terrains may lead to faster convergence
on an optimal path (sometimes by 50% or more). Real-world
tests show promising results, though non-idealities in physical
systems complicate analysis.

II. INTRODUCTION

Path planning is a well-known problem in the field of
robotics. Autonomous vehicles constantly face the issue of
navigating through novel scenarios, and while roads remain
fairly consistent, obstacles that come up change constantly.
Other planning problems arise in novel environments. For
example, in search and rescue scenarios, different regions
might end up more navigable than others, and a robot would
have to autonomously determine the best course of action to
avoid obstacles, avoid (or conquer) rough terrain, and reach
its destination.

Navigating the real world often takes a lot of guesswork.
In mission critical scenarios, minimizing the uncertainty of
a chosen path is often crucial to safety. A poor navigational
decision can cripple a robot, so it must avoid areas that might
be seen as more dangerous. While no system is born with
knowledge about safety and drivability, making such an iden-
tification and learning process autonomous and uncertainty-
aware can improve performance during eventual deployment.

The goal of TASI is to perform this kind of terrain-aware
learning and navigation. In TASI, the robot drives over various
regions and creates a map of the environment. Simultaneously,
it updates a feature vector with information about the regions it
has taken an image of to inform the control algorithm about the
terrains present in different areas of the map, and it also builds
a model mapping visual features to driveability characteristics.
This model not only contains information about driveability,
but also about aleatoric (environmental) and epistemic (mod-
eling) uncertainties of each terrain. Finally, to close the loop,
this information is used to inform the path planner, which then
chooses the most navigable route.

Fig. 1: A graphic of the problem we tackle in this work: navi-
gation through visually distinct terrains with initially unknown
driveability characteristics.

Fig. 2: The overall feedback loop TASI uses.

III. RELATED WORK

A. Terrain-Based Control

Recent work in adaptive control has proven the convergence
of concurrently learned parameter estimates up to some error
term. The method presented in Kamalapurkar et. al. maintains
robustness to Gaussian error during online estimation [6]. A
more specialized focus on terrains by Coyle et al. works
on updating control modes based on terrain classification.
Their approach performs identification on the surface the robot
drives over and switches to a pre-determined control mode
as necessary. They develop an update rule to decide when
to change control modes and test empirically. [2]. Neither
makes use of visual data as an input into the learning and
classification algorithms. We tune the dynamics of our system
as we traverse different terrains and autonomously learn a
mapping from visual features to driveability characteristics,
which is then used for path planning.



B. Visual Navigation
A large body of work deals with understanding safe and

effective navigation for an autonomous robot dealing with
unfamiliar elements. The original theory behind control barrier
functions ensures safety, particularly in unknown and un-
structured environments [1]. Lyapunov functions are adapted
to incorporate these restrictions, accounting for the stronger
conditions involved in implementation of the ideas in re-
alistic situations. Testing of the theory is more rigorously
accomplished by Xiao et al. through implementation using
autonomous vehicles. Their work constructs an end-to-end
pipeline for learning visual markers and avoiding obstacles [9].
Procuring and processing the images themselves is developed
further through BADGR system, which outperforms LIDAR
on more undrivable terrains, such as tall grass [5]. Rather than
exclusively using vision for obstacle avoidance, we propose
to extract visual features to inform our path planner and
augment existing data about differing terrains. Our work takes
information from an image to identify similar regions and
predict aleatoric uncertainties.

IV. METHODS

A. Controller Design
We use a unicycle model robot in simulation and real to

track trajectories in the 2D coordinate plane.

Fig. 3: Unicycle model robot.

The dynamics of this robot can be framed as the following,
where a and w are inputs, and d and k are terrain-dependent
velocity scaling factors.

ẋ = vd cos θ

ẏ = vd sin θ

v̇ = a

θ̇ = kw

(1)

By using feedback linearization [7], we convert the system
to a second-order one where we have direct control over ẍ
and ÿ. We then provide true inputs a and w to the robot based
on the following equation.[

a
w

]
=

[
d cos θ −kv sin θ
d sin θ kv cos θ

]−1 [
ẍ
ÿ

]
(2)

We use a PD controller to steer this system along a trajectory
with open loop trajectory targets for ẍd and ÿd.

