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Random matrix theory is now a big subject with applications in many discip-
lines of science, engineering and finance. This article is a survey specifically
oriented towards the needs and interests of a numerical analyst. This sur-
vey includes some original material not found anywhere else. We include the
important mathematics which is a very modern development, as well as the
computational software that is transforming the theory into useful practice.
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9 Painlevé equations 33
10 Eigenvalues of a billion by billion matrix 43
11 Stochastic operators 46
12 Free probability and infinite random matrices 51
13 A random matrix calculator 53
14 Non-Hermitian and structured random matrices 56
15 A segue 58
References 59



2 A. Edelman and N. R. Rao

1. Introduction

Texts on ‘numerical methods’ teach the computation of solutions to non-
random equations. Typically we see integration, differential equations, and
linear algebra among the topics. We find ‘random’ there too, but only in
the context of random number generation.

The modern world has taught us to study stochastic problems. Already
many articles exist on stochastic differential equations. This article cov-
ers topics in stochastic linear algebra (and operators). Here, the equations
themselves are random. Like the physics student who has mastered the
lectures and now must face the sources of randomness in the laboratory, nu-
merical analysis is heading in this direction as well. The irony to newcomers
is that often randomness imposes more structure, not less.

2. Linear systems

The limitations on solving large systems of equations are computer memory
and speed. The speed of computation, however, is not only measured by
clocking hardware; it also depends on numerical stability, and for iterative
methods, on convergence rates. At this time, the fastest supercomputer
performs Gaussian elimination, i.e., solves Ax = b on an n by n matrix A
for n ≈ 106. We can easily imagine n ≈ 109 on the horizon. The standard
benchmark HPL (‘high-performance LINPACK’) chooses A to be a random
matrix with elements from a uniform distribution on [−1/2, 1/2]. For such
large n, a question to ask would be whether a double precision computation
would give a single precision answer.

Turning back the clock, in 1946 von Neumann and his associates saw
n = 100 as the large number on the horizon. How do we pick a good test
matrix A? This is where von Neumann and his colleagues first introduced
the assumption of random test matrices distributed with elements from
independent normals. Any analysis of this problem necessarily begins with
an attempt to characterize the condition number κ = σ1/σn of the n × n
matrix A. They give various ‘rules of thumb’ for κ when the matrices are so
distributed. Sometimes these estimates are referred to as an expectation and
sometimes as a bound that holds with high, though unspecified, probability.
It is interesting to compare their ‘rules of thumb’ with what we now know
about the condition numbers of such random matrices as n → ∞ from
Edelman (1989).

Quote. For a ‘random matrix’ of order n the expectation value has been
shown to be about n.
(von Neumann 1963, p. 14)
Fact. E[κ] = ∞.
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Quote. . . . we choose two different values of κ, namely n and
√

10n.
(von Neumann 1963, p. 477)
Fact. Pr(κ < n) ≈ 0.02, Pr(κ <

√
10 n) ≈ 0.44.

Quote. With probability ≈ 1, κ < 10n
(von Neumann and Goldstine 1947, p. 555)
Fact. Pr(κ < 10 n) ≈ 0.80.

Results on the condition number have been extended recently by Edelman
and Sutton (2004), and Azäıs and Wschebor (2004). Related results include
the work of Viswanath and Trefethen (1998).

Analysis of Gaussian elimination of random matrices1 began with the
work of Trefethen and Schreiber (1990), and later Yeung and Chan (1997).
Of specific interest is the behaviour of the ‘growth factor’ which influences
numerical accuracy. More recently, Sankar, Spielman and Teng (2004) ana-
lysed the performance of Gaussian elimination using smoothed analysis,
whose basic premise is that bad problems tend to be more like isolated
spikes. Additional details can be found in Sankar (2003).

Algorithmic developers in need of guinea pigs nearly always take ran-
dom matrices with standard normal entries, or perhaps close cousins, such
as the uniform distribution of [−1, 1]. The choice is highly reasonable:
these matrices are generated effortlessly and might very well catch pro-
gramming errors. But are they really ‘test matrices’ in the sense that they
can catch every type of error? It really depends on what is being tested;
random matrices are not as random as the name might lead one to believe.
Our suggestion to library testers is to include a carefully chosen range of
matrices rather than rely on randomness. When using random matrices as
test matrices, it can be of value to know the theory.

We want to convey is that random matrices are very special matrices.
It is a mistake to link psychologically a random matrix with the intuitive
notion of a ‘typical’ matrix or the vague concept of ‘any old matrix’. In
fact, the larger the size of the matrix the more predictable it becomes. This
is partly because of the central limit theorem.

3. Matrix calculus

We have checked a few references on ‘matrix calculus’, yet somehow none
were quite right for a numerical audience. Our motivation is twofold.
Firstly, we believe that condition number information has not tradition-
ally been widely available for matrix-to-matrix functions. Secondly, matrix

1 On a personal note, the first author started down the path of random matrices because
his adviser was studying Gaussian elimination on random matrices.
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calculus allows us to compute Jacobians of familiar matrix functions and
transformations.

Let x ∈ R
n and y = f(x) ∈ R

n be a differentiable vector-valued function
of x. In this case, it is well known that the Jacobian matrix

J =




∂f1

∂x1
· · · ∂f1

∂xn
...

...
∂fn

∂x1
· · · ∂fn

∂xn


 =

(
∂fi

∂xj

)
i,j=1,2,...,n

(3.1)

evaluated at a point x approximates f(x) by a linear function. Intuitively
f(x + δx) ≈ f(x) + Jδx, i.e., J is the matrix that allows us to invoke first-
order perturbation theory. The function f may be viewed as performing a
change of variables. Often the matrix J is denoted df and ‘Jacobian’ refers
to det J . In the complex case, the Jacobian matrix is real 2n × 2n in the
natural way.

3.1. Condition numbers of matrix transformations

A matrix function/transformation (with no breakdown) can be viewed as a
local linear change of variables. Let f be a (differentiable) function defined
in the neighbourhood of a (square or rectangular) matrix A.

We think of functions such as f(A) = A3 or f(A) = lu(A), the LU
factorization, or even the SVD or QR factorizations. The linearization of f
is df which (like Kronecker products) is a linear operator on matrix space.
For general A, df is n2 × n2, but it is rarely helpful to write df explicitly
in this form.

We recall the notion of condition number which we put into the context
of matrix functions and factorizations. The condition number for A → f(A)
is defined as

κ =
relative change in f(A)

relative change in A

= lim
ε→0

sup
‖E‖=ε

‖f(A + E) − f(A)‖/‖f(A)‖
‖E‖/‖A‖

= ‖df‖
( ‖A‖
‖f(A)‖

)
.

Figure 3.1 illustrates the condition number to show that the key factor
in the two-norm κ is related to the largest axis of an ellipsoid in the matrix
factorization space, i.e., the largest singular value of df . The product of
the semi-axis lengths is related to the volume of the ellipsoid and is the
Jacobian determinant of f .
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In summary

κ = σmax(df)
‖A‖

‖f(A)‖ , (3.2)

J =
∏

i

σi(df) = det(df). (3.3)

Example 1. Let f(A) = A2 so that df(E) = AE + EA. This can be
rewritten in terms of the Kronecker (or tensor) product operator ⊗ as df =
I ⊗ A + AT ⊗ I. Therefore

κ = σmax(I ⊗ A + AT ⊗ I)
‖A‖
‖A2‖ .

Recall that A ⊗ B : X → BXAT is the linear map from X to BXAT .
The Kronecker product has many wonderful properties, as described in the
article by Van Loan (2000).

Example 2. Let f(A) = A−1, so that df(E) = −A−1EA−1, or in terms
of the Kronecker product operator as df = −A−T ⊗ A−1.

This implies that the singular values of df are (σi(A)σj(A))−1, for 1 ≤
i, j ≤ n.

The largest singular value σmax(df) is thus equal to 1/σn(A)2 = ‖A−1‖2

so that κ as defined in (3.2) is simply the familiar matrix condition number

κ = ‖A‖ ‖A−1‖ =
σ1

σn
,

while in contrast, the Jacobian given by (3.3) is

Jacobian =
∏
i,j

1
σi(A)σj(A)

= (det A)−2n.

ε

A

df

f(A)

ε‖df‖

κ = ‖df‖ ‖A‖
‖f(A)‖ = ‘condition number’Matrix

space
Matrix
factorization
space

Figure 3.1. The condition number of a matrix
factorization is related to the largest axis of an
ellipsoid in matrix factorization space.
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Without dwelling on the point, κ has a worst case built into the ‘lim sup’,
while J contains information about an average behaviour under perturba-
tions.

3.2. Matrix Jacobians numerically computed with finite differences

Consider the symmetric eigenvalue decomposition A = QΛQ′, where A is
an n× n symmetric matrix. The Jacobian for this factorization is the term∏

i<j |λi − λj | in

(dA) =
∏
i<j

|λi − λj | (dΛ) (Q′ dQ). (3.4)

This equation is derived from the first-order perturbation dA in A due to
perturbations dΛ and Q′ dQ in the eigenvalues Λ and the eigenvectors Q.
Note that since Q is orthogonal, Q′Q = I so that Q′ dQ+ dQ′Q = 0 or that
Q′ dQ is antisymmetric with zeros along the diagonal. Restricting Q′ dQ to
be antisymmetric ensures that A + dA remains symmetric.

Numerically, we compute the perturbations in Λ and Q due to perturba-
tions in A. As numerical analysts we always think of A as the input and Q
and Λ as output, so it is natural to ask for the answer in this direction. As-
suming the eigenvalue decomposition is unique after fixing the phase of the
columns of Q, the first-order perturbation in Λ and Q due to perturbations
in A is given by

(dΛ)(Q′ dQ)
(dA)

=
1∏

i<j |λi − λj | =
1

∆(Λ)
, (3.5)

where ∆(λ) =
∏

i<j |λi − λj | is the absolute value of the Vandermonde
determinant.

We can create an n× n symmetric matrix A by, for example, creating an
n × n matrix X with independent Gaussian entries and then symmetrizing
it as A = (X + X ′)/n. This can be conveniently done in matlab as

n=15;
X=randn(n);
A=(X+X’)/n;

The fact that X is a random matrix is incidental, i.e., we do not exploit the
fact that it is a random matrix.

We can compute the decomposition A = QΛQ′ in matlab as

[Q,L]=eig(A);
L=diag(L);

Since A is an n×n symmetric matrix, the Jacobian matrix as in (3.1) resides
in an (n(n + 1)/2)2-dimensional space:

JacMatrix=zeros(n*(n+1)/2);
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Table 3.1. Jacobians computed numerically with finite differences.

n=15; % Size of the matrix

X=randn(n);

A=(X+X’)/n; % Generate a symmetric matrix

[Q,L]=eig(A); % Compute its eigenvalues/eigenvectors

L=diag(L);

JacMatrix=zeros(n*(n+1)/2); % Initialize Jacobian matrix

epsilon=1e-7; idx=1;

mask=triu(ones(n),1); mask=logical(mask(:)); % Upper triangular mask

for i=1:n

for j=i:n

%%% Perturbation Matrix

Eij=zeros(n); % Initialize perturbation

Eij(i,j)=1; Eij(j,i) = 1; % Perturbation matrix

Ap=A+epsilon*Eij; % Perturbed matrix

%%% Eigenvalues and Eigenvectors

[Qp,Lp] = eig(Ap);

dL= (diag(Lp)-L)/epsilon; % Eigenvalue perturbation

QdQ = Q’*(Qp-Q)/epsilon; % Eigenvector perturbation

%%% The Jacobian Matrix

JacMatrix(1:n,idx)=dL; % Eigenvalue part of Jacobian

JacMatrix((n+1):end,idx) = QdQ(mask); % Eigenvector part of Jacobian

idx=idx+1; % Increment column counter

end

end

Let ε be any small positive number, such as

epsilon=1e-7;

Generate the symmetric perturbation matrix Eij for 1 ≤ i ≤ j < n whose
entries are equal to zero except in the (i, j) and (j, i) entries, where they are
equal to 1. Construct the Jacobian matrix by computing the eigenvalues
and eigenvectors of the perturbed matrix A + ε Eij , and the quantities dΛ
and Q′ dQ. This can be done in matlab using the code in Table 3.1. We
note that this simple forward difference scheme can be replaced by a central
difference scheme for added accuracy.

We can compare the numerical answer obtained by taking the determinant
of the Jacobian matrix with the theoretical answer expressed in terms of the
Vandermonde determinant as in (3.5). For a particular choice of A we can
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run the matlab code in Table 3.1 to get the answer:

format long
disp([abs(det(JacMatrix)) 1/abs(det(vander(L)))]);
>> ans = 1.0e+49 *

3.32069877679394 3.32069639128242

This is, in short, the ‘proof by matlab’ to show how Jacobians can be
computed numerically with finite differences.

