
Dissertation

Symbolic Simulation of
Mixed-Signal Systems with
Extended A�ne Arithmetic

Thesis approved by the Department of Computer Science of the

University of Kaiserslautern for the award of the Doctoral Degree

Doctor of Engineering (Dr.-Ing.)

to

�arna Radoji�iÊ, M.Sc.

Reviewers:

Univ. Prof. Dr. Christoph Grimm
Design of Cyber Physical Systems

University of Kaiserslautern

Univ. Prof. Dr. Lars Hedrich
Institute of Computer Science

Johann Wolfgang Goethe-Universität, Frankfurt

Prof. Dr. Zainalabedin Navabi
ECE Department

Worcester Polytechnic Institute, Massachusetts

Dean:

Univ. Prof. Dr. Klaus Schneider
Embedded Systems Group

University of Kaiserslautern

Date of Defense: 8th September, 2016

D 386

Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

1

Acknowledgment

I would like to express my sincere gratitude to my supervisor Prof. Christoph
Grimm for his guidance, remarks and engagement throughout my work.
Thank You dear professor for supporting and encouraging me in every step
of my di�culties during this thesis. I am also grateful to my second and
third supervisor Prof. Lars Hedrich and Prof. Zainalabedin Navabi for the
careful reading of my work and giving useful comments and suggestions.

I give special thanks to my colleagues from the Institute of Computer
Technology TU Vienna, Florian Schupfer and Michael Rathmair. Thank you
Florian for the opportunity to be the part of your project and research team.
Many thanks to all my colleagues at the Department for Design of Cyber-
Physical Systems TU Kaiserslautern Xiao Pan, Frank Wawrzik, Ralf Gru-
enwald, Javier Moreno, Christopher Heinz and Thiyagarajan Purusothaman
for cooperation and a pleasant working ambiance.

I am very grateful to my sister and brother for their unconditional sup-
port and motivation throughout my life. They are the most important people
in my life and I dedicate this thesis to them. Special thanks I want to give
to my parents on their boundless love they gave to me. My dear father and
mother, I know you are now on more beautiful place, happy and proud. I
will love you forever.

Last but not least, many thanks I give to all my friends, especially Branka
and Zorica for all their love, support and patience. Thank you.

2

Kurzfassung

Analog-Digitale Systeme verbinden analoge Schaltungen mit digitalen Hard-
ware und Software Systemen. Eine konkrete Herausforderung ist die empfind-
liche Reaktion von analogen Teilen auf bereits kleine Änderungen der Pa-
rameter bzw. Eingangssignale. Die genauen Werte von Schaltungs- und und
Systemparametern wie z.B. Prozess, Spannung und Temperatur sind oft un-
bekannt; wir modellieren sie daher wie unbekannte Werte (‘Unsicherheiten’).
Unbekannte Werte von Parametern und Eingangssignalen können das Sys-
temverhalten beeinflussen und dazu führen, dass Eigenschaften des Systems
nicht mehr in dem vorgegebenen Rahmen liegen. Zur Verifikation Analog-
Digitaler Systeme ist der Einfluss von Unsicherheiten auf das Systemverhal-
ten von zentraler Bedeutung.

Verifikation von Analog-Digitalen Systemen wird normalerweise durch
numerische Simulation durchgeführt. Ein einziger Simulationslauf ermöglicht
es Entwicklern einzelne Parameterwerten aus oftmals Bereichen von un-
sicheren Werten zu verifizieren. Numerische Simulationsmethoden wie die
Monte Carlo Simulation, die Corner Case Simulation und erweiterte Meth-
ode wie Importance Sampling oder Design-of-Experiments ermöglichen die
Verifikation von Bereichen – auf Kosten einer höheren Anzahl an Simu-
lationsläufen und dem Risiko, dass mögliche Fehler nicht entdeckt wer-
den. Formale und symbolische Methoden sind interessante Alternativen.
Diese Methoden bieten eine umfassende Verifikation. Aber formale Meth-
oden skalieren nicht gut bezogen auf Heterogenität und Komplexität. Diese
Ansätze sind auch nicht kompatibel zu bestehenden und etablierten Mod-
ellierungssprachen. Das erschwert ihre Integration in den industriellen En-
twurfsfluss. In frühere Arbeiten zur Verifikation von Analog-Digitalen Syste-
men wurde A�ne Arithmetik für die symbolische Simulation benutzt. Dies
ermöglicht die hohe Abdeckung durch formale Methoden mit der einfachen
Anwendbarkeit der Simulation zu kombinieren. A�ne Arithmetik berechnet
die Ausbreitung von Unsicherheiten durch meist lineare, analoge Schaltun-
gen und DSP Applikationen mit exakten Werten. Aber, sie ist aktuell nur in
der Lage mit angrenzenden Bereichen zu rechnen, ermöglicht jedoch nicht
die Darstellung von und das Rechnen mit diskreten Werten, wie sie beispiel-
sweise durch Software entstehen. Dies ist eine gravierende Einschränkung:
Unsicherheiten in Analog-Digitalen Systemen werden oft durch eingebet-

3

4

tete Software kompensiert; Verifikation von Systemeigenschaften muss daher
beide Teile, analoge Schaltungen und eingebettete Software erfassen.

Das Ziel dieser Arbeit ist die Erweiterung von A�ner Arithmetik, die
auch symbolische Simulation von digitaler Hardware und Software ermöglicht,
und schließlich die Demonstration ihrer Anwendbarkeit und Skalierbarkeit.
Verglichen mit anverwandten Arbeiten und State-of-the-art, bietet Disser-
tation die folgende Leistungen:

1. Die Arbeit stellt Erweiterte A�ne Arithmetik Formen (XAAF) zur
Repräsentation von Branch- und Mergeoperationen vor.

2. Die Arbeit beschreibt arithmetische und Vergleichsoperationen mit
XAAF, und verringert die Überapproximation mit Hilfe von LP Solvern.

3. Die Dissertation zeigt und diskutiert Möglichkeiten die XAAF in beste-
hende Modellierungssprachen, insbesondere SystemC, zu integrieren.
Auf diese Weise können Brüche im Entwurfsfluss vermieden werden.

Die Anwendung und Skalierbarkeit dieser Methodik wird mit der sym-
bolischen Simulation eines �-� Wandlers dritter Ordnung und einer PLL-
Schaltung eines IEEE 802.15.4 Transceivers demonstriert.

Abstract

Mixed-signal systems combine analog circuits with digital hardware and
software systems. A particular challenge is the sensitivity of analog parts to
even small deviations in parameters, or inputs. Parameters of circuits and
systems such as process, voltage, and temperature are never accurate; we
hence model them as uncertain values (‘uncertainties’). Uncertain param-
eters and inputs can modify the dynamic behavior and lead to properties
of the system that are not in specified ranges. For verification of mixed-
signal systems, the analysis of the impact of uncertainties on the dynamical
behavior plays a central role.

Verification of mixed-signal systems is usually done by numerical simula-
tion. A single numerical simulation run allows designers to verify single pa-
rameter values out of often ranges of uncertain values. Multi-run simulation
techniques such as Monte Carlo Simulation, Corner Case simulation, and en-
hanced techniques such as Importance Sampling or Design-of-Experiments
allow to verify ranges – at the cost of a high number of simulation runs,
and with the risk of not finding potential errors. Formal and symbolic ap-
proaches are an interesting alternative. Such methods allow a comprehensive
verification. However, formal methods do not scale well with heterogeneity
and complexity. Also, formal methods do not support existing and estab-
lished modeling languages. This fact complicates its integration in industrial
design flows.

In previous work on verification of Mixed-Signal systems, A�ne Arith-
metic is used for symbolic simulation. This allows combining the high cover-
age of formal methods with the ease-of use and applicability of simulation.
A�ne Arithmetic computes the propagation of uncertainties through mostly
linear analog circuits and DSP methods in an accurate way. However, A�ne
Arithmetic is currently only able to compute with contiguous regions, but
does not permit the representation of and computation with discrete behav-
ior, e.g. introduced by software. This is a serious limitation: in mixed-signal
systems, uncertainties in the analog part are often compensated by embed-
ded software; hence, verification of system properties must consider both
analog circuits and embedded software.

The objective of this work is to provide an extension to A�ne Arithmetic
that allows symbolic computation also for digital hardware and software sys-

5

6

tems, and to demonstrate its applicability and scalability. Compared with
related work and state of the art, this thesis provides the following achieve-
ments:

1. The thesis introduces extended A�ne Arithmetic Forms (XAAF) for
the representation of branch and merge operations.

2. The thesis describes arithmetic and relational operations on XAAF,
and reduces over-approximation by using an LP solver.

3. The thesis shows and discusses ways to integrate this XAAF into ex-
isting modeling languages, in particular SystemC. This way, breaks in
the design flow can be avoided.

The applicability and scalability of the approach is demonstrated by sym-
bolic simulation of a �-� Modulator and a PLL circuit of an IEEE 802.15.4
transceiver system.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals and scope of the work 3
1.3 Hypotheses . 4
1.4 Contributions . 4
1.5 Outline . 5

2 State of the art 7
2.1 Simulation-based approaches 7
2.2 Formal methods . 9

2.2.1 Equivalence checking 9
2.2.2 Model checking . 10
2.2.3 Reachability analysis 11
2.2.4 Run-time verification 13
2.2.5 Symbolic simulation 14

3 Symbolic Simulation based on A�ne Arithmetic (AA) 17
3.1 Symbolic simulation . 17

3.1.1 System-level simulation using SystemC (AMS) 17
3.1.2 Circuit-level simulation 19

3.2 A�ne Arithmetic . 21
3.2.1 Computation with AA forms 22
3.2.2 Approximation schemes of nonlinear operations 24

3.3 Implementation of cleanup method 27
3.4 Hansen’s form of A�ne Arithmetic 28
3.5 Modeling parameter uncertainties with A�ne Arithmetic . . 29

3.5.1 Static uncertainties . 30
3.5.2 Dynamic uncertainties 34

4 Extended A�ne Arithmetic-XAA 38
4.1 Definition and computation 39
4.2 Modeling uncertainties with Extended A�ne Arithmetic . . . 42
4.3 Implementation of XAAF approach 42
4.4 Code Modification with XAAF 45

7

Contents 8

4.4.1 Conditional statements 46
4.4.2 Iteration statements 48

4.5 Scalability of symbolic simulation with XAAF 48
4.6 Illustration examples . 49

4.6.1 Example 1 - Control flow example 49
4.6.2 Example 2 - Water level control system 52

5 Extended A�ne Arithmetic Assertions (XAA + A) 58
5.1 Description . 58
5.2 Specification of properties with XAA+As 61
5.3 Illustration example . 64
5.4 Implementation . 66

6 Evaluation 69
6.1 3rd order Delta-Sigma Modulator 69

6.1.1 Modulator description 70
6.1.2 Results of Symbolic Simulation 70
6.1.3 Comparison with Monte-Carlo simulation 72
6.1.4 Comparison with Design of Experiments 77

6.2 Charge-pump Phased-locked loop Circuit 79
6.2.1 PLL description . 79
6.2.2 Results of symbolic simulation 86
6.2.3 Scalability of symbolic simulation 88
6.2.4 Comparison with numeric simulation 89

6.3 Discussion . 92

7 Conclusion and Future Work 94
7.1 Conclusion . 94
7.2 Evaluation of Hypothesis . 95
7.3 Future work . 95

A The XAAF Library 97
A.1 Instantiation of XAAF terms 97
A.2 Overloaded C++ operators 97
A.3 Retrieving information about XAAF terms 99

List of Figures 101

List of Tables 103

Abbreviations 104

Literature 105

Chapter 1

Introduction

1.1 Motivation
Mixed-signal systems are systems composed of analog and digital circuits
usually controlled by additional software. Analog circuits are by nature
highly sensitive to deviations in their operating conditions/environments.
These deviations cause variations in the circuit parameters, which modify
the original circuit behavior. The modified behavior can change the prop-
erties of the original behavior and lead to their violation. Hence it is of
crucial importance to take them into account during system analysis and
verification.

Usually, the exact values of these variations are unknown and in this
work they are defined and modeled as uncertain values. In the rest of the
thesis the term uncertainties will be used to describe them. There are various
sources of these uncertainties, such as:

• Variations in the manufacturing process
• Variations during life time operation – temperature drift, components

aging, etc.
• Uncertainties introduced by abstraction of reality. Real systems are

often abstracted with behavioral models, which are easier to simulate
and verify

• Uncertainties introduced by analog to digital conversion and the com-
putation in the digital domain with finite-precision arithmetic

• Noise in single blocks, power supply, system environment, etc.
Figure 1.1 shows an example of an IEEE 802.15.4 RF (Radio Frequency)

transceiver with some possible uncertainties. Noise in power supplies can
have a high impact on the system behavior. It can cause variations in decision
thresholds of a phase/frequency detector of the transceiver PLL (Phased-
Locked Loop) circuit. This can further lead to inability of the PLL to lock
and generate the required carrier frequency brought to the input of a mixer

1

1. Introduction 2

circuit. The frequency mismatch in the mixer causes introduction of new
frequencies in the band of interest. This undesired e�ect might lead to wrong
interpreted data on the receiver side.

CPPFD
ref

v LPF VCO

:N

ripple in
power
supply

current tolerances
parameter
tolerances

phase
noise

deviations
in logic
decision

PLL

freq.
deviation

Figure 1.1: Block diagram of RF transceiver with possible uncertainties

A general approach to analyze a system behavior under uncertainties is
a numeric simulation. In the numeric simulation one simulation run is able
to cover only one particular operating condition. To include the wide range
of uncertain values, a high number of runs is required. If one run finds a
trajectory that violates the properties, one can guarantee the presence of
errors. However, if this trajectory is not found, one cannot guarantee the
absence of these errors.

In contrast to simulation, formal methods are able to verify a system
over a wide range of operating conditions within one execution. However,
these methods are not able to cope with a complexity and heterogeneity of
AMS (Analog/Mixed-Signal) systems, such as one shown in Fig. 1.1.

In addition, neither simulation nor formal methods are able to trace
the specification violations to their sources. Formal methods are able to
generate counter examples which lead to specification violation. However,
formal verification is not able to give the answer to this question: "Which
part of a system causes a specification to fail?"

1. Introduction 3

1.2 Goals and scope of the work
The goal of this work is to combine the high coverage of formal methods
with the general applicability of simulation. The first step towards this goal
is to capture the sets of uncertain values in a formal way using, for example
ranges. Section 3.5 provides possible classes of uncertainties and the way to
formally model them. The next step defines operations on ranges required
to capture dynamics in a system behavior. The overall idea of the proposed
approach is shown in Fig. 1.2.

Figure 1.2: The idea of the methodology

The proposed methodology is applied on AMS systems modeled by a
block diagram. This way of modeling is a common industrial practice used in
traditional hardware description languages (HDLs) such as SystemC-AMS,
Matlab-Simulink, VHDL-AMS, Verilog, etc. Uncertainties are captured as
symbolic ranges. Operations applied on ranges compute a symbolic output
in one simulation run. The symbolic response covers the whole set of trajec-
tories over the considered range of uncertain values.

The scope of the work is currently reduced to SystemC AMS simulator.
However, the same concept can be implemented within any simulator, which
supports the use of abstract data types. As simulator, this work uses the
proof-of-concept implementations available from Accellera and Fraunhofer
(AMS extensions). This simulator has been developed for verification and
validation by numerical, non-symbolic simulation.

In order to permit symbolic simulation of existing models, we give the
double/int/bool values of a numeric simulator the semantics of symbolic
simulation. Objective is to allow us the use of the existing, numeric sim-

1. Introduction 4

ulator for symbolic simulation. This permits us to keep the changes and
modifications of the models small while ensuring compatibility with exist-
ing tools and flows. For integration of symbolic simulation into the existing
simulator, we use the following approaches (see Fig. 1.2):

• Operator overloading, which allows us to define operations on ranges.
In this way, arithmetic and relational operators get symbolic semantics.
In the model, the signal and variables values that shall be simulated
symbolically must be the abstract data type XAAF.

• Instrumentation of control flow statements that is necessary for sym-
bolic simulation of multiple control flow paths on the software side.

1.3 Hypotheses
Combining symbolic approach with simulation, the new methodology should
successfully deal and solve the problems of state of the art methods. To show
this, I define the requirements that the method should meet. In the rest of
the thesis I will call them hypothesis whose validation will be presented at
the end of this work.

Hypothesis 1 - Applicability on Complex Mixed-Signal Sys-
tems.

The proposed methodology is based on simulation that allows the appli-
cation of the method on general systems. This hypothesis is validated ap-
plying the new verification methodology on a complex industrial case study:
a dual-path charge-pump PLL circuit of one IEEE 802.15.4 transceiver. The
hypothesis is accepted if the method is able to show that the system meet-
s/does not meet the desired property in the presence of di�erent sources of
uncertainties.

Hypothesis 2 - Comprehensive Verification Coverage.
The new methodology captures uncertain values as ranges giving them

symbolic values. Computation with symbolic values results in a symbolic
system response. The hypothesis is accepted if the symbolic output encloses
the whole set of outputs computed for the particular parameter values inside
the ranges. This is shown finding the worst-case bounds and comparing their
values with the ones obtained by numeric techniques such as Monte Carlo
and Design of Experiments.

1.4 Contributions
The starting point of this work is A�ne Arithmetic proposed by [1]. A�ne
Arithmetic (AA) is a powerful technique to compute with intervals in a sym-
bolic way. It was introduced as an improved alternative of Interval Arith-
metic (IA) [2]. Symbolic representation of ranges with AA overcomes a well-
known dependency problem of IA. AA proved its e�ciency in a vast number

1. Introduction 5

of applications.
The first application of AA was in computer graphics [3]: computing

octrees, quad-trees and ray tracing. This work reports more accurate results
compared with Interval Arithmetic applied on the same examples.

[4, 5] use AA In Digital Signal Processing (DSP) to analyze finite-
precision e�ects caused by rounding errors in floating-point arithmetic. An
upper bound for the error is estimated using a general applicable static error
analysis based on AA. The results of the proposed error estimation are com-
pared with techniques based on detailed simulation strategy [6]. It is shown
that using AA a comparable estimation can be obtained with a significantly
lower computational e�ort.

AA also found its applicability in the verification and analysis of analog
circuits. [7] proposes semi-symbolic analysis of analog circuits based on AA.
Using this approach AA is used in sizing of analog circuits taking the changes
of operating conditions and manufacturing tolerances into account. A�ne
Arithmetic computes the bounds of the worst-case circuit behavior and the
global minimum of sizing problem is determined due to inclusion isotonicity.

[8] and [9] use AA for symbolic (forward) simulation of mixed-signal
systems and analog circuits, respectively. The goal of these works was to
increase coverage of simulation-based techniques towards formal methods.

However, A�ne Arithmetic currently supports only computations in the
continuous domain. This is not enough for symbolic simulation of mixed-
signal systems. Beside continuous parts, they also contain digital or software
parts, which require computations in the discontinuous domain. The discrete
operations cannot be handled with the standard form of A�ne Arithmetic.

This thesis extends A�ne Arithmetic towards crossing continuous/dis-
continuous borders with symbolic values. The extended A�ne Arithmetic
will be able to handle:

• Discrete parts of Mixed-Signal systems such as comparators, switches,
etc.

• Control flow statements in the software code with conditional variables
as ranges

More details about the extension of A�ne Arithmetic and computation with
extended a�ne forms will be given in Chapter 4.

1.5 Outline
The rest of the thesis is organized as following. Chapter 2 briefly discusses
state of the art methods used in verification of analog/mixed signal systems.
The methods are compared with respect to run-time complexity, scalability
and coverage obtained during verification process.

Chapter 3 is reserved for a brief overview of symbolic simulation based
on A�ne Arithmetic (AA), which is the basis for this thesis. The mathe-

1. Introduction 6

matical form of AA and the basic mathematical operations with a�ne forms
can be found in this chapter. Nonlinear operations with AA terms require
the use of approximation schemes that are in this chapter briefly described.
To keep the form of AA, these operations add a new symbol per each execu-
tion. To avoid symbol explosion, the method acting as a garbage collection
or Hansen’s forms are used. The short description of approaches and the
improved scalability of AA is given.

Finally, this chapter shows the practical use of A�ne Arithmetic, listing
sources of system uncertainties and describing the way to model them using
AA. Symbolic simulation based on AA results in symbolic outputs, which
encloses the set of simulation traces, obtained in one (symbolic) simulation
run. The way to perform the symbolic simulation on system, as well on
circuit level is briefly explained.

Chapter 4 briefly introduces the extension of A�ne Arithmetic proposed
in this work. It allows computation with uncertain values on the digital
and software side of a system. Beside standard mathematical operations
this chapter introduces new operations to pass uncertainties through the
discontinuous domain. The idea is illustrated through two small examples:
a simple control flow in the software code and a water level control system
modeled as automata with two discrete states. The chapter ends with a brief
explanation of the method implementation.

Chapter 5 introduces the assertion-based approach proposed to automat-
ically compare symbolic outputs with the properties a system should fulfill.
The following points are covered:

• the assertion language with the appropriate set of operators
• the list of typical system properties and the way to describe them using

these operators
• illustration using two small examples: a 2nd order IIR (Infinite Impulse

Response) filter and a closed loop control system. The properties, that
were verified, are: the overflow of filter output due to finite precision
in DSP and the stability property of a control system.

• the implementation of approach as a separate library in SystemC AMS
simulation environment

Chapter 6 proves the e�ciency and the applicability of Extended A�ne
Arithmetic on two more complex non-trivial case studies: a 3rd Order Delta-
Sigma Modulator and a Charge-Pump PLL circuit. The considered PLL cir-
cuit is used for generation of high frequency carriers in a multiband IEEE
802.15.4 RF transceiver shown in Fig. 1.1. The proposed assertion approach
is used to describe typical properties of the case studies and checked them
automatically. The chapter ends with the discussion that highlights the ad-
vantages of the proposed method over state of the art methods. Chapter 7
concludes the thesis and points to future directions.

Chapter 2

State of the art

Figure 2.1 gives an overview of state of the art methods for mixed-signal
verification. These can be classified into two major classes: simulation and
formal methods (see Fig. 2.1).

Mixed-Signal
 Verification

Simulation Formal methods

Random
tests

Worst-case
 estimation

Equiv. checking

Model checking

Reachability
Analysis

Run-time
Verification

Symbolic
Simulation

Figure 2.1: Methods for verification of Mixed-Signal Systems

2.1 Simulation-based approaches
Simulation is a common method used to analyze analog/mixed-signal behav-
ior over a wide set of operating conditions. This approach can be categorized
into two groups:

1. Statistical methods based on generation of random test cases

7

2. State of the art 8

2. Methods based on estimation of worst-case behavior
Statistical methods use probability density functions to generate random

values for system parameters. These are known as Monte-Carlo simulation.
For a thorough system analysis this approach is a very expensive where too
many tests are repeated to obtain su�cient problem coverage. To reduce this
number, the technique called Importance sampling [10, 11] is proposed. In
contrast to Monte-Carlo this approach does not use the original probability
density function, but the samples are chosen from the other function called
importance density function. Using this function the values are sampled
from regions, which have the highest impact on the system performance.
Although the number of runs is reduced, random tests cannot guarantee
that worst-case scenarios are covered.

The focus of the second class of simulations is to investigate the e�ects
of parameters and find the values, which can lead to worst-case scenarios.
[12] considers corner values of parameters to estimate the worst-case be-
havior. However, this can lead to false estimation, since corners are not by
default worst-case parameter values. The methods in [13] and [14] deliver
more accurate results but a specification of a minimum yield requirement
is required. [15] proposes Design of Experiments (DOE) which uses di�er-
ent classes of metamodels to find parameters with the highest impact. It
estimates “worst-case” system behavior using significantly lower number of
simulation runs. However, in general all methods based on numeric simula-
tions require multi runs which still cannot guarantee dependability. Table
2.1 compares multi-run methods looking at run-time complexity.

Table 2.1: Comparison of run-time complexity.

method complexity comment
Monte-Carlo O(1) probabilistic approach; many runs needed

Importance sampling O(1) monte-carlo runs reduced, but still many runs
Corner-Case O(2k) runs increase exponentially with k uncert.

Design of Experiments number of runs
dependable on various factors:

number of uncertainties,
Euclidean distance between pairs of

samples in the parameter space,
used meta-model

Numeric simulations are able to prove the existence of errors but cannot
prove the absence of them. Counter-examples provide 100% guarantee that
system properties are violated. If the counter-examples are not found, the
correctness of system behavior cannot be proved due to finite numbers of
simulated scenarios. To increase the coverage of numeric simulations, formal
verification methods were proposed.

2. State of the art 9

2.2 Formal methods
The high applicability and e�ciency of formal methods were proved in the
verification of digital systems [16]. Clarke in [16] proposes model checking
methods. These are based on state-graph models of system behavior and al-
low exhaustive exploration of all possible states and transitions in the graph
model. However, due to infinite continuous state space, formal verification
of analog/mixed-signal systems is still a challenge. Literature survey pro-
vides the following techniques for formal verification of analog/mixed-signal
designs.

2.2.1 Equivalence checking
One approach to verify analog/mixed-signal designs in more formal way is
equivalence checking. It is based on proving the equivalence of two mod-
els. In [17] verification of analog circuits is done by checking equivalence
between two transfer functions. One transfer function models the circuit
implementation and the other the specification. The transfer functions are
transformed to the discrete Z-domain, which allows the canonical encoding
into Ordered Binary Decision Diagrams (OBDDs). However, this method
considers circuit parameters only in nominal conditions; no variations are
taken into account. Later, [18] proposes the method, which explores the
e�ect of parameter tolerances to the circuit behavior. The circuit transfer
function is extracted from the circuit netlist. Both methods are restricted
to linear analog circuits.

[19, 20] proposes an equivalence checking approach for nonlinear ana-
log circuits. The idea of the method is to compare functional behaviors
of two circuits represented in the form of di�erential algebraic equations
(DAE). Since levels of abstractions for modeling two circuits might be dif-
ferent, the internal state space variables might also be di�erent. Thus, the
direct comparison of the state space would lead to wrong verification results.
Transforming the state space of both circuits to canonical representations,
which are then directly compared, solves this. However, this is not a trivial
task and for complex systems the transformation could not be automatically
performed.

Beside circuit-level, equivalence checking can also be performed at system-
level as proposed in [21]. There, equivalence is checked between two VHDL-
AMS system models. Each VHDL-AMS model contains digital part, analog
part and convertor components for converting analog to digital and via versa.
Digital part of two designs is verified using classical equivalence checking
methods like SAT/BDD method. Analog parts were simplified using rewrit-
ing engine and compared using AMS simulator. However, it is not easy to
find appropriate rewriting rules to arbitrary classes of analog circuits and
this method is often restricted to simple and specific designs. In general, all

2. State of the art 10

methods based on equivalence checking su�er from the complexity problem
as it is surveyed in [22].

Table 2.2: Methods for equivalence checking [22]

[17] [19] [18] [21]
Type of systems Linear Nonlinear Linear Nonlinear AMS

Models Transfer function ODE-DAE Transfer function ODE-DAE
Analysis Regions Transient response Near operating point Near operating point Functional

transient response analysis
Analysis domain Frequency Time Frequency Time

Techniques and analysis OBDDs comparisons Qualitative analysis Interval analysis Rewriting, SAT simulation
Tools N/A MAPLE MAPLE M-CHECK

Case studies Low pass filter CMOS inverter, Band pass filter D/A converter
Opamp

2.2.2 Model checking
The other approach to formal verification is based on algorithmic system
verification like model checking. Depending on the system complexity the
researchers propose two classes of methods: direct and indirect methods.

The first class of methods is applied on the original systems where a gen-
erated state model is the exact representation of the system behavior [23, 24].
These methods are restricted to linear systems with a simple continuous
dynamics. For nonlinear systems with more complex dynamic behavior the
computation time to generate a discrete model significantly increases. There-
fore, the indirect methods must be applied. They convert original systems
to abstract models easier to analyze and verify.

The work in [25, 26] proposes timed automata to approximate continuous
system parts. In [27] the time automata is refined by adding clocks allowing
us to reduce over-approximation of abstract models; the number of spurious
behaviors that do not correspond to concrete ones. The applicability of this
method is restricted to systems with a monotonic behavior.

[28] proposes Linear Hybrid Automata (LHA) to abstract continuous
system dynamics. To deal with system nonlinearities, [29, 30] extend LHA
with a piecewise linear model. The approach is based on linear phase-portrait
approximation where the state space of the nonlinear system is divided into
linear regions. Since there is no standard method for partition of state space,
strongly nonlinear models can hardly be handled.

[31, 32] proposes the discretization of the infinite continuous state space
of nonlinear analog systems. The continuous space is discretized into re-
gions called hypercube, which represent the discrete states of the finite
state model. Once a model is created, model-checking algorithms are ap-
plied to verify typical system properties. The system properties are described
with Computation Tree Logic (CTL) formulas. [33, 34] extend CTL formu-

2. State of the art 11

las [35, 36] to cover analog behavior. The main weakness of these approaches
is the state explosion problem and the total runtime, which grows expo-
nentially with the number of state variables. Only systems with few state
variables (maximum five) can be handled.

In [37] the authors propose a new model for the state representation of
AMS designs, Timed Hybrid Petri Nets (THPN). The reachable states of
THPN are computed by Di�erence Bound Matrix (DBM)-based algorithm,
which uses convex polygons (zones) to represent them. The desired system
properties are described with ACTL (Analog Computation Tree Logic) and
automatically verified. This approach requires specification of AMS designs
in the form of di�erential equations (DEs) which are then transformed into
THPN.

One more approach towards formal verification of AMS designs is a a
Bounded Model Checking (BMC) implemented in the Property-Checker tool
[38]. This tool is intended to verify the AMS behaviors, which should reach
steady states. As all previous methods, this tool also requires the specifi-
cation of AMS design in the intermediate language. The design must be
described using the semantics of XML language.

The first step towards the integration of formal methods in a standard
design flow is proposed by [39]. The authors improve the previous work [37]
to allow specification of AMS circuits using a familiar language (in this case
VHDL-AMS). A new model called Labeled Hybrid Petri Net (LHPN) is in-
troduced, which is automatically generated from VHDL-AMS designs. To
enable the application of the methodology in general (not only on VHDL-
AMS designs), [40, 41] propose the generation of LHPNs from simulation
traces got from an arbitrary simulator. System properties are then veri-
fied using one of the following model checkers: binary decision diagrams
(BDD)-based model checker [42, 43], (di�erence bound matrices) DBM-
based model checker [44] and (satisfiability modulo theories) SMT-based
model checker [42, 43]. Since LHPN is generated from simulation traces, the
quality of the model depends on the quality of delivered simulation results.
To increase the quality of verification results the authors propose the use of
coverage metrics. They should give information about the regions, which are
not explored by simulation traces but where the undesired behavior can ap-
pear. The lower quality of simulation results, the more information coverage
metrics should deliver.