ẍ = ẍd +Kp(xd − x) +Kd(ẋd − ẋ)

ÿ = ÿd +Kp(yd − y) +Kd(ẏd − ẏ)

B. Path Planning

In order to perform path planning, we divide the world as we
know it into a grid, where each vertex is a corner of a grid cell.
Edges equidistant from two different terrains take the higher
of the two weights. Edge weights correspond to the inverses of
speed scaling factor d and are also proportional to the distance
(diagonals are

√
2 units) longer than horizontal and vertical

segments. We then run Dijkstra’s shortest paths algorithm on
this graph [3]. Areas that are less driveable tend to be planned
around due to their higher edge weights. Figure 4 provides
an illustration of how we may perform path planning in the
presence of different terrains with different visual features.

Fig. 4: Path planning across terrains with Dijkstra’s algorithm.

C. Dynamics Estimation

1) Estimator: We use kernel regression, specifically the
Nadaraya-Watson estimator [8], for learning the dynamics of
terrains given visual features associated with them. Kernel
regression is a non-parametric technique to fit nonlinear func-
tions to data, and we adapt it to also provide us with uncer-
tainty information. Intuitively, this estimator uses a weighted
combination of nearby datapoints (according to some function
K) to inform the prediction at a test terrain vector x. We use
a separate estimator for predicting d and k values.

Ê[y|X = x] =

∑N
i=1 K(x,xi)yi∑N
j=1 K(x,xj)

(3)

2) Uncertainty: We focus on quantifying and estimating
two types of uncertainty in our dynamics models, as has been
done in much prior work [4]. Aleatoric uncertainty Ua refers
to noise and randomness present in the environment for a
given terrain input x. With more data near x, Ua converges
to a fixed value. For example, gravel would have high Ua,
whereas pavement would have low Ua with its smoother, more
consistent, surface. Epistemic uncertainty (Ue) is the model’s
inherent uncertainty in its own predictions of dynamics for x,
and it decreases with more data closer to x. Unseen terrains
would have high Ue, and familiar ones would have low Ue.

In order to measure aleatoric uncertainty, we use a cascaded
approach as in figure 5. Specifically, while our first kernel
regressor predicts the dynamics values directly as ŷi, the
second one uses the results to formulate its own ground truth
data, Uai = (yi − ŷi)

2, and fit a model to it such that Ûai

estimates can be formed for unseen but similar terrain vectors.



Fig. 5: A cascaded approach to fitting data and measuring
aleatoric uncertainty.

To measure epistemic uncertainty, we use a notion of
“pseudo-counts” in the denominator of an “uncertainty kernel”
Ku to measure the support for a particular test point in the
training dataset.

Ue = Var[Ê[y|X = x]] ≈ 1∑N
j=1 Ku(x,xj)

3) Priors: We find that kernel regression as written has
one weakness: for highly novel terrains different from those in
the training dataset, we make predictions based on the closest
terrains, even if they are far apart. Instead, we wish to predict
the driveability characteristics terrains as perfect (d = k =
1) for novel terrains. While this may seem like an arbitrary
choice, we prove that such an “optimistic” exploration strategy
has certain favorable properties.

We define a prior with a value vp and wp. When predicting
a dynamics parameter for a visual feature x, we add as a
synthetic datapoint (x, vp) with weight wp. Intuitively, if there
are not many other datapoints near this point, the prior will
dominate; otherwise, it will not and the prediction will largely
be based on the nearby datapoints.

D. Optimistic Exploration Theory

Theorem IV.1. Assume that the estimated edge length for an
unseen edge is always lower than the true edge length, and
that the true edge length is estimated exactly once an edge
is traversed once. This leads to the optimal path between two
points eventually being discovered.

Proof. Suppose the algorithm has converged on a path φ, with
true cost C(φ) = Ĉ(φ), and that there exists a path φ′ such
that C(φ′) < C(φ). Because of the assumptions made about
estimations, Ĉ(φ′) ≤ C(φ′), and thus Ĉ(φ′) < Ĉ(φ). But by
definition of the exploration algorithm, we would choose to
traverse path φ′, meaning we have not in fact converged on φ.
Thus, no such path φ′ may exist. We must also show that we do
indeed converge, which must happen as estimated edge lengths
eventually converge (they cannot continually increase), which
means the shortest path we compute must also converge.