3.3. Jacobians of matrix factorizations

The computations of matrix Jacobians can be significantly more complicated
than the scalar derivatives familiar in elementary calculus. Many Jacobi-
ans have been rediscovered in various communities. We recommend Olkin
(1953, 2002), and the books by Muirhead (1982) and Mathai (1997). When
computing Jacobians of matrix transformations or factorizations, it is im-
portant to identify the dimension of the underlying space occupied by the
matrix perturbations.

Wedge products and the accompanying notation are used to facilitate
the computation of matrix Jacobians. The notation also comes in handy
for expressing the concept of volume on curved surfaces as in differential
geometry. Mathai (1997) and Muirhead (1982) are excellent references for
readers who truly wish to understand wedge products as a tool for com-
puting the Jacobians of commonly used matrix factorizations such as those
listed below.

While we expect our readers to be familiar with real and complex matrices,
it is reasonable to consider quaternion matrices as well. The parameter β
has been traditionally used to count the dimension of the underlying algebra
as in Table 3.2. In other branches of mathematics, the parameter α = 2/β
is used.

We provide, without proof, the formulas containing the Jacobians of famil-
iar matrix factorizations. We encourage readers to notice that the vanishing

Table 3.2. Notation used to denote
whether the elements of a matrix are
real, complex or quaternion (β = 2/α).

β α Division algebra

1 2 real (R)
2 1 complex (C)
4 1/2 quaternion (H)
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of the Jacobian is connected to difficult numerical problems. The parameter
count is only valid where the Jacobian does not vanish.

QR (Gram–Schmidt) decomposition (A = QR). Valid for all three
cases (β = 1, 2, 4). Q is orthogonal/unitary/symplectic, R is upper triangu-
lar. A and Q are m× n (assume m ≥ n), R is n× n. The parameter count
for the orthogonal matrix is the dimension of the Stiefel manifold Vm,n.

Parameter count:

βmn = βmn − β
n(n − 1)

2
− n + β

n(n − 1)
2

+ n.

Jacobian:

(dA) =
n∏

i=1

r
β(m−i+1)−1
ii (dR) (Q′ dQ). (3.6)

Notation: (dA), (dR) are volumes of little boxes around A and R, while
(Q′ dQ) denotes the volume of a little box around the strictly upper trian-
gular part of the antisymmetric matrix Q′ dQ (see a numerical illustration
in Section 3.2).

LU (Gaussian elimination) decomposition (A = LU). Valid for all
three cases (β = 1, 2, 4). All matrices are n × n, L and U are lower and
upper triangular respectively, lii = 1 for all 1≤ i≤ n. Assume there is no
pivoting.

Parameter count:

βn2 = β
n(n − 1)

2
+ β

n(n + 1)
2

.

Jacobian:

(dA) =
n∏

i=1

|uii|β(n−i) (dL) (dU). (3.7)

QΛQ′ (symmetric eigenvalue) decomposition (A = QΛQ′). Valid
for all three cases (β = 1, 2, 4). Here A is n × n symmetric/Hermitian/self-
dual, Q is n × n and orthogonal/unitary/symplectic, Λ is n × n diagonal
and real. To make the decomposition unique, we must fix the phases of the
columns of Q (that eliminates (β − 1)n parameters) and order the eigen-
values.

Parameter count:

β
n(n − 1)

2
+ n = β

n(n + 1)
2

− n − (β − 1)n + n.

Jacobian:
(dA) =

∏
i<j

(λi − λj)β (dΛ) (Q′ dQ). (3.8)
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UΣV′ (singular value) decomposition (A = UΣV ′). Valid for all
three cases (β = 1, 2, 4). A is m×n, U is m×n orthogonal/unitary/symplec-
tic, V is n×n orthogonal/unitary/symplectic, Σ is n×n diagonal, positive,
and real (suppose m ≥ n). Again, to make the decomposition unique, we
need to fix the phases on the columns of U (removing (β − 1)n parameters)
and order the singular values.

Parameter count:

βmn = βmn − β
n(n − 1)

2
− n − (β − 1)n + n + β

n(n + 1)
2

− n.

Jacobian:

(dA) =
∏
i<j

(σ2
i − σ2

j )
β

n∏
i=1

σ
β(m−n+1)−1
i (U ′ dU) (dΣ) (V ′ dV ). (3.9)

References: real, Muirhead (1982), Dumitriu (2003), Shen (2001).

CS (Cosine–sine) decomposition. Valid for all three cases (β = 1, 2, 4).
Q is n × n orthogonal/unitary/symplectic. Then, for any k + j = n, p =
k − j ≥ 0, the decomposition is

Q =


U11 U12 0

U21 U22 0
0 0 U2





Ip 0 0

0 C S
0 S −C





V ′

11 V ′
12 0

V ′
21 V ′

22 0
0 0 V ′

2


,

such that U2, V2 are j × j orthogonal/unitary/symplectic,(
U11 U12

U21 U22

)
and

(
V ′

11 V ′
12

V ′
21 V ′

22

)
are k×k orthogonal/unitary/symplectic, with U11 and V11 being p×p, and
C and S are j×j real, positive, and diagonal, and C2+S2 = Ij . Now let θi ∈
(0, π

2 ), q ≤ i ≤ j be the angles such that C = diag(cos(θ1), . . . ,cos(θj)), and
S = diag(sin(θ1), . . . ,sin(θj)). To ensure uniqueness of the decomposition
we order the angles, θi ≥ θj , for all i ≤ j.

This parameter count is a little special since we have to account for the
choice of the cases in the decomposition.

Parameter count:

β
n(n + 1)

2
− n =

(
βj(j + 1) − (β − 1)j

)
+ j

+
(

βk(k + 1) − k − β
p(p + 1)

2
+ p

)
.

Jacobian:

(Q′ dQ) =
∏
i<j

sin(θi − θj)β sin(θi + θj)β
j∏

i=1

cos(θi)β−1 sin(θi) dθ

× (U ′
1 dU1) (U ′

2 dU2) (V ′
1 dV1) (V ′

2 dV2).
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Tridiagonal QΛQ′ (eigenvalue) decomposition (T = QΛQ′). Valid
for real matrices. T is an n × n tridiagonal symmetric matrix, Q is an
orthogonal n × n matrix, and Λ is diagonal. To make the factorization
unique, we impose the condition that the first row of Q is all positive. The
number of independent parameters in Q is n−1 and they can be seen as
being all in the first row q of Q. The rest of Q can be determined from the
orthogonality constraints, the tridiagonal symmetric constraints on A, and
from Λ.

Parameter count:
2n − 1 = n − 1 + n.

Jacobian:

(dT ) =
∏n−1

i=1 Ti+1,i∏n
i=1 qi

µ(dq) (dΛ). (3.10)

Note that the Jacobian is written as a combination of parameters from T
and q, the first row of Q, and µ(dq) is the surface area on the sphere.

Tridiagonal BB′ (Cholesky) decomposition (T = BB′). Valid for
real matrices. T is an n × n real positive definite tridiagonal matrix, B is
an n × n real bidiagonal matrix.

Parameter count:
2n − 1 = 2n − 1.

Jacobian:

dT = 2nb11

n∏
i=2

b2
ii (dB). (3.11)

4. Classical random matrix ensembles

We now turn to some of the most well-studied random matrices. They
have names such as Gaussian, Wishart, manova, and circular. We prefer
Hermite, Laguerre, Jacobi, and perhaps Fourier. In a sense, they are to
random matrix theory as Poisson’s equation is to numerical methods. Of
course, we are thinking in the sense of the problems that are well tested, well
analysed, and well studied because of nice fundamental analytic properties.

These matrices play a prominent role because of their deep mathematical
structure. They have arisen in a number of fields, often independently. The
tables that follow are all keyed by the first column to the titles Hermite,
Laguerre, Jacobi, and Fourier.

4.1. Classical ensembles by discipline

We connect classical random matrices to problems roughly by discipline. In
each table, we list the ‘buzz words’ for the problems in the field; where a
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Table 4.1. Matrix factorizations associated with the classical random
matrix ensembles.

Ensemble Numerical procedure matlab

Hermite symmetric eigenvalue decomposition eig
Laguerre singular value decomposition svd
Jacobi generalized singular value decomposition gsvd
Fourier unitary eigenvalue decomposition eig

Table 4.2. Equilibrium measure for classical random matrix ensembles.

Ensemble Weight function Equilibrium measure

Hermite e−x2/2 semi-circular law (Wigner 1958)
Laguerre xae−x Marčenko and Pastur (1967)
Jacobi (1 − x)a(1 + x)b generalized McKay law
Fourier ejθ uniform

classical random matrix has not yet appeared or, as we would rather believe,
is yet to be discovered, we indicate with a blank. The actual definition of the
random matrices may be found in Section 4.3. Note that for every problem
there is an option of considering random matrices over the reals (β = 1),
complexes (β = 2), quaternions (β = 4), or there is the general β approach.

We hope the reader will begin to see a fascinating story already emerging
in Tables 4.1 and 4.2, where the symmetric eigenvalue problem is connected
to the Hermite weight factor e−x2

, the SVD to the Laguerre weight factor
xae−x and so forth.

In multivariate statistics, the problems of interest are random covariance
matrices (known as Wishart matrices) and ratios of Wishart matrices that

Table 4.3. Multivariate statistics.

Ensemble Problem solved Univariate distribution

Hermite – normal
Laguerre Wishart chi-squared
Jacobi manova beta
Fourier – –
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Table 4.4. Graph theory.

Ensemble Type of graph Author

Hermite undirected Wigner (1955)
Laguerre bipartite Jonsson (1982)
Jacobi d-regular McKay (1981)
Fourier – –

Table 4.5. Free probability and operator algebras.

Ensemble Terminology

Hermite semi-circle
Laguerre free Poisson
Jacobi free product of projections
Fourier –

arise in the multivariate analysis of variance (manova). This is a central
theme of texts such as Muirhead (1982).

The same matrices also arise elsewhere, especially in the modern phys-
ics of super-symmetry. This is evident in the works of Zirnbauer (1996),
Ivanov (2002) and Caselle and Magnea (2004). More classically Dyson and
Wigner worked on the Hermite and Fourier cases, known, respectively, as
the Gaussian and circular ensembles. (See Mehta (1991).)

The cases that correspond to symmetric spaces are quantized perhaps
unnecessarily. In mathematics, a symmetric space is a geometric object such
as a sphere that can be identified as the quotient space of two Lie groups,
with an involution that preserves geodesics. The Grassmann manifold is a
symmetric space, while the Stiefel manifold of m × n orthogonal matrices
is not, unless m = 1 or m = n, i.e., the sphere and the orthogonal group
respectively.

Many of the classical techniques for computing the eigenvalue distribu-
tions are ultimately related to interconnectivity of the matrix. For each case
Table 4.4 shows a graph structure underlying the matrix.

‘Free probability’ is an important branch of operator algebra developed
in 1985 by Voiculescu that has deep connections to random matrix theory.
Table 4.5 uses the names found in that literature. From the random matrix
viewpoint, free probability describes the eigenvalues of such operations as
A+B or AB in a language similar to that of the distribution of independent
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random variables a + b or ab, respectively. There will be more on this in
Section 12.

The authors would be delighted if the reader is awed by the above set of
tables. Anything that manifests itself in so many ways in so many fields must
be deep in the foundations of the problem. We indicate the four channels of
structure lurking underneath computation (Table 4.1), multivariate statist-
ics (Table 4.3), graph theory (Table 4.4) and operator algebras (Table 4.5).

There is a deep structure begging the dense matrix expert to forget the
SVD for a moment, or the sparse expert to forget bipartite graphs, if only
briefly, or the statistician to forget the chi-squared distribution and sample
covariance matrices. Something ties these experts together. Probably ran-
dom matrix theory is not the only way to reveal the hidden message, but it
is the theory that has compelled us to see what is truly there.

A few words for the numerical analyst. The symmetric and unitary ei-
genvalue problems, the SVD, and the GSVD have important mathematical
roles because of certain symmetries not enjoyed by LU or the asymmetric
eigenvalue problem. More can be said, but this may not be the place. We
plant the seed and we hope it will be picked up by many.

In the remainder of this chapter we will explore these random matrix
ensembles in depth. We begin with the basic Gaussian matrices and briefly
consider the joint element density and invariance properties. We then con-
struct the classical ensembles, derive their joint element densities, and their
joint eigenvalue densities, all in the context of the natural numerical pro-
cedures listed in Table 4.1.

4.2. Gaussian random matrices

G1(m, n) is an m × n matrix of independent and identically distributed
(i.i.d.) standard real random normals. More simply, in matlab notation:

G1=randn(m,n);

Table 4.6 lists matlab commands that can be used to generate Gβ(m, n)
for general β. Note that since quaternions do not exist in matlab they are
‘faked’ using 2 × 2 complex matrices.

If A is an m×n Gaussian random matrix Gβ(m, n) then its joint element
density is given by

1
(2π)βmn/2

exp
(
−1

2
‖A‖2

F

)
. (4.1)

Some authors also use the notation etr(A) for the exponential of the trace
of a matrix.