2.2.3 Reachability analysis
To deal with the state explosion problem, one line of research performs
state exploration directly on system dynamics. This approach is in litera-
ture known as reachability analysis. In general, this approach cannot find the
exact representation of all reachable states. This is due to complex system
dynamics and unknown exact values of initial conditions. Therefore, reach-

2. State of the art 12

Table 2.3: Methods for model checking [22]

[32, 34] [37] [38]
Type of systems Nonlinear Nonlinear AMS

Models ODE, DAE THPN/ODE piecewise linear automation
Analysis Regions No restriction No restriction Steady State

Techniques and analysis Numerical anal. Numerical approx. Bounded MC
State space partitions HyperCubes Convex polygons

Temporal Logic CTL-AT ACTL FOL
Tools Amcheck ATACS Property Checker

Case studies Smitt trigger, Tunnel diode, Sequential circuit
Opamp, VCO PLL

able sets are often approximated using di�erent geometrical representations.
[45] proposes the partition of the continuous state space using hypercubes

of fixed size. However, the computation time of this approach is too high.
To reduce this time the authors in [46] propose the reduction of the state
space dimension by projections of the state space with polygons.

In d/dt [47, 48] and Checkmate [49, 50, 51, 52] tools, the set of reach-
able states is approximated using polyhedra. d/dt uses orthogonal polyhe-
dra, while Checkmate is based on abstractions using the sequence of convex
polyhedra, so called flow pipe approximations. In [53] the authors extend
d/dt to support verification of nonlinear analog circuits whose behavior
is described with di�erential algebraic equations (DAEs). The extended ap-
proach is illustrated on a second order biquad low pass filter. However, d/dt
misses an automatic translation from a circuit description to a hybrid au-
tomata (HA) and a formal language to specify analog properties. In [54]
the Checkmate tool is used to verify properties of two analog circuits, a
tunnel diode oscillator circuit and a delta-sigma modulator. Systems are
converted to Approximate QTSs (Quotient Transition Systems), which rep-
resent conservative approximation of the infinite-state representation of the
original system. Since AQTSs represent approximations of the considered
hybrid system, the tool verifies only universal properties (properties which
must hold for all paths of QTS). These properties are described by ACTL
class of formulas [55].

One more approach on reachability analysis not considered by [22] is
the work presented recently in [56]. This work proposes the use zonotopes
for the approximation of the reachable set. It provides e�cient results on
verification of a locking property of dual-path charge-pump PLL circuit.
However, there are some open questions: “Can this approach handle circuit
nonlinearities (e.g. in Voltage-Controlled Oscillator)?” or more important
“Can this approach be applied in general?”

2. State of the art 13

Table 2.4: Methods for reachability analysis [22]

[45] [46] [54] [53]
Types of Systems Nonlinear Nonlinear Nonlinear Nonlinear

Models ODE ODE HA/ODE-DAE HA/ODE-DAE
Analysis Regions No restriction No restriction No restriction No restriction

Techniques and analysis Simulation Projection numerical approx. Numerical approx. Numerical approx., MILP
State space partitions Fixed size hyperCubes Polygons Convex Orthogonal

polyhedra polyhedra
Tools COSPAN Matlab/Coho Checkmate d/dt

Case studies Interlock Circuits Van der Pool Tunnel Diode Low Pass Filter
Oscillator � ≠ � mod � ≠ � mod

2.2.4 Run-time verification
Run-time verification is the other set of methods dealing with the complexity
problem of formal methods. The basic idea is to use monitors, that monitor
signal traces generated from numeric simulations. Monitors check proper-
ties automatically and can work in o�ine and online mode. The properties
to be verified are described with assertions whose semantic follow the syn-
tax of the appropriate specification language. This idea was firstly adopted
for verification of digital designs [57]. In [58, 59] the authors propose for-
mal specification languages like Property Specification Language (PSL) and
System Verilog Assertion (SVA). For specification of analog behavior these
languages require extensions and the certain number of modifications.

[60] presents Signal Temporal Logic (STL), as extension of PSL. The
language is used to specify analog properties, which are verified o�ine. [61]
also proposes the o�ine tool, but for verification of mixed-signal properties.
This tool requires modeling AMS system with System of Recurrence Equa-
tions (SRE) and it does not support mixed behaviors for continuous time
(only discrete).

In general, the weakness of o�ine methods is that properties can be
checked only after simulation. For complex systems memory usage to save
the signal traces can increase significantly.

To face with this problem the authors in [62] extend the work [60] to-
wards online monitoring. The approach proposes an incremental monitoring
method, which combines the simplicity of the o�ine method with the early
failure detection of online monitoring. Concretely, the o�ine method is not
applied on the entire set of simulation traces but incrementally on each
simulation trace.

Online monitoring can be also found in [63] where SVAs are extended
to cover continuous time. In [64] an assertion library is integrated in the
environment of MLDesigner which uses multi domain approach to model
systems: CTDE (Continuous Time Discrete Event) MOCs (Model of Com-
putations) for analog modeling and Discrete Event MOCs for modeling dig-
ital system parts.

Monitoring timed automata (MTA) [65], based on the approach [66], also

2. State of the art 14

allows the verification of system properties during simulation. In [67] the
authors integrate the MTA in the automatic stimulus generation framework
which is interfaced with the VHDL-AMS simulator.

Above described assertion-based methods are limited to verification of
time behavior; frequency behavior is not covered. To allow description of
properties in the frequency domain, [68, 69] introduce the language of Mixed
Signal Assertions (MSA). They combine continuous time, discrete time and
frequencies with temporal logic.

In general run-time verification is a very fast and hence an attractive
approach. However, there is no guarantee that a system meets specifications
due to the finite number of tested simulation traces.

2.2.5 Symbolic simulation
The goal of symbolic simulation is to combine the high coverage of formal
methods and interactive way of analysis as simulation. Symbolic simulation
is also a part of formal verification, e.g. to compute reachability. The idea
is based on symbolic approach, which replaces concrete numeric values with
symbols. Symbolic simulation can be seen as a methodology, which removes
tradeo� in conventional simulations between required simulation runs and a
coverage. With symbolic representation, a comprehensive coverage of formal
methods is obtained in one or very few simulation runs.

In early 70’s [70] symbolic simulation was applied for software testing
and debugging. Since program variables are symbols, control flows in soft-
ware code are executed for all possible branches/path conditions. For large
programs, a comprehensive simulation is problematic, because the number
of paths increases exponentially (path explosion problem). To cope with the
path explosion problem, Satisfiability Modulo Theories (SMT) solvers[71]
are used to more accurately determine the reachable paths. The control
flow is pruned by heuristics to focus on “relevant” paths [72, 73]. Recent
tools allow symbolic execution at the level of C code [74], Low Level Virtual
Machine (LLVM) [75] or Dalvik [76] intermediate code and are able to han-
dle larger software systems. While for C code a specific symbolic executor
is used, abstract virtual machines like LLVM or Dalvik do not need any
specific high-level language at all.

Design languages such as VHDL, Verilog and SystemC have, together
with their simulation methods, reached a complexity where it would be
desirable to use an existing compiler and simulator for symbolic simulation
or model checking. The question “Can a Simulator Verify a Circuit?” was
first asked by Bryant [77] who proposed the use of the ternary logic (0,1,X)
of logic simulators for this purpose. Unfortunately, this will quickly lead to
simulations with "X" states only.

In [78] Bryant and Seger propose Symbolic Trajectory Evaluation where
symbolic simulator is seen as model checker. The properties are described

2. State of the art 15

with limited class of formulas written in Linear Temporal Logic (LTL)
logic. This work was later extended to support verification of safety proper-
ties [79, 80, 81]. [82] proposes Generalized Symbolic Trajectory Evaluation
(GSTE) which enables adding fairness to system properties. To avoid simu-
lations with "X" states only, GSTE does not encode the entire system state
space symbolically. It looks at the complexity of specification and replaces
only required inputs and initial states with symbols. This methodology found
place in industry applications; Motorola used STE for verification of mem-
ory subsystems while Intel performed block-level verification based on this
methodology. However, only limited class of properties can be described and
verified; existential properties cannot be expressed. CTL model checking is
still more expressive.

In [83] Chris Wilson overcomes the problem of "too many X" combining
the ternary logic with more powerful BDD structure. In Wilson’s simulator
the symbolic values are represented in two ways: as BDD variable or symbol
"X" tagged with the corresponding index. When the output values depend
on inputs with multiple tags, its result is "X". The idea is to start symbolic
simulation using only tagged values for input variables. If outputs result
in "X", then input symbols are replaced with BDD variables and symbolic
test is performed again. This process is repeated until the output value is
either 0 or 1. This simulator is restricted to simple data paths, since every
time tagged "X" is replaced with BDD variable the entire simulation must
be repeated. Recent tools rely on more powerful BDD techniques or even
SAT/SMT solvers. For this purpose, HDLs are translated into automata
or other intermediate representations. For formal verification in complex
modeling and design languages, languages such as SystemC are translated
to intermediate languages, SISSI [84].

Recent works [85, 86] brought the idea of symbolic approach to analog
and mixed-signal circuits. Both methods combine symbolic representation of
system behavior with Interval Arithmetic (IA)[2] to compute over the ranges
of system parameters. In [85] mixed-signal designs are modeled symbolically
in the form of recurrence equations and computed over the intervals of sys-
tem parameters. However, due to divergence problem associated with IA,
symbolic simplifications need to be applied at each time step This leads to
high computational costs.

[86] proposes symbolic representation of mixed-signal behavior in the
form of SAT constraints by using NL-SMT solver. The constraints over
variables are represented as intervals using Interval Arithmetic. Similar, the
over approximation problem of IA is solved by symbolic simplifications with
ICP(Interval Constraint Propagation) which is applied at each computa-
tion step. Since this leads to significant increase of computational costs, the
combination with numeric simulations was required.

[8, 87, 9] overcomes the problems of IA using the improved alternative
called A�ne Arithmetic [1, 88]. One more advantage of these works over

2. State of the art 16

[85, 86] is that the symbolic methodology is used directly in an existing
simulator without translation a system model to a formal one. However,
these approaches were restricted to continuous state space due to inability
of A�ne Arithmetic to compute in the discrete domain. This work extends
A�ne Arithmetic towards discrete computations with symbolically repre-
sented ranges.

Chapter 3

Symbolic Simulation based
on A�ne Arithmetic (AA)

3.1 Symbolic simulation
Recent works [8, 89] use A�ne Arithmetic [1, 88, 90] for symbolic simulation
of analog/mixed-signal systems. A system is simulated over a set of variable
inputs, initial conditions and parameter values. All system variations are
symbolically modeled as ranges using a�ne forms. Using symbolic represen-
tation A�ne Arithmetic brings the simulation the following advantages:

1. High dependability of verification results using one (symbolic) simula-
tion run

2. Measuring the impact of each variation to the total system perfor-
mance and the trace ability of variations back to their sources

In [8] simulation is performed at system level using an existing SystemC
AMS simulator [91], intended for numeric simulation. Beside system-level
simulation, symbolic simulation is also performed at circuit level [89]. In [89]
A�ne Arithmetic is integrated in an equation solver to compute a circuit
response over a set of circuit parameter values.

3.1.1 System-level simulation using SystemC (AMS)
In [8] AMS system is modeled in a usual way by a block diagram as shown by
Figure 3.1. The functions of blocks are described by mathematical functions
in time-domain (multiplication, integration, di�erential equations, etc.), by
transfer functions H(s), or by linear circuits with switches, or by C++ code.

The functional blocks communicate via directed signals ((timed) data-
flow, signal-flow). For simulation, the outputs of the blocks are computed
in discrete time steps, following the data flow’s direction by computation of
the block’s functions, or by solving the equation systems of the blocks. This
way of modeling is the common industrial practice and is the underlying

17

3. Symbolic Simulation based on A�ne Arithmetic (AA) 18

Values between two sample points ti, ti+1 are assumed to be
between the maximum/minumum of both affine values1. As
shown in figure 4 simulation runs with affine signals provide
for each point in simulated time information about ranges
of possible output values. Furthermore, designers can see
which of the sources of uncertainty in the design causes how
many of the resulting uncertainty.

Figure 5. Visualization of the maximum range
of affine output with extended GTKwave.

Figure 5 shows a screenshot of an enhanced version of
GTKwave which is able to visualize analog affine signals as
shown in figure 4. Actually, only one analog signal is sup-
ported. Drawing both specification of the output of charac-
terization and actual outputs in one plot and graphical visu-
alization of the different noise symbols is subject of current
work.

4. Design Example

To demonstrate the applicability of the method we an-
alyze a control system with feedback. Feedback loops are
the main cause of potential problems that we expect: Ex-
plosion of the number of affine terms, and/or too large over-
approximation. Systems with feedback were problematic
in first experiences with more simple analog interval arith-
metic [3, 8], where error cancellation was not possible. Fur-
thermore, the concept of error cancellation via feedback is
one of the most fundamental concepts of mixed-signal sys-
tems and can be found — in different flavors — for exam-
ple in Σ∆ converters, or in noise shaping. Therefore, a sim-
ple system with feedback is an illustrative and yet meaning-
ful example to validate the applicability.

1 This (unfortunately) does not cover the case of a local extremum be-
tween ti, ti+1.

In order to model a control system we describe the sys-
tem shown in Figure 1 as usual in SystemC with the follow-
ing differences:

• We use the type AAF instead of double to model sig-
nals.

• In order to verify the impact of design steps on the sys-
tem behavior we add a models of an assumed devia-
tions from the ideal behavior.

Figure 6 shows the system we implemented to validate
transient simulation with affine expressions.

is
refinement?

+i(t) OK
?

specifi-
cation

quanti-
sation,
noise

+

un-
precise
model

+

Input

23
1)(2 ++

=
ss

sH

sccsH /)(21 +=

ô(t)

ôR(t)

-

offset
error

+

Figure 6. Design Example.

The model includes three different errors modeled by
affine expressions: 1.) A potential offset error of a compara-
tor which adds a constant error, 2.) potential errors due to
not captured effects in a model, and 3.) quantization noise.
These errors occur in different points in the design, and their
impact on the dynamic behavior is analyzed by a simulation
run.
Figure 7 shows the visualization of some simulation re-

sults with gnuplot. The impact of all these errors on the out-
put signal can be displayed separately:

• The offset error in the adder is not reduced by the con-
trol system.

• Even large static errors introduced in the control loop
(e.g. due to unprecise modeling) fall towards 0.

This is exactly what we expect from a PI controller. If the
errors on the output are too high designers can take appro-
priate measures to bring the output signals directly into the
range allowed by the specification.

5. Discussion and Future Work

Although affine arithmetic and its application in circuit
or system design is very new, and only few experiences ex-

Figure 3.1: Modeling AMS system by a block diagram [8]

model of computation of modeling languages such as Matlab/Simulink and
SystemC AMS. [8] uses SystemC AMS.

SystemC AMS [91] is introduced as an extension to SystemC modeling
language [92], which enables modeling, simulation and verification of analog
and mixed signal systems in the same simulation environment. SystemC is a
C++ class library intended for simulation of cycle-accurate system behavior
using discrete-event simulation kernel in the background. As an extension,
SystemC AMS keeps all properties of SystemC while adding new features
to handle mixed-signal behavior. New execution semantics include modeling
AMS systems on di�erent levels of abstractions: discrete-time, continuous-
time, non-conservative and conservative modeling. They are supported by
three models of computation shown in Figure 3.2:

• Timed Data Flow (TDF) - TDF supports the abstraction of signals
and system quantities as discrete-time values available at discrete time
points. The distance between the points is defined by the sampling pe-
riod T

s

. All standard types supported by C++ can be used to specify
the type of discrete-time values. TDF also supports the use of tem-
plates to specify value types. Therefore, one can implement its own
data type and use it to represent quantities and signal values.

• Linear Signal Flow (LSF) - LSF and ELN support continuous-time
modeling which is more natural way of modeling the physical world.
The system behavior is specified as a set of di�erential algebraic equa-
tions (DAEs) solved by a suitable equation solver. LSF supports sys-

3. Symbolic Simulation based on A�ne Arithmetic (AA) 19

March 8 2010 SystemC AMS extensions User’s Guide

2 Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

1.2.1. Use cases and requirements

As depicted in Figure 1.2, the SystemC AMS extensions can be used for a wide variety of use cases such as:
• Executable specification;
• Virtual prototyping;
• Architecture exploration, and
• Integration validation.

Figure 1.2. Use cases, model abstractions, and modeling formalisms

Executable specification

An executable specification is made to verify the correctness of the system requirement specification by
creating an executable description of the system by using simulation. For this use case, models at a high
level of abstraction are created, which do not necessarily need to relate to the physical architecture or
implementation of the system. The models are, therefore, called functional or algorithmic models.

SystemC and the AMS extensions define both the system-level modeling language and their execution
semantics for simulation purposes. They are entirely implemented in the form of C++ libraries, which are
linked to the compiled AMS models to create an executable description of the system. This entirely C++-
based modeling approach offers a unique flexibility as it allows, e.g., the easy integration of embedded
software, 3rd party libraries, and legacy code into the system models.

Virtual prototyping

The virtual prototyping use case aims at providing software developers with a high-level untimed or timed
model, that represents the hardware architecture, and provides high simulation speed. Especially for E-AMS
systems, where software or firmware is interacting directly with AMS hardware, interoperability using
SystemC Transaction-Level Modeling (TLM) extensions is important.

The usage of Timed Data Flow modeling for (over)sampled continuous-time and signal processing behavior
provides high simulation speed with appropriate accuracy. In this way, the AMS subsystem can become
part of the virtual prototype for further development of the HW/SW subsystem.

Architecture exploration

The architecture exploration use case will evaluate if and how the ideal functions and algorithms defined
during the executable specification phase can be mapped onto the envisioned system architecture. The key
properties of the system architecture are defined and should match with the actual functionality required.

Figure 3.2: Modeling formalisms in SystemC AMS [93]

tem modeling only with the set of available modules called primitive
modules. The response of such a system is computed using a linear
DAE solver.

• Electrical Linear Network (ELN) - Unlike LSF, ELN supports model-
ing a conservative continuous-time behavior. These models are more
complex, hence they require that interactions between system quanti-
ties satisfy Kirchho�’s laws.

In [8] the authors use TDF as model of computation. In order to turn the
existing SystemC AMS numeric simulator to a symbolic one, C++ values
double/int/bool are given the symbolic semantics using A�ne Arithmetic
(AA). Replacement of standard C++ data types with AAF is possible through
operator overloading.

One symbolic simulation run results in the safe set of all possible system
behaviors over the considered range of operating conditions. The system
response for the system shown in Figure 3.1 is shown in Figure 3.3. The
errors introduced in the control loop fall towards 0 and the output signal
converges to the steady state value. This behavior is exactly what a designer
expects from a designed PI controller (Figure 3.1 bottom). In contrast to
Interval Arithmetic, A�ne Arithmetic is able to track correlations between
same quantities in a system loop. This further avoids overapproximation of
output signal values that could lead to false negatives.

3.1.2 Circuit-level simulation
Beside at system level, symbolic simulation can also be applied at circuit
level [89, 94, 95].

[89] implements a symbolic SPICE-like circuit simulator. It was used

3. Symbolic Simulation based on A�ne Arithmetic (AA) 20

-10

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10

offset error

control variable

manipulating variable

Figure 7. Visualization of simulation results.

ist, these experiences are very promising. Roughly speak-
ing, we made similar experiences compared with [3] for
static analysis of DSP algorithms: In practical case studies
the number of terms remains limited, and the value range
does not grow too much. In our experience the analysis
of dynamic properties by a transient simulation with affine
arithmetic provides very useful information with only very
few simulation runs.
Compared with noise analysis, transient simulation with

affine expressions is not restricted to linear systems. In gen-
eral the methodology is applicable even to complex mixed-
signal systems e.g. in ambient intelligence or control sys-
tems which combine large software systems with analog
and digital signal processing. However, careful modeling of
the errors is required in order to avoid an increasing num-
ber of terms with simulated time. Compared with Monte-
Carlo techniques simulation with affine expressions pro-
vides more information: The contribution of each single
noise/error source to the total deviation from the central
value. Although the case study presented shows that ‘error
cancellation’ does work, we are working on more impres-
sive and complex case studies such as the noise analysis of
a Σ∆ converter.
The presented results provide an easy-to-use framework

for the refinement of signal processing systems to mixed-
signal implementations, because by very few simulation
runs, and in a systematic way we can show that a given
implementation is a property refinement of a specification.
Note that simulation with affine arithmetic could also be an
interesting candidate for a combination with methods for
property checking of hybrid systems [7].
Although this work most notably deals with interactive

design and refinement the methodology and transient sim-
ulation with affine arithmetic can be very useful for de-
sign automation at system level. For design automation of
mixed-signal systems at high level of abstraction the anal-

ysis of precision and parasitic effects are actually very im-
portant problems which must be solved before developing
methods for design automation at system level.
Acknowledgements The authors would like to thank F. Rammig, J.
Romberg, and L. Hedrich for valuable discussions. The work was sup-
ported by funds of the Deutsche Forschungsgemeinschaft (DFG) under
reference number WA 357/14 within the priority program ‘Bewer-
tung und Analyse hybrider Systeme’.

References

[1] M. Andrade, J. Comba, and J. Stolfi. Affine Arithmetic (Ex-
tended Abstract). In INTERVAL ’94, St. Petersburg, Russia,
1994.

[2] D. Cansell and D. Méry. Integration of the proof process in
the system development through refinement steps. In Forum
on Specification & Design Languages (FDL’02), Marseille,
France, Sep 2002.

[3] C. Fang, R. Rutenbar, M. Püschel, and T. Chen. Towards
Efficient Static Analysis of Finite-Precision Effects in DSP
Applications via Affine Arithmetic Modeling. In Design
Automation Conference (DAC 2003), Anaheim, USA, June
2003.

[4] O. Gay. Libaa - C++ Affine Arithmetic Library for GNU /
Linux. http://savannah.nongnu.org/projects/libaa, 2003.

[5] A. Graupner, S. Getzlaff, R. Schüffny, W. Schwarz, and
K. Lemke. Statistical Analysis of Parallel Analog Structures.
In Workshop on System Design Automation (SDA 2000), pp
91-98, 2000.

[6] C. Grimm. Modeling and Refinement of Mixed Signal Sys-
tems with SystemC. In SystemC – Methodologies and Appli-
cations. Kluwer Academic Publisher (KAP), June 2003.

[7] T. A. Henzinger and P.-H. Ho. Hytech: The cornell hybrid
technology tool. In P. Antsaklis, W. Kohn, A. Nerode, and
S. Sastry, editors, Hybrid Systems II, volume 999 of Lec-
ture Notes on Computer Science, pages 265–293. Springer,
Berlin, 1995.

[8] W. Heupke, C. Grimm, and K. Waldschmidt. A NewMethod
for Modeling and Analysis of Accuracy and Tolerances in
Mixed-Signal Systems. In Proceedings of the Forum on
Specification and Design Languages (FDL’03), Frankfurt,
Germany, Sept. 2003.

[9] A. Lemke, L. Hedrich, and E. Barke. Analog Circuit Siz-
ing Based on Formal Methods Using Affine Arithmetic. In
ICCAD 2002, 2002.

[10] J. Philipps and B. Rumpe. Roots of refactoring. In K. Ba-
clavski and H. Kilov, editors, Tenth OOPSLA Workshop on
Behavioral Semantics. Tampa Bay, Florida, USA, October
15, 2001. Northeastern University, 2001.

[11] J. Romberg and C. Grimm. Refinement of Hybrid Systems
from HyCharts to SystemC-AMS. In Proceedings of the
Forum on Specification and Design Languages (FDL’03),
Frankfurt, Germany, 2003.

[12] A. Vachoux, C. Grimm, and K. Einwich. SystemC-AMS Re-
quirements, Design Objectives and Rationale. InDesign, Au-
tomation and Test in Europe 2003 (DATE 2003), Munich,
Germany, 2003.

Figure 3.3: Visualization of simulation results [8]

for symbolic (forward) simulation of analog circuits which are modeled by
nonlinear di�erential equations in the implicit form:

F(x, p) = 0.

So far this seems to be the only approach that is able to handle nonlinear
di�erential equations in the implicit form of high complexity as needed for
symbolic (forward) simulation. Circuit simulation is performed in two steps.
In the first step, a net list of the circuit is transformed into the corresponding
system of di�erential equations using the Modified-Node-Analysis (MNA).
Then in the second step the equation system is solved in the numerical
solver, which uses one of the methods of numerical integration like forward
Euler, backward Euler or trapezoidal method to solve the given equations.
The solver provides DC, AC and transient circuit analysis. To deal with
a�ne terms, the circuit simulator performs the algorithm divided into three
steps:

1. The nominal solution of the system is computed using a well-known
Newton-Raphson method.

2. The equation is linearized at the nominal point with respect to param-
eter variations and variable inputs. For linear systems the simulator
solves linearized equations providing an exact a�ne solution.

3. To deal with nonlinear systems, the algorithm requires the third step
in which the a�ne solution is overapproximated to deliver the conser-

3. Symbolic Simulation based on A�ne Arithmetic (AA) 21

vative solution. For this purpose, the new deviation symbol (modeling
overapproximation) is added.

Figure 3.4 shows the flow of a�ne circuit simulation.

MNA

System of
differential
equations

Solve eq.system
for nominal

parameter values

Linearize
diff.equations
with respect

to param dev.

System is
linear?

yes

Solve equation
system

no

Extend affine sol.

Simulation
complete

Figure 3.4: The flow of a�ne circuit simulation

3.2 A�ne Arithmetic
A�ne Arithmetic (AA) is a powerful technique to compute with ranges. It
is proposed as an improved alternative for classical Interval Arithmetic (IA)
[2] to handle its dependency problem. The form, which AA uses to represent
an arbitrary quantity x̃, is as follows:

x̃ = x0 +
mX

i=1
x

i

Á
i

Á
i

œ [≠1, 1] . (3.1)

Each deviation symbol Á
i

is a symbolic variable whose exact value is un-
known, but lies in interval [≠1, 1]. The deviation symbols are scaled by par-

3. Symbolic Simulation based on A�ne Arithmetic (AA) 22

tial deviations x
i

, whose number is equal to m.
The a�ne form given by Eq. 3.1 is an informal representation of a range

[x
lo

, x
up

] with lower and upper bounds calculated as:

x
lo

= x0 ≠
mX

i=1
|x

i

|

x
up

= x0 +
mX

i=1
|x

i

|.

The range is converted back to a�ne form according to the following:

[x
lo

, x
up

] = x
lo

+ x
up

2 + x
up

≠ x
lo

2 Á; Á œ [≠1, 1].

With symbolic representation A�ne Arithmetic identifies the correlation
between a�ne forms and hence delivers more tight and realistic bounds
than Interval Arithmetic. Figure 3.5 shows the geometrical representation
of joint range of two correlated quantities represented in A�ne and Interval
Arithmetic. In Interval Arithmetic joint range of x and y is a box, while in
A�ne Arithmetic the joint range represent a zonotope, a center-symmetric
convex polytope. AA delivers much more accurate bounds than IA, as shown
by Figure 3.5.

Affine Arithmetic 301

the corresponding coefficients xi and yi. Note that the signs of these coefficients are
not meaningful in themselves, because the sign of εi is arbitrary; but the relative
sign of xi and yi defines the direction of the correlation. For example, suppose that
the quantities x and y are represented by the affine forms

x̂ = 20− 4ε1 + 2ε3 + 3ε4

ŷ = 10− 2ε1 + 1ε2 − 1ε4

From this data, we can tell that x lies in the interval x̄ = [11 29] and y lies in
ȳ = [6 14]; i.e., the pair (x, y) lies in the grey rectangle of figure 2. However,
since the two affine forms include the same noise variables ε1 and ε4 with non-zero
coefficients, they are not entirely independent of each other. In fact, the pair (x, y)
must lie in the dark grey region of figure 2, which is the set of all possible values of
(x̂, ŷ) when the noise variables ε1, .. ε4 are independently chosen in U. This set is
the joint range of the forms x̂ and ŷ, denoted ⟨x̂, ŷ⟩.

11 29

6

14

Figure 2: Joint range ⟨x̂, ŷ⟩ of two partially dependent quantities as implied by
their affine forms x̂ = 20− 4ε1 + 2ε3 + 3ε4 and ŷ = 10− 2ε1 + 1ε2 − 1ε4.

As can be inferred from figure 2, the set ⟨x̂, ŷ⟩ is a convex polygon, symmetric
around its center (x0, y0). If the forms depend on n noise symbols ε1, .. εn, the
joint range has 2n sides; each εi corresponds to a pair of opposite sides, which are
parallel and congruent to the segment with endpoints (xi, yi) and (−xi,−yi). In
fact, the joint range ⟨x̂, ŷ⟩ is the Minkowski sum [16] of all those segments with the
point (x0, y0). The 2n vertices of ⟨x̂, ŷ⟩ are the corners of the convex hull of the
2n points (x̂, ŷ) that are obtained by setting each εi to −1 or +1, in all possible
combinations.

Similarly, the joint range ⟨x̂, ŷ, ẑ⟩ of three affine forms x̂, ŷ and ẑ is a convex
polyhedron, center-symmetric around the point (x0, y0, z0), with Θ(n2) vertices,
edges and faces in the worst case.

In general, any m affine forms x̂1, .. x̂m determine a joint range ⟨x̂1, .. x̂m⟩ ⊆ Rm,
defined as the set of all tuples (x1, .. xm) of values for the corresponding ideal
quantities that are simultaneously compatible with those affine forms. Note that
⟨x̂1, .. x̂n⟩ is the parallel projection on Rm of the hypercube Un by the affine map
(x̂1, .. x̂m). The projection is a zonotope, a center-symmetric convex polytope in
Rm, whose faces are themselves center-symmetric. It is the Minkowski sum of the
point (x1

0, .. xm
0) and the n segments si with endpoints (x1

i , .. xn
i) and (−x1

i , .. −xn
i).

Figure 3.5: Joint range of dependent quantities x̃ = 20 ≠ 4Á1 + 2Á3 + 3Á4
and ỹ = 10 ≠ 2Á1 + Á2 ≠ Á4 in A�ne Arithmetic (zonotope) and Interval
Arithmetic (box)[88]

3.2.1 Computation with AA forms
Arithmetic operations on a�ne forms can be divided into two groups: linear
and nonlinear. These operations are defined through the following defini-
tions. The acronym AAF in the following definitions refers to the set of
a�ne forms defined by Eq. 3.1.