However, we must consider the case of estimation error.
If estimation error can be arbitrarily large after a single
traversal of an edge, then we may converge on arbitrarily
suboptimal shortest paths. If we bound the maximum error
after one or more traversals to e, then we can claim that

if we converge on path φ, C(φ) ≤ (1 + e)C(φ∗). More
interestingly, even without bounds on exploration error, we
may be able to mitigate this issue with an Epsilon-Greedy
exploration strategy.

Theorem IV.2. Using an Epsilon-Greedy strategy (sampling
a random path with probability ϵ > 0), under the assumption
that estimation error converges almost surely to 0 in the
number of edge traversals, the path φ we converge on is
guaranteed to be optimal.

Proof. Every edge is visited with nonzero probability over
time, so as t→∞, ∀e ∈ E, Ĉ(e)− C(e)→ 0 almost surely.
Due to this convergence property, our estimate of all edge
lengths approach the true ones almost surely, meaning that
Ĉ(φ∗) → C(φ∗), so the length of the path we converge on
will be optimal.

We also note that while it may be tempting to believe that
using visual features only speeds up the rate of convergence
towards the optimal path, we note that such a claim is false
using the greedy strategy we employ here. While it may
be possible to devise a more complex exploration strategy
that guarantees faster convergence in expectation when using
terrain information, under the assumptions of certain priors on
dynamics, we defer this to future work.

E. Visual Terrain Mapping
We initially apply the depth clouds procured through the

TurtleBot’s Kinect to identify obstacles and segment the
ground. Reading this information with prior knowledge of the
walls of the room allows us to recreate obstacles in the robot’s
path and plan around them. However, using the depth maps
to segment the ground is extremely noisy. Additionally, with
compuational limitations, read time is significant, preventing
real-time analysis. We then pivot to using homography trans-
forms and occupancy grids.

The images taken by the TurtleBot come from the perspec-
tive of its camera, mounted low to the ground. This skew
makes constructing an accurate map difficult, so a homography
transform is first performed with a matrix calibrated on test
points to warp the image to an overhead perspective, as in
Figure 7. The map used is broken down into grid cells for
path planning and featurization. This straightened picture is
positioned in this world grid in the appropriate location. The
TurtleBot publishes its position through ROS, allowing us to
locate the appropriate cells to modify, like with the corners in
Figure 6.

For each region in the image captured, some data for terrain
identification is calculated and recorded in a corresponding
feature grid to help inform estimation about the dynamics
of different environments the robot has not traversed. This is
constantly updated. The information includes the average R,
G, and B values in each voxel, the hue, saturation, and value
averages, and the RMS contrast, calculated using the standard
deviation of the intensities. To expedite the process of feature
updates especially with higher voxel resolution, this process
is vectorized.



Fig. 6: Points in the coordinate space of the robot’s base are
calculated to account for the horizon line. The scene in the
image is transformed to locations on the global map based on
the robot odometry. A bounding box rounded to the voxel grid
is calculated for feature updates.

Fig. 7: Using homography, the points are projected to the
perspective of an overhead camera. The terrain map is updated
with both the image and the featurization.

F. Overall Approach

We describe the overall TASI exploration algorithm in
algorithm 1 and figure 2.

Algorithm 1 TASI overview

0: dyn ← initial dynamics model
0: while not converged do
0: ϕ← odometry data and history
0: I ← camera data and history
0: map = updateMap(map, ϕ, I)
0: dyn map = dyn(map)
0: path = plan(dyn map)
0: buf ← (xt, ut, xt+1) from executing path
0: dyn← refit(dyn, buf)

V. EXPERIMENTAL RESULTS

A. Simulation

There are 2 main methods of our design demonstrated
in simulation: the planning algorithm and the resulting state
estimation. These work in tandem. The first experimental setup
consists of a 10×10 grid that includes mock dynamics realized
with k and d scaling values randomly sampled between 0.2 and
1. These mock dynamics are a simulation of what the feature
extraction from the visual input would give to the planner.