The most important property of Gβ , be it real, complex, or quaternion,
is its orthogonal invariance. This makes the distribution impervious to
multiplication by an orthogonal (unitary, symplectic) matrix, provided that
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Table 4.6. Generating the Gaussian random matrix Gβ(m,n) in matlab.

β matlab command

1 G = randn(m,n)
2 G = randn(m,n) + i*randn(m,n)
4 X = randn(m,n) + i*randn(m,n); Y = randn(m,n) + i*randn(m,n);

G = [X Y; - conj(Y) conj(X)]

the two are independent. This can be inferred from the joint element density
in (4.1) since its Frobenius norm, ‖A‖F , is unchanged when A is multiplied
by an orthogonal (unitary, symplectic) matrix. The orthogonal invariance
implies that no test can be devised that would differentiate between Q1A, A,
and AQ2, where Q1 and Q2 are non-random orthogonal and A is Gaussian.

4.3. Construction of the classical random matrix ensembles

The classical ensembles are constructed from Gβ as follows. Since they
are constructed from multivariate Gaussians, they inherit the orthogonality
property as well, i.e., they remain invariant under orthogonal transforma-
tions.

Gaussian orthogonal ensemble (GOE): symmetric n × n matrix ob-
tained as (A + AT )/2 where A is G1(n, n). The diagonal entries are i.i.d.
with distribution N(0, 1), and the off-diagonal entries are i.i.d. (subject to
the symmetry) with distribution N(0, 1

2).

Gaussian unitary ensemble (GUE): Hermitian n×n matrix obtained as
(A+AH)/2, where A is G2(n, n) and H denotes the Hermitian transpose of
a complex matrix. The diagonal entries are i.i.d. with distribution N(0, 1),
while the off-diagonal entries are i.i.d. (subject to being Hermitian) with
distribution N2(0, 1

2).

Gaussian symplectic ensemble (GSE): self-dual n×n matrix obtained
as (A + AD)/2, where A is G4(n, n) and D denotes the dual transpose
of a quaternion matrix. The diagonal entries are i.i.d. with distribution
N(0, 1), while the off-diagonal entries are i.i.d. (subject to being self-dual)
with distribution N4(0, 1

2).

Similarly, the Wishart and manova ensembles can be defined as follows.

Wishart ensemble (Wβ(m, n), m ≥ n): symmetric/Hermitian/self-
dual n× n matrix which can be obtained as A′A, where A is Gβ(m, n) and
A′ denotes AT , AH and AD, depending on whether A is real, complex, or
quaternion, respectively.
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MANOVA ensemble (Jβ(m1, m2, n), m1, m2 ≥ n): symmetric/Her-
mitian/self-dual n × n matrix which can be obtained as A/(A + B), where
A and B are Wβ(m1, n) and Wβ(m2, n), respectively. See Sutton (2005) for
details on a construction using the CS decomposition.

Circular ensembles: constructed as UT U and U for β = 1, 2 respectively,
where U is a uniformly distributed unitary matrix (see Section 4.6). For
β = 4, it is defined analogously as in Mehta (1991).

The β-Gaussian ensembles arise in physics, and were first identified by
Dyson (1963) by the group over which they are invariant: Gaussian ortho-
gonal or, for short, GOE (with real entries, β = 1), Gaussian unitary or
GUE (with complex entries, β = 2), and Gaussian symplectic or GSE (with
quaternion entries β = 4).

The Wishart ensembles owe their name to Wishart (1928), who studied
them in the context of statistics applications as sample covariance matrices.
The β-Wishart models for β = 1, 2, 4 could be named Wishart real, Wishart
complex, and Wishart quaternion respectively, though the β notation is not
as prevalent in the statistical community.

The manova ensembles arise in statistics in the Multivariate Analysis
of Variance, hence the name. They are in general more complicated to
characterize, so less is known about them than the Gaussian and Wishart
ensembles.

4.4. Computing the joint element densities

The joint eigenvalue densities of the classical random matrix ensembles have
been computed in many different ways by different authors. Invariably, the
basic prescription is as follows.

We begin with the probability distribution on the matrix elements. The
next step is to pick an appropriate matrix factorization whose Jacobians are
used to derive the joint densities of the elements in the matrix factorization
space. The relevant variables in this joint density are then appropriately
transformed and ‘integrated out’ to yield the joint eigenvalue densities.

This prescription is easy enough to describe, though in practice the normal
distribution seems to be the best choice to allow us to continue and get
analytical expressions. Almost any other distribution would stop us in our
tracks, at least if our goal is some kind of exact formula.

Example. Let A be an n×n matrix from the Gaussian orthogonal ensemble
(β = 1). As described earlier, this is an n×n random matrix with elements
distributed as N(0, 1) on the diagonal and N(0, 1/2) off the diagonal, that is,

aij ∼
{

N(0, 1) i = j,

N(0, 1/2) i > j.
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Table 4.7. Joint element densities of an n×n matrix A from a Gaussian ensemble.

orthogonal β = 1
Gaussian unitary β = 2

symplectic β = 4

1
2n/2

1
πn/2+n(n−1)β/4

exp
(
−1

2
‖A‖2

F

)

Recall that the normal distribution with mean µ and variance σ2, i.e.,
N(µ, σ2), has a density given by

1√
2π σ2

exp
(
−(x − µ)2

2σ2

)
,

from which it is fairly straightforward to verify that the joint element density
of A written as

1
2n/2

1
πn(n+1)/4

exp
(−‖A‖2

F /2
)

(4.2)

can be obtained by taking products of the n normals along the diagonal
having density N(0, 1) and n(n − 1)/2 normals in the off-diagonals having
density N(0, 1/2).

Table 4.7 lists the joint element density for the three Gaussian ensembles
parametrized by β.

Now that we have obtained the joint element densities, we simply have
to follow the prescription discussed earlier to obtain the joint eigenvalue
densities.

In the case of the Gaussian ensembles, the matrix factorization A = QΛQ′
directly yields the eigenvalues and the eigenvectors. Hence, applying the
Jacobian for this transformation given by (3.8) allows us to derive the joint
densities for the eigenvalues and the eigenvectors of A. We obtain the joint
eigenvalue densities by ‘integrating’ out the eigenvectors.

We like to think of the notion of the ‘most natural’ matrix factorization
that allows us to compute the joint eigenvalue densities in the easiest man-
ner. For the Gaussian ensembles, the symmetric eigenvalue decomposition
A = QΛQ′ is the most obvious choice. This not the case for the Wishart and
the manova ensembles. In this context, what makes a matrix factorization
‘natural’? Allow us to elaborate.

Consider the Wishart matrix ensemble Wβ(m, n) = A′A, where A =
Gβ(m, n) is a multivariate Gaussian. Its joint element density can be com-
puted rather laboriously in a two-step manner whose first step involves writ-
ing W = QR and then integrating out the Q, leaving the R. The second
step is the transformation W = R′R which is the Cholesky factorization of
a matrix in numerical analysis. The conclusion is that although we may
obtain the joint density of the elements of W as listed in Table 4.8, this
procedure is much more involved than it needs to be.
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Table 4.8. Joint element density of the Wishart ensemble Wβ(m,n) (m ≥ n).

orthogonal β = 1
Wishart unitary β = 2

symplectic β = 4

etr(−W/2) (det W )β(m−n+1)/2−1

2mnβ/2 Γβ
n(mβ/2)

This is where the notion of a ‘natural’ matrix factorization comes in.
Though it seems statistically obvious to think of Wishart matrices as co-
variance matrices and compute the joint density of the eigenvalues of A′A
directly, it is more natural to derive the joint density of the singular values
of A instead. Since A is a multivariate Gaussian, the Jacobian of the fac-
torization A = UΣV ′ given by (3.9) can be used to directly determine the
joint density of the singular values and the singular vectors of W from the
joint element density of A in (4.1). We can then integrate out the singular
vectors to obtain the joint density of the singular values of A and hence
the eigenvalues of W = A′A. The technicalities of this may be found in
Edelman (1989).

Similarly, the corresponding ‘natural’ factorization for the manova en-
sembles is the generalized singular value decomposition. Note that the
square of the generalized singular values of two matrices A and B is the
same as the eigenvalues of (BB′)−1(AA′), so that the eigenvalues of the
manova matrix Jβ(m1, m2, n) = (I + W (m1, n)−1W (m2, n))−1 can be ob-
tained by a suitable transformation.

Table 4.1 summarizes the matrix factorizations associated with the clas-
sical random matrix ensembles that allow us to compute the joint eigen-
value densities in the most natural manner. Later we will discuss additional
connections between these matrix factorizations, and classical orthogonal
polynomials.

4.5. Joint eigenvalue densities of the classical ensembles

The three Gaussian ensembles have joint eigenvalue probability density func-
tion

Gaussian: fβ(λ) = cβ
H

∏
i<j

|λi − λj |βe−
Pn

i=1 λ2
i /2, (4.3)

with β = 1 corresponding to the reals, β = 2 to the complexes, β = 4 to
the quaternion, and with

cβ
H = (2π)−n/2

n∏
j=1

Γ(1 + β
2 )

Γ(1 + β
2 j)

. (4.4)
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The best references are Mehta (1991) and the original paper by Dyson
(1963).

Similarly, the Wishart (or Laguerre) models have joint eigenvalue PDF

Wishart: fβ(λ) = cβ,a
L

∏
i<j

|λi − λj |β
∏

i

λa−p
i e−

Pn
i=1 λi/2, (4.5)

with a = β
2 m and p = 1 + β

2 (n − 1). Again, β = 1 for the reals, β = 2 for
the complexes, and β = 4 for the quaternion. The constant

cβ,a
L = 2−na

n∏
j=1

Γ(1 + β
2 )

Γ(1 + β
2 j)Γ(a − β

2 (n − j)))
. (4.6)

Good references are Muirhead (1982), Edelman (1989), and James (1964),
and for β = 4, Macdonald (1998).

To complete the triad of classical orthogonal polynomials, we will mention
the β-manova ensembles, which are associated to the multivariate analysis
of variance (manova) model. They are better known in the literature as
the Jacobi ensembles, with joint eigenvalue PDF, that is,

manova: fβ(λ) = cβ,a1,a2

J

∏
i<j

|λi − λj |β
n∏

j=1

λa1−p
i (1 − λi)a2−p, (4.7)

with a1 = β
2 m1, a2 = β

2 m2, and p = 1 + β
2 (n − 1). As usual, β = 1 for real

and β = 2 for complex; also

cβ,a1,a2

J =
n∏

j=1

Γ(1 + β
2 )Γ(a1 + a2 − β

2 (n − j))

Γ(1 + β
2 j)Γ(a1 − β

2 (n − j))Γ(a2 − β
2 (n − j))

. (4.8)

Good references are the original paper by Constantine (1963), and Muirhead
(1982) for β = 1, 2.

4.6. Haar-distributed orthogonal, unitary and symplectic eigenvectors

The eigenvectors of the classical random matrix ensembles are distributed
with Haar measure. This is the uniform measure on orthogonal/unitary/
symplectic matrices; see Chapter 1 of Milman and Schechtman (1986) for a
derivation.

A measure µ(E) is a generalized volume defined on E. A measure µ,
defined on a group G, is a Haar measure if µ(gE) = µ(E), for every g ∈ G.
For the example O(n) of orthogonal n × n matrices, the condition that our
measure be Haar is, for any continuous function f , that∫

Q∈O(n)
f(Q) dµ(Q) =

∫
Q∈O(n)

f(Qo Q) dµ(Q), for any Qo ∈ O(n).

In other words, Haar measure is symmetric: no matter how we rotate our
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Figure 4.1. QR (Gram–Schmidt) factorization of randn(n); no
correction in the left panel, phase correction in the right panel.

sets, we get the same answer. In numerical terms, we can devise the follow-
ing experiment to get some intuition on whether or not randomly generated
unitary matrices are Haar-distributed.

Suppose we started with an n×n complex random matrix A constructed
in matlab as

% Pick n
A=randn(n)+i*randn(n);

Compute its QR decomposition to generate a random unitary matrix Q:

[Q,R]=qr(A);

The eigenvalues of Q will be complex with a magnitude of 1, i.e., they will
be distributed on the unit circle in the complex plane. Compute the phases
associated with these complex eigenvalues:

Qphase=angle(eig(Q));

Now, perform this experiment several times and collect the phase informa-
tion in the variable Qphase. Plot the histogram of the phases (in degrees)
normalized to have area 1. The left-hand panel of Figure 4.1 shows this his-
togram for n = 50 and 100, 000 trials. The dotted line indicates a uniform
density between [−180, 180]. From this we conclude that since the phases
of Q are not uniformly distributed, Q as constructed in this experiment is
not distributed with Haar measure.