3. Symbolic Simulation based on A�ne Arithmetic (AA) 23

Definition 3.1. If x̃, ỹ œ AAF and c œ R is a real constant then

x̃ + ỹ = x0 + y0 +
mX

i=1
(x

i

+ y
i

)Á
i

x̃ ≠ ỹ = x0 ≠ y0 +
mX

i=1
(x

i

≠ y
i

)Á
i

cx̃ = cx0 +
mX

i=1
cx

i

Á
i

.

The above operations satisfy the closure property; they result in a�ne
forms with exact lower and upper bounds. For nonlinear operations the final
result must be approximated to be represented as an a�ne form. However,
the safe inclusion is guaranteed; the final result is always over-approximation
and never underestimation of the exact result.

Definition 3.2. If x̃, ỹ œ AAF , nonlinear function f(x̃, ỹ) is then computed
as:

f(x̃, ỹ) ™ fa(x̃, ỹ) + ”Á
m+1

where Á
m+1 œ [≠1, 1] is a new deviation symbol. ” is the upper bound

of the approximation error between the nonlinear function f and the linear
approximated function fa:

|f(x̃, ỹ) ≠ fa(x̃, ỹ)| Æ ” ’Á
i

œ [≠1, 1].

The linear approximated function fa is computed using one of the approx-
imation schemes described in the next section (Section 3.2.2). Nonlinear
operations such as multiplication and division of two a�ne terms x̃ and ỹ
are computed as follows:

x̃ ú ỹ := x0 ú y0 +
mX

i=1
(x0y

i

+ x
i

y0)Á
i

+ (
mX

i=1
|x

i

|
mX

i=1
|y

i

|)Á
m+1 (3.2)

The multiplication result can be seen as the Taylor approximation of x̃ ú ỹ
with the first order polynomial around the nominal values x0 and y0:

fa(x̃, ỹ) = f(x0, y0) + ˆf

ˆx
(x0, y0) ú (x̃ ≠ x0) + ˆf

ˆy
(x0, y0) ú (ỹ ≠ y0)

= x0 ú y0 +
mX

i=1
(x0y

i

+ x
i

y0)Á
i

3. Symbolic Simulation based on A�ne Arithmetic (AA) 24

with the maximum approximation error:

” =
mX

i=1
|x

i

|
mX

i=1
|y

i

|.

The symbol Á
n+1 is a new deviation symbol which together with z

m

encloses
the exact result. Division of two a�ne terms is computed as:

x̃

ỹ
= x̃ ú (1

ỹ
)

with condition that the range modeled with ỹ does not contain zero. 1
ỹ

can be
computed using one of approximation schemes described in the next section.

3.2.2 Approximation schemes of nonlinear operations
In contrast to linear, nonlinear operations do not satisfy the closure prop-
erty. To keep a�ne form of a final result, the nonlinear part is replaced
with the linear one using one of the approximation schemes. Without loss of
generality, it is assumed that the computation is performed in one dimen-
sion. Let x̃ be the a�ne variable x̃ = x0 +

P
m

i=1 x
i

Á
i

and f the nonlinear
function applied on x̃. To get the a�ne form of z the nonlinear function is
approximated with the linear one:

z = f(x0 +
mX

i=1
x

i

Á
i

) ™ fa(x0 +
mX

i=1
x

i

Á
i

) + ”Á
m+1. (3.3)

The approximated function fa is a linear function:

fa(x0 +
mX

i=1
x

i

Á
i

) = k ú (x0 +
mX

i=1
x

i

Á
i

) + n

where k, n œ R. The values of k, n and the approximation error ” depends
on the applied approximation scheme. Depending on the application the
following approximation schemes are used:

1. Minimum range approximation. This approximation delivers the min-
imized range of the final result. This scheme is very useful for formal
verification methods where a system response in the worst case is of
high interest. The computed bounds which enclose all possible system
behaviors should be as tight as possible since too high over approxi-
mation could lead to false negatives.

2. Chebyshev approximation. This approximation is very useful in the
applications for which sensitivity analysis is of crucial importance.
Although minimum range approximation provides the minimum over
approximation on the computed bounds, the approximation error over
the whole range is quite high which could lead to wrong interpreted
e�ects of single sources of uncertainties to the total performance.

3. Symbolic Simulation based on A�ne Arithmetic (AA) 25

The Chebyshev approximation is computed according to the Lemma 1 that
can be found in [96]. According to this lemma the coe�cients of n-degree
polynomial approximation of nonlinear function f over a range [a, b] can be
computed using n + 2 points:

a Æ x1 < x2 < ... < x
n+2 Æ b.

for which it holds that

” = r(x
i

) = ≠r(x
i+1) (3.4)

where ” represents the maximum approximation error found as:

” = max
xœ[a,b] |f(x) ≠ fa(x)|

In A�ne Arithmetic nonlinear functions are approximated with the first
order polynomials:

fa(x̃) = k ú x̃ + n

where x̃ is an a�ne term. Thus, the number of points used to compute the
polynomial coe�cients are three. The coe�cient k is computed assuming
function f is convex or concave over the interval [a, b] (a ”= b):

k = (f(b) ≠ f(a))
b ≠ a

.

In that case two points x1 and x3 are the lower and upper bound of the
interval [a, b]. The third point x2 lies in the range [a, b] and at this point the
approximation error reaches the maximum value. So, the first derivative of
the approximation error function r

Õ(x2) is equal to zero:

r
Õ(x2) = f

Õ(x2) ≠ k = 0
f

Õ(x2) = k

and the value x2 is computed as:

x2 = (f Õ)≠1(k).

When this value is found, Eq. 3.4 is used to find the value n of approximated
function and the approximation error ”:

” = r(x
i

) = f(x1) ≠ k ú x1 ≠ n

” = ≠r(x
i+1) = k ú x2 + n ≠ f(x2).

Now, n and ” are calculated as:

” = f(x1) ≠ k ú x1 + k ú x2 ≠ f(x2)
2

n = f(x1) ≠ k ú x1 + f(x2) ≠ k ú x2
2 .

3. Symbolic Simulation based on A�ne Arithmetic (AA) 26

tivity) at the point of linearization. A disadvantage is that
the calculation error has an unpredictable sign for values un-
equal to the point of linearization. The absolute value and
the sign of the error depends on the second derivation of the
mathematical exact result. This approximation method can
be used for applications where small absolute errors close to
the point of linearization are required. The approximation is
only accurate if nearly all � values are predictable in a limited
range around the point of linearization.

Chebyshev Approximation: The main goal of the Cheby-
shev approximation method is to find a minimum-area paral-
lelogram with vertical sides, which encloses the exact result
in an � interval of [�1, 1] [4]. The properties of the paral-
lelogram’s non vertical sides are extracted out of the first
derivation of the operation [2]. The spanning of an area is
accomplished by an added system deviation. The vertical
size of the area is defined by the approximation value �.
Due to the property that deviations are located symmetrically
around the center value a shifted center value � is required
(see Figure 3). An advantage of this approximation method
is that a full inclusion of the exact result at any � value is
guaranteed. The area of the parallelogram defined by the �
approximation value depends on the nonlinearity of the op-
eration [2]. A disadvantage of this approximation method is
that there is always an over-approximation at the bounds of
the � interval. Another disadvantage is that the center value
is shifted at this method. For repeated operations (i.e. mul-
tiplication) the exact central value must be remembered (see
example in Section 4 and Section 2.1). This is accomplished
by the simultaneous implementation of the approximations in
the AAF class (see Figure 3). Applications for the usage of
the Chebyshev approximation are simulations or calculations
where an inclusion of the exact resulting value must be guar-
anteed for each single value of the noise symbols.

Minimal Range Approximation: The minimal range ap-
proximation is a minimization problem. An AAF is con-
structed which fulfills the requirement that the radius of the
form is a minimum [5]. A disadvantage of this approximation
is that all deviations (also user deviations which represents
the sensitivity of the output in respect to parameter devia-
tions) are manipulated and exact computable linear factors of
the result are lost. An advantage of minimal range approxi-
mation is that there is no over-approximation at the interval
bounds [10]. An implementation of this approximation type
into the framework will be a future task (see Section 5). This
method is due to the lost exact noise sensitivity values not
longer under discussion in this paper.

Interval Exact Approximation: This type of approxima-
tion combines the advantages of the Chebyshev and minimal
range approximation methods. It will be explained in a de-
tailed way in the next section.

a) b)

Deviation Symbol ValueDeviation Symbol Value

Function Value Function Value

Fig. 4: Approximations of a nonlinear function (bold curve).
a) Illustrates a pure linearization and the spanned area resulted
by a Chebyshev approximation. b) Illustrates the spanned
area at an approximation with the minimal range method.

For illustration Figure 4 shows the pure linearization, Cheby-
shev and minimal range approximation of a nonlinear func-
tion which is plotted as a bold line at both figures. In Figure
4-a the linear function labelled with crosses is a pure AAF
linearization at the central value. The gray shaded area is
the parallelogram spanned by a Chebyshev approximation
of the nonlinear function. The grayed area at Figure 4-b il-
lustrates the full inclusion parallelogram of a minimal range
approximation. The figures point out over-approximation,
shifted central values and noise sensitivity properties of each
discussed method.

3.2. Interval Exact Approximation

As previously mentioned this approximation method com-
bines the properties of no over-approximation and correct
linear user deviation factors of the result. For applications
like formal verification or model checking of AMS systems
exact output ranges are required [11]. In this case the approx-
imation gap in the middle of the interval is not important.
Main objective of the system analysis is to check whether the
bounds of an affine output signal is within a defined tolerance
specification or not. Correct linear partial deviation values
allow qualitative statements about deviation sensitivity at the
central value [4]. For the explanation of the interval exact
approximation algorithm a multiplication of two AAFs will
be discussed but the basic idea of the method can be adapted
for every nonlinear operation. A basic advantage of AA sys-
tem simulation is that correlated deviation (noise) sources
can be modeled by using the same � symbols in multiple
affine forms [12]. Such correlations must be taken under con-
sideration at a functional composition of two or more affine
arithmetic forms.

Figure 3.6: Linearization of nonlinear function using: a) Chebyshev b) Min-
range approximation [97]

In contrast to Chebyshev approximation, the min-range approximation re-
sults in the function with the exact values on the bounds of the range
x̃. However, inside the range the approximation error is higher than us-
ing Chebyshev approximation. The approximation function is computed as
the tangent of function f at one end point. Hence, the approximation error
at that point is equal to zero. If f

Õ(x), f
ÕÕ(x) Ø 0, the tangent is computed

at the lower bound k = f
Õ(a), otherwise at the upper bound k = f

Õ(b). The
coe�cient n and the approximation error ” are computed as:

” = f(a) ≠ k ú a + k ú b ≠ f(b)
2

n = f(a) ≠ k ú a + f(b) ≠ k ú b

2 .

Figure 3.6 illustrates Chebyshev and min-range approximation of a nonlinear
function (plotted by bold curve) over interval [-1, 1].

As given by 3.3 the approximation of nonlinear functions with linear
ones introduces a new deviation symbol to ensure the safe inclusion. The
new deviation symbol introduces overapproximation which contains exact
computations. However, the performance of nonlinear operations in a loop
or over a long simulation time horizon can lead to symbol explosion and loss
of e�ectiveness of the approach. To attack this problem, literature survey
proposes the following techniques:

1. Cleanup method proposed by [98] which servers as a garbage-like col-
lection with the di�erence that new added deviation symbols are not
removed from memory but replaced with only tow terms. More details
are given in the following part of the section.

2. The other approach [99] combines A�ne Arithmetic with Interval
Arithmetic [2] where an approximation error is enclosed simply with

3. Symbolic Simulation based on A�ne Arithmetic (AA) 27

an interval. This form of A�ne Arithmetic is known as Hansen’s form
A�ne Arithmetic Form. The work in the thesis uses this approach.
The advantage of Hansen’s form over (1) is described in Section 3.4.

3.3 Implementation of cleanup method
As mentioned above, nonlinear functions must be approximated to satisfy
the closure property of A�ne Arithmetic. In order to ensure the safe inclu-
sion, approximations add additional deviation terms. One deviation term
is added every time step the nonlinear operation is performed. Thus, the
maximum required memory for each a�ne variable depends linearly on the
number of time steps:

u
d

ú n + u
s

™ O(n)

where u
d

is the number of uncertainties added by nonlinear operations, n is
the number of time steps and u

s

is the number of static uncertainties.
Even worse, the run time complexity grows quadratic with the number

of time steps n:
nX

i=1
(u

d

i + u
s

) = u
d

n(n + 1)
2 + u

s

n

u
d

n2

2 + (u
d

2 + u
s

)n ™ O(n2).

To deal with this problem, Heupke [98] proposes the cleanup method to
dynamically manage a high number of terms. The idea is similar to one of
the garbage collection with the di�erence that added deviation terms are not
deleted form memory but replaced with only two terms. All deviation terms
whose values lie below a user-defined level are summed up. One deviation
term sums up all terms with positive scaling factors and the other with
negative factor signs. In this way a safe inclusion is kept and the number
of terms is significantly reduced. The cleanup method is called every m
time steps. Since m is constant during simulation, the memory complexity
becomes the same as the computation with pure numeric terms [98]:

u
d

ú m + u
s

™ O(1).

The run time complexity is also improved growing linear with the number
of time steps [98]:

(u
d

ú m + u
s

)n + 2n/m(u
d

ú m + u
s

) =
(u

d

ú m + u
s

+ 2(u
d

ú m + u
s

)/m)n ™ O(n).

However, this method faces the following weak points:

3. Symbolic Simulation based on A�ne Arithmetic (AA) 28

1. It can be only applied on robust systems in a closed loop in which the
impact of variations converges to values close to zero. If this is not
the case, a threshold value for which the method should be called can
hardly be specified.

2. The second weak point is that the moment in which a method is called
is determined by a user. Hence, too often calls could lead to additional
overapproximation and lead to incorrect behavior of a feedback loop.
On the other hand, rare calls would lead to a high number of symbols
that need to be handled by the method and the simulation process,
itself. The computational cost would increase and the e�ciency of the
cleanup method would be lost.

3.4 Hansen’s form of A�ne Arithmetic
In contrast to the cleanup method, Hansen’s form [99] applied on AA terms
enables a constant time and space complexity of nonlinear operations in
general. Each a�ne form given by Eq. 3.1 can be re-written using Hansens
form as follows:

x̃ = x0 +
mX

i=1
x

i

Á
i

+ [0, 0] Á
i

œ [≠1, 1]

where Interval [0, 0] is used to represent a nonlinear part and its default
value is zero interval in the case there are no nona�fine terms. Linear opera-
tions given by Definition 3.2.1 applied on Hansen forms of A�ne Arithmetic
result again in the Hansens forms. Also, in contrast to usual A�ne Arith-
metic, nonlinear operations of Hansen’s a�ne forms result again in Hansen’s
form. The operations only update the bounds of interval enclosing the exact
results. Thus, multiplication operation can be re-written:

x̃ ú ỹ = (x0 +
mX

i=1
x

i

Á
i

+ [0, 0]) ú (y0 +
mX

i=1
y

i

Á
i

+ [0, 0])

= x0 ú y0 +
mX

i=1
(x0 ú y

i

+ x
i

ú y0)Á
i

+
mX

i=1
[]

i

where []
i

i œ {1, ..., m} are computed as follows:

[]
i

=

8
<

:

[-|x
i

||y
i

|,|x
i

||y
i

|] i ”= j
[0, x

i

y
i

] i = j, x
i

ú y
i

> 0
[x

i

y
i

,0] i = j, x
i

ú y
i

< 0

Example. Let x̃ has value 1 + Á1 + [0, 0] and ỹ = 1 ≠ Á1 + Á2 + [0, 0]. Multi-
plication of x̃ and ỹ results in the following:

x̃ ú ỹ = 1 + Á1 ú 0 + Á2 + [≠2, 1]

3. Symbolic Simulation based on A�ne Arithmetic (AA) 29

where [≠2, 1] replaces quadratic terms and has value equal to sum of [≠1, 0]
and [≠1, 1]. The range [≠1, 0] encloses the values ≠Á1 ú Á1 and [≠1, 1] the
quadratic term Á1úÁ2. Note that in contrast to Eq. 3.2 no new deviation sym-
bols were added. One more advantage of this approach that it also reduces
overapproximation given by Eq. 3.2. The additional term is overapproxi-
mated with [≠2, 1] and not [≠2, 2].

Since no additional symbols are added, the memory consumed for Hansen’s
forms stays constant with increasing the number of simulation time steps:

u
s

+ 2 ™ O(1)

where u
s

is the number of variations explicitly modeling uncertainties in a
system and 2 places are reserved for lower and upper bound of the interval
in Hansen’s AA form. Time complexity as in numeric simulations changes
linear with the number of simulation time steps n. In each time step cú(u

s

+2)
need to be touched where c is the maximum number of operations applied
on AA forms. Since c and u

s

are constant the time complexity is linear:
nX

i=1
c ú (u

s

+ 2) = c ú (u
s

+ 2) ú n ™ O(n).

3.5 Modeling parameter uncertainties with A�ne
Arithmetic

In [100] the term uncertainty is defined as “any deviation from the unachiev-
able ideal of completely deterministic knowledge of the relevant system”. Re-
lying on this definition, the term uncertainty is used in this thesis to notify
all kind of faults, unforeseen changes and variations that cause a circuit or a
system to deviate from its ideal behavior. We classify uncertainties accord-
ing to three major criteria: its location, its modeling approach and whether
it is static or dynamic.

Table 3.1 gives three possible locations of uncertainties in mixed-signal
designs: uncertainties on system inputs and stimuli, parameter uncertainties,
and uncertainties in the system model itself. The uncertainties on inputs are

Table 3.1: Classification by location

Location Examples
input uncertainties uncertain initial values or stimuli

parameter uncertainties tolerances, component aging
modeling uncertainties abstraction of accurate models

typically caused by the lack of knowledge in initial operating conditions, or
interactive scenarios.

3. Symbolic Simulation based on A�ne Arithmetic (AA) 30

Parameter values often deviate from their values defined by design of
a system. Parameter uncertainties are due to variations in a manufactur-
ing process, which add certain tolerances to ideal parameter values. The
other source of parameter uncertainties may be aging of system components
causing parameter values to vary from its ideal values.

Modeling uncertainties are the result of abstraction of accurate “real”
system behavior, which is often too complex to be analyzed.

Table 3.2 gives the classification of uncertainties according to modeling
approaches. This chapter is reserved only for uncertainties with continu-

Table 3.2: Classification by modeling approach

Modeling approach Examples
continuous non-deterministic tolerances, drift, aging

continuous probabilistic white, colored noise
discrete non-deterministic possible failure

discrete probabilistic sporadic failure

ous values with uniform probability equal to one. This is because A�ne
Arithmetic in the form given by Eq. 3.1 can handle only these types of un-
certainties. Uncertainties with discontinuous values or probabilities di�erent
than one require extension of AA to be modeled correctly. The extension
of AAF towards modeling discontinuous uncertainties is the work proposed
and implemented in this thesis. Its brief explanation is given in the next
chapter.

The above classes of uncertainties can take two types of values: static and
dynamic. This fact brings the third classification of uncertain values. Static
uncertainties are uncertainties whose values are constant during simulation.
Dynamic uncertainties add uncertainties that are not constant but change
their values during simulation run. One way to model the dynamic nature of
uncertain values is to add a new deviation symbol at each simulation time
step.

In the following it is shown how these uncertainties can be modeled
with A�ne Arithmetic. For each uncertainty model a corresponding block
diagram representation is given. This is a natural way of system modeling
in hardware-description languages such as SystemC-AMS.

3.5.1 Static uncertainties
Static uncertainties add a constant deviation to an ideal system behavior.
The set of static uncertainties includes:

• Tolerances of parameter values in system components due to variations
in manufacturing process

3. Symbolic Simulation based on A�ne Arithmetic (AA) 31

• Uncertainties added due to lack of capturing accurate models of “real”
behavior; accurate models are abstracted with a more general model
in which the accurate behavior is included

Examples of static uncertainties and the way to model them using A�ne
Arithmetic is given below.

Gain uncertainty. A frequency domain behavior of e.g. an amplifier can
be described with the following transfer function:

P (s) = K
N(s)
D(s) , (3.5)

where K is a gain whose value is defined by amplifier components. For
amplifiers with an operational amplifier these components are among an
input resistor and a resistor in a feedback loop. Due to tolerance values in
system components, a gain value deviates from its nominal value. This can
be modeled as an a�ne term:

K
nom

+ ÁK
dev

Á œ [≠1, 1]

where K
nom

and K
dev

are a nominal gain value, and a maximum absolute
variation from the nominal value, respectively. Deviation symbol Á œ [≠1, 1]
is used to model all gain values whose variation is smaller than K

dev

. Sub-
stituting gain variation in Eq. 3.5, P (s) can be re-written as:

P (s) = P
nom

(s)(1 + ÁP
dev

(s)) Á œ [≠1, 1]

where P
nom

(s) = K
nom

N(s)/D(s) is the transfer function of the ideal sys-
tem block with the gain K

nom

and P
dev

(s) the constant function modeling
variation from the nominal behavior P

dev

(s) = K
dev

/K
nom

. The block di-
agram of a system model including gain variation is shown in Figure 3.7.

Pnom(s)Pnom(s)

Pdev(s)Pdev(s)

++

Figure 3.7: Block-level representation of gain uncertainty

3. Symbolic Simulation based on A�ne Arithmetic (AA) 32

Modeling (parameter) uncertainties. Beside gain, parameter values
in a system transfer function are also the subject of variations. As a simple
example, the following transfer function of a system block is assumed:

P (s) = 1
s2 + as + 1

The variation of parameter a due to variations such as tolerances of system
components can be modeled as an a�ne form:

a
nom

+ Áa
dev

, Á œ [≠1, 1]

where a
nom

represents the nominal value and a
dev

the maximum absolute
variation from the nominal value. Modeling parameter uncertainties on block
level can be done transforming P (s) into the form where deviated behavior
is super-imposed to the nominal behavior:

P (s) = P
nom

(s)
1 + ÁP

dev

(s)P
nom

(s) , Á œ [≠1, 1]

P
nom

(s) represents the nominal model with the parameter value a
nom

:

P
nom

(s) = 1
s2 + a

nom

s + 1

and P
dev

(s) is the deviated function modeled as P
dev

(s) = a
dev

s. The repre-
sentation on block level is shown in Figure 3.8.

Pnom(s)Pnom(s)

Pdev(s)Pdev(s)

++

Pnom(s)Pnom(s)

Pdev(s)Pdev(s)

++

-

Figure 3.8: Block-level representation of parameter uncertainty

Abstraction of accurate model with A�ne Arithmetic. Accurate
models are often due to their nonlinearity and complexity very hard to sim-
ulate and verify. Thus, accurate behaviors are often abstracted with more
simple models. These models include accurate behaviors and hence each
specification met by the abstracted model will also be satisfied in the accu-
rate one. Abstraction using A�ne Arithmetic is demonstrated on a diode, a
commonly used nonlinear element in many circuits. As an illustration, the

3. Symbolic Simulation based on A�ne Arithmetic (AA) 33

abstraction will be performed only in the forward region, when a diode con-
ducts electric current. The pair (I

D

, V
D

) represents DC operating point of a
diode. A voltage range over which a diode operates is assumed to be symmet-
ric around DC voltage V

D

. This range is modeled using A�ne Arithmetic
as follows:

v
d

= V
D

+ Á1�v
d

Á1 œ [≠1, 1] .

where �v
d

is the maximum absolute distance of operating voltage from DC
operating point. The accurate diode behavior can be described with the
following equation:

i
d

= I
s

(e
vd

÷VT ≠ 1).

The most simple way to get an abstract diode model is to linearize the
accurate model with the first order Taylor polynomial around DC operating
point (I

D

, V
D

):

i
d

= I
D

+ ˆi
d

ˆv
d

(V
D

)(v
d

≠ V
D

) + lin_error

= I
D

+ I
s

e
VD
÷VT

1
÷V

T

Á�v
d

+ lin_error Á œ [≠1, 1]

The symbol lin_error assigns linearization error which is added to enclose
the accurate model in the abstracted one. The absolute value of linearity
error is equal to the maximum absolute value of the Lagrange remainder

|lin_error| = max(1
2

����
ˆ2i

d

ˆv2
d

(›)
���� (v

d

≠ V
D

)2)

= max(1
2

����
ˆ2i

d

ˆv2
d

(›)
����)(�v2

d

)

where › can take any value from › œ [V
D

≠ �v
d

, V
D

+ �v
d

]. To include the
accurate model, linearization error is represented as:

lin_error = Á2 |lin_error| Á2 œ [≠1, 1]

Figure 3.9 right shows the approximation of nonlinear diode (Figure 3.9 left)
at the operating point.

A way of modeling time delay. Uncertainty caused by time delay can
be static if a system block adds a constant time delay, or dynamic if a time
delay changes its value during simulation, e.g., a jitter. A time delay added
by an analog component such as a filter can be modeled in the frequency
domain as e≠súdelay. If the delay depends on parameters whose variations are
static (due to e.g. tolerances of parameter values), its value is also static. Let
[0, del_max] be the range of possible delay values. The value 0 assumes there
is no delay, while del_max is the maximum delay caused by variations in

3. Symbolic Simulation based on A�ne Arithmetic (AA) 34

!"	

$"

!"	 = &'()
*+
,*- − 1)

PDFill
PDF Edito

r w
ith

 Free
 W

rite
r an

d Tools

!"	 = %&((
)*
+), − 1)

!"	

0"	

|2!3_(5565|

	78				78	 + ∆	0"

%8	

PDFill
PDF Edit

or
with

 Free
 W

rite
r a

nd
 Too

ls

Figure 3.9: Forward diode characteristic; left: Accurate diode model right:
Abstracted model at DC operating point

component parameters. An analog block with a time delay has the following
transfer function:

P (s) = e≠súdelayP
nom

(s) (3.6)
where P

nom

(s) models the ideal behavior of the block (without time delay)
and delay represents a time delay whose exact value lies in the interval
[0, del_max]. This range can be modeled using A�ne Arithmetic. Delay
values are usually small, maximum order of µs. For these small values e≠·s

can be approximated using the first-order Taylor polynomial around the
nominal value 0:

e≠súdelay := 1 + (e≠súdelay)Õ

1! |
delay=0�del

= 1 + (≠s) ú �del (3.7)

�del represents variation from the nominal value, which lies in the interval
[0, del_max]. Substituting the approximation of e≠súdelay (Eq. 3.7) in Eq.
3.6 P (s) can be re-written as:

P (s) := P
nom

(s)(1 + (≠s) ú (del_max

2 + Á
del_max

2))

= P
nom

(s)(1 + P
dev

(s))

where P
nom

(s) models the ideal behavior and P
dev

(s) the deviation from the
ideal behavior. The block-level representation of delay faults in mixed-signal
systems is shown in Figure 3.10.

3.5.2 Dynamic uncertainties
Unlike static, dynamic uncertainties change their values during simulation.
Typical examples for dynamic uncertainties are:

3. Symbolic Simulation based on A�ne Arithmetic (AA) 35

Pnom(s) +

-s*delay

Figure 3.10: A system block with constant time delay

1. Round o� errors in Digital Signal Processing due to limited number
of bits used to represent numbers

2. Quantization errors caused by finite resolution in Analog/Digital (A/D)
converters

Real numbers in DSPs can be represented in fixed or floating-point arith-
metic. Due to a finite number of bits used to represents numbers, quanti-
zation errors are inevitable. In a DSP system there are two kinds of quan-
tization errors: rounding and truncation error. Rounding is a process that
rounds a number to the nearest level. Rounding to an integer value, the
number gets the next higher integer value if the fractional part is Ø 0.5
or the next lower integer if it is < 0.5. On the other hand, truncation is a
process that assigns a value to the next lower value eliminating a certain
number of least significant digits.

Fixed-point arithmetic. In fixed-point arithmetic a commonly used num-
ber representation has one bit for sign, the finite number of bits for the inte-
ger part m and the finite number of bits for the fractional part n. Rounding
in fixed-point representation with n fractional bits adds the maximum quan-
tization error 2≠n≠1 where 2≠n is the minimal representable number. Thus,
the quantization error can range in [≠2≠n≠1, 2≠n≠1]. Figure 3.11 illustrates
rounding to a fixed-point number with 2 fractional bits.

Using A�ne Arithmetic, the interval of rounding error can be modeled
as:

Á[m] ú 2≠n≠1 Á[m] œ [≠1, 1] (3.8)

where n is the number of fractional bits and 2≠n≠1 the maximal value of
rounding error. The dynamic nature of the rounding error is modeled by
adding a new deviation symbol Á[m] every time point m the rounding oper-
ation is performed.

Truncation adds the maximum error equal to the minimal representable
number. In fixed-point arithmetic with n fraction bits the truncation error
can be computed by subtracting the value 2≠n≠1 from the interval of the
rounding error (Eq. 3.8). Hence, the truncation error ranges in [≠2≠n, 0] and
its a�ne representation is:

≠2≠n≠1 + Á[m] ú 2≠n≠1 Á[m] œ [≠1, 1]

3. Symbolic Simulation based on A�ne Arithmetic (AA) 36

!
Figure 3.11: Rounding of a fixed-point representation with 2 fractional bits
[101]

while m and n stand for the bits to represent the mantissa
and the exponent, correspondingly. The bit bk has a weight
of 2k.

The input-output relation of a floating-point rounding
quantizer is illustrated in Fig.2. It is again a staircase
function, however, different than the rounding function for
the fixed point representation, this time the staircase does
not have uniform steps.

Let the step size be represented as �i. It can be calculated
by following the next equation:

�i = 2±bn�2bn�3...b0

while the value of the exponent depends totally on the
size of the number which is going to be represented in the
floating point form. For instance, with 3 bits mantissa and
3 bits exponent, �i is 2�3 when the number is larger than
zero and smaller than 1, but 2�2 if it is larger than 1 and
smaller than 2. This indicates on the other the hand, that
the quantization error of the floating point representation
depends also on the value of the number to be represented.
When keeping the bit width of the mantissa and the exponent
unchanged, one will get small quantization error if process
small signals, and vice verse.

12.3 An Exact Model of the Floating-Point Quantizer 265

y/�

y′/�

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 12.9 The uniform “hidden quantizer.” The mantissa has 2 bits.

x/�

x ′/�

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Figure 12.10 A floating-point quantizer with a 2-bit mantissa.Figure 2. Rounding of a fixed number representation with 2 fractional
bits[15]

The input-output relation of the truncation function of the
floating point representation can be achieved by shift the
staircase function shown in Fig.2 to right by a half of the
smallest step size of the staircase function.