Each grid cell has a unique one-hot encoded terrain vector.
The planner is then commanded to navigate from (1,1) to (9,9)
and back repeatedly until it converges on its conclusion for
the optimal path based on the dynamics of the environment.
Figure 8 shows the paths taken on reaching convergence for
this setup. The planner leverages its explorative disposition,
since all undriven cells in the grid are given dynamics values
of 1, to learn more about its environment before settling on
the true optimal path.

Fig. 8: Chosen path for 10×10 environment with no common
features. Takes 8 iterations (4 there and back) of navigating
to goal and returning to converge to optimal path (black).

It should be noted that after each iteration the estimated cost
of the new plan chosen rises as shown in Figure 9 because for
every cell it determines the dynamics are less than what it
optimistically thought previously, and that this estimated cost
converges on the true cost.

Fig. 9: Estimated cost of the chosen path for each iteration for
the first experiment.

The following experiment demonstrates the importance of
leveraging the common features in the robot’s visual environ-
ment such as observing a large patch of grass. The second
simulation experiment instead randomly samples the k and
d values from a set number of values (10-20) between 0.2
and 1. The planner is commanded to navigate to the same



goal, and is now shown in Figure 11 to converge in 2-4
iterations. The impact can be seen from the measures of
epistemic uncertainty from the first iteration in the previous
run versus this, Figure 10, and the quick drop in average error
of dynamics estimations shown in Figure 12. This allows the
planner to get an estimate for the environment much more
quickly and then choose the optimal path much sooner. This
can be seen with an equivalent 20 × 20 grid that the first
experiment failed to converge on, as every iteration presents
a longer compute times with more data to fit. The second
experiment saw the planner converge in just 3 iterations,
Figure 13.

Fig. 10: Left: Epistemic uncertainty map of first simulation
experiment after 1 iteration, 0.1 is most certain. Right: Epis-
temic uncertainty map of second simulation experiment after
1 iteration, 0.1 is most certain.

Fig. 11: Chosen path for 10× 10 environment with common
features. Takes 4 iterations (2 there and back) of navigating
to goal and returning to converge to optimal path, shown in
black.

B. Real-World

We run tests on the TurtleBot hardware. The first tests
include testing the performance of the homography grid. We
configure a small voxel size using average color as a feature to
create an image representing composited homography images.
Results show that there exist slight variations in lighting
and perspective when combining homographies. However, the

Fig. 12: Average error of dynamics estimates of all cells in
the environment for each iteration, on the 20×20 environment
with common features.

Fig. 13: Chosen path for 20× 20 environment with common
features. Takes 3 iterations (2 there and back) of navigating
to goal and returning to converge to optimal path, shown in
black.

Fig. 14: The gravel terrain.



Fig. 15: The aleatoric uncertainty map after running on the
gravel terrain.

Fig. 16: The d value estimates after running on the plank.

results appear high-quality enough to map out various terrains
on the ground.

In our second test, we run the TurtleBot over a wooden
terrain. We choose this texture to be markedly different than
the grey carpet in the lab. As the robot rolls over the plank, we
hold back the robot to simulate a terrain with high resistance
to motion (such as mud or snow). We verify that the robot
estimates the d parameter to be low on this wooden surface
and is able to automatically generalize this fact to all points
on the wood surface (figure 16).

The third test involves running the TurtleBot over a terrain
simulating gravel. We spread pebbles on the floor and cover
them with a green tarp for color (figure 14). We found that
the robot estimates the area to have high aleatoric uncertainty,
as seen in figure 15. However, while we expect the TurtleBot
to also report low d values, we found that the d values in
this location are higher. This may be because the TurtleBot

is driving from a higher platform or because the odometry
becomes more unreliable in such terrains.

Finally, we test that the controller can learn from past
terrrains and successfully plan new routes in the real world.
We instruct the TurtleBot to alternate navigating between its
initial and goal configurations. When the robot navigate to
the goal for the second time, we qualitatively compare its
travel time to the previous iteration. While the results of terrain
mapping should have led the robot to reach its goal at least
as fast as the first time, the TurtleBot took at least several
seconds longer. The path generated by the optimizer has many
turns while the initial path was a straight line. The robot may
have underestimated the d or k parameters and aggressively
turns and brakes, which slows it down in the test. Videos are
available on the website linked in the appendix.