It is interesting to recognize why the experiment described above does
not produce a Haar-distributed unitary matrix. This is because the QR
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algorithm in matlab does not guarantee nonnegative diagonal entries in R.
A simple correction by randomly perturbing the phases as:

Q=Q*diag(exp(i*2*pi*rand(n,1)));

or even by the sign of the diagonal entries of R:

Q=Q*diag(sign(diag(R)));

would correct this problem and produce the histogram in the right-hand
panel of Figure 4.1 for the experiment described above. Note that the
matlab command rand generates a random number uniformly distrib-
uted between 0 and 1. While this method of generating random unitary
matrices with Haar measure is useful for simplicity, it is not the most ef-
ficient. For information on the efficient numerical generation of random
orthogonal matrices distributed with Haar measure, see Stewart (1980).

4.7. The longest increasing subsequence

There is an interesting link between the moments of the eigenvalues of Q and
the number of permutations of length n with longest increasing subsequence
k. For example, the permutation ( 3 1 8 4 5 7 2 6 9 10 ) has ( 1 4 5 7 9 10 ) or
( 1 4 5 6 9 10 ) as the longest increasing subsequences of length 6.

This problem may be recast for the numerical analyst as the parallel
complexity of solving an upper triangular system whose sparsity is given by
a permutation π:

Uij(π)

{
�= 0 if π(i) ≤ π(j) and i ≤ j,

= 0 if π(i) > π(j) or i > j.

The result from random matrix theory is that the number of permutations
of length n with longest increasing subsequence less than or equal to length
k is given by

EQk

(|tr(Qk)|2n
)
.

We can verify this numerically using what we know about generating Haar
unitary random matrices from Section 4.6. We can construct a function
in matlab that generates a Haar unitary matrix, computes the quantity
|trQk|2n and averages it over many trials:

function L = longestsubsq(n,k,trials);
expt=[];
for idx=1:trials,

% Generate Haar unitary matrix
[Q,R]=qr(randn(k)+i*randn(k));
Q=Q*diag(exp(i*2*pi*rand(k,1)));
expt=[expt;abs(trace(Q))^(2*n)];

end

mean(exp)



22 A. Edelman and N. R. Rao

Table 4.9. Permutations for n = 4.

1 2 3 4 2 1 3 4 3 1 2 4 4 1 2 3
1 2 4 3 2 1 4 3 3 1 4 2 4 1 3 2
1 3 2 4 2 3 1 4 3 2 1 4 4 2 1 3
1 3 4 2 2 3 4 1 3 2 4 1 4 2 3 1
1 4 2 3 2 4 1 3 3 4 1 2 4 3 1 2
1 4 3 2 2 4 3 1 3 4 2 1 4 3 2 1

For n = 4, there are 24 possible permutations listed in Table 4.9. We
underline the fourteen permutations with longest increasing subsequence of
length ≤ 2. Of these, one permutation ( 4 3 2 1 ) has length 1 and the other
thirteen have length 2.

If we were to run the matlab code for n = 4 and k = 2 and 30000 trials
we would get:

>> longestsubsq(4,2,30000)
ans = 14.1120

which is approximately equal to the number of permutations of length less
than or equal to 2. It can be readily verified that the code gives the right an-
swer for other combinations of n and k as well. We note that for this numer-
ical verification, it was critically important that a Haar unitary matrix was
generated. If we were to use a matrix without Haar measure, for example
simply using the command [Q,R]=qr(randn(n)+i*randn(n)) without ran-
domly perturbing the phases, as described in Section 4.6, we would not get
the right answer.

The authors still find it remarkable that the answer to a question this
simple (at least in terms of formulation) involves integrals over Haar unitary
matrices. There is, of course, a deep mathematical reason for this that
is related to the correspondence between, on the one hand, permutations
and combinatorial objects known as Young tableaux, via the Schensted
correspondence, and, on the other hand, representations of the symmetric
group and the unitary group. The reader may wish to consult Rains (1998),
Aldous and Diaconis (1999) and Odlyzko and Rains (1998) for additional
details. Related works include Borodin (1999), Tracy and Widom (2001)
and Borodin and Forrester (2003).

5. Numerical algorithms stochastically

Matrix factorization algorithms may be performed stochastically given
Gaussian inputs. What this means is that instead of performing the matrix
reductions on a computer, they can be done by mathematics. The three



Random matrix theory 23

that are well known, though we will focus on the latter two, are:

(1) Gram–Schmidt (the qr decomposition)
(2) symmetric tridiagonalization (standard first step of eig), and
(3) bidiagonalization (standard first step of svd).

The bidiagonalization method is due to Golub and Kahan (1965), while
the tridiagonalization method is due to Householder (1958).

These two linear algebra algorithms can be applied stochastically, and it
is not very hard to compute the distributions of the resulting matrix.

The two key ideas are:

(1) the χr distribution, and
(2) the orthogonal invariance of Gaussians.

The χr is the χ-distribution with r degrees of freedom where r is any
real number. It can be derived from the univariate Gaussian and is also
the square root of the χ2

r-distribution. Hence it may be generated using
the matlab Statistics Toolbox using the command sqrt(chi2rnd(r)). If
the parameter r is a positive integer n, one definition of χn is given by
‖G(n, 1)‖2, in other words, the 2-norm of an n × 1 vector of independ-
ent standard normals (or norm(randn(n,1)) in matlab). The probability
density function of χn can then be extended to any real number r so that
the probability density function of χr is given by

fr(x) =
1

2r/2−1 Γ
(

1
2r

) xr−1 e−x2/2.

The orthogonal invariance of Gaussians is mentioned in Section 4.3. In
this form it means that

H




G1

G1
...
...

G1




D=




G
G
...
...
G


,

if each G denotes an independent standard Gaussian and H any independent
orthogonal matrix (such as a reflector).

Thus, for example, the first two steps of Gram–Schmidt applied to an
n × n real Gaussian matrix (β = 1) are:


G G · · · G
G G · · · G
...

... · · · ...
G G · · · G


 →




χn G · · · G
G · · · G
... · · · ...
G · · · G


 →




χn G · · · G
χn−1 · · · G

· · · ...
G G


.
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Table 5.1. Tri- and bidiagonal models for the Gaussian and Wishart ensembles.

Gaussian
Ensemble

n ∈ N

Hβ
n ∼ 1√

2




N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . . . . . . . .
χ2β N(0, 2) χβ

χβ N(0, 2)




Wishart
ensemble Lβ

n = Bβ
n Bβ′

n , where

n ∈ N

a ∈ R

a > β
2 (n − 1)

Bβ
n ∼




χ2a

χβ(n−1) χ2a−β

. . . . . .
χβ χ2a−β(n−1)




Applying the same ideas for tridiagonal or bidiagonal reduction gives the
answer listed in Table 5.1, where the real case corresponds to β = 1, complex
β = 2 and quaternion β = 4. For the Gaussian ensembles, before scaling
the diagonal elements are i.i.d. normals with mean 0 and variance 2. The
subdiagonal has independent elements that are χ variables as indicated.
The superdiagonal is copied to create a symmetric tridiagonal matrix. The
diagonal and the subdiagonals for the bidiagonal Wishart ensembles are
independent elements that are χ-distributed with degrees of freedom having
arithmetic progressions of step size β.

There is a tridiagonal matrix model for the β-Jacobi ensemble also, as
described in Killip and Nenciu (2004); the correspondence between the CS
decomposition and the Jacobi model is spelled out in Sutton (2005). Other
models for the β-Jacobi ensemble include Lippert (2003).

There is both an important computational and theoretical implication of
applying these matrix factorizations stochastically. Computationally speak-
ing, often much of the time goes into performing these reductions for a given
realization of the ensemble. Having them available analytically means that
the constructions in Section 4.3 are highly inefficient for numerical simu-
lations of the Hermite and Laguerre ensembles. Instead, we can generate
then much more efficiently using matlab code and the Statistics Tool-
box as listed in Table 5.2. The tangible savings in storage O(n2) to O(n)
is reflected in similar savings in computational complexity when comput-
ing their eigenvalues too. Not surprisingly, these constructions have been
rediscovered independently by several authors in different contexts. Trot-
ter (1984) used it in his alternate derivation of Wigner’s semi-circular law.
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Table 5.2. Generating the β-Hermite and β-Laguerre ensembles efficiently.

Ensemble matlab commands

β-Hermite

% Pick n, beta

d=sqrt(chi2rnd(beta*[n:-1:1]))’;

H=spdiags(d,1,n,n)+spdiags(randn(n,1),0,n,n);

H=(H+H’)/sqrt(2);

β-Laguerre

% Pick m, n, beta

% Pick a > beta*(n-1)/2;

d=sqrt(chi2rnd(2*a-beta*[0:1:n-1]))’;

s=sqrt(chi2rnd(beta*[n:-1:1]))’;

B=spdiags(s,-1,n,n)+spdiags(d,0,n,n)

L=B*B’;

Similarly, Silverstein (1985) and, more recently, Baxter and Iserles (2003)
have rederived this result; probably many others have as well.

Theoretically the parameter β plays a new important role. The answers
show that insisting on β = 1, 2 and 4 is no longer necessary. While these
three values will always play something of a special role, like the math-
ematician who invents the Gamma function and forgets about counting
permutations, we now have a whole continuum of possible betas available
to us. While clearly simplifying the ‘book-keeping’ in terms of whether the
elements are real, complex or quaternion, this formalism can be used to
re-interpret and rederive familiar results as in Dumitriu (2003).

The general β version requires a generalization of Gβ(1, 1). We have not
seen any literature but formally it seems clear how to work with such an
object (rules of algebra are standard, rules of addition come from the normal
distribution, and the absolute value must be a χβ distribution). From there,
we might formally derive a general Q for each β.

6. Classical orthogonal polynomials

We have already seen in Section 4 that the weight function associated with
classical orthogonal polynomials plays an important role in random matrix
theory.

Given a weight function w(x) and an interval [a, b] the orthogonal poly-
nomials satisfy the relationship∫ b

a
pj(x)pk(x)w(x) dx = δjk.

In random matrix theory there is interest in matrices with joint eigen-
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Table 6.1. The classical orthogonal polynomials.

Polynomial Interval [a, b] w(x)

Hermite (−∞,∞) e−x2/2

Laguerre [0,∞) xk e−x

Jacobi (−1, 1) (1 − x)a(1 + x)b

value density proportional to
∏

w(λi)|∆(λ)|β where ∆(x) =
∏

i<j(xi − xj).
Table 6.1 lists the weight functions and the interval of definition for the
classical Hermite, Laguerre and Jacobi orthogonal polynomials as found in
classical references such as Abramowitz and Stegun (1970).

Note that the Jacobi polynomial reduces to the Legendre polynomial when
α = β = 0, and to the Chebyshev polynomials when α, β = ±1/2.

Classical mathematics suggests that a procedure such as Gram–Schmidt
orthonormalization can be used to generate these polynomials. Numerically,
however, other procedures are available, as detailed in Gautschi (1996).

There are deep connections between these classical orthogonal polyno-
mials and three of the classical random matrix ensembles as alluded to in
Section 4.

The most obvious link is between the form of the joint eigenvalue densities
for these matrix ensembles and the weight functions w(x) of the associated
orthogonal polynomial. Specifically, the joint eigenvalue densities of the
Gaussian (Hermite), Wishart (Laguerre) and manova (Jacobi) ensembles
given by (4.3), (4.5), and (4.7) can be written in terms of the weight func-
tions where ∆(Λ) =

∏
i<j |λi−λj | is the absolute value of the Vandermonde

determinant.

6.1. Equilibrium measure and the Lanczos method

In orthogonal polynomial theory, given a weight function w(x), with integral
1, we obtain Gaussian quadrature formulas for computing∫

f(x)w(x) dx ≈
n∑

i=1

f(xi)q2
i .

In other words, we have the approximation

w(x) ≈
∑

δ(x − xi)q2
i .

Here the xi are the roots of the nth orthogonal polynomial, and the q2
i

are the related Christoffel numbers also obtainable from the nth orthogonal
polynomial.
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The Lanczos algorithm run on the continuous operator w(x) gives a tri-
diagonal matrix whose eigenvalues are the xi and the first component of the
ith eigenvector is qi.

As the q2
i weigh each xi differently, the distribution of the roots

en(x) =
n∑

i=1

δ(x − xi)

converges to a different answer from w(x). For example, if w(x) corresponds
to a Gaussian, then the limiting en(x) is semi-circular. Other examples are
listed in Table 4.2.

These limiting measures, e(x) = limn→∞ en(x), are known as the equi-
librium measure for w(x). They are characterized by a solution to a two-
dimensional force equilibrium problem on a line segment. These equilibrium
measures become the characteristic densities of random matrix theory as lis-
ted in Table 4.2. They have the property that, under the right conditions,

Re m(x) =
w′(x)
w(x)

,

where m(x) is the Cauchy transform of the equilibrium measure.
In recent work, Kuijlaars (2000) has made the connection between the

equilibrium measure and how Lanczos finds eigenvalues. Under reasonable
assumptions, if we start with a large matrix, and take a relatively smaller
number of Lanczos steps, then Lanczos follows the equilibrium measure.
This is more or less intuitively clear. What he discovered was how one in-
terpolates between the equilibrium measure and the original measure as the
algorithm proceeds. There is a beautiful combination of a cut-off equilib-
rium measure and the original weight that applies during the transition.