V. MODELING QUANTIZATION ERRORS IN SYSTEMC
AMS ENVIRONMENT

A. Affine Arithmetic Representations of the Quantization
Error

For the design of robust signal processing systems, only
the error bounds of signals are critical. How the errors are
distributed are not important at all. Therefore, we propose
to consider the quantization errors of both fixed pointed and
floating point representation simply as additive uniformly
distributed noises in a system and modeling them by using
Affine Arithmetic. Let an AAF variable representing a
quantization error have the form E = e0 + e1 � �1. e0

and e1 represent the nominal value and the bound of a
quantization error, correspondingly. Four modules are imple-
mented, which can add the corresponding quantization errors
to their input signals. All four modules are configurable via
parameters, which allows the modeling of all kinds of fixed
and floating point representations using the same modules.

Fixed Point Quantization Error: The rounding error of
the fixed point representation is represented as Efix_round

in this work. The modeling of the rounding error can be
simply achieved by setting the nominal value of the AAF
variable e0 to zero and the error bound e1 to the maximal
quantization error. The number of fraction bit is settable via
a parameter of the module. For a fixed point representation
with n fraction bits, e1 is calculated as 2�n�1. As discussed
in the last section, the truncation function can be achieved
from the rounding function by moving the y axis. This
corresponds to setting the nominal value of the variable e0

to �2�n�1 instead of zero as for the rounding error.
Floating Point Quantization Error: The modeling of

quantization error for the floating point representation is
similar to that for the fixed point number. However, unlike in
a fixed point system, the quantization error in a floating point
system depends not only on the bit width of the mantissa and
exponent, but also on the value of numbers. Therefore, an
additional process, which enables the dynamical estimation
of the range of the input signal and the selection of a suitable
error bound for the current input signal value, has to be
implemented.

We define the term “quantization step” and represent
it by using the symbol �. In one quantization step, the
quantization error bound keeps unchanged. For instance, as
shown in Fig.3, for the input values ranging from 0 to �
the maximal rounding error is q/2, while q is the smallest
representable number of the corresponding floating point
representation. � can be calculated from 2m � q, while m is
the number of the mantissa bits.

The modeling of quantization error of the floating point
representation is implemented as follows: the module has
two parameters, namely the bit width of the mantissa and
the exponent. Based on these two parameters, the module
will firstly calculate all the quantization steps and save them

Figure 3.12: Rounding of a floating-point representation with 2 fractional
bits [101]

Floating-point arithmetic. In contrast to fixed-point arithmetic the errors
in the floating-point arithmetic depend on the value of the number to be
represented. Figure 3.12 illustrates rounding of floating-point numbers with
two fractional bits. The quantization errors are defined by the quantization
step ” whose value depends on the number to be quantized. This value can
be calculated as 2n ú q where n is the number of bits required to represent

3. Symbolic Simulation based on A�ne Arithmetic (AA) 37

!
Figure 3.13: Quantization step and quantization error [101]

mantissa. The value q represents the minimal representable number in the
corresponding floating-point representation.

Quantization. During conversion from analog to digital values, A/D con-
verters introduce the certain value of quantization error. This is due to the
converter finite resolution defined by the number of bits N used to represent
the analog value v

analog

. N-bit A/D converter adds the maximum quanti-
zation error 1

2LSB where LSB is 1
2N . The quantization error is uniformly

distributed within the interval [≠1
2LSB, 1

2LSB]. Using A�ne Arithmetic,
this error can be easily represented as:

quant(v
analog

, LSB) = v
analog

+ Á[m] ú 2N≠1 Á[m] œ [≠1, 1].

where Á[m] defines a deviation symbol added at m time step.

Chapter 4

Extended A�ne
Arithmetic-XAA

The current form of A�ne Arithmetic is limited to continuous operations
with moderate nonlinearities. However, for Mixed-Signal Systems this is not
su�cient. Beside continuous parts, discontinuous operations must also be
handled. They are introduced by:

• discrete system parts such as comparator, switches, limiter, etc.
• software control flow statements (branches, loops)

For symbolic simulation, both are treated in a similar way: they are seen
as a comparison of variables called conditional variables. For more clear
explanation we will refer to the motivation example given in Section 1.1.
Uncertainties in a PLL circuit lead to uncertainties on decisions in a phase
frequency detector. Detection of the positive edge can be seen as comparison
of the (Voltage Controlled Oscillator) VCO phase with 2fi. If the phase is
higher or equal to 2fi the signal value is one, otherwise zero. Since uncertain
values are enclosed with ranges, the computed system quantities will also be
ranges. Thus, the comparison of phase values with 2fi can result in true, or
false, but also both {false, true}.

Figure 4.1 shows switching of the charge pump of the PLL circuit. PFD
is activated on the phases of the reference signal ref and the VCO signal
(divided by N) v. Here, it is assumed that the reference signal leads. In this
case the reference signal reaches first 2fi and the charge pump is on. When
the phase of v signal reaches 2fi the pump is switched o� till the next cycle.

As shown in Figure 4.1, the comparison of the range of the v phase
with 2fi may lead to uncertainty in the switching of the charge pump. To
cover both cases in one execution, this work proposes the extension of A�ne
Arithmetic-XAA. The relational operators are overloaded to support the
comparison of ranges with specified thresholds. What follows in this chapter
defines the XAA form (XAAF). We will also define arithmetic and relational
operations which allow computation with XAAFs.

38

4. Extended A�ne Arithmetic-XAA 39

t

Φref

t

Icp

Φv

icp

uncertainty in
charge pump
switching:
icp={0, Icp}

t

Figure 4.1: Charge pump activity

4.1 Definition and computation
With XAAFs uncertain results of relational operators are represented by
symbols Ê. As in A�ne Arithmetic, where symbol Á captures unknown values
lying in the range of [≠1, 1], Ê represents unknown values from set {≠1, 1}.
The value Ê = ≠1 assigns false result of a relational operator, while Ê = 1
assigns true. An XAA form x̂ is defined as follows:

x̂ = x0 +
mX

i=1
x

i

Á
i

| {z }
x̃0

+
nX

k=1
Ê

k

(x0k

+
mX

i=1
x

ik

Á
i

)
| {z }

x̃k

= x̃0 +
nX

k=1
Ê

k

x̃
k

.

where n represents the number of discrete modes covered by Ê
k

symbols and
m the number of continuous uncertainties modeled with Á

i

symbols. In the

4. Extended A�ne Arithmetic-XAA 40

rest of the thesis Ê
k

symbols will be called mode symbols. x̃0 represents the
central range/polytope of the set around which mode symbols Ê

k

œ {≠1, 1}
merges ranges/polytopes each represented by AAF. The range x̃

k

represents
the distance of each range/polytope from the central range x̃0; x0k

represents
the center of the range x̃

k

and x
ik

the variations from the center of the range
introduced by continuous uncertainties.

Computation with XAAFs is performed through overloaded arithmetic
operators.

Definition 4.1. If c œ R is a real constant and x̂, ŷ are two XAAFs then

x̂ ± ŷ = x0 ± y0 +
mX

i=1
(x

i

± y
i

)Á
i

+
nX

k=1
Ê

k

(x0k

± y0k

+
mX

i=1
(x

ik

± y
ik

)Á
i

).

cx̂ = c(x0 +
mX

i=1
x

i

Á
i

) +
nX

k=1
Ê

k

c(x0k

+
mX

i=1
x

ik

Á
i

) (4.1)

These operations are linear resulting again in XAAFs. As in A�ne Arith-
metic, non-a�ne operations require approximations. Analogous to Hansen’s
form, where non-a�ne terms are replaced with intervals, nonlinear terms in
extended a�ne forms are modeled as sets. For instance, the multiplication
operation is defined as follows.

Definition 4.2. If x̂, ŷ are two XAAFs, then:

x̂ ú ŷ = (x̃0 +
nX

k=1
x̃

k

Ê
k

) ú (ỹ0 +
nX

k=1
ỹ

k

Ê
k

)

= x̃0 ú ỹ0 +
nX

k=1
(x̃0 ú ỹ

k

+ x̃
k

ú ỹ0)Ê
k

+
nX

k=1
{}

k

where {}
k

k œ {1, ..., n} are computed as following:

{}
k

=
⇢

{-x̃
k

ỹ
j

, x̃
k

ỹ
j

} k ”= j
x̃

k

ỹ
j

k = j, (Ê
k

Ê
j

= 1)

However, only possible combinations of mode symbols are used for compu-
tation of approximation errors. Possible combinations are determined with
LP (Linear Programming) solver used to eliminate over approximations, as
explained in the following.

Relational operators are overloaded to support comparison of ranges
which can result in true, false but also both {true, false}. For example,

4. Extended A�ne Arithmetic-XAA 41

the operator < is evaluated such that:

x̂ < ŷ =

8
<

:

true : ub(x̂) < lb(ŷ)
false : lb(x̂) Ø ub(ŷ)
{false, true} : otherwise

ub(x̂) and lb(ŷ) are total upper and lower bounds of x̂ and ŷ, respectively.
Using XAAF, true is represented with 1, false with 0, and unknown resp.
{false, true} with:

0.5 + Ê0.5; Ê œ {≠1, 1} .

The current implementation in this thesis is limited to the comparison
with thresholds that are single values (lb(ŷ)) == ub(ŷ))). In the rest of the
work, the thresholds will be denoted with y.

The expression x̂ < y is true only in the case that the whole set of values
covered by x̂ lies below the threshold given by y; ’x œ x̂, x < y.

Table 4.1 lists the overloaded relational operators. The only operators,

Table 4.1: Evaluation of relational operators

Relational operator Result
x̂ < y if (ub(x̂) < y) true

else if (lb(x̂) Ø y) false else 0.5 + Ê0.5
x̂ Æ y if (ub(x̂) Æ y) true

else if (lb(x̂) > y) false else 0.5 + Ê0.5
x̂ > y if (lb(x̂) > y) true

else if (ub(x̂) Æ y) false else 0.5 + Ê0.5
x̂ Ø y if (lb(x̂) Ø y) true

else if (ub(x̂) < y) false else 0.5 + Ê0.5
x̂ == y if (lb(x̂) == y and ub(x̂) == y) true

else false
x̂ != y negation of == operator !(x̂ == y)

that do not return XAAF, are operators == and !=. The operator ==
returns true only if x̂ is equal to y, otherwise false. Since y is a single value,
both bounds of x̂ should be equal to y. The operator != is implemented as
a simple negation of ==.

It is important here to mention that in the case that the condition results
in 0.5 + Ê0.5, the set of values for which x̂ lies below/above threshold are
saved. They are saved in the form of constraints which are used for the
next comparisons. In this way, lower and upper bounds of x̂ are significantly
improved.

Otherwise, the computed bounds would be over approximated and would
lead to execution of cases, which can never happen in reality. The bound
computation is defined as an LP problem subject to saved constraints and

4. Extended A�ne Arithmetic-XAA 42

solved using an LP solver. For this purpose, the open source package GLPK
(GNU Linear Programming Kit-glpk-4.45 [102]) is used.

4.2 Modeling uncertainties with Extended A�ne
Arithmetic

Section 3.5 gives a brief classification of uncertainties which can be modeled
with A�ne Arithmetic (AA). AA form models uncertainties in the con-
tinuous domain. However, propagation of continuous uncertainties through
digital and software system parts can also cause uncertainties in the dis-
continuous domain. The following model covers both kinds of uncertainties
with one single form:

x̂ = x0 +
X

iœranges

x
i

Á
i

+
X

kœmodes

x̃
k

Ê
k

• Á symbols are used to model uncertainties in the continuous domain
• Ê symbols are used to model uncertainties in the discontinuous do-

main, e.g., non-determinism in choice between operating modes.
The probabilistic uncertainties mentioned in Section 3.5 are out of scope of
this work.

4.3 Implementation of XAAF approach
The XAAF approach is implemented as an independent C++ library that
provides the abstract type XAAF. Standard C++ arithmetic and relational
operations are overloaded to allow computation with XAAFs. The imple-
mentation of arithmetic operators follow Definition 4.1. and 4.2. given in
Section 4.1. Relational operations <, Æ, >, Ø, ==, != are overloaded accord-
ing to Table 4.1.

The implementation of these operators consists of calling a private method,
compare. The compare method is called with the following input parameters:

x.compare(y, out_values)

where x is the left operand, y the right operand of the corresponding rela-
tional operator (e.g., x < y). The argument out_values specifies the vector
of values that are returned by the operator. The possible return values for
all relational operators are false and true. Thus, the specified out_values
are 0 and 1. Which value is first specified depends on the relational operator.

The compare method compares x with the threshold y. If x values lie
below the threshold y the compare method returns the first specified value
from out_values. If x values are higher or equal than the threshold y the

4. Extended A�ne Arithmetic-XAA 43

compare method returns the second specified output value. However, if x
values cross the threshold y it returns both output values (0 and 1).

For example, the < operator is implemented calling the compare method
with the following arguments:

x.compare(y, {1, 0}).

The corresponding relational operator (in this case <) returns the result of
the compare method. The value 1 is returned only in the case x values are
smaller than y, (x < y). The value 0 is returned in the case x Ø y, otherwise
{0, 1}. Table 4.2 summarizes the implementation of all relational operators.

Table 4.2: Implementation of relational operators

Relational operator Implementation
x < y return x.compare(y, {1, 0})
x Æ y return x.compare(y + 1e ≠ 40, {1, 0})
x > y return x.compare(y + 1e ≠ 40, {0, 1})
x Ø y return x.compare(y, {0, 1})

x == y if (lb(x) == y and ub(x) == y) true else false
x != y return !(x == y)

As shown in Table 4.2, the operators Æ and > call the compare method
with slight higher values than the threshold y. The operator Æ should return
1 (the first specified output value) if x Æ y. However, as previously described,
the compare method returns the first output value only in the case x < y.
To include y value in this case the compare method is called with slightly
higher value than y (y + 1e ≠ 40). A similar situation holds for >. In this
case the compare method returns the second specified value (1) if it holds
that x Ø y. To exclude the value y, the threshold value is slightly higher
than y (y + 1e ≠ 40). The implementation of the compare method is shown
by Algorithm 4.1.

In the first step, the compare method checks the length of the XAAF
x. The length of x is equal to the number of mode symbols. If the length
is zero, the value x is a contiguous range given by Eq. 3.1. To compare
the value x with the specified threshold, the lower and upper bounds are
computed. This is done by setting Á symbols in Eq. 3.1 to ≠1 and 1. If the
threshold value does not intersect the range x there is no need for merge; only
one value should be returned (lines 6-9). However, if the range of x contains
the threshold, the merge operation is called (lines 10-12). The set of satisfied
conditions are saved and used for comparisons in the next steps. The satisfied
conditions are used to overcome over approximation and compute the exact
bounds for next comparisons.

4. Extended A�ne Arithmetic-XAA 44

Algorithm 4.1: Implementation of compare method
1: Input: XAAF value x, threshold th, corresponding output values y =

{0, 1} ({false, true})
2: Output: false(0), true(1) or both
3: if length(x)==0 then
4: Compute lower and upper bounds of x lb(x) and ub(x)
5: Compare x with the threshold th
6: if (ub(x) < th) then
7: Return the first specified value in y
8: else if (lb(x) Ø th) then
9: Return the second specified value in y

10: else
11: Save satisfied conditions S (x < th and x Ø th)
12: Call merge
13: end if
14: else
15: Split x into x

i

based on previous satisfied conditions
16: for each x

i

of x do
17: repeat
18: Compute min {max} (x

i

)
19: subject to previous satisfied conditions S
20: end for
21: Find total minimum and maximum of x lb(x) and ub(x)
22: if (lb(x) Ø th) then
23: Return the first specified value in y
24: else if ub(x) < th) then
25: Return the second specified value in y
26: else
27: for each x

i

of x do
28: Compare min {max} (x

i

) with the threshold th
29: if (th > min(x

i

) and th < max(x
i

)) then
30: Update the set S with x

i

< th and x
i

Ø th
31: end if
32: Save comparison result (required for merge operation)
33: end for
34: Call merge
35: end if
36: end if
37:
38: merge:
39: return result 0.5 + Ê

k

0.5 with S and corresponding Ê
k

4. Extended A�ne Arithmetic-XAA 45

Hence, if the value x contains mode symbols, the bounds are computed
subject to satisfied conditions (line 15-19). The bound computation is formu-
lated as an optimization problem. The problem is solved subject to the set
of conditions satisfied in the previous computation step. For this purpose,
the open source package GLPK (GNU Linear Programming Kit-glpk-4.45
[102]) is used.

To check if the whole range lies below/above th, the total minimum and
maximum are found. If the total minimum is higher than th or total maxi-
mum is below th, the threshold does not intersect x and the corresponding
output is returned (lines 21-24). If this is not the case, each of the com-
puted bounds are compared with the specified threshold th (lines 26-34). If
x

i

crosses th both satisfied conditions are saved (x
i

< th and x
i

Ø th) (lines
29-30). In the last step the merge is called (line 34).

The merge operation merges both possible output values using a mode
symbol Ê. The index of Ê depends on the comparison results performed in
each mode. Three cases are possible:

1. Condition values for each mode are same as in the previous time step;
there are no further splittings and the number of non-contiguous re-
gions stays the same. In this case the constraints for the next computa-
tions also stay the same, and the same Ê

k

symbol is used to represent
the set {false, true}.

2. Condition values for each mode are inversion of the condition values in
the previous time step; there are no further splittings and the number
of non-contiguous regions stays the same. The set of constraints also
stays the same and the same Ê

k

symbol but with negative sign (≠Ê
k

)
is used.

3. Condition values result again in {false, true} and a new mode sym-
bol must be used to cover further splittings. The set of constraints is
updated.

4.4 Code Modification with XAAF
In the semantic of standard programming languages a conditional state-
ment has two branches: one for true (if . . .), and for false (else . . .). How-
ever, in symbolic simulation with XAAF we have to consider a third case:
X = {false, true}. Then, both possible branches of a control flow must be
handled. In the following we give two simple re-writing rules to solve this
problem.

Rule 1 Conditions in control flow statements are Boolean type (true,
false). Expressions under conditions will execute for true condition values.
However, comparison of ranges represented with XAAFs can also result in
X (unknown). To cover the last case, the condition value must explicitly be

4. Extended A�ne Arithmetic-XAA 46

compared with false:

cond æ cond! = false.

Rule 2 If we have applied Rule 1, the true branch must cover the case
where the condition is X and true. If the condition is X the expression
must have both values, one for cond = true and cond = false. This can be
obtained by modifying the expression with Shannon’s expansion:

lvalue = expr æ lvalue = cond ú expr+!cond ú lvalue

where the first part computes the expression value for cond = true and the
second for cond = false.

In the XAAF library the set of condition values X ={false, true} is
represented with XAAF:

0.5 + Ê0.5; Ê œ {≠1, 1}

where Ê = ≠1 represents false, and Ê = 1 represents the true condition
value. Due to the symmetric property of XAAF, negation of the condition
value 0.5 + Ê0.5 only changes the sign of the value which is multiplied with
Ê. Thus, the following holds:

!(0.5 + Ê0.5) = 0.5 ≠ Ê0.5; Ê œ {≠1, 1} .

This explains why in this work Ê is chosen to be {≠1, 1} instead of {0, 1}.
Hence, using XAAF library lvalue gets the value:

lvalue = (0.5 + Ê ú 0.5) ú expr + (0.5 ≠ Ê ú 0.5) ú lvalue

In this way for false condition value (Ê = ≠1) the expression keeps its
value while for true (Ê = 1) its value is updated to expr.

In the following we show how these rules are used to modify conditional
and iteration statements written in C/C++.

4.4.1 Conditional statements
Figure 4.2-4.4 show how if, if-else and if-else if are modified to handle
ranges as conditional variables.

if (cond)

 lvalue=expr;

if (cond!=false)

 lvalue=cond*expr+!cond*lvalue;

if (cond)

{

 lvalue=expr1;

}

else

{

 lvalue=expr2;

}

if (cond!=false)

{

 lvalue=cond*expr1+!cond*expr2;

}

else

{

 lvalue=expr2;

}

if (cond1)

{

 lvalue=expr1;

}

else if (cond2)

{

 lvalue=expr2;

}

if (cond1!=false)

{

 lvalue=cond1*expr1+!cond1*lvalue;

}

else if (cond2!=false)

{

 lvalue=cond2*expr2+!cond2*lvalue;

}

Figure 4.2: IF conditional statement

4. Extended A�ne Arithmetic-XAA 47

if (cond)

 lvalue=expr;

if (cond!=false)

 lvalue=cond*expr+!cond*lvalue;

if (cond)

 lvalue=expr1;

else

 lvalue=expr2;

if (cond!=false)

 lvalue=cond*expr1+!cond*expr2;

else

 lvalue=expr2;

if (cond1)

{

 lvalue=expr1;

}

else if (cond2)

{

 lvalue=expr2;

}

if (cond1!=false)

{

 lvalue=cond1*expr1+!cond1*lvalue;

}

else if (cond2!=false)

{

 lvalue=cond2*expr2+!cond2*lvalue;

}

Figure 4.3: IF-ELSE conditional statement

if (cond)

 lvalue=expr;

if (cond!=false)

 lvalue=cond*expr+!cond*lvalue;

if (cond)

 lvalue=expr1;

else

 lvalue=expr2;

if (cond!=false)

 lvalue=cond*expr1+!cond*expr2;

else

 lvalue=expr2;

if (cond1)

 lvalue=expr1;

else if (cond2)

 lvalue=expr2;

if (cond1!=false)

 lvalue=cond1*expr1+!cond1*lvalue;

if (cond2!=false)

 lvalue=cond2*expr2+!cond2*lvalue;

Figure 4.4: IF-ELSE IF conditional statement

Figure 4.2 shows the conditional statement with only one if branch.
Since if branch should be executed only if the condition cond is true, we
simply need to apply Rule 1 checking if the condition is not equal to false.
Following Rule 2 the expression should be modified as:

lvalue = cond ú expr+!cond ú lvalue.

For this example the expression value gets the new value only if the condition
is true; for false value of the condition the expression value must stay the
same (there is no else branch). Hence, negation of the condition !cond is
multiplied with the old expression value (before if statement).

Note that for the true condition value the if condition is the same as
on the left side (!cond ú lvalue = 0).

The similar modification can be done for if-else statement shown in
Figure 4.3. The only di�erence is that the expression value is also updated
for false condition value. To check if the condition results in X ={false,
true}, we apply Rule 1 and compare if cond is di�erent than false. Ac-
cording to Rule 2 the expression is computed according to:

lvalue = cond ú expr1+!cond ú expr2.

As already explained, the first part of the expression executes the if branch
of the statement, and the second part the else branch of the statement.
Since else branch will execute only if cond is false, the rest of the condi-
tional statement stays the same (no rules are required).

Figure 4.4 demonstrates the modification of a conditional statement,
which contains more branches. As in the first if condition each branch
should be executed only if the corresponding condition is true. Therefore,
here we also check if the conditions are not equal to false applying Rule
1. E.g., in the first branch, the expression should update its value only if
cond1 results in true. The expression is then computed in the same way as

4. Extended A�ne Arithmetic-XAA 48

in Figure 4.2 with the corresponding condition:

lvalue = cond1 ú expr1+!cond1 ú lvalue.

The same holds also for the second branch. Here also, if the conditions
result in true the conditional statement is the same as on the left side.

4.4.2 Iteration statements
There are various variants of iterations; we will only discuss here a while
statement; other iteration types (do while, repeat until) can be imple-
mented in a similar way.

Figure 4.5 demonstrates the use of XAAF data type in iterations such
as while loops. Applying Rule 1 it is checked if cond is not false. Similar

while (cond)

 lvalue=expr;

while (cond!=false)

 lvalue=cond*expr+!cond*lvalue;

do-while loop:

bool data type:

do
{
 action1;
}
while (cond);

action2;

XAAF data type:

do
{
 action1=!cond*action1;
}
while (cond!=true)

action2;

Figure 4.5: WHILE loop

to if statements, the expression value is also computed using Shannon’s
Expansion Formula:

lvalue = cond ú expr+!cond ú lvalue

The modified while loop also covers the case for which cond is true. In
this case while loop is the same as on the left side.

4.5 Scalability of symbolic simulation with XAAF
In Extended A�ne Arithmetic there are two kinds of symbols:

• Á symbols. These symbols are introduced to model system uncertainties
as contiguous ranges. They can be static or dynamic. The values of
static symbols do not change over time. Dynamic symbols change their
values and hence every simulation time step a new symbol is added.
Dynamic uncertainties are usually used to model non-deterministic
nature of noise for which probabilities are more realistic models than
ranges. Probabilistic uncertainties are out of scope of this work.

• Ê symbols. Comparison of uncertain values can include both compar-
ison values {false, true} within the same range. These symbols are
used to cover both cases in one execution.

Space complexity. Let u be the maximum number of uncertainties
added in the elaboration phase. The number of simulation time steps will
be assigned with n. One more factor that determines the XAAF complexity

4. Extended A�ne Arithmetic-XAA 49

is the number of mode symbols. They identify the possible set of discrete
modes in which a system may operate. They are introduced by comparisons
of uncertainties with thresholds in discrete parts of a system. The maximum
number of comparisons is assumed to be k. Let c be the maximum number
of operations performed on extended a�ne forms. The maximum memory
and time complexity occurs in the case a new mode symbol is added each
time step: The memory complexity is determined with:

c ú (u
s

+ 2 + k ú n| {z }
added Ê symbols

) ™ O(n)

where 2 is the memory occupied for the lower and upper bound of approx-
imation error. Since all other parameters are constant the memory space
grows linear with the number of simulation time steps n.

Run time complexity. The run time complexity grows in the worst
case exponentially with n:

c ú (u
s

+ 2) ú k
nX

i=1
2i =

= c ú (u
s

+ 2) ú k ú 2 ú (2n ≠ 1) ™ O(2n)

However, in reality the above computed worst case complexity is too
pessimistic. Dynamics in system behavior introduce certain correlations of
transitions between di�erent discrete modes. The integrated LP solver, that
computes the exact bounds of non-contiguous regions, identifies these modes.
The correlations, that can reduce the number of mode symbols significantly,
are taken into account. Hence, the number of mode symbols is usually lower
than the number of simulated time steps n. This will be shown applying the
methodology on the case studies described in Chapter 6.

4.6 Illustration examples
The first example shows the execution of a control flow statement with
XAAF. The second example demonstrates the application of XAAF to a
simple hybrid system such as a water-level control system.

4.6.1 Example 1 - Control flow example
Figure 4.6 shows a small control-flow with two if conditional statements.
The right side of the figure shows the instrumentation of C program for the
case that x is a range. The instrumentation is done according to the rules
explained in Section 4.4. The execution of the control flow statement using
XAAF library is explained in the following.

1. Step - Execution of the first if condition. The first condition
compares a condition variable x with one. Comparing x = 1 + Á1 = [0, 2]

4. Extended A�ne Arithmetic-XAA 50

double x=1;

// x is a single number

if (x>1)

 x=x-4;

else

 x=x+4;

x=x*2;

if (x>2)

 x=x+1;

XAAF x=1+AAInterval(-1., 1.);

// x is a range [0, 2]

if ((x>1)!=false)

 x=(x>1)*(x-4)+!(x>1)*(x+4);

else

 x=x+4;

x=x*2;

if ((x>2)!=false)

 x=(x>2)*(x+1)+!(x>2)*x;

Figure 4.6: Control flow example

with one, the condition x > 1 for one set of Á1 values results in true and
the other in false. Hence, the operator > returns the XAAF, which covers
both values {false, true}:

0.5 + Ê10.5; Ê1 œ {≠1, 1} .

As explained in Section 4.3 the operator > in this case additionally saves
the Á1 values for which the condition was true/false. They are saved in the
form of constraints. Two constraints are saved. For the true condition value
(Ê1 = 1), the operator > saves the constraint 1 + Á1 > 1. For the false
condition value (Ê1 = ≠1), the operator saves the constraint 1 + Á1 Æ 1.
These constraints are used for improving the bounds of the new value of x,
required for the next executions of relational operators. This will be shown
in the following. The new value x results in:

x = (0.5 + Ê1 ú 0.5) ú (x ≠ 4) + (0.5 ≠ Ê1 ú 0.5) ú (x + 4)
= (1 + Á1) ≠ Ê1 ú 4; Ê1 œ {≠1, 1} (4.2)

where for Ê1 = ≠1 its value is 5 + Á1 and Ê1 = 1 the value of x is ≠3 + Á1.
2. Step - Multiplication with a scalar coe�cient. In the next in-

struction the new value of x is multiplied with a scalar coe�cient 2. Applying
Eq. 4.1 to Eq. 4.2 with c = 2 we get:

x = 2 ú x = 2 ú (1 + Á1 ≠ Ê1 ú 4) = 2 + 2Á1 ≠ Ê1 ú 8.

3. Step - Execution of the second if condition. In the next if state-
ment, x is compared with 2. Now, since x contains Ê1 symbol, the operator
> finds the bounds of x computing the bounds of AAFs for each value of
the previous condition. The AAF values are extracted by setting Ê1 to -1
and 1. In the following, x1 will assign the AAF value for Ê1 = ≠1 and x2

4. Extended A�ne Arithmetic-XAA 51

the AAF value for Ê1 = 1:

x1 = 2 + 2Á1 ≠ Ê1 ú 8|
Ê1=≠1 = 10 + 2Á1

x2 = 2 + 2Á1 ≠ Ê1 ú 8|
Ê1=1 = ≠6 + 2Á1

The lower and upper bounds of x1 can be easily computed setting Á1 to ≠1
and 1. However, this would lead to over approximation of the upper bound
since for Á1 = 1 does not satisfy the constraint 1+Á1 Æ 1; it does not belong
to the set of Á1 values for which the previous condition is false. To reduce
over approximation and compute exact bounds, the bound computation is
formulated as an LP (linear programming) problem and solved as such. The
LP problem is defined as:

min(max)x1 = min(max)(10 + 2Á1)

subject to the previously saved constraint (false condition) and bounds of
the variable Á1:

1 + Á1 Æ 1 and ≠ 1 Æ Á1 Æ 1.

LP routine returns the lower bound value 8 computed for Á1 = ≠1. The
upper bound is however computed for Á1 = 0 and not Á1 = 1. The computed
value is 10. Comparing the computed bounds with 2 the condition for AAF
x1 is true. Note that for Á1 values for which the previous condition was
false (1 + Á1 Æ 1) the new condition is true.

The lower and upper bounds of x2 are computed in a similar way. The
di�erence is that the bounds are found subject to true condition (1+Á1 > 1):

min(max)x2 = min(max)(≠6 + 2Á1)

The lower and upper bounds are found to be ≠6 and ≠4. Comparing these
bounds with 2 the condition for x2 is false. Here, it can also be noted that
the new condition is false for Á1 values for which the previous condition
was true (1 + Á1 > 1).

The operator > takes this fact into account and returns:

0.5 ≠ Ê1 ú 0.5,

which is actually the negation of the previous condition. Now for Ê1 = ≠1 the
condition is true (x1 > 2) and for Ê1 = 1 the condition is false (x2 < 2),
as it should be.