VI. CONCLUSIONS AND FUTURE WORK

In both sim and real, we are able to accomplish terrain-
aware system identification and planning, as the robot finds
areas with undesired dynamics or higher uncertainty and plans
around them. Both feature mapping and path planning happen
simultaneously, permitting Dijkstra’s to continuously use in-
formation about the dynamics of the regions the robot travels
over. Imaging does not have the accuracy we seek, as the
homography map suffers from noise coming from the shaking
of the robot itself. Additionally, transformation to the world
space does not happen reliably due to the RealSense camera
being loose, causing varying skews in the generation of the
grid. Control also needs more tuning for less jerky navigation
along a desired trajectory. Further, robot odometry is unreliable
on many terrains as it comes from actively powered wheels.
Still, this project provides a proof of concept for this method,
especially in sim. While it is tested with wheeled robots, the
principles involved are generalizable to other systems that need
to have context-aware dynamics models.

The dynamics estimates in simulation often have errors near
the transitions between different terrains, due to the presence
of acceleration. TASI typically still converges to a solution but
resolving issues like these will increase robustness.

Further, Dijkstra’s algorithm, when applied to grid cells,
produces trajectories with sharp corners. The PD controller
smoothens these during execution, causing the robot to deviate
from the chosen path, a safety concern near hazardous regions.
Future implementations can rely on Control Barrier Function
(CBF) lane-keeping to ensure the controller never leaves the
set of safe states while navigating to the goal [1].

Future work could involve more rigorous mapping and
System ID testing with different real terrains like sand and
grass. Further, the ideas behind TASI must be shown to work
with other robotic platforms. Currently, our work assumes flat
surfaces, meaning mapping can be done easily. Testing in areas
where homography-based mapping is less realistic, such as
open spaces and sloped terrains, opens the avenue to utilizing
other sensors, such as LIDAR. Finally, with more data and
compute, we may be able to use neural networks as opposed
to kernel regression for dynamics estimation.



VII. ACKNOWLEDGEMENTS

We would like to thank the 106B course staff and ESG
for providing the means to carry out this research, as well as
Professor Shankar Sastry and Professor Yi Ma for teaching
EECS 106B at Berkeley.

VIII. APPENDIX

Our code is publicly viewable here, and our website is
available here.

REFERENCES

[1] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista,
Koushil Sreenath, and Paulo Tabuada. Control barrier functions: Theory
and applications. pages 3420–3431, 2019.

[2] Eric Coyle, Emmanuel G. Collins, and Liang Lu. Updating control modes
based on terrain classification. In 2010 IEEE International Conference
on Robotics and Automation, pages 4417–4423, 2010.

[3] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[4] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic
uncertainty in machine learning: A tutorial introduction. CoRR,
abs/1910.09457, 2019.

[5] Gregory Kahn, Pieter Abbeel, and Sergey Levine. BADGR: an au-
tonomous self-supervised learning-based navigation system. CoRR,
abs/2002.05700, 2020.

[6] Rushikesh Kamalapurkar, Benjamin Reish, Girish Chowdhary, and War-
ren E. Dixon. Concurrent learning for parameter estimation using
dynamic state-derivative estimators. IEEE Transactions on Automatic
Control, 62(7):3594–3601, 2017.

[7] Arthur J. Krener. Approximate linearization by state feedback and
coordinate change. Systems Control Letters, 5(3):181–185, 1984.

[8] E. A. Nadaraya. On estimating regression. Theory of Probability & Its
Applications, 9(1):141–142, 1964.

[9] Wei Xiao, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, Ramin
Hasani, and Daniela Rus. Differentiable control barrier functions for
vision-based end-to-end autonomous driving, 2022.

https://github.com/ursartos/eecs106b-final
https://sites.google.com/berkeley.edu/terrain-aware-navigation/home

	Abstract
	Introduction
	Related Work
	Terrain-Based Control
	Visual Navigation

	Methods
	Controller Design
	Path Planning
	Dynamics Estimation
	Estimator
	Uncertainty
	Priors

	Optimistic Exploration Theory
	Visual Terrain Mapping
	Overall Approach

	Experimental Results
	Simulation
	Real-World

	Conclusions and Future Work
	Acknowledgements
	Appendix
	References