For additional details on the connection see Kuijlaars and McLaughlin
(2000). For a good reference on equilibrium measure, see Deift (1999,
Chapter 6).

6.2. Matrix integrals

A strand of random matrix theory that is connected to the classical ortho-
gonal polynomials is the evaluation of matrix integrals involving the joint
eigenvalue densities. One can see this in works such as Mehta (1991).

Definition. Let A be a matrix with eigenvalues λ1, . . . , λn. The empirical
distribution function for the eigenvalues of A is the probability measure

1
n

n∑
i=1

δ(x − λi).
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Definition. The level density of an n × n ensemble A with real eigenval-
ues is the distribution of a random eigenvalue chosen from the ensemble.
Equivalently, it is the average (over the ensemble) empirical density. It is
denoted by ρA

n .

There is another way to understand the level density in terms of a mat-
rix integral. If one integrates out all but one of the variables in the joint
(unordered) eigenvalue distribution of an ensemble, what is left is the level
density.

Specifically, the level density can be written in terms of the joint eigen-
value density fA(λ1, . . . , λn) as

ρA
n,β(λ1) =

∫
Rn−1

fA(λ1, . . . , λn) dλ2 · · · dλn.

For the case of the β-Hermite ensemble, this integral can be written in
terms of its joint eigenvalue density in (4.3) as

ρH
n,β(λ1) = cβ

H

∫
Rn−1

|∆(Λ)|βe−
Pn

i=1 λ2
i /2 dλ2 · · · dλn. (6.1)

The integral in (6.1) certainly looks daunting. Surprisingly, it turns out
that closed form expressions are available in many cases.

6.3. Matrix integrals for complex random matrices

When the underlying random matrix is complex (β = 2), some matrix
integrals become particularly easy. They are an application of the Cauchy–
Binet theorem that is sometimes familiar to linear algebraists from texts
such as Gantmacher and Krein (2002).

Theorem 6.1. (Cauchy–Binet) Let C = AB be a matrix product of
any kind. Let M

( i1···ip
j1···jp

)
denote the p × p minor

det(Mikjl
)1≤k≤p,1≤l≤p.

In other words, it is the determinant of the submatrix of M formed from
rows i1, . . . , ip and columns j1, . . . , jp.

The Cauchy–Binet theorem states that

C

(
i1, . . . , ip
k1, . . . , kp

)
=

∑
j1<j2<···<jp

A

(
i1, . . . , ip
j1, . . . , jp

)
B

(
j1, . . . , jp

k1, . . . , kp

)
.

Notice that when p = 1 this is the familiar formula for matrix multiplication.
When all matrices are p × p, then the formula states that

det C = det A det B.
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Figure 6.1. Level density of the GUE ensemble (β = 2) for different
values of n. The limiting result when n → ∞ is Wigner’s famous
semi-circular law.

Cauchy–Binet extends in the limit to matrices with infinitely many columns.
If the columns are indexed by a continuous variable, we now have a vector
of functions.

Replacing Aij with ϕi(xj) and Bjk with ψk(xj), we see that Cauchy–Binet
becomes

det C =
∫
· · ·

∫
det(ϕi(xj))i,j=1,...,n det(ψk(xj))k,j=1,...,n dx1 dx2 · · · dxn.

where Cik =
∫

ϕi(x)ψk(x) dx, i, k = 1, . . . , n.
This continuous version of Cauchy–Binet may be traced back to Andréief

(1883).
We assume that β = 2 so that wn(x) = ∆(x)2

∏n
i=1 w(xi). For classical

weight function ω(x), Hermitian matrix models have been constructed. We
have already seen the GUE corresponding to Hermite matrix models, and
complex Wishart matrices for Laguerre. We also get the complex manova
matrices corresponding to Jacobi.

Notation: we define φn(x) = pn(x)w(x)1/2. Thus the φi(x) are not poly-
nomials, but they do form an orthonormal set of functions on the support
of the weight function, w(x).

It is a general fact that the level density of an n × n complex (β = 2)
classical random matrix ensemble

fw(x) =
1
n

n−1∑
i=0

φi(x)2.

Figure 6.1 compares the normalized level density of the GUE for different
values of n using w(x) = 1√

2π
e−x2/2. When n = 1, it is simply the normal

distribution. The asymptotic result is the celebrated Wigner’s semi-circular
law (Wigner 1958).
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Analogously to the computation of the level density, given any function
f(x) one can ask for

E(f) ≡ Eωn

(∏
(f(xi)

)
.

When we have a matrix model, this is E(det(f(X)).
It is a simple result that E(f) =

∫
(det(φi(x)φj(x)f(x))i,j=0,...,n−1 dx.

This implies, by the continuous version of the Cauchy–Binet theorem, that

E(f) = detCn,

where (Cn)ij =
∫

φi(x)φj(x)f(x) dx.
Some important functions to use are f(x) = 1 +

∑
zi(δ(x − yi)). The

coefficients of the resulting polynomial are then the marginal density of k
eigenvalues. See Tracy and Widom (1998) for more details.

Another important function is f(x) = 1−χ[a,b], where χ[a,b] is the indicator
function on [a, b]. Then we obtain the probability that no eigenvalue is in the
interval [a, b]. If b is infinite, we obtain the probability that all eigenvalues
are less than a, that is, the distribution function for the largest eigenvalue.

Research on integrable systems is a very active area within random matrix
theory in conjunction with applications in statistical physics, and statistical
growth processes. Some good references on this subject are van Moerbeke
(2001), Tracy and Widom (2000b), Its, Tracy and Widom (2001), Deift,
Its and Zhou (1997) and Deift (2000). The connection with the Riemann–
Hilbert problem is explored in Deift (1999), Kuijlaars (2003) and Bleher
and Its (1999).

7. Multivariate orthogonal polynomials

We feel it is safe to say that classical orthogonal polynomial theory and the
theory of special functions reached prominence in numerical computation
just around or before computers were becoming commonplace. The know-
ledge has been embodied in such handbooks as Abramowitz and Stegun
(1970), Erdélyi, Magnus, Oberhettinger and Tricomi (1981a), Erdélyi, Mag-
nus, Oberhettinger and Tricomi (1981b), Erdélyi, Magnus, Oberhettinger
and Tricomi (1955), Spanier and Oldham (1987) and Weisstein (2005).

Very exciting developments linked to random matrix theory are the or-
thogonal polynomials and special functions of a matrix argument. These
are scalar functions of a matrix argument that depend on the eigenvalues
of the matrix, but in highly nontrivial ways. They are not mere trivial
generalizations of the univariate objects. They are also linked to the other
set of special functions that arise in random matrix theory: the Painlevé
equations (see Section 9).

We refer readers to works by James (1964), Muirhead (1982), and For-
rester (2005) for statistical and random matrix applications, and Hanlon,
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Stanley and Stembridge (1992) for combinatorial aspects. Stanley (1989) is
another good reference on the subject.

The research terrain is wide open to study fully the general multivariate
orthogonal polynomial theory. Generalizations of Lanczos and other applic-
ations seem like low-hanging fruit for anyone to pick. Also, the numerical
computation of these functions were long considered out of reach. As we
describe in Section 8, applications of dynamic programming have suddenly
now made these functions computable.

Our goal is to generalize orthogonal polynomials pk(x) with respect to a
weight function w(x) on [a, b]. The objects will be denoted pκ(X), where
κ ≡ (k1, k2, . . .) is a partition of K, i.e., k1 ≥ k2 ≥ · · · and K = k1+k2+· · · .
The partition κ is the multivariate degree in the sense that the leading term
of pκ(X) is ∑

sym terms

λk1
1 λk2

2 · · · ,

where the λ1 ≤ · · · ≤ λn are the eigenvalues of X.
We define W (X) = det(w(X)) =

∏
i w(λi) for X such that λ1 ≥ a and

λn ≤ b. The multivariate orthogonality property is then∫
aI≤X≤bI

pκ(X)pµ(X)W (X) dX = δκµ.

The multivariate orthogonal polynomials may also be defined as poly-
nomials in n variables:∫

a≤xi≤b,
i=1,2,...,n

pκ(x1, . . . , xn)pµ(x1, . . . , xn)
∏
i<j

|xi − xj |β
n∏

i=1

w(xi) dx1 · · · dxn = δκµ,

where β = 1, 2, 4, according to Table 3.2, or may be arbitrary.
The simplest univariate polynomials are the monomials pn(x) = xn. They

are orthogonal on the unit circle. This is Fourier analysis. Formally we take
w(x) = 1 if |x| = 1 for x ∈ C. The multivariate version is the famous Jack
polynomial C

2/β
κ (X) introduced in 1970 by Henry Jack as a one-parameter

family of polynomials that include the Schur functions (β = 2, α = 1) and
(as conjectured by Jack (1970) and later proved by Macdonald (1982)) the
zonal polynomials (β = 1, α = 2). The Schur polynomials are well known in
combinatorics, representation theory and linear algebra in their role as the
determinant of a generalized Vandermonde matrix: see Koev (2002). One
may also define the Jack polynomials by performing the QR factorization on
the matrix that expresses the power symmetric functions pκ(X) =

∏
tr(Xki)

in terms of the monomial symmetric function mκ(X) =
∑

xκi
i . The Q in

the QR decomposition becomes a generalized character table while R defines
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the Jack polynomials. Additional details may be found in Knop and Sahi
(1997).

Dumitriu has built a symbolic package (MOPs) written in Maple, for the
evaluation of multivariate polynomials symbolically. This package allows
the user to write down and compute the Hermite, Laguerre, Jacobi and
Jack multivariate polynomials.

This package has been invaluable in the computation of matrix integ-
rals and multivariate statistics for general β or a specific β �= 2 for which
traditional techniques fall short. For additional details see Dumitriu and
Edelman (2004).

8. Hypergeometric functions of matrix argument

The classical univariate hypergeometric function is well known:

pFq(a1, . . . , ap; b1, . . . , bq; x) ≡
∞∑

k=0

(a1)k · · · (ap)k

k!(b1)k · · · (bq)k
· xk,

where (a)k = a(a + 1) · · · (a + k − 1).
The multivariate version is

pF
α
q (a1, . . , ap; b1, . . , bq; x1, . . , xn) ≡

∞∑
k=0

∑
κ�k

(a1)κ · · (ap)κ

k!(b1)κ · · (bq)κ
Cα

κ (x1, . . , xn),

where

(a)κ ≡
∑

(i,j)∈κ

(
a − i − 1

α
+ j − 1

)

is the Pochhammer symbol and Cα
κ (x1, x2, . . . , xn) is the Jack polynomial.

Some random matrix statistics of the multivariate hypergeometric func-
tions are the largest and smallest eigenvalue of a Wishart matrix. As in
Section 5, the Wishart matrix can be written as L = BBT , where

B =




χ2a

χβ(n−1) χ2a−β

. . . . . .
χβ χ2a−β(n−1)


,

where a = mβ
2 . The probability density function of the smallest eigenvalue

of the Wishart matrix is

f(x) = xkn · e−nx
2 · 2F

2/β
0

(
−k, β

n

2
+ 1; ;−2

x
In−1

)
,

where k = a − (n − 1)β
2 − 1 is a nonnegative integer. Figure 8.1 shows
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Figure 8.1. The probability density function
of λmin of the β-Laguerre ensemble.

this distribution against a Monte Carlo simulation for 5 × 5 matrices with
β = 0.5 and a = 5 and β = 6 and a = 16.

Hypergeometrics of matrix argument also solve the random hyperplane
angle problem. One formulation picks two random p-hyperplanes through
the origin in n dimensions and asks for the distribution of the angle between
them. For numerical applications and the formulae see Absil, Edelman and
Koev (2004).

A word on the computation of these multivariate objects. The numerical
computation of the classical function is itself difficult if the user desires
accuracy over a large range of parameters. Many articles and books on
multivariate statistics consider the multivariate function difficult.

In recent work Koev has found an algorithm for computing matrix hy-
pergeometrics based on exploiting the combinatorial properties of the Poch-
hammer symbol, dynamic programming, and the algorithm for computing
the Jack function. For a specific computation, this replaces an algorithm
in 2000 that took 8 days to one that requires 0.01 seconds. See Koev and
Edelman (2004) for more details.

9. Painlevé equations

The Painlevé equations, already favourites of those who numerically study
solitons, now appear in random matrix theory and in the statistics of zeros of
the Riemann zeta function. In this section we introduce the equations, show
the connection to random matrix theory, and consider numerical solutions
matched against theory and random matrix simulations.

We think of the Painlevé equations as the most famous equations not
found in the current standard handbooks. This will change rapidly. They
are often introduced in connection to the problem of identifying second-
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order differential equations whose singularities may be poles depending on
the initial conditions (‘movable poles’) and other singularities that are not
movable. For example, the first-order equation

y′ + y2 = 0, y(0) = α

has solution

y(x) =
α

αx + 1
,

which has a movable pole at x = −1/α. (To repeat, the pole moves with
the initial condition.) The equation

y′′ + (y′)2 = 0, y(0) = α, y′(0) = β

has solution

y(x) = log(1 + xβ) + α.