The new value of x becomes:

x = (0.5 ≠ Ê1 ú 0.5) ú (x + 1) + (0.5 + Ê1 ú 0.5) ú x

= 2.5 + 2Á1 ≠ Ê1 ú 8.5.

Here, the operator > did not update the set of constraints with new
constraints since the bounds of each computed AAFs did not cross the value
2; the set of Á1 values for each condition value stayed the same.

4. Extended A�ne Arithmetic-XAA 52

= {-1:false, 1:true}

previous condition:

{-1:false, 1:true}= -

next condition:

cond_1

truefalse

merge
with

cond_2 cond_2

false true

merge
with

true

false

1) 3)

false

cond_1

false

merge
with

cond_2 cond_2

true

merge
with -

true

false

cond_1

false

merge
with

cond_2 cond_2

true

merge with new
symbol

2)

Figure 4.7: Illustration of merge cases

In general, considering the correlation between results of previous and
current conditions, relational operations distinguish the following cases:

1. The current condition is false/true for the set of uncertain values for
which the previous condition was false/true; the relational operators
use the same mode symbol

2. The current condition is true/false for the set of uncertain values for
which the previous condition was false/true; the relational operators
use the same mode symbol with a negative sign (shown by example).

3. The current condition results in {false, true} for the set of uncertain
values for which the previous condition was false/true; the relational
operators adds a new mode symbol

Figure 4.7 illustrates all three cases.

4.6.2 Example 2 - Water level control system
As the second example a simple water level control system is chosen. It is
shown in Figure 4.8. The state machine in the figure defines the principle
of the control algorithm. For safety reasons, the water level W shall remain
between the lower and upper limits (ll Æ W Æ ul). A (simple) control
algorithm is as follows:

When the water level W exceeds ul, the monitor turns o� the pump
(U1). The water in the tank drains at the rate of outrate. When the water
level W is below ll, the monitor turns on pump U1. The tank is filled at the
rate of inrate. The continuous dynamic of the water tank can be described

4. Extended A�ne Arithmetic-XAA 53

by the following linear di�erential equation:

Ẇ = inrate ≠ outrate. (4.-2)

The functionality of the water level control system seems to be simple, but

Figure 4.8: Functional model of a water level control system.

di�erent kinds of uncertainties in the implementation require validation.
First, the software is executed in a discrete-time way. Second, the accuracy
of the sensors and rates may be uncertain. For a simple illustration let us
assume inrate = 1±10%, outrate = 2±10%, and thresholds ll = 5, ul = 10.

For modeling and simulation SystemC AMS is used. A block diagram of
a system modeled in SystemC AMS is shown in Figure 4.9. It is composed

±10%

Plant
(Water tank)

Controller
(software, C++)

U1

U2

Pump_1

Pump_2

inrate

outrate

Uncertainty
in rate

+

+

W

Figure 4.9: Block diagram of a water level control system.

of the following parts:
• a controller which controls the water level in the tank
• two pumps U1 and U2 which are turned on/o� by the controller
• a plant model which represents the water tank
• an uncertainty which models inaccuracy in inrate and outrate

The controller controls the water level W in the tank comparing its
value with the thresholds, ll and ul. A controller is implemented as a simple
SystemC module with thread function called software.

4. Extended A�ne Arithmetic-XAA 54

The thread function implements the controlling process. The time for
the control function to turn on/o� the pumps is notified by the delay event
e_delay. The source code of the software function is given by Figure 4.10.
For symbolic simulation, XAAF Abstract Data Type (ADT) is used as data

 controller(sc_module_name n, double delay)

 {

 SC_METHOD(software);

 sensitive << W;

 SC_METHOD(delay_output);

 sensitive << e_delay;

 }

 void software()

 {

 if (W>ul)

 {

 u1=0;

u2=1;

 }

 if (W<ll)

 {

u1=1;

u2=0;

 }

 e_delay.notify(delay);

 }

 void delay_output()

 {

U1.write(u1);

U2.write(u2);

 }

if ((W>ul)!=false)

{

u1=(W>ul)*0+!(W>ul)*u1;

u2=(W>ul)*1+!(W>ul)*u2;

}

if ((W<ll)!=false)

{

u1=(W<ll)*1+!(W<ll)*u1;

u2=(W<ll)*0+!(W<ll)*u2;

}

Figure 4.10: Source code of the control function

type for W, inrate, outrate and intermediate results. The computed water
level W is not a single value but a set of values. Therefore, the conditions
in the if branches can result in true, false but as way as {false, true}.
Thus, the if statements are modified applying Rule 1 and 2. For false
condition, the control signals U1 and U2 keep their values. For the true
condition value, they change their values to U1 = 0/U2 = 1 in the first if
statement and U1 = 1/U2 = 0 in the second if statement. Applying Rule
2, U1 and U2 are modified to cover the case for which conditions may result
in {false, true}.

U1 = (W > ul) ú 0+!(W > ul) ú U1

U2 = (W > ul) ú 1+!(W > ul) ú U2

4. Extended A�ne Arithmetic-XAA 55

The same holds for the second if statement with the di�erence that for
true conditions U1 is 1 and U2 is 0.

U1 = (W < ll) ú 1+!(W < ll) ú U1

U2 = (W < ll) ú 0+!(W < ll) ú U2.

The pump models are implemented as SystemC modules with processing
function sensitive to the control signals U1/U2 . The source codes of pump
models are given in Figure 4.11. For symbolic simulation, the codes are

 pump_u1(sc_module_name n, double rate)
 {

 SC_METHOD(processing);
 sensitive << U1;
 }

 void processing()

 {
 if (U1==1)

 inrate=rate;

 else
 inrate=0;

 }

 pump_u2(sc_module_name n, double rate)
 {

 SC_METHOD(processing);
 sensitive << U2;

 }

 void processing()

 {
 if (U2==1)

 outrate=rate;

 else
 outrate=0;

 }

 if (U1!=0)

 inrate=U1*rate+!U1*0;
 else
 inrate=0;

 if (U2!=0)
 outrate=U2*rate+!U2*0;
 else

 outrate=0;

Figure 4.11: Source codes of the pumps

modified by applying Rules 1 and 2.
The plant in the model presents the tank whose behavior can be de-

scribed with Eq. 4.6.2. Here, we implement it using SystemC AMS TDF
(Timed Data Flow) model of computation. The processing() function in
TDF computes the water level in discrete time steps.

W (n ú T
s

) = W ((n ≠ 1) ú T
s

) + (inrate ≠ outrate) ú T
s

4. Extended A�ne Arithmetic-XAA 56

 // defines old and new values of water level
 XAAF old_W, new_W;

 void processing()
 {
 new_W=old_W+(inrate-outrate)*get_timestep().to_seconds();
 old_W=new_W;
 W.write(new_W); // W gets the current value
 }

 Figure 4.12: Source code of the tank

Figure 4.13: Possible water levels in the tank.

where T
s

is a sampling period. The source code is given in Figure 4.12.
The symbol old_W is assigned to the water level at the previous time

step, (n ≠ 1) ú T
s

, and new_W , the new value at current time n ú T
s

. For
example, the following uncertainties are assumed:

1. Physical quantities, e.g., rates inrate and outrate, are measured/man-
ufactured inaccurately due to an arbitrary reason.

2. The control function needs time on a processor e.g., T =2 ms for situ-
ations like delay in scheduling of processes.

The maximum inaccuracy of rates is assumed to be 10%. Using XAAF
library this is modeled as:

inrate = inrate ú (1 + AAInterval(≠0.1, 0.1))
outrate = outrate ú (1 + AAInterval(≠0.1, 0.1))

which is equivalent to inrate ú (1 + Á1 ú 0.1) and outrate ú (1 + Á2 ú 0.1),

4. Extended A�ne Arithmetic-XAA 57

respectively.
Figure 4.13 plots min/max values for each simulated time step in the

worst case. The number of discrete time steps for water level computations
is 800, each of 0.1 s. The number of mode symbols required to cover all
possible transitions between "ON" and "OFF" states was 10. The total run
time for symbolic simulation was 1.14 s.

Chapter 5

Extended A�ne Arithmetic
Assertions (XAA + A)

5.1 Description
Beside parameter uncertainties, a�ne forms can also be used to model al-
lowed/forbidden areas of system properties. For this purpose XAA+A asser-
tions are implemented. In XAA+A assertions the a�ne forms are combined
with the set of temporal and frequency operators. This way system proper-
ties are fully described in the time, but also in the frequency domain. The
syntax of XAA+A assertions is composed of three sets of operators:

1. Analog operators. This set contains arithmetic and comparison opera-
tors to compute and evaluate a�ne analog signals

2. Boolean operators. These operators perform standard Boolean opera-
tions and are used to combine more assertions into one.

3. Temporal operators. These operators are used to evaluate properties
during simulation.

Table 5.1 lists available operators used to express properties in the form of
XAA assertions. The language of XAA+A is defined through the following
definitions. In these definitions AS assigns a�ne signals whose values are
XAAF data type and AA assigns the set of a�ne forms given by Eq. 3.1.

Definition 5.1. The set of atomic propositions for describing properties in
the time domain TBF (Time Boolean Function) is the set satisfying:

c œ AS · d œ AA ∆ c • d œ TBF

(„ œ AS, time œ AA, Ë œ AA) ∆ IN {[time]} („, Ë) œ TBF

—, “ œ TBF ∆ — £ “ œ TBF · (!—) œ TBF

The second definition defines the smallest set of atomic propositions used

58

5. Extended A�ne Arithmetic Assertions (XAA + A) 59

Table 5.1: XAA+A operators

XAA+A operators symbols
arithmetic operators ° œ {+, ≠, ú, /}
relational operators • œ {<, >, Æ, Ø, ==, !=}

logic operators £ œ {&&, Î, ∆, !}
a�ne analog operator IN

a�ne analog freq. min, max
operators FIN, GFIN

temporal operators ⇤ œ {G, F}
a�ne analog time time = t0 + Á�t; t0, �t œ R

clock time intervals [t1, t2]

to describe properties in the frequency domain, FBF (Frequency Boolean
Function).

Definition 5.2. The set of frequency formulas FBF is the set satisfying:

– œ AS ∆ FFT (–) œ FF

– œ AS ∆ phase(FFT (–)) œ FF

— œ FF, “ œ AA ∆ FIN(f1, f2, —, “) œ FBF · GFIN(f1, f2, —, “) œ FBF

— œ FF, “ œ AA ∆ IN(min {max} {[f1, f2]} (—, “)) œ FBF

— œ FF ∆, “ œ AA ∆ min {max} {[f1, f2]} (—) • “ œ FBF

·, ‚ œ FBF ∆ · £ ‚ œ FBF·!(·) œ FBF

where f1 œ R is a lower bound and f2 œ R is an upper bound of the
frequency range within which a property in the frequency domain is verified.
A value of f1 is always less than a value of f2, f1 < f2.

Definition 5.3. The set of XAA+A is the set satisfying:

TBF fi FBF µ XAA + A

–, — œ XAA + A ∆ (– £ — œ XAA + A)·!(–) œ XAA + A

– œ XAA + A ∆ ⇤(–) œ XAA + A · ⇤[t1, t2](–)

The brief meaning of each of the XAA+A operators is given in the
following.

Arithmetic operators stand for standard mathematical operations,
and no further explanation is needed.

Relational operators. These operators are used to compare signal val-
ues with specified thresholds d. These operators can compare analog, and
digital signals with d. If analog signals are ranges, the meaning of relational
operators is as follows:

5. Extended A�ne Arithmetic Assertions (XAA + A) 60

• c < d - is satisfied if the upper bound of the range c is lower than the
threshold d

• c > d - is satisfied if the lower bound of the range c is higher than the
threshold d

• c Æ d - is satisfied if the upper bound of the range c is lower than or
equal to the threshold d

• c Ø d - is satisfied if the lower bound of the range c is higher than or
equal to the threshold d

Logic operators stand for logic and ·, or ‚ and implies ∆, respectively.
The unary operator ! stands for negation. The purpose of these operators is
to combine multiple assertions into one.

A�ne analog frequency operators. The set of a�ne analog fre-
quency operators contains the following operators:

min [f1 f2] (arg)
max [f1 f2] (arg)

FIN(f1, f2, arg, spec)
GFIN(f1, f2, arg, spec)

where the input parameter arg is FFT ÈNÍ (–) or phase(FFT ÈNÍ (–)).
FFT ÈNÍ (–) computes Fast Fourier Transform (FFT) of the a�ne signal
–. N is the number of points for which FFT is computed. If arg is FFT (–),
the operators min(max) find minimum (maximum) amplitude over the fre-
quency interval [f1, f2]. If arg is phase(FFT (–)) the operators find minimum
(maximum) phase over the interval [f1, f2]. The specified frequencies f1 and
f2 are real numbers where f1 < f2. If they are omitted, default values for f1
and f2 are 0 Hz and half of the signal sampling frequency f

s

, respectively.
As the first parameter the operators FIN and GFIN accept either

FFT ÈNÍ (s) or phase(FFT ÈNÍ (s)). The FIN operator checks if for a sig-
nal s there is a frequency f , (f1 Æ ÷f Æ f2) at which the signal ampli-
tude/phase lies in the specification area specified by spec. If this frequency
is found, the result of FIN operator is true, otherwise false. The GFIN
operator checks if for all frequencies f , f1 Æ ’f Æ f2, of a signal s, the ampli-
tude/phase lies in spec. If at least for one frequency a signal amplitude/phase
is out of the specification area, the operator GFIN returns false, otherwise
true.

A�ne analog operator: IN {[time]} (arg, spec). The time parameter
is the optional parameter. In the case it is specified, IN accepts only the
a�ne signal as the argument arg and it is evaluated within the time interval
time.

If the time parameter is not specified, the IN operator additionally ac-
cepts min and max frequency operators as the first argument. The operator
IN returns true Boolean value at the time point, at which the first argument

5. Extended A�ne Arithmetic Assertions (XAA + A) 61

ModelWChecking&Analog/Digitaler&Systeme& 18&

&
&
&
&
&&&&&&
&

t

x̂

xfinal&

xmax&

ts&

sezling&Tme&&

error&band&

overshoot =
xmax � xfinal

xfinal
[%]

Figure 5.1: Step response of a control system

lies in the specification area spec.
Temporal operators: G and F. These operators are used to verify

system properties during simulation. The operator G and F assign that a
property must hold always or eventually during simulation, respectively. If
the clock time interval is specified, the property is checked every t1 clock
cycle in the time interval [t1, t2].

5.2 Specification of properties with XAA+As
The following part of the chapter lists some typical system properties and
shows how they can be specified using XAA+As.

1. Step response This property is crucial in the verification of system
stability and gives the answer to the question: "Is a system able to produce a
bounded output for a bounded input?" Step response is defined as a system
response to an ideal step applied to its input. The parameters of the step
response are usually overshoot, settling time, and error band around the
final value. A step response with its typical parameters is shown in Figure
5.1. Overshoot occurs when a system output exceeds the final value. It is
usually specified in percentages and is calculated as:

overshoot = x
max

≠ x
final

x
final

where x
max

and x
final

are shown in Figure 5.1. Settling time is defined as
the maximum time necessary for the output signal to settle within the error
band. This time is calculated from the time at which an ideal input step
is applied. Using the operators of XAA+A language the parameters of the
step response can be checked with the following assertion:

G(x̂(t) Æ x
max

) &&
F (IN [ts

2 + Á1
ts
2](x̂(t), x

final

+ Á2tol) ∆ G(IN(x̂(t), x
final

+ Á2tol))))

5. Extended A�ne Arithmetic Assertions (XAA + A) 62

where:
• x̂(t) is an a�ne signal shown in Figure 5.1.
• x

max

is the maximum x̂ value allowed by the overshoot.
• G(x̂(t) Æ x

max

) checks if the value of x̂(t) is always below the maxi-
mum value.

• ts
2 + Á1

ts
2 specifies the time interval 0 Æ t Æ t

s

within which a system
output should enter the error band around the final state value.

• x
final

+Á2tol is the error band which defines the allowed ringing of the
signal x̂ around the final value x

final

.
• IN operator checks if the a�ne signal x̂(t) within the time interval

t œ [0, t
s

] = ts
2 +Á1

ts
2 settles to a value lying in the interval x

final

+Á2tol.
• the implication operator ∆ assigns that as once the signal x̂(t) enters

the error band it should stay their till the end of simulation (assigned
by G operator).

• F operator checks if the property in the bracket will hold eventually
during simulation.

• && is and operator used to combine overshoot and settling time prop-
erties into one property. It is satisfied only if both properties are true.

2. Operational range. This property defines the output range that
does not cause a circuit (e.g., amplifier, integrator, etc.) to saturate. To de-
scribe this property with XAA+A, the allowed operational range is specified
as an a�ne term:

spec(swing) = SW + Á— Á œ [≠1, 1]

where SW represents the center of the range and — the maximum absolute
distance from the center value. A circuit will not saturate if an output voltage
stays within this area. XAA assertion, which describes this property, is as
follows:

G(IN(vol_out, spec(swing))).

The temporal operator G checks if the property (IN(vol_out, spec(swing)))
holds always during simulation run.

Beside time behavior, XAA+A assertions are also able to describe system
properties in the frequency domain. Typical examples for these kinds of
properties are:

1. Stability in a control theory expressed in the form of phase and am-
plitude margin, stability margin, or sensitivity function

2. Filter specifications such as allowed ripple in the pass/stop band
Allowed ripples in pass/stop band. Without loss of generality, a low

pass filter is used. The allowed ripple in the pass band defines the maximum
ringing of the filter around the DC gain H(Ê = 0). The allowed ripple in the

5. Extended A�ne Arithmetic Assertions (XAA + A) 63

3/16/15, 10:48 AMFilter Specifications (Digital Filter Design Toolkit) - LabVIEW 2013 Digital Filter Design Toolkit Help - National Instruments

Page 1 of 3http://zone.ni.com/reference/en-XX/help/371988F-01/lvdfdtconcepts/dfd_filter_spec/

 Cart | Help Search

LabVIEW 2013 Digital Filter
Design Toolkit Help

Edition Date: June 2013

Part Number: 371988F-01

»View Product Info

You are here: NI Home > Suppor t > Manuals > LabVIEW 2013 Dig i ta l F i l ter Design Toolk i t Help

Filter Specifications (Digital Filter Design Toolkit)
»Table of Contents

For most digital filters, you typically design the digital filter response in the frequency domain.
The frequency response specification for the digital filter typically includes the target
magnitude response, phase response, and the allowable deviation for each. The following
figure illustrates the magnitude frequency response of a lowpass filter, which allows low
frequencies to pass and attenuates high frequencies.

The frequency range from the passband edge frequency to the stopband edge frequency is the transition band, which has a
frequency response that is unspecified. The filter passband and stopband can contain oscillations, which are known as ripples. A
typical example of a ripple appears in the circle of the previous figure. δp indicates the magnitude of the passband ripple, which
equals the maximum deviation from the unity. δs indicates the magnitude response of the stopband ripple, which equals the
maximum deviation from zero.

Notice the transition band between the passband and stopband frequencies. In an ideal design, a digital filter has a target gain in
the passband and a zero gain (−∞ dB) in the stopband. In a real implementation, a finite transition region between the passband
and the stopband, which is known as the transition band, always exists. The gain of the filter in the transition band is unspecified.
The gain usually changes gradually through the transition band from 1 (0 dB) in the passband to 0 (−∞ dB) in the stopband.

You can measure the passband ripple and stopband ripple in decibels, as shown in the following equations:

passband ripple = −20log10(1−δp)

stopband ripple = −20log10(δs)

Based on the two equations above, you can convert the passband ripple to or from the decibel representation. For example, if
passband ripple equals 0.01 dB, that is, 0.01 = −20log10(1−δp), then δp = 0.00115. Similarly, if stopband ripple equals 60 dB, that
is 60 = −20log10(δs), then δs = 0.001.

The following figure illustrates the magnitude frequency responses of a highpass filter, which passes high frequencies and
attenuates low frequencies.

Figure 5.2: Magnitude response of an analog low pass filter

stop band specifies the minimum attenuation of the filter above the stopband
edge frequency. These ripples are modeled using A�ne Arithmetic as:

H(f) œ
⇢

H(0) + Á1”
p

0 Æ f Æ f
p

”s
2 + Á2

”s
2 f Ø f

n

where ”
p

and ”
n

are the maximum allowed variation from H(0) and the min-
imum attenuation, respectively. The frequencies f

p

and f
s

assign passband
and stopband edge frequencies, respectively. These requirements are shown
in Figure 5.2. They can be checked with the following XAA+As:

GFIN(0, f
p

, FFT ÈNÍ(h(t)), H(0) + Á1”
p

)

&& GFIN(f
n

, FFT ÈNÍ(h(t)), ”
s

2 + Á2
”

s

2).

The filter transfer function H(f) is computed using FFT operator, which
computes Fast Fourier Transform of the filter impulse response h(t). The
operator GFIN checks if the amplitude values of H(f) meet desired re-
quirements in the pass/stop band. The operator returns true value if the
amplitudes of H(f) for ’f œ [0, f

p

] or ’f Ø f
n

lie in the allowed specifi-
cation areas. Since for the stop band the upper bound of the frequency is
not specified, GFIN assumes the default value equal to half of the signal
sampling frequency fs

2 .

5. Extended A�ne Arithmetic Assertions (XAA + A) 64

5.3 Illustration example
The use of assertions is demonstrated on a closed loop control system with
a PID (Proportional-Integral-Derivative) controller. Its block diagram is
shown by Figure 5.3. The process P in a system is described with the fol-

Pnom(s) +

-s*delay

+ PID P
x y

-

Figure 5.3: Block diagram of a system with PID controller

lowing function:
P (s) = 1

s2 + as + 1
where parameter a is 0.6. It is further assumed that the parameter a due to
some uncertainties (here component tolerances) deviates from its nominal
value. The exact value of a is not known but it lies in the interval [0.4, 0.8].
Using A�ne Arithmetic the uncertainty of a can be modeled as a = 0.6 +
Á0.2.

The considered PID controller includes the noise filter for the derivative
term and its transfer function is shown below:

C(s) = K
p

(1 + 1
T

i

s
+ T

d

s
Td
20 s + 20

),

where the proportional gain K
p

is 1.8, the integral time T
i

= 0.38s and the
derivative time T

d

= 0.095s. The ratio between the integral and derivative
times is 4 (T

i

= 4 ú T
d

). In [103] it is shown that this ratio is appropriate for
many industrial processes.

A proper behavior of the control system must satisfy the certain num-
ber of requirements. The most important one is the stability of the closed
loop. The stability criteria can be expressed in a vast number of terms: gain
and phase margin, sensitivity function, stability margin, etc. For a simple
illustration the stability margin is chosen.

This parameter is defined as the shortest distance between the Nyquist
curve of the loop transfer function and the critical point -1. This distance is
actually the inverse of the maximum value of the sensitivity function. The
loop transfer function is determined with L(s) = C(s)P (s), where C(s) and
P (s) are the controller transfer function and the process transfer function,
respectively. Mathematically, the stability margin can be expressed as:

M
s

= inf
Ê

|≠1 ≠ L(jÊ)| = inf
Ê

|1 + L(jÊ)|

=

sup

Ê

����
1

1 + L(jÊ)

����

�≠1
=


sup

Ê

|S(jÊ)|
�≠1

5. Extended A�ne Arithmetic Assertions (XAA + A) 65

where S(jÊ) = 1
1+L(jÊ) is the sensitivity function. In particular, the sensitiv-

ity function represents the disturbances amplification at the system output
by the closed loop system. Recommended values for the stability margin M

s

lie in the range of [0.5, 0.75] [103].
The range of M

s

specification can be represented as a�ne form:

spec(M
s

) = M
Õ
s

+ Á” Á œ [≠1, 1]

where M
Õ
s

represents the center value of the specified range and ” the maxi-
mum absolute distance from the center value. The range [0.5, 0.75] of M

s

is
modeled with an a�ne term:

spec(M
s

) = 0.625 + Á0.125 Á œ [≠1, 1]

Taking the uncertainty of the parameter a into account, the stability margin
M

s

can be rewritten as:

M
s

= inf
Ê

(|1 + C(jÊ)P (jÊ)|)

= inf
Ê

(
����1 + C(jÊ) P

nom

(jÊ)
1 + ÁP

dev

(jÊ)P
nom

(jÊ)

����)

As described in Section 3.5.1 P
nom

(s) is the process transfer function with
the nominal value of a:

P
nom

(s) = 1
s2 + a

nom

s + 1

and P
dev

is the process deviation due to deviation of the parameter a:

P
dev

(s) = a
dev

s.

A control system including uncertainties meets the stability margin specifi-
cation if its stability margin M

s

lies in the range [0.5, 0.75]; (1+C(jÊ)P (jÊ))
is computed as the transfer function of the system given in Figure 5.4. The
transfer function is found as FFT of the the system response to Dirac-
Impulse. For this purpose the following XAA+A operators are used:

min(FFT ÈNÍ (h(t)))

where h(t) is the impulse response of the system shown in Figure 5.4 and
FFT ÈNÍ computes the FFT at N points. The operator min finds the fre-
quency component with the minimum amplitude value.

Comparing M
s

with the specified bounds [0.5, 0.75] is done using the
operator IN . Thus, XAA+A assertion describing the stability criteria is as
follows:

IN(min(FFT ÈNÍ (h(t))), 0.625 + Á0.125).

5. Extended A�ne Arithmetic Assertions (XAA + A) 66

Pnom(s)Pnom(s)

Pdev(s)Pdev(s)

++

Pnom(s)

Pdev(s)

+

-

C(s) +

x y

Figure 5.4: Calculation of stability margin Ms

The system was simulated in SystemC AMS. The assertion passed and the
stability margin of the system from Figure 5.4 is shown in Figure 5.5. The
FFT of the system response was calculated at N = 2048 points. The to-
tal run time of system simulation without XAA+A assertion took 0.036 s.
Adding the assertion into simulation process the total time increased with
a small overhead of 0.004 s. The new time was then 0.04 s. The application	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 500 1000 1500 2000 2500

St
ab

ili
ty

 M
ar

gi
n

M
s

k

Am
pli
tu
de
	of
	tr
an
sfe
r	f
un
cti
on
	

H(
j!
)=
1+
C(
j!
)P
(j!

)	

Figure 5.5: Possible value of Ms within the specification range [0.5, 0.75]

of this approach on complex case studies is shown in Chapter 6.

5.4 Implementation
The assertion library is developed as a separate library in SystemC AMS.
All assertion operators are realized as separate modules. The modules for
evaluation of digital signals use SystemC Modules of Computation (MOCs).

5. Extended A�ne Arithmetic Assertions (XAA + A) 67

Symbolic Simulation in SystemC AMS

Analog signals Digital signals

XAA+A assertions

 XAAF

bool

SystemC AMS
 TDF SystemC

 bool

sca_tdf::sca_signal<XAAF>

sc_core::sc_signal<XAAF>

SystemC AMS
 TDF

TDF to DE

bool

 SystemC

A
n
a
lo

g
,

D
ig

ita
l o

p
e
r.

L
o
g
ic

,
T
e
m

p
o
r a

l o
p
e
r.

Figure 5.6: The implementation structure of XAA+A

Evaluation of analog a�ne signals is done via SystemC AMS TDF (Timed
Data Flow) MOC. In the following the terms analog and digital operators
will be used to assign the operators used for evaluation of analog and digital
signals, respectively.

Figure 5.6 shows the implementation structure of XAA+A assertions.
As described in Section 5.1 the relational operators can evaluate analog and
digital signals. If analog signals are compared with specifications, the op-
erators are implemented via TDF MOCs. For evaluation of digital signals
SystemC MOC is used. To construct an XAA+A describing a full system
property, analog and digital operators are usually connected with one an-
other. The connection between operators is done through the existing signal
interfaces in SystemC AMS:

• Analog operators are connected via sca_tdf :: sca_signal < T >.
• Digital operators are connected via sc_core :: sc_signal < T >.
• The connection between analog and digital operators is done via logic

operators also implemented using SystemC MOC. Analog operators
are connected to the logic operators via TDF to DE (Discrete Event)
interfaces sca_tdf :: sc_signal < T >.

T stands for a data type of signal quantities. All signal quantities in a system
(either analog or digital) are the same data type XAAF . The return values of
assertion operators can be both types: XAAF or Boolean bool. The true

5. Extended A�ne Arithmetic Assertions (XAA + A) 68

Boolean value is for a property described with a corresponding operator
that is satisfied at evaluation time. Similarly, false value indicates that the
property is violated. The assertion operators that return XAAF data type are:

• arithmetic operators {+, ≠, ú, /}
• min frequency operator
• max frequency operator
• FFT frequency operator
• phase(FFT) frequency operator

The Boolean value bool is returned by:
• relational operators {<, Æ, >, Ø}
• analog IN operator
• analog frequency operator FIN

• analog frequency operator GFIN

• logic operators
• temporal operators

The evaluation of a�ne analog signals is done at each simulation time step
defined by sampling frequency of the overall system. For this purpose, TDF
processing function is used. The digital signals are evaluated at discrete
steps defined by changes of signal values. For this purpose, a process method
SC_METHOD of SystemC MOC is used.

Chapter 6

Evaluation

The applicability and e�ciency of XAAF approach is demonstrated on two
widely used Mixed-Signal circuits: a 3rd Order �-� Modulator and a Phase-
locked loop circuit. Simulation is performed on a system level. For this pur-
pose SystemC AMS simulation environment is used. The models are simu-
lated over a range of operating conditions. The system responses including
all possible trajectories over this range are obtained using one simulation
run. The obtained simulation results are compared with multi-run methods:
Monte-Carlo simulation and Design of Experiments (DoE). It is shown that
the upper and lower bounds of trajectories computed by symbolic simulation
e�ciently enclose behaviors computed by numeric simulations.

6.1 3rd order Delta-Sigma Modulator
Delta-Sigma (�-�) modulators are common parts of today’s analog-to-
digital converters (ADCs). The aspects that bring these ADCs a higher
e�ciency over conventional ones are the use of oversampling, noise shap-
ing and digital filter decimation. Conventional ADC as flash converters uses
sampling frequencies close to twice the sampling frequency. Sampling in the
time domain corresponds to shifting the input signal spectrum to higher fre-
quencies in the frequency domain (modulation with carriers at frequencies
2f

s

, 3f
s

, 4f
s

, etc.). A sampling frequency close to the Nyquist rate requires a
filter with tight constraints to isolate the elementary input signal spectrum
from modulated bands. In traditional ADCs this filter is realized on their
analog side and hence it is more complex to design and implement. How-
ever, �-� ADCs use a sampling rate much higher than the Nyquist one.
Therefore, the requirements for antialiasing filter are much milder.