This function has a movable log singularity (x = −1/β) and hence would
not be of the type considered by Painlevé.

Precisely, Painlevé allowed equations of the form y′′ = R(x, y, y′), where
R is analytic in x and rational in y and y′. He proved that the equations
whose only movable singularities are poles can be transformed into either
a linear equation, an elliptic equation, a Riccati equation or one of the six
families of equations below:

(I) y′′ = 6y2 + t,

(II) y′′ = 2y3 + ty + α

(III) y′′ =
1
y
y′2 − y′

t
+

αy2 + β

t
+ γy3 +

δ

y
,

(IV) y′′ =
1
2y

y′2 +
3
2
y3 + 4ty2 + 2(t2 − α)y +

β

y
,

(V) y′′ =
(

1
2y

+
1

y−1

)
y′2 − 1

t
y′ +

(y−1)2

t

(
αy +

β

y

)
+ γ

y

t
+ δ

y(y+1)
y−1

,

(VI) y′′ =
1
2

(
1
y

+
1

y − 1
+

1
y − t

)
y′2 −

(
1
t

+
1

t − 1
+

1
y − t

)
y′

+
y(y − 1)(y − t)

t2(t − 1)2

[
α − β

t

y2
+ γ

t − 1
(y − 1)2

+
(

1
2
− δ

)
t(t − 1)
(y − t)2

]
.

A nice history of the Painlevé equation may be found in Takasaki (2000).
Deift (2000) has a good exposition on this as well, where the connection to
Riemann–Hilbert problems, explored in greater detail in Deift et al. (1997),
is explained nicely. (A Riemann–Hilbert problem prescribes the jump con-
dition across a contour and asks which problems satisfy this condition.)
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In random matrix theory, distributions of some statistics related to the
eigenvalues of the classical random matrix ensembles are obtainable from
solutions to a Painlevé equation. The Painlevé II, III, V equations have
been well studied, but others arise as well. More specifically, it turns out
that integral operator discriminants related to the eigenvalue distributions
satisfy differential equations, which involve the Painlevé equations in the
large n limit. Connections between Painlevé theory and the multivariate
hypergeometric theory of Section 7 are discussed in Forrester and Witte
(2004) though more remains to be explored.

9.1. Eigenvalue distributions for large random matrices

In the study of eigenvalue distributions, two general areas can be distin-
guished. These are, respectively, the bulk, which refers to the properties of
all of the eigenvalues and the edges, which (generally) addresses the largest
and smallest eigenvalues.

A kernel K(x, y) defines an operator K on functions f via

K[f ](x) =
∫

K(x, y)f(y) dy. (9.1)

With appropriate integration limits, this operator is well defined if K(x, y)
is chosen as in Table 9.1. Discretized versions of these operators are famous
‘test matrices’ in numerical analysis as in the case of the sine-kernel which
discretizes to the prolate matrix (Varah 1993).

The determinant becomes a ‘Fredholm determinant’ in the limit of large
random matrices. This is the first step in the connection to Painlevé theory.
The full story may be found in the Tracy–Widom papers (Tracy and Widom
1993, 1994a, 1994b) and in the paper by Forrester (2000). The term ‘soft

Table 9.1. Operator kernels associated with the different eigenvalue distributions.

Painlevé Statistic
Interval
(s > 0) Kernel K(x, y)

V ‘bulk’ [−s, s] sine
sin(π(x − y))

π(x − y)

III ‘hard edge’ (0, s] Bessel

√
yJα(

√
x)J ′

α(
√

y) −√
xJα(

√
y)J ′

α(
√

x)
2(x − y)

II ‘soft edge’ [s,∞) Airy
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y
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Figure 9.1. Regions corresponding to eigenvalue
distributions that are of interest in random matrix theory.

edge’ applies (because there is still ‘wiggle room’) when the density hits
the horizontal axis, while the ‘hard edge’ applies when the density hits the
vertical axis (no further room on the left because of positivity constraints
on the eigenvalues, for example as is the case for the smallest eigenvalue of
the Laguerre and Jacobian ensembles). This is illustrated in Figure 9.1 and
is reflected in the choice of the integration intervals in Table 9.1 as well.

The distributions arising here are becoming increasingly important as
they are showing up in many places. Authors have imagined a world (per-
haps in the past) where the normal distribution might be found experiment-
ally or mathematically but without the central limit theorem to explain why.
This is happening here with these distributions as in the connection to the
zeros of the Riemann zeta function (discussed in Section 9.3), combinator-
ial problems (Deift 2000), and growth processes (Johansson 2000a). The
relevance of β in this context has not been fully explored.

9.2. The largest eigenvalue distribution and Painlevé II

The distribution of the appropriately normalized largest eigenvalues of the
Hermite (β = 1, 2, 4) and Laguerre (β = 1, 2) ensembles can be computed
from the solution of the Painlevé II equation:

q′′ = sq + 2q3 (9.2)
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with the boundary condition

q(s) ∼ Ai(s), as s → ∞. (9.3)

The probability distributions thus obtained are the famous Tracy–Widom
distributions.

The probability distribution f2(s), corresponding to β = 2, is given by

f2(s) =
d
ds

F2(s), (9.4)

where
F2(s) = exp

(
−

∫ ∞

s
(x − s)q(x)2 dx

)
. (9.5)

The distributions f1(s) and f4(s) for β = 1 and β = 4 are the derivatives of
F1(s) and F4(s) respectively, which are given by

F1(s)2 = F2(s) exp
(
−

∫ ∞

s
q(x) dx

)
(9.6)

and

F4

(
s

2
2
3

)2

= F2(s)
(

cosh
(∫ ∞

s
q(x) dx

))2

. (9.7)

These distributions can be readily computed numerically. To solve using
matlab, first rewrite (9.2) as a first-order system:

d
ds

(
q
q′

)
=

(
q′

sq + 2q3

)
. (9.8)

This can be solved as an initial value problem starting at s = s0 = suffi-
ciently large positive number, and integrating backwards along the s-axis.
The boundary condition (9.3) then becomes the initial values{

q(s0) = Ai(s0),
q′(s0) = Ai′(s0).

(9.9)

This problem can be solved in just a few lines of matlab using the built-in
Runge–Kutta-based ODE solver ode45. First define the system of equations
as an inline function

deq=inline(’[y(2); s*y(1)+2*y(1)^3]’,’s’,’y’);

Next specify the integration interval and the desired output times:

s0=5;
sn=-8;
sspan=linspace(s0,sn,1000);

The initial values can be computed as

y0=[airy(s0); airy(1,s0)]
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Figure 9.2. The Tracy–Widom distributions for β = 1, 2, 4.

Now, the integration tolerances can be set and the system integrated:

opts=odeset(’reltol’,1e-13,’abstol’,1e-15);
[s,y]=ode45(deq,sspan,y0,opts);
q=y(:,1);

The first entry of the matlab variable y is the function q(s). The distribu-
tions F2(s), F1(s) and F4(s) can be obtained from q(s) by first setting the
initial values:

dI0=I0=J0-0;

then numerically integrating to obtain:

dI=-[0;cumsum((q(1:end-1).^2+q(2:end).^2)/2.*diff(s))]+dI0;
I=-[0;cumsum((dI(1:end-1)+dI(2:end))/2.*diff(s))]+I0;
J=-[0;cumsum((q(1:end-1)+q(2:end))/2.*diff(s))]+J0;

Finally, using equations (9.5), (9.6), and (9.7) we obtain the desired distri-
butions as:

F2=exp(-I);
F1=sqrt(F2.*exp(-J));
F4=sqrt(F2).*(exp(J/2)+exp(-J/2))/2;
s4=s/2^(2/3);

Note that the trapezoidal rule (cumsum function in matlab) is used to
approximate numerically the integrals in (9.5), (9.6) and (9.7) respectively.
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The probability distributions f2(s), f1(s), and f4(s) can then computed by
numerical differentiation:

f2=gradient(F2,s);
f1=gradient(F1,s);
f4=gradient(F4,s4);

The result is shown in Figure 9.2. Note that more accurate techniques
for computing the Tracy–Widom distributions are known and have been
implemented as in Edelman and Persson (2002). Dieng (2004) discusses the
numerics of another such implementation.

These distributions are connected to random matrix theory by the fol-
lowing theorems.

Theorem 9.1. (Tracy and Widom 2000a) Let λmax be the largest ei-
genvalue of Gβ(n, n), the β-Hermite ensemble, for β = 1, 2, 4. The normal-
ized largest eigenvalue λ′

max is calculated as

λ′
max = n

1
6 (λmax − 2

√
n).

Then, as n → ∞,

λ′
max

D−→ Fβ(s).

Theorem 9.2. (Johnstone 2001) Let λmax be the largest eigenvalue of
W1(m, n), the real Laguerre ensemble (β = 1). The normalized largest
eigenvalue λ′

max is calculated as

λ′
max =

λmax − µmn

σmn
,

where µmn and σmn are given by

µmn = (
√

m − 1 +
√

n)2, σmn = (
√

m − 1 +
√

n)
(

1√
m − 1

+
1
n

) 1
3

.

Then, if m/n → γ ≥ 1 as n → ∞,

λ′
max

D−→ F1(s).

Theorem 9.3. (Johansson 2000b) Let λmax be the largest eigenvalue
of W2(m, n), the complex Laguerre ensemble (β = 2). The normalized
largest eigenvalue λ′

max is calculated as

λ′
max =

λmax − µmn

σmn
,

where µmn and σmn are given by

µmn = (
√

m +
√

n)2,σmn = (
√

m +
√

n)
(

1√
m

+
1
n

) 1
3

.
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Figure 9.3. Probability distribution of scaled largest eigenvalue
of the Hermite ensembles (105 repetitions, n = 109).

Then, if m/n → γ ≥ 1 as n → ∞,

λ′
max

D−→ F2(s).

Figure 9.3 compares the probability distribution of the scaled large ei-
genvalue of the GOE, and GUE with the numerical results for a billion by
billion matrix over 105 trials. We talk about how we generate data points
for a billion by billion matrix later in this article. Related results include
Soshnikov (1999). Dieng (2004) derives Painlevé-type expressions for the
distribution of the kth-largest eigenvalue in the GOE and GSE in the edge
scaling limit.

9.3. The GUE level spacings distribution and Painlevé V

Another quantity with an interesting probability distribution is the spa-
cings of the eigenvalues of the Gaussian unitary ensemble, G2(n, n). The
normalized spacings of the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λm are computed
according to

δ′k =
λk+1 − λk

πβ

√
2βn − λ2

k, k ≈ n/2. (9.10)

The distribution of the eigenvalues is almost uniform, with a slight deviation
at the two ends of the spectrum. Therefore, only half of the eigenvalues are
used, and one quarter of the eigenvalues at each end is discarded.
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Figure 9.4. Probability distribution of consecutive spacings of
the eigenvalues of a GUE ensemble (1000 repetitions, n = 1000).

The probability distribution p(s) for the eigenvalue spacings when β = 2
can be computed with the solution to the Painlevé V nonlinear differential
equation:

(tσ′′)2 + 4(tσ′ − σ)
(
tσ′ − σ + (σ′)2

)
= 0 (9.11)

with the boundary condition

σ(t) ≈ − t

π
−

(
t

π

)2

, as t → 0+. (9.12)

Then p(s) is given by

p(s) =
d2

ds2
E(s), (9.13)

where

E(s) = exp
(∫ πs

0

σ(t)
t

dt

)
. (9.14)

Explicit differentiation gives

p(s) =
1
s2

(
πsσ′(πs) − σ(πs) + σ(πs)2

)
E(s). (9.15)

The second-order differential equation (9.11) can be written as a first-order
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system of differential equations:

d
dt

(
σ
σ′

)
=

(
σ′

−2
t

√
(σ − tσ′)(tσ′ − σ + (σ′)2)

)
. (9.16)

This is solved as an initial value problem starting at t = t0 = very small
positive number. The value t = 0 has to be avoided because of the division
by t in the system of equations. This is not a problem, since the boundary
condition (9.12) provides an accurate value for σ(t0) (as well as E(t0/π)).
The boundary conditions for the system (9.16) then become{

σ(t0) = − t0
π − ( t0

π )2,
σ′(t0) = − 1

π − 2t0
π .

(9.17)

This system can be solved numerically using matlab.

9.4. The GUE level spacings distribution and the Riemann zeta zeros

It has been observed that the zeros of the Riemann zeta function along the
critical line Re(z) = 1

2 (for z large) behave similarly to the eigenvalues of
random matrices in the GUE. Here, the distribution of the scaled spacings
of the zeros is compared to the corresponding level spacing distribution
computed using the Painlevé V equation.
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Figure 9.5. Probability distribution of consecutive spacings
of Riemann zeta zeros (30, 000 zeros, n ≈ 1012, 1021, 1022).
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Define the nth zero γn as

ζ

(
1
2

+ iγn

)
= 0, 0 < γ1 < γ2 < · · · . (9.18)

Compute a normalized spacing:

γ̃n =
γn

av spacing near γn
= γn ·

[
log γn/2π

2π

]
. (9.19)

Zeros of the Riemann zeta function can be downloaded from Odlyzko (2001).
Assuming that the matlab variable gamma contains the zeros, and the vari-
able offset the offset, these two lines compute the consecutive spacings
γ̃n+1 − γ̃n and plot the histogram:

delta=diff(gamma)/2/pi.*log((gamma(1:end-1)+offset)/2/pi);

% Normalize and plot the histogram of the spacings

The result can be found in Figure 9.5, along with the Painlevé V distri-
bution.

10. Eigenvalues of a billion by billion matrix

We discuss how knowledge of numerical algorithms and software allow us
to perform random matrix simulations very efficiently. In this case study,
we illustrate an improvement rarely seen in computation. We succeeded in
going from n = 100 to n = 109, i.e., we can compute the largest eigenvalue
of a billion by billion matrix in the time required by naive methods for a
hundred by hundred matrix. Pushing to n = 1012 is within reach.

We devise a numerical experiment to verify that the distribution of the
appropriately normalized and scaled largest eigenvalue of the GOE ensemble
is given by the Tracy–Widom distribution F2(s) in (9.5).

Recall that an instance of the GOE ensemble (β = 1) can be created
conveniently in matlab as:

A=randn(n);
A=(A+A’)/2;

It is now straightforward to compute the distribution for λ′
max by simulation:

for idx=1:trials
A=randn(n);
A=(A+A’)/2;
lmax=max(eig(A));
lmaxscaled=n^(1/6)*(lmax-2*sqrt(n));
% Store lmax

end

% Create and plot histogram
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The problem with this technique is that the computational requirements
and the memory requirements grow rapidly with n. Storing the matrix A
requires n2 double-precision numbers, so on most computers today n has
to be less than 104. Furthermore, computing all the eigenvalues of a full
Hermitian matrix requires computing time proportional to n3. This means
that it will take many days to create a smooth histogram by simulation,
even for relatively small values of n.

To improve upon this situation, we can instead study the β-Hermite tri-
diagonal ensemble as in Table 5.1:

Hβ
n ∼ 1√

2




N(0, 2) χ(n−1)β

χ(n−1)β N(0, 2) χ(n−2)β

. . . . . . . . .
χ2β N(0, 2) χβ

χβ N(0, 2)


. (10.1)

Recall that N(0, 2) is a zero-mean Gaussian with variance 2, and χr is the
square-root of a χ2-distributed number with r degrees of freedom. Note
that the matrix is symmetric, so the subdiagonal and the superdiagonal are
always equal.

This matrix has a tridiagonal sparsity structure, and only 2n− 1 double-
precision numbers are required to store an instance of it. The time for
computing the largest eigenvalue is proportional to n, either using Krylov
subspace-based methods or the method of bisection (Trefethen and Bau
1997). This is certainly an improvement, though not substantial enough to
do a simulation of a billion by billion GOE as in Figure 9.3.

The following code can, however, be used to compute the largest eigen-
value of a billion by billion GOE (β = 1):

beta=1; n=1e9; opts.disp=0; opts;issym=1;
alpha=10;k=round(alpha*n^(1/3)); % cutoff parameters
d=sqrt(chi2rnd(beta*n:-1:(n-k-1)))’;
H=spdiags(d,1,k,k)+spdiags(randn(k,1),0,k,k);
H=(H+H’)/sqrt(4*n*beta); % Scale so largest eigenvalue is near 1
eigs(H,1,1,opts);

The technology underlying this code is remarkable and deserves to be
widely known. A number of interesting tricks are combined together.

• The observation that if k = 10n1/3, then the largest eigenvalue is de-
termined numerically by the top k×k segment of n. (This is related to
the decay of the Airy function that arises in the kernel whose eigenval-
ues determine the largest eigenvalue distribution. The ‘magic number’
10 here is not meant to be precise. It approximates the index k such
that v(k)

v(1) ≈ ε, where ε = 2−52 for double precision arithmetic, and v is
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the eigenvector corresponding to the largest eigenvalue. For small β,
it may be necessary to crank up the number 10 to a larger value.)

• Sparse matrix storage. (Only O(n) storage is used.)

• Tridiagonal ensemble formulas. (Any beta is available due to the tri-
diagonal ensemble.)

• The Lanczos algorithm for eigenvalue computation. (This allows the
computation of the largest eigenvalue faster than typical general pur-
pose eigensolvers.)

• The shift-and-invert accelerator to Lanczos and Arnoldi. (Since we
know the eigenvalues are near 1, we can accelerate the convergence of
the largest eigenvalue.)

• The arpack software package as made available seamlessly in matlab.
(The Arnoldi package contains state of the art data structures and
numerical choices.)

Two of these tricks are mathematical. The first one is the ability to
use tridiagonal ensembles to generate matrices whose eigenvalues match the
GOE distribution. This allows us to avoid using dense matrices again for
random matrix experiments. The second mathematical trick is the ability
to cut off the top segment of the matrix to obtain accurately the largest
eigenvalue.

It would be all too easy to take for granted the technology available for the
remaining tricks. It was not so many years ago that the user would have to
code up the sparse matrix storage made available by the ‘spdiags’ command
or the ability to peel off the largest eigenvalue and give a starting guess that
is made available in ‘eigs’. Though numerical analysts are well versed in
such numerical techniques, we would probably still not have bothered to
implement the shift-and-invert Arnoldi-style algorithms ourselves. It has
been said that technology advances by the number of operations that we do
not have to think about. This is a great example.

Incidentally, for users interested in all of the eigenvalues of the tridiag-
onal matrix (Hermite ensembles such as the GOE, GUE, GSE) or all the
singular values of a bidiagonal matrix (Laguerre ensembles such as Wis-
hart matrices), then the lapack routines DSTEQR and DBDSQR can
compute the eigenvalues with linear storage and in quadratic time. Users
who simply use matlab’s eig, Mathematica’s Eigenvalues, or Maple’s
linalg[eigenvalues] are at a severe disadvantage.

We remark that further improvements are possible (and have been imple-
mented!) if we use the approximation χn ≈ √

n+ 1√
2

G. This approximation
forms the basis of the ideas in the next section. There are further tricks
available, such as using the method of bisection (Trefethen and Bau 1997)
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and approximating χn with simply
√

n. See Edelman and Persson (2002)
for more details.

11. Stochastic operators

For years, the first author was mystified by the notation
√

dt often found
in integrals connected with the Black–Scholes model of options pricing in
finance. The simple fact that he was missing is that, if one has Gaussian
random variables, the natural quantity that adds (thus, the linear function)
is the variance, which is connected to the square of the variable.

There is some mathematics to be completed to understand fully how well-
defined is the notion of the eigenvalues of a stochastic operator. Careful
analysis will tell whether different discretizations give the same limiting
eigenvalue distributions. Nonetheless, as we will outline, there is an idea
here that we feel is sufficiently important that we can not afford to wait for
this sort of analysis.

We define a Wiener process differentially as

dW = (standard normal) ·
√

dt.

The integral of such a process W (t) (Brownian motion) is

W (t) =
∫

dW.

This is probably best graphed in matlab with the command:

t = [dt:dt:1]’;
W = cumsum(randn(length(t),1))*sqrt(dt);
plot([0;t],[0;W])

where dt = very small number not equal to zero and W (0) = 0. A good
reference on Brownian motion is Karatzas and Shreve (1991).

Every time we ‘roll the dice’ we get a new W , but it is always the case
that W (t) is a Gaussian with variance t.

We are interested in operators exactly or closely related to the form

d2

dx2
+ V (x) + σ dW.

↑ ↑ ↑
Discretization: tridiagonal diagonal diagonal or

tridiagonal

When discretized each term can be thought of as a tridiagonal or diagonal
matrix. The last part requires Gaussians.
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11.1. From random matrices to stochastic operators

Consider the β-Hermite ensemble. The eigenvalue distribution of this en-
semble is shared by a tridiagonal matrix with real elements that could
be constructed as

Hβ
n =

1√
2




√
2G χβ(n−1)

χβ(n−1)

√
2G χβ(n−2)

. . . . . . . . .

χβ·2
√

2G χβ

χβ

√
2G




.

This matrix is symmetric with independent entries in the upper triangular
part. G represents an element taken from the standard Gaussian distri-
bution, and χr represents an element taken from the χ-distribution with r
degrees of freedom.

We are interested in the distribution of the largest eigenvalue, which is
related to the solution of the Painlevé II transcendent.

Consider the β-Hermite ensemble from a numerical linear algebra point of
view. The tridiagonal form suggests that Hβ

n may be a finite difference ap-
proximation to some differential operator. We proposed that the β-Hermite
ensemble is a finite difference approximation of the stochastic Airy operator :

d2

dx2
− x + σ dW, (11.1)

in which dW represents a Wiener process. Recall that the Airy kernel in
Table 9.1 plays an important role.

Hence, the random matrix model itself has a large n limit, and the eigen-
values should converge in distribution to the eigenvalues of the stochastic
Airy operator as n → ∞.

When σ = 0, the stochastic Airy operator in (11.1) specializes to the
well-known, non-noisy, Airy operator on [0,∞) with boundary condition
u(0) = 0. It has a particularly simple eigendecomposition in terms of the
Airy special function,(

d2

dx2
− x

)
ui(x) = u′′

i (x) − xui(x) = λiui(x),

which has solutions

ui(x) =
1

Ai′(λi)2
Ai(x + λi),

where λi is the ith root of the Airy function, Ai(x).
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We can discretize the non-noisy Airy operator using finite differences.
Taking some mesh size h = h(n) → 0 and defining xi = hi, the matrix

An =
1
h2




−2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2



−




x1

x2

. . .

xn−1

xn




=
1
h2

D2
n − h diag(1, 2, . . . , n)

is a natural finite difference approximation to the non-noisy Airy operator,
i.e., the stochastic Airy operator in (11.1) with σ = 0. We expect the
eigenvalues nearest 0 and the corresponding eigenvectors to converge to the
eigenvalues and eigenfunctions of the Airy operator as n → ∞.

The β-Hermite ensemble Hβ
n , which is clearly ‘noisy’, admits a similar

representation. There are some manipulations that need to be done to get
to that form.

The first step is to obtain the right scaling, focusing on the largest eigen-
value. From Tracy and Widom’s result on the distribution of the largest
eigenvalue, we know that the largest eigenvalue of

H̃β
n =

√
2√
β

n1/6(Hβ
m −

√
2βnI)

converges in distribution as n → ∞ for β = 1, 2, 4.
Using the approximation χr ≈ √

r + 1√
2
G, valid for large r, and breaking

the matrix into a sum of a non-random part and a random part, it follows
that

H̃β
n ≈




−2n2/3 n1/6
√

n − 1

n1/6
√

n − 1 −2n2/3 n1/6
√

n − 2
. . . . . . . . .

n1/6
√

2 −2n2/3 n1/6
√

1

n1/6
√

1 −2n2/3




+
1√
2β

n1/6




2G G

G 2G G

. . . . . . . . .

G 2G G

G 2G




.
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Next, replacing
√

n − i with the first-order Taylor series expansion√
n − 1

2n−1/2i, the following approximation is obtained:

H̃β
n ≈ n2/3




−2 1
1 −2 1

. . . . . . . . .

1 −2 1
1 −2




+
1√
2β

n1/6




2G G

G 2G G

. . . . . . . . .

G 2G G

G 2G




− 1
2
n−1/3




1
1 2

. . . . . . . . .

n − 2 n − 1
n − 1




.

The first term is a second difference operator, the second term injects noise,
and the third term resembles a diagonal multiplication. Introducing h =
n−1/3 and replacing the second and third terms with analogous diagonal
matrices, preserving total variance, the final approximation obtained is:

H̃β
n ≈ 1

h2
D2

n − h diag(1, 2, . . . , n) +
2√
β

1√
h

diag(G, G, . . . , G)

≈ An +
2√
β

1√
h

diag(G, G, . . . , G),

h = n−1/3.

This final approximation appears to be a reasonable discretization of the
stochastic Airy operator

Lβ =
d2

dx2
− x +

2√
β

dW, (11.2)

with the boundary conditions f(0) = f(+∞) = 0, in which W is Gaussian
white noise.

Therefore, the largest eigenvalue distribution of Lβ should follow the
Tracy–Widom distribution in the cases β = 1, 2, 4. Figure 11.1 plots the
distribution for β = 1, 2, 4 and compares it to simulation results for β = 1.

The stochastic operator approach is also advantageous when dealing with
‘general β’. The traditional approaches are limited to the cases β = 1, 2, 4.
In the stochastic operator approach, β is related to the variance of the noise;
specifically, σ = 2/

√
β in the case of the stochastic Airy operator as in (11.2).

Instead of working with three discrete values of β, the stochastic operators
vary continuously with β. Numerical simulations, as in Figure 11.1, indicate
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Figure 11.1. The largest eigenvalue distribution: comparison
of discretized stochastic Airy operator with the Tracy–Widom
law (β = 1). Monte Carlo simulations involved 105 trials of
500-by-500 matrices.

some sort of convection-diffusion process that can be explained in general
terms.