69

6. Evaluation 70

 729

x3

+

+

+

+ v[n]y[n]x2x1 +

3a

3c2c1c

b4

2a

b 3b1 2

1a

b

u[n]

Quantizer

+

+

z−1

1

z−1

1 1

z−1

Fig. 3. Third-order ∆Σ Modulator

as: P(k) = Always(�1 < x3(k) < 1 for all k � 0. The modulator
is described using the following recurrence equations:

x1(k +1) = i f (c3x3(k)+u >= 0,x1(k)+b1u�a1a,

x1(k)+b1u+a1a)

x2(k +1) = i f (c3x3(k)+u >= 0,c1x1(k)+ x2(k)+b2u(k)

�a2a,c1x1(k)+ x2(k)+b2u(k)+a2a)

x3(k +1) = i f (c3x3(k)+u >= 0,c2x2(k)+ x3(k)+b3u(k)

�a3a,c2x2(k)+ x3(k)+b3u(k)+a3a)

Applying the symbolic simulation, we obtain the following
expression of the property:

P(k +1) = i f (c3x3(k)+u >= 0,

c2x2(k)+ x3(k)+b3u(k)�a3a < 2,

�2 < c2x2(k)+ x3(k)+b3u(k)+a3a)

The correctness of the property P(k + 1) depends on the
parameters A,B and C, the values of variables x1(k), x2(k)
and x3(k), the time k, and the input signal u(k). We verify
the ∆Σ modulator for the following set of parameters inspired
from the analysis in [8]:

8
�<

�:

a = 1 a1 = 0.044 a2 = 0.2881

a3 = 0.7997 b1 = 0.07333 b2 = 0.2881

b3 = 0.7997 c1 = c2 = c3 = 1

We applied the Algorithm 1 in order to verify the ∆Σ
modulator stability for the above set of parameters. Table I
shows the verification results for the design given in Figure
3. We use the same circuit parameters set as in [8]. The
experiments were performed on an Intel Core2 1900 MHz
processor with 2GB of RAM. The initial constraints define
the set of test cases over which interval based simulation
is applied. If the property is false, as in the first and third
cases in Table I, then the verification is completed and a
counterexample is generated from the simulated intervals. On
the contrary, when the property is True, we have a partial
verification result as it is bounded in terms of simulation steps.
The second case in Table I illustrates such limitation.

V. CONCLUSION

In this paper, we presented a semi-formal methodology for
the stability verification of ∆Σ modulators under a set of given
initial conditions and input signals. The main advantage of the
method is the sound verification it provides over the simulation
time. In addition, it generates counterexamples for the failed
properties, which can be used for further analysis.

TABLE I

VERIFICATION RESULTS

Initial Property Evaluation CPU time
Constraints for n = 0 to Nmax Cycles Used

0.028 � x1(0) � 0.03 Nmax = 40 1.5 sec
�0.03 � x2(0) � �0.02 n = 0 to 15 True x1[16] �� 0.263

0.8 � x3(0) � 0.82, u := 0.8 n > 15 False x2[16] �� 1.256 , x3[16] �� 2.42
0.012 � x1(0) � 0.013 Nmax = 38 31 sec
0.01 � x2(0) � 0.02

0.8 � x3(0) � 0.82, u := 0.54 True
0.163 � x1(0) � 0.164 Nmax = 40 0.8 sec

�0.022 � x2(0) � �0.021 n = 0 to 17 True x1[19] �� 0.163
0.8 � x3(0) � 0.82, u := 0.6 n > 17 False x2[19] �� 0.886, x3[19] �� 2.47

The method is still in primary phase and some issues need
to be addressed to make it more practical. For instance, the
interval based reachability computation is expensive and hence
limits the maximum verification time steps as divergence can
occur quickly. This is mainly caused by the wrapping effect

[10] which appears when the results of a computation are
overestimated when enclosed into intervals, hence leading to
error accumulation at each time step.

To tackle some of the limitation mentioned, we plan to use
a variant of interval analysis that can reduce the divergence
problem. In addition, we plan to integrate this methodology
with the induction based verification developed in [1].

REFERENCES

[1] G. Al Sammane, M. Zaki, and S. Tahar: A Symbolic Methodology for the
Verification of Analog and Mixed Signal Designs. In Proc. of IEEE/ACM
Design, Automation and Test in Europe, April 2007.

[2] G. Al-Sammane. Simulation Symbolique des Circuits Decrits au Niveau
Algorithmique. PhD thesis, Université Joseph Fourier, Grenoble, France,
July 2005.

[3] A. Bemporad and M. Morari: Verification of Hybrid Systems via Math-
ematical Programming. In Hybrid Systems: Computation and Control,
LNCS 1569, pp. 31-45, Springer, 1999.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 2000.

[5] T. Dang, A. Donze, O.Maler: Verification of Analog and Mixed-
Signal Circuits using Hybrid System Techniques. In Formal Methods in
Computer-Aided Design, LNCS 3312, pp. 14-17, Springer, 2004.

[6] G. Frehse, B. H. Krogh, R. A. Rutenbar. Verifying Analog Oscillator
Circuits Using Forward/Backward Abstraction Refinement. In Proc. of
IEEE/ACM Design, Automation and Test in Europe, pp. 257-262, 2006.

[7] M. Goodson R. Schreier and B. Zhang. An Algorithm for Computing
Convex Positively Invariant Sets for Delta-Sigma Modulators. IEEE
Transactions on Circuits and Systems I 44:38-44, January 1997.

[8] S. Gupta, B.H. Krogh, R.A. Rutenbar: Towards Formal Verification of
Analog Designs, In Proc. of IEEE/ACM International Conference on
Computer Aided Design, pp. 210-217, 2004.

[9] W. Hartong, et. al. Formal Verification for Nonlinear Analog Systems:
Approaches to Model and Equivalence Checking. Advanced Formal
Verification, Kluwer: pp. 205-245, 2004, .

[10] R. E. Moore, Methods and Applications of Interval Analysis, Society
for Industrial and Applied Mathematics, 1979.

[11] R. Schreier and G. C. Temes. Understanding Delta-Sigma Data Con-
verters, Wiley-IEEE Press, 2005.

[12] P. Steiner and W. Yang. Stability Analysis of the Second Order Sigma–
Delta Modulator. In Proc. of IEEE International Symposium on Circuits
and Systems, pp. 365-368., 1994,

[13] S.Wolfram. Mathematica: A System for Doing Mathematics by Com-
puter. Addison Wesley Longman Publishing, USA, 1991.

[14] J. Yuan, C. Pixley, A. Aziz. Constraint-Based Verification, Springer,
2006.

Figure 6.1: Block diagram of a 3rd Order Delta-Sigma Modulator [61]

6.1.1 Modulator description
�-� Modulator as a part of �-� ADC is designed such that it acts as a low
pass filter for analog input signals and a high pass filter for the quantization
noise. The quantization noise is added by 1 bit quantizer of �-� modulator
which converts analog signal to the digital one (the bit stream). The signal
from the modulator output is sent to the digital decimation filter, which
down samples the signal reducing its sampling rate. These filters are due
to their digital nature simpler to design than analog ones. Reducing the
sampling rate, they average the signal brought to their input removing all
high frequency components (quantization noise, aliases) and passing only
the useful signal band.

Figure 6.1 shows the block diagram of the 3rd order �-� modulator
inspired from [54]. The modulator property of crucial importance is the
stability. Stability requires that the output stays bounded if the input is
bounded. The increase of output values can lead to two unwanted modulator
behaviors: integrator saturation and quantizer overload.

Rounding the input value to the certain quantization level, the quan-
tizer adds the certain portion of quantization error. The maximum value of
the quantization error depends on the number of quantization bits used to
represent the output value. If the error between quantizer input and output
value exceeds the maximum value, the quantizer is overloaded. It is of a
great importance to provide a formal proof that over the certain range of
input and initial conditions these e�ects never occur. Using the proposed
method, the modulator stability is verified over several sets of input and ini-
tial values. The worst-case behavior is obtained in one symbolic simulation
run.

6.1.2 Results of Symbolic Simulation
The modulator parameters used in simulation are taken from the work [54]:
b1 = 0.0444, b2 = 0.2881, b3 = 0.7997 a1 = ≠0.0444, a2 = ≠0.2881,

6. Evaluation 71

a3 = ≠0.7997 b4 = 1.0, c1 = c2 = c3 = 1.0 The quantizer used in this modu-
lator uses one bit to represent the output value. The quantization levels have
values ≠1 and 1. Symbolic simulation is used to compute the worst-case mod-
ulator behavior over the considered ranges of initial and input conditions.
For the considered modulator two undesired e�ects are checked: integrator
saturation and a quantizer overload. For this modulator, saturation limits
are assumed to be ≠2 and 2. Thus, the integrator outputs must stay within
the range [≠2, 2] to avoid saturation.

On the other side, a quantizer is overloaded if a di�erence between the
quantizer input and output exceeds the maximum quantization error. For
the considered quantizer, the maximum value of the quantization error is 1.
Hence, to avoid overload, the quantizer input should stay within the bounds
[≠2, 2]. In this work the modulator behavior is simulated over three sets of
input and initial conditions.

The considered one-bit quantizer compares its input value y[n] with zero.
For the positive input values, the quantizer output is 1, while for negative
ones it is -1. Figure 6.2 shows the quantizer implementation in SystemC
AMS.

Since input and initial values are modeled as ranges, the quantizer input
will also be a range. Hence, one set may lie above and the other below zero.
Hence, the if-else statement is modified according to the rules presented
in Section 4.4. The first branch computes both if and else branches. The
modulator BIBO (Bounded Input Bounded Output) stability was checked
over the sets of initial and input values. Computation times of the proposed
symbolic approach for three sets of input and initial conditions are given in
Table 6.1. All computations are performed on a 2.6 GHz machine.

SCA_TDF_MODULE(quantizer)
{
 sca_tdf::sca_in<XAAF> y;
 sca_tdf::sca_out<XAAF> v;

 void processing()
 {
 if ((y≥0)!=false)
 v.write((y≥0)*1+!(y≥0)*(-1));
 else
 v.write(-1);
 }

 quantizer(sc_module_name nm){} // constructor
};

Figure 6.2: Implementation of an one-bit quantizer in SystemC AMS

6. Evaluation 72

Table 6.1: Computation time of symbolic approach

Initial conditions Number of simulation time steps N Computation time
x1(0) œ [0.012, 0.013] N = 100 2.2s
x2(0) œ [0.01, 0.02]

x3(0) œ [0.8, 0.82], u=0.54
x1(0) œ [0, 0.01] N = 40 84.4s

x2(0) œ [≠0.01, 0]
x3(0) œ [0.8, 0.82], u=[-0.6, 0.6]

x1(0) œ [≠0.1, 0.1] N = 30 804s
x2(0) œ [≠0.1, 0.1]

x3(0) œ [≠0.1, 0.1], u=[-0.5, 0.5]

6.1.3 Comparison with Monte-Carlo simulation
The results obtained by symbolic simulation are compared with numeric
simulations based on the Monte-Carlo method and DoE. Using the Monte-
Carlo approach multiple test cases are run for randomly chosen values of
initial and input conditions. Each test case simulates one particular choice
of condition values. For comparison, 10 random simulation runs are repeated.

The first set of conditions is inspired from [104] that computes the worst-
case behavior for N = 38 time steps. [104] performs reachability based on
Interval Arithmetic (IA). However, the dependency problem of IA can lead
fast to divergence of response bounds. This limits the number of time steps
to be simulated.

Using the proposed methodology, the modulator behavior was symbol-
ically simulated for N = 100 time steps. The results show 16 times higher
computation speed over [104], even for higher number of simulation time
steps. Ten Ê symbols were required to cover all possible switches of the 1-
bit quantizer between two output values. Note that the number of Ê symbols
was much lower than the number of simulation time steps. This is due to
correlation of transitions which were identified by implemented relational
operators. Here the Ø operator was used for the implementation of the 1bit
quantizer (see Figure 6.2).

Figure 6.3 shows the result of symbolic simulation compared with 10
random simulations. Left and right side of the figure show the output of
the third integrator and the input of 1-bit quantizer, respectively. The red
line assigns the total bounds of modulator quantities computed by symbolic
approach. The black lines show the result of 10 numeric simulations.

A Monte-Carlo run took only 2 ms. However, the proposed methodology
is still competitive considering the fact that this time is multiplied with
thousands of runs to obtain a su�cient coverage. Even then, there is no
guarantee that the worst-case behavior is found. The bounds computed by
symbolic approach encloses the traces of pure numeric random simulations.

Since the bounds of the corresponding signals stay within the range
[≠2, 2], no integrator saturation and quantizer overload occurr. This is au-

6. Evaluation 73

(a) The output of the third integrator (b) The quantizer input

Figure 6.3: Comparison of symbolic simulation with random simulation for
the 1st set of initial conditions

tomatically checked using the assertion language described in Chapter 5.
The assertions, which check if the bounds of corresponding signals lie in the
allowed range, are as follows:

G(IN(x3, 2 ú Á1)) (6.1)
G(IN(y, 2 ú Á1)) (6.2)

where Á1 œ [≠1, 1]. Both assertions were satisfied and the simulation passed.
Table 6.1 reports the computation times not including assertions in the
simulation process. Adding Assertions 6.1 and 6.2 in the simulation run the
computation time increased to 2.87 s. Therefore, the assertions added a small
overhead of 0.67 s.

Due to the nonlinear behavior of the quantizer, worst-case parameter
values can lie anywhere inside the initial ranges and can be di�erent at
each time step. These values are usually not trivial to be found by random
simulations. However, the LP solver integrated in the symbolic computations
provides these values, as shown below in Table 6.2.

The simulation of the second set shows the benefits of this approach
over the methodology presented in [54]. In contrast to [54], the modulator
is simulated for the set of input values and not only one constant value.
After N=20 computation time steps the modulator behavior is quite stable
resulting in slight changes of the worst-case behavior.

Figure 6.4 shows the modulator behavior for additional 20 time steps.
The left side of the figure shows the third integrator output while the right
side the quantizer input. As in the previous case both assertions 6.1 and
6.2 passed. The computation took 84.4 s using 15 Ê symbols to cover all

6. Evaluation 74

(a) The output of the third integrator (b) The quantizer input

Figure 6.4: Comparison of symbolic simulation with random simulation for
the 2nd set of initial conditions

possible quantizer transitions. Including assertions in the simulation process
the simulation time increased only in 0.6 s; the new computation time was
85 s.

Figure 6.5 shows the modulator behavior for the third set of conditions.
The modulator shows an interesting property that the absolute values of
worst-case bounds are the same over the symmetric ranges of input and
initial conditions. The worst-case modulator response shows stable behavior
after N = 20 time steps. The simulation was performed for additional 10
time steps. The computation time for the time horizon of N = 30 time
steps took 804 s (around 14 min) on a 2.6 GHz machine. The number of
used Ê symbols to cover all possible transitions was 18. For the same set
of conditions and the same time horizon, [53] reported more than 2 hours
computation time on a similar machine.

As in the previous cases the first assertion was satisfied. However, the
quantizer input exceeded 2 and the overload occurred. Hence, the second
assertion failed and the simulation run was stopped at 1 µs.

The system output, computed by the symbolic simulation run, encloses
traces obtained from numeric simulations. Symbolic simulation computes
the total lower and upper bounds of system response whose values could
not have been found easily by simulation with the bounds of initial and
input ranges. This is due to the nonlinear discrete behavior of the 1-bit
quantizer whose output value does not stay constant, but switches between
two values during simulation.

Due to the nonlinear behavior of the quantizer, the worst-case parameter
values at each time step may be di�erent and can lie anywhere inside the

6. Evaluation 75

(a) The output of the third integrator (b) The quantizer input

Figure 6.5: Comparison of symbolic simulation with random simulation for
the 3rd set of initial conditions

range. Table 6.2 shows the input sequences for computation of the worst-
case bounds of the third integrator x3[n]. The value n in the table assigns
the nth simulation time step. In contract to the previous two cases, Figure

(a) The output of the third integrator (b) The quantizer input

Figure 6.6: Comparison of symbolic simulation with DoE for the 1st set of
initial conditions

6.5 on the right side shows the quantizer overload. For the certain input
sequence the quantizer input y exceeds the value 2. The positive quantizer

6. Evaluation 76

(a) The output of the third integrator (b) The quantizer input

Figure 6.7: Comparison of symbolic simulation with DoE for the 2nd set
of initial conditions

overload occurs at n = 10 and n = 11 for the following input sequence:

u = 0.472608
x1[0] = 0.1
x2[0] = ≠0.1
x3[0] = 0.0491474

and n = 12 for:

u = 0.5
x1[0] = 0.1
x2[0] = ≠0.09808
x3[0] = ≠0.00207

Similar holds for the lower bound (negative quantizer overload). The
absolute values of sequences are the same, only the signs are changed. For
n = 10 and n = 11 the sequence is:

u = ≠0.472608
x1[0] = ≠0.1
x2[0] = 0.1
x3[0] = ≠0.0491474

6. Evaluation 77

(a) The output of the third integrator (b) The quantizer input

Figure 6.8: Comparison of symbolic simulation with DoE for the 3rd set of
initial conditions

and n = 12 for:

u = ≠0.5
x1[0] = ≠0.1
x2[0] = 0.09808
x3[0] = 0.00207

These values are not trivial to be detected by random simulations. Most
likely they would not be detected even with the higher number of simulation
runs. Therefore, random simulation even with a high number of simulation
runs could not guarantee that all critical cases are covered.

6.1.4 Comparison with Design of Experiments
The results of symbolic simulation were also compared with DoE[15]. Here,
DoE used a simple metamodel which looks only at the corners of initial and
input ranges. Figures 6.6-6.8 show the comparison results with symbolic sim-
ulation. One DoE run took around 2 ms. For simulation of all bounds, DoE
multiplies this time with required number of runs that increases exponen-
tially with the number of considered uncertainties. However, simulation of
all corners does not guarantee that the worst-case behavior is detected. The
worst-case parameter values do not necessary lie on the corners, as shown
in Table 6.2.

6. Evaluation 78

Table 6.2: Input and initial values in the worst-case at nth simulation time
step

se
t

x
3[

n
=

4]
x

3[
n

=
10

]
x

3[
n

=
20

]
m

in
m

ax
m

in
m

ax
m

in
m

ax

1s
t

u=
0.

54
x1

[0
]=

0.
01

2
x2

[0
]=

0.
01

x3
[0

]=
0.

8

u=
0.

54
x1

[0
]=

0.
01

3
x2

[0
]=

0.
02

x3
[0

]=
0.

82

u=
0.

54
x1

[0
]=

0.
01

2
x2

[0
]=

0.
01

x3
[0

]=
0.

8

u=
0.

54
x1

[0
]=

0.
01

3
x2

[0
]=

0.
02

x3
[0

]=
0.

82

u=
0.

54
x1

[0
]=

0.
01

22
26

x2
[0

]=
0.

02
x3

[0
]=

0.
82

u=
0.

54
x1

[0
]=

0.
01

3
x2

[0
]=

0.
01

28
51

7
x3

[0
]=

0.
8

2n
d

u=
-0

.6
x1

[0
]=

0
x2

[0
]=

-0
.0

1
x3

[0
]=

0.
8

u=
0.

58
21

5
x1

[0
]=

0.
01

x2
[0

]=
-0

.0
1

x3
[0

]=
0.

8

u=
-0

.5
21

07
x1

[0
]=

0
x2

[0
]=

0
x3

[0
]=

0.
82

u=
0.

59
65

5
x1

[0
]=

0
x2

[0
]=

-0
.0

1
x3

[0
]=

0.
80

87

u=
-0

.5
53

97
6

x1
[0

]=
0.

00
24

6
x3

[0
]=

-0
.0

1
x4

[0
]=

0.
8

u=
0.

56
54

34
x1

[0
]=

0.
01

60
41

1
x2

[0
]=

0.
01

x3
[0

]=
0.

82

3r
d

u=
-0

.2
86

x1
[0

]=
-0

.1
x2

[0
]=

0.
1

x3
[0

]=
0.

1

u=
0.

28
6

x1
[0

]=
0.

1
x2

[0
]=

-0
.1

x3
[0

]=
-0

.1

u=
-0

.1
x1

[0
]=

-0
.0

30
34

x2
[0

]=
0.

00
77

04
7

x3
[0

]=
-0

.1

u=
0.

1
x1

[0
]=

0.
03

03
4

x2
[0

]=
-0

.0
07

70
47

x3
[0

]=
0.

1

u=
-0

.0
95

73
x1

[0
]=

0.
1

x2
[0

]=
0.

01
28

84
4

x3
[0

]=
-0

.1

u=
0.

09
57

3
x1

[0
]=

-0
.1

x2
[0

]=
-0

.0
12

88
44

x3
[0

]=
0.

1

6. Evaluation 79

6.2 Charge-pump Phased-locked loop Circuit
A dual-path charge-pump Phased-locked Loop circuit (PLL) is the second
case study on which the proposed methodology is applied. This circuit plays
a role of the frequency synthesizer that generates the high frequency signals
for the local oscillator of one IEEE 802.15.4 RF transceiver. The output
frequency is N multiple of the reference frequency brought to the input of
the circuit. The key property of a PLL circuit is its ability to lock to desired
frequency in less than maximum specified settling time. This property is
known as a PLL locking property. In this work a symbolic simulation is used
to verify the locking property over a set of initial and parameter values.

6.2.1 PLL description
The structure of the circuit is shown in Figure 6.9. The SystemC virtual
prototype of the circuit is provided by RWTH Aachen University (Institute
for Integrated Analog Circuits) as the main case study in ongoing ANCONA
(Analog-Coverage in der Nanoelektronik) project. The project is partly sup-
ported by the Federal Ministry of Education and Research (BMBF) and
partly by the industry. It counts six University partners including my Insti-
tute for Design of Cyber Physical Systems, TU Kaiserslautern.

The SystemC model is generated automatically from the cadence design
schematic and made available for the project partners. The basic parts of
the circuit shown in Figure 6.9 are as follows:

• a voltage-controlled oscillator (VCO; top right) - generates a signal
whose frequency should be N times the reference frequency

• a pure digital frequency divider (bottom) - divides the VCO frequency
by N

• a phase-frequency detector (PFD; top left) - detects phase/frequency
di�erence between a reference signal and a VCO signal (divided by N)

• a charge-pump (CP; connected to PFD) - charges/discharges capac-
itors in the low pass filter changing the filter output voltage. This
voltage brought to one of the inputs of VCO, changes the output fre-
quency bringing it eventually to the desired level.

Voltage Controlled Oscillator-VCO. The considered oscillator generates the
output frequency according to the following frequency-voltage relation:

f
vco

= f0 ≠ Kvco ú v1 ≠ Kmod ú v2 ≠ Ktune ú v3 (6.-13)

Its integration gives the phase of VCO output signal:

�
v

= 2fi

Z
t

0
f

vco

dt.

The symbols Kvco and Kmod, Ktune and f0 stand for the oscillator coef-
ficients and the oscillator start frequency, respectively. The voltages v1, v2

6. Evaluation 80

Figure 6.9: A dual-path charge-pump PLL circuit

and v3 are the oscillator input voltages. The oscillator generates a rectangle
signal with the frequency equal to f

vco

. Since the input voltages of VCO
change with time, the value of the output frequency will also be dependent
on time. Hence, the period of the quadratic signal cannot be predicted in
advance. This issue can be solved looking at the phase of the VCO signal.
The positive edge of the quadratic signal can be detected comparing the
phase �

v

with 2fi. If the phase is higher or equal to 2fi the quadratic signal
is 1, otherwise its value is 0.

In the considered frequency synthesizer, the quadratic signal is firstly
inverted before it is brought to the input of the frequency divider (signal
V CO_3G2_N in Figure 6.9). The positive edge of the inverted signal hap-
pens when the signal phase crosses the value fi. If the phase is higher than
fi, the signal value is 1, otherwise 0.

Figure 6.10 shows the implementation of the PLL VCO in SystemC for
a pure numeric simulation. Crossing the value fi can be detected with the
condition �

v

≠ ths Ø 0 where ths = fi. Here it is important to mention that
every time the phase value crosses fi the value 2fi must be added to the

6. Evaluation 81

threshold voltage. This is done to assign the next clock cycle; resp. for each
next cycle the phase value is compared with 3fi, 5fi, etc. Since the frequency
divider is triggered only on positive edges of the VCO signal (changes from
’0’ to ’1’), it is enough to write ’1’ to the output only at the moment when
the phase value crosses the threshold.

However, the VCO code needs slight modifications to handle the range
of phase �

v

values. In this case, the comparison with the certain threshold
can also result in both {false, true}. Thus, applying Rule 1 from Section
4.4 it is checked if the condition (�

v

≠ ths) Ø 0 is not equal to false. Figure
6.11 shows the instrumentation of the VCO code applying the rules given in
Section 4.4. The values of VCO_3G2_N should be ’1’ only for true condition

SC_MODULE(VCO)

{

 double ths=M_PI;

 void processing()

 {

 double fvco=f0-Kvco*v_1-Kmod*v_2-Ktune*v_3;

 double curr_time=sc_timestamp().to_seconds();

 double Phi_v=Phi_v+2*M_PI*fvco*(curr_time-prev_time);

 if ((Phi_v-ths)>=0)

 {

 VCO_3G2_N=1;

 ths=ths+2*M_PI;

 }

 else

 VCO_3G2_N=0;

 prev_time=curr_time;

 }

};

Figure 6.10: VCO implementation with double signal data type

value, otherwise ’0’. Also, the threshold ths for the next cycle should be
updated only the condition results in true. This can be captured using
Shannon Expansion as defined by Rule 2 in Section 4.4. This expression
in general covers both cases; when the condition is {false, true} but also
true. For the true condition values, the conditional statement is the same
as one for pure numeric simulation (given by Figure 6.10).

Applying Rule 2, Shannon Expansion for computation of V CO_3G2_N

6. Evaluation 82

SC_MODULE(VCO)
{
 XAAF ths=M_PI;

 void processing()
 {
 XAAF fvco=f_0-Kvco*v_1-Kmod*v_2-Ktune*v_3;

 double curr_time=sc_timestamp().to_seconds();

 XAAF Phi_v=Phi_v+2*M_PI*fvco*(curr_time-prev_time);

 if (((Phi_v-ths)>=0)!=false)
 {
 VCO_3G2_N=!(Phi_v-ths)>=0)*0+(Phi_v-ths)>=0)*1;
 ths=ths+cond*2*M_PI;
 }
 else
 VCO_3G2_N=0;

 prev_time=curr_time;
 }
};

Figure 6.11: VCO implementation with XAAF signal data type

and ths is equal to:

�
v

=!cond ú 0 + cond ú 1 (6.-12)
ths =!cond ú ths + cond ú (ths + 2fi). (6.-11)

where cond = (�
v

≠ ths) Ø 0. The operator + with XAAF condition values
is equivalent to the disjunction operator ‚ in Boolean algebra. Hence, it
holds that !cond + cond = 1 and Eq. 6.-11 can be re-written as:

ths = ths + cond ú 2 ú fi.

Frequency divider. In [56, 86, 105] a frequency divider is modeled as a
simple division by a constant ratio N . This work uses a realistic model for a
divider based on a counter. The counter is triggered on the positive edge of
the oscillator signal that represents its clock signal clk. When the positive
edge occurs, the counter value is increased by one. When it reaches the value
of N (here N = 110), its value is reset to zero and the value of output signal
is changed from 0 to 1. Figures 6.12-6.13 show the implementation of the
frequency divider as a counter. Figure 6.12 shows the counter implementa-
tion for numeric simulation; bool type of clk signal. Figure 6.13 shows small
modifications of the counter implementation for symbolic code execution.

As described in Section 4.1 and given by Table 4.1 the equality operator
== returns two possible values: true or false. However, due to uncertain
active time of the oscillator signal the counter value is also uncertain. To
evaluate the condition (count ≠ M6)%32 == 0 for an uncertain counter
value, it is checked if (count ≠ M6)%32 is Æ 0 and Ø 0:

(count ≠ M6)%32 Æ 0 ú (count ≠ M6)%32 Ø 0.

6. Evaluation 83

SC_MODULE(FD)
{
 sc_in<bool> clk;
 sc_out<bool> FD_out;
 ...
 bool out=0;

 if (clk==1)
 {
 if (count>=110)
 {
 count=0;
 out=!out;
 }
 else
 {
 if ((count-64)%32==0 && (count-64)>=32)
 out=!out;
 }
 FD_out.write(out);
 count=count+1;
 }
};

Figure 6.12: Implementation of a frequency divider for numeric simulation

The conjunction operator for false and true condition values corresponds
to multiplication operation of two XAAFs whose possible values are 0, 1 or
both.

Note that the output signal value is written to the output only if the
clock signal clk is 1. To avoid writing to the output when clock may also
be 0 (in the case clock takes both values clk={0, 1}), the output value is
multiplied with clk. In this way the bottom D flip-flop of PFD is sensitive
only on the changes of the counter output, triggered on the positive edge of
the oscillator signal.

Phase-frequency detector-PFD. The basic structure of the PFD circuit
is shown in Figure 6.14. It is composed of two D flip-flops and one logic
AND circuit. The role of PFD is to generate the control signals for the
charge pumps. The top D flip-flop is activated on the positive edge of the
reference signal Ref and controls the top charge-pump current source. The
oscillator signal whose frequency is divide by N V CO_div activates the
bottom D flip-flop. The bottom flip-flop generates the control signal for the
bottom charge-pump current source. When the outputs of both flip-flops are
active, the AND circuit after some delay activates the flip-flop reset signals
switching o� both charge pumps. The delay of AND gate is 0.5ns.