The diffusion comes from the high noise associated with small β. Increase
the volatility (decrease β) and we increase the range. The convection comes
from the repulsion of eigenvalues seen by any perturbation.

The reader can play with a simple experiment to observe the same phe-
nomenon. Consider the 2 × 2 symmetric random matrix[

x z
z y

]
+

2√
β

[
G 0
0 G

]
,

where the G are independent standard normals. As β → 0 the largest
eigenvalue will have a larger mean and a larger variance no matter what
matrix you start with, i.e., for any choice of x, y, and z.

Similar stochastic operators corresponding to the discretization of the sine
and Bessel kernels in Table 9.1 can also be readily derived, as detailed in
Sutton (2005).
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12. Free probability and infinite random matrices

There is a new mathematical field of ‘free probability’ emerging as a counter-
part to classical probability. Some good references are Voiculescu, Dykema
and Nica (1992), Hiai and Petz (2000) and Biane (2003). These references
and even the name ‘free probability’ are worthy of some introduction. The
forthcoming book by Speicher and Nica (2005) promises to serve as invalu-
able resource for making this subject more accessible.

We begin with a viewpoint on classical probability. If we are given prob-
ability densities f and g for random variables X and Y respectively, and if
we know that X and Y are independent, we can compute the moments of
X + Y , and XY , for example, from the moments of X and Y .

Our viewpoint on free probability is similar. Given two random matrices,
A and B with eigenvalue density f and g, we would like to compute the
eigenvalue densities for A + B and AB in terms of the moments of f and
g. Of course, A and B do not commute so we are in the realm of non-
commutative algebra. Since all possible products of A and B are allowed,
we have the ‘free’ product, i.e., all words in A and B are allowed. (We
recall that this is precisely the definition of the free product in algebra.)
The theory of free probability allows us to compute the moments of these
products in the limit of large matrices, as long as at least one of A or B
has what amounts to eigenvectors that are essentially uniformly distributed
with Haar measure. Speicher (2003) places these moment computations in
an elegant combinatorial context.

We like to think of the difference between classical and free probability
as being illustrated by the following maxim:

sum of the eigenvalues of random matrices (classical probability)
versus

eigenvalues of the sum of random matrices (free probability)

We take a closer look with an example.
Suppose Ai is an m × m matrix from the Gaussian orthogonal ensemble

(GOE). Let λi be a random eigenvalue chosen uniformly from the m eigen-
values of Ai.

The classical central limit theorem states that if we form

λ =
λ1 + λ2 + · · · + λn√

n
,

no matter what m is, for large n, we obtain a normal distribution. The
central limit theorem does not care at all that these λis were eigenvalues of
random matrices.
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However, if rather λ is a random eigenvalue of A1+ · · ·+An (eigenvalue of
the sum), then λ is no longer normal. Free probability tells us that as m, n →
∞, the λ follows Wigner’s semi-circular density. This is the analogous ‘free’
central limit theorem for asymptotically large random matrices.

In a broader sense, free probability is studied in the context of non-
commutative operator algebras. The synergy between random matrices
and free probability arises because matrices are a natural model for a non-
commutative algebra. The general theory of free probability is, however,
more than just infinite random matrix theory.

In this sense, we find it remarkable that free probabilists were able to
derive many of the well-known results in infinite random matrix theory
by abstracting away the matrix in question. In special cases, techniques
first used by Marčenko and Pastur (1967) and later perfected by Silverstein
(1986) and Girko (1998) yield the same results as well. More details on
these techniques can be found in Bai (1999) and the references therein.

12.1. Finite free probability

We propose that there is a finite counterpart, which we might call finite
free probability. This is an area that is yet to be fully explored but some
of the formulas for the moments of AB may be computed using the Jack
polynomial theory mentioned in Section 7. There would be a beta depend-
ence that is not necessary when n = 1 or n = ∞, but otherwise the theory
is sensible.

In Figure 12.1, we illustrate (what we call) the finite free central limit
theorem for a case when n = 5 and β = 2 (complex random matrices). The
answer is neither a semi-circle as in standard free probability or a normal
distribution as in classical probability. Here we took 5×5 complex Wishart
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Figure 12.1. Finite free probability: the level density of the β = 2,
n = 5 Hermite ensemble obtained by summing a large number of
independent realizations of the β = 2, n = 5 Laguerre ensemble.
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matrices, subtracted the mean and added them. There is a sensible notion
of finite free probability, though it is not clear if finite free cumulants can
or do exist. The details have yet to be worked out, though efforts by many
authors on different fronts are underway. We invite readers to work in
this area.

13. A random matrix calculator

In principle, the formulas from free probability allow us to combine very
general combinations of random matrices and still compute the eigenvalue
densities. In practice, however, researchers have been constrained from
doing so because the relevant theorems are expressed explicitly in terms of
transforms that are difficult to compute beyond some simple ‘toy examples’.

It turns out that these theorems can be described implicitly as well. The
key object is not the transform itself but the algebraic equation that the
transform satisfies. The practical implication of this is that we can actually
compute the limiting level density and moments for an infinitely large class
of random matrices. We label such random matrices as ‘characterizable’.
Figure 13.1 uses a calculator analogy to describe how one characterizable
matrix can be constructed from another.

A�

�

level
density

�

B�

�

level
density

A + α I α × A A−1 pA + qI

rA + sI

deterministic

A + W (c) W (c) × A W−1(c) × A
(A1/2 + G)×
(A1/2 + G)′

stochastic

Figure 13.1. A random matrix calculator where a sequence of
deterministic and stochastic operations performed on a
‘characterizable’ matrix A produces a ‘characterizable’ matrix
B. The level density and moments of a ‘characterizable’
matrix can be computed analytically.
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The ‘buttons’ in the top row of Figure 13.1 represent deterministic oper-
ations that can be performed on it (α, p, q, r, s are scalars). The ‘buttons’
in the bottom row are stochastic operations where additional randomness
is injected.

The G matrix is an m×n matrix with independent, identically distributed
(i.i.d.) zero mean elements with a variance of 1/n and bounded higher-order
moments. We could generate G of this form in matlab as

G=randn(m,n)/sqrt(n);

or
G=sign(randn(m,n))/sqrt(n);

as examples. The W (c) matrix is a Wishart-like matrix constructed as
W (c) = GG′ where m/n → c > 0 as m, n → ∞.

The idea behind the calculator is that if we start off with a characterizable
matrix A and if we were to generate the matrix B by pressing any of the
buttons of the calculator we generate another characterizable matrix B. We
can repeat this process forever, and by virtue of it being characterizable we
can compute the limiting level density and limiting moments, often in closed
form.

We can extend this idea even further by using the theorems of free probab-
ility. If we are given two characterizable random matrices, A1 and A2, then
we can make them ‘free’ relative to each other by letting A2 = QA2Q

′, where
Q is an independent Haar orthogonal/unitary matrix. Then the matrices
A1 + A2, and A1A2 are characterizable as well. Other transformations such
as i(A1A2 − A2A1) (the matrix commutator in Lie algebra) are possible as
well. The mathematical principles behind this method and the computa-
tional realization that makes all of this possible may be found in Rao and
Edelman (2005) and Rao (2005). We illustrate this with an example.

Suppose we start off with A1 = I. In matlab we perform a sequence of
simple transformations corresponding to buttons on our calculator:

% Pick n, N1, N2
c1=n/N1; c2=n/N2;
A1=eye(n,n);

Then, we generate A2 = W1(c1) × A1:

G1=randn(n,N1)/sqrt(N1);
W1=G1*G1’;
A2=A1*W1;

Let A3 = A−1
2 and A4 = W2(c2) × A3:

A3=inv(A2);
G2=randn(n,N2)/sqrt(N2);
W2=G2*G2’;
A4=A3*W2
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Figure 13.2. Comparison of the theoretical limiting level density (solid line) with
the experimental level density for 1000 random matrix ensemble realizations with
c1 = 0.1, c2 = 0.625, with n = 100, N1 = n/c1 = 1000 and N2 = n/c2 = 160.

Now, A5 = A4 + I and A6 = A−1
5 :

A5=A4+eye(n,n);
A6=inv(A5);

Generate a Haar unitary matrix and let A7 = A6 + Q A6 Q′:

[Q,R]=qr(randn(n)+i*randn(n));
Q=Q*diag(exp(2*pi*i*rand(n,1)));
A7=A6+Q*A6*Q’;

% Collect eigenvalues
% Repeat over several trials
% Histogram eigenvalues

Since we constructed the matrices A2 to A7 using the ‘buttons’ of the
random matrix calculator, they turn out to be characterizable. Figure 13.2
shows the limiting level density of these matrix ensembles compared with
the experimental version. It is clear that although the predictions were
asymptotic in nature (with respect to large n, N1, N2) the agreement with
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experimental data is excellent. Empirical evidence suggests that a 10 × 10
matrix is often ‘good enough’ to corroborate the limiting predictions of
free probability.

14. Non-Hermitian and structured random matrices

Our understanding of non-Hermitian and structured random matrices is
very limited at present. Relatively recent results on non-Hermitian random
matrices include the works by Goldsheid and Khoruzhenko (2000), Fyo-
dorov, Khoruzhenko and Sommers (1997), and Feinberg and Zee (1997).

The most celebrated theorem, Girko’s circular law (Girko 1994) states
that under reasonable conditions, the eigenvalues of an n × n matrix with
independent entries of mean 0 and variance 1/n fall uniformly on a circular
disk of radius 1 as n → ∞. Figure 14.1 illustrates this numerically. The
theorem is correct whether the matrix is real or complex. When the matrix
is real there is a larger attraction of eigenvalues on the real axis and a small
repulsion just off the axis. This disappears as n → ∞.

Mehlig and Chalker (2000) study the eigenvectors of such non-Hermitian
random matrices. General questions regarding eigenvectors or spacings
remain open at this time, as do studies of the β-arbitrary generalization.
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Figure 14.1. The eigenvalues of a 500 × 500
Gaussian random matrix (randn(500)/sqrt(500)
in matlab) in the complex plane.
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The theory of pseudospectra is a rich area that allows for the study of non-
Hermitian matrices, specifically those that are highly non-normal. Many
tools for drawing pseudospectra are available, such as EigTool by Wright
(2000). Figure 14.2 shows the pseudospectra for the same random matrix
whose eigenvalues were plotted in Figure 14.1. The Pseudospectra Gateway
compiled by Embree and Trefethen (2000) and their well-researched book,
Trefethen and Embree (2005), contain discussions of nonsymmetric random
matrices.

Random matrix theory is relevant in two distinct ways. An instance of
a random matrix itself becomes a valuable object to study, as in Girko’s
circular law or in the Hatano and Nelson’s non-Hermitian Anderson model
as described by Trefethen, Contedini and Embree (2001). Also, perturbing
a matrix randomly allows for insights into the pseudospectra and has been
elevated to the level of a tool, as in the book by Chaitin-Chatelin and Frayssé
(1996), where, for example, the Jordan structure is studied.

Another interesting result concerns the probability pn,k that G1(n, n) has
k real eigenvalues. A formula for this may be found in Edelman (1997).
Numerical analysts might be interested in the use of the real Schur decom-
position in the computation pn,k. This is the decomposition used in standard

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−3

−2

−1

Figure 14.2. The pseudospectra of a 500 × 500 Gaussian
random matrix (randn(500)/sqrt(500) in matlab). The
illustration was produced with the eigtool pseudospectra
plotter from Oxford University. The values on the colour
bar show 10 log10 ε.
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eigenvalue computations. For example, to compute the probability that a
matrix has all real eigenvalues, one integrates the measure on G1(n, n) over
matrices of the form A = QRQT , where Q is orthogonal and R is upper
triangular with ordered diagonal elements. This is the Schur form for real
matrices with all real eigenvalues.

For random sparse matrices we refer the reader to Rodgers and Bray
(1988) and Semerjian and Cugliandolo (2002), and the general theory of
random graphs (Bollobás 1985). In Spiridonov (2005) one finds an interest-
ing fractal pattern in the histogram of the eigenvalues of a sparse random
matrix depending on the degree of sparsity.

The classical reference on deterministic Toeplitz matrices is Grenander
and Szegő (1958). Recent work by Byrc, Dembo and Jiang (2005) provides
a free probability-like characterization of the limiting spectral measure of
Toeplitz, Hankel and Markov random matrices. Anderson and Zeitouni
(2005) discuss central limit theorems related to generalized ‘banded’ random
matrix models.

15. A segue

We make some final predictions about the application of random matrix
theory: the pattern will follow that of numerical analysis in general. Most
disciplines of science and engineering will find random matrix theory a valu-
able tool. Random matrix history started in the physics of heavy atoms and
multivariate statistics. It has found its way into wireless communications
and combinatorial mathematics. The latest field is financial analysis. More
will follow; the word has to spread. Hopefully, this is a start.
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