The implementations of the detector flip-flops and logic gate are shown
in Figures 6.15-6.16. The left side of Figure 6.15 shows the D flip-flop im-
plementations for pure numeric simulations (when the oscillator phase �

v

6. Evaluation 84

SC_MODULE(FD)
{
 sc_in<XAAF> clk;
 sc_out<XAAF> FD_out;
 ...
 XAAF out=0;

 if (clk!=0)
 {
 XAAF cond=(count>=110);

 if (cond==true)
 {
 count=0;
 out=!out;
 }
 else if (cond!=false)
 count=!cond*count+cond*0;

 XAAF cond1=((count-64)%32>=0*(count-64)%32<=0);
 XAAF cond2=(count-64)>=32);

 if ((cond1*cond2)!=false)
 out=!(cond1*cond2)*out+(cond1*cond2)*!out;

 FD_out.write(out*clk);
 count=!clk*count+clk*(count+1);
 }
};

Figure 6.13: Implementation of a frequency divider for symbolic simulation

D

CLK

R

D

CLK

R

UP

DN

Q

!Q

Ref

VCO_div
Q

!Q

Figure 6.14: The structure of PFD circuit

value is a single value of type double). To handle the range of oscillator
phase �

v

values, the implementation is modified applying the same rules as
for the oscillator circuit. The code instrumentation is shown on the right side
of Figure 6.15. Possible values of output signals of D flip-flops on the right

6. Evaluation 85

SC_MODULE(DFF)
{
 sc_in<bool> CLK; // clock signal
 sc_in<bool> R; // reset signal
 sc_out<bool> Q; // output
 ...
 void processing()
 {
 if (R==1)
 Q=0;
 else if (CLK==1)
 Q=1;
 }
};

SC_MODULE(DFF)
{
 sc_in<XAAF> CLK;
 sc_in<XAAF> R;
 sc_out<XAAF> Q;
 ...
 void processing()
 {
 if (R!=0)
 {
 if (CLK!=0)
 Q=!CLK*Q+CLK*1;
 Q=!R*Q+R*0;
 }
 else if (CLK!=0)
 Q=!CLK*Q+CLK*1;
 }
};

Figure 6.15: Implementation of a D flip-flop for symbolic simulation

side of Figure 6.15 are 0, 1 but also {0, 1}. For these values the multiplica-
tion operation of two XAAFs corresponds to conjunction operation · of two
Boolean values. Hence, the AND operation of the logic gate is implemented
as a simple multiplication ú of PFD output signals (UP and DN).

Charge Pump-CP. The charge pump is composed of two current sources
that are controlled by the outputs of PFD UP and DN . If the control signals
are one, the current sources are on and the charge is pumped into or out of
the capacitors. If the control signals are zero, the current values are zero.

Hence, the behavior of the current sources can be described with the
following equations:

I
up

= UP ú I
inc

I
dn

= DN ú I
dec

where I
inc

and I
dec

are generated by top and bottom current sources, respec-
tively. For the considered circuit the current values are the same intensity
but di�erent sign. Hence, it holds: I

inc

= ≠I
dec

. The output current of the
charge pump is computed as the sum of the currents obtained from both
sources:

CP_I_OUT = UP ú I
inc

+ DN ú I
dec

.

The considered PLL circuit has two charge pumps. The controlled signals
of the second charge pump are inverted. Hence its output current is:

CP_I_OUTB = UP ú I
dec

+ DN ú I
inc

.

Simulating the PLL circuit over a range of operating conditions, the switch-
ing times of current sources may be uncertain. Then, the controlled signals
UP and DN can have the values: 0, 1, but also UNKNOWN X = {0, 1}.

6. Evaluation 86

SC_MODULE(AND)
{
 sc_in<XAAF> UP;
 sc_in<XAAF> DN;
 sc_out<XAAF> OUT;
 ...
 AND(sc_module_name n, double delay_)
 {
 SC_METHOD(processing);
 sensitive << UP << DN;

 SC_METHOD(delay_output);
 sensitive << event_delay;

 delay=delay_;

 }

 void processing()
 {
 output=UP*DN;
 event_delay.notify(delay, SC_SEC);
 }

 void delay_output()
 {
 OUT=output;
 }
};

Figure 6.16: Implementation of an AND circuit for symbolic simulation

For example, for UP = 1 and DN = {0, 1} the currents CP_I_OUT and
CP_I_OUTB will have two possible values {I

inc

, 0} and {I
dec

, 0}, respec-
tively.

6.2.2 Results of symbolic simulation
The considered PLL circuit should generate the output frequency close to
3.52 GHz; the input reference frequency is 32 MHz and the division ratio
is 110. The PLL parameters are shown in Table 6.3. The PLL locking is
verified taking the following variations into account:

• variations of initial voltage values due to uncertainties in initial con-
ditions

• 10% tolerances of current values given by the specification
• 10% of tolerances of passive components in TPM filter due to process

variations
The PLL circuit is simulated over the ranges of considered variations. Since
exact values of these variations are not known and not of interest, they
will be referred to as uncertainties. A�ne representation of each considered

6. Evaluation 87

Table 6.3: PLL parameters

PLL block Parameters
Charge Pump I

inc

= 40 µA
I

dec

= 40 µA
Low pass filter R

on

= 1 �
R

off

= 100 M�
C

p

= 300 fF
R1 = 120 k�
C1 = 80 pF
v

lp0 = v
lp1 = v

lp2 = 0.6 V
Voltage Controlled
Oscillator K

vco

= 100 MHz/V

K
mod

= 6 MHz/V
K

tune

= 12 MHz/V
f0 = 4 GHz

TPM current source I
T P M1 = 40 µA

I
T P M2 = 10 µA

TPM filter R
p1 = 10 k�

R
p2 = 10 k�

C
p

= 0.5 nF
DAC current source I

DAC

= 5 µA
Phase Frequency Detector delay = 0.5 ns
Frequency divider N = 110

uncertainty is given in Table 6.4. The proposed methodology computes the

Table 6.4: Parameter uncertainties

Parameter Uncertainty range A�ne Representation
v

lp1 [0.59, 0.61][V] 0.6 + Á1 ú 0.01
I

inc

40 + [≠0.1 ú 40, 0.1 ú 40][µA] 40 + Á2 ú 0.1 ú 40
I

dec

40 + [≠0.1 ú 40, 0.1 ú 40][µA] 40 + Á3 ú 0.1 ú 40
I

T P M1 40 + [≠0.1 ú 40, 0.1 ú 40][µA] 40 + Á4 ú 0.1 ú 40
I

T P M2 10 + [≠0.1 ú 10, 0.1 ú 10][µA] 10 + Á5 ú 0.1 ú 10
I

DAC

5 + [≠0.1 ú 5, 0.1 ú 5][µA] 5 + Á6 ú 0.1 ú 5
R

p1 10000 + [≠0.1 ú 10000, 0.1 ú 10000][k�] 10000 + Á7 ú 0.1 ú 10000
R

p2 10000 + [≠0.1 ú 10000, 0.1 ú 10000][k�] 10000 + Á8 ú 0.1 ú 10000
C

p

0.5 + [≠0.1 ú 0.5, 0.1 ú 0.5][nF] 0.5 + Á9 ú 0.1 ú 0.5

worst-case PLL behavior over the considered ranges using one symbolic sim-
ulation run. The PLL behavior is computed for 40000 time steps each equal
to Ts = 1

fs
; f

s

is the sampling frequency equal to 20GHz.

6. Evaluation 88

The total simulation time taking 9 uncertainties into account took 1759 s
(around 29 min). The number of non-contiguous regions was 864. Thus, the
number of Ê symbols required to cover all possible transitions of VCO output
signal from positive to negative edge was 10. The PLL circuit locked after
0.9 µs. This is automatically checked using the assertion approach explained
in Chapter 5. The assertion describing the PLL locking property is given by
the following:

F (IN(f
out

, 3.52 + Á10.001) ∆ G(IN(f
out

, 3.52 + Á10.001)))

where:
• F is the temporal operator which assigns that the property in the

bracket should hold eventually during simulation
• f

out

is the output PLL frequency
• 3.52 + Á10.001 is the tolerance range around the desired output fre-

quency 3.52 GHz.
• IN is the assertion operator which checks if its first argument f

out

lies
within the specified range 3.52 + Á10.001

• G is the temporal operator which assigns that the property in the
bracket must hold always during simulation

• ∆ is the implication operator which assigns that when the first con-
dition is satisfied the second condition should always (assigned by G
operator) be fulfilled.

The above assertion was checked during simulation reporting the locking
time around 0.9 µs. Including the assertion into simulation, the simulation
run time increased to 32 min. Thus, the simulation overhead was only 3 min.

As explained in Section 3.4, for the analog part, the space complexity of
A�ne Arithmetic stays constant during simulation. The run time complexity
changes linear with the number of simulation time steps n. Discontinuities
introduced by discrete parts may lead to an exponential number of discrete
states with n. In reality, this is too pessimistic, since systems usually con-
verge to the stable states where the number of discrete states stay constant
or change slightly. This is shown by the simulated PLL circuit; the number
of discrete transitions was much lower than 2n.

6.2.3 Scalability of symbolic simulation
Figure 6.17 shows the dependency of (one symbolic simulation) run time on
the number of considered uncertainties. As expected, the run time was the
lowest with no uncertainties added to the design. It took only 3 s.

Each uncertainty added to the model may introduce more than one dis-
crete state per time step that must be handled by a symbolic simulation run.
The oscillator input v1 and charge pump currents have the highest impact

6. Evaluation 89

on the VCO output frequency. Hence, their uncertainties have the highest
impact on the uncertainty of PLL output frequency. The uncertainty of PLL
frequency introduces uncertainties in the charge pump switching increasing
the number of discrete states to be considered within one execution.

The slope of the curve was the highest for those two uncertainties. As
the number of uncertainties increased, the ratio between run times was less
than or equal to 0.5. As an example, increasing the uncertainty number k
from, 5 to 8, the simulation overhead was 1

5 of the run time for k = 5.

Figure 6.17: Run time versus number of uncertainties

6.2.4 Comparison with numeric simulation
The symbolic results were compared with the random simulation and the
simulation based on DoE. Ten random tests are run over randomly chosen
parameter values within the ranges given in Table 6.4. The comparison with
the symbolic simulation is given in Figure 6.18. The figure clearly shows that
the worst-case behavior computed by one symbolic simulation run includes
the set of trajectories obtained from numeric simulations. Since the param-
eter values chosen by random simulation runs were close to each other, the
di�erence between trajectories is hardly visible.

The results found by symbolic simulation are also compared with DoE.
Here DoE uses a simple metamodel which estimates the worst-case behavior
looking at the corners of ranges given in Table 6.4. Figure 6.19 shows the
comparison of 10 DoE runs with the proposed symbolic simulation. The

6. Evaluation 90

Figure 6.18: PLL output frequency: (red) symbolic simulation, (black) ran-
dom simulation

Figure 6.19: PLL output frequency: (red) symbolic simulation, (black)
DoE-based simulation

maximum number of DoE runs changes exponentially with the number of
uncertainties k. To simulate the PLL behavior over all possible combinations
of corners, 2k runs are required. For the considered circuit this number is
equal to 29 = 512. Even then, there is no guarantee that the worst-case
behavior is reached. Due to complex dynamics of PLL circuit, the worst-
case parameters usually do not lie on the corners and may change over the
simulated time horizon. Including LP solver in the XAAF implementation,
this information is easily extracted; this is partly the result returned by
the solver. Table 6.5 shows the worst-case parameter values returned by the
solver for 5 time steps.

6. Evaluation 91

Table 6.5: Worst-case parameter values

Time step minimum frequency [Hz] maximum frequency [Hz]

0.5 µs

3.5185e9 for
v

lp1=0.59 V
I

cp

=36.3942 µA
lower bounds of other
uncertainties

3.52005e9 for
v

lp1 =0.596 554 V
I

cp

=44 µA
upper bounds of other
uncertainties

0.6 µs

3.52015e9 for
v

lp1 =0.527 568 V
I

cp

=36 µA
lower bounds of other
uncertainties

3.52149e9 for
v

lp1 =0.596 554 V
I

cp

=44 µA
upper bounds of other
uncertainties

0.8 µs

3.52075e9 for
v

lp1 =0.61 V
I

cp

=40.8063 µA
lower bounds of other
uncertainties

3.52148e9 for
v

lp1 =0.59 V
I

cp

=38.6246 µA
upper bounds of other
uncertainties

1.1 µs

3.51947e9 for
v

lp1 =0.59 V
I

cp

=40.5053 µA
I

T P M1 =44 µA
I

T P M2 =9 µA
I

DAC

=4.5 µA
R1 =11 k�
R2 =11 k�
C

p

=0.55 nF

3.52002e9 for
v

lp1 =0.59 V
I

cp

=36.4342 µA
I

T P M1 =36 µA
I

T P M2 =11 µA
I

DAC

=5.5 µA
R1 =9 k�
R2 =9 k�
C

p

=0.45 nF

1.3 µs

3.51936e9 for
v

lp1 =0.605 011 V
I

cp

=39.8913 µA
I

T P M1 =44 µA
I

T P M2 =9 µA
I

DAC

=4.5 µA
R1 =11 k�
R2 =11 k�
C

p

=0.55 nF

3.52036e9 for
v

lp1 =0.600 36 V
I

cp

=43.9569 µA
I

T P M1 =36 µA
I

T P M2 =11 µA
I

DAC

=5.5 µA
R1 =9 k�
R2 =9 k�
C

p

=0.45 nF

1.5 µs

3.51965e9 for
v

lp1 =0.595 493 V
I

cp

=40.4575 µA
I

T P M1 =44 µA
I

T P M2 =9 µA
I

DAC

=4.5 µA
R1 =11 k�
R2 =11 k�
C

p

=0.55 nF

3.52045e9 for
v

lp1 =0.600 548 V
I

cp

=44 µA
I

T P M1 =36 µA
I

T P M2 =11 µA
I

DAC

=5.5 µA
R1 =9 k�
R2 =9 k�
C

p

=0.45 nF

6. Evaluation 92

6.3 Discussion
A literature survey provides a rich set of techniques used to verify the key
properties of the same case studies. Simulation-based techniques based on
a finite number of simulation runs can analyze the system behavior over a
limited set of operating conditions. Thus, the accuracy of verification results
is still dependent on the number of simulation runs.

To increase confidence level of verification results, researchers apply the
formal methods. The Checkmate tool proposed in [54] is one of the first
attempts towards formal verification of modulator stability. However, [54]
verified this property for only one value of input signal.

In [104] the authors propose combination of IA (Interval Arithmetic)
with numeric simulation towards more formal verification of Mixed-Signal
circuits. The case study is inspired from [54]. However, the modulator is also
verified considering only one value of the input stimuli. Also, the dependency
problem of IA restricts the number of time steps for which a system can be
verified. This drawback of IA can lead to numerical instability causing the
bounds to explode before the simulation ends. To overcome this problem, the
authors in [85] proposes the computation of reachable sets combining Inter-
val Arithmetic with Taylor approximations. These symbolic simplifications
are expensive operations and increase the computation time significantly in
contrast to [61].

The work [53] proposes a method that analyses the modulator behav-
ior over the various set of initial conditions but also the set of input signal
values. The modulator is modeled discrete-time hybrid automata. Checking
stability property is specified as a MILP (Mixed Integer Linear Program-
ming) problem and solved by the e�cient solver MOSEK [106]. The solver
finds the worst-case bounds of signal values for the input and initial set.
However, this approach has several weaknesses. First, there is no automatic
conversion of system dynamics to hybrid-automaton. Second, it is not clear
how this approach can be applied in general. It is not easy to express complex
system dynamics in the form of linear programming problems; for example
the complex structure of the PLL design considered in this thesis.

PLL circuit is the second big case study explored by state of the art meth-
ods such as [56, 86, 105]. [56] successfully applies a zonotope-based reacha-
bility analysis on a 27 MHz dual-path charge-pump PLL circuit. Ranges of
operating conditions are captured with the standard Interval Arithmetic [2].
The work proposes the continuization method to perform e�cient reachabil-
ity analysis for verifying PLL locking property. However, the method requires
modeling PLL design with a hybrid-automata. Concretely, Phase-frequency
detector is not implemented in a standard way (following it structure given
in Fig. 6.14), but using a non-common hybrid automata. To reduce too high
overapproximation resulted by Interval Arithmetic (IA), the methodology
brings the uncertainty of charge pump switching to the state transition ma-

6. Evaluation 93

trix. However, unnecessary overapproximation of switching times computed
in a continuous model is still there, since IA can not identify dependency
between correlated quantities. It is also not clear how the proposed method-
ology can be applied on the other PLL designs such as one verified in this
thesis. The structure of the considered PLL design is not trivial to be imple-
mented as a mixture of linear continuous dynamics and hybrid automata.

The PLL design from [56] was inspiration for authors in [105] which
proposed the qualitative simulation for verification of PLL locking property.
[105] considers also the jitter in the reference frequency. However, their tool
also does not support a standard way of modeling Mixed-Signal Designs;
systems must be modeled in the form of System of Recurrence Equations.

The other tool used for verification of PLL locking was proposes by [86]
The tool is called NL-SMT solver and combines SAT solving techniques with
Interval Arithmetic. The dependency problem of IA is solved through inter-
val constraint propagation (ICP) [107]. However, the PLL circuit can pass
through a large number of switching before it locks to desired frequency.
This would require a high number of NL-SMT calls, that would slow down
the verification process significantly. Also, simplifications done by ICP can
increase the computation time. To guarantee the reasonable time of verifica-
tion process, SAT solving required simulation assistance. Hence, the solver
was invoked only for the regions not covered by simulation.

The XAA approach proposed in this work highlights two advantages of
symbolic simulation:

• The method is applied directly on system dynamics; no translation to
any kind of formal model such as SRE in [105], SMT constraints in
[86] or hybrid automata in [53, 56]. Mixed-Signal designs are modeled
following the circuit structure.

• A�ne Arithmetic (AA) and its proposed extended form identify the
correlation between system quantities. Simplifications used in IA are
already the part of computation with (X)AA terms. This fills the gap
between high accuracy and low computational cost.

Chapter 7

Conclusion and Future Work

7.1 Conclusion
The complexity and heterogeneity of today’s mixed-signal designs makes
verification a challenge. A particular challenge is the sensitivity of analog
parts to even small variations in parameters, inputs, or initial conditions.
These variations may degrade the system performance and must be included
in the verification process. The proposed approach combines the benefits
of formal and simulation methods. The symbolic representation of system
variations brought the approach the following advantages:

1. Computation of the safe bounds of the worst-case system response over
a set of uncertain values using one simulation run

2. Analysis the impact of uncertainties on the total system response; the
extended form proposed in this thesis allows the propagation and com-
putation with uncertainties through all system parts: analog, digital
and software.

The proposed methodology is applied on two Mixed-Signal Designs: a
third order �-� Modulator and a PLL circuit of one IEEE 802.15.4 RF
transceiver. It verifies the key properties of both circuits: the modulator
stability and PLL locking. The circuits are modeled and simulated in the
SystemC AMS modeling and simulation environment. The continuous parts
are modeled using the AMS extension of SystemC simulator, in particular
Timed-Data Flow Model of computation (TDF MOC).

The digital parts are implemented through SystemC MOCs triggered
on the certain events (positive edges of predefined clocks, changes in input
signals). Interaction between analog and discrete parts is obtained through
the existing interfaces that perform conversions from continuous to discrete-
event behavior and via versa. The inputs and outputs of the system mod-
ules are specified by the input and output ports. Analog modules specify
input and output ports via sca_tdf::sca_in<T>, sca_tdf::sca_out<T>.
Digital parts use sc_core::sc_in<T>, sc_core::sc_out<T>. The modules

94

7. Conclusion and Future Work 95

interface with each other via TDF sca_tdf::sca_signal<T> and SystemC
sc_core::sc_signal<T> signals. The Template parameter T specifies the
value type of the signal.

XAAF is implemented as a standalone C++ library that provides the
C++ class called XAAF. To turn the numerical simulation into a symbolic
one, one must specify the XAAF for the value type of the signal T . XAAF al-
lows capturing uncertain values as ranges and computing with them through
the whole system including the software and digital parts. Propagation of
uncertainties through control flow statements required slight modifications
of software codes. The rules for this purpose and their application in the
standard C/C++ statements are presented. Performing these rules, arith-
metic and comparison operations on XAAFs, one simulation run computes
the whole set of possible system outputs over the considered set of uncertain
values. The simulation results show that the worst-case behavior is computed
for sequences of uncertain values which are not trivial and probably would
never be found by pure numeric simulation runs.

7.2 Evaluation of Hypothesis
The simulation and verification of the considered PLL circuit evaluates the
first hypothesis introduced in Section 1.3. This hypothesis claims that the
presented approach can also deal with complex systems. The considered PLL
circuit beside basic parts (PFD, Charge Pump, VCO and frequency divider)
counts additional 11 blocks; most of these blocks belong to the digital part
of the circuit that controls the basic functionality.

Here, the value of VCO frequency is dependent on three voltage values:
the first one is generated by the loop low pass filter, the second one by the
digitally controlled current source connected to the first order RC circuit
and the third input voltage is the tuned voltage.

The proposed methodology for both case studies computes the worst-case
behavior over the considered ranges of input and initial operating conditions.
In addition, LP solver allows to extract the sequence of input, initial and
parameter values which lead to the worst-case behavior. Due to nonlinear
behaviors of discrete parts these values do not often lie on the corners and
their values may di�er from time step to time step. This is shown in Table 6.2
and Table 6.5. Comparison with numeric simulation-based techniques based
on Monte-Carlo and DoE shows the correctness of the hypothesis 2 that
claims that the symbolic response encloses the set of numeric trajectories.

7.3 Future work
Future work addresses the following points:

• Combination of BDDs with A�ne Arithmetic. Here, the idea

7. Conclusion and Future Work 96

and the structure of Binary Decision Diagrams can be applied. The set
of Boolean values for the representation of terminal node values can
be replaced with the set of A�ne Forms that also cover the values 0
and 1. The arithmetic representation of condition values in control flow
statements using Ê symbols can be replaced with BDD structure: each
BDD node would represent the corresponding condition and possible
condition values {0, 1} the terminal BDD nodes. The conditions saved
in the intermediate nodes would be specified as constraints respect
to which LP solver would find the exact bounds of a�ne ranges and
hence the worst-case bounds of the total system response. Uncertain
values X = {false, true} of evaluated conditions would represent
false and true child of the node, respectively. All existing algorithms
applied on Reduced BDDs for the detection of redundant nodes and
their elimination would also be here applied. Additional advantage of
this structure is an easy implementation of logical operators.

• Automatic Instrumentation of Control Flow Statements. The
rules for the instrumentation of control flow statements, presented in
this thesis, can be applied in general. However, for huge software codes
the manual modifications of existing implementations consumes a lot of
time. Fortunately, the software parts that control analog functionality
are usually not complex and can be handled in a reasonable time.
However, automation of this step would certainly make this approach
more attractive.

• Investigation of the method applicability in other types of
systems. The advanced technology brings us to the modern world
where computers are embedded in almost any physical system from
cars, airplanes, robots, smart homes, to even social systems. Such sys-
tems are known as Cyber-Physical Systems [108]. With the increased
applicability of these systems in everyday life, the functional safety is
of crucial importance. Faults, unforeseen scenarios and parameter vari-
ations must be included in the verification process and seen as part of
regular operation. Experiences show that the failing of these systems is
in most cases caused by interactions of multiple variations of di�erent
kind. These interactions are often too complex to be covered by sim-
ply running multiple tests. There is a demand for exhaustive methods.
One interesting alternative could be symbolic simulation presented in
this thesis. Here, the plan is to investigate the applicability of the pro-
posed extended symbolic approach for modeling such variations and
handling their interaction.

Last but not least, the extension of A�ne Arithmetic towards cover-
ing probabilistic uncertainties could be an interesting work for the future
research.

Appendix A

The XAAF Library

The XAAF library is a standalone C++ library that provides the XAAF class.
To use the library one needs to include the header file "xaaf.h" and link the
source files to the compiled library libxaaf.a for Linux/Unix or libxaaf.lib for
Windows. The instantiation of and computation with XAAF terms is possible
through the following methods and functions.

A.1 Instantiation of XAAF terms
The XAAF can be instated using one of three available constructors:

• XAAF(double);
This method is used to instance an XAAF term as a single value with
no Ê symbols. A set of double values represents a subset of XAAF set.

• XAAF(const AAF &);
This method is used to instance an XAAF term as a single range with
no Ê symbols. The range is represented with AAF (a�ne arithmetic
form). AAF is implemented as AAF C++ class which is integrated in
XAAF class. A set of AAF terms represents a subset of XAAF.

• XAAF(const XAAF &); – Copy constructor

A.2 Overloaded C++ operators
Computation with XAAFs requires overloading of existing C++ operators.
The following part lists all overloaded operators available in th XAAF class.

• Assignment operator =
In the XAAF library the assignment operator is overloaded for double,
AAF or XAAF as the right operand:
XAAF & operator = (const double);
This operator assigns a double value to an XAAF variable

97

A. The XAAF Library 98

XAAF & operator = (const AAF &);
This operator assigns a range represented with AAF to an XAAF variable.
XAAF & operator = (const XAAF &);
This operator assigns an XAAF value to an XAAF variable.

• Stream extraction operator <<

This operator is used to print an XAAF to the standard output std::cout.
Since the XAAF variable is on the right side of the operator, it is im-
plemented as a friend function:
friend std::ostream & operator « (std::ostream &, const XAAF
&);

• Arithmetic operators
The overloaded arithmetic operators allow performance of standard
mathematical operations with XAAF. In the XAAF library the following
binary operations are implemented:

1. Addition
2. Subtraction
3. Multiplication
4. Division

Addition operation is allowed through the following methods:
XAAF operator + (const XAAF &) const;
This operator performs addition of two XAAF variables. It is imple-
mented as a class method since both operands are XAAF.
XAAF operator + (double) const; – addition with scalar value of
double type. It is implemented as a class method since the left operand
is XAAF.
XAAF operator + (const AAF &) const; – addition with a range
represented with AAF. It is implemented as a class method since the
left operand is XAAF.
All above binary operators have also the corresponding compound as-
signment and hence they are also overloaded. For addition it is the
operator ±. These operators are always implemented as methods since
the left operand is always a variable of XAAF data type.
To allow computation with XAAFs where the left operands are not
XAAF data type, the following non-member functions are also the
part of XAAF library.
XAAF operator + (double, const XAAF &); – addition with a scalar
value of double type where the scalar value is the left operand. Since
the left operand is not of type XAAF, it is implemented as non-member
function.

A. The XAAF Library 99

XAAF operator + (const AAF &, const XAAF &); – addition with
AAF as the left operand. Since the left operand is not of type XAAF, it
is implemented as the non-member function.
The same holds for other binary operators.
In addition, XAAF class provides two unary operators:
XAAF operator - () const; and
XAAF operator ! () const;
The return value of operator - () is equal to the multiplication of XAAF
variable with ≠1. The unary operator ! () is negation of XAAF value
on which the operator is applied. Thus, this operator is applicable only
on XAAF whose value is 0, 1 or both {0, 1}.

• Relational operators {<, Æ, Ø, ==, !=}
In order to allow comparison of two XAAF terms, the standard relational
operators are overloaded. All operators except == and != are over-
loaded to return XAAF that can take three possible values: false, true
or both {false, true}. The equality operator == returns true only
if both operands are equal, otherwise false. The equality operator !=
is the negation of ==.

A.3 Retrieving information about XAAF terms
This section gives a list of methods which allow a user to retrieve basic
information about XAAF terms.

• Method getlength : unsigned getlength(void) const;
This method has no input parameters and returns the number of Ê
symbols contained in the XAAF for which the method is called.

• Method getmean: AAF getmean(void) const;
This method returns a center value of the XAAF for which the method
is called.

• Method getIndexes: unsigned * getIndexes(void) const;
This method returns an array of indexes of all deviation symbols in
the XAAF for which the method is called.

• Method getMax: double getMax(void) const;
This method returns a total maximum of the XAAF for which the
method is called.

• Method getMin: double getMin(void) const;
This method returns a total minimum of the XAAF for which the
method is called.

• Method getFirstIndex: unsigned getFirstIndex(void) const;
This method returns an index of the first deviation symbol in the XAAF
for which the method is called.

A. The XAAF Library 100

• Method getLastIndex: unsigned getLastIndex(void) const;
This method returns an index of the last deviation symbol in the XAAF
for which the method is called.

• Method xaafprint: void xaafprint(void) const;
This method prints the XAAF, for which the method is called, to the
standard output std::cout.

List of Figures

1.1 Block diagram of RF transceiver with possible uncertainties . 2
1.2 The idea of the methodology 3

2.1 Methods for verification of Mixed-Signal Systems 7

3.1 Modeling AMS system by a block diagram [8] 18
3.2 Modeling formalisms in SystemC AMS [93] 19
3.3 Visualization of simulation results [8] 20
3.4 The flow of a�ne circuit simulation 21
3.5 Joint range of dependent quantities x̃ = 20 ≠ 4Á1 + 2Á3 + 3Á4

and ỹ = 10 ≠ 2Á1 + Á2 ≠ Á4 in A�ne Arithmetic (zonotope)
and Interval Arithmetic (box)[88] 22

3.6 Linearization of nonlinear function using: a) Chebyshev b)
Min-range approximation [97] 26

3.7 Block-level representation of gain uncertainty 31
3.8 Block-level representation of parameter uncertainty 32
3.9 Forward diode characteristic; left: Accurate diode model right:

Abstracted model at DC operating point 34
3.10 A system block with constant time delay 35
3.11 Rounding of a fixed-point representation with 2 fractional bits

[101] . 36
3.12 Rounding of a floating-point representation with 2 fractional

bits [101] . 36
3.13 Quantization step and quantization error [101] 37

4.1 Charge pump activity . 39
4.2 IF conditional statement . 46
4.3 IF-ELSE conditional statement 47
4.4 IF-ELSE IF conditional statement 47
4.5 WHILE loop . 48
4.6 Control flow example . 50
4.7 Illustration of merge cases . 52
4.8 Functional model of a water level control system. 53
4.9 Block diagram of a water level control system. 53
4.10 Source code of the control function 54

101

List of Figures 102

4.11 Source codes of the pumps . 55
4.12 Source code of the tank . 56
4.13 Possible water levels in the tank. 56

5.1 Step response of a control system 61
5.2 Magnitude response of an analog low pass filter 63
5.3 Block diagram of a system with PID controller 64
5.4 Calculation of stability margin M

s

. 66
5.5 Possible value of M

s

within the specification range [0.5, 0.75] 66
5.6 The implementation structure of XAA+A 67

6.1 Block diagram of a 3rd Order Delta-Sigma Modulator [61] . . 70
6.2 Implementation of an one-bit quantizer in SystemC AMS . . 71
6.3 Comparison of symbolic simulation with random simulation

for the 1st set of initial conditions 73
6.4 Comparison of symbolic simulation with random simulation

for the 2nd set of initial conditions 74
6.5 Comparison of symbolic simulation with random simulation

for the 3rd set of initial conditions 75
6.6 Comparison of symbolic simulation with DoE for the 1st set

of initial conditions . 75
6.7 Comparison of symbolic simulation with DoE for the 2nd set

of initial conditions . 76
6.8 Comparison of symbolic simulation with DoE for the 3rd set

of initial conditions . 77
6.9 A dual-path charge-pump PLL circuit 80
6.10 VCO implementation with double signal data type 81
6.11 VCO implementation with XAAF signal data type 82
6.12 Implementation of a frequency divider for numeric simulation 83
6.13 Implementation of a frequency divider for symbolic simulation 84
6.14 The structure of PFD circuit 84
6.15 Implementation of a D flip-flop for symbolic simulation 85
6.16 Implementation of an AND circuit for symbolic simulation . . 86
6.17 Run time versus number of uncertainties 89
6.18 PLL output frequency: (red) symbolic simulation, (black) ran-

dom simulation . 90
6.19 PLL output frequency: (red) symbolic simulation, (black) DoE-

based simulation . 90

List of Tables

2.1 Comparison of run-time complexity. 8
2.2 Methods for equivalence checking [22] 10
2.3 Methods for model checking [22] 12
2.4 Methods for reachability analysis [22] 13

3.1 Classification by location . 29
3.2 Classification by modeling approach 30

4.1 Evaluation of relational operators 41
4.2 Implementation of relational operators 43

5.1 XAA+A operators . 59

6.1 Computation time of symbolic approach 72
6.2 Input and initial values in the worst-case at nth simulation

time step . 78
6.3 PLL parameters . 87
6.4 Parameter uncertainties . 87
6.5 Worst-case parameter values 91

103

Abbreviations

AA A�ne Arithmetic
AAF A�ne Arithmetic Form
A/D Analog to Digital
ADT Abstract Data Type
ADC Analog to Digital Converter
AMS Analog Mixed-Signal System
ACTL Analog Computation Tree Logic
AQTS Approximated Quotient Transition System
BMC Bounded Model Checking
BDD Binary Decision Diagram
CTL Computation Tree Logic
DAE Di�erential Algebraic Equation
DoE Design of Experiments
DOE Di�erential Ordinary Equation
DSP Digital Signal Processing
DE Di�erential Equation
D/A Digital to Analog
DFF D Flip-Flop
ELN Electrical Linear Network
FFT Fast Fourier Transform
GSTE Generalized Symbolic Trajectory Evaluation
GLPK GNU Linear Programming Kit
HA Hybrid Automata
HDL Hardware Description Language
IIR Infinite Impulse Response
IA Interval Arithmetic
ICP Interval Constraint Propagation
LHA Linear Hybrid Automata
LHPN Labeled Hybrid Petri Net
LLV M Low Level Virtual Machine
LTL Linear Temporal Logic
LSF Linear Signal Flow
LP Linear Programming

104

List of Tables 105

MOC Model of Computation
MTA Monitoring Timed Automata
MSA Mixed Signal Assertions
MNA Modified Node Analysis
OBDD Ordinary Binary Decision Diagram
ODE Ordinary Di�erential Equation
PSL Property Specification Language
PLL Phase-locked Loop
RF Radio Frequency
SAT Satisfiability Theory
SMT Satisfiability Modulo Theories
SV A SystemVerilog Assertions
STL Signal Temporal Logic
SRE System of Recurrence Equations
SISSI SystemC Intermediate Verification Language Symbolic Simulator
TDF Timed Data Flow
THPN Timed Hybrid Petri Net
V CO Voltage-Controlled Oscillator
XAA Extended A�ne Arithmetic
XAAF Extended A�ne Arithmetic Form
XAA + A Extended A�ne Arithmetic Assertions

Literature

[1] M. Andrade, J. Comba, and J. Stolfi, “A�ne Arithmetic (Extended
Abstract),” Interval ’94, St.Petersburg, Russia, 1994.

[2] R. E. Moore, Interval Analysis. Eaglewood Cli�s, NJ: Prentice-Hall,
1966.

[3] J. L. Comba and J. Stolfi, “A�ne arithmetic and its Applications to
Computer Graphics,” in SIBGRAPI’93, 1993, pp. 9–18.

[4] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen, “Toward E�-
cient Static Analysis of Finite-Preicision E�ects in DSP Applications
via A�ne Arithmetic Modeling,” in Proceedings of the 40th annual
Design Automation Conference (DAC), 2003, pp. 496–501.

[5] C. F. Fang, T. Chen, and R. A. Rutenbar, “Floating-Point Error
Analysis Based On A�ne Arithmetic,” in Proceedings of IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), vol. 2, 2003, pp. 561–564.

[6] F. Fang, T. Chen, and R. A. Rutenbar, “Lightweight Floating-
Point Arithmetic: Case Study of Inverse Discrete Cosine Transform,”
EURASIP Journal Sig. Proc.: Special Issue on Applied Implementa-
tion of DSP and Communication Systems, vol. 9, pp. 879–892, 2002.

[7] A. Lemke, L. Hedrich, and E. Barke, “Analog Circuit Sizing Based
on Formal Methods Using A�ne Arithmetic,” in Proceedings of the
2002 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), 2002, pp. 486–489.

[8] C. Grimm, W. Heupke, and K. Waldschmidt, “Refinement of Mixed-
Signals Systems with A�ne Arithmetic,” in Design, Automation and
Test in Europe. IEEE Comput. Soc, 2004, pp. 372–377. [Online].
Available: http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=
1268875

[9] D. Grabowski, C. Grimm, and E. Barke, “Semi-Symbolic Modeling
and Simulation of Circuits and Systems,” in IEEE International

106

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1268875
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1268875

Literature 107

Symposium on Circuits and Systems (ISCAS). IEEE, 2006, pp.
983–986. [Online]. Available: http://ieeexplore.ieee.org/xpl/freeabs_
all.jsp?arnumber=1692752

[10] C. E. Clark, “Importance sampling in Monte Carlo analysis,” Opera-
tions Research, vol. 9, no. 5, pp. 603–620, 1961.

[11] D. E. Hocevar, M. R. Lightner, and T. N. Trick, “A Study of Variance
Reduction Techniques for Estimating Circuit Yields,” IEEE Trans-
actions on Computer Aided-Design, vol. CAD-2, no. 3, pp. 180–192,
1983.

[12] K. Antreich, H. Gräb, and C. Wieser, “Practical Methods for Worst-
Case and Yield Analysis of Analog Integrated Circuits,” International
Journal of High Speed Electronics and Systems, vol. 4(3), pp. 261–282,
1993.

[13] G. E. Müller-L., “Limit parameters: the general solution of the worst-
case problem for the linearized case,” in IEEE International Sympo-
sium on Circuits and Systems, vol. 3, 1990, pp. 2256–2259.

[14] S. R. Nassif, A. J. Strojwas, and S. W. Director, “A Methodology for
Worst-Case Analysis of Integrated Circuits,” IEEE Transactions on
Computer Aided Design of Integrated Circuits and Systems, vol. 5, pp.
104–113, Nov. 2006.

[15] M. Rafaila, C. Decker, C. Grimm, and G. Pelz, “Simulation-Based Sen-
sitivity and Worst-Case Analyses of Automotive Electronics,” in 13th
IEEE Symposium on Design and Diagnostics of Electronic Circuits
and Systems, 2010, pp. 309–312.

[16] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[17] A. Balivada, Y. Hoskote, and J. A. Abraham, “Verification of transient
response of linear analog systems,” in Proceedings of 13th IEEE VLSI
Test Symposium (VTS’95), 1995, pp. 42–47.

[18] L. Hedrich and E. Barke, “A Formal Approach to Verification of Linear
Analog Circuits with Parameter Tolerances,” in Design, Automation
and Test in Europe 1998 (DATE ’98), 1998, pp. 649–654.

[19] L. Hedrich and E. Barke, “A Formal Approach to Nonlinear Analog
Circuit Verification,” in Proceedings of the 1995 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 1995, pp. 123–127.

[20] S. Steinhorst and L. Hedrich, Formal Methods in System Design, 2010,
vol. 36, no. 2, ch. Advanced Methods for equivalence checking of analog
circuits with strong nonlinearities, pp. 131–147.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1692752
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1692752

Literature 108

[21] A. Salem, “Semi-Formal Verification of VHDL-AMS Descriptions,” in
IEEE International Symposium on Circuits and Systems, 2002, pp.
333–336.

[22] M. H. Zaki, S. Tahar, and G. Bois, “Formal Verification of Analog and
Mixed Signal Designs: Survey and Comparision,” in IEEE Northeast
Workshop on Circuits and Systems, 2006, pp. 281–284.

[23] R. Alur, C. Coucoubetis, T. Henzinger, P.-H. Ho, X. Nicollin, A. Oliv-
ero, J. Sifakis, and S. Yovine, “The algorithmic analysis of hybrid
systems,” Theoretical Computer Science, vol. 138, pp. 3–34, 1995.

[24] R. Alur, C. Courcoubetis, T. Henzinger, and P.-H. Ho., “Hybrid Au-
tomata: An algorithmic approach to the specification and verification
of hybrid systems,” Hybrid Systems, vol. LNCS 736, pp. 209–229, 1993.

[25] R. Alur and D. L. Dill, “A Theory of Timed Automata,” Theoretical
Computer Science, vol. 126, pp. 183–235, 1994.

[26] O. Stursberg, S. Kowalewski, and S. Engell, “On the generation of
timed discrete approximations for continuous systems,” Mathematical
and Computer Models of Dynamical Systems, vol. 6, pp. 51–70, 2000.

[27] O. Maler and G. Batt, Formal Methods in Systems Biology. Springer,
2008, vol. LNCS 5054, ch. Approximating Continuous Systems by
Timed Automata, pp. 77–89.

[28] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, Tools and Algorithms
for the Construction and Analysis of Systems. Springer-Verlag, 1995,
vol. LNCS 1019, ch. A User Guide to HYTECH, pp. 41–71.

[29] T. A. Henzinger, “The Theory of Hybrid Automata,” in Proceedings of
11th Annual IEEE Symposium on Logic in Computer Science, 1996,
pp. 278–292.

[30] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Algorithmic Analy-
sis of Nonlinear Hybrid Systems,” IEEE Transactions on Automatic
Control, vol. 43, pp. 540–554, 1998.

[31] W. Hartong, L. Hedrich, and E. Barke, “On discrete modelling and
model checking of nonlinear analog systems,” in Proceedings of the
14th International Conference on Computer-Aided Verification (CAV
’02), 2002, pp. 401–413.

[32] W. Hartong, R. Klausen, and L. Hedrich, Advanced Formal Verifi-
cation. Kluwer Academic Publishers, 2004, ch. Formal Verification
for Nonlinear Analog Systems: Approaches to Model and Equivalence
Checking, pp. 205–245.

Literature 109

[33] T. R. Dastidar and P. P. Chakrabarti, “A verification system for tran-
sient response of analog circuits using model checking,” in 18th Inter-
national Conference on VLSI Design, 2005, pp. 195–200.

[34] D. Grabowski, D. Platte, L. Hedrich, and E. Barke, “Time Constrained
Verification of Analog Circuits using Model-Checking Algorithms,” in
Proceedings of the First Workshop on Formal Verification of Analog
Circuits (FAC 2005), 2005.

[35] K. Chatterjee, P. Dasgupta, and P. Chakrabarti, “A Branching Time
Temporal Framework for Quantitative Reasoning,” Journal of Auto-
mated Reasoning, vol. 30, pp. 205–232, 2003.

[36] R. Alur, C. Courcoubetis, and D. Dill, “Model-Checking for Real-Time
systems,” in Proceedings of the 5th Annual IEEE Symposium on Logic
in Computer Science, 1990, pp. 414–425.

[37] S. Little, D. Walter, N. Seegmiller, C. Myers, and T. Yoneda, “Verifica-
tion of Analog and Mixed-Signal Circuits Using Timed Hybrid Petri
Nets,” in Proceedings of 2nd Automated Technology for Verification
and Analysis (ATVA 2004), vol. LNCS 3299, 2004, pp. 426–440.

[38] M. Freibothe, J. Schönherr, and B. Straube, “Formal Verification
of the Quasi-Static Behavior of Mixed-Signal Circuits by Property
Checking,” in Proceedings of the First Workshop on Formal Verifica-
tion of Analog Circuits (FAC 2005), 2005.

[39] S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda, “Veri-
fication of Analog/Mixed-Signal Circuits Using Labeled Hybrid Petri
Nets,” in International Conference on Computer-Aided Design (IC-
CAD 2006), 2006, pp. 275–282.

[40] S. Little, D. Walter, K. Jones, and C. Myers, “Analog/Mixed-
Signal Circuit Verification Using Models Generated From Simula-
tion Traces,” in Automated Technology for Verification and Analysis
(ATVA 2007), 2007, pp. 114–128.

[41] S. Little, D. Walter, K. Jones, C. Myers, and A. Sen, “Analog/Mixed-
Signal Circuit Verification Using Models Generated From Simulation
Traces,” International Journal of Foundations of Computer Science,
vol. 21, no. 2, pp. 191–210, 2010.

[42] D. Walter, S. Little, N. Seegmiller, C. J. Myers, and T. Yoneda, “Sym-
bolic Model Checking of Analog/Mixed-Signal Circuits,” in Asia and
South Pacific Design Automation Conference (ASPDAC), 2007, pp.
316–323.

Literature 110

[43] D. Walter, S. Little, C. Myers, N. Seegmiller, and T. Yoneda, “Ver-
ification of Analog/Mixed-Signal Circuits Using Symbolic Methods,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 27, no. 12, pp. 2223–2235, December 2008.

[44] S. Little, D. Walter, C. Myers, R. Thacker, S. Batchu, and T. Yoneda,
“Verification of Analog/Mixed-Signal Circuits Using Labeled Hybrid
Petri Nets,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 30, no. 4, pp. 617–630, 2011.

[45] R. Kurshan and K. L. McMillan, “Analysis of Digital Circuits Through
Symbolic Reduction,” IEEE Transactions on Computer-Aided Design,
vol. 10, no. 11, pp. 1356–1371, 1991.

[46] M. R. Greenstreet and I. Mitchell, Hybrid Systems: Computation and
Control (HSCC). Springer, 1999, vol. 1569, ch. Reachability Analysis
Using Polygonal Projections, pp. 103–116.

[47] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate Reach-
ability Analysis of Piecewise-Linear Dynamical Systems,” in Third In-
ternational Workshop on Hybrid Systems: Computation and Control
(HSCC’00), vol. LNCS 1790, 2000, pp. 20–31.

[48] E. Asarin, T. Dang, and O. Maler, “The d/dt Tool for Verification of
Hybrid Systems,” Computer-Aided Verification, vol. LNCS 2404, pp.
365–370, 2002.

[49] A. Chutinan and B. H. Krogh, “Approximating quotient transition
systems for hybrid systems,” in Proceedings of the American Control
Conference, 2000, pp. 1689–1693.

[50] A. Chutinan and B. H. Krogh, “Verification of infinite-state dynamic
systems using approximate quotient transition systems,” in IEEE
Transactions on Automatic Control, vol. 46, no. 9, 2001, pp. 1401–
1410.

[51] A. Chutinan and B. H. Krogh, “Computational Techniques for Hy-
brid System Verification,” IEEE Transactions on Automatic Control,
vol. 48, no. 1, pp. 64–75, 2003.

[52] B. I. Silva and B. H. Krogh, “Formal Verification of Hybrid Systems
Using CheckMate: A Case Study,” in Proceedings of the 2000 Ameri-
can Control Conference, vol. 3, 2000, pp. 1679–1683.

[53] T. Dang, A. Donzè, and O. Maler, Formal Methods in Computer Aided
Design. Springer Berlin Heidelberg, 2004, vol. LNCS 3312, ch. Ver-
ification of Analog and Mixed-Signal Circuits Using Hybrid System
Techniques, pp. 21–36.

Literature 111

[54] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards Formal Veri-
fication of Analog Designs,” in IEEE/ACM International Conference
on Computer Aided Design, 2004, pp. 210–217.

[55] O. Grunberg and D. E. Long, “Model Checking and Modular Verifica-
tion,” in ACM Transactions on Programming Languages and Systems,
vol. 16, no. 3, 1994, pp. 843–871.

[56] M. Altho�, A. Rajhans, B. H. Krogh, S. Yaldiz, X. Li, and L. Pileggi,
“Formal Verification of Phase-Locked Loops Using Reachability Anal-
ysis and Continuization,” in IEEE/ACM International Conference on
Computer Aided Design (ICCAD), November 2011, pp. 659–666.

[57] H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-Based Design
2nd Edition. Kluwer Academic Publishers, 2004.

[58] D. A. S. Committee, “IEEE Standard for Property Specification Lan-
guage (PSL),” Version 1.1 Standard IEEE 1850, Tech. Rep., 2005.

[59] “IEEE Standard for System Verilog Unified Hardware Design, Speci-
fication and Verification Language Standard IEEE 1800,” Design Au-
tomation Standards Committee, Tech. Rep., Nov. 2005.

[60] O. Maler and D. Nickovic, “Monitoring temporal properties of con-
tinuous signals,” in FORMATS/FTRTFT, vol. LNCS 3253, 2004, pp.
152–166.

[61] G. A. Sammane, M. H. Zaki, Z. J. Dong, and S. Tahar, “Towards
Assertion Based Verification of Analog and Mixed Signal Designs
Using PSL,” in Forum on Specification and Design Languages 2007
(FDL’07), 2007, pp. 293–298.

[62] D. Nickovic and O. Maler, “AMT: A Property-Based Monitoring Tool
for Analog Systems,” in Proceedings of 5th International Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS
2007), vol. LNCS 4763, 2007, pp. 304–319.

[63] R. Mukhopadhyay, S. K. Panda, P. Dasgupta, and J. Gough, “In-
strumenting AMS assertion verification on commercial platforms,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 14, no. 2, p. Article No. 21, March 2009.

[64] A. Jesser, L. Hedrich, S. Lämmermann, R. Weiss, J. Ruf, T. Kropf,
W. Rosenstiel, A. Pacholik, and W. Fengler, “Analog Simulation Meets
Digital Verification- A Formal Assertion Approach for Mixed-Signal
Verification,” in Proceedings of the 14th Workshop on Synthesis and
System Integration of Mixed Information Technologies (SASIMI’07),
Oktober 2007, pp. 507–514.

Literature 112

[65] Z. Dong, M. H. Zaki, G. A. Sammane, S. Tahar, and G. Bois, “Run-
time verification using the VHDL-AMS Simulation Environment,” in
Proceedings of IEEE Northeast Workshop on Circuits and Systems,
2007, pp. 1513–1516.

[66] L. Tan, J. Kim, and I. Lee, “Testing and Monitoring Model-based Gen-
erated Program,” Electronic Notes in Theoretical Computer Science,
vol. 89, no. 2, pp. 128–148, 2003.

[67] Z. Dong, M. H. Zaki, G. A. Sammane, S. Tahar, and G. Bois, “Check-
ing Properties of PLL Designs using Run-time Verification,” in Pro-
ceedings of Internatonal Conference on Microelectronics (ICM’07),
Dec. 2007, pp. 125–128.

[68] S. Lämmermann, A. Jesser, M. Rathgeber, J. Ruf, L. Hedrich,
T. Kropf, and W. Rosenstiel, “Checking Heterogeneous Signal Charac-
teristics Applying Assertion-Based Verification,” in Frontiers in Ana-
log Circuit Verification-FAC, 2009.

[69] S. Lämmermann, J. Ruf, T. Kropf, W. Rosenstiel, A. Viehl, A. Jesser,
and L. Hedrich, “Towards assertion-based verification of heterogeneu-
ous system designs,” in Proccedings of Design, Automation and Test
in Europe 2010 (DATE ’10), 2010, pp. 1171–1176.

[70] J. C. King, “Symbolic execution and program testing,” Communi-
cations of the ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976. [Online].
Available: http://doi.acm.org/10.1145/360248.360252

[71] S. Anand, P. Godefroid, and N. Tillmann, “Demand-driven composi-
tional symbolic execution,” in Tools and Algorithms for the Construc-
tion and Analysis of Systems, C. Ramakrishnan and J. Rehof, Eds.
Springer Berlin Heidelberg, 2008, vol. LNCS 4963, pp. 367–381.

[72] C. Wang, S. Chaudhuri, A. Gupta, and Y. Yang, “Symbolic
pruning of concurrent program executions,” in Proceedings of the
7th Joint Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ser. ESEC/FSE ’09. New York, NY, USA: ACM, 2009,
pp. 23–32. [Online]. Available: http://doi.acm.org/10.1145/1595696.
1595702

[73] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Proceedings of the 18th International Static Analysis
Symposium (SAS’11), 2011, pp. 95–111.

[74] Y. P. Khoo, B.-Y. E. Chang, and J. S. Foster, “Mixing type
checking and symbolic execution,” ACM SIGPLAN Notices - PLDI

http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/1595696.1595702
http://doi.acm.org/10.1145/1595696.1595702

Literature 113

’10, vol. 45, no. 6, pp. 436–447, Jun. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1809028.1806645

[75] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855756

[76] J. Jeon, K. K. Micinski, and J. S. Foster, “SymDroid: Symbolic Exe-
cution for Dalvik Bytecode,” Department of Computer Science, Uni-
versity of Maryland, College Park, Tech. Rep. CS-TR-5022, Jul 2012.

[77] R. E. Bryant, “Can a Simulator Verify a Circuit?” in Formal Aspects
of VLSI Design. Elsevier, 1986, pp. 125–126.

[78] R. E. Bryant and C.-J. H. Seger, “Formal Verification of Digital Cir-
cuits Using Symbolic Ternary System Models,” in DIMAC Workshop
on Computer-Aided Verification, 1990.

[79] C.-J. H. Seger and R. E. Bryant, Formal Methods in System Design,
1995, vol. 6, no. 2, ch. Formal Verification by Symbolic Evaluation of
Partially-Ordered Trajectories, pp. 147–190.

[80] A. Jain, “Formal hardware verification by symbolic trajectory evalua-
tion,” Ph.D. dissertation, Carnegie-Mellon University, July 1997.

[81] C.-T. Chou, Computer-Aided Verification, 1999, vol. LNCS 1633, ch.
The Mathematical Foundation of Symbolis Trajectory Evaluation, pp.
196–207.

[82] J. Yang and C.-J. H. Seger, “Introduction to generalized symbolic tra-
jectory evaluation,” in Proceedings of 2001 International Conference
on Computer Design (ICCD 2001), 2001, pp. 360–365.

[83] C. Wilson, D. L. Dill, and R. E. Bryant, “Symbolic Simulation with
Approximate Values,” in Proceedings of 3rd International Conference
on Formal Methods in Computer-Aided Design (FMCAD 2000), vol.
LNCS 1954, 2000, pp. 470–485.

[84] H. Le, D. Grosse, V. Herdt, and R. Drechsler, “Verifying SystemC us-
ing an Intermediate Verification Language and Symbolic Simulation,”
in The 50th Annual Design Automation Conference 2013 (DAC ’13),
May 2013, pp. 1–6.

[85] M. H. Zaki, G. A. Sammane, S. Tahar, and G. Bois, “Combining
Symbolic Simulation and Interval Arithmetic for the Verification of

http://doi.acm.org/10.1145/1809028.1806645
http://dl.acm.org/citation.cfm?id=1855741.1855756

Literature 114

AMS Designs,” in 7th International Conference on Formal Methods in
Computer-Aided Design (FMCAD), 2007, pp. 207–215.

[86] L. Yin, Y. Deng, and P. Li, “Verifying Dynamic Properties of Non-
linear Mixed-Signal Circuits via E�cient SMT-Based Techniques,” in
International Conference on Computer-Aided Design (ICCAD), 2012,
pp. 436–442.

[87] W. Heupke, C. Grimm, and K. Waldschmidt, “Semi-Symbolic
Simulation of Nonlinear Systems,” in Forum on Specification and
Design Languages (FDL). ECSI, 2005. [Online]. Available: http://i-
tecs.fr/ecsi/libraryV1/uploads/1-AMS17_paper.pdf

[88] J. Stolfi and L. de Figueiredo, “An Introduction to A�ne Arithmetic,”
TEMA Trend. Mat. Apl. Comput., vol. 4, pp. 297–312, 2003.

[89] D. Grabowski and C. Grimm, “Ein Verfahren zur e�zienten Anal-
yse von Schaltungen mit Parametervarianzen Symbolische Model-
lierung von Unsicherheiten,” in Methoden und Beschreibungssprachen
zur Modellierung und Verifikation von Schaltungen und Systemen,
2006.

[90] L. H. D. Figueiredo and J. Stolfi, “A�ne Arithmetic: Concepts and
Applications,” Numerical Algorithms, vol. 37, no. 1-4, pp. 147–158,
2004.

[91] M. Barnasconi and C. Grimm, Eds., SystemC AMS extensions User’s
Guide. OSCI, 2010. [Online]. Available: www.systemc.org

[92] SystemC 2.0.1 Language Reference Manual, OSI, 2003.

[93] M. Barnasconi, K. Einwich, C. Grimm, and A. Vachoux, Eds.,
Standard SystemC AMS Language Reference Manual. OSCI, 2010.
[Online]. Available: www.systemc.org

[94] D. Grabowski, M. Olbrich, C. Grimm, and E. Barke, “Range Arith-
metics to Speed up Reachability Analysis of Analog Systems,” in Fo-
rum on Specification, Verification and Design Languages 2007, 2007.

[95] D. Grabowski, M. Olbrich, and E. Barke, “Analog Circuit Simulation
Using Range Arithmetics,” in Proceedings of the 2008 Asia and South
Pacific Design Automation Conference (ASP-DAC ’08). Seoul, Ko-
rea: IEEE Computer Society Press, 2008, pp. 762–767.

[96] M. S. Rump and M. Kashiwagi, “Implementation and improvements
of a�ne arithmetic,” Nonlinear Theory and Its Applications, IEICE,
vol. 6, no. 3, pp. 341–359, 2015.

http://i-tecs.fr/ecsi/libraryV1/uploads/1-AMS17_paper.pdf
http://i-tecs.fr/ecsi/libraryV1/uploads/1-AMS17_paper.pdf
www.systemc.org
www.systemc.org

Literature 115

[97] M. Rathmair, F. Schupfer, C. Radojicic, and C. Grimm, “Extended
Framework for System Simulation with A�ne Arithmetic,” in Forum
on Specification and Design Languages. IEEE, 2012, pp. 168–175.
[Online]. Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=6337004&contentType=Conference+Publications&
refinements=4294557734&queryText=FDL+2012

[98] W. Heupke, C. Grimm, and K. Waldschmidt, “Modeling Uncertainty
in Nonlinear Analog Systems with A�ne Arithmetic,” in Applications
of Specification and Design Languages for SoCs, A. Vachoux, Ed.
Springer Netherlands, 2006, pp. 155–169. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4020-4998-9_9

[99] W. Krämer, “Generalized Intervals and the Dependency Problem,”
Bergische Universität Wuppertal, Tech. Rep., 2006.

[100] W. Walker, P. Harremoës, J. Rotmans, J. van der Sluijs, M. van Asseit,
P. Janssen, and M. Krayer von Krauss, “Defining Uncertainty: A Con-
ceptual Basis for Uncertainty Management in Model-Based Decision
Support,” Integrated Assessment, vol. 4, no. 1, pp. 5–17, 2003.

[101] B. Widrow and I. Kollár, Quantization Noise: Roundo� Error in Dig-
ital Computation, Signal Processing, Control and Communications.
Cambridge University Press, 2008.

[102] GNU Linear Programming Kit, December 2010.

[103] K. J. Åström and T. Hägglund, PID Controllers: Theory, Design and
Tuning (2nd Edition). Instrument Society of America, 1995.

[104] G. A. Sammane, M. H. Zaki, S. Tahar, and G. Bois, “Constraint-Based
Verification of Delta-Sigma Modulators using Interval Analysis,” in
50th Midwest Symposium on Circuits and Systems, 2007, pp. 726–729.

[105] I. Seghaier, H. Aridhi, M. H. Zaki, and S. Tahar, “A Qualitative Simu-
lation Approach for Verifying PLL Locking Property,” in ACM Great
Lakes Symposium on VLSI, 2014, pp. 317–322.

[106] The Mosek Optimization Toolbox for Matlab Version 3.0 User’s guide
and Reference Manual, November 2003.

[107] Tight integration of satisfiability and constraint solving. [Online].
Available: http://isat.gforge.avacs.org/

[108] E. A. Lee, “Cyber physical systems: Design challenges,” in Inter-
national Symposium on Object/Component/Service - Oriented Real-
Time Distributed Computing (ISORC),, May 2008.

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6337004&contentType=Conference+Publications&refinements=4294557734&queryText=FDL+2012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6337004&contentType=Conference+Publications&refinements=4294557734&queryText=FDL+2012
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6337004&contentType=Conference+Publications&refinements=4294557734&queryText=FDL+2012
http://dx.doi.org/10.1007/978-1-4020-4998-9_9
http://isat.gforge.avacs.org/

Curriculum Vitae

Name: Čarna Radojičić

Nationality: Serbia

EMail: radojicic@cs.uni-kl.de

Education:

2000-2004: High PTT School, Belgrade

2004-2010: Master of Science, University of Novi Sad,
 Faculty of Technical Sciences, Serbia

2012.-exp. 2016: PhD in Computer Science,
 Design of Cyber-Physical Systems,
 University of Kaiserslautern

Employment and studies abroad:

Sept.2009 - March 2010: Guest Student at the Institute of Computer
 Technology, Vienna University of Technology

Okt. 2010 - Nov. 2012: Project assistant at the Institute of Computer
 Technology, Vienna Univ. of Technology

2012: Research assistant at Design of Cyber-Physical Systems,
 University of Kaiserslautern

	Introduction
	Motivation
	Goals and scope of the work
	Hypotheses
	Contributions
	Outline

	State of the art
	Simulation-based approaches
	Formal methods
	Equivalence checking
	Model checking
	Reachability analysis
	Run-time verification
	Symbolic simulation

	Symbolic Simulation based on Affine Arithmetic (AA)
	Symbolic simulation
	System-level simulation using SystemC (AMS)
	Circuit-level simulation

	Affine Arithmetic
	Computation with AA forms
	Approximation schemes of nonlinear operations

	Implementation of cleanup method
	Hansen's form of Affine Arithmetic
	Modeling parameter uncertainties with Affine Arithmetic
	Static uncertainties
	Dynamic uncertainties

	Extended Affine Arithmetic-XAA
	Definition and computation
	Modeling uncertainties with Extended Affine Arithmetic
	Implementation of XAAF approach
	Code Modification with XAAF
	Conditional statements
	Iteration statements

	Scalability of symbolic simulation with XAAF
	Illustration examples
	Example 1 - Control flow example
	Example 2 - Water level control system

	Extended Affine Arithmetic Assertions (XAA + A)
	Description
	Specification of properties with XAA+As
	Illustration example
	Implementation

	Evaluation
	3rd order Delta-Sigma Modulator
	Modulator description
	Results of Symbolic Simulation
	Comparison with Monte-Carlo simulation
	Comparison with Design of Experiments

	Charge-pump Phased-locked loop Circuit
	PLL description
	Results of symbolic simulation
	Scalability of symbolic simulation
	Comparison with numeric simulation

	Discussion

	Conclusion and Future Work
	Conclusion
	Evaluation of Hypothesis
	Future work

	The XAAF Library
	Instantiation of XAAF terms
	Overloaded C++ operators
	Retrieving information about XAAF terms

	List of Figures
	List of Tables
	Abbreviations
	Literature

